Rocket motion during vertical powered and unpowered flight

Jørgen Franck Danish Amateur Rocket Club

The equation of motion of a rocket can be obtained fromthe law of conservationof momentum. Letthe mass of the rocket at any giveninstant be m , and letits speed be v relative to some fixed coordinate system. If material isshot out of the rocket motor with an exhaust velocity $v_{e x}$ relative to the rocket, the velocityof the exhaust relative to the fixed coordinate system is $v-v_{e x}$. If an external force F also acts on the rocket, then the linearmomentumtheorem reads in this case:

$$
\frac{d}{d t}(m v)-\left(v-v_{e x}\right) \frac{d m}{d t}=-F
$$

The first term isthe time rate of change of momentumof the rocket. The second term represents the rate at which momentum isappearing inthe rocket exhaust, where $-d m / d t$ is the rate at which matter isbeing exhausted.If we fix our attention on the rocket at any moment,we must rememberthat at a time $d t$ later this systemwill comprise the rocket plus the materialexhausted fromthe rocket during that time, and both must be considered incomputingthe change inmomentum. The force F represent the air resistance andthe gravitational force, we get

$$
\begin{aligned}
& m \frac{d v}{d t}+v_{e x} \frac{d m}{d t}=-m g-k v^{2} \Rightarrow \\
& m \frac{d v}{d t}+k v^{2}=-v_{e x} \frac{d m}{d t}-m g
\end{aligned}
$$

In the followingwe assume that g, k and $v_{e x}$ are constant, andthe mass of the rocket is a linearfunction of time

$$
m=m_{0}+\frac{d m}{d t} t=m_{0}+\beta t
$$

where m_{0} is the initial massof the rocket. Further is $d m / d t<0$ and constant. Rememberthat $-d m / d t$ is the rate at which matter isbeing exhausted. The constant k is equal to

$$
k=\frac{1}{2} \rho A c_{D}
$$

Now we transform the differentialequation of motion by achange of dependent variable

$$
\begin{aligned}
& v=\frac{m}{k y} \frac{d y}{d t} \\
& \frac{d v}{d t}=\frac{1}{k y^{2}}\left\{\beta y \frac{d y}{d t}+m y \frac{d^{2} y}{d t^{2}}-m\left(\frac{d y}{d t}\right)^{2}\right\}=\frac{\beta}{k y} \frac{d y}{d t}+\frac{m}{k y} \frac{d^{2} y}{d t^{2}}-\frac{m}{k y^{2}}\left(\frac{d y}{d t}\right)^{2}
\end{aligned}
$$

and it takes the form

$$
\begin{aligned}
& \frac{\beta m}{k y} \frac{d y}{d t}+\frac{m^{2}}{k y} \frac{d^{2} y}{d t^{2}}-\frac{m^{2}}{k y^{2}}\left(\frac{d y}{d t}\right)^{2}+\frac{m^{2}}{k y^{2}}\left(\frac{d y}{d t}\right)^{2}=-v_{e x} \beta-m g \Rightarrow \\
& m^{2} \frac{d^{2} y}{d t^{2}}+\beta m \frac{d y}{d t}+k\left(v_{e x} \beta+m g\right) y=0
\end{aligned}
$$

We transformagain

$$
\begin{aligned}
& y(t)=\left.u(z)\right|_{z=m_{0}+\beta t} \\
& \frac{d}{d t}=\beta \frac{d}{d z}, \quad \frac{d^{2}}{d t^{2}}=\beta^{2} \frac{d^{2}}{d z^{2}}
\end{aligned}
$$

and get

$$
\beta^{2} z^{2} \frac{d^{2} u}{d z^{2}}+\beta^{2} z \frac{d u}{d z}+k\left(g z+v_{e x} \beta\right) u=0
$$

The equation may be written in the form

$$
z^{2} \frac{d^{2} u}{d z^{2}}+z \frac{d u}{d z}+(a z+b) u=0
$$

where

$$
a=\frac{g k}{\beta^{2}}, \quad b=\frac{v_{e x} k}{\beta}<0
$$

This equation can be transformedinto Bessel'sequation and hasthe solution

$$
u=C_{1} J_{\gamma}(2 \sqrt{a z})+C_{2} J_{-\gamma}(2 \sqrt{a z}), \quad \gamma \text { nonintegral }
$$

where J_{γ} is a Besselfunction of the first kind andthe order is equal to

$$
\gamma=2 \sqrt{-b}
$$

The boundary conditions are

$$
\begin{array}{ll}
t=0: & v=0 \Rightarrow \\
z=m_{0}: & \frac{d u}{d z}=0
\end{array}
$$

The derivativeof u is

$$
\frac{d u}{d z}=\frac{C_{1}}{2} \sqrt{\frac{a}{z}}\left\{J_{\gamma-1}(2 \sqrt{a z})-J_{\gamma+1}(2 \sqrt{a z})\right\}+\frac{C_{2}}{2} \sqrt{\frac{a}{z}}\left\{J_{-\gamma-1}(2 \sqrt{a z})-J_{-\gamma+1}(2 \sqrt{a z})\right\}
$$

From $d u / d z=0$, we get

$$
C_{2}=-C_{1} \frac{J_{\gamma-1}(\eta)-J_{\gamma+1}(\eta)}{J_{-\gamma-1}(\eta)-J_{-\gamma+1}(\eta)}=\Theta C_{1}
$$

where

$$
\eta=2 \sqrt{a m_{0}}
$$

Now u and $d u / d z$ becomes

$$
\begin{aligned}
u & =C_{1}\left\{J_{\gamma}(2 \sqrt{a z})+\Theta J_{-\gamma}(2 \sqrt{a z})\right\} \\
\frac{d u}{d z} & =\frac{C_{1}}{2} \sqrt{\frac{a}{z}}\left\{J_{\gamma-1}(2 \sqrt{a z})-J_{\gamma+1}(2 \sqrt{a z})+\Theta\left[J_{-\gamma-1}(2 \sqrt{a z})-J_{-\gamma+1}(2 \sqrt{a z})\right]\right\}
\end{aligned}
$$

Finallythe burnout velocity can be obtained

$$
\begin{aligned}
& v_{b}=\frac{m}{k y} \frac{d y}{d t} \Rightarrow \\
& v_{b}=\frac{z \beta}{k u} \frac{d u}{d z} \Rightarrow \\
& v_{b}=\frac{\beta \mu}{4 k} \frac{J_{\gamma-1}(\mu)-J_{\gamma+1}(\mu)+\Theta\left\{J_{-\gamma-1}(\mu)-J_{-\gamma+1}(\mu)\right\}}{J_{\gamma}(\mu)+\Theta J_{-\gamma}(\mu)}
\end{aligned}
$$

where

$$
\mu=2 \sqrt{a z}
$$

The altitude at burnout is determined byintegrating the expression forthe velocity with respect to time asfollows

$$
\begin{aligned}
& v=\frac{z \beta}{k u} \frac{d u}{d z} \Rightarrow \\
& \frac{d s}{d t}=\frac{z \beta}{k u} \frac{d u}{d z} \Rightarrow \\
& \int_{0}^{s_{b}} d s=\frac{\beta}{k} \int_{0}^{t_{b}} \frac{z}{u} \frac{d u}{d z} d t \Rightarrow \\
& s_{b}=\frac{1}{k} \int_{m_{0}}^{m_{0}+\beta t_{b}} \frac{z}{u} \frac{d u}{d z} d z \Rightarrow \\
& s_{b}=\frac{1}{k} \int_{m_{0}}^{m_{0}+\beta t_{b}} \frac{z}{u} d u \Rightarrow \\
& s_{b}=\frac{1}{k}\left\{[z \log (u)]_{n_{0}}^{m_{0}+\beta t_{b}}-\int_{m_{0}}^{m_{0}+\beta t_{b}} \log (u) d z\right\}
\end{aligned}
$$

Unfortunatelythe altitude atburnout cannot be solved inclosed form asthe burnout velocity. After burnout of the rocket the verticaldifferentialequation of motion becomes

$$
m_{b} \frac{d v}{d t}=-m_{b} g-k v^{2}
$$

where m_{b} is the burnout massof the rocket. The solutions forthe coasting phase are well-known, butare listed below for a generelsurvey of the problem. This relationmay be rearranged to solve for t as a functionof v, and one then get the coasting time

$$
\begin{aligned}
& -\frac{m_{b}}{k} \int_{v_{b}}^{0} \frac{d v}{\frac{m_{b} g}{k}+v^{2}}=\int_{0}^{t_{c}} d t \Rightarrow \\
& t_{c}=\sqrt{\frac{m_{b}}{g k}} \arctan \left[v_{b} \sqrt{\frac{k}{m_{b} g}}\right]
\end{aligned}
$$

The equation can also be solved forthe coasted altitude increment byintroducingthe following transformationf variables

$$
\frac{d v}{d t}=\frac{d v}{d s} \frac{d s}{d t}=v \frac{d v}{d s}
$$

Whenintegrated, it yieldsthe coasted altitude increment as

$$
\begin{aligned}
& m_{b} v \frac{d v}{d s}=-m_{b} g-k v^{2} \Rightarrow \\
& -\frac{m_{b}}{k} \int_{v_{b}}^{0} \frac{v d v}{\frac{m_{b} g}{k}+v^{2}}=\int_{0}^{s_{c}} d t \Rightarrow \\
& s_{c}=\frac{m_{b}}{2 k} \ln \left[\frac{k v_{b}^{2}}{m_{b} g}+1\right]
\end{aligned}
$$

References:

1. Mandell, G. etal.:Topics inAdvanced ModelRocketry, The MIT Press
2. Spiegel, M.:AdvancedMathematics,Schaum'sOuline Series.
3. Spiegel, M.:TheoreticalMechanics,Schaum'sOuline Series.
