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Internal Aerodynamics in  
Solid Rocket Propulsion  

(RTO EN-023 / AVT-096) 

Executive Summary 

Considerations of the optimal approaches to adapt space launchers to a changing market should lead to 
significant breakthroughs in solid rocket propulsion technology, mainly in the areas of reduced costs and 
improved performance characteristics. The goal of this NATO Research and Technology Organization 
(RTO) sponsored lecture series was to provide a forum for the review of various scientific and industrial 
aspects of solid rocket propulsion and an assessment of recent advances with emphasis on internal 
aerodynamics. The present lecture notes are intended as a natural follow-up to the AGARD-LS-180 
“Combustion of Solid Propellants” organized in 1991. 

These RTO-AVT / VKI Special Course notes provide the state of the art in internal aerodynamics in solid 
rocket propulsion, in a way accessible to attendees coming from both academic and industrial areas.  
Two families of solid motors can be identified: tactical rockets and large boosters for launch vehicles.  
The military rockets are subjected to combustion instabilities while vortex shedding drives the instabilities 
in the large boosters. After an overview of the motor internal flow dynamics, combustion of solid 
propellants and metal particulates were presented. Numerical modeling of internal flow aerodynamics, 
two-phase flow and flow/structural interactions were addressed, before focusing on the motor flow and 
combustion instabilities.  

The main objective of these course notes is therefore to allow an information transfer between well-known 
scientists, leaders in the solid propulsion field, and demanding industries and laboratories. For these 
reasons, this proceeding appeals not only to experts already working in the domain, but also to newcomers 
to the field. 
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L’aérodynamique interne de la propulsion par 
moteurs-fusées à propergols solides  

(RTO EN-023 / AVT-096) 

Synthèse 
La considération des approches optimales de l’adaptation des lanceurs spatiaux à un marché en pleine 
évolution devrait conduire à des progrès décisifs dans le domaine des technologies de la propulsion par 
moteurs-fusées à propergols solides, principalement du point de vue de la diminution des coûts et de 
l’amélioration des caractéristiques de performance. Ce Cycle de conferences, organisé par l’Organisation 
OTAN pour la recherche et la technologie (RTO) a eu pour objectif de servir de forum pour l’examen de 
différents aspects scientifiques et techniques de la propulsion par moteurs-fusées à propergols solides, 
ainsi que pour l’évaluation des derniers progrès réalisés, en particulier en aérodynamique interne. L’actuel 
support de cours représente la suite naturelle du cycle de conférences AGARD-LS-180 sur « La 
combustion des propergols solides » organisé en 1991. 

Ce support de cours spécial RTO-AVT/VKI  présente l’état actuel des connaissances dans le domaine de 
l’aérodynamique interne de la propulsion par moteurs-fusées à propergols solides, de manière à rendre le 
sujet accessible à des participants  venant aussi bien de l’industrie que des universités.  Deux grandes 
familles de moteurs-fusées à propergols solides sont à distinguer : les fusées tactiques et les grandes fusées 
d’appoint pour lanceurs. Les fusées militaires sont sujettes à des instabilités de combustion, tandis que les 
instabilités des grandes fusées d’appoint sont occasionnées par le décollement des tourbillons. Suite à un 
aperçu de la dynamique des écoulements internes des moteurs, la combustion des propergols solides et des 
particules métalliques a été présentée. La modélisation numérique de l’aérodynamique des écoulements 
internes, ainsi que les interactions des écoulements bi-phase et des écoulements/structures ont été 
examinées, avant de considérer les flux internes des moteurs et les instabilités de combustion.  

Ce support de cours a donc pour objectif de permettre un échange d’informations entre des scientifiques 
renommés, éminents dans le domaine de la propulsion par propergol solide, et les industries et les 
laboratoires qui s'intéressent à leur travail. Pour ces raisons, ces documents seront appréciés non seulement 
par les spécialistes du domaine, mais aussi par les néophytes. 
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Introduction to Solid Rocket Propulsion 

P. Kuentzmann 
Office National d’Etudes et de Recherches Aérospatiales 

29, avenue de la Division Leclerc – BP 72 
92322 Châtillon Cedex 

FRANCE 

SUMMARY 

The objectives of this introduction are to present the fundamentals of solid rocket motor (SRM), starting 
from the elementary analysis of rocket operation and then justifying the need of sophisticated computation 
of the internal flow. After a brief reminder of solid rocket history, a description of its main components is 
proposed. The elementary parameters controlling the operation are introduced and the basic formula 
predicting the steady-state operation pressure is established. The main issues faced by a SRM require an 
accurate description of internal aerodynamics, either to predict the pressure/thrust programs and the 
normal transient phases like ignition, or to study the motor stability. A short overview of the evolution of 
the codes devoted to SRM internal aerodynamics during the last thirty years is given in order to introduce 
the more specialized presentations; a discussion of the main limitations concerning these codes is also 
proposed. The prospects offered by SRM internal aerodynamics codes are finally described. 

1.0 GENERALITIES 

1.1 History 
The solid rocket motor belongs to the family of the rocket engine (thrust achieved by mass ejection)  
and its history can be considered both ancient and recent. It is possible to consider that the black powder is 
the precursor of modern solid propellants: composed of natural ingredients (sulfur, charcoal and salpetre), 
the black powder has been used from the 13th century in Asia to propelled darts, certainly the first 
unguided stand-off weapons. A lot of work has been performed since this time to improve the solid 
propellant and to master its combustion but the main military application has been gun propellants up to 
the WW2. The WW2 has seen the first aeronautical applications (BACHEM Natter, JATO, RATO).  
The main developments for military (missiles) and space activities (launchers) started in 1945. 

Regarding the space activities, the first flights were carried out by liquid propellant rockets, following the 
world’s first successfully flown rocket on March 15, 1926 (R. Goddard, USA). The first satellites have 
been put into orbit by a liquid propellant launcher (R7 Semiorka, October 1957); the first successful US 
launch (Jupiter C, January 1958) used solid propellant rockets for the upper stages. The small US Scout 
has been the first all solid propellant launcher. Most of the first intercontinental missiles or intermediate 
range missiles used also liquid propellant engines, for their first generations. 

The current situation is the following: 

• 

• 

Most of the modern strategic and tactical missiles use solid propellant propulsion. The only 
competitor for solid propulsion is ramjet propulsion for tactical missiles. 

Space launchers are in the western countries and in Japan based on an assembly of liquid  
and solid propelled stages; they remain all liquid propellant in Russia, Ukraine and China.  
This difference of design is clearly connected to economical considerations: development and 

Paper presented at the RTO/VKI Special Course on “Internal Aerodynamics in Solid Rocket Propulsion”,  
held in Rhode-Saint-Genèse, Belgium, 27-31 May 2002, and published in RTO-EN-023. 
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Introduction to Solid Rocket Propulsion  

recurrent costs of a large solid propellant booster are lower than those of a large liquid propellant 
booster in the western countries, agreed that performance is better for liquid propellant 
propulsion. The orientation towards RLVs (Reusable Launch Vehicles) will favor of course liquid 
propulsion in the future. 

1.2 The Basic Solid Rocket Motor 
A solid propellant rocket is formed by four main components (fig. 1): 

• 

• 

• 

• 

A case containing the solid propellant and withstanding internal pressure when the rocket is 
operating. 

The solid propellant charge (or grain), which is usually bonded to the inner wall of the case,  
and occupies before ignition the greater part of its volume. When burning, the solid propellant is 
transformed into hot combustion products. The volume occupied by the combustion products is 
called combustion chamber. 

The nozzle channels the discharge of the combustion products and because of its shape accelerates 
them to supersonic velocity. 

The igniter, which can be a pyrotechnic device or a small rocket, starts the rocket operating when 
an electrical signal is received. 

 

Figure 1: Basic Solid Rocket Motor. 

One can consider that the solid propellant after manufacturing is in a metastable state. It can remain inert 
when stored (in appropriate conditions) or it can support after ignition its continuous transformation into 
hot combustion products (self-combustion). The velocity of the transformation front is called burning rate 
(fig. 2). 

 

Figure 2: Solid Propellant Rocket Motor. 

1 - 2 RTO-EN-023 
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The solid rocket is therefore inherently simple and therefore can possess high intrinsic reliability.  
After ignition, a solid rocket motor normally operates in accordance with a preset thrust program until all 
the propellant is consumed. All the efforts should be directed to the accurate prediction of the thrust  
(and pressure) programs to get the benefit of solid rocket motor concept. 

1.3 Definitions 

Efficiency of a rocket if defined by specific impulse:
o

s gm
FI
&

=  

where:  is the specific impulse (in s), sI

  is the mass flow rate ejected by the rocket (in kg.sm& -1), 

  is the reference gravity (9,806 m.sog -2). 

This definition has been adopted because the second is a universal unit of measure. Specific impulse is 
used for all types of rocket (chemical, electric) and for ramjet/scramjet; specific impulse can be considered 
as the inverse of specific consumption. The higher is the specific impulse, the better is the rocket. 

It should also be observed that specific impulse depends on the operation conditions of the solid rocket 
motor: pressure in the combustion chamber, rate of expansion in the nozzle, ambiant pressure.  
The theoretical specific impulse, for a given propellant and a fixed pressure, can be predicted by 
thermochemical computation. All countries in the world are using similar codes and, in the western 
countries, the same thermodynamic tables (JANAF). To avoid all the problems related to unit systems, 
standard conditions are adopted and comparisons can be performed: 

• 

• 

• 

Pressure: 70 atm (close to 1000 psia). 

Expansion: 70 to 1 atm. 

Ambiant pressure: 1 atm (nozzle adaptation). 

Under these reference conditions, the theoretical specific impulse of a conventional composite propellant 
(ammonium perchlorate, polybutadiene, aluminum) is around 265 s. In practice, the actual specific 
impulse is lower, due to specific impulse losses related to phenomena which cannot be taken into account 
in the thermochemical computation (multidimensional flow, two-phase effects, wall phenomena…). 
Specific impulse in vacuum is higher than  at atmospheric pressure. sI

Another characteristic parameter, essentially defined for a chemical rocket equipped with a chocked 
convergent-divergent (de Laval) nozzle, is the characteristic velocity: 

).(* 1−= sm
m
ApC co

&
 

where  is the pressure in the combustion chamber , op )(Pa• 

• cA  is the nozzle throat area ( . )2m
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A simplified description of the flow in the nozzle (one-dimensional flow, ideal gas) gives a clear 
interpretation of C : *

)(
*

γΓ
=

oT
C M

R

, 

where is the universal gas constant (8,3144 J.mol-1.K-1), R• 

• 

• 

• 

M is the molecular weight of the gas (kg/mole), 

oT  is the gas temperature (K), 

γ  is the isentropic exponent (Cp/Cv), 

)(γΓ  is the Vandenkerkhove’s function: 
)1(2

1

1
2)(

−
+









+

=Γ
γ
γ

γ
γγ  • 

*C  characterizes obviously the combustion products and is totally independent of the expansion 
conditions and on the external pressure; nozzle chocking plays the role of an insulator between the 
combustion chamber and the external surrounding. 

The third parameter, again defined for a chemical rocket and a chocked nozzle, is the thrust coefficient: 

co
F Ap

FC =  (non-dimensional) 

FC  depends on the expansion rate and the external pressure. The simplified description of the nozzle flow 

gives: C : F
A

FF CC ∆+= )(

where  is the thrust coefficient for nozzle adaptation, )( A
FC• 

• FC∆  is a correction of inadaptation. 

It is possible to demonstrate that C  is limited when the expansion rate increases. A simple relationship 

between the different characteristic parameters can be written: 

F

o

F
s g

CC
I

.*
=  

This relationship gives a clear interpretation of the respective contributions of combustion products and 
nozzle in the thrust production. Thermochemical computation gives C  and  by taking into 
account the actual thermodynamics of combustion products. For the conventional composite propellant 
previously mentioned: 

FC*, sI

    
nozzle)(adapted68,1

.1550* 1

≈
≈ −

FC
smC
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1.4 A First Approach of Motor Operation 
A first approach of motor operation can be established by using the elementary global conservation laws. 
The main necessary assumptions are the following: 

• 

• 

• 

• 

• 

Steady-state operation, 

Very low Mach number (M<<1) of the combustion products in the combustion chamber  
(that means that ratio of nozzle entrance section area to throat area is very large), 

The combustion products are totally generated on the combustion surface. 

In these conditions, only two conservation principles for mass and energy should be satisfied: 

Tb mm && = , where  is the mass flow rate of combustion products entering the combustion 
chamber and  is the mass flow rate exhausted by the nozzle. 

bm&

Tm&

hmhm Tpb && = , where  is the specific enthalpy of combustion products and h  is the specific 
enthalpy of the flow entering the nozzle. 

ph

Obviously  and the stagnation temperature at nozzle entrance is the temperature of combustion 

products. Therefore it remains: , where 

hhp =

Tb mm && = bbpb Arm ρ=&  ( pρ : propergol density, r : burning rate, 

: combustion area), 

b

bA
*C
AcopmT =& , following the definition of C . *

A very simple relationship exists, expressing the mass conservation, between the different parameters: 

*C
ApAr co

bbp =ρ  

It is more appropriate to write: 
c

b

bp

o

A
A

Cr
p

=
*ρ

. 

The right hand expression is related to the geometric parameters of the rocket motor: 

c

b
G A

AK =  ( K  for the german world Klemmung). 

The left hand expression depends on the propellant characteristics ( *,, Crbpρ ) and on the pressure ( ). 
The (normal steady-state) burning rate is a function of pressure, for a given propellant: 

op

Gop KpK =)(  

This equality between the parameters , function of , for a given propellant, and , based on the 
rocket geometry, can be used in different ways: 

pK op GK

Determine  si  and  are chosen, cA bA op• 

• Predict  si ,  are fixed… op bA cA
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Finally, the first step of the design of a solid rocket propellant looks very simple. Unfortunately, is not 
sufficient to perform a complete motor design with the required high level of prediction and reliability,  
as explained later. However, the early solid propellant rocket motors have been developed on this basis. 

1.5 Evolution of Parameters According to Time 

A solid rocket motor has a variable internal geometry related to the continuous transformation of the solid 
propellant to combustion products. Change of the combustion area in time will result in change of pressure 
and thrust. A steady state view of operation can be adopted by considering different geometries separated 
by an increment of displacement of the combustion surface. An elementary analysis can justify this 
approach. One considers an elementary surface by assuming that the transformation of the solid propellant 
to combustion products occurs on the surface area and not in volume (fig. 3). 

o x

br

Gv

o' x'

br bG rv +

solid propellant combustion products solid propellant combustion products

 
Figure 3: Injection Conditions on the Combustion Surface. 

Mass conservation leads to: 

bpGG rv ρρ ≈  

If  ,70,.8,.78,1 13 atmpsmmrcmg bp === −−ρ

  one finds:  ,.46,28,3494 1−== molegKTo M bG rsmV >>≈ −1.2

   3101 −×≈GM

Two consequences result from this elementary analysis: 

• 

• 

Velocity of the combustion products leaving the combustion surface is at least two order of 
magnitude higher than the burning rate; a reasonable approximation is to assume that the products 
are entering the combustion chamber from a fixed surface. This approximation justifies all the 
experiments performed by cold gas simulation (injection of a cold gas through a porous wall). 

Description of the flow in the entire motor implies Mach number from very low values (near the 
combustion surface) to very high values (nozzle exit) and then use of adapted numerical methods. 

Conservation of momentum has also another consequence: the combustion products are emitted 
perpendicularly towards the combustion surface. 

1 - 6 RTO-EN-023 
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2.0 THE MAIN ISSUES OF SOLID PROPELLANT ROCKET MOTOR 
Development of a solid rocket motor requires considerable technological investments in different domains. 
These investments are substantial given the severe conditions inside the motor: high pressure (around 5 
MPa or 50 bar in the larger boosters), high temperature (around 3500 K for a composite metallized 
propellant), two phase flow (metallized propellant). The critical technologies concern the propellant itself, 
the propellant grain design, the thermal insulation, the nozzle design and the case. Besides, another well 
known difficulty is related to the near impossibility to perform detailed measurement inside the 
combustion chamber, due to the severe conditions prevailing there: the only usual measurement is the 
static pressure measurement through a pressure tube, generally at the motor front end. This difficulty can 
be considered as one of the main obstacles to the perfect validation of the prediction tools. 

As this Short Course is devoted to aerodynamics, attention will now be focused on the particular aspects 
of design having an influence on aerodynamics and operation. 

2.1 Burning Rate 
Propellant burning rate plays a central role in motor operation. That is why perfect control of burning rate 
is absolutely mandatory. Fundamentals and recent developments regarding burning rate will be developed 
in another lecture. The discussion will here be limited to a classification of the different combustion 
regimes encountered during the whole motor operation. 

2.1.1 Steady State Regimes 
• Normal (regular) regime: burning rate is depending on only two parameters: pressure and initial 

temperature: . It is known that burning rate can change with the propellant 
temperature. Since only a very thin layer of the propellant is usually affected by the chemical 
transformation during the combustion process, a good assumption is that the initial grain temperature 
(considered as uniform) is an external parameter, without variation during operation. Sensitivity to 
pressure is related to the chemical reactions in gaseous phase (flames) above the combustion surface. 

);( iobb Tprr =

Some parameters are defined to characterize locally the propellant sensitivity to pressure and 
temperature: 

   );(
ln
ln

io
To

b Tpn
p
r

n
i

=







∂
∂

=  

   )(),;(
ln 1−=








∂

∂
= KTp

T
r

iop
pi

b
p

o

σσ  

It should be mentioned that the pressure exponent n  should be lower than 1 for a practical propellant; 
if not, the steady-state operation pressure is not stable; 3.0≈n  for the more conventional composite 
propellants. 

• Erosive burning regime: if the flow above the combustion surface is fast, it is possible to observe an 
increase in the burning rate for a given pressure (and, less frequently, a decrease in the burning rate for 
some double base propellants). A general accepted explanation of such an increase is linked to the 
enhancement of the convective thermal flux to the combustion surface due to the interaction between 
flow turbulence and flames. In this condition, burning rate is no longer pure feature of the propellant 
but a property mixing propellant and flow. Erosive burning can be responsible of a pressure overshoot 
at ignition. A simplified prediction can be obtained by characterizing the flow by the unit mass flow 
rate in the perforation (internal burning tube); erosive burning is then a threshold phenomenon. 
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2.1.2 Unsteady Regimes 

When pressure or more generally the conditions above the combustion surface are changing very rapidly, 
direct dependence of burning rate on instantaneous parameters is no longer right; time is also involved. 
Several situations bring into play unsteady burning rate, essentially the transient phases (ignition and 
operation end) and the instability. The common approach is to make the distinction between linear burning 
rate and non-linear burning rate. 

Linear burning rate corresponds to small perturbations of all the parameters around a steady state and it  
is typically the case for the low level instability. Response to the propellant burning rate to pressure 
(pressure coupling) has been proved (measured and explained); the response can be considered like a 
transfer function between pressure and burning rate: 

oo

bb
MP pp

rrR
/~
/~

=  

where, for instance, p  is the steady state pressure and p~  the amplitude of oscillation. 

MPR  is a complex parameter, function of the oscillation frequency. A temperature response  can be 
derived from . At relatively low frequency, the pressure response is only linked to the thermal transfer 
in the solid propellant.  plays an essential role in the combustion instabilities. 

TPR

PR

PR

A response of the propellant burning to flow (velocity coupling) has been suspected but never really 
proved and measured. 

Non-linear burning rate occurs either during ignition or during high level instabilities. If some analytical 
or computational tools are able to predict non linear burning rate, their validation by experiments is still 
very poor. 

The figure 4 summarizes the occurrence of the different burning rate regimes. 

 

Figure 4: The Different Operation Regimes. 
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2.2 Grain Design 
To achieve a better motor performance, an obvious objective is to integrate the maximum of propellant in 
a given case volume. The volumetric loading fraction can exceed 0.92 for a launcher upper stage.  
The thrust program should also be adapted to the motor mission: for the first stage of a space launcher,  
the thrust should be high at take-off then be reduced during the transonic flight and then can increase 
again; in the case of two large boosters attached to a central core (Titan 4, Ariane 5 for instance), attention 
should also be given to the synchronization of both thrust decreases before total extinguishment of the 
boosters. So a compromise should be found between different requirements. Art of the designer is to find 
the grain geometry leading to the better global performance, by satisfying a number of constraints at the 
same time. 

Increasing the volumetric loading fraction leads to decrease the central bore and the area ratio at nozzle 
entrance, then with the direct consequence to increase the Mach number flow in the combustion chamber. 
This increase can produce erosive burning at the end of perforation and more generally generates 
differences of static pressure between the motor front end and the motor aft end; as the mechanical 
properties of a propellant are limited, particular care should be devoted to mechanical grain design to 
avoid any unexpected crack or dangerous grain deformation. Another consequence, more directly 
connected to aerodynamics, is that the simplified approach (§ 2.4) is not yet valid or accurate enough. 
Therefore refinement of flow description inside the combustion chamber is required. 

3.0 IMPORTANCE AND NECESSITY OF SOPHISTICATED AERODYNAMIC 
PREDICTION 

There are two main domains which need the development of the knowledge in internal aerodynamics:  
the steady-state operation and the transient unsteady regimes. 

3.1 Steady-State Operation 
Modern SRM design is characterized by a tridimensional geometry, generally associating axisymmetric 
and star-shaped patterns (for instance, finocyl grain). Grain grooves (French asymmetrical machined 
grains) or intersegments (segmented grains) generate noticeable pressure variation which cannot be 
predicted by too crude computation. Another trend is to use composite (filament winding) case,  
more deformable than a metallic one; the case deformation and the grain deformation should be taken into 
account in this situation and it is particularly important for the first phase of operation following ignition. 
So a natural trend is to couple the internal aerodynamics and the case/grain deformation, by taking into 
account the visco-elastic feature of the grain. Finally it appears that numerical computation can only 
provide an accurate prediction of the pressure field inside the combustion chamber, especially in the first 
part of the operation. 

Currently, but with the exception of the CSAR program, prediction of steady operation is made by a set of 
computations at different fixed geometries, which are computed by another code. The principle is the 
following (fig. 5): 

Aerodynamics at : aerodynamic computation for a known geometry giving the pressure field on 
the combustion surface and then the field of burning rate on the combustion surface. 

t• 

• Geometry at t tδ+ : geometrical computation of the new geometry by using the field of burning 
rate on the combustion surface at . t

Aerodynamics at tt δ+ : new aerodynamic computation... • 
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Figure 5: Grain Geometry Evolution. 

A totally coupled computation of aerodynamics and geometry evolution requires use of variable meshes in 
the combustion chamber and in the grain and is very expensive in terms of computation time. In the 
classical approach previously mentioned, where accuracy is, a priori, of first order, tδ  can be chosen to 
maintain the computation time in a reasonable range. 

It should be also mentioned that the modern codes do not distinguish the flow zones at low velocity and 
the flow zones at high velocity. The whole flow from the combustion surface to the nozzle exit is 
described and computed with the same compressible equations and the same numerical methods. This way 
of computing avoids difficult and unsolved issues of matching between domains (combustion chamber, 
nozzle). 

3.2 Unsteady Regimes 
The main issues are connected to the ignition phase and to the prediction of the stability (or of the 
instability level). 

If certain characteristic times can be predicted by simple analytical calculations, using an unsteady variant 
of the global conservation laws, this type of approach is totally insufficient for a total mastery of the 
ignition phase. In fact, transient ignition phase should be described by taking into account a lot of 
phenomena: igniter operation, thermal convective and radiative transfer from the igniter combustion 
products to the inert grain combustion surface, propellant surface temperature increasing and propellant 
ignition, unsteady propellant combustion, flame propagation. In detail and for realistic igniter, grain and 
propellants, the complete problem is rather difficult to solve because of the propagation of various waves 
inside the motor, the difficulty to predict accurately the thermal transfer for igniter two phase combustion 
products and in the recirculation zones, and of the unsteady combustion. However some modern validated 
codes (unsteady two phase flow), are able to solve the problem. 

More difficult is the prediction of stability or level instability. Instability is a natural phenomenon 
observed for a long time on all the engines, from the pressure recording: instead of being stable (with a 
little random component due to the noise), pressure exhibits an oscillation well organized around a 
frequency, or possibly around several frequencies to form a non-harmonic unsteady signal. That is the 
appearance of an instability. This phenomenon, called combustion instability or operation instability,  
is rather frequent and a lot of solid rocket motors are flying with a low level of instability during certain 
phases of their operation; but an instability can become very dangerous if its level increases: in this case 
the mean burning rate tends to be erratic, the pressure uncontrolled and the thermal insulation 
consumption drastically augmented. 

Different classes of instability have been determined fifty years ago. The simplest one to understand is the 
volume instability or  instability; it is clearly a combustion instability, i.e. that the propellant pressure 
coupling is needed to drive the instability. The  instability occurs generally at low pressure and low 
frequency and is not dangerous. The most critical and scientifically interesting instabilities are acoustic: 

*L
*L
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that means that the unsteady pressure distribution inside the combustion has a certain relationship with the 
unsteady pressure distribution corresponding to a pure acoustic mode in the cavity which is defined by the 
combustion surface and a closure in the nozzle entrance plan. This type of instability is known as a 
combustion instability because propellant pressure response is conditioning stability in the classical 
analytical approach (acoustic balance). It is not the case in reality for the first longitudinal modes in the 
larger booster, the propellant pressure response seeming not to be the primary driving phenomenon;  
the term of operation instability is then, maybe, more appropriate. Stability should be assessed at each 
operation time, that is to say for different grain geometries (fig. 5). 

Prediction of steady-state operation and unsteady regimes clearly requires a detailed description of the 
flow inside the combustion chamber. Evolution of the computation method (and of the computer 
capacities) has allowed a substantial progress during the last thirty years, even if this evolution does not 
yet solve all the problems. 

4.0 APPROACH OF INTERNAL AERODYNAMICS IN SOLID ROCKET 
PROPULSION BY COMPUTATION 

Approach of steady state operation by using the global conservation laws is under the dependency of 
different assumptions and finds rapidly its limits, either because of the difficulty to find explicit analytical 
solutions (case of ignition for instance) or because of the physics which needs a more local and refined 
flow description. Concerning this second point, an academic example can be mentioned, the one 
concerning the nozzleless motor (fig. 6). For a sufficient length to perforation diameter ratio and a rather 
high propellant burning rate, flow inside the perforation is naturally chocked; the explanation is the 
formation of a multiple fluid nozzles in the flow due to the lateral injection. 

 

Figure 6: The Nozzleless SRM. 

By using some simplifications (constant burning rate and constant diameter along the combustion surface, 
ideal gas), it is possible to determine the pressure at the front end (here ) and the distribution of op
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pressure and Mach number (1D description) in the perforation. It has been demonstrated that  can be 
calculated by the relation: 

op
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where  is the ratio of the combustion area to the passage area . The relation obtained is very similar 
to those previously given for a conventional motor with a large nozzle entrance ratio, except for the factor 

GK pA

1
1

))/(2(2 −γ

( op p

1+γ

K

. This difference is the direct consequence of the organization of the flow, the Mach 
number of which being 1 at the end of the cylindrical perforation. This example proves that aerodynamics 
can be essential for pressure prediction. There is total continuity between the conventional rocket 
operation and the nozzleless motor operation; it is possible to propose a generalization of the relation 
between  and  (always with some simplifications): ) GK Gop kKpK =)( , where  can be 

calculated as the solution of a transcendental equation: ),( 2 γKk  where: cp AAK /2 =  

   ∞→→ 2if1 Kk  

    1if))1/(2(2 2
)1/(1 =+= − Kk γγ

Real computation of the steady flow began at the beginning of the 70’s for a one dimensional flow 
description, it was extended to a 2D flow description in the 80’s, then to a 3D flow description in the 90’s. 
The first computation codes have described the combustion products as an ideal gas (one-phase 
aerodynamics); extensions have been made but not always integrated in the code to take into account the 
actual thermodynamics (thermodynamic equilibrium or frozen composition) and to the two-phase flow 
aspects (combustion of aluminium droplets, alumina droplets). Use of the most advanced codes is still 
facing three main difficulties: 

• 

• 

• 

Long computation time. 

Lack of accuracy of certain input data, especially for the condensed phases. 

Uncertainties on some phenomena: flow turbulence, interactions between droplets for instance. 

Concerning the transient phenomena (ignition phase), some derivatives have been made from the previous 
codes without too many difficulties for the flow phenomena. The main issues have been rather connected 
to the heat transfer and the propagation of the flame on the combustion surface. However, some 
validations have been made by using a special small scale model with a dedicated instrumentation and the 
results are rather promising. Besides, the physical time to simulate is rather small and computation time 
affordable. Coupling between aerodynamics and grain/case deformation should be improved. 

Prediction of the level of instability requires in essence a non-linear approach. Extension of the acoustic 
balance and coupling of modes, by the averaging method, constitutes a first possibility and presents the 
advantage of a clear physical understanding. In parallel, a numerical approach can be used and certain 
improvements have been made for the past ten years; some of them will be presented in lectures by  
F. Vuillot, G. Casalis and J.F. Guery. Without claiming to be the ideal solution, computation allows a 
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certain level of prediction in certain situations. The most current computations are two-dimensional,  
when that is allowed by the grain geometry, even if there is no intrinsic difficulty for 3D computations, but 
only some problems of computation time. 

The main difficulties to face for instability level prediction are the same as those mentioned for the steady-
state computation: lack of accuracy of certain input data (condensed phases…), uncertainties regarding the 
description of fundamental phenomena (flow turbulence, interaction between droplets…) but physics is 
here more complicated since unsteady. In fact, the situation can be summarized as follows: 

• 

• 

• 

• 

• 

Rather good level of prediction at low scale for a non metallized propellant and sometimes 
simplified geometries, when the unsteady phenomena driving phenomena are well identified. 

Relative uncertainties at large scale, for a metallized propellant and complicated geometries;  
large sensitivity to input data. 

5.0 PHYSICAL OBSTACLES 

If computation is more and more used by industry, some physical obstacles remain to be overcome,  
in order to achieve a better prediction on actual motors and for all the regimes. Unsteady flow description 
can be considered today as the general needed approach, the steady state operation being viewed as  
the limit of an unsteady operation. The numerical methods should be adapted to correctly deal with  
the propagation of the different waves (acoustic, entropic, vorticity). In some specific situations, it has  
been proved that vortex shedding plays a central role in combustion instability but in other situations,  
it appears that other phenomena will prevail. Instability of tactical motors, especially for tangential modes, 
certainly gives more importance to pressure coupling and acoustic streaming. 

The basic phenomena, whose description should be greatly improved, can be classified in three categories: 

Flow phenomena: turbulence in one-phase flow and two-phase flow. Turbulence generated by 
combustion is very poorly known. Two-phase phenomena are suspected to have an influence in 
some conditions (distributed aluminium combustion, wave damping by alumina droplets) but the 
data remains uncertain. 

Propellant combustion: unsteady combustion of the propellant remains a challenge, especially for 
a metallized propellant; for this type of propellant, it is not clear, for instance, if the usual 
definition of the linear response is totally valid. 

Fluid-“structure” coupling: structure is understood here as the assembly of all the solid parts of 
the motor: restrictors, grain, case, nozzle. Participation of restrictor vibration has been suspected 
for instability driving in some large segmented SRMs. But the problem is more general and 
invites to couple aerodynamics and solid mechanics. 

The well known difficulty to improve the knowledge of this different phenomena is linked to the nearly 
impossibility to carry out detailed measurements inside an actual motor, even at a low scale and for a  
non-metallized propellant. The phenomena should be isolated and studied on skilled set-ups, for which the 
main issue remains to be their representativity. 

6.0 PROSPECTS 

This introduction has attempted to throw a bridge between the apparent simplicity of the rocket motors 
and the difficulty to perfectly master its operation; internal aerodynamics forms the pile of this bridge and 
cannot be bypassed. 
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Development of a large SRM needs a very large investment. For instance, development of the Ariane 5 
has required around 2ε billion (including the propellant factory and the test bench in Kourou).  
Each ground test costs around 20ε million. Cost reduction is presently a leitmotiv for the civil and military 
industry. A general trend is therefore to develop reliable tools to reduce the number of tests during 
development and qualification. Tools are also needed to explain abnormal operation. 

Since 1990, some important national programs have been initiated and have produced new results: 

• 

• 

In France, the ASSM program, with the sponsorship of CNES, under the scientific responsibility 
of ONERA and with the participation of several CNRS and universities laboratories (and of the 
VKI), for the Ariane 5 MPS P230 (SRM). Mainly focused on instability level prediction, this 
program allowed to develop numerical tools, to improve the flow description and… to measure 
the limits of the available knowledge. A new program is currently being prepared between France 
and Italy (SPADA program). 

In the USA, among the different known programs, the MURI program and the CSAR program. 
This last one, funded by the DoE is focusing on very high level computation, is more ambitious 
and more general than the programme ASSM and has started producing some initial encouraging 
results. 

It is still a long way to solve all the issues regarding SRM aerodynamics. According to the author’s 
opinion, a good balance should be maintained between computational improvement and improvement of 
the knowledge regarding the basic phenomena. 

This short course provides a unique opportunity to bring together the specialists deeply involved in Europe 
and in the USA in SRM aerodynamics. All the important aspects of aerodynamics and SRM operation 
mentioned in this introduction are covered and will give to the attendees an updated state of the art. 
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SUMMARY 

This article reviews and summarizes recent work on flow-structural interaction in solid motors.  
This interaction is important because it can lead to rocket motor failure. In the first part of the document,  
an idealized model of the failure mechanism is developed to illustrate in simple terms how such an event can 
occur. In the second part of this article recently published numerical modeling work, which models flow-
structural interactions in some detail, is summarized. The static test failure of the Titan solid rocket motor 
upgrade (SRMU) that occurred on 1 April 1991 demonstrated the importance of flow-structural modeling in 
the design of large solid rocket motors.  

INTRODUCTION 

The first discussion, known to us, of the possibility that an interaction between the propellant grain and  
the motor flow field could cause motor failure is in Wimpress (1950). He shows various curves with a  
critical value of the elastic modulus, E, below which, “there is no finite equilibrium pressure…and the motor 
blows up.” 

Bartley and Mills (1959) also discuss grain instability in tubular, internal solid motors. Their model also 
shows that for the grain geometry considered, there is a critical propellant modulus, below which the motor 
fails. 

Glick, Cavney, and Thurman (1967) modeled a bore constriction failure of the Castor II motor that occurred at 
a propellant slot. They point out that the stability of the propellant can be significantly enhanced if the 
propellant downstream of the slot has a radius. They state that H. W. Ritchey first suggested the use of such a 
radius and they term it a Ritchey radius.  

There was a flurry of activity in the area of flow-structural interaction subsequent to the Titan SRMU test 
failure. The initial efforts were aimed at understanding the failure and analyzing the new Titan design to make 
sure the problem was fixed (Johnston and Murdock [1995], Chang, Patel, and Yang [1994], Cosstephens 
[1995], Johnson and Lauterbach [1992]). This work was followed by analyses of other existing or new motors, 
to make sure that they were designed with an adequate safety margin (Johnston [1996], Wang, Yang, Than, 
and Ndefo [1994]). This work is reviewed in some detail in the latter part of this document. 

An important goal of this article is to assure that the possibility of flow-structural interaction leading to a 
motor failure is not forgotten or overlooked – as it seems to have been in the period between 1967 and 1991. 

Paper presented at the RTO/VKI Special Course on “Internal Aerodynamics in Solid Rocket Propulsion”, 
held in Rhode-Saint-Genèse, Belgium, 27-31 May 2002, and published in RTO-EN-023. 
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A SIMPLE PHYSICAL MODEL OF GRAIN INSTABILITY 

We are interested in the interaction of the propellant grain and the motor flow that can produce a catastrophic 
motor failure. How can such a thing occur? Examination of known failures shows that they have been initiated 
by events occurring either at transverse slots in the grain or at the location of joints of multi-segment motors. 

The flow past one such slot is shown in Fig. 1. The flow impinges on the upstream-facing propellant and 
raises the pressure on that face. The flow also expands around the corner of the grain and reduces the pressure 
on the interior of the bore. The combination of these two forces causes the flow area to constrict, as shown in 
Fig. 1. If the elastic modulus of the propellant grain is too low or the local bore flow rate is too high,  
then unconstrained deflection of the grain can occur. This will fracture the propellant grain and/or block the 
motor bore. Either of these events will be catastrophic for the motor.  

MOTOR
CASE

PROPELLANT GRAIN

 

Figure 1: Schematic of Failure Mechanism. 

In order to give a simple physical picture of the flow-structural instability that can lead to grain and motor 
failure, a very simple, analytical model is constructed to illustrate how such a failure occurs. With this in 
mind, the emphasis will be on simplicity rather than fidelity with the real physical situation. 

In accord with this approach, we model the flow through the constriction in Fig. 1 as a choked, perfect gas 
flow. This gives the simple expression 

 KPAW =  (1) 
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where W  is the mass flow rate past the bore constriction, P  is the stagnation pressure upstream of the 
constriction, A  is the area of the bore constriction, and K  is a constant that is easily obtained from gas-
dynamic theory. [See, for example, Shapiro (1953).] We note here that a well-designed motor bore would 
never have locally sonic flow, so that eq. (1) is an approximation. The main justification for its use is the 
simplicity; eq. (1) could be replaced with the orifice equation for subsonic-flow, but the subsequent analytical 
solutions would have to be replaced with less obvious numerical solutions. Also, observe that if a bore-
constriction failure does occur, the flow is likely to choke during that process. 

It is convenient to use a dimensionless version of eq. (1) and normalize the mass flow rate and pressure with 
their nominal values that would be obtained with an undeformed grain area . 0A

 0W
Ww =

 (2) 

 0P
Pp =

 (3) 

 0A
Aa =

 (4) 

With this normalization, eq. (1) becomes 

 paw =  (5) 

and the constant in eq. (1) is related to the normalization constants by 

 00

0

AP
W

K =
 (6) 

The second half of the model relates the bore area to the pressure. In keeping with maximum simplicity,  
a linear relation between the area and pressure is used. (Letting the bore radius decrease linearly with pressure 
results in a somewhat more complicated mathematical model with some improvements to the physical model. 
Predictions made with both models are compared with Titan SRMU data in the following section.) 

 CPAA −= 0  (7) 

In eq. (7),  is a constant of proportionality that varies as the reciprocal of the elastic modulus of the 
propellant. 

C

Putting eq. (7) in dimensionless form, gives the result 

 
cpp

A
CP

a −=







−= 11

0

0

 (8) 

where the dimensionless version of the constant  is implicitly defined by eq. (8). C
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Equations (5) and (8) can be combined and either the pressure or the bore area eliminated. Elimination of the 
area, results in a quadratic equation with solutions 

 c
cwp

2
411 −±

=
 (9) 

Equation (9) has real solutions only for  

 c
w

4
1

≤
 (10) 

The solutions to eq. (9) are plotted in Fig. 2 as a function of the reciprocal stiffness parameter of the 
propellant, . The dimensionless mass flow rate produced by the propellant has been taken to be constant, 
with a value of unity; this approximation implies that the propellant grain is a flow source. The flow from the 
propellant grain is actually a weak function of pressure – so this is a reasonable approximation. 
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Figure 2: Model Problem with 1=w . 

The two solutions to eq. (9) are shown in Fig. 2. The lower locus of solutions has positive slope and can occur 
physically; the solutions on the upper curve are physically unrealizable. (If one were somehow able to start 
out on the upper curve, the flow state would immediately jump to the other, lower-energy curve.) The two 
solutions are connected at the point at which the product of and  is a maximum (or in the case of Fig. 2, 
maximum ). This critical value occurs when the equality in eq. (10) is satisfied. The models of Wimpress 
(1950) and Bartley and Mills (1959) also show double-valued solution curves, only one of which is physically 
realizable. As both these articles point out, attempts to operate beyond the critical point will cause the motor 
to blow up. 

w c
c
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In summary, the very simple model developed here shows that at low flow rates or high propellant modulus, 
there are two solutions to the model equations. Only one of these solutions has physical significance.  
These two solutions join and terminate at a critical flow rate given in dimensionless terms by the equality in 
eq. (10) and in dimensional terms by 

 C
KA

Wcrit 4

2
0=

 (11) 

The motor has no operating point for flows exceeding the critical one defined by eq. (11). This model 
illustrates how the grain and the flow can couple and result in an unstable motor. Furthermore, the physics of 
this simple model is the same as in the large-scale numerical models used previously to study this 
phenomenon and discussed subsequently. 

APPLICATION OF SIMPLE MODEL TO TITAN SRMU  

It is interesting to apply the simple model developed in the previous section to the Titan failure to assess its 
validity, since the critical flow rate only depends on three parameters. 

The first parameter in eq. (11) is simply the constant relating pressure, flow rate, and area for choked flow. 
This constant can easily be obtained from the known motor pressure, motor flow rate, and nozzle flow area. 
Table 1 gives the relevant Titan SRMU constants and the value of K  computed from the values in the first 
three lines of the table. 

Table 1: Selected Titan SRMU Parameters 

Motor mass flow rate, Mg/s *W  18.8 

Motor chamber pressure, MPa 
cP  7.45 

Nozzle throat area, m2 *A  0.535 

Choked flow constant, ms/m K  4.72 

Specific heat ratio γ  1.13 

Sonic pressure ratio 
cPP /*  0.578 

Mass flow from forward two segments, Mg/s 
12W  13.2 

Propellant elastic modulus (at failure), MPa E  8.2 

 

The other two parameters can be obtained from Fig. 3, which is obtained from Johnston and Murdock (1995). 
(This paper will be discussed in more detail, subsequently. For now we are only concerned with Fig. 3.)  
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Figure 3: Structural Influence Coefficients for the Aft Propellant Segment, Titan SRMU. 

The figure shows the initial diameter of the grain at point A. This is the forward corner of the aft propellant 
segment and is the known location of the grain collapse. The radius of 501 mm gives a value of  of  
0.789 m

0A
2. 

The matrix operator in Fig. 3 also shows the structural influence coefficients of the aft propellant section. 
These coefficients were obtained from a series of grain structural analyses carried out using the ABAQUS 
(1989) code. The grain deformations can be obtained by multiplying the coefficient matrix by the indicated 
pressure loads. The quantity E  is the propellant modulus (MPa); , , , , and  are the values of 

the depicted pressure loads (MPa); , 

1P 2P 3P 4P 5P

Ar∆ Az∆ , and Br∆ are the radial and axial displacements (mm) of points 

, A B , which are at the corner and midpoint of the segment. 

The first row of the matrix in Fig. 3 can be used to compute the rate of change in bore radius with pressure. 
This can be related to the constant C  in the simple model by differentiating eq. (7) 

 dP
drr

dP
dAC π2−=−=

 (12) 

It is now necessary to relate the single, stagnation pressure in the model to the five pressure loads in Fig. 3. 
Only the pressures acting at the point  are of interest, so  which does not act at that location is neglected. 
Two distributed pressure forces act on the left-hand face in Fig. 3,  and . The algebraic sum of these 
(  according to the sign convention of Fig. 3) is equated to the variable 

A 3P

4P 5P

54 PP − P  used in the present model. 
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We arbitrarily partition half the pressure to each component. These assumptions give 

 2/4 PP =   (13) 

 2/5 PP −=   (14) 

It assumed that the radial pressure acting on point A  is the sonic throat pressure, which according to Table 1 
is 0.578 times the stagnation pressure. In a similar manner we assume that the algebraic sum of  and  
equals the sonic pressure and the partitioning is again equal. This gives 

1P 2P

 2/578.01 PP =   (15) 

 2/578.02 PP −=   (16) 

The matrix equation in Fig. 3 can now be used to determine , using the approximate propellant 
modulus at failure, taken from Johnston and Murdock (1995) and replicated in Table 1. Combining this value 
with eqs. (12) and (11) gives 

dPdr /

 33.9=critW Mg/s (17) 

Comparing this with the flow from the two forward segments, given in Table 1, we see that the simple 
prediction indicates that a 30 percent lower motor flow than the actual one would have caused a grain with 
this modulus to collapse. (The model and the present discussion neglect the weak variation of motor flow rate 
with pressure.) 

 71.0
12

=
W
Wcrit  (18) 

An alternative interpretation is that at the motor flow rate, even if the modulus had been 30 percent higher,  
the motor would still have failed. Stated still another way, the simple model is conservative by 30 percent 
compared to the large-scale numerical model. 

It was briefly mentioned previously that the simple model could be improved by replacing the linear pressure-
area relation, eq. (7), with a linear pressure-radius model. Such a model may be written as 

 PCRR R−= 0  (19) 

Combining this equation, rather than eq. (7), with eq. (1) gives a cubic rather than a quadratic equation. 
Analytical solutions are still possible, but the algebra is more complicated. Skipping the details, an equation 
for the critical mass flow rate, similar to eq. (11) can be obtained in this case. It is 

 
R

crit C
KR

W
27

4 3
0π

=  (20) 

Substitution of numerical values into eq. (20), gives 

 1.11=critW Mg/s (17) 
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This value is 16 percent lower than the flow from the two forward segments. Thus, this model is conservative 
by about half as much as the linear pressure-area model. 

To summarize, a quite simple model of the grain collapse has been developed to illustrate the physics of this 
interaction. This model has been applied to the Titan SRMU failure and found to produce reasonable and 
conservative predictions of the failure. However, we have used in this model the numerically generated 
influence coefficients for the grain displacement. Thus, the actual application of the model used a combination 
of fluid mechanical approximations and numerical stress analysis. Even so, this model is significantly simpler 
than the coupled, unsteady flow-structural interaction calculations discussed subsequently in this document.  

It is surprising that this model works as well as it does. As noted, it was developed primarily for illustrative 
purposes, rather than predictive purposes. Also it has only been compared against a single data point.  
Any application of this model to new designs should keep these limitations in mind. 

COMPLETE MOTOR MODEL 

During the ignition transient period of solid rocket motor (SRM) operation, several complex, time-dependent 
coupled processes occur. In a large segmented SRM, the hot gas from the igniter travels down the bore and 
heats the propellant surface to ignition; once ignition occurs, the propellant surface becomes a site of gas 
generation. Since the convective and radiative heat transfer that lead to propellant ignition are dependent on 
the developing flowfield, and since the development of the internal flowfield is dependent on the rate at which 
the flame spreads down the motor, the time-dependent flow and surface temperature are coupled. 
Furthermore, the surface pressure load on the propellant grain causes deformation, which in turn alters the 
flowfield. This results in additional coupling of the internal flowfield with the propellant geometry. This flow-
structural coupling is particularly important in segmented SRMs, in which the propellant segments have 
forward corners (see Fig. 1) that jut out into the bore at intersegment slots (e.g., Titan 7 segment SRM,  
Space Shuttle SRM, Titan SRMU, Ariane 5 MPS). When axial flow impinges on a protruding corner,  
the surface pressure deforms the corner out into the bore and further constricts the flow, which then raises the 
upstream pressure and exacerbates the pressure loading on the corner. If this feedback loop proves to be 
unstable, then the corner will continue to deform and the motor to pressurize, until either the grain and/or the 
motor case fails. 

Johnston and Murdock (1995) developed the first, multidimensional, coupled numerical procedure for 
analysis of the flow-structural interaction. Their computer code simultaneously modeled the developing 
flowfield and the associated propellant grain deformation during the ignition transient period of SRM 
operation. It is during this initial period of motor operation, when the propellant surface has receded only a 
little through burning and erosion, that the pressure differential across propellant segment corners typically is 
at a maximum and the bore radius at a minimum. It is at this time that the interaction between the grain and 
the flowfield, and the associated danger of grain and motor case failure, is greatest. The following elements 
were coupled together to create a code, designed to provide a model of the time-dependent, fluid-solid 
interaction inside an SRM: 

1) An ignition transient flow code (Johnston [1991]), which provides a detailed picture of the time-
dependent flowfield and flame spreading inside the motor. The ignition transient flow code is itself 
created by coupling together an unsteady internal- flow code (Ton, Wang, and Widhopf [1990])  
with an unsteady heat conduction solution for the propellant surface temperature. 

2) A set of structural influence coefficients, that allows the major features of the grain deformation that 
result from a given surface pressure distribution to be calculated (Patel and Yang [1991]). 
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3) A grid-generation code, which generates a grid mesh for the internal-flow passages, based on the 
deformed shape of the propellant grain. This grid mesh then is used in the ignition transient flow code. 

These three elements are needed for any flow-structural interaction code. Further details of these three 
elements as assembled by Johnston and Murdock (1995) are given in the remainder of this section. 

Ignition Transient Flow Solution 
Johnston (1991) developed the numerical calculation procedure for treating the ignition transient flowfield. 
The ignition transient flow solution is a composite calculation. It combines an unsteady, axisymmetric 
solution of the equations of inviscid fluid motion with semi-empirical models for the convective and radiative 
heat transfer to the propellant surface during the run-up to ignition. The inviscid, single-phase,  
single-component flow solution is obtained from a time-marching, finite-volume numerical solution of the 
Euler equations. This numerical solution, which is spatially second-order accurate and employs the total 
variation diminishing (TVD) methodology of Harten (1983), is described by Wang and Widhopf (1989)  
and has been implemented for segmented SRMs by Ton, Wang, and Widhopf (1990). An unsteady,  
one-dimensional, heat conduction solution for the propellant grain is coupled to this flow solution in order to 
calculate the propellant surface temperature. Together with a surface temperature ignition criterion, this 
determines the ignition delay and flame-spreading rate. 

Grain Shape Calculation 
In the Johnston and Murdock (1995) approach, the grain deformation component in the flow-structural 
interactive calculation procedure is employed periodically at constant intervals throughout the time-marching 
process. An interval of 100 time steps between geometry updates was found by experience to provide 
sufficient time accuracy and to be economically feasible. Since the typical flow solution time step was limited 
by numerical stability to the order of 10-5 s, it follows that the grain shape was recalculated about every 
millisecond.  

The grain deformation calculation itself consists of multiplying (for each propellant segment under 
consideration) a pressure loads vector by a structural influence coefficient matrix to get the resultant 
displacements at a few key points, which define the shape of the grain. This procedure was illustrated for the 
aft segment of the SRMU in Fig. 3 and the details of its implementation were discussed in a previous section.  

Note that although the coefficient matrices used therein were relatively small, there is no fundamental 
limitation on size. 

Grid Geometry 
The final element needed in the flow-structural interaction calculation is a grid generation package.  
Many excellent grid generation codes are available today, so that most of the approximations made in some of 
the earlier work would not be necessary today. 

One exception is the treatment of star grains, which are treated with an axisymmetric model to avoid a full 
three-dimensional computer code. The propellant in the forward closure of the Titan SRMU has a star-grain 
cross-section with axial grooves. To account for this three-dimensional feature in the axisymmetric model,  
the axial grooves were omitted, resulting in an annular propellant cross section. The inner radius of this 
annulus was set so that the void volume in the actual forward segment and the computational forward segment 
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were matched. Then the burning rate in the forward closure was adjusted upward to account for the 
discrepancy in the burning area. 

Another consideration is the procedure for mapping the numerical solution for the old grid onto the new grid 
geometry. Johnston and Murdock (1995) used a grid generation code in which the number of flowfield cells 
did not change nor did the relative position within the mesh change as that mesh undergoes distortion. As a 
consequence, when a geometry update was carried out, the shape and position of the cells changed only 
slightly. For this reason, the cell values of pressure, density, temperature, and velocity during the geometry 
update process were simply carried over. 

Although the prior approach gave satisfactory results, a more rigorous approach is to derive the moving 
boundary finite difference equations for the flow model, as has been done by Wang (1992), and use these 
equations when the grid is updated. Wang, Yang, Than, and Ndefo (1994) used this approach when they did 
flow structural calculation for the Titan 7-segment rocket motor. However, one drawback to this more 
rigorous approach is the requirement to deform the grid and remesh each time step. 

LARGE MOTOR SOLUTIONS 

There were two consequences of the failure of the Titan SRMU. The first was an extensive effort to model 
and understand the failure, so that a recurrence could be prevented. Subsequent to this, other large motors 
were analyzed to make sure there was no chance of a grain failure. Some of these analyses were done before 
the motors were flown, as in the case of the Ariane V, and some were carried out for motors already flying 
successfully, such as the Titan 7-segment SRM. The results of these efforts are summarized here. 

Titan SRMU Solutions 
Johnston and Murdock (1995) carried out several numerical stimulations using the time-dependent,  
flow-structural interactive procedure described herein in order to simulate the static firing of the Titan SRMU, 
which occurred on April 1, 1991, at Edwards Air Force Base, California. At about 1.6 s into this static test, the 
motor case failed due to excessive internal pressure. Chamber pressure measurements obtained just prior to 
the failure showed the head-end chamber pressure increasing rapidly and the aft-end pressure dropping.  
This divergence of the head-end and aft-end chamber pressures implies a bore constriction, and strain gauge 
measurements from various axial locations placed this critical constriction at the aft slot. The probable cause 
of this bore constriction was judged to be the uncontrolled deformation, or collapse, of the forward corner of 
the aft propellant segment under the applied pressure load.  

Due to the uncertainty in the value of the propellant modulus, and the crucial role that this property plays in 
the success or failure of the motor, numerical static firing simulations were performed for a range of 
propellant moduli. Simulations were produced with the modulus represented as a decreasing function of time 
and with constant modulus. The first type of behavior was intended to model change in effective modulus as 
the propellant undergoes pressurization. The assumed modulus functions for the four cases considered here 
are shown in Fig. 4. Also shown in Fig. 4 are the cases in which a grain collapse was or was not predicted. 
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Figure 4: Modulus Functions for Titan SRMU Simulations. 

The numerical solution using the modulus shown in Fig. 4 as Case I gave best agreement with the static firing 
data and is the only result shown herein. The modulus in this case is defined by 

 0.9=E ; 1.1≤t  

 )1.1(7.10.9 −−= tE ; t  (18) 1.1>

where E  is in MPa and t  in seconds. 

The predictions for Case I are shown in Figs. 5 and 6. The computed bore radii at the forward and aft corners 
of the center and aft propellant segments are given in Fig. 5. Figure 5 shows that the forward corner of the aft 
segment is deflected slowly inward for about the first 1.5 s. It then very suddenly collapses to essentially zero, 
when the motor fails. A comparison of the pressure data at the fore and aft ends of the motor with predictions 
for the same locations is shown in Fig. 6. The agreement is quite good, except that the run up to failure is 
slower in the actual case than in the prediction. This disagreement is most probably associated with the 
approximations made in modeling the propellant modulus by eq. (18). 
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Figure 5: Computed Bore Radii (Case I), Titan SRMU. 

 

Figure 6: Comparison of Computed (Case I) and Measured  
Head- and Aft-End Pressures, Titan SRMU. 

Since a catastrophic bore constriction arises when forward corners of propellant segments jut out into the bore 
flow, designs that remove or mitigate this feature will produce a better motor design. The obvious way to do 
this is to chamfer (i.e., either chop off or round) the forward corners of the segments as shown in Fig. 7.  
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Figure 7: Chamfering Concepts. 

Johnston and Murdock (1995) carried out a flow-structural simulation for an SRMU with a straight chamfer at 
the forward corner of the aft segment, but with the center segment unchanged. This chamfer, which removes a 
triangular cross-sectional piece from the corner, is shown as A in Fig. 7. The modulus was lowered until the 
motor failed; the results from this numerical solution may be found in Figs. 8 and 9. This failure was 
interesting, because in this case the catastrophic bore constriction occurred at the forward corner of the center 
segment (see Fig. 8). The grain deformation of the aft segment was diminished considerably by the chamfer, 
and the numerical results indicated that a failure originating at the aft segment would not be possible for this 
motor.  

 

Figure 8: Computed Bore Radii, Titan SRMU, Straight Chamfer on Aft Segment. 
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Figure 9: Computed Head- and Aft-End Pressures, Titan SRMU, Straight Chamfer on Aft Segment. 

The model developed in the first section of this article shows that, because the flow rate is larger there,  
the preferred failure site for a motor is the forward corner of the aft-most segment. However, the numerical 
simulations for the Titan SRMU shown in Figs. 8 and 9 show the forward corner of the center segment can 
also experience failure. These results suggest that a successful design may require chamfering most or all of 
the segments in a multi-segment motor. 

Ariane 5 MPS Solutions 
Johnston (1996) analyzed the Ariane 5 MPS. Despite the fact that this motor has chamfered leading edges of 
both the center and aft segments, it is susceptible to a grain collapse if the modulus is small enough.  
(The internal grain geometry and finite difference mesh used to analyze the flow are shown in Fig. 10.)  

 

Figure 10: Initial Geometry and Cell Mesh for the Ariane 5 Internal Flowfield. 
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Johnston found that if the modulus exceeded 500 psi (3.4 MPa) then the grain is stable. However, when he 
analyzed the case with a propellant modulus of 400 psi (2.8 MPa) he found a grain collapse. These results are 
shown in Figs. 11 and 12. Figure 11 shows the bore radii and the two corners of the chamfered grain, with the 
collapse occurring after 0.3 s. The grain oscillations at about 0.1 s are deemed to be non-physical and 
associated with the fact that the propellant mass and damping are neglected. Since these oscillations damp out 
before the collapse they are not a concern. 

 

Figure 11: Computed Bore Radii at the Upstream and Downsteam Corners  
of the Aft Segment Chamfer, Ariane 5 MPS (E = 2.8 MPa). 

The divergence of the head- and aft-end pressures at the time of the collapse is shown in Fig. 12.  

 

Figure 12: Computed Head- and Aft-End Pressures, Ariane 5 MPS (E = 2.8 MPa). 
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Titan 7-Segment Solutions 
Wang, Yang, Than, and Ndefo (1994) carried out a flow-structural analysis for the Titan IV 7-segment motor. 
As noted previously, these calculations make fewer grid generation approximations than the earlier models but 
may expend more computer time. It is again found that if the modulus of the propellant is low enough, a grain 
collapse will occur. For this motor, the authors found that the Titan 7-segment motor will fail at the corner of 
the 7th segment if the modulus is 600 psi (4.1 MPa) or less. As expected the failure occurs at the forward end 
of the last segment, where the flow rate is largest. 

CONCLUDING REMARKS 

Flow-structural interaction of the bore flow and the propellant grain has caused occasional rocket motor 
failures. The most notable and recent one is the Titan SRMU. With modern computer methods, this failure 
mechanism can be modeled and steps, such as chamfering, taken to eliminate it if it is found to be possible. 

Even though motor failures of this class had occurred prior to the first test of the Titan SRMU and their cause 
documented, the possibility of a grain collapse on this motor was overlooked. A possible cause of this 
oversight is that this failure involves two disciplines, fluid and structural mechanics. Hopefully, this article 
can help to prevent such a lapse in the future. 
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ABSTRACT 

A review of the understanding of the combustion mechanisms of solid propellants that the authors have 
built from their work and from the literature is presented. Such an understanding is an important part of 
the process carried out to master the behavior of solid propellants and to obtain desired characteristics 
(with respect to energetic level, burning rate level, sensitivity to pressure and initial temperature, nature 
of emitted combustion products, vulnerability to various aggressions...). 

The propellants and propellant components considered are: 

double-base propellants, based on nitrocellulose and nitroglycerin, • 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

active binder, based on an inert polymer (or energetic such as PAG) and a liquid nitrate ester,  

inert binders, such as polybutadiene, 

ammonium perchlorate, 

nitramines, such as HMX, RDX and CL20 (HNIW), 

composite ammonium perchlorate-inert binder propellants, 

composite propellants based on a nitramine and an active binder, 

aluminum, with respect to the two previous types of propellants, 

additives, when appropriate. 

The features of the combustion zone described are: 

In the condensed phase, the thickness of the temperature profile and of the decomposition zone, 
the kinetics of the decomposition, the energy released, the nature of the gases evolved, the surface 
temperature; 

In the gas phase, the type of flame structure (diffusion or kinetically controlled), the possibility of 
staging (such as in double-base propellants), the kinetics of the reaction(s), the energy released, 
the flame temperature (primary and final, when applicable). 

It is concluded that a fairly proper knowledge of the combustion of the various components and 
propellants has been acquired (being now extended to new ingredients, oxidizers or binders). 
Furthermore, based on this knowledge, a first approach modeling description can be achieved. Such a 
description is necessary in accompanying the elaboration of new propellants and in preparing the 
investigation of more complicated regimes such as those of erosive burning and of non-stationary 
response. 

Paper presented at the RTO/VKI Special Course on “Internal Aerodynamics in Solid Rocket Propulsion”,  
held in Rhode-Saint-Genèse, Belgium, 27-31 May 2002, and published in RTO-EN-023. 
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INTRODUCTION 

Much work has been devoted in various countries to investigating the combustion mechanisms of solid 
propellants. It is timely to bring together the information obtained by the authors and compared to that of 
the literature on the combustion of the individual components as well as of their combination into 
propellants. This review is about the existing components and propellants: double-base propellants and 
active binders, inert binders, ammonium perchlorate, HMX, RDX and CL20 and the corresponding 
composite propellants, ammonium perchlorate – inert binder (plus possibly aluminum), HMX (or RDX or 
CL20) – active binder.  

The viewpoint adopted here is that of the understanding of the combustion behavior of propellants. 
Therefore as much information as possible is presented about the fundamentals of the processes  
(thermal properties, kinetics in the condensed phase and in the gas phase...), whereas no attempt is made to 
establish a complete catalog of practical results on various propellants with different particle sizes, 
catalysts, variations on the percentage of ingredients. The aim is to give a clear, as conclusive as possible 
picture. This will then be non compatible with a complete discussion of the various, sometimes 
contradictory, mechanisms proposed in the literature. Also precluding such a discussion is the will to 
compare the different components and the corresponding propellants. 

Some space is taken up by physico-chemical modeling. The aim is not so much to give the elements of 
mathematical descriptions which could be used for a priori computations of burning characteristics of 
propellants (to the extent that such computations are possible). The point is more to put to test the 
hypotheses made on the mechanisms of combustion by incorporating them in reasonable models and 
confronting the results thus obtained to experimental data. 

These descriptions can also be viewed, along-side with the data given for each component or propellant,  
as useful for mastering the regimes of combustion which go beyond stationary combustion: that is erosive 
burning and unsteady (under pressure excursions or pressure oscillations) combustion responses. 

Table 1 gives information about the various types of propellants of actual use. 
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Table 1: Performances/Characteristics of Various Propellants 

PROPELLANT COMPOSITION 
(main ingredients) 

ρp g/cm3 Is(70/1) theoretical.
(losses) 

APPLICATIONS 
/CHARACTERISTICS 

Extruded DB  
 

Nitrocellulose 
Nitroglycerin 
 

 
≤ 1.66  ≤ 230 s 

 (≈ - 10 s) 

-  Anti-tank rockets and missiles 
-  AS rockets  
-  Some tactical missiles (SA) 

Minimum smoke 
Powder cast DB 
 

Nitrocellulose 
Nitroglycerin 

 
≤ 1.66 

 ≤ 225 s 
 (≈ - 10 s) 

-  Anti-tank missiles 
-  Some tactical missiles (AS) 

Minimum smoke  
AP composite Ex: 88 % AP - 

 12 % HTPB 
 

1.72  ≈250 s 
 (≈ - 10s) 

-  Some AS rockets 
-  Some tactical missiles 

Reduced smoke (HCl-H2O) 
AP composite 
with aluminum 

Ex:  
68 AP - 20 al. - 
12 HTPB 

 
≈1.82 

 
 265 s 

 (≈ - 20 s) 

-  AA tactical missiles 
-  Anti-ship missiles (booster) 
-  Tactical ballistic missiles 
-  Strategic ballistic missiles 
-  Apogee motors 
-  Boosters for space launchers  

(Titan III, IV, V, Space Shuttle, 
Ariane V, H2A...)  
Smoky (Al2O3) 

HMX (RDX) 
composite 

HMX or RDX - 
XLDB binder 

< 1.75 
 

 < 255 s  
 (≈ - 15 s) 

-  Anti-ship missiles (cruise) 
-  SA missiles 

Minimum smoke (without AP) 
HMX composite 
with aluminum 

HMX + AP+ Al 
XLDB binder 

 
 

1.87 

 
 

273 s 

-  Strategic ballistic missiles  
(upper stages) 
(Trident, MX...) 
Smoky (Al2O3) 

Sources: Air et Cosmos n° 1000, May 1984. 
 Annales des Mines, Jan-Feb. 1986. 
 Aéronautique et Astronautique, n° 138, 1989. 

Double-base propellants (made by the extrusion or powder casting techniques) are used in anti-tank 
rockets or missiles and in some tactical missiles. Their main advantage is that they produce a minimum 
amount of smoke (only from a small amount of additives). 

Composite propellants, based on ammonium perchlorate (AP) without aluminum, generate reduced 
smoke, HCl and H2O vapor will precipitate into droplets in the plume under given temperature and 
humidity conditions. They are used for various tactical missiles. With aluminum, they are widely used  
in missiles and space launchers. They produce alumina smoke, which, in the case of space launchers, 
could be considered in the future to be undesirable (along with HCl). 

Composite propellants based on nitramines and an “active” binder (cross linked polymer with 
nitroglycerin or other liquid nitrate esters) are used more and more. Without aluminum, they are in the 
minimum smoke category and they replace DB propellants. With aluminum, they reach the highest 
specific impulse and density and are used so far for upper stages of strategic missiles. 
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The combustion of the components and then of the various propellants will be seen in the next chapters. 

A few general references about chemical propulsion, solid propellants and combustion can be found at the 
end of the main text, ahead of more specialized references introduced progressively in the following 
chapters. 

COMBUSTION OF DOUBLE-BASE PROPELLANTS AND ACTIVE BINDERS 

1.0 Introduction 
It seems appropriate to consider double-base propellant combustion mechanisms in the first place because 
they correspond to relatively simpler premixed processes which lend themselves to a better understanding 
and because they have been investigated for a long time (starting in the 1950’s) in the US, the then USSR, 
the UK, Japan and France in particular. General background on the combustion of double-base propellants 
can be found in references [1-6]. 

As will be seen, the mechanisms involved in the combustion of double-base propellants will apply as well 
to the active binders ( ≈1/3 polymer, ≈ 2/3 nitroglycerin, or other liquid nitrate esters). 

Double-base propellants are made in a number of ways. When they are rolled or extruded, the components 
are nitrocellulose and nitroglycerin, to which some stabilizers such as centralite and plasticizers are added. 
When they are cast, a casting powder (made of nitrocellulose, some nitroglycerin, and the various 
additives) is swelled within the mold by a liquid mixture of nitroglycerin and triacetin. The grain thus 
obtained is then inhibited and used free standing in the motor. The propellant ingredients can also be 
mixed, cast, cross-linked, and the grain case bonded. 

Depending on the relative amounts of nitrocellulose and nitroglycerin, Figure 1, the energetic level of the 
propellant can be increased or, in the usual terminology, its “heat of explosion” or “calorimetric value”, 
that is, the heat evolved in a calorimetric bomb by combustion under an inert atmosphere. One can then 
talk about “cool” and “hot” compositions. 

 

Figure 1: Components of Double Base Propellants. 
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Double-base propellants are used in small and medium sized rockets and thus exposed to varying ambient 
temperatures. The sensitivity of the motor operation to temperature depends upon the propellant burning 
rate sensitivity to both the temperature and the pressure. As can be seen on Fig. 2, the pressure  
exponent, in the usual empirical law vb ~ pn, is around 0.7 and increases to nearly 1 at high pressure. 
Super-rate effects (Fig. 3) are created by the use of additives, most often lead and copper salts combined 
with carbon black. At the end of the super-rate zone, the burning rate falls back to that of the control 
propellant, with the occurrence of a nearly zero pressure exponent zone, a “plateau” effect, or a negative 
exponent zone, a “mesa” effect. These terms are used by analogy with topographical features. A fairly 
complete set of results can be found in reference [6]. It is only in these reduced pressure exponent zones 
that the propellant is used to minimize the motor operation sensitivity to ambient temperature. Due to this 
fact, the study of the combustion of propellants without additives should be conceived only as a first step 
leading to an understanding of modified (that is, with additives) propellants. 

 

Figure 2: Burning Rate vs Pressure. 
(Double Base Propellants) 
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Figure 3: Super-Rate Effects.  
(Double Base Propellants) 

2.0 Flame Structure 
From the works mentioned previously it is possible to describe the combustion wave structure of double-
base propellants, in particular its chemical processes, see Figs. 4 and 5. The various data will be discussed 
and justified later. Gas analysis results are from reference [7]; they refer to mass fractions. 

 

Figure 4: Temperature Profiles. 
(Double Base Propellant) 
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Figure 5: Various Zones of the Combustion of a Double Base Propellant. 

The propellant components pass unaffected through a preheated zone of a few tens of micrometers in a 
few milliseconds and reach a superficial degradation zone (or “foam” zone in the early literature)  
where the temperature becomes high enough for the molecular degradation to take place, initiated by the 
rupture of the C-O-//-NO2 bond. Simultaneous recombination occurs so that a mixture of NO2, aldehydes, 
but also NO emerges from the surface and so that the net energy balance of the degradation is exothermic. 
At pressures under about 100 atm, a clearly separated primary flame (“fizz” zone) and a secondary flame 
(“luminous” flame) are observed, the first involving NO2-aldehydes reactions and the second probably 
NO-CO reactions. In this pressure range the secondary flame is too far away to have any effect on the 
surface or even to induce a temperature gradient into the primary flame. The burning rate is then entirely 
under the influence of the latter. This corresponds to a burning rate/pressure law with a 0.7 pressure 
exponent (Fig. 1). As the pressure increases, the secondary flame enhances and then merges into the 
primary flame and a transition is observed to a zone with a pressure exponent close to 1. When the 
secondary flame is fully developed, even at pressures for which it does not yet influence the burning rate, 
the final products (N2, CO, CO2, H2O and H2) and the final temperature (2100-3100 K, depending on the 
heat of explosion) are attained. 

Table 2 gives data relative to the various zones of the combustion wave. 
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Table 2: Characteristics of the Combustion Zones (Measured Results from Zenin) 

Pressure atm. 10 50 100 

vb mm/s 1.9 6.7 10.6 

Ts, K 610 662 685 

Preheated zone, µm 
(measured/computed) 

 
140/194 

 
50/55 

 
45/35 

Residence time in 
preheated zone, ms 100 8 3 

Superficial degradation 
zone µm 

 
11 

 
3 

 
2 

Residence time in 
superficial zone, ms 

 
6 

 
0,5 

 
0,2 

Flame thickness, µm 
(measured) 200 75 

 
110 

(secondary flame) 

Double base propellant staged flame (1 st flame , dark zone, 2 ndflame ), under  pressures :
  0.7                          1.2                         1.6 2.1   2.6  MPa .

HMX, under 0.15 MPa

 

Visualizations with high speed camera, for a double base propellant, showing the secondary flame 
moving closer to the surface, and a comparative picture for HMX which will be evoked further on.  
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3.0 Condensed Phase Processes 
The preheated zone of a regressing propellant is described by the conservation of energy in a coordinate  
(x > 0 in the gas phase) regressing with the surface: 

ρp vb cp dT / dx = d( λp dT / dx ) / dx  (1) 

in such a way that a temperature profile  

( T - T0 ) / ( Ts - T0 ) = exp( x vb / dp ), dp ≡ λp / ρp cp  (2) 

will progress with the surface into the propellant. From measurements up to 100°C and from ignition 
experiments, representative average values are taken as indicated in Table 3. 

Table 3: Values of the Condensed Phase Properties (Double-Base Propellants) 

ρp = 1.6 g/cm3, cp = 0.4 cal/g K,  
λp = 5.1 10-4 cal/s cm K  
dp = 0.8 10-3 cm2/s  

The thickness econd. of the conduction zone can be taken conventionally as 

T( end of cond. zone ) - T0 = 10-2 ( Ts - To ) 

econd. = ( dp /vb ) ln102 (3) 

As an example, for vb = 10 mm/s  

econd. = 37µm, a thickness through which the temperature rises from 293 K to about 700 K. The residence 
time through this conduction zone is:  

τcond. = ( dp / vb
2 ) ln102 (4) 

about 4 ms in this example; a very short time for a temperature increase of 400 K. 

The superficial degradation zone has its thickness ruled by the conservation of the non degraded 
propellant mass fraction Yp: 

ρp vb dYp / dx = - ρp Ac exp( - Ec / R T ), (5) 

with the decomposition represented by an Arrhenius law. Numerous investigations by thermogravimetry, 
differential scanning calorimetry, on nitrocellulose, nitroglycerin and other nitrate esters, as well as on 
double base propellants, and ignition studies [5] result in: 

Table 4: Values for the Condensed Phase Degradation Kinetics (Double-Base Propellants) 

Decomposition order 0, Ac = 1 1017 s-1, Ec = 40 kcal/mole  
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The thickness of the degradation layer is related to the fast drop in the degradation rate. When this rate is 
10-2 that at the surface temperature, the lower limit of the reaction layer is conventionally reached: 

exp[ - ξc / ( 1 - ∆T / Ts )] = 10-2 exp( - ξc ),  ξc ≡ Ec / R Ts 

the temperature drop is then  

∆T / Ts = 1 / ( 1 + ξc / ln102 ) (6) 

∆T ≅ 100 K for Ts = 700 K. Such a temperature drop inserted in Eq. (2) gives an estimation of the reaction 
layer thickness 

ereaction = - ( dp / vb ) ln[ 1 - ∆T / ( Ts - To ) ] 

or taking into account the magnitude of the reduced activation energy ( ξc ≈ 30 ). 

ereaction ≈ econd. Ts / ξc ( Ts - To ) (7) 

For the values taken above, at vb = 10 mm/s, ereact ≈ 2 µm, with an associated residence time τreact of  
0.2 ms. 

The summation of Eq. (5) through the degradation layer results in: 

ρp vb ( Yp,s - Yp,0 ) = - ∫ ρp Ac exp( - Ec / R T ) dx  (8) 

vb ~ Ac exp( - Ec / R Ts ) ereaction = Ac exp( - ξc ) ( dp / vb ) ln102( 1 / ξc ) [ Ts / ( Ts - T0 ) ]  

A more rigorous approach [8] (which is almost identical to a numerical computation [9]) gives, for a zero 
order reaction: 

vb
2 = ( dp / ξc) Ac exp( - ξc ) / ( 1 - T0 / Ts - Qs / 2 cp Ts ) (9) 

This equation indicates a relation between surface temperature and burning rate: the mass flow rate ρp vb 
emitted from the surface is the result of the decomposition of the propellant into gases throughout  
the superficial degradation layer, Eq. (8). The higher the burning rate vb, the smaller the residence time 
τreact. ~ 1 / vb

2, and the higher is the surface temperature reached to allow for the complete degradation of 
the propellant. 

Traverses with micro-thermocouples (as seen previously the thickness of the combustion wave is of the 
order of tens of µm) allow to obtain measurements of the surface temperature [2,3,4,5]. One example is 
given on Fig. 6. The results from various sources are collected (see [5] for references), as burning rate 
versus 1 / Ts, on Fig. 7. Also indicated is the correlation obtained from Eq. (9). Due to the thinness of the 
conduction zone, a few tens of micrometers, fairly large errors and scatter should be expected in the 
measurements of the surface temperature. Nevertheless, some conclusions can be reached (see also  
Refs. [3,10]). The initial degradation of the propellant components is controlled by the breaking of the  
-C-O-//-NO2 bond (characterized by the 40 kcal/mole activation energy). This is considered to be a 
temperature sensitive only process, irreversible (therefore not influenced by the pressure level). It is 
noteworthy that the kinetics of the degradation is the same from thermal decomposition (by TG and DSC) 
at about 400 K, to ignition from 400 to 500 K [5] and combustion at temperatures up to 700 K.  
Also important is the conclusion, if one looks at the details of Fig. 7, that the presence of super rate 
producing additives does not affect the condensed phase kinetics. 
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The energetics of the reaction layer is now to be considered. The initial degradation of the propellant, 
taking into account the assumed decomposition of nitroglycerin into 3N02, 2 CH2O and 0.5 (CHO)2,  
is thought to give (for the example of the 1100 cal/g propellant) the mass balance 

1 propellant → 0.467 NO2 + 0.364 CH2O + 0.1 (CH0)2 + 0.06 hydrocarbons (10) 

with a corresponding endothermic heat of degradation 

Qd = - 135 cal/g of propellant. 

It is thought [5,9,10] that within the superficial layer the exothermic reaction between NO2 and aldehydes 
can start. A plausible mole balance (in order to match various results, in particular the analysis [7] of the 
gases emitted from the surface of regressing propellants) is 

NO2 + CH2O → NO + 1/2 CO + 1/2 CO2 + 1/2 H2O + 1/2 H2  (11) 

with a corresponding exothermic heat of reaction 

QNO2 = 1040 cal/g of NO2. 

Conservation of the species NO2 (in terms of mass fraction Y) is written (no diffusion is taken into 
account) 

ρp vb dYNO2 / dx = YNO2,i ρp Ac exp( - Ec / R T ) - ANO2 ( p M / R T ) YNO2 exp( - ENO2 / R T ) (12) 

if a first order reaction with respect to the molar concentration of NO2 is assumed (it will be seen that this 
is probably the case). 

The conservation of energy is written  

ρp vb c dT / dx- d( λ dT / dx ) / dx = - Qd ωp - QNO2 ωNO2  (13) 

with ωp the rate of reaction of the propellant, as in Eq. (5), and ωNO2 that of NO2 as in the second term of 
Eq. (12). The summation of Eqs. (5,12,13) through the condensed phase to the surface leads to: 

λ dT / dx|s = ρp vb ( cg Ts - cp To - Qs ) ≡ρp vb Qc (14) 

Qs ≡ Qd + QNO2 ( YNO2,i - YNO2,s )  (15) 

The first equation is the heat balance at the surface, it means that the heat flux from the flame in the gas 
phase allows the heating and pyrolysis of the propellant. The net heat of decomposition of the propellant 
Qs is exothermic to the extent that some NO2 already reacts exothermically in the condensed phase. 

From thermocouple traverses such as that of Fig. 6 and the balance of Eq. (14), the net heat Qs can be 
estimated (again scatter should be expected). The results from various sources are given on Fig. 8. The net 
heat of decomposition is seen to be exothermic and increasing with burning rate (due to an increase in 
pressure). Summation of Eq. (12) yields (with Eq. (5) taken into account) 

ρp vb ( YNO2,i - YNO2,s ) = ANO2 ∫ (p M / R T ) YNO2 exp( - ENO2 / R T ) dx 

≈ANO2 ( p M / R Ts ) YNO2 exp( - ENO2 / R Ts ) ereact.  

and with Eq. (8) 

YNO2,i - YNO2,s ~ ( p M / R Ts ) exp( - ENO2 / R TS ) / exp( - Ec / R Ts ) 

RTO-EN-023 4 - 11 



Combustion of Solid Propellants   

 

 

Wire ø 5 µm

 
Example of thermocouple 

Pt – Pt / Rh soldered end to end 

Figure 6: Temperature Profile in the Condensed Phase. 
(Double Base Propellant) 

 

 

Figure 7: Pyrolysis Law. 
(Double Base Propellants) 
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Figure 8: Heat Evolved in the Condensed Phase. 
(Double Base Propellants) 

This relation indicates that the amount of NO2 reacting in the condensed phase will increase with pressure, 
and thus Qs will increase, if the reaction rate for NO2 catches up with the decreasing residence time in the 
degradation layer,  

τreact. ~ 1 / vb
2 ~ 1 / exp( - Ec / R Ts ) 

(due to Eq. (9)). A plausible law is obtained for a first order NO2 reaction with an activation energy ENO2 
of about 15 kcal/mole. 

It should be observed that the heat evolved in the condensed phase Qs has to be affected by the amount of 
NO2 present in the propellant, that is by the heat of explosion. 

One important feature of Fig. 8 is that the heat evolved in the condensed phase is not affected by the 
presence of additives. 

4.0 Flame Zone 
As seen above, the reaction between NO2 and aldehyde starts in the condensed phase in such a way that 
the surface gas composition [7] indicated on Fig. 5 is obtained, with NO2 being significantly less (0.255) 
as compared to what results from the initial degradation of the propellant (0.467, in the case of an  
1100 cal/g propellant) and with NO already present (0.14). The mole balance of Eq. (11) allows to match 
as well the gas analysis at the end of the primary flame ([7], measurements at 11 atm) 

NO2 + CH2O → NO + 1/2 CO + 1/2 CO2 + 1/2 H2O + 1/2 H2  (11) 

QNO2 = 1040 cal/g of NO2. 
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It is likely that aldehyde-aldehyde reactions also occur following (again to match the gas analysis results): 

CH2O + CH2O → CO + 1/2 C2H4 + H2O ,  Qald.1 = 389 cal/g of CH2O  (16) 

(CHO)2 + (CHO)2 → 4 CO + 2 H2 ,  Qald.2 = - 533 cal/g of (CHO)2 (17) 

At low pressure when probably only the reaction of (11) can take place, an energy balance between initial 
temperature and end of the primary flame yield: 

cg Tfp - cp T0 = Qd + QNO2 YNO2,i, p ≤ 1 atm (18) 

since the initial NO2 is totally consumed in the condensed phase and the primary flame. An evaluation of 
Tfp = 1340 K results. It is seen on Fig. 9 that measurements with small thermocouples indicate a large 
increase with pressure of the primary flame temperature from this value. The aldehyde reactions of  
Eqs. (16,17) do not produce energy in significant amount. It is assumed [5] that the NO already present at 
the surface as well as that produced from the NO2-aldehyde reaction react with the layer of carbon residue, 
attached to the surface, which is observed by direct visualization under combustion and after extinction by 
scanning electron microscopy. 

 

Figure 9: Primary Flame Temperature of Double Base Propellants. 

The NO/carbon reaction had been investigated in [11]. If one makes use of the results obtained,  
the conservation of the species carbon can be written as (knowing that the carbon layer regresses with the 
surface) 

vb dρc / dx = ( Mc / MNO ) ωNO (19) 
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ωNO = - ANO/C exp( - ENO/C / R T ) ρc Ss,c YNO p M , in g/cm3s 

(this form resulting from the way the data of [11] is cast), the reaction balance being assumed to be: 

NO + C → 1/2 N2 + CO , QNO/C = 1600 cal/g of NO (20) 

and Ss,c being the specific surface area of the carbon (at most 106 cm2 /g). Reference [11] produces  
(after rounding ENO/C) 

ANO/C = 2 10-3 mole/s cm2 atm, ENO/C = 30 kcal/mole 

A rough estimate of the amount of N2 produced by reaction (20) through the primary flame is given by 
(with m ≡ ρp vb the mass flow rate) 

m YN2,fp = - ( 1 / 2 ) ( Mc / MNO ) <ωNO> xf 

<ωNO> being evaluated at average values through the flame. With p = 11 atm, vb = 0.28 cm/s,  
<YNO> = 0.2, <ρc> = 0.5 g/cm3, <Tf>= 1400 K and xf = 400 µm (from thermocouple measurements) it is 
obtained 

YN2,fp ≈ 0.06  

a reasonable value (with respect to the result of Fig. 5). This tends to indicate that the NO/carbon reaction 
has a kinetics indeed fast enough with respect to the residence time allowed in the primary flame. 

An energy balance taking into account the NO/carbon reaction is written: 

cg Tfp - cp T0 = Qd + QNO2 YNO2,i + YNO,cons. QNO/C + Qald Yald,cons.  (21) 

(the consideration of the aldehyde reaction cools the flame by about 80 K). In this balance YNO,cons. is the 
amount of NO consumed in the primary flame: 

YNO,cons. = YNO2,i ( MNO / MNO2 ) - YNO,fp 

in the case of the example of Fig. 5 and taking into account the uncertainty on the measurements:  
YNO,cons. = 0.035 to 0.047 and Eq. (21) results in Tfp = 1420 to 1475 K, an admissible value when compared 
to the results of Fig. 9. 

The temperature profile in the primary flame is controlled by the conservation of energy [5]. 

m cg dT / dx - d(λg dT / dx) / dx = - QNO2 ωNO2 - QNO/C ωNO - Qald.ωald.  (22) 

Table 5: Values Considered as Representative for the Gas Phase (Double-Base Propellants) 

cg = 0.35 cal/g K, 

λg = 1.25 10-4( T / 700 )0.7 cal/cm s K 

M = 30 g/mole 
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The evaluation of the heat flux received at the surface, which will then control the burning rate according 
to Eq. (14), results from the summation of Eq. (22) through the flame zone. Only a true numerical 
evaluation of the temperature and species profiles will give the proper heat flux. However conclusions can 
be drawn from approximate relations. The activation energies of the reactions of Eq. (22) being moderate, 
the flame is distributed and an approximation of the temperature profile is written as: 

( Tf - T ) / ( Tf - Ts ) = exp( - 3 x / xf ) (23) 

which will produce a shape such as that of Fig. 6. The coefficient of 3 is such that, when x = xf, Tf – T is  
5 % of Tf -Ts, that is close enough to the final temperature. 

With Eq. (14) 

λg,s dT / dx|s ≡ qs = m Qc ≡ ρp vb (cg Ts - cp T0 - Qs)  (14) 

Eq. (23) yields 

qs = 3 λg,s ( Tf - Ts ) / xf ,  xf = 3 λg,s ( Tf - Ts ) / m Qc (24) 

The summation of Eq. (22) through the flame results in 

m cg ( Tf - Ts ) + qs = 3 Qg <ωg> xf (<ωg> positive is the average rate) 

or with Eqs. (14,24), and taking into account an overall equation for conservation of energy  

cg ( Tf - Ts ) = Qg - Qc, 

m = [3 <ωg> λg,s ( Tf - Ts ) / Qc]1/2 (25) 

At very low pressure, ≈ 1 atm, when only the NO2 reaction probably takes place, the burning rate follows 
pressure according to, see Eq. (12),  

m ≡ ρp vb ~ ( <ωNO2> )1/2 ~ p1/2 exp( - ENO2 / 2 R Tfp ) (26) 

a pressure exponent which is indeed observed, see Fig. 2. As the pressure increases the NO/carbon 
reaction takes on more importance and, referring to Eq. (19),  

m ≡ ρp vb ~ [ p exp( - ENO2 / R Tfp ) + ~ p exp( - ENO/C / R Tfp ) ]1/2, (27) 

which, with the increase of the flame temperature with pressure, see Fig. 9, accounts for the pressure 
exponent of 0.7. 

At higher pressures, above about 150 atm for the 1100 cal/g propellant for example, a change in the 
pressure sensitivity, Fig. 2 is observed. This tends to indicate that the secondary flame, probably 
characterized by a second order, with respect to pressure, reaction for NO, comes into the primary flame 
and progressively dominates it, with a pressure exponent, according to Eq. (25), increasing to close to 1. 

Referring to Fig. 10, for the 1250 cal/g propellant, the temperature sensitivity is indicated: 

σp = ( d lnvb / dTo ) at p given  (28) 
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Figure 10: Temperature Sensitivity of a Double Base Propellant. 

According to Eq. (27) the burning rate is under the influence (noting that the condensed phase energy 
balance also contains the effect of T0 see Eq. (14)) of a premixed flame heat flux and therefore very 
sensitive to changes in the primary flame temperature, in the pressure domain when the two flames are 
separated. From Eq. (21), any change in initial temperature will affect the primary flame temperature and 
therefore induce a change in burning rate. As the pressure rises the primary flame temperature increases 
(up to 1800 K) and then for higher pressures the burning rate comes under the influence of the final flame 
(with a temperature reaching 3110 K for the 1250 cal/g propellant). It is seen from Eq. (27) that a given 
change in T0 and therefore in Tf has a smaller impact on the burning rate for higher flame temperatures, 
that is for higher pressures, a tendency observed on Fig. 10. 

5.0 Active Binders 
Various types of active binders, based on nitrocellulose or an inert binder and nitroglycerin or less 
energetic liquid nitrates, can be used, see reference [10] for a complete description. The cross-linked 
double-base binders (XLDB) will be considered here, in which the polymer is cured with an isocyanate 
after mixing with NG. 

Table 6: Values for a XLDB Binder 

Composition: ≈ 2/3 NG, 1/3 polyethylene glycol. 

Heat of explosion: 850 cal/g. 

Tff = 2000 K. ρp = 1.42 g/cm3. 

cp = 0.46 cal/g K. 

λp = 3.9 10-4 cal/cm s K. dp = 0.6 10-3 cm2/s 

YNO2,i = 0.421. Qd = - 150 cal/g 
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Although the burning rates of the different active binders can be, for a given heat of explosion, somewhat 
different at low pressures [10], above 10 atm the differences become small , see Fig. 11. In the case of a 
double-base propellant and of a XLDB binder (that of the above table), with nearly the same heat of 
explosion, the burning rates for a large range of pressure are very close, Fig. 12. 

 

Figure 11: Burning Rate vs Heat of Explosion. 
(Double Base Propellants and XLDB Binders) 

 

Figure 12: Double Base Propellants and Active Binder Burning Rates. 
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Measurements for XLDB binders of the degradation kinetics, of the surface temperature, of the heat 
evolved in the condensed phase, as in Fig. 8, and of the primary flame temperature, Fig. 9, show that these 
characteristics are very close to those of DB propellants.  

Table 7: Gases Evolved from the Surface, Mass Fractions. XLDB Binder [7] 

NO2 CH2O (CHO)2 NO CO CO2 H2O HC 

0.31 0.37 0.08 0.07 0.03 0.04 0.02 0.08 

Gas analysis at the surface gives results which are qualitatively comparable to those of DB propellants, 
Fig. 5. 

It can then be stated that the combustion mechanisms of the various types of double-base propellants and 
of the active binders are very similar. 

6.0 Mechanisms of Action of Additives 
The incorporation of a few per-cents of lead (and copper) salts and carbon black enables to obtain super-
rate effects followed by mesa or plateau effects in the burning rate versus pressure laws of double-base 
propellants, Fig. 3, as well as of active binders, Fig. 12, although in the latter case these effects are much 
less pronounced. 

What is thought to be the mechanism of action of the additives has been presented in references [5,6]  
by the authors and in reference [12]. 

It has been found that the active part of the lead salt is the oxide of lead which accumulates above the 
propellant surface, after the salt has been trapped in the carbon residue layer which can be observed, 
immersed in the primary flame (the decomposition kinetics of the salt is slower than that of the propellant 
components and it thus emerges from the surface unchanged). If the propellant (when its heat of explosion 
increases) or the active binder naturally produces less carbon residue, then the lead salt particles are in 
large part ejected from the surface and cannot act. This is the case probably when the amount of 
nitrocellulose is reduced (hot double-base propellants) or almost absent (XLDB binders). In the latter case 
however the inert polymer leaves some carbonaceous residue. Addition of carbon black is probably 
favorable because it accumulates on the surface in the naturally produced carbon layer. 

It has been found by the authors that PbO reacts preferentially with aldehydes to form carbon and CO2.  
It has been observed systematically [6] that there is a relation between the amount of carbon residue and 
the importance of the super-rate observed (for example, depending on the fabrication process: solventless 
extrusion, powder casting, mixing). It was seen that the primary flame is due to an NO2-aldehyde reaction. 
But NO starts to react with carbon as well close to the surface, leading to the increase in primary flame 
temperature of Fig. 9. It is believed that the extra carbon produced in the presence of additives enhances 
the NO/C reaction (see ref. [12] for more results on this reaction), depositing extra energy in the primary 
flame (an increase in primary flame temperature is observed in the presence of additives [5]) and resulting 
in a higher heat flux to the surface, and thus a higher burning rate. 

Figure 13 shows surface structures of a cool propellant with a strong super-rate and a corresponding thick 
carbon residue. In this case, visualization shows that a physical effect occurs in which the secondary 
luminous flame attaches in streaks to the carbon layer and deposits its high temperature (≈ 2200 K as 
compared to the ≈ 1400 K of the primary flame) closer to the surface. The abrupt end of the super-rate,  
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the mesa effect, is believed to be due to the too thick carbon residue being expelled from the surface.  
At the end of the mesa effect the surface is almost clean of carbon. 

 

Figure 13: Super Rate Effects in Double Base Propellants. 
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In the case of hot propellants, Fig. 3, the super-rate is probably due only to the chemical effect of the 
enhanced NO/C reaction. As the pressure increases the secondary flame, where NO will react anyway, 
merges into the primary flame and progressively the modified propellant is caught up by the reference 
propellant, a plateau effect thus resulting.  

In the high pressure domain when the flame system has reduced to one overall flame, a second super-rate 
occurs (when only lead salt or oxide is added), see Fig. 13 for the cool propellant and Fig. 3 for a  
1250 cal/g propellant. This effect seems to be purely physical, related to the presence of lead oxide 
particles accumulating and imbedding into the surface, Fig. 13, with for example an enhancement of the 
thermal conductivity of the flame zone or more probably a flame holding effect (the protruding particles 
perturb the flow from the surface). At higher pressures and burning rates the thickness of the condensed 
phase heated zone and reaction layer and flame zone becomes so small that the particles will not attach to 
the surface or will be too large to perturb the combustion process. 

PYROLYSIS OF INERT BINDERS 

A number of books and works has been devoted to the behavior of polymers, whether or not usable as 
binders, under thermal loads, references [13-17] are examples. Much work has been carried out with 
thermogravimetric analysis (TGA) or differential scanning calorimetry (DSC), with heating rates at most 
of the order of 1°C/s. Under linear pyrolysis (for a binder within a solid propellant) the rate of temperature 
increase is of the order of 105 °C/s. It is far from obvious a priori that the degradation kinetics will remain 
the same. In Ref. [8] it was attempted to establish that this is indeed the case for a number of polymers. 

Although it is hardly a propellant binder, Teflon is an interesting reference polymer. Its degradation 
kinetics (obtained by TGA) and thermal properties [8] ( λp = 6.34 10-4 cal/cm K s, ρp = 2.1 g/cm3,  
cp = 0.25 cal/g K) are indicated on Fig. 14. In order to extrapolate these characteristics to the regime of 
linear pyrolysis (obtained experimentally by pressing the sample on a hot plate) the procedure of  
reference [8], also explained in the condensed phase paragraph of the double-base propellants chapter,  
is applied. In the case of a first order (with respect to the non degraded polymer) reaction, the relation 
between regression rate and surface temperature is (again, numerical computation shows this relation to be 
accurate to about 1 %)  

vr
2 = ( dp / ξc) Ac exp( - ξc ) /[ ( - lnYp,s ) ( 1 - T0 / Ts - Qs / cp Ts ) + Qs / cp Ts ]  (1) 

ξc ≡ Ec / R Ts  

In this relation Qs is the heat evolved in the condensed phase, in this case endothermic and equal to 
- 340 cal/g ( Yp,s mass fraction of the remaining polymer at the surface can be set at 0.01 ). It is seen on 
Fig. 14 that there is a good match between extrapolated law and measurements. These measurements are 
obtained under various atmospheres, showing no influence of this factor. The conclusion is then reached 
that the pyrolysis of such a polymer is an irreversible thermal mechanism. 

RTO-EN-023 4 - 21 



Combustion of Solid Propellants   

 

Figure 14: Linear Pyrolysis and Extrapolation of Thermogravimetric Results (Example of Teflon). 

In the case of an actual, widely used, propellant binder such as hydroxyl terminated polybutadiene (HTPB) 
the same extrapolation can be made, Fig. 15 (the thermal properties used: λp = 3.6 10-4 cal/cm K s,  
ρp = 0.92 g/cm3, cp = 0.39 cal/g K), and compared to the results of Ref. [15], obtained in a hybrid motor, 
gaseous oxygen upon HTPB, with the surface temperature being measured by infra-red pyrometry  
(with some dispersion). A measurement obtained by the authors with CO2 laser heating and IR pyrometer 
is also indicated. The agreement, considering the extent of the extrapolation, is very satisfactory.  
Further on, the pyrolysis law based on the TGA and DSC kinetics will be considered to apply. 
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Figure 15: Pyrolysis Law for HTPB. 

Equation (1) and Fig. 15 indicate how the surface temperature adjusts itself to allow the polymer to 
degrade into gases when the regression rate changes. Further considerations to better know the binder 
behavior are the nature of the gases resulting from the pyrolysis and the corresponding heat of 
degradation.  

The heat of ablation of HTPB was measured in Ref. [16] by relating the mass ablated to the radiation heat 
flux received by a sample. For a regression rate of 0.4 mm/s (and from Fig. 15 Ts ≈ 1060 K) it is obtained: 

habl = cp ( Ts - T0 ) - Qs = 750 cal/g 

Qs = -450 cal/g 

It is found that this value is compatible with the production of mostly C4H6 as pyrolysis gas. Gas analysis 
at low temperature [13] reveals a complex set of gases (≈ 45 % in mass butadiene, ethylene, propene…) 
resulting from the degradation of HTPB. If one evaluates the difference in heats of formation between the 
initial material and butadiene it is found: 

cal/g 490  cal/g 5 - cal/g 496  (HTPB) h - )H(C hh  6 4 ≈=°°=∆  

close to the measured heat of degradation. At high heating rates butadiene is probably the major 
degradation gas. 

COMBUSTION OF AMMONIUM PERCHLORATE 

Ammonium perchlorate (AP), NH4 ClO4, is a widely used oxidizer and as such has been the object of 
numerous investigations. References [18 to 22] are a sampling, with [22] giving a detailed list. A view of 
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the combustion of AP is presented herein attempting to make use as much as possible of the various 
experimental data available. Due to the large number of works on AP combustion, somewhat 
contradictory interpretations and corresponding models have been produced. A simplified model is 
presented, which is considered to represent reasonably the combustion mechanism of AP, although it will 
not be in agreement with all of the above mentioned interpretations.  

1.0 Condensed Phase Behavior 
The considerations presented previously for the condensed phase of a pyrolysing monopropellant apply to 
AP. The conduction zone has a thickness  

econd. = ( dp /vb ) ln102 

(with the thermal diffusivity [21] dp ≈ 1.2 10-3 cm2/s at an average temperature in the heat wave),  
thus equal to ≈ 55 µm, for a burning rate of 10 mm/s. 

Table 8: Condensed Phase Values for AP [19,21] 

cp = 0.31 cal/g K (orthorhombic phase < 513 K) = 0.365 cal/g K (cubic phase) 

ρp = 1.95 g/cm3 , dp = 2.5 10-3 - 4.55 10-6 T(°C)cm2/s 

Based on observations by scanning electron microscopy after extinction, the idea has been advanced that 
the self-deflagration of AP, possible only above 20 atm, requires that a large amount of exothermic 
reaction already takes place in the condensed phase in a thin liquid layer (above a melting temperature 
estimated at 835 K) [19,20,21,22]. 

2.0 Energetics of the AP Combustion 
The model of Ref. [19] is subscribed to in order to describe the combustion of AP alone. The AP 
undergoes a phase transition at 513 K, melts around 830 K and, in the thin (a few microns) superficial 
liquid layer thus created, an exothermic reaction, affecting 70 % of the AP, takes place and creates the 
final combustion gases, O2 in particular. The remaining 30 % of the AP sublime into NH3 and HClO4 
which react exothermically in a premixed flame very close to the surface (a few microns), Fig. 16. 

 

Figure 16: Autonomous Combustion of Ammonium Perchlorate. 
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From the data collected in [19] the change of enthalpy per gram of AP required to heat up the AP to its 
surface temperature, TS,AP, is estimated as  

∆ hH,AP = 0.31 ( 513 - 293 ) + 21 + 0.365 ( 835 - 513 ) + 60 + 0.328 ( TS,AP - 830 ), 

= 266 + 0.328 ( TS,AP - 835 ) cal/g  (1) 

where the heat of transition and the heat of liquefaction appear. The exothermic condensed phase 
degradation involves an enthalpy change of [19]  

∆ hD,AP ≈ - 380 cal/gram of reacting AP. (2) 

The heat of sublimation is 58 ∀ 2 kcal/mole or  

∆h S,AP = 476 to 510 cal/gram of subliming AP. (3) 

The adiabatic flame temperature for the combustion of AP alone has been estimated in [18] to be  
Tf, AP

ad = 1205 K, corresponding to the reaction  

NH4 ClO4 → 0.265 N2 + 0.12 N2O + 0.23 NO+ 1.62 H2O + 0.76 HCl + 0.12 Cl2 + 1.015 O2 (4) 

The change of enthalpy, ∆hC,AP, corresponding to the combustion of the sublimed NH3 and HClO4 (to give 
the combustion products of (4)) is obtained from the equation expressing the conservation of enthalpy 
between the unreacted AP at initial temperature and the combustion products downstream of the flame: 

0.3 ∆hC,AP + cg ( Tf,AP
ad - TS,AP ) + 0.3 ∆hS,AP + 0.7 ∆hD,AP + ∆hH,AP = 0  (5) 

For cg ≈ 0.3, value taken in [19], it is found 

∆hC,AP = - 850 to - 885 cal/gram of reacting AP,  (6) 

depending on the value adopted for the heat of sublimation, 476 or 510 cal/g, and independently of the 
value of TS,AP in the range found in [19]. 

It should be noticed that the value given here for the transformation of the AP into gases (that is NH3 and 
HClO4 for the subliming 30 % and the combustion gases of (4) for the 70 % reacting in the condensed 
phase), namely  

- Qs = 0.3 ( 476 to 510 ) + 0.7 ( - 380 ) = - 123 to - 113 cal/g of AP,  (7) 

is also found in [20], where a model for the combustion of AP similar to that of [19] is adopted. The heat 
evolved in the condensed phase Qs ( > 0 if exothermic) will be set equal to 120 cal/g. 

One last check of consistency can be performed: with the enthalpy of formation of AP at h0
AP = - 602 cal/g 

and that of the combustion products of (4) h0
CP = - 877 cal/g, an overall energy balance between initial AP 

and combustion products is: 

cg Tf,AP
ad + h0

CP = cortho T0 + h0
AP  (8) 

resulting in Tf,AP ad = 1215 K, close enough to the previous value. 
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3.0 Surface Pyrolysis of AP 
Attempts to measure the surface temperature give values between 670 and 973 K. These results, obtained 
either by using thermocouples imbedded in the AP pellet, or by measuring the radiation emitted by the 
surface, are always associated with some uncertainty due to the operating methods. In effect, the large size 
of the thermocouples, in relation to the temperature gradients encountered, favors errors; further,  
the measurement represents an averaging of surrounding conditions. The temperatures thus obtained are 
therefore probably somewhat lower than in reality. In the case of experiments using an optical technique, 
the temperature is deduced from measuring the radiation emitted by the surface and transmitted through 
the gaseous layer. The disturbance caused by the radiation of the gases and the screening action of the 
flame limits the application of this method to 60 atm. That is why the original technique suggested by 
Seleznev [23], carried out by using a sapphire light guide inserted in the solid substance and by reading the 
infra-red emission in the direction of the condensed phase, has the considerable advantage of providing a 
direct measurement of the radiation emitted by the surface, without any hot gases and the reaction of the 
flame being interposed. Its application can therefore be extended to high pressures and the measurements 
appear to be more convincing. These results enable to determine the AP pyrolysis law. 

Further, estimates of the AP melting temperature are mentioned by a number of authors; the values 
suggested vary from 715 to 865 ± 20 K and are useful in interpreting the extinction phenomenon at low 
pressure. 

The pyrolysis law of the AP is written as: 

mAP = ρAP vb,AP = AS,AP exp( - ES,AP / R TS,AP ) (9) 

The parameters characterizing the pyrolysis law are determined so as to obtain a good agreement between 
the rates and the surface temperatures measured by Seleznev [23] (Fig. 17). The activation energy 
obtained is 20 kcal/mole, a figure compatible with the various estimates encountered. The measurement of 
the surface temperature made at 40 atm is the only one which deviates from that computed by the 
pyrolysis law used. On the other hand, for the critical rate of 0.27 cm/s obtained at 20 atm (AP combustion 
pressure limit), this law allows for a surface temperature of 830 K, corresponding to the assumed AP 
melting temperature [19]. 

 

Figure 17: Pyrolysis Law for Ammonium Perchlorate. 
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4.0 Flame Structure of the AP Combustion 
The approach of [19] considers 14 different reactions to describe the flame zone of the AP, involving 30 % 
of the material sublimed into NH3 and HClO4. An overall second order reaction is then obtained  

NH3 + HClO4 → products of Eq. (4) 

with an activation energy of Eg,AP = 15 kcal/mole. 

A simplified model is constructed like the one used in the chapter on the double base flame.  
The temperature profile is approximated as 

( Tf,AP
ad - T ) / ( Tf,AP

ad - TS,AP ) = exp( - 3 x / xf )  (10) 

with the boundary condition 

qs ≡ λg.s dT / dx|s = mAP Qc  (11) 

Qc = ∆hH,AP - Qs 

Qc is the heat required to bring the AP from T0 to gases at the surface, see Eqs. (1) and (7). 

Combining (10) and (11) results in 

mAP = 3 λg,s ( Tf,AP
ad - TS,AP ) / xf Qc  (12) 

Summation of the energy equation from Ts,AP, x = o, to xf yields, after using Eqs. (11) and (12) and Eq. (5) 
written as  

Qg + cg ( Tf,AP
ad - TS,AP ) + Qc = 0 

mAP = [ 3 <ωg> λg,s ( Tf,AP
ad - TS,AP ) / Qc ]1/2  (13) 

In this equation the average reaction rate is written as 

3 <ωg> = p2 Ag,AP exp( - Eg,AP / R Tf,AP
ad )  (14) 

expressing a second order overall rate. The burning rate is then found to follow pressure with an exponent 
close to 1. Table 9 indicates various values for AP combustion. 

Table 9: Values Considered as Representative for the AP Flame Zone 

ρAP  = 1.95 g/cm3  

ES,AP  = 20 kcal/mole 

AS,AP  = 96000 g/cm2 s  

Eg,AP  = 15 kcal/mole  

Ag,AP = 700 g/cm3 s atm2  

γ  = 30 %  

cg  = 0.3 cal/g K  

λg  = 1.9 10-4 cal/cm s K  
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Taking into account the various values given, it is obtained for vb = 10 mm/s ( TS,AP ≈ 925 K ) the flame 
stand-off distance, Eq. (12), ( Qc = 175 cal/g ), xf ≈ 5 µm, the height to reach Tf  within 5 %. 

The only input data which is not defined from outside considerations is the pre-exponential factor Ag,AP 
used as a floating parameter for the model. Various numerical values associated with the input parameters 
of the model are brought together in the above table. Just by the choice of the prefactor Ag,AP adjusted at 
700 g/cm3 s atm2, the model satisfactorily reproduces variations in the AP burning rate due to pressure as 
well as due to the change in the initial temperature of the product. Figure 18 provides a comparison of 
computed rate curves with experimental points [21].  

 

Figure 18: Burning Rate of Ammonium Perchlorate at Different Initial Temperatures. 

At sufficiently high pressures, the energy transmitted from the flame toward the surface, to which must be 
added the effect of the superficial exothermic reactions, maintains the surface temperature above the AP 
melting point. When the pressure falls, the premixed flame moves away and the surface temperature can 
then drop below the limiting value, thus causing the disappearance of the liquid surface layer which was 
enabling the exothermic reactions to occur. The energy from the flame is then much too small to maintain 
a pyrolysis which has become strongly endothermic and AP no longer burns. This minimum pressure, 
beyond which the combustion cannot propagate itself, sets the pressure limit for AP self-degradation.  

On the basis of this hypothesis, the combustion pressure limit is reached when the surface temperature is 
equal to the AP melting temperature. It is interesting to use the model in order to follow the variation of 
the computed limiting pressure with the initial temperature. At atmospheric temperature, the combustion 
limit is 20 atm, in agreement with experimental results. The critical rate of 0.27 cm/s and the surface 
temperature of 830 K, representing the AP melting temperature, corresponds to it. The computation 
method consists, for the initial temperature varying between 0 and 200°C, in finding for what pressure the 
surface temperature is equal to 830 K. A comparison between the computed and experimental pressure 
limits is very good, Fig. 19, and confirms the soundness of the hypothesis following which AP only burns 
if the surface temperature exceeds its melting temperature. 
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Figure 19: Limiting Pressure for Combustion of Ammonium Perchlorate. 

One further set of results is presented. Questions have been raised about the combustion of AP at high 
pressures, above about 100 atm, with many conflicting results. Measurements of burning rates on carefully 
inhibited samples are presented on Fig. 20. It is concluded that no strong change of combustion regime is 
observed. The model based on the above presented hypothesis seem to follow quite well the results to high 
pressures. 

 

Figure 20: Burning Rate of Ammonium Perchlorate at High Pressures. 
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COMBUSTION OF HMX 

The combustion of HMX, which has balanced 
oxidizing and combustible elements (to reach CO, 
H2O and N2) and a combustion temperature of 3280 
K, is controlled by processes in the condensed 
phase as well as in the flame zone. Information 
about these processes is to be found in references 
[24 to 31] (also [21]). 

 
 

Figure 21: Chemical Structure of HMX. 

1.0 Condensed Phase Processes 
The kinetics of the decomposition of HMX can be obtained by differential thermal analysis [24,29].  
A fairly extensive review is given in Ref. [25]. Results obtained around the (assumed) melting temperature 
of 556 K are indicated on Fig. 22, with the kinetics extracted for a reaction order of 1 (refer to [29] for the 
method utilized). The condensed phase properties considered to be representative are indicated below.  

 

Figure 22: Differential Thermal Analysis of HMX Decomposition. 
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Table 10: Condensed Phase Properties (Average in the Thermal Wave) for HMX [31] 

ρp = 1.9 g/cm3, cp = 0.33 cal/g K  

dp / λp / ρp cp = 1 10-3 cm2/s  
(also found from thermocouple traverses)  

λp = 6.3 10-4 cal/cm s K 

Another technique to obtain the decomposition kinetics, at somewhat higher temperatures, is through 
ignition tests, by exposing the sample to a given surface heat flux and detecting the delay for the first 
exothermic ignition reaction (rapid deviation of the surface temperature from that of an inert material). 
The results are seen on Fig. 23 and confirm those obtained by DTA (the first method gives a good estimate 
of the activation energy, whereas the ignition experiments are better for estimating the prefactor). All these 
results correspond to an irreversible thermal decomposition of the HMX bonds with no influence of the 
pressure. 

 

Figure 23: Ignition of HMX. 

Finally, the investigation of the condensed phase processes under combustion is carried out by 
determining the temperature profile through the combustion wave by use of micro-thermocouples. As was 
seen on several occasions the thermal wave thickness is: 

econd. = ln102 dp / vb  (1) 

that is, in the case of Fig. 24, econd. ≈ 220 µm. The thermocouple junction has to be very small, in the 
present case 5 µm platinum wires are welded end to end by electric discharge with the junction at about 
this size. A measurement of the thermal diffusivity is also obtained, close to that indicated in Table 10. 
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The relationship between the surface temperature (obtained from measurements such as that of Fig. 24)  
and the burning rate is displayed on Fig. 25. Scatter of the measurements is hard to avoid (about 50 K). 
Also indicated are thermocouple results from reference [28]. The pyrolysis law is also established from the 
decomposition kinetics obtained by DTA and by ignition experiments, making use of the approach 
mentioned for double-base propellants as well as for inert binders, according to which [8], for a first order 
reaction, 

vb
2 = ( dp / ξc ) Ac exp( - ξc ) / [( - lnYp,s ) ( 1 - T0 / Ts - Qs / cp Ts ) + Qs / cp Ts ]  (2) 

ξc ≡ Ec / R Ts and Qs is the heat evolved in the superficial reaction layer of the HMX; its value will be seen 
next. The amount of HMX at the surface Yp,s is set at 0.01. It is seen that there is continuity between the 
decomposition (thermal breaking of the chemical bonds, with probably no participation of the vaporization 
of the HMX) under DTA conditions, ≈ 550 K, for ignition, from 600 to 700 K, and under combustion,  
up to 900 K. This conclusion on such a continuity, which is not a priori guaranteed, was also reached for 
double-base propellants (as well as for various binders). 

Figure 24: Temperature Profile, Under 
Combustion, in HMX by Thermocouple. 

Figure 25: Pyrolysis Law for HMX. 

From the temperature profiles, as on Fig. 24, the heat evolved in the condensed phase can be evaluated by 
use of the relation: 

λg dT / dx|s = ρp vb [ cg Ts - cp To - Qs ] (3) 

with Qs > 0 if exothermic. The results of Fig. 26 show that indeed the transformation of HMX into gases is 
exothermic. The energy absorbed by the breaking of the HMX bonds is more than compensated by 
exothermic reactions taking place in the superficial degradation layer, probably between NO2 and HCHO 
(see further for the identification of these gases). This mechanism was already observed for double-base 
propellants. 
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Figure 26: Heat Evolved in the Condensed Phase of HMX. 

Experiments have been performed [7] by maintaining the linear regression (at about 1 mm/s) of HMX 
samples with an external heat flux (radiation or contact with a heated plate), under vacuum so as to avoid 
any gas flame. The sampled gases are then analyzed by mass spectrometry. The following table indicates 
the results. 

Table 11: Gases Evolved from the Surface of HMX (Mass Fractions [7]) 

NO2 NO N2O N2 CO2 CO H2O H2 HCHO HCN 

22.2 17.5 19.1 3 1.4 1.6 3.7 0.1 14.1 16.8 

≈ 59 % ≈ 10 % ≈ 31 % 

It is seen that the initial degradation produces probably NO2 and N2O in similar amounts and HCHO and 
HCN. See also for such conclusions reference [32]. Exothermic reactions involving NO2 occur in the 
superficial degradation layer to give a large amount of NO. Results in rough agreement with those of the 
above table have also been obtained in Ref. [33] with an infra-red analysis technique. 

2.0 Gas Phase Behavior 
The production from the condensed phase of HMX of several oxidizing gases, NO2, N2O and NO,  
can create a two-stage flame. This was seen to be the case for double-base propellants for which NO2 and 
NO are created in the condensed phase: the primary flame involves NO2 and the secondary flame NO; 
above ≈ 200 atm the two flames merge into one. In the case of HMX, observation at pressures around  
1 atm reveals the existence of a dark induction zone and a detached luminous flame, similar to those of 
double-base propellants. Also the micro-thermocouple traverses below about 10 atm, such as in Fig. 24, 
show a plateau in the temperature profile at about 2000 K, much below the final temperature of 3280 K. 

The burning rate of HMX, as single crystals or as pressed samples, obtained in Ref. [25] is shown on  
Fig. 27. The evolution of this burning rate with pressure shows that around 20 atm a pressure exponent of 
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about 1 is attained, revealing that the staged flame has collapsed into one (as in the case of double-base 
propellants above about 200 atm).  

 

Figure 27: Burning Rate of HMX. 

It was seen in the chapter on double-base propellants that in the case of a distributed flame an 
approximation for the temperature profile is: 

( Tf - T ) / ( Tf - Ts ) = exp( - 3 x / xf ) ,  xf = 3 λ g,s ( Tf - Ts ) / m Qc ,  Qc = cg Ts - cp T0 - Qs  (4) 

(at vb = 10 mm/s this will give xf = 48 µm, the height to reach Tf within 5 %) and the burning rate 
becomes:  

m = ρp vb = [ 3 <ωg> λg,s ( Tf - Ts )/ Qc ]1/2 (5) 

With <ωg > the summed reaction rate through the flame zone. More complete descriptions of the flame 
zone can be found in references [29,30], the conclusions of which are essentially those which can be 
extracted from the above simplified approach. 

Table 12: Values Considered to be Representative of the Gas Phase of HMX 

cg = 0.35 cal/g K, λg = 1.25 10-4 ( T / 700 )0.7 cal/cm s K 

At low pressures the primary flame, involving NO2 in a first order reaction, controls the burning rate, with, 
according to Eq. (5), a pressure exponent around 0.5. At higher pressures the collapsed flame is probably 
dominated by a second order reaction involving NO and N2O, with a pressure exponent close to 1. 
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COMBUSTION OF RDX 

RDX has a structure similar to that of HMX. The present 
authors have not considered this component very much, 
as opposed to HMX. The information comes mostly from 
the work of Ref. [34]. 

 

 
 Figure 28: Chemical Structure of RDX. 

It has been seen that HMX has a behavior somewhat similar to that of a DB propellant, due to the fact that 
it creates gases which can produce primary and secondary flames, see Table 11. In this case, a very 
simplified model, based on overall kinetics, shows that the secondary flame dominates the burning rate as 
soon as 20 to 30 atm (for DB propellants this occurs above 100 atm), in such a way that there is no 
possibility of creating a super-rate effect (and the accompanying plateau). A much more elaborate model, 
see Fig. 30, has been presented by Yang et al [34] for RDX. This model takes into account the two 
condensed phase decomposition paths suggested by Brill, but also incorporates a large amount of 
evaporation of the RDX (it has to be noted that in the case of HMX, referring to Figs. 22 to 25,  
the conclusion is reached that the condensed phase process under combustion corresponds to complete 
decomposition, as observed under DSC-DTA conditions, and thus with no contribution of evaporation).  
In the melt layer of the RDX (melting temperature supposed at about 470 K) the products of the first 
decomposition start reacting, much as was seen for double base propellants and for HMX, this being 
manifested by the gas composition obtained at the surface, see Fig. 30. At the surface, with a temperature 
depicted on Fig. 29, an important void fraction is computed, corresponding to the amount of RDX which 
has decomposed in the condensed phase. 

 

Figure 29: Conditions at the Surface of RDX [34]. 
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Figure 30: Modeling of RDX Combustion [34]. 
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COMBUSTION OF CL20 (HNIW) 

A new caged nitramine called either CL20 or HNIW 
(hexaaza hexanitro isowurtzitane) has appeared in the 
last few years (1987). Because of its high energy 
content it is envisioned that when combined to an 
energetic binder, as compared to HMX or RDX 
compositions, it will be better performing in terms of 
impulsion and level of burning rate, with smokeless 
properties maintained and similar safety behavior, 
Ref. [35].  

 

 Figure 31: Chemical Structure of HNIW. 

Differential scanning calorimetry (DSC) and thermogravimetry (TG) contribute to the thermal knowledge 
of the components to get specific heat, degradation steps and kinetic constants of the material.  
Helium pycnometry and a thermal diffusivity set-up, at ambient temperature and atmospheric pressure, 
give the other physical properties. Table 13 brings together the results obtained by these methods.  
See Ref. [36] for full details. 

Table 13: Thermal and Physical Properties of HNIW 

Properties Symbols SI units HNIW 
Specific heat cp [J.kg-1K-1] 1004 (± 13 %) 

Specific mass (density) ρ [kg.m-3] 1980 (± 1 %) 
Thermal diffusivity dth [m2.s-1] 0.457*10-7 (± 6 %) 

Thermal conductivity λ=ρ*cp*dth [J.m-1K-1s-1] 0.068 
Activation energy EA [J.mole-1] 224000 (± 4.5 %) 
Frequency factor k0 or A [s-1] If n*=1 ⇒ 5*10+19 

*n is the reaction order. 

The gases evolved from the condensed phase are obtained, as was done for the double base propellants 
and HMX, with the linear pyrolysis technique under vacuum so as to avoid the gas flame, the regression 
rate is about 0.5 mm/s. 

 

Figure 32: Set-Up for the Linear Pyrolysis. 
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Table 14 shows the results. NO2 and NO are present in large amount, as for HMX, N2O is in much smaller 
amount. This gas composition should lead in principle to a staged flame, but due to the high temperature 
reached at the end of the primary flame, which involves a high mass fraction of NO2, it is likely that the 
two flames will collapse into one even faster than for HMX. 

Table 14: Molar and Mass Fractions of the Products from HNIW Linear Pyrolysis 

Species NO2 CO2 N2O HNCO HCHO NO HCN H2O CO N2 
Solid 

residue 1 
Solid 

residue 2 

Molar 
fraction 0.61 0.017 0.024 0.010 0.017 0.142 0.046 0.049 0.044 0.029   

Mass 
fraction 0.71 0.018 0.027 0.011 0.013 0.107 0.031 0.022 0.031 0.020   

Mass 
fraction 

Gas 
+Res. 

0.59 0.015 0.023 0.009 0.0109 0.0899 0.026 0.0185 0.0259 0.017 0.11 0.05 

Figure 33 gives burning rate measurements for HNIW, on a “strand burner”, but it has been now given up 
in favor of a closed autopressurizable bomb with an ultrasonic measurement technique. This has the 
advantage of giving the evolution of the burning rate versus pressure with a very low number of 
experiments, by excursion of a pressure shift during the experiment. Results on ADN, ammonium 
dinitramide, NH4-N-(NO2)2, another new oxidizer of interest, is also indicated. These results are in good 
agreement with most of the literature. 

 

Figure 33: Burning Rate of HNIW (and ADN). 
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Small thermocouples imbedded in the burning sample allow to measure the temperature profile, Fig. 34, 
the surface temperature, in the vicinity of 800 K, Fig. 36, and from the heat balance at the surface  
an evaluation of the heat evolved in the condensed phase is obtained, Fig. 35, it is exothermic around  
400 kJ / kg, about 100 cal/g similar to the value observed for HMX. 

 

Figure 34: Temperature Profile in Burning HNIW. 

 

Figure 35: Energy Released in the Condensed Phase of HNIW, J / kg. 
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Figure 36: Surface Temperature of HNIW. 

Figure 37 compares measured surface temperatures and the correlation obtained from the extrapolation 
(according to the method exposed for HMX) of the condensed phase decomposition kinetics. Taking into 
account a large uncertainty related to the size of the thermocouple, the agreement is appropriate and found 
to mean that the decomposition of the HNIW into gases is a purely thermal phenomenon, as measured by 
DSC, not affected by pressure and with no evaporation entering in the process. 

 

Figure 37: Surface Temperature vs Regression Rate Correlation. 
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COMBUSTION OF COMPOSITE PROPELLANTS 

This chapter is devoted to the description of propellants made of an oxidizer, ammonium perchlorate or 
HMX, RDX, HNIW, and a binder, inert such as polybutadiene or active, a mixture of a liquid nitrate and a 
polymer. For the sake of clarity only these two categories will be considered, the main point being, as was 
said in the introduction, to attempt to improve the understanding of the combustion of propellants rather 
than to present an extensive catalog of results.  

1.0 Comparative Picture of Composite Propellants Combustion 
Drawing from the results presented previously for the various components, the comparative picture of  
AP-inert binder and HMX or another nitramine -active binder is found on Fig. 38. 

 

Figure 38: Comparative Picture of AP-Inert Binder and HMX-Active Binder. 

RTO-EN-023 4 - 41 



Combustion of Solid Propellants   

The combustion of AP results in a premixed flame at about 5 µm from the surface at ≈ 1300 K or higher. 
From this flame 1 mole of O2 comes out for each initial AP mole. From the binder surface at nearly the 
same temperature, combustible gases are ejected, which, after diffusion, react with O2. As will be seen 
further on, the diffusion flame height is directly related to the AP particle size. The smaller the particle 
size the closer is the flame and the higher the heat flux to the surface and therefore the burning rate of the 
propellant. The pyrolysis of the inert binder is purely endothermic (heat required to bring the temperature 
to 1300 K and heat to decompose it into gases). In the case of particles of a few tens of µm, the burning of 
the AP being close to adiabatic (its flame receives some heat flux from the final flame, but computation 
results show that there is only a moderate deviation from adiabatic conditions), the heat flux from the final 
flame serves primarily to keep the binder regressing. 

The combustion of HMX or another nitramine is also through a premixed flame, about 50 µm from the 
surface, reaching the final stage of 3280 K (for HMX). The gases emitted from this flame cannot sustain 
any further combustion. The active binder goes through its own combustion, with a primary flame 
reaching ≈ 1550 K some 50 µm from the surface. The final flame somewhat further away reaches about 
2000K. There is no direct interaction between the two components of the propellant. The burning of the 
propellant is then an average of the individual burning rates. There exist however an indirect interaction of 
the active binder on the HMX particles. As was seen, the thermal properties of HMX and the active binder 
are close and the HMX particles are immersed in the temperature profile of the binder. Upon reaching the 
surface the top of the particle is at about 700 K, the surface temperature of the binder. This so happens to 
be very much the temperature for first ignition of HMX (see Fig. 23). There will be however a transition 
delay of the HMX particle to full combustion for which its surface temperature is about 900 K. This will 
be dealt with in more details further on.  

In the case of AP, the ignition temperature is around 650 K and the surface temperature for full 
combustion is around 900 to 1000 K. Immersed in the inert binder with a surface temperature of ≈ 1300 K, 
the AP should reach combustion as soon as it is uncovered with no transition delay. 

2.0 Propellant Burning Rate Resulting from Component Rates 

Various approaches have been presented in the 
literature to build the propellant burning rate from the 
components’ own burning rates. One of the first 
comprehensive models for composite propellant 
combustion modeling, Ref. [37], had a picture of AP 
and binder burning in parallel with a partitioning of 
the surface between the two ingredients and a 
surface averaged propellant burning rate. This view is 
also found in Refs. [38,39], with Ref. [40] being a 
complete review for AP-inert binder propellants, 
including references preceding the work of [37]. 
A view of a sequential burning mechanism, in which a 
given path goes through oxidizer particles separated 
by layers of binder, Fig. 39, with as a consequence a 
time averaged propellant burning rate, was first 
presented in Ref. [42].  

 
Figure 39: Time Averaged Propellant Combustion. 

This viewpoint is subscribed to in the present work, as was done in Ref. [43], although the details have 
since then evolved into the option presented herein (which seems to be coherent with the latest view of  
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M. Beckstead [45]. Averaging of the components' burning rates, HMX and active binder, in Ref. [41]  
into the propellant burning rate is obtained by assuming that the components melt and mix at the surface 
and then form an average premixed gas flame. Due to the very small thickness of the melt (to the extent 
that melting occurs) layers (of the order of µm) and very short residence times in these layers (tenths of 
ms), it is believed that such premixing of the components should not take place. This is also the conclusion 
of [45]. 

Finally, in the recent work of Ref. [44], a surface average is operated for AP-binder interactions whereas a 
time average HMX-binder approach is adopted within the same mixed oxidizers propellant. 

In a randomly packed arrangement of oxidizer spheres of diameter Dox, with the average height through 
the sphere from a given direction (perpendicular to the surface) hox, and for a volume of 1 cm2 on the 
surface by 1 cm in depth, the number of particles intercepted along 1 cm of length being N, one has: 

Nhox 1 cm2 / Nhb 1 cm2 = ξox / ( 1 - ξox ) (1) 

with hb the average binder height between particles and ξox the volume fraction loading in oxidizer. Then it 
comes: 

hb = hox ( 1 - ξox ) / ξox  (2) 

and due to  

N ( hox + hb ) = 1 cm, N = ξox / hox  (3) 

For a propellant burning rate vb,p, the time to run through 1 cm of depth is 

t = 1 / vb,p = tox + tb = N hox / vb,ox + N ∆tox + N hb / vb,b  (4) 

∆tox being the (possible) transition delay to full combustion after the top of the oxidizer particle has 
reached the surface. Then the propellant burning rate, as expressed with the component burning rates, is, 
with Eq. (3) taken into account,  

1 / vb,p = ξox / vb,ox + ξox ∆tox / hox + ( 1 - ξox ) / vb,b  (5) 

Consideration of a sphere being traversed randomly along a given direction leads after some computation 
to hox = Dox ( π / 4 )2. 

In the case of AP- inert binder propellants with no transition delay, the propellant burning rate is  

1 / vb,p = ξox / vb,AP + ( 1 - ξox ) / vb,b  (6) 

The relation ship between volume fraction loading ξ and mass fraction loading α being  

αi = ξi ρi / ρp (7) 

∑ ξi = 1 , 1 / ρp = αox / ρAP + ( 1 - αox ) / ρb  (8) 

that is for example for an 88 % AP - 12 % PB binder ρp = 1.72 g/cm3. 

The mass burning rate of the propellant is 

mp = ρp vb,p 
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and Eq. (6) yields  

1 / mp = αox / mAP + ( 1 - αox ) / mb (9) 

In the case of a propellant loaded with aluminum, it is known that the aluminum particles are ejected from 
the surface [46,47] (Ref. [47] being an extensive review of the processes of aluminum combustion)  
and burn at several hundreds of µm from the surface. The view of the combustion of aluminum is 
summarized here, see Figs. 40,41,42. 

 

Figure 40: Visualization of Aluminum Behavior (From Ref. [47]). 

 

Figure 41: Aluminum Combustion. 
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Figure 42: Behavior of Aluminum (18 %) in a Composite Propellant. 

• 

• 

• 

• 

• 

• 

Aluminum melts at 930 K (inert binder reaches about 1300 K) (active binder reaches about 700 K)  
and individual particles aggregate in part into clusters. 

Sketches of selected frames of high speed motion pictures, Fig. 40, illustrate a protracted (because the 
protective Al2O3 coating melts at 2300 K) ignition-agglomeration event in which the hottest  
portion of the accumulate inflames and precipitates the complete inflammation-agglomeration of the  
(already hot) accumulate. 

The Al2O3 protective coating collapses into cap, exposing the Al globule (typically ≈ 100 µm). 

Aluminum vaporizes at ≈ 3300 K and reacts in nearly-spherical flame with CO2 and H2O from  
AP-binder flame. 

The caps give Al2O3 particles of a few tens µm, the spherical flames give Al2O3 smoke of ≈ 1µm. 

Not all aluminum particles go into accumulates (packs of original particles sticking together)  
from pockets within large AP particles. About 2/3 of the original particles escape individually from 
the surface, giving as combustion product essentially 1 µm smoke [48]. 

The volume fractions being 

ξox , ξb , ξal  

Eq. (8) becomes  

1 / ρp = αox / ρox + αb / ρb + αal / ρal  (10) 

RTO-EN-023 4 - 45 



Combustion of Solid Propellants   

that is, for example, for a 70 % AP, 20 % aluminum (ρal = 2.7 g/cm3), 10 % PB binder (ρb = 0.92/cm3),  
ρp = 1.84 g/cm3. 

With respect to the burning rate of the propellant loaded with aluminum it is obtained: 

1 / vb,p = ξox / vb,ox + Nal hal / vb,al + Nal ∆tal + ξb / vb,b (11) 

The “burning” rate of aluminum can be considered as infinite since it is ejected from the surface, whereas 
its “transition delay” is the time for the binder to regress through the particle height: 

∆tal = hal / vb,b 

Also, for each component N h = ξ its volume fraction loading. The propellant burning rate becomes 

1 / vb,p = ξox / vb,ox + ξb / vb,b + ξal /vb,b = ξox / vb,ox + ( 1 - ξox ) / vb,b  (12) 

that is the relation which would be obtained for a corresponding propellant with no aluminum, with the 
binder filling in for it. 

From an energetics point of view the modeling of the combustion of aluminized propellants should 
include at the surface the heat of fusion of aluminum ≈ 95 cal/g of Al. One can see Ref. [49] for such an 
approach.  

3.0 HMX (or RDX) (or HNIW) – Active Binder Propellants 
Both HMX and the active binder have independent burning rates. The resulting propellant burning rate is 
given by Eq. (5), where the transition delay has to be evaluated. 

The emerging HMX particle offers to the external heat flux the surface area of the sphere cap which has 
been exposed by the binder regressing at vb,b after the time t from first appearance has evolved: 

S = π Dox ( vb,b t ) 

With α being the part of the sphere which is heated by the superficial flux Φ , the temperature rise is  

α ( ρp cp )ox dT / dt ( 4 π / 3 ) ( Dox / 2 )3 = Φ π Dox vb,b t   (13) 

The heat flux received is that of the binder flame when the particle first emerges and it transitions to that 
of the HMX flame when the particle has reached full combustion, a transition formula being assumed to 
be 

Φ = Φb+ [ ( Ts(t) - Ts,b ) / ( Ts,ox - Ts,b ) ] ( Φox - Φb ) 

with  

Φox,b = ρp vb ( cg Ts - cp To - Qs )|ox,b 

The fraction of the sphere heated by the flux is taken to be, with K finally adjusted at 0.1, 

α = exp( - K Dox / ep* ) 

ep* is the thermal wave thickness for which the temperature is at 90 % of its surface value, that is, 
sufficiently close to it, 
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( T - To )/( Ts - To ) = 0.9 = exp( - ep* vb,b / dp )  (14) 

When Dox / ep* → 0 the particle is vanishingly small with respect to the thickness of the layer at about the 
surface temperature, α →1 and the particle is heated in its entirety by the heat flux. If Dox /ep* → ∞ the 
particle is very large compared to the surface layer, α → 0, it is heated on a vanishingly small part.  
When Dox = ep* , α = 0,9, the particle is immersed in the binder layer at T ≈ Ts,b and it is almost totally 
heated by the external flux. The transition delay from Eq. (13) is then  

∆tox
2 = α ( ρp cp )ox ( Dox

2 / 3 vb,b ) [ ( Ts,ox - Ts,b ) ] / ( Φox -Φb )] ln( Φox / Φb )  (15) 

One noteworthy feature of this relation is that the transition delay is proportional to the particle size Dox,  
in such a way that inserted in Eq. (5) it renders the burning rate insensitive to Dox, a fact which is observed 
experimentally for HMX-energetic binder propellants [43]. 

Figures 43 and 44 show two examples of propellant burning rate laws with the corresponding component 
rates. It is seen that the propellant burning rate is intermediate between those of HMX and of the binder 
(its being close to that of the binder at pressures under 100 atm is coincidental). 

 

Figure 43: Experimental and Computed Burning Rate of a Nitramine Based Propellant. 
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Figure 44: Experimental and Computed Burning Rate of a Nitramine Based Propellant. 

The model presented above, and, what is important, the mechanisms it takes into account (that is the 
absence of diffusional interaction between the components and the importance of a transition delay for the 
HMX particles), is quite representative of the experimental results. Some of the details of the making of 
the burning rate are given in Table 15. 

Table 15: Elements for the Evaluation of the Burning Rate (70 % HMX – 30 % Active Binder) 

PRESSURE 20 atm 100 atm 250 atm 

vb,b 2,4 mm/s 7,1 14,5 

Ts,b 622K 667 698 

vb,ox 4,5 mm/s 17 37,5 

Ts,ox 828K 907 962 

% of burning 
time due to 
delay 

32 % 16 % 4 % 

vb,p 2,3 mm/s 9,4 22,7 
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It is seen that at low pressures the transition delay has a strong impact and the burning rate of the 
propellant happens to fall close to that of the binder. At high pressure the propellant burning rate is nearly 
the time average of the component rates (without delay the average at 250 atm is 24 mm/s). 

It is observed that, for a given HMX-energetic binder composition, the burning rate law is locked and that 
there is no way to tailor it (as can be done in AP-inert binder compositions by acting upon the particle 
size). Furthermore the pressure exponent is too high to be acceptable for the motor operation. Attempts to 
act upon the HMX burning rate by the use of additives have not been successful. One possibility of action 
however is with additives specific to double-base propellants, lead and copper salts and carbon black, 
incorporated in the active binder. It has been found on Fig. 12 that a moderate super rate effect can be 
obtained. It is seen on Fig. 45 that such a modified binder associated with HMX, and after optimization of 
the amount and of the size of the additives, yields a burning rate law with moderate pressure exponent and 
initial temperature sensitivity. 

 

Figure 45: HMX – Active Binder Propellant with Additives. 

Propellants based on the new oxidizer HNIW and binders made from GAP (glycidyl azide polymer)  
have been considered. GAP has been studied in Refs. [50,51] with the techniques employed for the double 
base propellants, in particular its surface temperature under combustion is similar, around 800 K. In the 
actual binder GAP is associated to a liquid nitrate ester, see Ref. [35], the behavior of which is very close 
to a cool active binder. The modelization has been applied to these propellants (in particular assuming no 
interaction, other than the transition delay for the full burning of the oxidizer), it can be seen to give a 
proper account of the resulting burning rate, Fig. 46. As opposed to HMX or RDX which are balanced to 
give CO, H2O and N2, HNIW is over oxygenated to give  

C6H6N12O12 → 6 CO + 3 H2O + 6 N2 + 3 / 2 O2 
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Figure 46: HNIW (60 %) – Binder GAP + Nitrate Ester. 

A possible recombustion with the gases from the flame of the active binder could be conceivable,  
this implying an influence of the oxidizer particle size and a possibility of regulating the burning rate as in 
AP composite propellants. The modelization does not confirm this possibility. Comparing propellants with 
different particle sizes would clarify this point. 

4.0 AP-Inert Binder Propellants 
The burning rate of a propellant based on AP and an inert binder such as HTPB is thought to be described 
by the averaging rule of Eq. (9) from the burning rates of the components. In this case the binder has of 
course no autonomous burning rate. Its regression rate is due to the heat flux from the diffusion flame, as 
depicted on Fig. 38, between O2 from the AP flame and the hydrocarbons from the pyrolysis of the binder. 
A description of such a flame is given here. 

A column of O2 containing gases is ejected from a particle with an efficient diameter Dox* proportional to 
Dox at a velocity vg, such that mp = ρg vg. This column is consumed by a lateral diffusion characterized by 
a diffusion velocity  

vdiff = Ad Ð / ( D / 2 ) (16) 

D being the local diameter of the column, Ad some constant of order 1 and Ð the diffusion coefficient in 
cm2/s. The variation of the column diameter is then given by 

dD = - 2 vdiff dt , dx = vg dt 

D dD = - 4 Ad Ð dx / vg 
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Resulting in  

Dox
*2 = 8 Ad Ð xfd / vg, xfd = Dox

*2 mp / 8 Ad ρ Ð (17) 

In this relation Dox
* is the average diameter of a sphere cut randomly by a plane 

6 /D 2  D ox
*

ox =  

When the lateral diffusion of O2 and hydrocarbon gases into each others is purely laminar the diffusion 
coefficient is expressed as: 

Ð = Ð0 Tα / p , ρ Ð = Ð0 Tα - 1 M / R 

(with the equation for perfect gases p / ρ = R T / M being used) and the flame stand-off distance 

xfd = Dox
*2 mp ( R / M ) / 8 Ad Ð0 Tα - 1  (18) 

does not depend explicitly upon the pressure. In this limiting case and due to the fact that  

mp ~ 1 / xf ,  

it is obtained 

mp ~ 1 / Dox 

independent of the pressure level and directly dependent on the particle size. 

As will be seen later, it has been found that the diffusion flame process might become turbulent at high 
pressures when large differences exist between the mass flow rates emitted from the AP and from the 
binder. This conclusion is also mentioned in reference [40]. A general expression for a turbulent transport 
coefficient is  

ρ Ð ~ ρ u' l 

with u' the magnitude of the fluctuating gas velocity and l its scale. It is then assumed  

l ~ Dox / 2 , ρ u' ~ ( mox - mb ) 

that is the turbulent enhancement is related to the difference between the mass flow rates within the O2 
containing column and in the surrounding gases. Then Eq. (17) becomes  

xfd = Dox
*2 mp / 8 Ad ( ρ Ð )eff  (19) 

( ρ Ð )eff = Ð0 Tα - 1 M / R + K ( Dox / 2 ) ( mox - mb )  (20) 

where K should be of the order of 0.1. 

An extra flame thickness related to the chemical time for the completion of the O2-hydrocarbons reaction 
should be taken into account. It is obtained  

xfr (~ = mp / Ar p2 Ag,f exp ( - Eg,f / R Tf ) (21) )m/ ~ / m ~   v chchg ωρττ

the characteristics being related to the final O2 - hydrocarbons flame. 
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The stages of the combustion of an AP propellant are shown on Fig. 47, which is to be seen side by side 
with Fig. 38 for the corresponding values. The temperature profiles are approximated as  

( Tf - T ) / ( Tf - Ts ) = exp( - 3 x / xf )  (22) 

with  

qs = 3 λg.s ( Tf - Ts )/ xf  (23) 

 

Figure 47: Stages of an AP – Inert Binder Propellant. 

The mass regression rate of the binder is then given by  

mb Qc,b = qs,b = 3 λgs ( Tf - Ts,b ) / xf (24) 

where the constituting elements of this relation have been seen in the chapter on inert binders. It should be 
noticed that, to simplify the description, a uniform mass flow rate mp is taken in the gas phase above the 
binder and the AP flame. The flame height xf is then the sum of Eqs. (19 and 21). 

The mass burning rate of the AP, see Eq. (13) of the corresponding chapter, 

mAP = [ 3 <ωAP> λg,s ( Tf,AP - Ts,AP ) / Qc,AP ]1/2 (25) 

3 <ωAP> = p2 Ag,AP exp[ - Eg,AP / R Tf,AP ] 

Now, due to the fact that the AP flame receives a heat flux from the final flame, the flame temperature is 
no longer the adiabatic temperature ( Tf,AP ad = 1205 K ). It is given by  

mAP cg ( Tf,AP - Ts,AP ) + mAP Qc,AP = mAP Qg,AP + qf,AP  (26) 

with, from Eq. (22), applied between xf,AP and xf the heat flux from the main flame into the AP flame  

qf,AP = 3 λg ( Tf - Tf,AP ) / ( xf - xf,AP )  (27) 
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Results for the burning rate of AP-HTPB propellants are indicated on Fig. 48, where is seen a strong 
influence of the AP particle size. The model described above, and what is important the mechanisms it 
contains, gives a satisfactory account of these results. 

 

Figure 48: Computed Burning Rates Compared to Experiments. 

For the very small AP particle sizes the final flame is mostly dominated by the chemical process,  
very sensitive to pressure, as is the AP flame. This results in a variation of the burning with a pressure 
exponent close to 1. 

For large particle sizes the final flame is dominated by the diffusion process, which is insensitive to 
pressure. This, combined with the pressure dependent flame of the AP, see Fig. 38, gives rise to a 
propellant burning rate which is moderately sensitive to pressure. It is found in the modeling that  
the contribution of the turbulent diffusion, see Eq. (20), becomes important above about 100 atm. 
However above 300 to 400 atm the burning rate of the propellant undergoes a sharp exponent break that 
the model cannot follow. In some references this exponent break has been assumed to be due to the 
burning rate of the AP which would also increase sharply. It has been seen on Fig. 20 that, when the 
samples are carefully inhibited, this is not the case. 

The strong influence of the AP particle size upon the propellant burning rate, as expressed by the 
modeling, is also shown on Fig. 49. It is seen that at about 1 µm there is no further gain in the burning 
rate. This is due to the fact that there will always exist a non vanishing flame stand-off distance related to 
the chemical time for the O2-hydrocarbons reaction. 
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Figure 49: Computed Burning Rate vs AP Particle Size (80 % AP – HTPB). 

On Fig. 50 the burning rate computed from the mechanisms modeled as described above is compared to 
results from the literature [38, 39] for mixed AP particle sizes. The agreement is adequate for the larger 
particle sizes and approximate for the small ones (Now, how representative are the particle sizes 
indicated?). This reveals that the physico-chemical features incorporated in the model of the AP-inert 
binder propellant are probably sound. However, once a model has been “tuned” to represent a set of 
experimental results, as on Fig. 48, it cannot be expected that it will “predict” very accurately other results 
for different values of the parameters. 

 

Figure 50: Multi-Modal AP Propellants. 
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It has been seen that by acting upon the AP particle size it is possible to tailor the burning rate of the 
propellant, but that there exist a limiting size below which the effect will be non existent, Fig. 49. It is 
possible to gain further by incorporating metallic additives, Fig. 51, such as of the ferrocenic type  
(which during processing will dissolve into the not yet cross-linked binder for a proper mixing).  
There also exist a polybutadiene binder which incorporates within its chemical structure the ferrocenic 
pattern (to avoid migration problems). Various results, and in particular the similarity of action of a silicon 
binder which produces on the propellant surface a fine structure of SiO2 residue, to which it can hardly be 
attributed a catalytic efficiency, indicate that the mode of action of the additive is probably physical  
(rather than catalytic, in the sense of enhancing some chemical reactions). The layer of residue deposited 
on the surface has probably a flame-holding effect, the gases flowing in tortuous paths through this residue 
will react closer to the surface, with the final temperature not being modified, in such a way that an 
enhanced heat flux will act on the surface. This is taken into account in the model by decreasing the 
diffusion flame height, see Eq. (18), by a given factor throughout the pressure range. 

 

Figure 51: Additive Modified Propellant. 

Finally, the procedure to describe the combustion of AP composite propellants is applied to a practical 
propellant containing two AP particle sizes and aluminum. It is observed on Fig. 52 that the presence of 
aluminum, which has been seen to burn far away from the surface in such a manner that no significant 
conductive heat flux from its flame zone goes back to the propellant surface, should be taken into account 
by adding a radiative heat flux as measured in Ref. [52] for propellants very close to the ones considered 
here. It is found then that the experimental burning rate law is followed quite well. 
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Burning rate mm / s

Experimental values
Computation without radiation
Computation with radiation

Pressure in bar

PROPELLANT :
18 % aluminum
50 % AP 100 µm
18 % AP 10 µm

14 % HTPB binder
 

Figure 52: Burning Rate of an Industrial Propellant. 
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CONCLUSIONS 

A review has been presented of the viewpoint of the authors on the combustion mechanisms of 
components and of solid propellants. Some noteworthy points are stressed here. 

Double-Base Propellants and Active Binders: 

A fairly good knowledge of the processes in the condensed and gas phases has been acquired. The main 
point is the presence of a two-flame system, involving NO2 → NO → N2, collapsing into one flame above 
200 to 300 atm. Specific additives (lead and copper salts and carbon black) have a true chemical 
interaction, that is the enhancement of the NO-carbon reaction, bringing some of the energy normally 
evolved in the second flame closer to the surface. This knowledge carries over to the active binders,  
which are however less prone to super-rate effects because they produce less structured carbon residue. 

Inert Binders:  

Not so many reliable pyrolysis measurements have been performed on actual binders. It has been shown 
(from comparisons for a number of materials) that the pyrolysis characteristics obtained at low heating rate 
(by thermogravimetric analysis or differential scanning calorimetry) should extrapolate and apply under 
combustion conditions. The mechanism of pyrolysis is a thermal breaking ( not influenced by pressure)  
of the cross-links and of the polymer, not affected by additives. 

Ammonium Perchlorate:  

It is believed that the mechanism of combustion is properly known. A large amount, about 70 %, of the 
AP exothermically decomposes in a thin (≈ 1 µm) condensed phase superficial layer, the remaining  
30 % sublimes into NH3 and HClO4 which react in a flame very close (a few µm) to the surface. Due to 
the thickness, and the very short residence time associated, of these zones, additives have no true catalytic  
(i.e. chemical) action. 

HMX, RDX and HNIW:  

The combustion of HMX (or RDX) is qualitatively comparable to that of a DB propellant, with the 
occurrence of two flames, involving NO2 and N2O/NO. However above 20 atm these flames collapse into 
one and therefore it is not possible to induce super-rate effects with specific additives, as was the case for 
DB propellants. Also, additives which were hoped to accelerate the melting-decomposition of HMX fail to 
act under combustion characteristics. The burning of HNIW, the new caged nitramine, seems to be of the 
same nature, with a condensed phase decomposition due to thermal degradation and probably no 
evaporation phenomenon; also the gas flame is probably very quickly collapsed into a single overall 
flame, with therefore no possibility of additive effect of the double base type. 

AP or HMX Inert or Active Binder (Aluminum) Propellants: 

The approach believed to describe adequately the combustion of composite propellants is a sequential one. 
When following a path through the propellant, it meets successively the combustion of the oxidizer 
particles and of the binder layers. 

In the case of AP-inert binder propellants, the propellant burning rate is an average of the components’ 
rates. However an interaction flame between O2 from AP and hydrocarbons from the binder enhances the 
rate of AP and allows the pyrolysis of the binder. The burning rate of the propellant can be quite widely 
tailored by reducing the AP particle size and further by adding metallic compounds which leave an oxide 
residue layer, the action of which is likely to be a flame holding effect, i.e. a physical action. Aluminum 
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incorporated in such propellants of course increases the final temperature by as much as 1000 K, but its 
combustion is so far from the surface that it does not influence much the regression rate of the propellant. 

In the case of HMX – RDX – or HNIW - active binder propellants, both components have autonomous 
burning rates. The resulting propellant burning rate is the average of the two rates, with a further slowing 
down due to the fact that the HMX, or other nitramine, particles, upon reaching the surface, have to 
undergo a transition to full combustion. This delay is of importance up to roughly 150 atm; above it tends 
to become negligible. No additives have been found to act on HMX and additives of the DB type act only 
moderately on the active binder. The tailorability of HMX, or other nitramine, - active binder propellants 
is therefore more limited than for AP propellants. 

Further trends on new ingredients are related in the first place to the need to reduce the vulnerability to 
various aggressions of missile motors employing solid propellants: “cook off” due to fires, bullet or 
fragment impact, “sympathetic detonation”. Another emerging concern is that of the pollution caused by 
the large boosters of space launchers, using AP - inert binder - aluminum propellants, with production of 
HCl and Al2O3 smoke. 

These considerations have led to reconsidering ingredients such as ammonium nitrate, NH4NO3, discarded 
previously as being insufficiently energetic, reconsidered and seemingly not considered any longer, and to 
introducing energetic binders such as GAP, glycidyl azide polymer (containing the N3 group, inducing an 
exothermic decomposition), briefly mentioned in the text, or oxidizers containing the N-NO2 group while 
being less sensitive than HMX or RDX, such as ADN (NH4-N-(NO2)2). 

Also considered are caged nitramines, such as CL20 (also called HNIW), which maintains the energetic 
level with a lesser amount of oxidizer, thus reducing the vulnerability, or which allows a higher energetic 
level. A number of new results on this component has been presented in the text. 

It is hoped that the large amount of information gathered and the understanding acquired about the already 
used propellants ingredients will allow an efficient approach to the mastering of the behavior of the new 
ingredients and the corresponding propellants. 
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Abstract

The combustion characteristics of aluminum combustion are summarised in an overview of the subject,
focusing on the burning time of individual particles.  The fundamental concepts that control aluminum
combustion are discussed starting with a discussion of the “Dn” law.  Combustion data from over ten
different sources with almost 400 datum points have been cataloged and correlated.  Available models
have also been used to evaluate combustion trends with key environmental parameters.  The exponent is
shown to be less than two, with nominal values of ~1.5 to 1.8 being typical.  The effect of oxidizer is
pronounced with oxygen being twice as effective as water and about five times more effective than
carbon dioxide.  The observed effect of pressure and initial temperature is minimal.

In the second part of the paper a two-dimensional unsteady state kinetic-diffusion-vaporization controlled
numerical model for aluminum particle combustion is presented. The model solves the conservation
equations, while accounting for the species generation and destruction with a 15 reaction kinetic
mechanism. Two of the major phenomena that differentiate aluminum combustion from hydrocarbon
droplet combustion, namely the condensation of the aluminum oxide product and the subsequent
deposition of part of the condensed oxide, are accounted for in detail with a sub-model for each
phenomenon. The effect of the oxide cap in the distortion of the profiles around the particle has been
included in the model. The results obtained from the model, which include two-dimensional species and
temperature profiles, are analyzed and compared with experimental data. The combustion process is
found to approach a diffusion controlled process for the oxidizers and conditions treated. The flame zone
location and thickness is found to vary with oxidizer. The result shows that the exponent of the particle
diameter dependence of burning time is not a constant and changes from about 1.2 for larger diameter
particles to 1.9 for smaller diameter particles. Due to the deposition of the aluminum oxide on the particle
surface, particle velocity oscillates. The effect of pressure is analyzed for a few oxidizers.

Introduction

Aluminum has been added to propellants for many years as an extra energy source for the propellant.
Thus, research on the combustion mechanism of burning aluminum has been an ongoing effort.  A very
significant effort was expended in the 1960’s and 1970’s shortly after the effects of aluminum were first
conceived.  In an early study Glassman1,2 recognized that metal combustion would be analogous to
droplet combustion, and that the D2 law ought to apply, and that ignition and combustion ought to depend
on the melting and boiling points of the metal and the oxide.  He speculated that ignition would not occur
until the oxide shell melted at its melting point and that subsequent combustion would achieve a steady
state condition with the aluminum at its boiling point. These basic concepts have provided a general
framework for interpreting aluminum combustion.

                                                     * * This work was sponsored partly by Brigham Young University and partly by an ONR sponsored Multidisciplinary
University Research Initiative under ONR Grant No. N00014-95-1-1338, Program Manager Dr. Judah Goldwasser

Paper presented at the RTO/VKI Special Course on “Internal Aerodynamics in Solid Rocket Propulsion”, 
held in Rhode-Saint-Genèse, Belgium, 27-31 May 2002, and published in RTO-EN-023. 
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A question that has often been asked, is whether laboratory data in air at ambient pressure and
temperature can be related to motor conditions at high temperature, high pressure and in propellant
products that do not contain oxygen. One of the purposes of this study was to develop sufficient
understanding of aluminum combustion based on laboratory data, simulated motor data and actual motor
data, to answer that question.  Other questions can be asked about the effect of aluminum on combustion
efficiency, slag formation, effects of agglomeration, and the potential effect of aluminum on a
propellant’s burning rate.  These questions will not be addressed in this paper, although the understanding
gained here should be applicable to some of the questions.

In the 70’s and early 80’s several survey papers and reports were written, summarizing the work up to
that time.  Some of the most useful are the works of Pokhil, et al3, Frolov, et al4, Micheli and Schmidt5,
Glassman, et al6, and Price, et al7,8.  This paper will focus on the burning time of aluminum and the effect
of various parameters on that burning time.  Extensive research has been performed in Russia (then, the
Soviet Union) and brief summary of that work is included.  Following that, data from those sources that
were available to the author, evaluating the effects of particle diameter, oxidizing species, pressure, and
temperature on aluminum combustion.

Aluminum combustion in air1 suggests that it burns as a vapor and the combustion is controlled by the
diffusion of the fuel and oxidizer. However, aluminum combustion cannot be analyzed with a simple
hydrocarbon droplet combustion model. This is due to some complications with aluminum combustion.
First, in aluminum combustion, the gas phase combustion products condense to liquid aluminum oxide.
This condensation dominates the combustion process and contributes considerably to the amount of heat
released during combustion. Second, condensed aluminum oxide can deposit on the particle surface to
form an oxide cap, which distorts the distribution of gasification velocity, temperature and other
quantities around the particle. Also, the oxide cap cam cause jetting and fragmentation of the particle.
Third, the dissociation of the condensed product maintains the flame temperature fairly constant at the
gasification temperature of the aluminum oxide. Hence, hydrocarbon droplet combustion models cannot
be extended directly to model aluminum combustion.

The second part of this paper focuses on modeling the basic combustion process of a burning aluminum
particle. Aluminum combustion models have been developed since the 1960’s. Brzustowski and
Glassman2 were among the first to suggest that aluminum burns in the vapor phase. They stated that a
metal would burn in the vapor phase if its boiling point temperature were lower than that of its oxide.
Their model included many of the same assumptions as in hydrocarbon droplet combustion models. Law3

was the first to acknowledge some of the effects of the oxide condensation in a model. Law’s analytical
model has been upgraded by Turns4, Brooks5,6 and Bhatia7 by relaxing certain assumptions in Law’s
model. Many of the earlier models2,3 have focused on calculating the burning time and flame
temperature, but could not predict the distributions of physical quantities nor processes such as
condensation and deposition. The postulated combustion mechanisms were much simplified, using global
kinetics. Many of the models2,3,8 have not accounted for the effects of the oxide cap in the distortion of
the symmetrical flame. Many of the models have assumed quasi-steady state3,8,9. Many of the models
have concentrated on aluminum combustion in air, while one of the main uses of aluminum is in rocket
motors, where the oxidizers mainly consists of CO2 and H2O.

Aluminum Combustion Research in Russia

Overviews and surveys of Russian work on aluminum combustion or metal combustion in general has
been performed by Pressley9 in the US, as well as the Pokhil3, and Frolov4, papers previously referenced.
The reader is referred to these reports for discussions on the work prior to that time.

In 1968 Belyaev, et al10 published a classic paper on aluminum combustion, which has been referenced
by most subsequent papers in the Russian literature.  They incorporated aluminum into propellants at
0.01% so they were measuring the burning rates of individual particles, avoiding agglomeration effects.
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They varied the effective CO2 and H2O concentrations in the gas, (i.e. aK), diameter and pressure, and
developed an expression for particle burning time as:

τ = 0.67 D1.5/aK 0.9      (1)

where D is the particle diameter in µm, aK is the relative concentration of CO2 and H2O in the gas, and τ
is the burning time in msec.  CO was not considered an active oxidizer because the energy to break down
the CO molecule is double that of either CO2 or H2O.  Below pressures of ~25-30 atm, they observed
burning time decreasing ~10-12%, but at greater pressures they did not observe a change with pressure.
They varied the propellant formulation so that aK was varied from 0.3 to 0.7, and particle diameters were
varied from 70 to 140 µm, determining the exponent of 0.9, and the coefficient of 0.67 in the equation.
They also observed that burning time decreases with increasing ambient temperature up to ~2000K. They
examined the ignition time of the particles, concluding that it is proportional to D

2
 with an activation

energy of ~32 kcal/mol.  Equation (1) is the expression used in most Russian papers to describe the
burning time of aluminum up to the current time.

Boreisho, et al11 reported that the photographically determined flame sizes around a burning particle
could be 1.5 up to 4 times larger than actual.  Arkhipov, et al12 measured flame distances by dropping
burning particles onto glass slides observing flame distances of ~ 3Do.  Dreizen and Trunov13 have
recently reported similar experiments.

A number of papers have focused on the ignition process of metals, aluminum in particular.  Merzhanov,
et al 14 postulated that the ignition temperature coincides with the melting point of AL2O3, 2300 K, and
estimated an activation energy of 17 (Belyaev reported a value of 32).  Breiter, et al15 published an
extensive summary of the ignition of metals considering thirteen different metals and six alloys based on
Glassman’s work in this country.  They classified the ignition characteristics of the metals according to
the relative densities of the metal versus that of the oxide and the melting point of the oxide.  Thus, the
impervious character of aluminum oxide inhibits ignition up to the temperature, at which it melts, which
then results in ignition and combustion.  Ermakov, et al16 embedded a thermocouple into an aluminum
particle, and measured ignition temperatures of ~2000-2100 K, concluding that ignition occurs due to the
failure of the oxide shell integrity, but not necessarily due to melting.  Lokenbakh, et al17 contend that
mechanical cracking of the oxide shell can occur under varying heating and ambient conditions, leading
to ignition and/or enhanced agglomeration at temperatures as low as 1000 to 1300 K.  Boiko, et al18

examined ignition of several metals in a reflected shock wave, also concluding that ignition can occur
due to fracturing of the oxide shell when subjected to mechanical stresses.  Rozenband and Vaganova19

also propose ignition by fracture of the oxide shell due to mechanical stresses caused by thermal
expansion and density differences during rapid heating.  Rozenband, et al20 also claim that CrCl3 can
react with the oxide shell reducing the ignition temperature to ~900K.

The characteristics of the oxide particles formed from the combustion of a metal are very important
relative to performance (i.e. combustion efficiency) and acoustic particle damping. Fedorov, et al21

measured a bimodal distribution of Al2O3 in the exhaust from small motors, observing most of the oxide
as smoke ~1.5 to 2 µm, but with a second larger fraction of particles ~6 µm.  They also observed that the
percentage of fines increased at higher pressures.  Arkhipov et al12 measured oxide particles of ~1-2 µm
at one atm pressure in a laboratory experiment.

There are a large number of papers discussing models that describe the ignition process leading to metal
combustion. For example, Gostintev et al22, Gremyachkin23, Arutyunyan, et al24, etc., all developed
models describing the ignition of metals, usually aluminum.  Gurevich, et al25, Gremyachkin23,
Gostintev22, Bezprozvannykh, et al26, Rozenband and Vaganova19 and Kovalev27 all developed models
allowing for the growth of protective oxide on the surface, comparing that to another aspect of the
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ignition process (e.g. strength of the oxide layer, transient heating, etc.). Both Gremyachkin and
Rozenband and Vaganova showed that ignition could occur well below the oxide melting point.
Kovalev27 showed that the ignition time should be proportional to D2.  Medvedev, Fedorov and Fomin28

conclude that Mg ignites by thermal explosion while Al ignites by a critical ignition temperature (the
oxide melting temperature).  There is obviously a diversity of opinion, but also the different authors
developed their models for different ignition conditions, some considering slow heating, others
considering very rapid heating, etc.

Kudryavtsev, et al29, Gremyachkin, et al.30,31, etc all developed models for describing the rate of
combustion of metals, usually aluminum.  Babuk, et al32 have studied the effect of metal oxide formation
on the combustion.  Gremyachkin, et al31 developed a model for the combustion of aluminum particles
(droplets) including oxidizer diffusion to the surface and heterogeneous reaction there.  They also
contend that aluminum can react with the oxide on the surface forming Al2O which has a high vapor
pressure.  They account for the effects of O2, H2O and CO2 as oxidizers, concluding that the burning
times for CO2 are twice as long as for water, and that the burning times for water are 1.5 times as long as
for oxygen.  Kudryavtsev, et al29 developed a model including the reaction of aluminum and water.  Their
model shows burning times constant above ~350 psi, but varying at lower pressure (in agreement with
experimental data).  They say that the low pressure variation is due to the diffusion process being
inhibited by the oxide cloud.

Experimental Investigations into Aluminum Particle Combustion

As part of this study, as much data as possible has been accumulated, documented and assembled in a
common format. The various sources are listed in Table I, along with a brief summary of the range of test
conditions for which they performed their experiments.  Only sources have been used where variations in
the data were sufficient to show a trend.  Many other sources where data have been obtained at a single
set of conditions have not been included.   A data base of approximately 400 datum points have been
compiled and analyzed to evaluate the dependencies of the various parameters on the aluminum burning
time.  The results of those studies are presented below.

This brief summary is not necessarily comprehensive, but is intended to identify major research
contributions, particularly where burning time data were available that could be correlated with other
researchers.  A brief description of their technique is included along with a discussion of their results and
conclusions.  For simplicity, research has been separated by the technique used to ignite the aluminum
particle: propellant, gas burner, laser, flash, and shock.

Propellant Ignited Aluminum Particles

Using propellant to ignite aluminum particles is obviously advantageous since conditions similar to that
of a rocket motor are created. Yet the high temperature, high pressure, and corrosive environment of
propellant combustion is difficult to control experimentally.
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Table I - Sources of Aluminum Combustion Data

Ambient T Gas Concentrations (%)

Author Date Do (µm) To (K) P(atm) H2O O2 CO2 CO N2 Ar HCl

Friedman &
Macek33,34

1962
-3

15-67 2510 1 17 to 18 5 to 6 12 to 14 0 63 to 65 0 0

Davis35 1963 60-96 2200-3200 1-204 .5 to 50 0 to 27 9 to 50 9 to 41 9 to 41 0 0 -21

Macek36 1967 32-49 2500 1 0 to 17 8 to 16 13 to 43 0 40 to 58 0 0

Hartman37 1971 23-94 3000-3189 25.5 27 to 34 0 to 4 17 to 23 9 to 30 13 to 20 0 0 - 8

Wilson &
Williams38

1971 24-74 298 2 - 5 0 10 to 30 0 0 70 to 90 90 0

Prentice39 1974 250-400 298 1 0 to 3 15 to 75 0 to 50 0 0 to 80 0 - 85 0

Turns and
Wong40,41

1987 300-760 1809-1827 1 29 to 31 10 to 25 27 to 30 15 to 49 46 to 64 0 0

Roberts, et al42 1993 20 2225-2775 85.-34 99 1

Marion43,44 1995 35-40 298 1 - 39 0 21 0 0 79 0 0

Olsen &
Beckstead45

1996 40-70 3000 1 66 to 89 11 to 16 0 to 18 0 0 0 0

Melcher, et
al46

1999 106 2300 13-22 41 to 38 0 to 11 12 to 16 9 to 2 10 0 18

Dreizin47,48 1999 90,200 298 1 5-100 5-90 0-95 **

Zenin49,50 2000 185-500 298 1 - 40 0 0 to 20 0 to 100 0 0 to 80 0 - 80 0

Davis35 prepared ammonium perchlorate and paraformaldehyde propellants with less than 1% aluminum
by mass.  These propellant samples were ignited in a 'bomb' apparatus with pressures ranging up to 200
atm.  Particle combustion was captured with high-speed cinematography through windows.  Using
aluminum particles with initial diameters ranging from 53 to 103 µm, Davis found that an exponent of
1.8 for Equation 3.1 fit the data well.  Davis also noted that the burning rate increased while the pressure
climbed from 20 to 70 atm, but the rate was constant thereafter. Similar to Davis, Friedman and
Macek33 and Macek36 also created aluminized propellant samples which burned with pressures ranging
up to 135 atm.  Friedman and Macek noted that hollow oxide spheres were produced when the apparatus
was operated at atmospheric pressure.

Hartman37 performed similar experiments using composite modified, double base propellant which
contained three oxidizers: ammonium perchlorate, nitrocellulose, and nitroglycerin.  Varying the
formulation of this propellant provided a wider range of oxidizer environments in which aluminum
particles could burn.  Hartman chose particle distributions with mean diameters of 23, 54, and 94 µm and
did testing at pressures of 19, 26, and 50 atm.  He found a dependence on pressure and oxidizer
environment similar to that seen by Davis.  Hartman reported his data by using Equation 3.1, but
observed a dependence on pressure raised to the 0.4 power.
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Krier (Burton, et al51 and Melcher, et al52) has tried two approaches to investigate aluminum particle
combustion with an AP/HTPB propellant as an ignition source.  Similar to the research just reviewed,
Krier aluminized his propellant sample for one approach.  Additional oxygen could be introduced into the
propellant exhaust products via an injector to increase the oxygen concentration up to 10%.  The burning
rate was only slightly dependent on the oxygen concentration, but this conclusion may be in error due to
poor mixing of the oxygen with the propellant exhaust.  Pressure was varied from 13 to 22 atm and the
burning rate increased linearly with pressure over this range.  For a second approach, an injector
delivered a mono-disperse aluminum particle stream to the exhaust products of a non-aluminized
AP/HTPB propellant.  Using strobed photographic techniques, burning times were 10±2 ms for
nominally 68 µm particles which is in general agreement with other published research.

Gas Burner Ignited Aluminum Particles

In experiments where gas burners are used, the aluminum particles are passed through a gaseous flame
hot enough to achieve ignition.  Propane, carbon monoxide, methane, hydrogen, and cyanogen are some
fuels that have been used.  Oxygen is the typical oxidizer with nitrogen used as a dilutant.  After an
aluminum particle ignites, it burns in the exhaust products of the gaseous flame, which includes both
water and carbon dioxide as oxidizer species, in addition to any available diatomic oxygen.  These
studies create an atmosphere that is similar to that in a solid propellant, but allowing the experimentalist
greater control over what could be achieved with actual propellants.  With a few exceptions, most studies
using gas burners to ignite aluminum particles have been performed at atmospheric pressure since
controlling a gaseous flame at high pressures is challenging.45.  Strobe photography and high-speed
cinematography are typical tools used to measure particle burning times.

Friedman and Macek33,34 and Macek36 provide some of the first reported burning time data for aluminum
particle combustion.  They ignited small particles (30 to 50 µm) in propane or carbon monoxide flat
flame burners.  Little difference in burning times was found using either fuel.  In both burners, a fine
oxide smoke and porous or hollow oxide spheres were formed.  These oxide 'bubbles' were more
numerous in the exhaust environments containing water.  They also saw consistent fragmentation during
the vigorous combustion of aluminum particles in oxygen rich environments.  Their data suggested an
exponent of 1.2 to 1.5 for Equation 3.1.

Bartlett, et al53 used a methane flame to ignite several different aluminum particle distributions with mean
diameters ranging from 15 to 32µm.  Hollow oxide spheres were found after particle burnout which were
close to the size of the original aluminum particle.  The spheres were crushed and examined under a
microscope.  A porous structure was observed with small specks of metal.

Davis35 used a carbon monoxide flame to ignite his aluminum particles that were between 53 and 66 µm.
In Davis' photographs he was able to discern that the particle's flame front was several diameters larger
than the particle and thus had evidence for vapor-phase combustion.  Davis also observed porous oxide
spheres in the residue collected after combustion.  He noted increasing particle fragmentation for any
oxygen concentration over 32% by volume.  He suggested that the particle burning time was inversely
proportional to the oxygen partial pressure.  He also concluded that the ambient oxygen concentration
was more important to the particle combustion rate than the ambient temperature.

Drew, et al54,55, Prentice39 and Price, et al56 performed a number of aluminum particle combustion
experiments, many of them qualitative, but some were quantitative.  Their burners used hydrogen, carbon
monoxide and cyanogen combined with oxygen.  Particles ranged in size from 30 to 400µm.  Burning
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times were determined using photographic techniques, and combustion morphology was investigated by
using microscopes to examine particles quenched during combustion.

Particle spinning, metal vapor jetting, and violent fragmentation were observed in both the hydrogen and
carbon monoxide flames.  With a hydrogen flame, a smaller flame diameter was observed, possibly due
to the higher diffusivity of water as opposed to carbon monoxide.  Also large numbers of hollow oxide
spheres were formed.  In the carbon monoxide flame, few hollow oxide spheres were present, and a
noticeable amount of unburned aluminum was present in the exhaust residue.  If just 5% hydrogen were
added to the carbon monoxide flame, results were similar to the pure hydrogen and oxygen flame.
Particles ignited in the cyanogen flame exhibited behavior similar to that seen with a carbon monoxide
flame.

Wong and Turns40,41 added aluminum powder to jet fuel (JP-10) to create slurry droplets with diameters
ranging from 500 to 1100 µm.  These droplets were suspended on silicon carbide fibers and then
suddenly exposed to the hot exhaust gases of a carbon monoxide or methane flame.  Upon burnout of the
jet fuel, the aluminum would agglomerate forming an aluminum particle with a diameter ranging from
300 to 800 µm.  Using high-speed cinematography, they observed that the vapor-phase flame front was
smaller for the methane flame, where water would be present, when compared to the 'dry' environment of
the carbon monoxide flame.  Also eruptions and fragmentation were noted for the 'wet' environment.
They found that burning times decreased when the flames were operated fuel lean such that there was
excess oxygen in the flame exhaust.

Olsen and Beckstead45 used a carbon monoxide/hydrogen diffusion flame to ignite aluminum particles
one at a time.  A photomultiplier tube was used to record the combustion event.  Particles, ranging in size
from 40 to 80 µm, were meticulously chosen individually under a microscope.  Olsen interrupted the
combustion of some particles by quenching.  Using scanning electron microscopy and X-ray analysis, he
was able to examine the combustion morphology of the particles and the formation of porous oxide
spheres that were prevalent.  Olsen found that his oxidizer concentration (H2O, CO2, or O2) had a strong
effect on the particle burning rate.  He concluded that the difference in the burning rate exponent among
different researchers was as much due to the varied data reduction techniques used as it was due to the
diverse physical conditions of each experiment.  Olsen also postulated that the burning rate exponent
probably changed during the combustion history of a particle—ranging from approximately two at
ignition and decreasing towards one at particle burnout.  He suggested this burning rate decrease would
occur because of the increasing fraction of aluminum oxide covering the molten aluminum sphere.

Foelsche, et al57 recently used photodiodes to measure the burning time of a small cloud of aluminum
powder (approximate diameter of 22 µm) inside a combustion bomb with pressures ranging from 38 to
145 atm.  The aluminum particles were injected into the bomb shortly after the ignition of a H2/O2/N2

mixture generated high temperatures and pressures.  Foelsche found his data compared favorably with
that of Davis, but showed a greater pressure dependency.

Laser, Flash, and Shock Ignited Aluminum Particles

By using lasers, flash tubes, or shock waves some researchers have ignited aluminum particles and
observed their behavior.  Since this ignition method is independent of the ambient environment, the
temperature, pressure, oxidizers, and inert species can be varied widely.  Wilson and Williams38 ignited
single aluminum particles with a laser in an oxygen/argon atmosphere.  They found that dilute amounts
of argon suppressed oxide cap formation and particle fragmentation.  Without an oxide cap, the particles
appeared to burn in accordance with the vapor-phase model suggested by Brzustowski and Glassman58.
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High-speed photography captured the combustion history of the nominally 50 µm particles in a chamber
with pressures ranging to 5 atm.

Drew, et al59 and Prentice, et al39,60 used lasers to ignite individual particles.  In addition, a xenon flash
tube was used to ignite small aluminum foil discs.  The molten discs formed particles approximately 250
to 400 µm in diameter.  These particles were burned in room temperature combinations of CO2/O2,
N2/O2, and Ar/O2.  For some tests, the atmosphere was made 'wet' by introducing water vapor as a second
oxidizer.  All experiments were performed at atmospheric pressure.  Particle combustion history was
recorded with high-speed cameras, while the combustion morphology of quenched samples was
examined using scanning electron microscopy.

Oxide caps did not form when the environment was argon and oxygen, similar to the observations of
Wilson and Williams.  When water was introduced, caps did form.  At ambient temperature, the particles
would extinguish in the carbon dioxide environment before all the aluminum metal was consumed.  With
an N2/O2 atmosphere, the particles would consistently fragment irrespective of the amount of water vapor
present.  Once again, hollow oxide spheres were observed for many test cases.

Roberts, et al42 used a shock tube to ignite aluminum, magnesium, and aluminum/magnesium alloy
particles at pressures up to 34 atm in almost pure oxygen.  Several thousand particles with a nominal
diameter of 20 µm were placed on a knife blade near the reflecting wall of the shock tube.  The passing
shock knocked the particles into free fall and ignited them where a photodiode recorded the light emitted
during combustion.  The researchers concluded that the burning time for the aluminum particles was not
a strong function of pressure although a slight decrease in burning time was noted for increasing pressure.

Bucher, et al61,62,63 used a 150 W laser to ignite aluminum particles nominally 230 µm in pure N2O, pure
CO2, and in mixtures of O2, N2, Ar, and He.  In-situ temperature and species distributions around
individual burning particles were made using planar laser-induced fluorescence. Quenched particles were
investigated with electron probe microanalysis.  Bucher found that the flame diameter around a particle
decreased with varying environment gas mixture in the following order: O2/Ar, O2/ N2, CO2, and N2O.
AlO was found to be an intermediate species in the combustion reaction while for the first time the
presence of aluminum-oxy-nitrides was established.  Measurements confirmed the idea that the
aluminum oxide’s boiling point limits the flame temperature.

Marion, et al43,44 measured the  burning time of 40 micron aluminum at 1 to 40 atm in air, using a laser
for ignition.  Burning times were observed to decrease slightly with pressure increasing from 1 to 4 MPa.
They also report calculated burning times for a modified Law model64 (very similar to the Brooks65

model).  In calculating the decreasing size of the aluminum particle, they predicted a residual oxide
particle approximately 70% of the size of the original aluminum particle, and increasing slightly with
increasing pressure.  Their predicted burning times are slightly greater than experimentally observed
burning times, and they attribute that to the uncertainty in the density-diffusivity product which they used
in their model.

Dreizien and Trunov13 burned 150 µm Al droplets in air at room temperature and 1 atm, similar to
Prentice's work.  They saw a region of spherically symmetric burning, followed by two regions of
oscillating burning with the particles giving off smoke jets and spiraling..  Subsequently Dreizien47,48

tested 90 and 250 µm particles in N2/O2, Ar/O2, He/O2 and pure O2 varying concentrations. He saw
spinning and periodic brightness oscillations mainly in the N2/O2 case but also in He/O2.  The size of
observed oxide caps are much smaller with Ar/O2 and He/O2 than in air.  He reports burning time data for
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the mixtures at varying concentrations, showing a significant decrease in burning time with increasing
oxygen concentration.  Rates in argon, nitrogen and helium fall virtually on top of each other He assumes
this is due to the fact that the density-diffusivity product is approximately constant.  He has also
examined the aluminum flame structure both with and without gravity, using photomultiplier tubes.

Summary of Experimental Combustion Data

The burning time data from as many of these sources as could be readily determined from their papers
are presented in Figure 1.  The data scatter is readily apparent.  Several of the investigators only used a
single particle size, varying the test conditions.  For example, Dreizin47,48 did extensive testing varying
gas concentrations, but with only two particle sizes.   Melcher46 and Roberts42 both did their testing with
a single particle size, and much of Prentice's work39 was done with a single particle size.  The differing
test conditions lead to different burning times, introducing what appears as "data scatter" in Figure 1.
The following sections discuss various other sources of data scatter.  It is curious that the optimum fit of
the data results in a D2 correlation.   The following sections will also address the potential value of the
burning time exponent.
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Figure 1.  Aluminum burning time measurements from eleven different sources, measured under
a wide variety of conditions and test techniques.

The “D2” Law in  Aluminum Combustion
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The geometrical aspect of particle or droplet combustion can be described by a simple mass balance.
Assuming that the droplet is spherical and regresses uniformly, the mass burning rate will be
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This is the D2 law.   The question is how well it applies to the combustion of aluminum.  First, it should
be noted that the inherent assumption is that the spherical droplet is regressing uniformly.  Many of the
papers discussed above have noted that an oxide lobe develops on the burning aluminum.  Thus, the
droplet is NOT regressing uniformly.  If one accounts for this, the complete spherical surface area is not
available for combustion, leading to a reduced exponent in the Dn law.   Second, it is assumed that the
particle burns out to a diameter of zero.  This is not consistent with experimental observations either.
Many researchers have observed fragmentation of burning aluminum, indicating that towards the end of
burning the residual aluminum/oxide cap can break up in a violent manner, resulting in more than one
resultant particle.  In addition, even when fragmentation does not occur, the residual oxide particle is
often very large, due to porosity.  The fact that the particle does not burn to a diameter of zero will also
lead to a reduced exponent (less than two).  Marion, et al44 recently used a model to calculate the burning
time of aluminum. Within their model they calculate the size of the residual oxide, with fractional values
of 0.6 to 0.7 compared to the original aluminum particle.

The conclusion of these observations (including those of many of the above researchers) is that few
would expect the exponent to have a value of two.  A value of 1.5 to 1.8 is much more likely.

Some of these observations are reinforced by a recent paper by Olsen and Beckstead45.  A series of tests
were performed interrupting the burning process with a glass slide, and then taking SEM photographs of
the residual particles.   Particles were hand selected to be as close to the same size (70µm) as possible
and then were interrupted at increasing distances from their ignition source.  Figure 2 is an example.  An
interesting aspect of this SEM is that the right hand side of the figure is the Al2O3, while the much
smaller lobe of the sample is the aluminum.  This was determined from the smoke halo on the left and by
X-Ray analysis, showing that the oxide cap can be larger than the original aluminum later in burning.

The right hand lobe of the particle is oxide and the left hand, donut shaped part of the particle is
aluminum.

As part of the tests, a photodiode was used to register the light intensity from the burning
particles.  Figure 3 contains the photodiode traces for five different particles quenched at different
distances.  The particle in Figure 2 was the second trace in Figure 3.  It is apparent (see also the full paper
by Olsen) that if one uses the entire photodiode trace to determine the burning time of a particle, the
majority of that time will represent the combustion of a small fraction of the aluminum.  The majority of
the aluminum is burned very quickly, but a photodiode will continue to register light, just from the hot,
radiating oxide particle, with a very small fraction of aluminum still burning.  From examining each of
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the five particles, it is evident that a large fraction of the aluminum was burned by the time the first
particle was quenched, representing a burning time of ~1.5 msec.  If one were to take the entire trace as
the burning time a value of 6.5 msec would be recorded.  The potential variability in choosing a "burning
time" by different researchers can introduce a significant amount of data scatter when comparing data
from different sources.

Figure 2.  SEM micrograph of a 70 µm aluminum particle quenched 2.5 to 3 msec after ignition.

Figure 3. Photodiode emission traces of five different 70 µm aluminum particles quenched on
glass slides at varying distances from the ignition point.
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In an analytical modeling study65, the relative amounts of aluminum and oxide were estimated as part
of the calculated burning time.   Those results are shown in Figure 4 for a 35 µm particle burning in a
simulated propellant atmosphere at one atmosphere.  Two calculations are reported; one accounting for
oxide accumulation on the particle and the other neglecting oxide buildup.  The calculation ignoring
oxide buildup gives a burning time the correlates with D2, while the calculation allowing for oxide
accumulation gives a D1.5 relationship.  These results are consistent with those of Marion, previously
referenced, and represent another argument that the diameter exponent must be less than two.

In most experimental investigations, the measured aluminum particle combustion has varied from the
simple D2 model.  For example, Pokhil, et al3, Law66, Prentice39, King67, Kuo68, Brooks65 and Melcher, et
al46 have all suggested a lower value of the exponent, varying from 2.0 to as small as 1.2.  The statistical
analysis that has been performed as part of this study indicates that an n of ~1.8 appears to correlate the
data best.

Figure 4.  Calculated effect of oxide accumulation on the surface of a burning particle, using the
Brooks model65.

Effects of Oxidizing Atmosphere

The Effect of Oxygen

Referring to the data scatter in Figure 1, it is apparent that much of the scatter is due to the different
oxidizing (and inert) gases used in the different tests.  Several investigators focused on the effect of the
different environmental gases.  Prentice performed experiments varying the oxygen content with the
other gas being nitrogen or argon.  These tests were done at one atmosphere with 250 µm particles.  His
results are presented in Figure 5.  The results show a very pronounced effect of oxygen concentration; the
higher the concentration, the shorter the burning time.  This is to be expected, because in a diffusion
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flame the concentration gradient is the principle driving force for the flame, and higher concentrations
should result in shorter burning times.

Prentice also varying the particle diameter along with varying the oxygen concentration.  Those results
are presented in Figure 6, plotted as burning time versus diameter.  The data of Turns and Wong and of
Zenin are included for reference, and the overall correlation curve is included also.  These results show
the same effect as that of Figure 5, but within the context of the usual burning time curve.
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Figure 5.  Prentice39 data for 250 µm particle burning in oxygen/nitrogen and oxygen/argon.

The Effect of Diffusivity

More recently Dreizin47 has reproduced data very similar to Prentice's, varying the oxygen concentration
with inert gases of nitrogen, argon and helium.  His results substantiate Prentice's results in a very
quantitative manner.  Using helium adds another dimension to the data.  The differential equation
describing diffusion contains the product of diffusivity times density both multiplying the concentration
gradient.  Thus it is important to consider the potential effect of diffusivity in the combustion process.  In
general, the diffusivity is proportional to temperature to the 1.65 power and inversely proportional to the
pressure.  Thus, the product of the density times the diffusivity should be approximately independent of
pressure, but slightly dependent on the ambient temperature (approximately the 0.65 power).   Helium
has a higher diffusivity than nitrogen or argon, but it has a much lower molecular weight (which enters in
to the product of density times diffusivity).  Thus, the low molecular weight can compensate for a high
diffusivity.

Dreizin's data (for 200µm particles) are plotted in Figure 7, comparing them to Prentice's 250 µm data.
The data show that the burning time decreases, going from nitrogen to argon to helium, for low
concentrations of oxygen.  The molecular weight is not in the same order, i.e argon is 40, nitrogen is 28
and helium is four.  A similar effect was postulated by Widener69 in the correlation that he developed.
He included the effect of diffusivity, particularly that of hydrogen.  He did see a consistent effect,
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dependent on the amount of hydrogen produced from the water/aluminum reaction.  This observation
warrants further invstigation.
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The Effect of CO2 and Water

Determining the effect of CO2 and water on the burning time has proven somewhat elusive. It is difficult
to create laboratory tests where one can systematically vary the concentrations of CO2 or water.  Most of
the data the involve CO2 and water come from tests involving either propellant or a gaseous flame.  Olsen
varied the amount of water in his experiments by utilizing a hydrogen flame, giving a greater amount of
water than normal.  Unfortunately, it was still difficult to make systematic variations in the water content.
Thus, the available data are much less definitive than the oxygen data discussed above.  In Widener's
previous correlation he arrived at relative values for oxygen water and CO2 of 1:0.58:0.25.

Recently Zenin49,50 has burned aluminum in air and in CO2, giving an excellent set of data for
determining the influence of CO2.  He also burned the same size particles in mixtures of oxygen/nitrogen
and oxygen/argon, similar to Dreizin and Prentice, but not over a range of concentrations.  Figure 8
contains his data for 220 and 350 µm particles in 20% oxygen and both nitrogen and argon.  He then
burned the same size particles in 100% CO2.  The burning times in 100% CO2 were essentially the same
as in 20% O2.  The conclusion is that CO2 is only ~20% as effective an oxidizer as O2. The averaged data
from Prentice for his 250 µm particles in O2/argon and Dreizin's 200 µm particles also in O2/argon are
included for reference. 
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From the available data there were no studies that provided data on the effect of water that were
conclusive.  Brooks65 suggested defining an effective oxidizer, weighting the relative effects of oxygen,
water and CO2.

Xeff = CO2 + aH2O CH2O  + aCO2 C CO2
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Using his model calculations in his original publication, he arrived at coefficients of 1:0.533:0.135.  The
results from various studies are summarised in Table II.  Based on the current study, the CO2 coefficient
would appear to be ~0.22.  Several different ways of analyzing the data have all led to the same value.
This is apparently due to Zenin's data.  Because he measured burning times in 100% CO2, that large
percentage apparently weights the data significantly, yielding the coefficient of 0.22.  As mentioned
above, data varying the concentration of water are very difficult to achieve, and the results there are some
what inconclusive.  The current study indicates that a value on the order of 0.5 to 0.6 yields relatively
consistent results.  It is interesting to note that the agreement between the different studies is surprisingly
consistent.

Table II - Relative Oxidizer Coefficients for Water and CO2

Year O2 H2O CO2 Source

Belyaev10 1968 - 1 1 Data?

Kudryavtsev29 1979 1 0.667 0.333 Model

Brooks65 1995 1 0.533 0.135 Model

Widener69 1998 1 0.67 0.33 Model

This study 2000 1 0.5-0.6 0.22 Data

Effects of Pressure and Ambient Temperature

Studies on the effect of pressure have also been rather inconclusive.  In the early Russian work, it was
proposed that the pressure has a small effect at low pressure, but no effect above ~20 atm.  This may be a
reasonable approximation.  The recent work by Marion concludes essentially the same as the early
Russian work.   Using the effective oxidizer definition with the values noted in the previous section, all
of the available data where pressure was a variable were plotted as t.Xeff/Dn versus pressure to determine
if there were a trend. The data scatter is still very large, but using a pressure exponent of -0.1, as Belyaev
and Marion did, yields the best results.  Using the diameter exponent of 1.8 produced a slightly reduced
scatter in the data relative to  using an exponent of 1.5.

Studies on the effect of initial temperature have also been somewhat inconclusive.  Virtually no data exist
where some one has systematically varied the initial temperature.  The statistical analysis of the entire
data set gave a minimum error with the initial temperature exponent of -0.2. Using the diameter exponent
of 1.8 produced a slightly increased scatter in the data relative to  using an exponent of 1.5.

Summary Correlation of the Data

Based on the analysis of the entire set of data, the following equation is proposed to estimate burning
times of aluminum particles:

    

tb = a Dn

Xeff P0.1 To
0.2

(6)
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where Xeff = CO2 + 0.6 CH2O  + 0.22 C CO2

a = 0.0244 for n  =  1.5  and

a = 0.00735  for n  =  1.8

and pressure is in atmospheres, temperature in K, diameter in µm, and time in msec.

The results are shown in Figure 9, where the modified ordinate is  tb Xeff P
0.1 To

0.2.

The raw data from Figure 1 are also re-plotted in Figure 9 to provide a basis of comparison.  A regression
analysis for the modified data gives an r2 value of 0.964 while the corresponding regression of the raw
data gives an r2 of 0.87.  The reduced data scatter between the correlation and the raw data is readily
apparent.  The most significant effect contributing to the reduced scatter is the utilization of the effective
oxidizer definition.  In spite of the reduced scatter, it is somewhat discouraging to see the relatively large
data scatter that still exists.  This is apparently due to the diversity of methods used to obtain the data, and
the different methods of reducing the data, i.e. defining particle burn-out.
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Figure 9.  A comparison of aluminum burning time measurements with the proposed correlation
of burning times, multiplied by the effective oxidizer and initial temperature and pressure raised to a
power.
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Modeling Aluminum Combustion

This section of the paper summarizes the modeling work by Liang and Beckstead69,70,71,72,73,74 simulating
aluminum particle combustion at both laboratory and rocket motor conditions.

Background

The adiabatic flame temperature for aluminum combustion is typically greater than the boiling point of
aluminum. For example, in the case of aluminum combustion in oxygen at 1 atm, aluminum has a boiling
point of 2791˚K, which is below the flame temperature of 4000˚K1. The heat feed back from the flame
causes the aluminum at the particle surface to vaporize and the vapor proceeds to burn homogeneously in
the gas phase with the oxidizer at some distance from the particle surface. There are a few exceptions
however, as in the case of aluminum combustion in CO where aluminum burns heterogeneously.61

Aluminum sub-oxides are the main initial products at the flame zone. The aluminum sub-oxides
condense to form liquid aluminum oxide. In the flame zone, the heat release, if sufficient, is used to
dissociate the main combustion product, liquid aluminum oxide. Due to the dissociation, the maximum
temperature is maintained at the dissociation temperature of the oxide until all the oxide is dissociated.
The flame zone position and thickness are both functions of the oxidizer and pressure.

During solid propellants combustion under rocket motor conditions, the embedded aluminum particle is
in the molten state on the solid propellant surface due to the heat from combustion of other solid
propellant ingredients. Agglomeration of the aluminum particles occurs on the surface of the regressing
solid propellant. The agglomerated molten particles at the propellant surface lift off from the propellant
surface due to the force of the gases from the propellant surface. The aluminum particles then undergo
homogeneous combustion until they reach the nozzle of the rocket motor.

The major product of aluminum combustion is liquid aluminum oxide, which is formed from the
condensation of aluminum sub-oxides. A fraction of the oxide diffuses back and deposits on the particle
surface and is termed as the ‘oxide cap’. The oxide cap tends to accumulate on the lower end of the
falling particle. The accumulation of the oxide on the particle surface and the porosity of the oxide cap
result in a final oxide cap size of the order of the initial particle size. The other fraction of the oxide is
transported outwards and is termed as the ‘oxide smoke’. The oxide smoke can be seen as a trail of white
smoke behind the particle. The oxide smoke dampens the acoustic instabilities in a rocket motor and
hence the quantity of smoke formed is important in a rocket motor.

The oxide cap results in fragmentation and jetting. The burn time is proportional to the initial diameter
raised to the power of the order of 1 to 2, which is in contrast to the exponent on the diameter being
exactly 2 for hydrocarbon droplet combustion1. This is apparently due to the formation of the oxide cap,
which increases the burn time. The oxide cap effect on the burning time depends on the initial size of the
particle too.

Liang and Beckstead’s Model

The model by Liang and Beckstead is a 2-dimensional, unsteady state, evaporation-diffusion-kinetics
controlled numerical model. The physical interpretation of the model is depicted in Figure.10. The model
simulates the combustion of a single aluminum particle, after ignition, free falling in an atmosphere
containing the oxidizer. The model has been developed to describe aluminum combustion in rocket
motors. The ignition temperature is typically in the range of 1700°-2200°K. In rocket motors, the
aluminum particle usually ignites near the propellant surface. Hence in this model, ignition has been
assumed to have occurred initially and the model concentrates on the combustion after the ignition.
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Figure 10.  Conceptual schematic of the combustion process surrounding an aluminum particle

For the sake of convenience, gravity is taken to act in the horizontal direction from the right to left
direction. The particle falls with some acceleration, after being released from an initial velocity. The
acceleration has been taken to be due to gravity for the calculations presented in this paper. Deceleration
has been taken to occur due to the drag and the effect of the large flux of aluminum due to evaporation
from the particle surface. Since ignition is taken to have occurred, the initial particle surface temperature
is taken to be the boiling point of aluminum at the prevailing pressure. A flux of the oxidizer from the
surroundings towards the aluminum particle and a flux of aluminum from the particle surface outwards
results in the fuel and oxidizer reacting homogeneously to form aluminum sub-oxides and other products
in accord with some kinetic mechanisms. The aluminum sub-oxides undergo a reaction followed by
homogeneous condensation to form liquid aluminum oxide. Diffusion and convection results in a portion
of the condensed aluminum oxide depositing on the particle surface to form an oxide cap. The oxide cap
blocks the evaporation of the aluminum from under the region it covers and thus causes a modification in
the species and temperature profiles. The oxide cap also provides heat to the evaporation of the aluminum
due to the higher temperature of the oxide cap than the particle surface. The heat required for the
vaporization of aluminum is provided by the heat feed back from the flame which includes the radiation
heat from the flame, heat conduction from gases surrounding the particle and the heat due to the
deposition of the oxide cap. The particle radius changes with time due to the vaporization of aluminum
and the deposition of oxide cap. The model considers the r and θ directions (in spherical coordinates) and
solves the continuity, r and θ momentum, energy and species continuity equations simultaneously to
obtain the species and temperature profiles and the burn time. There seems to be no accepted method in
the literature for calculating the burn times for aluminum particle combustion. This model estimates the
burn time as the time required for the particle to be 95% consumed.

Although experimental results have indicated that the flame zone is within a distance of 10 particle radii,
the calculation domain for this model covers 60 particle radii to ensure that the input conditions are
totally unaffected by the combustion. Due to convection, all the input of oxidizers from the surroundings
to the calculation domain is taken as from the left half of Figure.10 and all the output of gases, including
inert and product gases, to the surroundings is taken as from the right half. The symmetricity of the flame
is affected by the convection and the oxide cap.

The model is capable of handling different oxidizers, pressures, input enthalpies and accelerations. The
transport and thermodynamic properties are calculated using the CHEMKIN transport and
thermodynamic package75, thus relaxing the common assumption of constant physical properties41,66,67,76.
The transport and thermodynamic properties are calculated for every node for each time step for the
various species. The fragmentation and jetting processes have not been considered, since no concrete
rationale has been established to describe these processes. By using a numerical model, many of the
simplifications required for an analytical model66,41,76 have been relaxed.
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The assumptions made in the model are:

   1) The particle is spherical

  2) Flow around the particle is laminar

   3) The local homogenous flow (LHF) model is applicable to the liquid aluminum oxide
smoke.

The flow around an aluminum particle is usually laminar in rocket motor conditions, due to the small size
of the particle (typically diameter is less than 200µm). The model had been used initially for
investigating air and O2-Ar at atmospheric pressure, since most of the available experimental data are for
those conditions. These data served to validate the model. However, as has been mentioned previously,
the typical oxidizer in a rocket motor is CO2 and H2O. Hence, the investigation of aluminum combustion
with the CO2-Ar and H2O-Ar oxidizers, both at atmospheric pressure and higher pressures has been
made. It may be noted that the oxidizer in a rocket motor for aluminum combustion consists of a high
percentage of CO, but aluminum combustion in CO has not been considered. This is because aluminum
burns heterogeneously in CO due to thermodynamic considerations, and since surface reactions are
involved, it can be expected that the reaction rate will be slow when compared with the homogeneous gas
phase reactions with the other constituents like CO2 and H2O. The atmospheric case investigation has
been done for the CO2 and H2O oxidizers to compare the results with some experimental data pertaining
to species and temperature profiles. This has been followed with a study of high pressure combustion in a
mixture of gases that resemble the oxidizer in a rocket motor.

Aluminum Combustion Mechanism

Many of the previous models have assumed infinite kinetics.2,64,65 There has been some question as to
whether aluminum combustion is purely diffusion controlled or if kinetics can have an influence.67,69

Experiments have also shown that the flame zone thickness, which is also an indicator of the pace of the
kinetics, varies with each oxidizer.62,63  In the case of CO as the oxidizer, it has been suggested from
experimental data that the combustion could be heterogeneous,63 which might lead to a kinetically
controlled process as surface reactions are expected to be slower than gas phase reactions. Gremyachkin31

had suggested in his modeling work that for small particles, the reaction could be kinetics controlled. One
main disadvantage of the diffusion controlled combustion assumption is that the precise species and
temperature profiles cannot be calculated. The approach taken was to include the full kinetics and
examine the limiting factors in the combustion process. In this paper, four oxidizer mixtures, namely, O2-
Ar, O2-N2, CO2-Ar, H2O-Ar are considered.

The kinetic mechanism in the model consists of surface reactions and gas phase reactions for the
formation of the aluminum sub-oxides. The aluminum sub-oxides later react and condense to form liquid
aluminum oxide. The path to condensation consists of two steps; a homogeneous gas phase reaction,
followed by homogeneous condensation. The combustion mechanism accounts for the first kinetic step of
the two-step process, while the second step is described with the condensation model in the next
subsection.

Unfortunately, the kinetic data in the literature for all the required aluminum reactions is not very
accurate for the temperature regime considered. Reliable kinetic data for the Al-O2 reactions has been
published only recently.63  As for the Al-CO2 reaction, even though the data have been obtained only for
the temperature range of 300°-1900° K, the lack of other kinetic data has forced the extrapolation of the
available data to higher temperature ranges.77  These data had been used by King67 for his modeling
work. The kinetic data for the Al-H2O reaction has been obtained only for the 298°-1174° K temperature
range, but as in the Al-CO2 reaction, the lack of data has forced the extrapolation of the available data to
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the 2000°-4000° K temperature range.77  There has been little investigation done into the probable
condensation paths for the aluminum oxide formation when the oxidizers are CO2 or H2O. Hence, the
condensation paths in the presence of CO2 and H2O oxidizers are taken to be the same as the pure O2

oxidizer case.77

Surface reactions:

Al(l)  →  Al( g) (R1)

Al(l) + AlO( g)
k2 →  Al2O(g ) (R2)

Gas phase reactions:

Al(g ) + O2
k 3  →   AlO + O (R3)

k 3 = 9.76 ×1013 exp(− 80
T ) cm3mol −1s −1

AlO +O2
k 4 →  AlO2 + O (R4)

k 4 = 4.63 ×1014 exp(−10008
T ) cm mol s3 1 1− −

Al + CO2
k5 →  AlO + CO  (R5)

k 5 = 2.5 ×10 −13T 0.5 exp(−1030 /T) +1.4 ×10 −9T 0.5 exp(−14000/T)

Al + H2 O k 6  →   AlO + H2  (R6)

k 6 =(1.9 ±1.5) ×10− 12 exp(−(442.87 ± 221.44)/ T) + (1.6± 0.7) ×10 −10 exp(−(2868.6 ± 452.94)/ T )

O + O + M k 7←  →   O2 + M (R7)

k 7 = 6.17 ×1015 × T −0.5 exp(0 T)

O + N 2
k8  →   NO + N (R8)

k 8 = 1.80 ×1012 exp(− 38345.14
T)

N + O2
k9  →   NO + O (R9)

k 9 = 6.40 ×1009 exp(− 3125.26
T)

 Dissociation reaction:

Al2O3(l )
k 10 →  2AlO +

1

2
O2 (R10)

 Condensation:

2AlO +
1

2
O2

k11 →  Al2O3 (l)
(R11)

2AlO + CO 2
k12 →  Al2O3 (l ) + CO (R12)

2AlO + H 2O k13 →  Al2O3( l) + H2 (R13)

Al2O + O2
k 14 →  Al2O3( l)

(R14)

Al2O + 2CO 2
k15 →  Al 2O3( l ) + 2CO (R15)

Al2O + 2H 2O k16 →  Al2O3(l ) + 2H2 (R16)

AlO2 + AlO2
k 17 →  Al2O3 (l) +

1

2
O2 (R17)
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The rate of the first reaction, which represents the rate of vaporization of the molten aluminum, is given
by the boundary condition (Equation 34, see below). While the rate of vaporization depends on the
surface temperature (i.e., boiling point of the aluminum metal), the boiling point depends on the pressure
of the system. The vast majority of earlier models have assumed that the temperature of the aluminum
particle is fixed at the boiling point of aluminum at atmospheric pressure. The relation between the
boiling point and the vapor pressure of the aluminum vapor has been expressed in this model as

Tboil =  (P/7.6673× 10-43)1/12.266 (7)

The dissociation temperature is a function of the pressure of the system too. It is expressed as a function
of the partial pressure of the aluminum sub-oxides and aluminum oxides using the Clausius-Clayperon
equation. The relation between the dissociation temperature, which is the upper limit of the flame
temperature, and the vapor pressure of aluminum oxide is

Tflame =  1/(0.000250501-14.132 ×10-6 × ln(P)) (8)

The second reaction is assumed to be a diffusion controlled surface reaction. Gaseous Al2O gets
transported away from the particle after the reaction. All the gas phase reactions except (R5) and (R6)
have been represented by fundamental reactions. As explained previously, the lack of sufficient reliable
kinetic data has been a limiting factor in the number of equations considered. Reaction (R10) is not
represented by a rate expression, instead the dissociation reaction keeps dissociation temperature of
aluminum oxide as the upper limit of the flame temperature. The following equation is solved to
determine ˙ ω dAlO to keep Tij=Tflame.

fij(Tij , ˙ ω dAlO) − Tflame = 0 (9)

The reactions (R11)-(R17) are the first step of the condensation. It is assumed that

 k11 = k12 = k13 = k 14 = k15 = k16 = k17 = ˙ ω 
cond

. (10)

Condensation Model

Experimental studies have shown the presence of aluminum sub-oxides near the particle surface63

during the combustion process and the main end product to be liquid aluminum oxide. The aluminum
sub-oxides must thus be consumed in the production of liquid aluminum oxide. A simple kinetic
mechanism alone cannot be considered for the production of aluminum oxide from aluminum sub-oxides
due to the thermodynamics. Thermodynamically, the heat of the reaction of aluminum sub-oxides to form
liquid aluminum oxide is sufficient to cause the dissociation of the newly formed liquid aluminum oxide.
Hence, there must be a mechanism beyond a simple kinetic mechanism to form the liquid aluminum
oxide. This is simulated in the Liang & Beckstead condensation model. The condensation model consists
of a two-step process as shown below.

aCm + bCn
kr →  Al2O3( g)

rcon →  Al2O3(l )   (R18)

The first step is a chemical reaction that gives gaseous aluminum oxide (R11-R17). It can be described
by an Arrhenius expression. The second step is a condensation process of gaseous aluminum oxide to
liquid aluminum oxide. It may be noted here that gaseous aluminum oxide has not been observed
experimentally and that liquid aluminum oxide would be expected to dissociate before vaporizing.
However, from calculations, it has been observed that the rate of the condensation step is far greater than
that of the kinetic step. The gaseous aluminum oxide can thus be considered as an intermediate product
with a very short life time. The intermediate product nature of gaseous aluminum oxide, combined with
the complexity of the combustion process, warrants some assumptions and the condensation model seems
to be reasonable. The number of reactions considered for the first step have been limited by the kinetic
data availability in the literature.
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Homogeneous condensation is assumed to occur for the second step. Homogeneous condensation refers
to condensation processes where the nuclei formation for condensation occurs randomly due to
interactions between the constituents in the vapor phase and is not catalyzed by surfaces, ions or impurity
molecules. Homogeneous nucleation can occur only in supersaturated vapors.78  It can be described by
classical homogeneous nucleation theory.78  A nuclei can grow into a droplet if it can attain a size greater
than a critical radius. The critical radius is calculated as the radius for which the ∆G is a maximum for a
given supersaturation.78

For the first reaction step, the rate expression is

&ω 1 = k C Cr m
a

n
b        (11)

For the second condensation step, the rate expression is

concrC=2ω&        (12)

where rcon is the nucleation rate. The rate of the nucleation is calculated as the rate of sticking of

molecules impinging upon the nuclei with critical radius. From homogeneous nucleation theory,78

rcon = (
α i

*P∞
kT )(2σ

πm)
1
2 (mρ)n1 exp −

16πσ3ν2

3k3T3(lnS )2

 

 
 
 

 

 
 
 

       (13)

where m is the mass of a molecule, ρ is the liquid density, ni
*  is the number of critical size clusters per

unit volume, ν is the volume per molecule in the liquid state.

The total rate for the two-step condensation process is
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       (14)

Next it is assumed in the model that the denominator in Equation (14) does not change significantly
during the condensation. So the equation reduces to

&ω cond con m
a

n
bKr C C=        (15)

where K  becomes an empirical constant.

In Equation (14) the supersaturation S of the vapor phase has a large effect on the condensation
process. It has been experimentally observed78 that in homogeneous nucleation, for nuclei to start
forming, the supersaturation should exceed a critical level and that the condensation rate increases more
than proportionally with an increase in supersaturation. For a typical condensation process

S =
p

p∞

       (16)

where p is the partial pressure of the vapor in system and p∞  is the vapor pressure of the condensed
phase.

In the aluminum combustion process, p is zero since aluminum oxide dissociates before it vaporizes. So
Equation (16) cannot be used in Equation (15). Instead Equation (17) has been used to determine S.

S = 1 +
pi

i
∑
pAl

       (17)

where pi  is the partial pressure of species i, and i= AlO , AlO2, Al2O . The partial pressure term in (16) is

thus substituted for by the sum of the partial pressures of the aluminum sub-oxides and aluminum, the
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components of aluminum oxide dissociation. It is difficult to define a vapor pressure for aluminum oxide,
due to the dissociation processes. The vapor pressure term in (16) is taken to be the partial pressure of
aluminum in (8). In the condensation process, liquid aluminum oxide is formed from aluminum sub-
oxides, which in turn are formed from aluminum. Hence, the more the partial pressure of aluminum, the
lesser is the concentration of aluminum sub-oxides, and in turn the lesser is the concentration of liquid
aluminum oxide, which should imply a lesser supersaturation according to (13). The assumption for
vapor pressure of aluminum oxide in (17) can thus be explained qualitatively. Many of the previous
models have assumed condensation to take place in an infinitely thin zone2,31 or on the particle
surface.41,79  This model has relaxed that assumption and the condensation depends on factors such as
species concentration, supersaturation, temperature, and hence on the position.

It has been assumed that the oxide deposits uniformly on the particle surface and migrates to the
downstream side to coalesce into an oxide cap. It has been observed experimentally that the oxide does
not dissolve in the metal, but rather stays on the surface.45  The coalescence has been observed
experimentally45 and has been explained by the difference in the surface tension of the molten metal and
oxide. The hollow nature of oxide caps is not accounted for in the model. Whether any reactions occur
between the oxide cap and the metal on the particle surface has not been established clearly
experimentally. Hence, that possibility has not been considered here.

 h1

  oxide cap

V

Figure 11.  Model of oxide deposition on the aluminum particle surface.

The deposition height h1 shown in Figure 11, can be described by the equation

h1
3 − 3Rh1

2 +
3V

π
= 0        (18)

where V is the volume of the cap calculated from the Al2O3(l )
 diffusion to the particle surface. It may be

noted that the radius and mass of the particle changes with time due to the aluminum vaporization and
due to the aluminum oxide deposition, thus causing a change in u∞ , the particle velocity with time.
According to the model, the oxide cap inhibits aluminum vaporization from the portion of the sphere it
covers. This is because the oxide has almost twice the density of the metal and so the metal cannot
diffuse through the oxide. The particle surface temperature does not exceed the dissociation temperature
of the oxide but is above the melting point of the oxide. So the oxide exists in a molten state throughout.
The model does not account for any physical processes that may be involved in the initial bonding of the
diffusing oxide to the particle surface. Also, the time required for the diffusion of the oxide to the particle
surface is assumed to be the limiting factor in the deposition. In other words, the deposition is assumed to
be diffusion controlled.

General Mathematical Model

The general form of the governing equation can be written as
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∂ρφ
∂t

+ ∇⋅ (ρVφ) = ∇ ⋅(Γφ∇φ) + Sφ      (19)

In spherical coordinates,

∇ ⋅(ρVφ) =
1

r 2

∂
∂r

(ρr 2urφ)+
1

rsinθ
∂

∂θ
(ρuθ sinθφ )      (20)

∇ ⋅(Γφ∇φ)=
1

r 2

∂
∂r

(Γφr 2 ∂φ
∂r

) +
1

r2

1

sinθ
∂
∂θ

(Γφ sinθ
∂φ
∂θ

)      (21)

For the continuity equation,

Φ=1, ΓΦ =0 and SΦ =0      (22)

For the r-direction momentum equation,

Φ= ur , ΓΦ =µ and

SΦ = −
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For the θ-direction momentum equation,

Φ= uθ , ΓΦ =µ and

SΦ = −
1
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For the species conservation equations,

Φ= Yi , ΓΦ = ρDi   (i ≠ Al2O3(l )), ΓAl 2O3( l)
=

ν
σA

 and SΦ = ˙ ω i      (25)

where Yi  is the mass fraction of species i, σ A is the Schmidt number (with σ A =0.5)

 and i= Al, AlO, Al2O,AlO2 ,O2 ,O,Al2O3(l ) , YN2
= 1− Yi

i ≠N2

∑

To ensure a balance of the mass, the calculated diffusion velocities,
  

v 
V i = −

Di

Yi

∇Yi , are corrected by a

uniform velocity vector to keep

  Yi∑
v 

V i = 0      (26)

For the energy equation,

Φ =T, ∇ ⋅ ΓΦ ∇Φ( )=
1

Cpm

∇ ⋅ k∇T( )  and

  
SΦ =

1

Cpm

[
Dp

Dt
− hi

˙ ω i
i

N

∑ − ρYi

v 
V i

i

N

∑ ⋅ (C pi∇T) + (ρYi
i

N

∑
v 

V i ⋅
v 
f i )]      (27)
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where 
v
fi  is the body force of unit mass of species i.

Introducing non-dimensional quantities, the non-dimensional form of equation (19) is

∂(Rρ*φ)

∂t* + ∇⋅ (ρ*V *φ) =
1

Rρ∞uref Ro

∇ ⋅(Γφ∇φ ) +
RRo

uref ρ∞

Sφ +
∂(r* ρ *φ)

∂r *

dR

dt
     (28)

Boundary Conditions

(1) Inlet condition:

The model considers the particle falling downward under the effect of gravity after being released from
an initial position. The particle thus encounters the oxidizer at a velocity u∞ (t )  in a coordinate system that
considers the particle to be stationary. The inlet conditions are the conditions at a distance of 60 particle
radii from the center of the particle. the inlet conditions are not affected by the combustion process.

uθ
* = sinθ , ur

* = −cosθ , T * = 1, u∞ = u∞ (t)      (29)

For O2-N2 oxidizer, Y02
= 0.233 , YN2

= 0.767 Yi = 0.(i ≠ O2 , N 2 )

For O2-Ar oxidizer, Y02
= 0.233 , YAr = 0.767 Yi = 0.(i ≠ O2 , Ar )

For CO2-Ar oxidizer, YC0 2
= 0.233 , YAr = 0.767 Yi = 0.(i ≠ CO2 , Ar )

For H2O-Ar oxidizer, YH 20 = 0.233, YAr = 0.767 Yi = 0.(i ≠ H 2 O ,Ar )

The inlet velocity u∞ (t )  is governed by

  
m p

du∞

dt
= mpg − CD

ρ∞

2
u∞

2 A − ρur
2

s
∫

v 
n ⋅

v 
i ∞ ds      (30)

The first term on the right hand side represents the gravity term; the second term represents the drag term,
where CD = 2 4 / R e. Creeping flow around the particle is assumed, since the Reynolds number is low due
to the small size of the particle. The last term on the right hand side is integration on the particle surface
to consider the contribution of the evaporation to the particle movement.

(2) Outlet condition:

∂φ *

∂r
= 0      (31)

(3) Symmetrical condition:

∂φ *

∂θ
= 0, uθ = 0 , ( θ = 0, π )      (32)

The symmetrical condition has been assumed for simplicity.

(4) Particle surface interface condition:

Energy balance:

k g

∂Tg

∂r
s

− Q2 ˙ m AlO s
+Qdep + Qrad = ˙ m vap ∆hvap      (33)
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The physical interpretation of this equation is that the heat required for the evaporation of the droplet and
the reaction (R2) is provided by the heat feed back from conduction of heat from gases near the particle
surface, radiation heat flux from the flame and the heat due to deposition of condensed aluminum oxide.
The radiation term consists of the difference between the radiation flux to the particle and the radiation
flux from the particle. The shape factors are not considered. There is no evaporation in the area covered
by the oxide cap. The oxide cap is at a temperature far greater than the particle surface. This causes
energy Qdep to be transferred to the particle for evaporation from the depositing oxide cap. The
temperature of the particle surface has an upper limit of the boiling point of aluminum, at which point the
evaporation starts to occur. The Stefan flow is assumed not to affect the heat transfer to the particle
surface.

˙ m vap + ˙ m AlO s
⋅
MAl2O

MAlO

= ρsurs
     (34)

According to (34), the bulk flow from the particle outwards is due to the flow of Al and Al2O. It may be
noted that the two surface reactions (R1) and (R2) result only in the products Al and Al2O, which leave
the surface and move outwards as they are both gases. It is interesting to analyze the direction of bulk
velocity away from the surface. While the direction of the bulk velocity away from the surface is
determined from the conservation equations and boundary conditions, it may be noted that one of the
main factors influencing the bulk velocity, apart from the inlet velocity of the oxidizer is the velocity of
the products. In a typical metal combustion, the volumetric rate of the products is lesser than that of the
reactants. Even though the formation of an oxide cap in aluminum combustion results in diffusion of the
products towards the particle, in a combustion experiment with a stationary aluminum particle, the bulk
velocity in the infinity- flame front zone may be expected to be towards the particle, while the bulk
velocity in the flame front- particle zone may be expected to be towards the flame front. The presence of
an input velocity may change the direction of the bulk velocity, but the surface condition remains the
same and (34) still holds.

Species balance:

YAlO = 0      (35)

This relation is because reaction (R2) is assumed to be diffusion controlled so that no AlO should be
found at the particle surface.

YAl ( g) =
pAl

p

MAl

M 
     (36)

This relation assumes the ideal gas law, which is valid at such high temperatures.

ρDAl2O

∂YAl2O

∂r
s

+ ˙ m AlO s

MAl2 O

MAlO

= ρur YAl2O s
     (37)

Equation (3728) implies that the net rate of Al2O transport, which is equal to the rate of Al2O diffusing
outwards, is equal to the rate of production of Al2O. Any other flux of Al2O diffusing will be countered
by the bulk flow at the surface. In other words, there is no accumulation of Al2O on the surface and
whatever Al2O is produced on the surface is transported from the surface, which is to be expected since
Al2O is a gas.

ρDi

∂Yi

∂r s

= ρurYi s
i ≠ Al ,Al2O, Al 2O3      (38)

Equation (38) implies that the net flux of all the other species other than Al2O, Al2O3 and Al at the
surface is zero, or in other words there is no accumulation of the other species on the surface, which is to
be expected since all those species are gaseous.

T = 34860
[12.537− ln(pAl )]

(King67)     (39)
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This relation is used to determine the partial pressure of aluminum at the surface, from the particle
surface temperature.

Figure 12 Computation domain for the numerical method.

The fully implicit SIMPLER80 algorithm is used to solve the partial differential equations in which
QUICK scheme is used. A staggered grid system is used where the velocities are defined at the control
volume surface and scalar quantities are defined at the center of the control volume. The grid is uniform
in the θ direction with 71 nodes. Non-uniform grids are used in the r-direction in order to improve the
accuracy. There are 80 nodes in the r-direction extending upto 60 times the particle radius. The smallest
distance between grids in the r-direction is near the particle surface and is about 0.0001 ro. The gas phase
grid used in this study is shown in Figure 12.

The role in constructing a non-uniform grid  QUICK scheme is to always use two upwind nodes and one
downwind node as shown in Figures 13 and 14. For example, consider the control volume i below

when ue > 0,

                                                i − 1                   i          e            i + 1

  0                 x1                       x2

Figure 13.  Construction of QUICK scheme when ue > 0

and                       φe = φi + −
x1 − x2( ) 2

4x1x 2

φi−1 +
x 2 − 3x1

4x1

φi +
x1 + x2

4x 2

φi+1

 

 
 
 

 

 
 
 

       (40)

when ue < 0,

                                                   i        e         i + 1                  i + 2

                                                   0                  x1                     x2

Figure 14.  Construction of QUICK scheme when ue < 0
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and                      φe = φi +1 + −
x 1 2x2 − x1( )

4x 1x2

φi +
2x2 − 3x1

4 x1 − x 2( )φ i+1 +
x1

2

4x2 x 1 − x2( ) φi+ 2

 

 
 

 

 
    (41)

Modeling Results and Discussion

To check the validity of the unsteady simulation, an unsteady flow passing a sphere was simulated,
calculating the wake development as a function of time. The results were very reasonable, and the final
wake length is in good agreement with available experimental data.81

Model calculations have been made for a variety of conditions, to help validate the model and to explore
the effects of different gases and conditions. An analysis of the temperature profiles in Figure 15 shows
that the flame temperature for the three oxidizers, O2, H2O and CO2 are different, which is to be expected
when thermodynamics are considered. The flame temperature of CO2 is lesser than the dissociation
temperature of aluminum oxide, because the enthalpy of the reaction and hence the heat released is not
sufficient to raise the flame temperature to the dissociation temperature.62  The flame temperature is equal
to the dissociation temperature for both the cases of the O2 and H2O, which implies that some of the
product liquid aluminum oxide gets dissociated to limit the flame temperature.
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Figure 15  Temperature profiles for 21% O2/Ar, 21% CO2/Ar, and 21% H2O/Ar cases, Tamb=300 K,
P=1 atm.

Figures 16-18 show the 2-dimensional view of the calculated temperature profile around a burning
particle for the three environments corresponding to the results in Figure 7.
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Figure 16. Predicted temperature distribution for aluminum particle combustion in 21%O2/Ar,
Tamb=300K, P= 1 atm, d=230 microns.

Figure 17. Predicted temperature distribution for aluminum particle combustion in 21%CO2/Ar,
Tamb=300K, P=1 atm, d=230 microns.

Figure 18 Predicted temperature distribution for aluminum particle combustion in 21%H2O/Ar,
Tamb=300K, P=1 atm, d=230 microns.
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The flame zone for aluminum combustion includes the reaction zone and the condensation zone, both of
which release a large amount of energy. The flame zone can be discerned from the plateau in the
temperature profile, wherein the temperature is maintained at the dissociation temperature of the
aluminum oxide. The flame zone location has been predicted to be farthest from the particle for the case
of the CO2 oxidizer, and closest to the particle in the case of the H2O oxidizer. Turns et al observed in
their experiments that the flame zone was closer to the particle surface in the presence of H2O than
without H2O. One of the reasons attributable to this behavior is the value of the diffusivities. While H2O
has the highest diffusivity in Ar, CO2 has the lowest diffusivity of the three oxidizers in Ar. The higher
diffusivity results in the oxidizer diffusing relatively faster towards the particle than the aluminum
diffusing outwards. In all the three cases, the aluminum diffuses through an almost similar mixture,
dominated by argon. However, this argument holds good only when the convection is comparable to the
diffusion, which is true for the present case, wherein the velocity has been assumed to be at a steady at
0.001m/sec. Another effect to be considered would be the evaporation rate of aluminum. In the case of
CO2-Ar, since the flame temperature is comparatively low, the evaporation rate should be lesser and
hence the stoichiometric amount of fuel and oxidizer should be obtained at a relatively closer distance to
the particle surface due to this effect. It may be noted that for diffusion flames, the flame zone is the
region where the fuel and oxidizer are in stoichiometric amounts.

It may be seen from Figures 19-24 that the combustion resembles a diffusion flame for the considered
cases, since the region in which the reactants coexist is very small. The fuel and the oxidizer are seen to
coexist at the edge of the flame zone in all the cases. This implies that the condensation tends to
concentrate in a region closer to the particle surface than the reaction zone, and the condensation results
in a large flame zone. Many of the models have assumed infinite kinetics2,66,65 and hence a diffusion
controlled model. The predictions of this model, namely the little coexistence of the aluminum and
oxidizer for the oxidizers O2, CO2, H2O, gives validity to that assumption. The conclusion drawn above
assumes that the kinetics are well represented in the model. An observation can be made, about the
assumption of condensation occurring in the reaction zone in some models, from the flame zone
predicted in the model. As stated earlier, condensation tends to concentrate in a region a little bit closer to
the particle surface than the reaction zone. Hence, based on the predictions of this model for the oxidizers
and conditions studied, it can be concluded that the models that assumed the condensation to occur in the
reaction zone were more accurate than the models that took the condensation to occur on the particle
surface.

The 2-dimensional pictures are a view of the upper half of the particle shown in Figure.10. The 2-
dimensional pictures show the effect of the oxide cap and convection on the distortion of the temperature
profiles. The low temperature on the left side of the figures is a combined effect of the convection, which
makes the gases flow from left to right, and the oxide cap, which accumulates on the left side. An
interesting observation is that on the upper side of the falling particle, the temperature is around 1000° -
1250°K at a distance of 60 radii from the particle. The oxidizer concentration is also not equal to the
ambient concentration even at a distance of 20 ro. This tends to point to the need for group combustion
studies. In a rocket motor, there is a good chance of particle spacing in the order of 60 r0.

The main combustion product is seen to be Al2O3. It can be seen that some of the oxide diffuses
outwards, which is the oxide smoke. This model does not attempt to determine the size of the oxide
smoke, which is expected to be a function of the condensation. The concentration of the aluminum sub-
oxides is negligible at distances far from the particle surface, which is to be expected considering their
fast condensation and other kinetic reactions. AlO is seen to be main aluminum sub-oxide produced in
the flame zone. The concentration of the argon at the particle surface is non-zero, as the argon passes
through the flame zone without any reaction. Although any possible reaction between some of the
products like H2, CO & oxide cap with the aluminum has not been considered in this model due to the
constraint of kinetic data availability, those reactions could have a role in the fragmentation and jetting of
aluminum particles, which has been observed experimentally.47,82
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Figure 19. Major species mass fraction for 21%O2/Ar, Tamb=300 K, P= 1 atm.
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Figure 20. Major species mass fraction for 21%CO2/Ar, Tamb=300 K, P= 1 atm.
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Figure 21. Major species mass fraction for 21%H2O/Ar, Tamb=300K, P=1 atm.
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Figure 22. Minor species mass fraction for 21%O2/Ar, Tamb=300 K, P= 1 atm.
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Figure 23. Minor species mass fraction for 21%CO2/Ar, Tamb=300 K, P= 1 atm.
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The effect of pressure on aluminum combustion, which has not been addressed in a lot of experimental
and modeling efforts, needs to be given priority considering the rocket motor conditions. Figures 25 and
18 show the calculated temperature distributions for a particle burning at 1 atm and 65 atm pressure
respectively. The gas composition used in the calculations was the same as that by Davis35, so that the
results of the model could be compared with the experimental data. The first observation which can be
made is the difference in overall temperatures. The surface and flame temperatures are higher for the high
pressure case than for the low pressure case. The flame temperature is ~400K higher at 65 atm.  This is
reasonable because the aluminum and aluminum oxide boiling (dissociation for aluminum oxide) points
have increased with ambient pressure. This increase in flame temperature is a very important concept
which has not been treated by most investigators. The second observation which may be drawn from
these figures is that the flame zone was calculated to be more narrow and closer to the surface at high
pressure than at low pressure. Brzustowski and Glassman2 showed experimentally that in metal
combustion an increase in pressure is accompanied by an approach of the flame front toward the particle
surface. This agrees with the calculations illustrated in Figures 17 and 18.

Figure 25. Predicted T(K) distribution in 44.4% H2O, 11.4% O2, 13.9% CO2, 10.1% N2, 20.2% HCl,
Tamb=2600 K, and P= 1 atm.

Figure 26. Predicted T(K) distribution in 44.4% H2O, 11.4% O2, 13.9% CO2, 10.1% N2, 20.2% HCl,
Tamb=2600 K, and P= 65 atm.
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Figure 27. Predicted particle surface and Figure 28.  Predicted temperature profiles vs. flame
temperatures as pressure is varied. non-dimensional radius for various pressures.

Figure 27 shows the predicted dependence of surface temperature and flame temperature on pressure.
Notice that there is a gradual increase in surface and flame temperatures as the pressure is increased. The
case of one atm and 65 atm has been demonstrated already in Figures 25 and 26.  Figures 27 and 28,
however, show the trend over the entire pressure range studied. Figure 28 puts this into a spacial
perspective, showing the distribution of the calculated temperatures from the surface outward. In Figure
28, the predicted temperature profiles vs. non-dimensional radius are shown for the same range of
pressures as in Figure 27. It can be seen that the temperature profile of the flame zone is increasing in
height as the pressure increases.

It is interesting to compare some of the results from Liang’s modified model with recent experimental
data. Some of the latest and best experimental measurements of temperature and species distributions
around a burning aluminum particle have been performed by Bucher et al.61,62,63 at Princeton. In one of
their experiments, they burned aluminum particles in an O2/Ar atmosphere and measured the temperature
profile extending outward from the particle surface in very small increments.  Figure 29 shows a
comparison of Bucher’s data with the temperature profile calculated by the modified Liang model.69

Excellent agreement between predictions and measurements was achieved.
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Figure 30 shows the calculated relative AlO concentration profile compared with data from the same
experiment. It can be seen that the profiles are very similar, although Bucher et al. observed a peak in
AlO concentration at around r/ro= 2.2, and the calculated peak value is at ~ 3.0. Figure 31 shows a
comparison of Bucher’s data with a calculated temperature profile for an N2/O2 atmosphere, similar to the
Ar/O2 case shown in Figure 29. It must be noted that the dissociation of N2 was not included earlier in
these calculations, hence the disagreement between the earlier calculated values and experiment.
However, very recent calculations, which take into account the N2 dissociation, result in much better
agreement between the two as shown in Figure 31. This is a very logical outcome since heat is required
to dissociate N2, thus lowering the calculated temperature of the system. In addition to looking at
temperature and species profiles, the burn times calculated by this model were compared against
experimental data, as well as against calculated values from the Brooks model.65 Figure 32 shows several
burn times predicted by the modified Liang model, along with calculated burn times from the modified
Brooks (analytical) model,69 as well as experimental data from Hartman37 and Davis35 Only a limited
number of calculations were performed because of the time required for each calculation (about 12 cpu
hours).
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Figure 30. Calculated relative AlO concentration vs. non-dimensional radius compared with
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Figure 32. Comparison of burn times calculated by the modified Liang model with calculations from the
modified Brooks (analytical) model, and with experimental data from Hartman37 and Davis. 35

Since Liang’s model is a steady-state calculation, a particle burn time had to be approximated from the
calculated steady-state evaporation rate of aluminum.  To do this, it was assumed that the steady-state
evaporation rate represented the initial rate, and that thereafter the evaporation rate was proportional to
the fraction of original aluminum remaining.  In addition, when 95 percent of the original aluminum was
evaporated, the particle combustion was assumed complete.  In this manner, particle burn times were
approximated from the steady state calculations, and are shown in Figure 32.  As can be seen from this
figure, there seems to be reasonable agreement between the calculations of the modified Liang model, the
modified Brooks (analytical) model, and experiment

For the analysis of the condensation, dissociation rates and the reaction rates of some of the reactions, the
case of aluminum combustion in air has been analyzed. Figure 33 shows the dissociation rate of
aluminum oxide. It can be seen that the dissociation occurs exactly in the region where there is a
temperature plateau.

The condensation rate of liquid aluminum oxide is shown in Figure 34. We can see the condensation
determines the location of the flame and the temperature distribution and occurs very rapidly in a narrow
region. Figure 35 shows a plot of the reaction rates of some species in the aluminum combustion process
in air. The reaction of aluminum with oxygen is observed to occur only in the narrow flame zone.
Between the particle surface and the flame zone the most important species is AlO. AlO is produced in
the flame zone and diffuses back to the particle surface reacting with the liquid aluminum to form Al2O .
In the flame zone there are two reactions of species AlO.  One is to form AlO2 and another is the
condensation reaction. Figure 35 shows that the formation of AlO2 is the dominant process. Because of
these two reactions, the concentration of AlO at the outer edge of flame goes to zero.
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Figure. 33 Dissociation rate of aluminum oxide vs. radial non-dimensional distance
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-15

-10

-5

0

5

10

15

20

25

0 5 10 15 20

r/r0

re
ac

ti
o

n
 r

at
e 

[k
g

/(
m

s)
]

AlO

AlO2

Al

Figure 35.  Reaction rate vs. radial non-dimensional distance



A Summary of Aluminum Combustion 

RTO-EN-023 5 - 39 

The condensation reaction18 AlO2 + AlO  →  Al2O3(l ) cannot occur at that location which will let a lot of

AlO2 exist in the final combustion product.  Therefore, we assume AlO2 condenses through reaction
(R17) and AlO2 will be finally condensed.  Species Al2O3(l)  is mainly produced in the flame zone and
diffuses to the particle surface and deposits on the particle surface.  From the results we can see that next
to the condensation rate the most important quantity to influence the condensation is the O2

concentration which is different from the classical condensation process.

For hydrocarbon droplet combustion, the burn time is proportional to the initial diameter raised to the
power of 2. For aluminum combustion, the model predicts the burn time to be proportional to the initial
diameter raised to the power of 1.2 for small diameters to 1.88 for large diameters. The reason the
exponent is lesser than 2 is due to the oxide cap and the convection, which cause the evaporation rate of
aluminum to decrease and thus cause the burning time to increase. The oxide cap has another effect of
providing energy to the particle surface during deposition, which cancels off some of the effect due to the
blockage of the aluminum evaporation due to the oxide cap.

Summary and Conclusions

The combustion characteristics of aluminum combustion have been summarised in an overview of the
subject, focusing on the burning time of individual particles.  The fundamental concepts that control
aluminum combustion are discussed starting with a discussion of the “Dn” law.  Combustion data from
over ten different sources with almost 400 datum points have been cataloged and correlated.  The wide
variety of experimental techniques and a lack of standard definitions of the burning time, contribute to
the large data scatter observed between different investigators.  A thorough evaluation of the data
indicates that an exponent on the order of 1.5 to 1.8 correlates the data best, with the value of 1.8 slightly
better than 1.5.

There is a rich body of data varying the environmental gases. These data have bee systematically
analyzed showing that oxygen is a more powerful oxidizer than water or CO2.  Zenin's data shows that
CO2 is only 20% as efficient as oxygen.  Although the data were not conclusive about the precise effect
of water, it appears that water is probably about half as effective as oxygen. And about half as effective
as CO2.  Interesting studies have been performed using various inert gases while varying the oxygen
concentration.  There appears to be an effect of the gaseous diffusivity, with the product of the density
times the diffusivity.  The inference being that smaller gaseous molecules will tend to reduce the burning
time.  The observed effect of pressure and initial temperature is minimal. Early Russian investigators
proposed that pressure has a small effect at low pressure, but no effect above ~20 atm.  More recent work
seems to verify that trend.  The effect of initial temperature is also relatively small with an exponent of -
0.2 resulting in a minimization of error.

A proposed equation that can be used to estimate burning times of aluminum particles is (Eqn. 6)

    

tb = aDn

Xeff P0 .1To
0.2

where Xeff = CO2 + 0.6 CH2O  + 0.22 C CO2

a = 0.0244  for n  =  1.5  and

a = 0.00735  for n  =  1.8

and pressure is in atmospheres, temperature in K, diameter in µm, and time in msec.
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A two-dimensional, unsteady state kinetic-diffusion-vaporization controlled numerical model for
aluminum particle combustion is presented. The model solves the conservation equations, while
accounting for species generation and destruction with a 15 reaction kinetic mechanism. Two of the
major phenomena that differentiate aluminum combustion from hydrocarbon droplet combustion, namely
the condensation of the aluminum oxide product and the subsequent deposition of part of the condensed
oxide, are accounted for in detail with a sub-model for each phenomenon. The effect of the oxide cap in
the distortion of the profiles around the particle has been included in the model.

Parametric calculations were made to examine the flame structure for oxygen, water and carbon dioxide
flames.  Each of the three calculations was made for a mixture of 21% of the oxidizer mixed with 79%
argon, all at one atm.  The results show a dramatic difference for the CO2 case.  The flame temperature
for the CO2 case as~2700 K while for both O2 and water the temperature is ~4000 K.  These correspond
to the thermodynamic equilibrium for the three oxidizers.  There is much less energy in the CO2 flame.
The calculations also indicate that the flame for the CO2 extends further from the surface than either O2
or H2O.  The calculated species profiles indicate that the flame corresponds to a diffusion flame as
virtually none of the oxidizer penetrates beyond the flame.

The calculated temperature profiles have been compared with recent experimental data by Bucher, et al,
showing good agreement between the model and the available data. The modeling results also show that
the exponent of the particle diameter dependence of burning time is not a constant and changes from
about 1.2 for larger diameter particles to 1.9 for smaller diameter particles. The calculations also indicate
that due to the deposition of the aluminum oxide on the particle surface, particle velocity oscillates.

Calculations indicate that both the flame temperature and surface temperature increase with increasing
pressure.  Between 5 and 60 atm the flame temperature is calculated to increase by approximately 400 K.
Calculations were also made for conditions corresponding to what might occur in a solid propellant
rocket motor where little oxygen is present, and the principal oxidizers are water and CO2.

Nomenclature

ρ density

u velocity

p pressure

D diffusivity

Y mass fraction

T temperature

M molecular weight

˙ m flux

k thermal conductivity

m mass

Q heat flux

˙ ω mass flux of ‘species produced’

∆h latent heat

h enthalpy

R particle radius

V velocity vector

Cp specific heat

Rp instantaneous particle radius

S supersaturation

surface tension of a flat liquid
surface

α i
* condensation coefficient

Non-Dimensional variables

ur
* =

ur

u∞

non-dimensional radial velocity
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uθ
* =

uθ

u∞

non-dimensional tangential velocity

t * =
tu∞

R0

non-dimensional time

r * =
r

R0

non-dimensional radial distance

ρ * =
ρ

ρ∞

non-dimensional density

µ* =
µ

µ∞

non-dimensional viscosity

Di
* =

Di

D∞

non-dimensional diffusivity

T * =
T

T∞

non-dimensional temperature

p * =
p

ρ∞u∞
2

non-dimensional pressure

Subscripts

r radial direction

θ tangential direction

infinity conditions

p particle

g gas

s surface

vap vaporization

dep deposition

0 initial condition

i species

m mean
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INTRODUCTION 

This paper will be given in two separate talks, a first one presenting the general problem and applications 
to actual motors and a second talk dealing more specifically with stability theory.  

Solid propellant rocket motor instability has been the subject of many research works for more than  
40 years and valuable reviews can be found in references [1, 2]. First concerns were to understand the 
sometimes violent instabilities that occurred during motor firings that could lead to motor failure or 
destruction. The combustion mechanisms were among the first to be studied since most of the energy 
released in the motor chamber is due to chemical reactions linked to propellant combustion. Indeed, only a 
very small fraction of this energy could, if directed to few instability modes, results in abnormal strains 
that could lead to propellant or case failure and then to motor destruction (see [2]). Instability modes can 
be of several types and had been classified into volume modes and acoustic modes (see [1]). Only the 
latter will be considered here since they appeared to be the most unpredictable. In such situations,  
the instabilities organize themselves around chamber acoustic modes and produce acoustic resonances, 
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much like an organ pipe. The fact that motor combustion chamber consists of a closed cavity (except for 
the nozzle, but we will see that it may be assimilated to an acoustically closed end) favors that 
interpretation. The so-called acoustic balance methods belong to that vision. Expressions for gains and 
losses to given chamber acoustic modes are looked for from knowledge of propellant combustion and 
mean flow organization incorporated into a linearized analysis. The objective is to identify modes that 
could be linearly unstable, that is to say that would grow to infinite amplitudes from infinitely small 
perturbations. In that acoustic view and in order to obtain tractable expressions, the flow field had to be 
idealized and was viewed as a perturbation of acoustic equations. However in the last 20 years it became 
evident that the complexity of the chamber internal flows could produce flow instabilities that could alone 
drive the resonance. Interestingly enough, the musical paradigm was shifted to the flute, where the role of 
air motion is more evident than in an organ pipe (although the physical mechanisms are very much the 
same). In that process, most of the simplified hypotheses of the acoustic balance approach had to be 
questioned and the resulting vision was much more general and embraced the entire internal flow 
(including combustion) and the instabilities were non longer solely combustion instabilities but flow 
instabilities. 

Before we go into the details of that paper, few remarks must be made, relative to time and length scales. 
Although solid propellant motors have the particularity of having a combustion chamber whose geometry 
continuously varies with time (due to propellant combustion) analysis of time scales permits to consider a 
succession of fixed geometries. Indeed the propellant regression rate (< 1 cm/s) is at least two order of 
magnitude smaller than flow velocity (few m/s) which is itself at least two order of magnitude smaller than 
the speed of sound (1000 m/s) that governs the propagation of acoustic waves. As a result, one can 
considers that the geometry is fixed during the time one looks at vortices development and displacement 
into the chamber or the time one looks at the amplification of an acoustic wave during few cycles.  
Only analysis of long time behaviors or hysteresis phenomenons would require the consideration of 
propellant surface regression. A similar analysis can be performed for the length scales. Indeed, propellant 
gaseous combustion occurs in few tens of microns above the propellant surface, while the vortices or 
acoustic length scales are often close to the cm or m. Again, one can consider the combustion of gaseous 
species to be assimilated to the boundary conditions of the instability problem. Only the case of condensed 
phase combustion (typically aluminum combustion) which has length scale of cm, could impact the 
instability analysis. This will be discussed later on. 

Another remark must be made at this stage. A quick view of motor operating pressures (in the range of 
several 106 Pa) and temperatures (from 2600 to 3600 K) indicates that measurements inside the motor is a 
challenging task (not mentioning the vibrations, the presence of combustion products in condensed phase 
and the difficulty of drilling holes for probe access in a lightweight pressurized vessel). It is thus an 
evidence that measurements in a production motor is scarce and that only research motors can be equipped 
with the needed transducers to acquire a satisfactory knowledge of what is going on inside. Most often, 
investigators must rely on a limited number of pressure transducers, only some of them being rated for the 
necessary unsteady measurements. To compensate these intrinsic difficulties, researchers have developed 
several means of simulating rocket motor operating conditions. These rank from cold flow simulators, 
where air, or nitrogen, is injected through porous surfaces that simulate the motor geometry at chosen time 
points during the burn and, more recently, to numerical simulations of chamber internal flows, again at 
chosen time points during the burn. These simulations permit to access to the details of the internal flow 
which complement the pressure measurements obtained from actual motor firings. 

MOTOR STABILITY 

General Overview 
Motor stability discussion will be limited to the case of acoustic instabilities, where the fluctuating field is 
organized around the chamber standing acoustic modes. The case of longitudinal modes is the most 
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documented case and will be used throughout this paper. Extensions to transverse modes (radial or 
tangential modes), although important, will not be directly addressed nor can it be either easily deduced 
from the presented materials. The interested reader is let to work out his way in that matter by his own. 

Analysis of motor stability relies on the following simple decomposition:  t),,(p'  )(P  t),P( rrr +=  where 
overbar indicates mean values, prime indicates fluctuating values, r is the position vector and t is the time 
variable. This decomposition is general and no assumptions are made at this point. 

The figure below presents a schematic of physical processes that take place inside a solid propellant rocket 
motor. 

 

1) Heterogeneous combustion 

2) Convection et radiation of acoustic 
waves through the nozzle 

3) Acoustic boundary layers  
(forced vortical waves) 

4) Reactive condensed phase 

5) Vortex-shedding (free vortical 
waves) 

6) Turbulence 

Figure 1: Physical Phenomenons in a SRM. 

Not all these phenomenons are directly taken care of in usual approaches of motor instabilities. 
Approximations are common place, due to the lack of knowledge and/or the complexity of the 
mechanisms. For instance, the heterogeneous nature of the combustion of solid propellant is rarely given a 
full treatment, most often, it is averaged and treated as an equivalent homogeneous process, such as 
burning rate laws (apn) or response functions to fluctuating pressure. Nozzle treatment relies on numerous 
analyses and is quite satisfactory, at least for the most classical case of longitunal modes and axial nozzles. 
Acoustic boundary layers is a particular topic which corresponds to attempts to introduce the vortical 
nature of the unsteady flow into acoustic treatments. We will see that this question largely overpasses the 
simple acoustic treatment since the notion of unsteady vorticity fiercely opposes the acoustic point of 
view. For the present time, it suffices to say that unsteady vortical waves are naturally generated when an 
acoustic wave sweeps above the burning propellant surface, where the velocity is forced to be 
perpendicular to the surface (no slip condition). The role of viscosity in that process has been 
misunderstood (as essential in stating the no-slip condition while this condition can be simply, in an 
inviscid view, linked to mass and momentum balances at the propellant surface) and finally may appear to 
be of secondary importance. However, the impact of this process on the acoustic balance is important and 
the fact that it is not yet fully understood does not diminish its role. Quite often the condensed phase is 
considered as inert (e.g. alumina droplets) and composed of a limited number of sizes, although it is 
known that aluminum burns in a complex (and not yet perfectly known) manner, generating a continuum 
of droplet sizes, from the microns to the tenths of millimeter sizes. This matter constitutes one of the 
presently active research issues relative to motor stability and will be discussed later on. Vortex-shedding 
will also be discussed in some details later on, since the research is much more advanced on that subject. 
Its merit is to introduce the flow field as an actor to its own destabilization. Indeed periodic vortex-
shedding can be viewed as a path for energy to be transferred from the mean flow to the fluctuating field. 
The fact that vortex-shedding can occur at discrete frequencies, some of them being capable of matching 
acoustic frequencies, differentiates this mechanism from the next one, turbulence, which rather implies a 
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continuum of frequencies. Although turbulence is also an energy path between the mean flow and the 
fluctuating field, the lack of distinguished frequencies makes this path much less effective in producing 
instabilities. Indeed, the gained experience shows that large turbulent levels inhibit motor instabilities 
which are built on a delicate balance of resonant mechanisms. However, it must not be forgotten that 
turbulence, when limited to usual levels, is also a very effective seed to local instabilities that can then 
feed the overall instability mechanisms. 

It is useful to consider the equation for a simple oscillator of state variable p, where dot indicates time 
derivative, α the linear damping coefficient, ω the angular frequency and F(t) a forcing function: 

stable0
unstable0

)t(Fpp2p 2

>α
<α

=ω+α+ &&&

 

This apparently linear equation can bear some form of non-linearities that can show up in the form of 
dependencies of the coefficients on the state variable, p, such as α(p) or F(p, t). Under the assumption that 
α << ω, the solution of the linear homogeneous equation takes the simple form, p = p0 exp(iωt - αt). 

The figures below depict particular behaviors: 

  

Figure 2-a: Linearly Unstable. Figure 2-b: Harmonically Forced Linearly Unstable and 
Non-Linearly Stable (α > 0 for Large Amplitudes). 

  

Figure 2-c: Linearly Stable. Figure 2-d: Linearly Stable, Harmonically Forced. 
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It can be seen that cases b) and d) lead to limit amplitudes when some harmonic forcing functions are 
applied. Case d) is of particular interest since it may correspond to actual behaviors observed in large 
segmented space boosters, which while predicted linearly stable, exhibit limit amplitude cycles. For these 
cases, it is believed that periodic vortex-shedding could be the forcing function, although this point 
remains largely open to debate. 

Acoustic Balance 
Before recalling the acoustic balance approach, it must be stressed that acoustic balance methods can be 
viewed as a linear analysis of the stability of chamber acoustic modes, much like the above simple 
oscillator examples. In the absence of forcing function, an inhomogeneous Helmoltz equation and its 
boundary conditions are derived from the linearized equations of motion. Inhomogeneities arise from 
considerations of the mean flow and the associated combustion, choked nozzle and two-phase flow 
effects. Solutions are sought as perturbations of reference acoustic modes, solutions of the homogeneous 
equations (in the absence of mean flow and associated phenomenons). That process establishes strong 
dependence on the acoustic point of view since the final solution can only be small (in the linear sense) 
perturbation to the acoustic reference mode. The validity of the final solution is thus limited by 
assumptions which underlie the reference acoustic solution. 

The acoustic balance method was first proposed by Hart & McClure [3] and was given its most practical 
form by Culick [4-6]. The acoustic balance technique belongs to the asymptotic expansion methods.  
Every variable F is split into its mean, F , and fluctuating, F', parts:  

F F F' with F' F= + = <<ε 1. 

ε is a perturbation parameter that characterizes the instability and is used to split the governing equations 
into successive powers of ε. A second perturbation parameter, M , representing the mean flow Mach 
number, is used to simplify the equations. Assuming M <<1 implies that the mean flow remains 
incompressible, which is a good approximation in the combustion chamber, for practical situations.  
The use of two perturbation parameters imposes to fix their respective order of magnitude. Considering 
that the unsteadiness is added to an existing mean flow, it is assumed that: 

ε
ε

, M
Lim M

→
=

0
0  

Then application of this technique to the fluid mechanic equations of mass, momentum and energy 
balance, leads to the following classes of problems: 

ε M  Problem 
0 M  Steady, incompressible flow 

ε 0 Acoustic, without mean flow 

ε M  Linear coupling: mean flow-acoustic 

The order εM  is the lower order that permits the description of the instabilities and corresponds to linear 
equations in ε. As a consequence, only the tendencies of infinitesimal perturbations to grow or decay can 
be determined in the form of a damping coefficient α (F'∝e-αt). One of the advantages of the linear 
approach is that it permits to think additively. Indeed, the total damping is the sum of particular αi ,  
that can be determined (or corrected) separately: 
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α α= ∑ i
i

 

The acoustic balance approach will be briefly described below, following Culick’s paper (see [6]). 
Assuming that the combustion products form a two-phase mixture (subscript p represents the condensed 
phase of single class of size Dp), let ρp be the apparent particulate density: 

ρp pN m= , 

with N the number of particles per unit volume and mp the mass of a particle. The conservation equations 
can be written, for and inviscid fluid and inert particles, as follows (the primitive variables are used instead 
of conservative variables for convenience): 

mass: 

 ( )∂ρ

∂
∂
∂

ρg
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 ( )∂ρ
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p pit x
u+ 0=  (2) 

momentum: 

 pi
ij

i
jg

i
g F

x
p

x
u

u
t

u
=

∂
∂

+
∂
∂

ρ+
∂
∂

ρ  (3) 

 pi
j

pj
pip

pi
p F

x

u
u

t

u
−=

∂

∂
ρ+

∂

∂
ρ  (4) 

energy: 
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i
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iVgVg Q

x
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∂
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∂
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∂

∂
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Fp is the drag force exerted by the particles on a unit volume of gas and Qp is the heat transferred to the gas 
from the particles. For the study of unsteady two-phase flow, it is generally assumed that the two phases 
are in equilibrium for the steady motions (the unsteady motions will be the cause of unequilibrium).  
This leads to the following notations: 

upi = ui + δupi and Tp = T + δTp , where δ’s will have zero mean values. These definitions, together with 
eqns (4) and (6) lead to the following new inter-phase terms: 
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Finally, defining the mixture properties as: 

κ = ρp/ρg 

ρ* = (1 + κ)ρg  

CV* = (CV + κC)/(1 + κ) 

R* = Rg/(1 + κ): mixture perfect gas constant 

p* = p = R*T/ρ* = RT/ρ: static pressure 

γ* = 1 + R*/ CV* = γ(1 + κC/Cp)/(1 + κC/CV) 

( )( )
a

C C
C C

ap

V
g* =

+

+ +













1
1 1

1
2κ

κ κ
 

equations (3) and (5) can be rewritten for the mixture: 

 ρ
∂
∂

ρ
∂
∂

∂
∂

δ* *
u
t

u
u
x

p
x

Fi
j

i

j i
pi+ + =  (9) 

 ρ
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∂

ρ
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∂

∂
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δ* *C T
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C u T
x

p
u
x

QV V i
i

i

i
p

∗ ∗+ + =  (10) 

Then eqn (10) can be written for the pressure: 

 ∂
∂

∂
∂

∂
∂

δ
p
t

u p
x

R
C

p
u
x

R
C

Qi
i V

i

i V
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 =∗

* 1 ∗
*  (11) 

At this point it is interesting to note, that under the assumptions of a steady state motion and of inert 
particles, eqn. (2) gives: 

( )∂
∂

κρ
x

u
i

g i = 0  

which, using eqn. (1), leads to: 

( )u
xi

i

∂
∂

κ = 0  

implying that κ is conserved on any streamline. Since κ is uniform on the propellant surface, κ is uniform 
throughout the chamber. 

The next step is to develop eqns. (9) and (11) to first order in ε and M . It must be noted that the inter-
phase equilibrium hypothesis permits to assimilate the mixture (superscript *) and the steady gas motion 
(notation ¯ ). 
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Steady state:  
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First order:  
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Then, taking the time derivative of eqn. (12) and combining with the divergence of eqn. (13) and assuming 
harmonic motions ( F' i tF= ~ exp( )ω ), one gets an inhomogeneous Helmoltz’s equation for p. This equation 
is valid in the interior domain Ω where the mean flow can be assumed incompressible. Its boundary 
conditions are obtained by taking the scalar product of eqn. (13) with the outward unit normal vector, ni , 
along the chamber boundaries: 
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( ) aik α+ω=  

 

( ) ( )















∂
∂

+
∂

∂

∂
∂

ρ−

δ
∂
∂

+δ
ω

−γ−
∂
∂ω

=

j

i
j

j

i
j

i

pi
i

p2i

i

x
u

u~
x
u~

u
x

F~
x

Q~

a
1i

x
p~

a
u

a
ih

~

 (16) 

 










∂
∂

+
∂
∂

ρ−δ−ρω=
j

i
j

j

i
jipiiii x

u
u~

x
u~

unF~nu~nif
~  (17) 

For the unperturbed case (rigid boundaries (∗), no mean flow and no particles), one has classically: 

 0p~k
xx

p~
N

2
N

ii

N
2

=+
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∂  (18) 

                                                      
(∗) This assumption is justified in most cases, except the cases with “long nozzles” where the nozzle admittance must be taken 

into account in eq. (19) (see ref. [7]). 
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 0
x
p~

n
i

N
i =

∂
∂
⋅  (19) 

Combining eqns. (14) to (19) and taking a volume average over the domain Ω, one can arrive, after some 
tedious algebra, for an expression (eqn. 20) for the perturbed wave number, k, valid at first order,  
and making use of the unperturbed eigen mode of the chamber: 
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The following definitions are used:  

∫Ω= Vdp~E 2
N

2
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=

=

ρ
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where n'i is the inward pointing unit normal vector. 

It must be noted that to arrive at equation (20) one has to assume that the vector ~ui  is proportional to the 
gradient ∂ ∂~p xN i , imposing an irrotational field for the unsteady velocity. This assumption bears several 
limitations for the use of the acoustic balance. Indeed recent works have demonstrated that the unsteady 
velocity field may be highly rotational, as a consequence of the propellant side injection [e.g. 8-11]. 
Recent works propose a modification of the acoustic balance technique [10] to account for unsteady 
vorticity. It is outside the scope of this paper to discuss that matter. It must also be said that in situations 
where vortex shedding takes place, the assumption of an irrotational velocity field is also incorrect.  

Equation (20) can be split in its real and imaginary parts to give the following equations for the frequency 
shift and the damping coefficient, brought by the perturbation (assuming that α2 <<ω2 ): 
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Particular Contributions to the Acoustic Balance 
The last two volume integrals of the above equations concern the particulate damping and will be 
discussed in a following section. Concentrating on eqn. (22), and discarding the particulate dampings, 
usual form will be given. The first surface integral can be broken over the following surfaces: 

• Propellant surfaces: due to the propellant combustion, Mn represents the injection Mach number, 
Minj , and An the propellant admittance. It is common practice to use the propellant burning rate 
response, RMP , instead of the admittance. These two quantities are linked by the following 
relationship: 

[ ]

R
v v
p p p p
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u n
p
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M A
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c c

inj

i i
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= = +

⇒ = +

' ' ' '

' '
.
'

ρ ρ
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A global response is sometimes defined as: Rc = RMP + RTP , with RTP being the temperature response. 
Assuming isentropic oscillations leads to: 

R R
T T
p p

Rc MP MP= + = +
−

'

'
γ
γ

1  

Then, assuming that the propellant combustion does not depend one the location, the combustion term αc 
can be obtained as: 
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• 

• 

Inert walls: their contributions are obviously zero. 

Nozzle entrance plane: due to different normal vectors orientations, Mn represents -ML , and An 
represent -AL , with ML and AL being the nozzle inlet Mach number and acoustic admittance 
respectively. Assuming uniform properties across the nozzle entrance plane, the nozzle term is 
broken into the following convective, αNC , and radiative, αNR , parts: 
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L

∫

∫

Ω

=α  (25) 

Once the propellant and nozzle properties are known, evaluating the motor linear stability is only a 
question of computing the reference acoustic mode, solution of eqns. (18) and (19), and evaluating the 
different stability integrals appearing in αc , αNC , and αNR. The resulting damping coefficient will then be  
α = αc + αNC + αNR. 

This will be illustrated for a simple cylindrical port motor displayed in fig. 3, and for the case of the  
qth longitudinal mode.  
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L 
x 

R 
 

Figure 3: Simple Cylindrical Motor. 

The following equations are used: 
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Finally: 
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To estimate the effectiveness of the dampings, α must be compared to the frequency, fq = q a/(2L), so that: 
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It must be noted that for short nozzles, it is common to approximate the real part of the nozzle admittance, 
AL , by its value derived from a quasi-steady analysis: 
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This permits to evaluate the relative order of magnitude of equations (24) et (25). Assuming γ ≈ 1.2, it is 
found that the radiative term represents roughly 10% of the convective one. The fact that Re(AL) is a small 
number validates the assumption that the nozzle entrance plane behaves much like a rigid wall. 

Then evaluating the resulting α, one gets in this simple case: 

 ( ) 



 −γ

++γ−=
α

2
12RReM

R
L

q
2

f MPinj
q

 (26) 

From this equation it appears that unless Re(RMP) is larger than (γ+3)/2γ (≈ 1.75) stability will be 
predicted. This limit will be even higher when the flow-turning correction will be added to the acoustic 
balance (see next section). 

In more complex situations, the stability integrals must be carried out numerically, as well as the 
determination of the reference acoustic mode. It can be seen from eqns. (23) and (24-25) that the location 
where the combustion takes place and/or where the nozzle is located with respect to the reference acoustic 
mode will affect the global balance. In particular, the most famous T burner, with its propellant samples at 
the chamber ends and its nozzle at the mid-chamber position, will favor motor instability (which is what it 
was designed for). 

Flow Turning Issue 
The flow turning issue is a long debated subject (e.g. see [1, 2, 6, 8, 10, 12, 13]). It appeared from the fact 
that the results of the 1D acoustic balance are different from the 3D ones. An additional term is found in 
the form of a surface integral over the burning surface: 

 Sd
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M
Ek2

a
injS

2
N

inj2
N

2
N

FT ∫ 







=α  (27) 

This term was extended to the 3D analysis by Culick [6]. It derives from the condition of a no-slip 
boundary condition that can be freely imposed in 1D whereas the 3D approach forces an irrotational 
unsteady field. This was interpreted as a viscous effects, due to acoustic boundary layers. However,  
a simplified viscous treatment, near the injecting surface, led to a different expression [8], resulting from 
the “apparent” propellant admittance. Indeed, the actual propellant admittance has to be corrected from the 
displacement effect of the viscous layers. In the case of the relatively strong blowings encountered in 
SRM, this correction had a limiting value, independent of the viscosity, which was troubling. This term, 
supposed to replace the αFT term, was: 

 ( ) Sdp~M
E2
a

injS
2

Ninj2
N

BL ∫=α  (28) 

Please note that in the case of a pure cylindrical motor, both eqns. (27) and (28) give the same result, 
adding to the trouble. The discussion was further fed by full numerical solutions of the unsteady Navier-
Stokes equations [9, 11] that clearly showed that the unsteady velocity field was clearly rotational, 
invalidating both the 1D and the 3D approaches and the αFT term, but also that the so-called acoustic 
boundary layers were very thick, invalidating the admittance correction approach and the αBL term.  
In several recent papers [e.g. 14], Majdalani et al. revisited the problem of unsteady vorticity in acoustic 
solutions and proposed a unified mathematical framework. 
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In any cases, most researchers agree to the fact that the uncorrected acoustic balance, as expressed in  
eqn. (26), underestimates the motor stability. Indeed, for the simple cylindrical motor, one gets: 

inj
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2

ff
=

α
=
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leading to the following expression: 
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which sets the stability limit to Re(RMP) larger than (γ+5)/2γ (≈ 2.58), which is a rather large value for the 
real part of the response function. One may then conclude, that if the combustion is the only driving 
mechanism, most motors should be stable on their longitudinal modes, which is unfortunately not the case. 
For transverse modes and especially the tangential modes, the above analysis leads to less marked 
conclusions, in particular due to the nozzle terms which contributes to only limited losses. 

Two-Phase Flows 
Since most motors use metallized propellants, the combustion products carry some amount of condensed 
phase products, such as alumina droplets. These will add to the motor stability. In fact, one of the  
reasons to load propellants with metal powder, such as aluminum, is to increase the stability of the motors 
(another reason being the benefit of increased specific impulse).  

Evaluation of the particulate terms in eqns. (21) and (22), can be done providing that ad-hoc laws are 
supplied for the drag force and the heat transferred between phases. Reference [15] describes the  
problem and proposes solution methods. It is common practice to evaluate the two-phase flow terms  
for the simplified Stokes regimes, valid for small (less than unity) particular Reynolds numbers 
(Rep = ρ Dp ∆Up /µ , where ∆Up is the velocity difference between the two phases). For low amplitude 
oscillations, this is consistent with the equilibrium hypothesis, since then: 

µ

δρ
=

ppg
p

~D
)Re(

u
 

Under these conditions, the drag coefficient takes the well known value of: 

CD=24/(Re)p 

and the convective heat transfer coefficient is taken as: 

h'=2λ/Dp (Nusselt number =2), 

This leads to the following linear relations: 

pppp )D3(N uF δπµ=δ  

pppp T)D2(NQ δπλ=δ  
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At first order, eqns. (7) et (8) lead to: 
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Finally, expressing δFp et δQp as functions of the fluctuating velocity and temperature (which, at first 
order, can be directly linked to ∂pN/∂x and pN , one gets: 

i

N
2

v

v
pi x

p~

)(1

i1
F

∂
∂

ωτ+

ωτ−
κ=δ  

N2
T

T

p
p p~

)(1

i
C
CQ

ωτ+

ωτ+
κω−=δ  

These are then incorporated into eqns. (21) et (22). With some further approximations, valid for small κ 
and for C/Cp et C/Cv close to unity, the particular damping term can be expressed as: 

 





















ωτ+

ωτ
−γ+










ωτ+

ωτω
κ=α

∫

∫

Ω

Ω

2
T

T

p2
N

2
N

2
N

2
v

v
p

)(1C
C)1(

Vdp~k

Vd
dx
p~d

)(12
 (30) 

Please note that on the contrary to the preceding terms, this expression involves a volume effect. 

For the simple cylindrical motor, this expression becomes: 
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and finally: 
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Neglecting the thermal term, the optimum damping is obtained for ωτv = 1, which leads to: 
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This relation can be used to adjust the propellant loading to damp potentially unstable modes (most of the 
time, the feared tangential modes) by selecting the proper particle sizes. 

Conclusion/Limitations 
The above sections described the engineer tools for predicting motor stability. In practical situations, 
which depart from the simple cylindrical motor considered here, this task involves the determination of the 
reference acoustic modes and the evaluation of the stability integrals. Inputs to the model are the 
propellant response function, the nozzle admittance and the particular phase sizes. These can be obtained 
from experiments, dedicated to that characterization effort, and bear some uncertainties, sometimes quite 
large, due to the complex physical mechanisms involved. This, added to the fact that some difficulties 
arise from the formulation itself (e.g. how to express the flow-turning loss or the nozzle admittance in 
complex geometries), makes the acoustic balance a “useful tool of limited validity”. It is not surprising 
that stability is predicted most of the time, while unstable motors keep haunting the rocket 
engineers’ nights. 

FLOW STABILITY 

Presentation 
From what precedes, it is clear that some sources of instability are missing from the acoustic balance 
approach. Flandro and Jacobs [16] were the first to mention the “vortex-shedding” as a possible additional 
driving to the motor stability balance. It was viewed as a coupling between a shear layer instability (in the 
hydrodynamic sense) and the chamber acoustic. First works considered simple correlations in term of 
critical Strouhal numbers (see [17] for a detailed presentation). These Strouhal numbers were based on the 
mean axial velocity (U) and either on the port diameter (D): (St)D , or on the stand-off distance between 
the vortex generation point and its impact, l , (St)l: 

(St)D = fD/U and (St)l = fl/U 

References [18-24] present interesting attempts to use correlations of this type. However, it must be 
stressed that such correlations have a limited predictive merit and can be compared to the celebrated  
“age of the capitain” formula (mast height divided by the ship speed): all the difficulty lies in the 
proportionality constant which has no universal quality. Reference [20] goes one step further in using the 
Rossiter’s formula to correlate the observed frequencies. This approach uses the relative time delays of the 
vortex emission to the acoustic feedback. The figure hereafter illustrates this point of view. 
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Figure 4: Illustration of the Vortex-Shedding Phenomenon. 

RTO-EN-023 7 - 15 



Motor Flow Instabilities – Part 1  

Let T be the time period of the vortex-shedding, k the ratio of vortex displacement velocity to the mean 
axial flow velocity, U, β an empirical constant representing the time delay between vortex impact and 
acoustic wave emission and m the number of vortices on distance l , then one gets: 

mT = l/kU + l/c + βT 

k and β are empirical constants that must be case adjusted from the measurement of the frequency. 

Reference [20] uses this relationship to express (St)l as: 
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M is the Mach number associated to U and can be neglected before 1/k (always greater than 1). 

Application of this formula to the Titan SRMU leads to values of m in the range 5-12, and to k = 0.58 and 
β = 0.25, which is in reasonable agreement with previous works (see [20]). 

It is important to stress that such an approach is simplified and cannot be fully predictive. However it turns 
out to be quite useful in interpreting firing test measurements. 

The most complete approach to this problem is that of Flandro [22]. Vortex properties (wave length, 
displacement speed) are derived from the hydrodynamic stability analysis of the velocity profile at the 
origin of vortex-shedding. The impact mechanisms are modelized through a localized volumetric force. 
References [17, 23-25] present applications of this method to the Ariane 5 MPS P230 solid boosters.  
The aim is to derive a vortex-shedding additional term, αVS , to the acoustic balance results. However,  
non realist values are obtained (due to the strong linear growth of the vortices) and the method was limited 
to a qualitative analysis (driving or damping effects) that is based on the phase difference between the 
vortices at impact and the acoustic field. This method will not be further detailed here, although it 
represents a unique attempt to quantify the Rossiter’s equation from first principles, because it was found 
to be extremely sensitive to unknown details, such as the precise location of the vortex origin.  
The interested readers are referred to references [22-25 and 17]. 

Looking back at the acoustic balance approach, it is interesting to look at the implications of rotational 
fields on the final equations (see [26, 17]). Indeed, assuming that the unsteady velocity is no longer 
aligned with the gradient of the acoustic pressure, additional terms result from the linearization of the 
u.∇u term in the RHS of eqn. (20). These terms take the following form: 
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These integrals are difficult to evaluate in general and need to know the flow organization in the volume 
of the motor. However, it is interesting to note that the last integral implies unsteady vorticity and can be 
related to the vortex-shedding phenomenon. For a two-dimensional flow its integrand reduces to: 
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It can be argued that this integrand takes significant values at localized points inside the motor chamber, 
such as the nozzle entrance where vand~

zω  are large, thus providing a natural way to introduce the 
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coupling between the vortical and the acoustic fields. The volume integral can then be reduced to a surface 
integral at the vortex “impact” point as proposed by Flandro. 

Intrinsic Non-Linear Nature 
Attempts to complement the basic acoustic balance approach are impeded by difficulties linked to the 
departure of the unsteady field, in particular the velocity field, from the pure acoustic vision. Indeed,  
the flow-turning debate illustrates the difficulty in incorporating unsteady vorticity in the acoustic 
framework, while the vortex-shedding issue exemplifies the difficulties in taking care of flow instabilities 
in the linear framework.  

The fact that the mean flow can become unstable by its own is now an accepted result. The fact that this 
unstable behavior cannot easily fit into the acoustic framework is also becoming evident. One of the 
reasons that one can invoke is that flow instability evolves on its own, as an independent mechanism, with 
no need to an acoustic reference. The attempts to treat separately these two independent mechanisms from 
variable decomposition: mean and fluctuating flows, with the fluctuating flow composed of an 
compressible irrotational (acoustic component) and an incompressible rotational (vortical component) 
components, at the basis of Flandro’s approach, failed to provide useful results. The reason of failure lied 
not in the necessary coupling equations, which could be written, but rather in the difficulty to describe the 
vortical evolutions. Indeed, vortical flow can be characterized in its linear regime (initial growth of 
instability waves) with proven methods (Orr-Sommerfeld type approaches) but growth rates in this early 
linear regime are quite high and the vortical field rapidly enters some form of non-linear regimes which 
are much more complex to model. The fact that in most situations the interactions between the two 
unsteady fields occur when the vortical fields has become non-linear, may explain the failure of the above 
mentioned approaches. 

Most of the time, observable vortices are the results of a non-linear growth process. As a 
consequence, our knowledge of such vortices and of their dependencies on the known parameters is 
blurred by the non-linear growth stage of initial unstable vortical waves, a process which most of the time 
remains beyond our present understanding. However it is of major importance to better understand the 
initial destabilisation mechanisms, simply because they have definite frequency signatures and 
sensitivities to flow characteristics which must be known in order to understand their potential 
effectiveness to couple with acoustic waves and produce harmful vortices. Controlling the early stage of 
flow instabilities is undoubtedly an effective mean of avoiding unwanted motor instabilities driven by 
some form of vortex-shedding. In that view the knowledge of flow stability characteristics is an 
essential prerequisite to any attempt in controlling motor flow driven instabilities. This is detailed in 
the second paper devoted to the stability theory. 

Model Requirements 
From what precedes, it is clear that if motor flow driven instabilities have to be predicted, one has to rely 
on a model that has the ability to describe, in the same framework, both the acoustic waves and the 
vortical waves (including non-linear interactions). From that point of view, the full numerical solution of 
the compressible Navier-Stokes equations provides the needed framework.  

However, since the instabilities can be viewed as resonance mechanisms that involve the motor chamber 
acoustic modes and unstable couplings of physical phenomenons linked to the mean flow, the Navier-
Stokes equations have to be completed to include all the needed phenomenons. Considering the nature of 
the solid propellant rocket internal flows, identified physical mechanisms are: 

• 

• 

the mean flow itself, including sheared flows, nozzle flows, and turbulence, 

the propellant combustion at the burning surface, 
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• 

• 

• 

• 

• 

• 

• 

• 

the combustion of aluminum droplets carried by the flow, 

the structure motions (as possibly affecting the mean and unsteady flows). 

Finally, the model should be able: 

a) to propagate the acoustic waves, 

b) to describe the details of the internal flow, including the capture of acoustically forced vorticity 
waves as well as flow instabilities and their non-linear growth, 

c) to include some form of condensed phase model (inert and reactive), 

d) to couple with propellant combustion models, 

e) to couple with solid mechanic models. 

This analysis concluded that full solutions of the compressible unsteady Navier-Stokes equations, 
including reactive two-phase flow treatments should be sought. Indeed, as already mentioned,  
such solutions have the capability to describe both the acoustic and flow vorticity, without the need to 
separate the solution in several flow components. We have underlined that this poses some problems for 
describing each component in a compatible way. Further, such a model could be coupled through its 
boundary conditions to propellant combustion models and solid mechanic codes, to permit a complete 
description of the identified mechanisms. This would then provide an unprecedented tool for analyzing 
motor instabilities.  

However, such a solution would necessarily rely on a numerical solution of the equations and some 
concerns were raised about the ability of the numerical procedure to faithfully describe the solution, due to 
numerical errors and grid size requirements. As a consequence, it was agreed that such a solution method 
should pass through a severe validation procedure before it could be safely used in predicting motor 
stability. 

This validation requirement posed in turn some constraints which were the need for detailed 
measurements in known situations to provide the data against which the numerical results would be 
validated. This was quite a new constraint and it promoted a series of unique research works, sometimes of 
ingrate nature, that had to be performed to sustain the construction of this new tool. Here “ingrate” must 
be understood, not as scientifically uninteresting works but rather as far from actual motor applications 
and thus implying difficulties in being funded and fully appreciated by program managers. However,  
such works were essential and ranked from: 

Cold flow simulators in which detailed velocity measurements could be performed and compared 
to numerical simulation results, 

Analytical solutions of unstable flow regimes, 

Dedicated lab scale motors with high quality and numerous measurements to gain real firing tests 
data, 

Meticulous characterization efforts to provide the model inputs. These comprised condensed 
phase characterizations, details of the propellant composition, including characterizations of AP 
and aluminum size distributions, and unsteady propellant combustion responses function 
determinations, 

Dedicated models for combustion mechanisms and fluid-structure couplings, 

Dedicated and documented test cases for model evaluations. 

Such works have be carried out in Europe thanks to the Ariane 5 related programs and represent a valuable 
asset for the development of a comprehensive model for motor stability predictions. For the first time,  
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at the end of that research effort, actual unstable motor behaviors could be simulated numerically and 
produced results that agreed both in frequency and in oscillatory amplitude, with motor measurements. 
Results of such quality were judged unattainable at the start of the research effort and are worth to be 
celebrated. Of course much remains to be done yet, to guarantee the capability of a priori predictions from 
scratch (i.e. before any firings are performed). 

STABILITY THEORY 

This part is described in details in the second paper. 

DEALING WITH FLOW STABILITY 

Experimental Evidences 

From early works of Flandro et al., it was expected that flow instabilities could drive unstable motors.  
In particular, it was stressed that inflectional velocity profiles, as created above protruding obstacles or at 
propellant grain discontinuities could be at the origin of unstable flows, prone to produce vortex-shedding 
driven instabilities. The works carried out in the USA, relative to the Space Shuttle and the Titan boosters, 
clearly demonstrated that vortex-shedding could drive the first longitudinal modes of the motor  
[27-30, 18-22]. The works of Dunlap et al. [19] established that for such large segmented space boosters, 
protruding inhibitor rings, such those created by the front ends thermal insulations of propellant segments 
(typically the aft segments), could be at the origin of highly sheared flow that produced periodic vortex-
shedding driving the motors unstable. This was also observed in Ariane 5 boosters [31]. The resulting mild 
pressure oscillations were disturbing since all these motors were predicted stable by the acoustic balance 
method and more annoying, they produced significant thrust oscillations, due to high pressure to  
thrust ratio (of the order of 10). This high value of the ratio can be straightforwardly explained from  
geometric and phase relationships. Moreover, the low frequencies associated with these large motors 
(recall that f1L ≈ a/2L) rendered such oscillations undesirable since they were able to couple to the 
structural modes and thus to propagate easily to the launcher structure and payloads.  

The vortical origin of these oscillations can be traced to their particular frequency signatures. Indeed it was 
observed that instabilities followed peculiar frequency tracks, showing decreasing frequencies and sudden 
jumps around the pure acoustic frequency. For example, the figure below shows the time evolution of the 
head end pressure power spectral density for one subscale firing. The particular frequency tracks around 
chamber acoustic mode frequencies (solid lines) is evident. The decrease of the frequency during motor 
burn was viewed as an indication of the driving being the result of flow instabilities, linked to the mean 
flow axial velocity. Indeed in most solid propellant motors the axial velocity continuously decreases,  
due to increasing motor port area, as propellant burns out. The jumps were viewed as system adaptation to 
changing conditions: when the vortex driving frequency falls too far away from the acoustic frequency,  
an increase in the number of vortices occurs (see eqn. 31) to bring back the driving frequency in the 
acoustic range. Such behaviors could not be explained by the acoustic balance approaches and were 
considered as evidence of an hydrodynamic origin of the oscillations. 
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Figure 5: Typical Frequency Tracks for Flow Driven Instabilities (LP3 E Firing). 

In Europe the development of the Ariane 5 segmented solid rocket motor promoted researches in that area, 
looking to unstable behaviors of segmented motors. A subscale motor was designed from a simplified, 
1/15th scale, geometry of Ariane 5 P230 MPS solid rocket motor. Cylindrical propellant grains were used 
and a non-aluminized propellant was chosen. Since the emphasis was put on flow driven instabilities it 
was thought that details of the combustion should be of secondary importance. The overall P230 
segmentation scheme was reproduced with a propellant loading composed of three segments: a short head 
end segment of limited burn time (roughly 20% of total burn time), two longer mid and aft segments.  
As in the full scale motor, a submerged nozzle assembly was retained. This motor was named LP3 and 
five configurations were fire tested [24, 32]. For each configuration, two firings were performed to check 
for reproducibility. The configurations differed between each other by segment arrangements, as depicted 
in figure 6 below. 

LP3 A 
 

Nominal configuration: mid and aft 
segments inhibited on their forward 
ends 

LP3 B 
 

Inhibitor rings on both ends of the 
mid-segment. Aft segment free of 
inhibitor. 

LP3 C 
 

Mid segment inhibitor moved to 
segment aft end. 

LP3 D Mid and aft segment replaced by a 
single longer segment 

LP3 E 
 

Aft segment free of inhibitor 
 

Figure 6: The LP3 Configurations. 

7 - 20 RTO-EN-023 



Motor Flow Instabilities – Part 1 

These configurations permitted a parametric study of the second inter-segment arrangement (termed IS2) 
which was suspected to be at the origin of the unstable sheared flow capable of driving motor instability. 

Configurations A, D and E produced the most remarkable results, with clearly different behaviors.  
The figures below, taken from reference [33] illustrates these results. They show head end pressure power 
spectral densities (psd). 

 

 

LP3 A: firing 1/91 LP3 D: firing 2/91 LP3 E: firing 1/93 

Figure 7: Typical Results of LP3 Motors (Head-End Power Spectral Densities) 
NB : f1L ≈ 300 Hz, f2L ≈ 600 Hz, f3L ≈ 900 Hz. 

These results show that all three configurations were unstable and that the frequency tracks were 
organized around the first three longitudinal modes. Decreasing frequency tracks with sudden jumps are 
clearly visible and indicate that the observed instabilities belong to flow driven instability regimes. 
References [24, 25] present the results of the acoustic balance approach that was applied to all LP3 
configurations and concluded that the motors should be stable. These results were at the origin of a brand 
new understanding of flow instabilities. Before these results, it was accepted that in segmented motors, 
like those of the US Space Shuttle, US Titan launcher or the European Ariane 5 MPS, the protruding 
inhibitor ring at the IS2 location was the major source of vortex-shedding, due to the highly sheared flow 
around the obstacle created by the protrusion of the inhibitor. This situation is present in LP3 A and results 
show that it produces instabilities, early in the burn, at high frequencies (around the third longitudinal 
mode, close to 900 Hz). The other results were rather surprising, since significant amplitudes were 
recorded despite the motor configurations do not comprise protrusion of obstacle in the flow. This was 
viewed as an indication that another mechanism for flow instabilities was present. The fact that LP3 D 
configuration was unstable was in itself like an earthquake in our understanding. How such a simple 
geometry (at the time where instabilities are observed, the motor was very much a pure cylindrical grain) 
can produce flow instabilities ? This question motivated the throughout analysis of the Taylor’s flow 
stability, as described in the second paper. The results of that analysis were beyond all expectations.  
They clearly showed that the simple Taylor’s flow bore in itself the roots of instabilities [34]. This rather 
simple flow (velocity field expresses as mere sine and cosine laws) was found to undergo intrinsic 
destabilization at a moderate critical abscissa of x/R close to 3 (for axisymmetric configurations),  
and mostly independently of the flow Reynolds number. Moreover the frequencies of the early unstable 
waves were found to lie in the range of longitudinal acoustic mode frequencies. This opened the way for a 
radically new interpretation of unstable flow regimes, driven by intrinsic flow instability. This was 
supported by unprecedented full numerical simulations of motor instabilities [35]. These showed that 
observed instabilities in LP3 D and LP3 E configurations were of a same nature and implied a coupling of 
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Taylor’s flow intrinsic unstable waves with longitudinal acoustic modes of the chamber. This coupling 
produced what was called parietal vortex-shedding: vortices are generated at the burning surface and move 
downstream until they interact with the submerged nozzle. Afterward, it was noted that first hints of 
Taylor’s flow instabilities were mentioned and detailed in the synthesis article of Dunlap et al. [36]. 

Simplified Approaches 
In the quest for situations that would permit the full numerical model validation it was decided to use 
Flandro’s approach to devise the simplest motor that could produce vortex-shedding driven instabilities. 
From the ingredients of Flandro’s explanation to unstable motor it was retained that, in order to devise a 
“whistling motor”, one would need to produce a mean flow with a localized inflectional profile whose 
unstable frequencies could match the chamber first longitudinal modes frequencies. That work, described 
in details in [17, 23], consisted in devising an unstable motor from first principles and is worth being 
related here as an example of the use of simplified methods to analyze flow driven instabilities.  
The starting point is a simple motor geometry used for code evaluation that comprises a prismatic grain 
geometry. This geometry produces an inflectional velocity profile at the exit of the cylindrical portion of 
the grain (here x=155 mm), as described in figure 8 below. 

 

Figure 8: Simple Motor Geometry Producing an Inflectional Velocity Profile at x=155 mm. 

Under the assumption of parallel flow, it is possible to characterize the stability properties of this profile 
from Orr-Sommerfeld type equations, in their spatial growth formulation. In this formulation velocities are 
expressed relative to ∆U, the velocity difference across the shear layer and distances are expressed relative 
to δ, the thickness of the shear layer. The time scale is thus δ/∆U. The main result is the complex 
dimensionless wave number a= ar + iai , obtained as a function of the real dimensionless frequency, 
expressed as a Strouhal number, cr = 2πfδ/∆U. The opposite of the imaginary part of the wave number,  
-ai , represents the spatial growth rate and the ratio Kv = cr/ar is the vortex phase velocity in ∆U units.  
These results are depicted in figure 9 below. 
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Figure 9: Stability Properties of the Inflectional Profile. 

The results of the Orr-Sommerfeld solver can be viewed as universal curves, characterizing profiles of 
similar shapes, defined by their values for δ and ∆U. For such profiles, the most unstable frequency is 
given by cr = 0.3 with an associated vortical wave length, λv = 2πδ/ar = Kv(2πδ/cr). From fig. 9 it is useful 
to note that there exists an upper limit (cr ≈ 1.6) above which no unstable waves can be sustained.  
The coefficient Kv is the ratio cr/ar and is also a direct result of the velocity profile stability analysis.  
It represents the ratio of the vortex displacement velocity to the shear layer velocity difference ∆U.  
This is a useful information if phase relationship have to be compared, as in the Rossiter’s approach 
(coefficient k). 

In order to devise a whistling motor, one has to verify that: 

a) the most unstable frequency of the vortical waves matches the chamber longitudinal acoustic 
mode frequency, 

b) the stand-off distance separating the vortex emission point to the interaction point, assumed to be 
localized at the nozzle entrance, is sufficient to contain an integer number of vortices of wave 
length λv. 

These two conditions are necessary conditions to produce vortex driven instabilities. Experience show that 
they are also, in most cases, sufficient conditions. 

It is then a simple matter to adjust the motor chamber length (which governs the frequency of the qth 
longitudinal mode, fq = q a0/2L), by increasing the distance between the downstream end of the propellant 
grain and the nozzle, to verify the two conditions stated above. Considering an actual motor, propellant 
combustion implies a continuous increase of the internal grain port diameter, D, and consequently a 
continuous decrease of the mean flow axial velocity, U, at the grain downstream end (from simple mass 
balance). Assuming that δ and ∆U are known functions of D and U: δ = KδD and ∆U = KUU, one can 
follow the evolution of the vortical wave properties during motor burn. This will permit final adjustments. 
This exercise was performed on a laboratory scale motor configuration and resulted in the C1xb motor 
depicted in figure 10 below. The stand-off distance from propellant end to the nozzle entrance plane was 
adjusted to provide frequency match during most of the motor burn time. In the frequency versus 
propellant web distance burned plot, we followed the time evolution of the frequencies corresponding to  
cr = 0.3 (most amplified frequency) and cr = 1.6 (upper frequency limit of the unstable velocity profile)  
in the grid formed with the chamber acoustic mode frequencies (horizontal lines). It clearly appears that 
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the range of possibly excited modes rapidly narrows to the first acoustic mode, in the second half of the 
firing. 

 

STABLE 

UNSTABLE 

 

Figure 10: C1xb Motor Design from the Simple Frequency Match. 

Although the acoustic frequencies never match the most amplified frequency, it was anticipated that the 
motor would be unstable. Indeed, a coupling path is available since the acoustic frequency of the first 
mode lies in the range of the shear layer unstable frequencies. In that vision, the shear layer is a mere 
broad band amplifier and will naturally tune to available frequencies. This actually worked. The C1xb 
motor was constructed and fired several time at ONERA, in the framework of J. Dupays’s thesis [37, 38]. 
Good reproducibility was observed and the motor was used in the validation work of the full numerical 
approaches (see below). Figure 11 illustrates the results of one C1xb firing. It clearly shows that, after a 
first phase where higher frequencies are present a second phase occurs with a clear flow driven motor 
destabilization on the first mode frequency, around 700 Hz. 

 

Figure 11: Example of One C1xb Firing Test. Head end unsteady pressure time history and psd. 

The same simplified approach can be carried out from the stability properties of the Taylor’s flow 
(detailed in the second part of this paper). The starting point is again the frequency range of early vortical 
waves. Again, the velocity and length scales are directly obtained from the stability analysis: Vinj is the 
injection velocity, and h, the height (or radius) of the chamber. The knowledge of the frequencies of 
possible unstable waves, in Vinj/h units, permits to identify configurations whose acoustic frequencies of 
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interest can be matched. This provides the necessary ingredients for positive coupling and permits to 
identify configurations that would be prone to acoustic resonances. Again this exercise was done for the 
2D planar VECLA cold gas set-up and produced remarkable results [39-42]. Figure 12 below represents 
the results of the hydrodynamic stability analysis in the form of the wave growth factor as a function of 
dimensionless frequency and the dimensionless distance from the head-end.  

 

Figure 12: Results of the Stability Analysis of the Taylor’s Flow. Spatial amplification  
factor as a function of dimensionless frequency and distance from the head-end. 

However, simple frequency match considerations are not always sufficient to describe conditions for 
acoustic resonances, in particular for the type of instability like Taylor’s flow instability. Other parameters 
must be included, such as vortical wave growth distance, non-linear saturation, amplitudes, non parallel 
nature of the flow (its stability properties depend on x) and phases and amplitudes at interaction points. 
Two critical interaction points have been identified: motor exit or nozzle entrance point where the vortices 
exchange energy with the acoustic waves and “receptivity” point where the acoustic waves feed back to 
the vortical waves. At the present time these issues are not yet fully settled, although some clear trends 
have been pointed out in B. Ugurtas and J. Griffond theses [43, 44]. 

Simple approaches are interesting because they permit to summarize the accumulated knowledge in simple 
relationships that help understanding the mechanisms that govern such delicate couplings. However they 
cannot provide quantitative results and full numerical approaches are then needed. It must be noted that 
although very powerful, the full numerical approaches would only give global results  
(much like an experiment) that will require, in turn, some form of analysis to build some knowledge. 

Full Numerical Approaches 
The full numerical approaches provide an unprecedented mean to analyze the details of the flow field 
during flow driven motor instabilities. In particular, the ability to see the internal details of the flow field 
has proven to be useful in classifying the flow regimes that led to motor instabilities. We already 
mentioned the role of the numerical simulations in pinpointing the Taylor’s flow instability origin of the 
instabilities in the LP3 D/E motor. The results of the full numerical approach permitted to identify three 
types of flows that led to motor instabilities. 

• Obstacle vortex-shedding (termed VSO from the French acronym “vortex-shedding d’obstacle”) 
where the shear layer responsible for the shedding of vortices is created by a protruding obstacle  
(such as an inhibitor ring). This corresponds to the first idea from the US experience on the Space 
Shuttle SRB and early Titan IIIC/D then 34D motors, but also to the nominal version of the LP3 
subscale motor, LP3 A. This situation is illustrated below. 
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• Corner vortex-shedding (termed VSA from the French acronym “vortex-shedding d’angle”) 
corresponding to simplest case where shedding was produced by an obstacleless shear layer  
(jetting effect) corresponding to the C1xb situation, illustrated below. 

 

• Surface or parietal vortex-shedding (VSP from the French acronym “vortex-shedding pariétal”)  
where the shedding results from an intrinsic instability of the internal flow, corresponding to versions 
D and E of the LP3 motor, without aft segment inhibitor rings, the cold flow set-up Vecla but also to 
the recent TITAN IV/SRMU motor. The figure below illustrates this situation. 

 

The benefits of the full approaches are not limited to this useful insight nor to the capability to treat both 
acoustic and vortical waves in the single framework of the compressible full (non-linear) Navier-Stokes 
equations. Although important these are not sufficient to open the way to useable stability previsions in 
real motors. We have seen that most of the time, mild pressure oscillations are present in motors predicted 
stable from acoustic balance method. The important information are then the frequency and the amplitude 
of these pressure oscillations, as well as their efficiency in translating to thrust oscillations. The full 
approaches must then have the capability in providing such information. This implies that some of the 
phenomenons identified in fig. 1 that are missing in the approach have to be taken care of.  
Since phenomenons numbered 2, 3 and 5 (nozzle flow, vorticity waves and vortex-shedding) are already 
included in the full Navier-Stokes approach, models must be devised for including the phenomenons 
numbered 1, 4 and 6 on fig. 1 (propellant combustion, two-phase flow and turbulence). To these internal 
phenomenons, the possible coupling with the motor case or elements of structure must be added.  
Under these conditions, the full numerical approaches will become a useful tool for an oscillation free 
motor design (quiet motor). 

Research work is heading in that direction and the present state of the art is coming close to that 
requirement. This will be illustrated by three examples in the next section. Most of these examples have 
been obtained in the validation stage. Indeed, as already mentioned, the validation of the numerical tools is 
of first importance and represent the price to pay for a reliable prevision of motor stability and/or control. 
References [45-50] are examples worth mentioning to complement other cited references. 

Examples 

Example 1: The C1xb and VSA 

From the beginning, the C1xb motor was designed as to be a first stage of validation at the laboratory 
scale. As described in J. Dupays’ thesis the emphasis was put on the two-phase flow effects, combined 
with vortex-shedding driven oscillations. Following first demonstration of effective motor destabilization, 
as presented here above, the motor was fired with propellants having different inert particle loadings. 
Although this work produced unprecedented results, in particular on the influence of the inert particles on 
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oscillatory levels (to the contrary of the ideas inherited from the acoustic balance approach described 
earlier, amplitudes were not always decreased by the presence of condensed phase) it was limited by the 
difficulties in characterizing the propellant combustion response. A quantitative comparison in term of 
frequency and amplitude was nevertheless conducted few years later, once propellant characterization 
became available. This is described in [51] and the main results are presented below. The propellant 
response function is treated as an unsteady boundary condition that is derived from the linear relationship 

defining the pressure coupled response function 
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rate, prime denotes unsteady components and overbar mean values. Then the resulting unsteady injected 
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with R(τ) being the impulse response associated to the frequency response RMP (ω): 
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This simple boundary condition proved to be quite effective and produced quasi-perfect agreement 
between the experimental measurements and the computations. Due to uncertainties in the propellant 
characterization two response curves were considered. Although these curves largely differed, the results 
were found to be significantly improved with both response functions. The figure below presents the 
unsteady flow field in the C1xb motor at the 10.7 mm web distance burned which was chosen for the 
comparison, and the following table summarizes the quantitative results, in terms of pressure amplitudes 
and frequency. 

Figure 13: C1xb Flow Field at 10.7 mm of Web Distance Burned. 

 

 No response Response #1 
(mne) 

Response #2 
(glk) 

Experiment 

Head-end amplitude (hPa) 
(relative error) 

12.7 
(71%) 

28.5 
(35%) 

43.1 
(2%) 

43.9 

Aft-end amplitude(PC6) (hPa) 
(relative error) 

15.5 
(39%) 

20.6 
(20%) 

26.6 
(4%) 

25.6 

Frequency (Hz) 
(relative error) 

740 
(3.8%) 

720 
(1.0%) 

715 
(0.3%) 

713 

Frequency resolution (Hz) 23 23 23 10 

The “no response” results were found to be improved for both response functions. In particular, the ratio 
of head-end to aft-end pressure amplitudes together with the oscillation frequency were found to better 
match the experimental measurements. Best results were obtained with the second response curve with an 
almost perfect agreement. It must be stressed that it was the first time that full approach results could be 
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compared to actual firing test measurements. The rather satisfactory agreement was seen as an evidence 
that the full approach was sound and could provide quantitative stability data, such as frequency and 
amplitude of limit cycle oscillations in actual motors. 

Example 2: The VECLA Set-Up and the VSP 

The VECLA cold flow set-up of ONERA was extensively used to understand the VSP mechanism and to 
validate the full numerical approach. The VECLA set-up is a modular air fed set-up. It is 2D planar and 
the length to height ratio can be varied through variation of chamber height (the length of the porous wall 
is fixed at 581 mm but the height can be varied from 30 to 10 mm). It can be tested with or without a 
choked nozzle. In the configuration without nozzle, the injection velocity can be easily varied by changing 
the air mass flow rate. This provided a very convenient mean to control the flow field inside the VECLA 
set-up.  

At least three different behaviors were documented: 

a) For large length to height ratio (h=10mm) transition to turbulence was observed inside the 
chamber. 

b) For moderate length to height ratio (h=20mm) acoustic resonance could be produced for a definite 
range of injection velocity. 

c) For small length to height ratio (h=30mm) no acoustic resonance nor turbulent transition are 
observed. However, the flow exhibits local instabilities that can be compared to the stability 
analysis. 

All three regimes were used to validate the full numerical approach.  

Case a) served to validate turbulence models [52] and will not be detailed here.  

Case c) provided unprecedented check of the linear stability results, as described in the second paper. 
Unstable wave frequency range and spatial growth rate were found to match the stability results.  
These results were also used to check the full Navier-Stokes approach, as described in B. Ugurtas’ thesis 
[43]. The claim was that the full Navier-Stokes solution contains the early hydrodynamically unstable 
waves. This was verified in case c). Simulations were performed and the unsteady field was extracted 
from the full Navier-Stokes solutions by Fourier transforms at given frequencies. The shape and growth 
rate of the unstable waves were compared to the linear stability results and showed good agreement,  
as illustrated by the figures 14 and 15 below. 
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Figure 14: Comparison of the Navier-Stokes Results with the Linear Stability Analysis.  
Velocity spectrum and spatial amplification factor. 

                   

Figure 15: Comparison of the Navier-Stokes Results with the Linear Stability Analysis.  
Amplitude and phase of the velocity radial profile. 

This established the ability of the Navier-Stokes solver to properly describe the early destabilization 
processes of the Taylor’s flow. 

Case b) was also used to check the ability of the full Navier-Stokes approach to reproduce acoustic 
resonance regimes. For this case, the ratio Vinj/h could be adjusted so as the unstable stability wave 
frequencies match the chamber longitudinal mode frequencies. Clear cases of acoustic resonance could be 
observed in a definite injection velocity range. By imposing a time variation of the injection velocity in the 
Navier-Stokes simulations resonances could be simulated in good agreement with the experimental results. 
This is illustrated by figure 16 below. 
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Figure 16: Comparison of the Navier-Stokes Results (right) with the Experimental Results (left).  
Velocity psd as a function of the injection velocity. 

Satisfactory qualitative agreement is observed, establishing the ability of the full approach to reproduce 
resonant regimes in VSP situations. However, the oscillatory amplitudes were found to be over-estimated. 
Reference [53] presents an effort to bridge the amplitude gap. In that work, the negative response function 
of the porous wall was included in the simulation (on the contrary to burning propellant, the porous wall 
has a negative response to pressure waves, resulting in significant damping of the excited acoustic waves). 
In an attempt to better stick to the experiment, the flow destabilization in the numerical solution relied on a 
white noise, introduced at the porous surface vicinity, whose characteristic was matched with the 
measured injection noise. This produced a marked decrease of the simulated oscillatory amplitude being 
now comparable to actually measured amplitudes, as displayed in figure 17. 

 

Figure 17: Head-End Pressure Spectra. From left to right: a) Initial Navier-Stokes solution;  
b) Navier-Stokes with porous wall response and white noise model; c) Experiment. 

The exemplary simplicity of the VECLA set-up permitted to go one step further in establishing  
the validity of the full numerical approach and to actually see the so-called parietal vortices. Following 
Prof. Culick’s suggestion, the injected flow was seeded with acetone and laser induced fluorescence 
permitted to actually see the vortices in the VECLA set-up [54]. It must be stressed that this constituted a 
world premiere that confirmed that the computed vortices were indeed present in the experimental set-up. 
Figure 18 below illustrates this result. 
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Figure 18: PLIF Images of Vortices in VECLA Set-Up (top)  
Compared to the Computed Vorticity Field (bottom). 

Example 3: An Actual Motor (VSP + VSO) 

Application to an actual full scale motor was rendered possible by the validation effort depicted in the 
preceding examples and completed by a two-phase flow model that was also validated [37-38, 55]. 
Considering that the actual Ariane 5 motor used an aluminized propellant, the two-phase flow solver was 
completed by a very basic aluminum combustion model. This model was based on the d2 model that links 
the aluminum droplet burn time to the square of its diameter. Realistic value for the reaction heat was 
used. The inter-phase source terms in the balance equations were thus modified to include the mass and 
energy exchanges due to droplet combustion. This is detailed in reference [56]. 

Then the early K4 configuration of the Ariane 5 P230 was simulated, with or without the reactive two-
phase model. The chosen time point was that of maximum of observed oscillatory amplitude. The retained 
experimental configuration was that of the M1 firing test at 95 s into the burn. 

This work showed that simulations without aluminum combustion were not satisfactory since they could 
not reproduce the oscillation frequency and amplitude. Detailed analysis of the numerical results showed 
two competing mechanisms: the VSO vortices from the protruding inhibitor, at a higher frequency, close 
to the third acoustic mode frequency and the VSP vortices that developed along the aft segment, at the 
lower first mode frequency. This competition resulted in the absence of acoustic resonance. On the other 
hand, when aluminum combustion was introduced, the VSP was reinforced to the point that it became 
dominant and forced the VSO to tune to the first acoustic mode frequency. This resulted in marked 
resonance in better agreement with the experimental results. This is illustrated by the following figure. 

 

       

Figure 19: M1 Results for the Single Phase (left) and Reactive Two-Phase (right) Models.  
Head-end pressure time history and spectrum, vorticity field. 
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The computed frequency was then close to the first acoustic mode frequency and the oscillatory 
amplitudes were comparable to the measured amplitudes. Of course, this result depends on the model 
inputs, particularly the size of the aluminum droplets and of the alumina residues, as well as on model 
details or inhibitor ring properties (deformation, vibrations, ...) which may have some incidences on the 
computed flow field. Such data are still not perfectly known and some characterization and modeling 
works are still needed before a satisfactory prediction can be guaranteed in such complex full scale motor 
configurations. 

Example 4: Active Control Demonstration 

To complete this example section, it is interesting to illustrate the capability of the full numerical approach 
to validate closed loop active control concepts. The idea was to use the full Navier-Stokes solution to 
evaluate control strategies and to demonstrate the feasibility to control flow driven instabilities. It was then 
decided to use the simulated flow field in the simplest VSA configuration. The test case C1 was used.  
This test case is the first configuration designed with the simplified approach, as described above for the 
C1xb motor. On the contrary to the C1xb motor, it is a purely numerical test case [23] that has been used 
at the beginning of the Navier-Stokes codes validation effort. It is fully documented and has been 
computed many times by many codes. 

Roughly speaking, the active control loop is composed of: 

• 

• 

• 

A transducer that records the state of the internal flow, 

An actuator that is capable of acting on the flow field, 

A controller that processes the transducer signal into a signal that is fed to the actuator. 

This is completed by an identification step that defines the actual transfer function between the actuator 
and the transducer. 

During operation, the controller adjusts its own transfer function to minimize the output signal of the 
transducer. 

The work presented here is the result of a cooperation between the EM2C lab at ECP and ONERA. It is 
described in details in M. Mettenleiter’s thesis and in reference [57, 58]. 

Transducer was normally taken as computed pressure at the nozzle entrance section but a numerical 
vorticity transducer was also tested. Actuator was modelized by distributed mass sources, representing an 
injection of a reactive fluid. Actuator was placed at the chamber head-end (case 1) but some tests were 
also performed with an actuator placed in the vicinity of the unstable shear layer (case 2). Figure 20 below 
presents the control scheme for C1 test case. Two main control strategies were tested. They belonged to 
anti-noise control and to noise source control. In the latter strategy the aim is to actively control the source 
at the origin of the acoustic resonance rather than controlling the resulting acoustic wave. 

Identification/Contrôle  IC IC 
 

Figure 20: Control Schemes for the C1 Test Case. 
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The control algorithm was introduced as Fortran subroutines into the Navier-Stokes solver.  
Special attention was given to the calling sequence between the Navier-Stokes solver iterative time 
integration and the controller own process. Adapted filtering steps were added to the coupling procedure, 
in order to take care of the very different time scales between to two programs. Indeed, the time step of the 
explicit Navier-Stokes solver is of the order of 10-7 s, while the time scale of the controller is of the order 
of 10-4 s. Under such conditions, very significant reductions of the oscillatory amplitude could be 
demonstrated. One of the difficulty was that the acoustic resonance could occur in a large frequency range. 
This is illustrated on figure 10 that shows that at given web distance burned, several acoustic modes lie in 
the unstable range. The direct consequence was that once the motor was controlled on its initial resonant 
frequency, it shifted to another resonance at a higher frequency, corresponding to the next acoustic mode. 
Then the controller had to adjust itself to the new condition. This illustrated the benefit of an adaptive 
active control loop, as the one proposed by EM2C/ECP, for the flow driven instability under 
consideration. 

Control was achieved in the standard configuration (nozzle end pressure transducer + head-end actuator) 
that could correspond to an actual motor configuration. However, the numerical approach permitted to test 
other configurations, not yet fully adaptable to an actual motor, such as the vorticity transducer combined 
with an actuator located in the vicinity of the unstable shear layer (case 2). Not surprisingly, this latter 
configuration exhibited better performance in term of time to control and residual amplitudes. Figure 21 
below illustrates this performance. 

Before control 

After control 

Head-end pressure 

 

Figure 21: Demonstration of Adaptive Active Control in C1 Test Case (Case 2). 

CONCLUSIONS/UNSETTLED ISSUES 

The intensive research effort conducted in the past 12 years in the framework of the European Ariane 5 
launcher related programs has produced a new vision for motor instability. It is now clear that instabilities 
must be approached in a global fashion that puts the internal flow field and related phenomenons, such as 
gaseous and condensed phase combustion, vorticity (in the form of acoustically forced vorticity waves, 
developed vortices or early flow instability waves) and structural response, in the center of the 
investigation. The early acoustic balance approaches, although extremely profitable in term of 
understanding and isolating physical phenomenons, could not produce the expected answers for motor 
sustaining mild amplitude limit cycle pressure oscillations. 
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It has been shown that under the condition that the necessary validation and characterization efforts were 
conducted, the numerical solution to the full unsteady compressible Navier-Stokes equations, together 
with ad hoc models for coupled mechanisms, could produce valuable results in close agreement with 
experimental measurements. 

Of course obtaining meaningful numerical solutions, in particular in such a challenging and delicate 
context remains a difficult task. The grid issue is undoubtedly one of the most crucial issue. In order to 
stay within acceptable limits in terms of computer CPU time and memory occupation, the grid must be 
tailored to each case. Our ability to produce adequate grids in then a direct function of our knowledge of 
what the important flow features are and where they are located. This clearly limits the use of the full 
numerical approach to documented situations and a priori predictions cannot be guaranteed in any 
situation. However, once the applicability has been established for a given type of configurations,  
the numerical approach can be used with large benefits to analyse and optimise the configuration. 

Another limitation is the choice of the proper models to describe non flow related mechanisms such as 
combustion, structural response, ... These models bear their own limitations that are of two types:  
the physics that is included in the models and the necessary inputs to the models. Both limitations can 
impair the successful application of the model into the numerical solution. Aluminum combustion is 
presently one area where progresses are expected for both types of limitations. This implies dedicated 
experiments and analyses to better describe the complex mechanisms that govern the formation of 
aluminum droplets, their combustion and finally the production of alumina droplets in complex flow 
fields. In particular the question of droplet interactions in a large population of various sizes and 
compositions, remains open. 

Finally, several years of experience with full numerical solutions, where most often several models are 
coupled in a non-linear fashion, have put to light many unexpected or surprising results. It is always 
surprising to realize that the resulting behavior is not the mere addition of individual effects or that a 
linearly damping mechanism can increase the limit cycle amplitude. This departure from the common 
linear thinking poses some problems when results are to be analyzed, understood and finally validated or 
accepted. This difficulty, far from being a mere curiosity, renders the progressive validation approach 
mandatory, in order to know how confident one can be when confronted to unexpected results. Often,  
the simplified approaches can be called in to help analyzing the results. 

Most often success lies in a proper combination of both approaches. It is then recommended that the 
rocket engineer who has to deal with instabilities exercise in both approaches. 
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Introduction

Thrust oscillations generally occur in large solid propellant motor during a few seconds of the
flight, they exactly correspond to the frequencies of the cavity modes. The excitation of cavity
modes has been reproduced in small scale solid propellant motors and also in cold gas facilities.
However as extensively exposed by F. Vuillot in the present VKI lecture series, there are different
possible causes of this excitation and all of them may play a role. Among them, as suggested by
F. Vuillot, see [1], there is the intrinsic instability.

Let us start with very simple models. Let be L(ω) a linear differential operator for which
some values of ω correspond to eigenmodes. It means that for these values, it exists a non zero
solution ûω (ûω ≡/ 0) such as : L(ω)(ûω) = 0. Now, ω is assumed to be such an eigenvalue and
ûω the associated eigenfunction. If the system is forced by a non zero right hand side term f ,
we have to solve : L(ω)(v) = f . Thanks to the linear nature of the differential operator, if f
may be decomposed in different terms f =

∑
fi, the solution v is the exact superposition of the

solution of each isolated forcing v =
∑
vi with L(ω)(vi) = fi. If fi does not correspond to the

eigenmode ûω, the amplitude vi remains as small as the one of the forcing fi. On the other hand,
if fi,ω is an eigenmode (proportional to ûω), then the amplitude of vi,ω may become very large
(it is the so-called secular terms in the framework of the multiple scale analysis, it is the so-called
resonance phenomenon generally speaking). Consequently, after some transient, the contribution
of vi,ω in the sum v =

∑
vi will be dominant, v ≈ vi,ω : the system has selected a single behaviour,

the one corresponding to the resonant forcing.
Coming back to the solid propellant motor, the previous operator L(ω) may be associated

to the governing problem for the cavity mode, the matter is to determine the origin of the forcing.
An intrinsic instability mechanism has been suspected by François Vuillot to be responsible of
the forcing. If it is the case, the forcing would be itself an eigenmode, but for another dynamical
system !

The present course is limited to the presentation of the linear stability theory. We will show
the general philosophy which is behind a so-called “instability”, the application of it for the special
flow which is representative of the one in a solid propellant motor. We will also show that the
present theory is very strange from a theoretical point of view, but very efficient in comparison
with the available experimental results. Finally we will conclude as a “Public Prosecutor” against
the intrinsic instability modes which are suspected to be the forcing terms with respect to the
emergence of the dangerous cavity modes.
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Chapter 1

Geometry, presentation

1.1 Experimental facilities

In real motors, the conditions are very severe (two-phase flow, high pressure, high temperature), so
that detailed measurements inside the motor are nearly impossible. Cold gas experimental facilities
have been thus especially designed for fundamental studies. They are much less expensive than
the experiment which use solid propellant and detailed measurements are possible ; on the other
hand some physical effects are missing such as the reactive two-phase flow or the slow regression
of the wall (due to the combustion of the propellant).

For cold gas experiment, the flow inside the motor which comes from the burning surface in
real motors is simulated by a wall injection of cold gas (air for example). This is usually realized
by using a porous wall constituted by small bronze particles which are then compacted.

In the following, two types of geometry will be considered.

• The first one is of rectangular type. We will take benefit from only one facility of this kind :

Figure 1.1: VECLA facility
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the one called “VECLA”, extensively studied by G. Avalon in ONERA Palaiseau, see [2] even
if other facilities such as the so-called “Micat1” carried out in Poitiers, see [3], with which very
interesting results have been obtained. A photo of VECLA is given in figure 1.1, whereas a
sketch is given in figure 1.2. Its length and its breadth are fixed, 603 mm and 60 mm respectively.

hot wire

Pc

Tp

feeding tube
Pf

Pp Adjustable
nozzle

Figure 1.2: Sketch of the VECLA facility

On the other hand, the height can be modified, 10 mm, 20 mm and 30 mm have been tested. Air
is injected only through the lower wall. The upper wall is solid and is perforated by small holes
in order to maintain a hot wire anemometer used for measurement of the instantaneous velocity.
The two lateral walls are in plexiglas allowing thus flow visualisations. In the theory presented
in the following, we will considerer a plane case for which both lower and upper walls are used
for the air injection. Finally the system is closed on one side by a front wall and ends on the
other side by either nothing or by a non injecting nozzle leading to a throat. In the operating
conditions, the flow is sonic at the throat. Without nozzle, the injection velocity may be varied
continuously during the experience. It can also be fixed, typical values are around 1 m/s. The
nozzle is adjustable, as indicated in figure 1.2, so that the injection velocity may be changed but
not continuously during an experiment. In addition to some technical measurements necessary
for the control of the flow, the measurements consist in the fluctuating pressure at the front
wall (denoted by Pc in figure 1.2) and the velocity (mean value and fluctuating one) inside the
flow by using a hot wire. This one can be moved at several distances from the front wall and
different distances from the porous wall can be analysed. By using the so-called periodogram
process, the temporal velocity signal is finally converted into a spectral representation. Very
interesting and recent results obtained with VECLA may be found [4].

• The second geometry is closer than the one of real solid propellant motors, it is a cylinder.
Results of different facilities will be used in the present document. The oldest one (whose results
are used in the present document) is located in the United States and has been extensively tested
by Brown and co-workers, see [5] for example. Another one is in Belgium and has been realized
and studied by Jérome Anthoine, see [6], manager of the present lecture series ! Finally a more
recent one is currently investigated at ONERA-Palaiseau by G. Avalon. A photo of this last
facility is provided in figure 1.3. In that case, there is a unique cylindrical porous wall, through
which cold gas is injected. The diameter is 60 mm. This case is obviously closer to the real
geometry, but only one diameter can be used for a given system. As for the first geometry,
there is a front wall and either a free exit section (as it is the case for the photo 1.3) or a
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Figure 1.3: Photo of the VALDO facility

throat. As with VECLA, for a free exit section, the injection velocity can be varied more or
less arbitrarily. Front wall pressure is measured and a hot wire is also used, it may be observed
in photo 1.3. But for this type of installation with a hot wire passing through the porous wall,
very few distances from the front wall can be analysed. In order to obtain finer experimental
results for the evolution of the velocity with respect to the distance from the front wall, the hot
wire has been installed on a very fine and long blade passing directly through the exit section.

1.2 Notations

1.2.1 Plane case

As sketched in figure 1.4, the x coordinate is defined in the direction perpendicular to the front

x

y
p o r o u s  w a l l

2 h

V i n j

s t r e a m l i n e

y

z

Figure 1.4: Plane notations

wall, x = 0 being located at this wall. The coordinate denoted by y defines the distance from the
upper and lower walls, y = 0 is located in the symmetry plane. Finally, the coordinate z defines
the broadness. The distance between the upper and lower walls is denoted by 2h, so that h is the
physical distance between the two walls when considering the VECLA facility, for which the non
porous wall is located at y = 0. The norm of the injection velocity through these walls is assumed
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to be constant and uniform, it is noted Vinj.

1.2.2 Axisymmetric case

As in the first case, x represents the distance from the front wall. Otherwise, r denotes the radial
coordinate and θ the azimuthal one. The geometry is sketched in figure 1.5. The diameter is noted
by 2h and the norm of the injection velocity by Vinj, as for the plane case.

x

p o r o u s  w a l l

2 h

V i n j

s t r e a m l i n e
q

r

Figure 1.5: Axisymmetric notations

1.2.3 Dimensionless quantities, Reynolds number

In the following, all the quantities are dimensionless according to the reference velocity Vinj and the
reference length h, it means that the lengths are scaled by the radius (and not by the diameter) of
the cylinder in case of the axisymmetric geometry. The reference time is h/Vinj and the pressure is
scaled with ρV 2

inj, ρ being the density (assumed to be constant). Thus, in the equations it appears
a Reynolds number based on the injection velocity :

R =
hVinj

ν

where ν represents the kinematic viscosity. In the operating conditions, this Reynolds number is
of order 1000. In some papers, like [7], another Reynolds number is used which is based on the
longitudinal velocity in the middle of the channel at the considered distance from the front wall,
see also figure 4.3 in the following.

1.3 General equations

1.3.1 Used assumptions

As previously mentioned, flow injection is assumed to be steady and uniform (independent of the
location) and strictly perpendicular to the porous wall. Concerning the theoretical results, the
geometry is assumed to be constant. In fact, as demonstrated in [8], a slow regression of the
porous wall (compatible with the real time scale of the motion of the propellant surface in real
motors) does not modify significantly the results presented in the following.

Finally the total length of the channel is assumed to be sufficiently short so that the flow
remains subsonic inside the channel (it will be shown below that the flow is uniformly accelerated
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in the x direction due to the injection). As the temperature field is numerically observed to be
more or less constant, we also assume that the flow is incompressible. Again this assumption has
been validated, see [9].

1.3.2 Plane geometry

Assuming that the flow remains two-dimensional, all the quantities depend only on the time t and
on the spatial coordinates (x, y). The two components of the instantaneous flow velocity are noted
(ũ, ṽ), the pressure p̃, so that the Navier-Stokes equations written for the incompressible flow in
the cartesian (x, y) coordinate system are :

∂ũ

∂x
+
∂ṽ

∂y
= 0

∂ũ

∂t
+ ũ

∂ũ

∂x
+ ṽ

∂ũ

∂y
+
∂p̃

∂x
=

1
R

∆ũ

∂ṽ

∂t
+ ũ

∂ṽ

∂x
+ ṽ

∂ṽ

∂y
+
∂p̃

∂y
=

1
R

∆ṽ

(1.1)

where ∆ denotes the laplacian operator. The boundary equations must first express the no-slip
condition together with the injection condition at the two horizontal porous walls. Concerning the
front wall, the no-slip condition leads to a non self-coherent relation, especially at the two corners
(0,−1) and (0, 1) in terms of (x, y) coordinates. Assuming an injection at these points is not
compatible indeed with the viscous no-slip relationship. A possible solution could be to simulate
a boundary layer in the injection process in the neighbourhood of these two points. A simpler
solution however consists in assuming that the front wall acts as a symmetry plane (allowing a
mirror flow for negative values of x). This last solution leads to impose that only the ũ component
vanishes at x = 0. Finally the boundary conditions associated to the equations (1.1) are : ∀y ∈ [−1,+1] ũ(0, y) = 0

∀x ≥ 0 ũ(x,−1) = 0, ṽ(x,−1) = 1, ũ(x, 1) = 0, ṽ(x, 1) = −1
(1.2)

For this type of flow, it may be useful to work with a stream function ψ̃ related to the velocity by :

ũ =
∂ψ̃

∂y
ṽ = −∂ψ̃

∂x

In system (1.1), the continuity condition is automatically satisfied for ψ̃, whereas the pressure can
be eliminated between the two momentum equations. Differentiating the first momentum equation
with respect to y and the second one with respect to x and subtracting then these two equations
lead to :

∂

∂t

(
∂

∂y
ũ− ∂

∂x
ṽ

)
+ ũ

∂

∂x

(
∂

∂y
ũ− ∂

∂x
ṽ

)
+ ṽ

∂

∂y

(
∂

∂y
ũ− ∂

∂x
ṽ

)
=

1
R

∆
(
∂

∂y
ũ− ∂

∂x
ṽ

)
In terms of stream function, this writes :

∂

∂t
∆ψ̃ +

∂ψ̃

∂y

∂

∂x
∆ψ̃ − ∂ψ̃

∂x

∂

∂y
∆ψ̃ =

1
R

∆∆ψ̃ (1.3)



Motor Flow Instabilities – Part 2: 
Intrinsic Linear Stability of the Flow Induced by Wall Injection 

8 - 12 RTO-EN-023 

The boundary conditions must then also be expressed in terms of ψ̃ :
∀y ∈ [−1,+1]

∂ψ̃

∂y
(0, y) = 0

∀x ≥ 0
∂ψ̃

∂y
(x,−1) = 0,

∂ψ̃

∂x
(x,−1) = −1,

∂ψ̃

∂y
(x, 1) = 0

∂ψ̃

∂x
(x, 1) = 1

(1.4)

1.3.3 Cylindrical geometry

In this case, p̃ remains the notation for the pressure and the three components of the instanta-
neous velocity write now as (ũx, ũr, ũθ), in the cylindrical (x, r, θ) coordinate system illustrated in
figure 1.5. The Navier-Stokes equations become now :

∂ũx

∂x
+
∂ũr

∂r
+
ũr

r
+

1
r

∂ũθ

∂θ
= 0

∂ũx

∂t
+ ũx

∂ũx

∂x
+ ũr

∂ũx

∂r
+ ũθ

1
r

∂ũx

∂θ
+
∂p̃

∂x
=

1
R

(
∂2ũx

∂x2
+
∂2ũx

∂r2
+

1
r

∂ũx

∂r
+

1
r2
∂2ũx

∂θ2

)
∂ũr

∂t
+ ũx

∂ũr

∂x
+ ũr

∂ũr

∂r
+ ũθ

1
r

∂ũr

∂θ
− ũ2

θ

r
+
∂p̃

∂r

=
1
R

(
∂2ũr

∂x2
+
∂2ũr

∂r2
+

1
r

∂ũr

∂r
− ũr

r2
+

1
r2
∂2ũr

∂θ2
− 2
r2
∂ũθ

∂θ

)
∂ũθ

∂t
+ ũx

∂ũθ

∂x
+ ũr

∂ũθ

∂r
+
ũθ

r

∂ũθ

∂θ
+
ũθũr

r
+

1
r

∂p̃

∂θ

=
1
R

(
∂2ũθ

∂x2
+
∂2ũθ

∂r2
+

1
r

∂ũθ

∂r
− ũθ

r2
+

1
r2
∂2ũθ

∂θ2
+

2
r2
∂ũr

∂θ

)

(1.5)

Concerning the boundary conditions, the same previous remark about the injection at the abscissa
x = 0, close to the front wall, can be expressed. The boundary conditions are thus : ∀θ ∈ [0, 2π[ ∀r ∈ [0, 1] ũx(0, r, θ) = 0

∀x ≥ 0, ∀θ ∈ [0, 2π[ ũx(x, 1, θ) = 0, ũr(x, 1, θ) = −1, ũθ(x, 1, θ) = 0
(1.6)

1.4 Basic flow

In this section, we will first determine a particular steady solution of the Navier-Stokes equations
and associated boundary conditions. The following step of the analysis will be to determine its
stability, this will be done in the following chapters. The physical quantities associated to the
steady solution, we are looking for, will be noted in capital and overlined letters.

1.4.1 Plane case

It is possible to find a mathematical steady solution of the equations. A self-similar solution firstly
proposed by Berman, see [10], may be sought for the stream function of the mean flow :

ψ̄ = xF (y)
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that is Ū = xF ′(y) and V̄ = −F in terms of the velocity components. Equation (1.3) leads to

F ′F ′′ − FF ′′′ =
1
R
F (IV ) (1.7)

associated to the boundary conditions :

F (−1) = −1 F ′(−1) = 0 F (1) = 1 F ′(1) = 0

(the boundary condition at the front wall is automatically satisfied with this self-similar form).
For large Reynolds numbers, a very accurate approximation of the basic flow is obtained with the
so-called Taylor solution, see [11] :

Ū =
πx

2
cos

πy

2
V̄ = − sin

πy

2
(1.8)

which is strictly valid for the equations written for an inviscid flow. The (inviscid) pressure is then
given by :

P̄ = −π
2x2

8
− 1

2

(
sin

πy

2

)2

+ P0

where P0 is a constant. The associated stream function is :

ψ̄ = x sin
πy

2
+ k

with k a constant.

1.4.2 Axisymmetric case

In the cylindrical case, a steady axisymmetric solution may be also determined in the self-similar
form given by :

Ūx =
1
r

∂Φ
∂r

Ūr = −1
r

∂Φ
∂x

Ūθ = 0 with Φ(x, r) = xf(r)

where Φ is a cylindrical stream function of the flow. The function f satisfies the following differ-
ential problem with the prime corresponding to the differentiation with respect to r :

1
R

[
1
r

{
r

(
f ′

r

)′
}′]′

+

{
f

r

(
f ′

r

)′

−
(
f ′

r

)2
}′

= 0

(
f ′

r

)′

(0) = 0
f

r
(0) = 0 f ′(1) = 0 f(1) = 0

The two first boundary equations written above impose the leading order of the behaviour of the
function f close to the axis r = 0 in case of a viscous flow. Assuming a regular Taylor expansion
of the form f(r) = a0 + a1r + a2r

2/2 + . . ., it can be readily proved that f satisfies f(r) = O(r3)
for r close to 0. Without viscosity, only the second boundary condition in r = 0 is necessary and
the leading order becomes then f(r) = O(r2) for r close to 0.

Again it is possible to find an analytical solution, which exactly satisfies the inviscid equa-
tions :

Ūx = πx cos
πr2

2
Ūr = −1

r
sin

πr2

2
Ūθ = 0 (1.9)
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with the pressure given by :

P̄ = −π
2x2

2
− 1
r2

(
sin

πr2

2

)2

+ P0

where P0 is a constant. This solution constitutes a good approximation of the viscous case for
large Reynolds numbers (typically R ≥ 1000).

1.4.3 Some remarks

Before analysing the stability properties of the mean flow described above, it may be interesting
to note some remarkable features.

• First the approximate analytical solution has been checked to be quasi superposed to the exact
self similar solution for the two types of geometry at least for the Reynolds numbers range
considered in the present document, see [8] and [12].

• The mean flow depends on two spatial coordinates and accordingly there is a non zero vertical
(or radial) velocity component, so that the flow is said to be non parallel. The plane Poiseuille
flow, solution in an infinitely long and broad non injected rectangular duct, is strictly parallel,
there is only one spatial direction in which the velocity is not homogeneous (the distance to
the wall) and consequently the streamlines are strictly parallel. Conversely, the Taylor flow is
non parallel, the streamlines start at the porous lines, turn and become more or less parallel far
from the front wall. This is illustrated in figure 1.6 for both types of geometry. In fact, even for

x

y

0 2 4 6 8 10
-1

-0.5

0

0.5

1

x

y

0 2 4 6 8 10
-1

-0.5

0

0.5

1

Figure 1.6: (Computed) streamlines of the Taylor flow (plane geometry in the upper figure, ax-
isymmetric geometry in the lower one).

large values of x, it remains obviously a small region close to the porous wall in which the flow
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is highly non parallel. This feature induces some difficulties with respect to the mathematical
form of the perturbation considered in the stability analysis. This point will be discussed in
some details in the following, see section 4.1.

• This x dependence describes explicitly a linear increase of the longitudinal component of the
velocity.

• Comparing the two types of geometry in figure 1.6, it appears clearly that at a given x position
the curvature of the streamlines is much larger in the axisymmetric case than in the plane case.
This will strongly affect the stability results.
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Chapter 2

Linear Stability Theory

2.1 A short philosophical escape

It must be emphasized that the mean flow described in the previous chapter is a possible solution of
the equations. However finding such a possible solution does not prove that this solution will be the
observed one in practice. This last point depends in fact on the stability of the proposed solution.
A similar problem arise for example with a small ball placed on the top of a large sphere (where
“top” refers to the direction of the gravity). The position on the top is a possible equilibrium
location, however as it is unstable, it cannot be practically observed.

Coming back to the Taylor flow, the same question is relevant : is the particular flow
described by expression (1.8) or (1.9) observed in practice, that is for example in the channel
VECLA ? In fact the answer depends on the injection conditions (injection velocity and porosity
of the material). The injected flow probably contains some turbulent structures which may excite
continuously the channel flow. It has been observed that for a given porosity if the injection velocity
is too large, the Taylor flow, as it is described by expression (1.8) or (1.9) is never observed. In that
conditions, the flow inside the channel is turbulent everywhere, so that it exists large turbulent
fluctuations, which interact between themselves leading by nonlinear mechanisms to a modification
of the mean flow. The Taylor flow which is a possible solution of the averaged equations does not
correspond then to the averaged observed (or measured) flow. This case will be no longer examined
in the following part of the present document.

For small injection velocities and for small values of the porosity, the Taylor flow can be
observed, at least in the upstream part of the channel. In fact, the measured flow does not
correspond exactly to the Taylor flow, it always exists some fluctuations (for example those induced
directly from the non-perfect injection system) superimposed to this theoretical solution. As all
dynamical systems, the main flow which is continuously excited by the injection system exhibits
two types of response with respect to this forcing. First there is the so-called forced response, whose
amplitude is of the same order of the forcing amplitude. Secondly it may exist an eigenresponse
the amplitude of which can be dangerously larger than the one of the forcing.

The amplitude of the eigenresponse may be in fact extremely large, it means that a micro
phenomenon (small inhomogeneity of the injection) can generate a macro feature. This particular
behaviour is the signature of an intrinsic instability. Obviously determining the physical character-
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istics of the eigenresponse is very important (amplification rate, frequency, spatial shape), this is
the goal of the stability studies. A well-known and classical presentation of the stability theory is
published in [13], whereas a general presentation of the practical use of it in case of the boundary
layer which exhibits some common feature with the present basic flow is nicely presented in [14]
and finally the first attempt of a theoretical application for the Taylor flow has been done in Russia
by Varapaev and Yagodkin and has been translated in [7].

2.2 Small perturbation technique

According to the previous comments, a particular solution (the Taylor flow in the present case)
is supposed to be known, its stability is going to be analysed. The instantaneous flow is then
assumed to result from a pure superposition of this particular flow, which will be called the “basic
flow” in the following, and of a fluctuation to be determined. This is mathematically imposed by
writing :

q̃ = Q̄+ q (2.1)

for any physical quantity q (components of the velocity, pressure and also for example temperature,
mass flux density in case of compressible fluids). The instantaneous flow is assumed to be realistic,
thus it satisfies the general governing equations. The key point for the stability analysis is the
following one. As we only focus on an eigenresponse (and not on a forced response), the boundary
conditions written for the instantaneous flow must be strictly identical to those imposed for the
determination of the basic flow.

Before writing the complete equations, it may be instructive to describe formally the pro-
cedure. Let us represent the complete equations together with the boundary conditions by a (non
linear) operator L, for example the one corresponding to the Navier-Stokes equations and associ-
ated boundary conditions. As explained above both basic flow and instantaneous flow are assumed
to satisfy these equations and boundary conditions :

L(q̃) = 0 and L(Q̄) = 0 (2.2)

According to the superposition (2.1), the first equation becomes : L(Q̄ + q) = 0. Then, the
operator L being regularly dependent on the physical quantities, a first order Taylor expansion can
be written :

L(Q̄+ q) = L(Q̄) +M(Q̄).q +NLT

where NLT means nonlinear terms with respect to the fluctuating quantities q and M(Q̄) is a
linear operator function of the basic flow which applies to the fluctuating quantities. It represents
formally the gradient operator of L. In this course, the fluctuation is assumed to be small in
comparison to the basic flow : q � Q̄, so that the nonlinear terms are small in comparison to the
linear ones. Indeed in the linear stability theory these nonlinear terms are simply dropped, the
previous Taylor expansion is thus simplified into :

L(Q̄+ q) ' L(Q̄) +M(Q̄).q

Finally, as both instantaneous flow and basic flow satisfy the equations as expressed by (2.2),
previous equation becomes :

M(Q̄).q = 0 (2.3)
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which represents the linearised Navier-Stokes equations (and boundary conditions). In the general
case, the operator M(Q̄) is invertible so that the only solution is q ≡ 0, it means that there is no
eigenresponse. However is some very specific cases, as for the present Taylor flow, possible non
zero eigensolution may be found. This is mainly the case when the basic flow exhibits symmetry
properties (usually invariance with respect to spatial and temporal coordinates) inducing then a
special mathematical form for the fluctuation. This is described in the next section.

2.3 Normal mode form

In this section, the basic flow is assumed to be dependent on only one spatial variable : y in
the plane case and r in the axisymmetric case. This is the parallel assumption. Of course, as
mentioned above, this is not strictly the case for the Taylor flow, see section 4.1. In fact, to be
more precise, the parallel assumption consists in assuming that only the physical quantities Q̄,
which are written in the linearised operator (2.3), are dependent on one spatial variable. For
example for the plane Poiseuille flow, which is strictly parallel, the pressure depends on x too, but,
at least in the incompressible approximation, this pressure term does not appear explicitly in the
linearised equations (2.3).

Just to fix the ideas, we will note y the spatial variable in the non homogeneous direction :
Q̄ = Q̄(y). Then, equation (2.3) represents a system of partial differential equations whose coef-
ficients depend on the basic flow quantities Q̄, hence on y only. Thus with respect to each of the
other variables, equation (2.3) appears as a system of linear equations with constant coefficients.
It is well known that solutions in that case may be sought in an exponential form. Following
this mathematical result, all the fluctuating quantities are sought with the so-called normal mode
form :

q(x, y, t) = q̂(y)ei(αx− ωt) plane case

q(x, r, θ, t) = q̂(r)ei(αx+mθ − ωt) axisymmetric case
(2.4)

This notation needs to be explained. First, some quantities have complex values, for example i
is the imaginary number satisfying i2 = −1, whereas the physical fluctuation must be obviously
real. In fact, the physical fluctuating quantities correspond to the real part of the right hand side
terms in (2.4). The functions q̂(y) and q̂(r) are complex and are called the amplitude functions,
m is an integer and is the azimuthal wave number and α and ω are generally complex numbers.
Introducing real part and imaginary part of these two numbers by subscripts “r” and “i”, the
fluctuating quantities q write :

q(x, y, t) = q̂(y)e−αix+ ωit ei(αrx− ωrt)

The second exponential term is of norm 1, it describes thus the wavy nature of the solution for the
fluctuation, αr is the longitudinal wave number, ωr the circular frequency with f = ω/2π being
the frequency itself. The first exponential term is real, it describes a possible amplification of the
fluctuation with respect to the time and/or with the distance x according to the sign of ωi and αi.
Usually at this step, two types of theory are distinguished : the temporal theory for which αi ≡ 0,
the fluctuations only grow with time and the growth is governed by the temporal growth rate ωi

and the spatial theory for which on the other hand we have ωi ≡ 0, the fluctuations only grow in x
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and the growth is governed by the spatial growth rate −αi. Between these two theories, it may
be interesting to recall that in fact both theories usually provide very similar results by using the
so-called Gaster transformation, see [15] :

−αi '
ωi

Vg
with Vg =

∂ω

∂α

where Vg is the group velocity (such an approximation is strictly valid in the vicinity of the neutral
curve).

As suggested by the experimental results for the Taylor flow, which will be given in sec-
tion 3.4, the relevant approach in the present case is the spatial theory. The mathematical form
of the perturbation used in the present document is thus :

q(x, y, t) = q̂(y)e−αix ei(αrx− ωrt) = q̂(y)ei(αx− ωt) (2.5)

with ω a real number and α a complex one. Assuming that the perturbation is convected in the
same direction as the basic flow, that is for increasing values of x, the spatial evolution of the
fluctuation and consequently the stability of the basic flow depends on the sign of αi, the results
are given in table 2.1. The same conclusions are true for the perturbation form in the axisymmetric

sign of αi basic flow
αi > 0 stable
αi < 0 unstable
αi = 0 neutral (or marginal)

Table 2.1: Stability criterion in term of spatial amplification growth rate

geometry.
Finally, the perturbation given by relation (2.4) in the “plane case” corresponds to a plane

perturbation. A more general form of the perturbation must include the z-dependence, the per-
turbation writing then :

q(x, y, z, t) = q̂(y)ei(αx+ βz − ωt)

It is known, see [13] for example, that for a strictly parallel basic flow, it is sufficient to limit
the stability analysis to two-dimensional modes, as written in (2.4). This result comes from the
so-called Squire’s theorem. This one cannot be theoretically applied due to the nonparallel terms
which are kept in the stability equations. However, systematic stability computations performed
for a three-dimensional perturbation showed that the most amplified mode (which corresponds to
the largest growth rate −αi) is obtained for β = 0, that is for a two-dimensional mode. This
explains why the perturbation is assumed to be in the form (2.4) in the following.

2.4 Dispersion relation

The problem now is to determine the amplitude functions, the frequency and of course the complex
wave number α. The perturbation is required to satisfy the linearized equations (2.3). Conse-
quently, the form (2.5) is introduced into these linearized equations, this yields :

N (Q̄, α, ω).q̂ = 0
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where N is now an ordinary differential operator with respect to y only. Differentiations with
respect to t and to x simply become multiplications by −iω and by iα respectively. In order to
find a non zero solution q̂, it is necessary to find values of (α, ω) such as N (Q̄, α, ω) is non invertible.
The mean flow depends on x and on y but practically the stability analysis is performed for a fixed
value of x. On the other hand, as this operator corresponds to the linearized form of the Navier-
Stokes equations (1.1), the Reynolds number R is a parameter. Finally, the formal linearized
equations may be written as :

N (x,R, α, ω).q̂ = 0 (2.6)

Now we have to find conditions for which N (x,R, α, ω) is not invertible. Again, it can be first
noted that this operator is usually invertible, however it may be possible that for some specific
conditions between the parameters (x,R, α, ω), the operator is not invertible. These (not known
and not obvious) specific conditions are noted by a relation :

F(x,R, α, ω) = 0 (2.7)

which is called a dispersion relation, because for x and R being fixed, this equation binds the
frequency and the phase velocity ω/α. Of course, this equation is usually not explicit, numerical
computations are necessary. They are often performed in two steps (eigenvalues and then eigen-
functions). First, the differential continuous problem being discretised, a complex eigenvalue (α
for example) is searched in such a way that a non zero solution for the perturbation may exist.
In this step, equation (2.7) is solved in fact, even if the latter is not written explicitly. Then the
optional second step consists in determining the non zero solution, with the obtained eigenvalue
(which allows a non zero solution). Namely, this non zero solution is the eigenfunction associated
to the obtained eigenvalue. Some insight about the numerical aspects are given in appendix.

2.5 Linearised equations

2.5.1 Plane case

As explained before, the small perturbation technique is used, by decomposing each quantity
as written in relation (2.1). In this section, the perturbation is written with the normal mode
form (2.4) even if it is not justified, according to the x dependence of the mean flow. This problem
related to the non parallel effects will be considered in section 4.1.

For the plane case, it is possible to use either the primitive variables (u, v, p) or the stream
function. Let us start with the first formulation. The procedure given in section 2.2 leads with (1.1)
to : 

iαû+
∂v̂

∂y
= 0

−iωû+ iαŪ û+ û
∂Ū

∂x
+ V̄

∂û

∂y
+ v̂

∂Ū

∂y
+ iαp̂ =

1
R

(
∂2û

∂y2
− α2û

)
−iωv̂ + iαŪ v̂ + û

∂V̄

∂x
+ V̄

∂v̂

∂y
+ v̂

∂V̄

∂y
+
∂p̂

∂y
=

1
R

(
∂2v̂

∂y2
− α2v̂

) (2.8)

This system is associated to the following boundary conditions, coming from (1.2) :

û(−1) = v̂(−1) = û(1) = v̂(1) = 0
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It can be easily shown that system (2.8) may be written under the form of a first order ordinary
differential linear problem applied to the vector (û, ∂û/∂y, v̂, p̂) of dimension 4, so that this system,
associated to the four boundary conditions above is a well-posed problem. It remains to solve it
numerically, see the appendix for some numerical details.

The stream function formulation has the advantage to define only one scalar unknown (the
stream function amplitude). The superposition (2.1) is introduced in equation (1.3). After lineari-
sation, this leads to(

−iω + iαŪ + V̄ D − 1
R

(D2 − α2)
)

(D2 − α2)ψ̂ − ∂2V̄

∂y2
Dψ̂ − iα

∂2Ū

∂y2
ψ̂ = 0 (2.9)

where D represents the differentiation with respect to y. This equation corresponds exactly to
equation (2.3) in case of equation (1.3). Associated to this equation, the following boundary
conditions

ψ̂(−1) = Dψ̂(−1) = ψ̂(1) = Dψ̂(1) = 0 (2.10)

coming from (1.4), must be satisfied. The stream function of the perturbation is thus required
to satisfy again a fourth order homogeneous ordinary differential equation (2.9) associated to four
homogeneous boundary conditions. Obviously, the trivial ψ̂ ≡ 0 remains a possible solution. The
goal is to find if for specific conditions between α and ω (dispersion relation), another solution
may exist. It is also important to note that equation (2.9) contains three supplementary terms
(due to the non zero V̄ factor) in comparison with the classical Orr-Sommerfeld equation. The
latter is obtained as explained before but for a strictly parallel mean flow, that is with a velocity
of the form (Ū(y), 0). These additional terms are those associated with an odd order of derivation
in (2.9).

2.5.2 Axisymmetric case

The same procedure can be applied in the axisymmetric geometry. Like the plane case, the basic
flow does not depend on r only, so that the normal mode is theoretically not applicable. However
using it leads to :

iαûx +
∂ûr

∂r
+
ûr

r
+
im

r
ûθ = 0

−iωûx + iαŪxûx +
∂Ūx

∂x
ûx + Ūr

∂ûx

∂r
+
∂Ūx

∂r
ûr + iαp̂

=
1
R

(
−α2ûx +

∂2ûx

∂r2
+

1
r

∂ûx

∂r
− m2

r2
ûx

)

−iωûr + iαŪxûr +
∂Ūr

∂x
ûx + Ūr

∂ûr

∂r
+
∂ūr

∂r
ûr +

∂p̂

∂r

=
1
R

(
−α2ûr +

∂2ûr

∂r2
+

1
r

∂ûr

∂r
− ûr

r2
− m2

r2
ûr −

2im
r2

ûθ

)

−iωûθ + iαŪxûθ + Ūr
∂ûθ

∂r
+
Ūrûθ

r
+
im

r
p̂

=
1
R

(
−α2ûθ +

∂2ûθ

∂r2
+

1
r

∂ûθ

∂r
− ûθ

r2
− m2

r2
ûθ +

2im
r2

ûr

)

(2.11)
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This system of linear ordinary differential equations is associated to the boundary conditions :

ûx(1) = ûr(1) = ûθ(1) = 0

expressing, as for the plane case, that there is no fluctuating velocity (for determining the eigen-
response) at the porous wall. The numerical resolution of system (2.11) presents a (small) difficulty
at the axis r = 0, as usual when using the cylindrical coordinates system, see [16] for a possible
treatment of this singularity.
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Chapter 3

Stability results

3.1 Eigenmodes

The first task is to determine the solutions of the dispersion relation (2.7) if any. As the conclu-
sions are very similar in the other cases, we will only consider the plane case formulated by the
stream function, see (2.9). Then, in order to obtain the “complete” spectrum (i.e. the set of the
eigenvalues) of the linearised equations, it is more convenient to fix α and to search all possible
solutions in terms of ω for R and x fixed. The reason comes from the fact that ω appears linearly
in the Navier-Stokes equations, and α non linearly because it exists terms in ∂2/∂x2 which lead to
the factor α2. More precisely, equation (2.9) may be rewritten in :{(

iαŪ + V̄ D − 1
R

(D2 − α2)
)

(D2 − α2)− ∂2V̄

∂y2
D − iα

∂2Ū

∂y2

}
ψ̂ = iω(D2 − α2)ψ̂

which is formally of the type Aψ̂ = ωBψ̂, that is of the type of a standard (generalised) eigen-
value problem. The differential problem being discretised, many mathematical libraries allow the
determination of the “complete” spectrum.

As an example, the following parameters have been fixed : R = 1000, x = 10 and α = 4.
Some eigenvalues are plotted in figure 3.1 in the complex ω-plane. The horizontal line ωi = 0
separates the instability zone from the stability zone. The higher the points are, the most dangerous
they are (according to the temporal theory). In the instability region, only two amplified modes
have been found : ω ∈ {31.59 + 1.6946i, 31.622 + 1.6296i}. They are thus very close together and
seem in the figure to be only one. The other modes are damped modes, at least for the chosen
values of the parameters. Moreover for smaller value of ωi it exists many other modes, including
possible continuous branches.

To analyse the two amplified modes and their differences, it is generally fruitful to calculate
the corresponding eigenfunctions. Moreover, in order to illustrate the strong correspondence be-
tween the temporal and the spatial theory, we now move to the spatial theory and fix ω to a real
number by ω = 31.6, in the range of the two previous modes. Then by using a shooting method
(Newton convergence from an initial guess of the root), two amplified modes are obtained, as in
the temporal theory. They are given by α = 4.0037 − i0.366 and α = 4.016 − i0.373. The group
velocity may be calculated, the nearly same value is found for both modes Vg ' 4.4. Gaster’s
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Figure 3.1: Spectrum, R = 1000, x = 10, α = 4, 300 points in the collocation method

transformation provides then temporal amplification rates which are of order 1.66, they constitute
thus good predictions of the temporal growth rates which have been computed directly in the
temporal theory.

The corresponding eigenfunctions are plotted in figure 3.2 for the first one and in figure 3.3
for the second one. The main difference between these two modes occurs close to the axis y = 0.
For the first mode, plotted in figure 3.2, the transverse velocity v is zero on the axis, whereas it
is the longitudinal velocity u which vanishes at the axis for the second mode. The first mode is
called a varicose mode, and the second one a sinuous mode. Concerning the facility VECLA, it
can be noted that with the solid wall (non porous) placed in the upper limit on the duct, only
the varicose modes can be observed, the sinuous ones are not compatible with a non-penetration
condition at this upper wall.

3.2 Amplitude and n factor

3.2.1 Definition of the n factor

In agreement with the experimental results, see section 3.4 for validations and explanations, the
relevant theory is the spatial one, so that ω is a real number characterising the frequency of the
wave. The dispersion relation is thus solved for fixed values of (R, x, ω) (and additionally with the
azimuthal wave number m being fixed for the axisymmetric geometry) and the complex α value is
computed in order to satisfy the dispersion relation (2.7).

The opposite of the imaginary part αi of the complex wave number is the growth rate in



Motor Flow Instabilities – Part 2: 
Intrinsic Linear Stability of the Flow Induced by Wall Injection 

RTO-EN-023 8 - 27 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 y

 u
,v

 u
 v

Figure 3.2: Norm of the longitudinal and transverse velocity component of the eigenmode α =
4.0037− i0.366 obtained for R = 900, x = 10 and ω = 31.6
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Figure 3.3: Norm of the longitudinal and transverse velocity component of the eigenmode α =
4.016− i0.373 obtained for R = 900, x = 10 and ω = 31.6
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the x direction. As it has been developed for the boundary layer [17], it is thus possible to define
an amplitude A for the eigenmode by :

−αi =
1
A

dA

dx

As suggested by (2.7), the growth rate depends on the parameters R, ω and x. Thus this equation
may be integrated in order to calculate the amplitude :

A(x;ω,R) = A0e
n with n(x;ω,R) =

∫ x

x0

−αi(ξ;ω,R) dξ (3.1)

With the same meaning as used in the boundary layer, see [18], the factor n gives the logarithm
of the eigenmode amplitude. In equation (3.1), x0 is the neutral position. If it exists, it is the
point for given values of (R, ω) which separates upstream a stable region and downstream an
unstable region. Generally, x0 depends in fact on (R, ω), so that we may write x0 = x0(R, ω). In
equation (3.1) A0 is an amplitude, which corresponds to the amplitude at the abscissa x0. It can
be noted that the eigenmode is solution of a homogeneous problem, so that its definition is not
univocal. For example, with the equation (2.9), if ψ̂ satisfies the equation, λψ̂, with λ any complex
constant, also satisfies the equation. For that reason, the amplitude A0 cannot be determined
within the linear stability theory. On the other hand, the n factor is intrinsic.

3.2.2 Plane case

To be comparable to the experimental results obtained with VECLA, we only focus on the amplified
varicose mode in this paragraph. To give an example, the injection Reynolds number R is fixed :
R = 4000. Then, the growth rate −αi is computed for different frequencies, and for different
values of x. Finally, for each considered frequency, the growth rate is integrated leading to the
n factor. The result is given in figure 3.4 in a diagram (x, ω). Some important feature may be
deduced from this figure. First there is a critical abscissa, which is close to 5 for the considered
Reynolds number1. It means that upstream the abscissa x = 5, the Taylor flow is stable, possible
eigenmodes are damped in this region. On the other hand, downstream the critical abscissa, i.e.
for x ≥ 5, there is a range of frequencies for which the instability modes are amplified. Moreover, it
can be noted that this range of “dangerous” frequencies increases with x. However, low frequencies
(less than approximately 14) are never amplified, whereas large frequencies become amplified but
for more and more large values of x.

The upstream curve corresponds to n = 0, i.e. to the neutral (or marginal) curve : the
location of x0(R, ω) with the notations of (3.1). Without any additional information, it is usually
assumed that the amplitude A0 is a constant at the abscissa x0(R, ω). In fact this point is related to
the receptivity process which describes the physical mechanism by which eigenmodes appear from
the general ambiant turbulent noise or from any other types of excitations. If this ambiant noise
does not contain any favoured frequencies, at least in the range of possible amplified frequencies,
this uniform repartition of initial amplitude A0 seems natural as a first approximation. In this case,
the n factors give exactly the amplitude of the eigenmodes up to a scale factor. Thus, figure 3.4

1In fact the exact value of the critical abscissa must be carefully considered. This is due to the non parallel

effects which strongly increase for small values of x, see section 4.1.
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Figure 3.4: Iso-n factors in a (x, ω) diagram, R = 4000

also shows that the frequency which corresponds to the largest eigenmode at a given distance from
the front wall is slightly (and quasi linearly) increasing with this distance.

Finally this figure quantifies the amplification, for example, at x = 20, the maximum of the
n factor is close to 7, it means that the perturbation is e7 ' 1000 times larger than the perturbation
at x = 5.

3.2.3 Axisymmetric case.

For reasonable values of the injection Reynolds number, the frequency and the values of x, only
one mode (for each value of the azimuthal wave number) has been found to become amplified from
some abscissa. The other modes remain damped. We obviously focus on this possibly amplified
mode.

Similarly to figure 3.4, figure 3.5 gives for m = 0 (axisymmetric modes) and for the same
Reynolds number as before R = 4000, the values of the computed n factor in a diagram (x, ω). The
general shape is similar to the one obtained in the plane case. However some important differences
exist, that must be noted. First the critical abscissa is located upstream in the axisymmetric case.
Furthermore, the n factors seems to be larger in this geometry than in the plane one. For example
at x = 15, the n factor is close to 11 in the axisymmetric geometry, it is only close to 3 in the
plane geometry. Taken into account that the growth of the perturbation follows an exponential
behaviour, this means that the axisymmetric Taylor flow is much more unstable than the plane
Taylor flow. This difference may be related to the difference observed previously in figure 1.6
between the streamlines in the two cases. Indeed, one important question is to determine the
origin of the present intrinsic instability. Even if it is not really demonstrated, it may be suggested
that the instability comes from the strong curvature of the streamline close to the porous wall.
This could be at least coherent with the following observations.



Motor Flow Instabilities – Part 2: 
Intrinsic Linear Stability of the Flow Induced by Wall Injection 

8 - 30 RTO-EN-023 

5 10 15

x

20

30

40

50

60

70

80

90

100

110

120

130

140

150
ω

n
11
10
9
8
7
6
5
4
3
2
1

Rinj = 4000
Iso-n factors

5 10 15

x

20

30

40

50

60

70

80

90

100

110

120

130

140

150
ω

Neutral
curve

nmax
curve

Figure 3.5: Iso-n factor, m = 0, R = 4000

1. The maximum of the fluctuating velocity is close to the porous wall.

2. The Taylor flow is stable upstream (where the curvature of the streamlines may be not large
enough)

3. If the non parallel terms in V̄ are suppressed in the stability equations, such as in (2.8), the
basic flow is found to be always stable, see [19].

4. Finally, on one hand, the curvature is much more stronger in the axisymmetric case as in the
plane one, as observed in figure 1.6 and, on the other hand, the growth rates are much more
larger in the axisymmetric geometry.

The last difference between figures 3.4 and 3.5 concerns the frequency. It seems that the amplified
frequencies are greater in the axisymmetric case than in the plane one. For example, the range of
amplified frequencies for x = 8 is close to ω ∈ [30, 140] whereas it is only ω ∈ [15, 40] for the plane
Taylor flow.

The results given above correspond to the two-dimensional (noted 2D) mode, that is for the
azimuthal wave number m = 0. An important point concerns the nature of the most amplified
mode. A well-known result is the Squire’s theorem, which expresses that for a 2D strictly parallel
basic flow, the first instability occurs for a 2D perturbation. However, it does not mean that a
two-dimensional perturbation is always more amplified than any three-dimensional perturbation,
see [20] for more information. However for the Taylor flow this theorem cannot be applied even
in the plane case, considering that the stability equations contain some nonparallel terms which
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makes unapplicable the mentioned theorem. Some direct computations in the plane case show
however that the most amplified modes are approximately two-dimensional, these are the varicose
and the sinuous modes. For the axisymmetric geometry, figure 3.6 shows the neutral curve and the
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Figure 3.6: Marginal curves for m = 0, 1, 2, 3, R = 4000

location of the maximum of the n factor in the (x, ω) diagram for the four first positive azimuthal
wave numbers. The first observation is that the results for m = 0 and m = 1 are quasi identical.
This conclusion exactly corresponds to the similarity between the varicose and the sinuous modes
previously observed for the plane geometry. On the other hand, larger azimuthal wave numbers
seem to be less and less amplified, except for the high frequencies, for which the differences seem
to be small. However the critical abscissa for m = 3 is close to the one of m = 0, for example
it is clearly upstream the location of the n = 1 curve in figure 3.5. This means that if all the
eigenmodes (characterised by (m,ω)) start with the same initial amplitude A0 at their neutral
curve, the amplitude of the m = 0 mode at the critical abscissa of m = 3 is only a little larger
than the amplitude of the m = 1, 2, 3 modes. Therefore, it is clear that at a given x position,
x = 7 for example, the perturbation should be the superposition of several modes corresponding
to different values of m, so that for any hot wire measurement it should be very difficult to isolate
the contributions of the different modes.

To conclude this overview of the typical stability results, it remains to analyse the real part
of the complex wave number α. It is then more suitable to work with the wavelength λ which
is defined by : λ = 2π/αr. Figure 3.7 gives the iso-λ values, always in a (x, ω) diagram for the
axisymmetric geometry with R = 4000 and m = 0. It is interesting to note that at least for
values of x less than 15, the wavelength of the mode which corresponds to the largest amplitude
is close to 1. With a dimensional point of view, this means that the largest mode presents a
wavelength roughly equal to the radius of the duct. In particular the streamwise evolution of the
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Figure 3.7: Iso-wavelength for m = 0, R = 4000

eigenmodes occurs on a scale which is much shorter than the total length of the duct which scales
the undesirable cavity modes. Due to this great difference of streamwise extend, it may be guessed
that the instability alone is not very efficient as a possible exciting source of the cavity modes.

3.3 Influence of the Reynolds number

Concerning the dispersion relation, the influence of the different parameters x, ω and the azimuthal
wave number for the axisymmetric geometry have been studied. It remains the influence of the
injection Reynolds number. For example, the plane geometry is considered, with fixed x and ω

values : x = 10, ω = 31.6 (which have been chosen in the spectrum analysis of the linearised
operator, see figure 3.1). The result is plotted in figure 3.8 for the streamwise wave number αr

represented in dashed line and for the growth rate −αi represented in full line. In this figure, the
basic flow is always the one given by the analytical Taylor form (1.8) and only for the stability the
Reynolds has been varied from 50 up to 105. It is clear that there is an asymptotic behaviour when
the Reynolds number increases. This means that the basic mechanism of this instability is mainly
inviscid. Up to now, a clear physical explanation “with the hands” of the origin of the instability
has not be found. As explained in the previous section, the instability appears to be related to
the strong curvature of the streamlines of the mean flow close to the injecting wall, which is little
affected by the viscosity.

However the wave number seems to tend to the inviscid value faster than the growth rate.
Thus, especially for the estimation of the n factor in practical case for which the Reynolds number
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Figure 3.8: Influence of the Reynolds number on the complex streamwise wave number α, plane
case, x = 10, ω = 31.6, varicose mode. The growth rate −αi is in full line, the tenth of the wave
number αr/10 in dashed line

is of order 1000, it is necessary to take into account the viscous effects, the difference could be of
about 10% for inviscid computations. On the other hand, it is important to emphasize that for
the mean flow, it is really not necessary to use the viscous mean flow given by (1.7) for Reynolds
numbers greater than 100, the Taylor solution is accurate enough.

The same feature can be observed in the axisymmetric geometry, leading to the same con-
clusions.

3.4 Comparisons with the experiment

3.4.1 Preparation of the results for the comparison

Hot wire measurements give access to the instantaneous velocity at the position where the probe
has been placed. Then, using different possible treatments of the signal, the latter is decomposed
in two parts : the mean value and the fluctuating one upon which a Fourier transform is applied in
order to get the spectral dependence of the fluctuating velocity or more often the power spectral
density (DSP).

This spectral representation may be compared to the theoretical predictions. For each given
frequency, the n factor is computed by integrating in x the amplification growth rate, so that the
amplitude of the fluctuation is simply theoretically given by A0 exp(n(x, ω)), with A0 the initial
amplitude coming from the receptivity conditions. In the following results, this constant A0 is
assumed to be independent of ω, but to be a function of the experimental conditions (values of the
injection velocity, of the height of the duct, of the porosity of the injecting walls, ...). Obviously, A0
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is independent of x. Consequently for given experimental conditions, the constant A0 is adjusted
once, in order to fit for one frequency and one value of x the measured amplitude. In case of
comparisons including y variations, the same constant A0 must be considered of course.

3.4.2 Effects of the dimensional height of the duct and injection velocity

It is interesting to test first the scaling effects by varying experimentally the injection velocity and
the height. From the theoretical point of view, as the computation of the n factor in the (x, ω)
plane is performed with dimensionless quantities, changing the injection velocity and the height
only modifies the Reynolds number. Comparisons with measurements obtained with the VECLA
facility are reported in figure 3.9. Four comparisons are given, they correspond to four values of the
pair (injection velocity Vinj, height h). The measured values are plotted in full line, the theoretical
predictions by the open circles. In the four cases, the frequency is plotted between 0 and 2000 Hz.
However the scale of the vertical axis, giving the amplitude of the fluctuation, differs from each
other. The adjusted initial amplitude A0 is also given for each comparison in the legend, it seems
that the constant A0 increases with the injection velocity and decreases with the height of the
duct.

The overall comparison is quite satisfying (good prediction of the amplified frequencies and
quite good shape of the spectral dependence), even if there are some differences which are mainly
visible for h = 10 mm. It may be remarked however that for this height (the smallest one for the
VECLA facility), the mean flow does not exactly coincide with the theoretical Taylor flow (or the
viscous solution), it seems that small three-dimensional structures slightly modify the streamwise
component of the mean velocity in comparison with the expected one. However the broadness
of the amplified frequencies peak as well as the frequency associated to this peak are in good
accordance with the linear stability results.

A similar comparison has been done for the axisymmetric geometry with the available ex-
perimental results, see [5]. However in this case, the experiment have been carried out in 1990,
that is before the knowledge of the intrinsic instability described in the present document. Among
other comparisons, which can be found in [16], figure 3.10 shows the power spectral density of
the fluctuating axial velocity for three values of the injection velocity. The latter is represented
by Mw, the wall injection Mach number. The left figures (experiment) are directly scanned from
the publication, whereas the right ones give the theoretical results obtained for the four first posi-
tive azimuthal wave numbers. Three different initial amplitudes A0 have been chosen for the three
different injection velocities. As before, the range of the amplified frequencies seem to agree quite
well with the experimental results, even if there are some discrepancies which are significantly
larger than the ones observed with VECLA in the plane geometry.

3.4.3 Streamwise amplification

The previous comparisons proved the good agreement between the experimental results and the
theoretical ones in terms of range of amplified frequencies. The goal of this section is to analyse
carefully the instability process itself, that is the streamwise amplification, which is theoretically
of exponential type. The fluctuating velocity at different values of x must be then compared in
the same experimental condition (in order to keep the same initial amplitude A0 for the different
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Figure 3.9: Comparisons between LST results and experimental ones with the VECLA facility
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Figure 3.10: Comparisons between LST results and experimental ones obtained by Brown and
co-workers
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values of x).

A first comparison is given in figure 3.11. The height of the duct is 30 mm. The experimental
results (lines) are given in six increasing abscissa, whereas the theoretical values (symbols) are
reported for only the four largest values of x. The two first values are indeed upstream the critical
abscissa. The comparison gives an excellent agreement between the experiment and the theory
demonstrating undoubtedly on one hand the real existence of intrinsic instability for this type of
flow and on the other hand the reliability of the present linear stability theory. To emphasize this
comparison, let us mention : the range of amplified frequencies (as shown above), the streamwise
amplification (as previously said, the same constant A0 = 1/6000 has been used for the different
abscissa). Furthermore, the increasing shift of the amplified frequencies with respect to x is also
clearly visible in this figure. Finally, the spectrum measured at x = 570 mm, the most downstream

VECLA, height = 30 mm, Vinj = 1.36 m/s
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Figure 3.11: Comparisons between LST results and experimental ones with the VECLA facility

position, exhibits an interesting (weakly) nonlinear phenomenon, that is the increase of 2ω and 0ω
(steady) modes. These first nonlinear mechanisms are quite well understood in the framework of
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the boundary layer stability, see [21]. The basic reason comes from the linear form

uϕ =
1
2
(û exp(iω) + û∗ exp(−iω))

of the physical fluctuation (where z∗ represents the complex conjugate of z). The quadratic terms in
the Navier-Stokes equations are formally expressed by the product uϕuϕ. The product is converted
into a sum of the exponential terms, leading thus to the frequencies 2ω and 0. And, as the linear
step does not amplify only one mode, but a rather broad range, the quadratic interactions lead also
to amplify a certain range around zero and another one corresponding to twice the linear range.

Similar comparisons can be also tested with the axiymmetric duct. In the present document,
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Figure 3.12: Comparisons between LST results and experimental ones obtained with the facility
of the VKI. The full lines correspond to the experimental results, each of them at one value of x.
They are ordered regularly : the large the FFT amplitude, the larger the value of x.

two different comparisons are shown, the experimental results coming from two different facilities.
The first one is located in VKI and the results have been obtained by J. Anthoine, see [6]. As
before, the axial fluctuating velocity spectrum is compared between both approaches, the results
are given in figure 3.12. The injection velocity is 0.88 m/s, the radius of the duct 38 mm. The
spectra are given for three values of x, between 7.4 and 10 in terms of dimensionless distances from
the front wall. In comparison with the result given for the plane geometry, it appears immediately
that the measured velocity is much less smooth than in figure 3.11.
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Similar behaviour have been recently obtained by using the facility VALDO, see [22]. The
results are reported in figure 3.13. The radius is 30 mm, the injection velocity 1.05 m/s, the chosen
abscissa are thus close to 10.5 in dimensionless value.

From both figures, it may be concluded that there is a range of amplified frequencies which
correspond roughly to the theoretical predictions. It seems also that there is a streamwise amplifica-
tion but some discrepancies are clearly present between the theoretical results and the experimental
ones. It is not easy to explain the reason of this noisy signal obtained in the axisymmetric facil-
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Figure 3.13: Comparisons between LST results and experimental ones obtained with the VALDO
facility. Each curve corresponds to one of the four measurements, the same is true for the symbols
giving the theoretical predictions

ity. This may be due to the existence of several modes (associated to different azimuthal wave
numbers), but this may be also due to the measurement anemometer. In the plane case, the hot
wire is parallel to the porous wall whereas in the other geometry, some corners effects may occur.
As the probe is placed very close to the porous boundary, there are possible interactions between
the mean flow and the corners of the probe which carry the hot wire itself. Anyway, it may be
noted that the streamwise amplification is very large. For example, the result shown in figure 3.13
exhibits a huge amplification (factor about 20 in the experiment over a distance of only 1.5 cm).
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Chapter 4

In(tro)spection of the used

assumptions

Different assumptions have been made, their influences must be inspected in order to determine
the generality of the results presented in the previous chapter.

4.1 Non parallel effects

4.1.1 Definitions

As explained before, the basic flow explicitly depends on the streamwise coordinate x so that
the exponential form exp(iαx) used for the perturbation is not theoretically justified. For a two-
dimensional basic flow, a dependence of the streamwise velocity coordinate with respect to x is
related to a non zero transverse velocity V̄ through the continuity equation. This is the reason
why this x dependence is called a non parallel effect. In the following, the basic flow is assumed
to be dependent on x (even weakly).

For clarity, let us call the parallel approach the one when only the Ū is kept in the stability
equations (leading to exactly the Orr-Sommerfeld equation) and the nonparallel approach the one
for which all terms related to the basic flow are kept in the stability equations. Then, if the
perturbation has the form of a normal mode for a parallel basic flow (or for a flow of which the
non parallel terms are neglected), the corresponding approach will be noted by OSE (for Orr-
Sommerfeld Equation). On the other hand, the (theoretically not justified) use of the normal
mode for a non parallel basic flow will be noted by NNP (for Normal Non Parallel approach). All
the results shown in the previous chapter have been obtained by using the NNP approach.

Now there are some questions : is the Taylor flow weakly non parallel (so that OSE is a
more or less accurate approximation) ? Is it possible to justify the use of NNP ? Is it possible
to perform a consistent and accurate non parallel stability analysis ? The following part of the
present chapter is aimed to provide some answers to that questions.



Motor Flow Instabilities – Part 2: 
Intrinsic Linear Stability of the Flow Induced by Wall Injection 

8 - 42 RTO-EN-023 

4.1.2 Use of a parallel approximation ?

As explained above, the non parallel effects are connected with the magnitude of V̄ with respect
to Ū . Using the Taylor analytical form (1.8), the ratio V̄ /Ū may be readily calculated :∣∣∣∣ V̄Ū

∣∣∣∣ = 2
πx

∣∣sin πy
2

∣∣
cos πy

2

=
2
πx

tan
π|y|
2

This suggests that this ratio varies from 0 (at the symmetry axis) to ∞ at the porous walls.
However if the dependence on y is suppressed by a norm such as the maximum with respect to y,
the ratio is simplified into V̄ /Ū = 2/πx, which indicates that, according to this choice of norm,
the non parallel effects decrease with respect to x (the ratio is smaller than 0.05 for x ≥ 15 for
example). From these simple two remarks, it can be concluded that the Taylor flow may appear
more and more parallel for large values of x but, reciprocally, at any values of x it exists a small
region close to the injecting walls where the basic flow is strongly non parallel.

In order to illustrate the non parallel effects, a first possibility consists in solving the OSE
with the streamwise velocity component Ū being the one given by Taylor, even if the mean flow
given by the velocity (πx/2 cos(πy/2), 0) obviously does not satisfy the steady equations. Figure 4.1
gives for the axisymmetric Taylor flow, withR = 4500, q = 0 and ω = 80, the evolution with respect
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Figure 4.1: Comparison of OSE, NNP and PSE results for the axisymmetric Taylor flow, R = 4500,
q = 0 and ω = 80. The wavenumber αr is plotted in the left hand side, the growth rate αi in the
right hand side

to x of the complex number α solved by the OSE, the NNP and the PSE approaches (see below
for some explanations on the PSE method). It appears that on one hand NNP and PSE results
are very similar, whereas OSE strongly differs from the two others, for example the growth rate
remains always positive. Similar behaviour has been found in plane geometry, see [19].

This strong non parallel effect is also confirmed by the whole spectrum obtained with the
OSE linearised operator with the same values of the parameters are for figure 3.1. The results
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are given in figure 4.2. Once more, the real part is completely different and no amplified mode
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i
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Figure 4.2: Spectrum of the artificially parallel Taylor flow, R = 1000, x = 10, α = 4

has been found. Let us recall that the experiment clearly shows amplified modes which are in
relative good agreement with the NNP results. The parallel OSE approach does not seem to be
an approximation of the stability results for the present basic flow.

4.1.3 What is the matter with the normal non parallel approach ?

As firstly remarked by comparing results between those of Varapaev and Yagodkin [7], those of Lee
and Beddini [23] and ours [19], there is a problem somewhere. Finally the explanation has been
found by Griffond [24], the NNP approach is not consistent, because the stability problem depends
on the formulation which is used. In the present course, two formulations have been used in the
plane case : with the primitive variables (u, v, p) see system (2.8) and with the stream function ψ,
see equation (2.9). The matter is to determine if both formulations are strictly equivalent. Before
introducing the normal mode, both formulations (1.1) and (1.3) are obviously equivalent as well as
the linearised equations deduced from each of them. But, as the normal mode is not and cannot be
justified, the question of the equivalence between system (2.8) and equation (2.9) remains posed.

The answer given in [24] is the following one. From system (2.8), the amplitude function of
the pressure p̂ may be eliminated by multiplying the third equation of that system by iα, differenti-
ating the second one (with respect to y) and finally by subtracting both obtained equations. Then
in this new equation, the amplitude functions û and v̂ may be replaced by respectively −iαψ̂ and
Dψ̂ where ψ̂ is an amplitude function for the stream function and D the differentiation operator
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with respect to y. If we proceed in this way, the following equation is obtained

(
−iω + iαŪ + V̄ D − 1

R
(D2 − α2)

)
(D2 − α2)ψ̂ − ∂2V̄

∂y2
Dψ̂ − iα

∂2Ū

∂y2
ψ̂ +

∂U

∂x
α2ψ̂ = 0 (4.1)

which is NOT equation (2.9) as it ought to be in a consistent theory, the last term of (4.1) is not
present in (2.9). Let us just recall that for a strictly parallel basic flow, both formulations are
strictly equivalent, they lead both to the Orr-Sommerfeld equation.

The NNP approach is consequently not consistent, its results may depend on the formulation.
To illustrate that point, comparisons between the two formulations have been performed, they are
illustrated in figure 4.3. In addition, the published results of [7] and [23] have been indicated in
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Figure 4.3: Comparisons between diverse published results and our results illustrating the incon-
sistency of the normal non parallel approach. Using the stream function formulation, results for
the neutral curve for the sinuous modes in [7, 23] (circles) and for the varicose modes in [23] coin-
cide with ours (full lines). They are significantly different from ours obtained with the primitive
variable formulation for the varicose mode (dashed line) and for the sinuous mode (dotted line).
Self-similar solution is used for the plane basic flow with R = 100.

symbols. The neutral curve has been calculated for R = 100 for both sinuous and varicose modes
and with the two formulations. It is represented in the (R1/3

c , αr) diagram, where Rc represents the
Reynolds number based on the axial velocity (which is linearly dependent on x). All the published
results seem to be accurately calculated, the differences between the full lines and the dashed or
the dotted ones are intrinsic, they are due to the choice of the normal mode which is inconsistent
with the present basic flow.
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4.1.4 Is there any consistent and accurate non parallel approach ?

From a practical point of view, the inconsistent approach seems however to work with enough
accuracy. For large Reynolds number as well as for large values of x, the differences between the
two approaches discussed in the previous paragraph are quasi negligible. Furthermore, as shown
in the previous chapter, the agreement with the experimental results is very good. Even for the
axisymmetric geometry, for which the growth rates are larger and the involving x values smaller, it
may be guessed that for practical prediction the NNP approach provides a satisfactory estimation
of the instability.

On the other hand, the present solution is clearly wrong for the small values of x. In
particular the location of the neutral curve must be considered with care. Thus an alternative
approach for the mathematical form of the perturbation, which would be more consistent and
more accurate with respect to the non parallel characteristics of the basic flow, would be useful.

Some approaches already exist which are first consistent and whose goal secondly is to deal
with the non parallel effects. The clearest one is based on the multiple scale analysis, see [25]
or [26] for a general presentation and see [27] for an example of use in a non parallel stability
analysis (in the framework of the boundary layer stability). A more recent approach, called PSE
(for Parabolized Stability Equations), developed by Herbert and Bertolotti [28], also deals with
the non parallel effects. This approach has been used for the present mean flow, the results are
shown in figure 4.1. They prove that after a numerical transient in x, the PSE results rapidly agree
with the NNP ones. Concerning the consistency, the multiple scale analysis is fully consistent, the
PSE approach is quasi consistent, see [29] for more details. The (theoretical) problem with these
approaches is that both consider the Orr-Sommerfeld equation as a first order solution, whereas it
is not the case for the Taylor basic flow.

Another mathematical form for the perturbation has been proposed by J. Griffond, see [24].
The starting equation is the linearised form of the Navier-Stokes equations expressed with the
stream function (1.3). Using the perturbation technique ψ̃ = ψ̄ + ψ, the linearised problem is :

∂

∂t
∆ψ +

∂ψ̄

∂y

∂

∂x
∆ψ +

∂

∂x
∆ψ̄

∂ψ

∂y
− ∂ψ̄

∂x

∂

∂y
∆ψ − ∂

∂y
∆ψ̄

∂ψ

∂x
=

1
R

∆∆ψ (4.2)

with the following boundary conditions :
∀y ∈ [−1,+1]

∂ψ

∂y
(0, y) = 0

∀x ≥ 0
∂ψ

∂y
(x,−1) = 0,

∂ψ

∂x
(x,−1) = 0,

∂ψ

∂y
(x, 1) = 0

∂ψ

∂x
(x, 1) = 0

(4.3)

As shown before, a possible choice for one stream function associated to the Taylor basic flow
is ψ̄ = x sin(πy/2). Equation (4.2) represents then a linear equation with coefficients which are
dependent on x and y and independent of t. Thus a general form for the unknown function ψ(x, y, t)
may be chosen with an exponential dependence with respect to t (normal mode in t) :

ψ(x, y, t) = e−iωtψ̌(x, y)

Equation (4.2) becomes then :

−iω∆ψ̌ +
πx

2
cos

πy

2
∂

∂x
∆ψ̌ − π2

4
sin

πy

2
∂ψ̌

∂y
− sin

πy

2
∂

∂y
∆ψ̌ +

π3x

8
cos

πy

2
∂ψ̌

∂x
=

1
R

∆∆ψ̌
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whereas the associated boundary equations remain the same as (4.3), with ψ̌ instead of ψ. A
possible solution could be to solve directly the stability problem given by the previous homogeneous
partial differential equation. Such problems are currently investigated by some researchers (in case
of the stability of a recirculating zone, a vortex, the boundary layer in the vicinity of the attachment
line etc.) but there is a strong difficulty with the treatment of the boundary conditions. The
proposed solution is to search ψ̌ in the form :

ψ̌ = xλψ̂(y)

leading hence to ordinary differential equations (like with the normal mode) and avoiding therefore
the difficulty with the boundary conditions. The idea with this mathematical form is to define a
phase velocity, which is then uniformly accelerated with x, as is the basic Taylor flow, whereas
with the normal mode, the phase velocity does not depend on x. With this form, equation (4.2)
writes :

0 = − 1
R
D4ψ̂ − iωD2ψ̂ +

[
λπ

2
cos

πy

2
− sin

πy

2
.D

](
D2ψ̂ +

π2

4
ψ̂

)
+

1
x2

[
− 2
R
D2 − iω +

π

2
cos

πy

2
(λ− 2)− sin

πy

2
.D

]
λ(λ− 1)ψ̂

− 1
x4

1
R
λ(λ− 1)(λ− 2)(λ− 3)ψ̂

(4.4)

with D the differentiation operator with respect to y. As it is the case with the normal mode, this
form does not satisfy exactly the equations, so that λ is not really independent of x. By using the
so-called quasi-parallel approach, the value of λ is recalculated at each considered value of x.

The advantage of this form is clearly to define a zero-order approximation which is asymp-
totically valid for large values of x :

− 1
R
D4ψ̂ − iωD2ψ̂ +

[
λπ

2
cos

πy

2
− sin

πy

2
.D

](
D2ψ̂ +

π2

4
ψ̂

)
= 0 (4.5)

On the other hand, let us return to the OSE and NNP approaches (obtained with the term
exp(iαx)) for which, as proposed by J. Griffond, we define :

λ = ixα

Then, the OSE approach gives :

− 1
R
D4ψ̂ − iωD2ψ̂ +

λπ

2
cos

πy

2

(
D2ψ̂ +

π2

4
ψ̂

)
+

1
x2

[
−2λ
R
D2ψ̂ +

λ3π

2
cos

πy

2
ψ̂

]
− 1
x4

λ4

R
ψ̂ = 0

whereas the NNP approach leads to :

0 = − 1
R
D4ψ̂ − iωD2ψ̂ +

[
λπ

2
cos

πy

2
− sin

πy

2
.D

](
D2ψ̂ +

π2

4
ψ̂

)
+

1
x2

[
−2λ2

R
D2ψ̂ +

(
λπ

2
cos

πy

2
− sin

πy

2
.D

)
λ2ψ̂

]
− 1
x4

λ4

R
ψ̂

These equations show that for large values of x, the leading order (4.5) of (4.4) coincides exactly
with the leading order of the NNP approach and NOT with the OSE approach. The inconsistent
approach remains inconsistent obviously but is now justified (its leading order terms) for large
values of x. Finally some comparisons between direct simulations (by using the code SIERRA
developed by F. Vuillot, see [30]) and stability computations show a better agreement with (4.4)
than with the NNP, see [24].
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4.2 Physical assumptions

In addition to the assumption of a normal mode, there are several other aspects which have been
neglected in the presentation given before. However, the effects of :

• compressibility,

• real geometry,

• presence of an acoustic mode,

• regression of the boundary wall

have been found to be nearly completely negligible. The intrinsic instability described before seems
to be very robust.

The last point related to the linear stability theory, which appears to be important in
the computations, see [31], concerns the effects of the presence of particles, especially of reactive
particles. A first attempt in that direction has been achieved by taking into account non reactive
particles. A first interesting result of [32] is that the particles may destabilise the flow, as it
is illustrated in figure 4.4. This effect may be attributed to the appearing augmentation of the
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Figure 4.4: Evolution of the growth rate αi as function of the density of the injected particles at
the wall. The injection velocity of the particles is the same as the one of the fluid, the Stokes
number is 10−3, and x = 10, ω = 30.

Reynolds number due to the augmentation of the density thanks to the particles.
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In addition to this two-phase flow effect, there is of course the linear assumption. But
nonlinear mechanisms induced by instability are neither very easy nor very common. This could
be another lecture ! See the thesis of J. Griffond [9] for detailed nonlinear analysis.
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Conclusion

Undoubtedly, an intrinsic instability exists in the flow induced by wall injection. A linear stability
theory can be carried out, even if it presents some difficulties (mainly from the theoretical point
of view) in relation with the non parallel characteristics of the considered mean flow. At least in
the plane geometry, the experimental results confirm the predictions based on the linear stability
theory. However in practice, the intrinsic perturbation cannot grow infinitely in x, as it could be
according to the linear stability results. From flow visualisations performed in VECLA, we know
that large structures are emitted somewhere, they are associated to fluctuations of large amplitude
and are thus not compatible with a small perturbation approach leading to the linear theory. The
perturbations grow in x, according to the linear instability mechanism and then become fully non
linear. Moreover, for some configurations the experimental results of VECLA do not seem to
exhibit any instability feature. Among these results, there is the resonance on an acoustic mode
of large amplitude which is of course the most important configuration in practice.

Where does this resonance phenomenon come from ? Does the stability play any role ?
In order to try to give some answers to these questions, let us summarise the main ideas

(coming from the experimental results, direct simulations and nonlinear stability theories) obtained
at the end of the PhD of J. Griffond. The key point is the dimensional value of the abscissa of the
motor exit section x∗s. It seems that the abscissa related to the instability mechanisms (location
of the iso-n factor curves, location of the large structure emission) are mainly constant in term
of dimensionless values, with the reference scale for the distance being the radius of the fluid h.
But for a real motor, only x∗s remains constant, the value of h grows continuously thanks to the
regression of the injecting wall due to the combustion.

The proposed scenario is then the following one :

• At the beginning, h is small. In that case, the flow becomes turbulent somewhere in the duct,
the large structures which are emitted upstream in the laminar zone are dissipated by the
turbulence, so that there is no coherent (i.e. quasi periodic in time) structure which passes
through the exit section. Nothing happens with respect to the cavity modes.

• Later, h becomes larger, the transition to turbulence moves downstream and at a given time, the
turbulence zone is not sufficient to dissipate enough the large emitted structures. The frequency
associated to this emission corresponds more or less to the one of the largest amplitude of the
eigenmode at the abscissa from which nonlinear phenomena start to operate. At each time that
a structure passes the throat (exit section), there is an emission of a reflecting pressure wave
(it has been measured in the cold gas facilities). This wave arrives at the front wall and there
is another reflecting wave, but now in the downstream direction. This wave may reasonably
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excite the intrinsic instability mode (by the so-called receptivity mechanism) and mainly the one
corresponding to its frequency. This mode is then fully favoured : it is an intrinsically amplified
mode and it starts with a larger and larger amplitude due to the reflecting waves. Rapidly only
one mode comes up. Then, at least in the VECLA and VALDO facilities, there are two cases :
either the dominant frequency corresponds to the one of a cavity mode or not. The frequency
obtained by the instability and the reflecting waves strongly depends on the injection velocity
whereas the cavity frequencies are obviously mainly independent of this injection velocity. In
the second case, the reflecting waves remain linear and the physics remains governed by the
instability mechanism. In the first case, the amplitudes are very large and it may be guessed
that the instability plays a role only in the transient which leads to the excitation of the cavity
mode.

• Finally when h is large, the emission of the large structure does not occur any more in the
booster, it moved downstream, only small fluctuations (the intrinsic instability modes them-
selves) remain and do not provide enough energy for creating reflected pressure waves.

This scenario needs of course additional confirmations but it is fully consistent with the experiment,
the numerical simulations and the investigated nonlinear stability approaches.
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[27] Bridges T.J. and Morris P.J. Boundary layer stability calculations. Physics of Fluids, 30,
november 1987.

[28] Th. Herbert and F. P. Bertolotti. Stability analysis of non-parallel boundary layers. Bull.
Am. Phys. Soc., 32, 1987.
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ANNEX : Spectral collocation method for eigenvalue prob-

lem

Description of the method

Several methods may be used for solving an eigenvalue problem or more generally any differential
equations system. In the case of the plane Taylor flow, expressed in terms of stream function,
equation (2.9), the simplest method is probably the spectral collocation method. In this annex,
only a short view of it is given, more details together with other methods can be found in [33],
an application of the spectral collocation technique in a particular stability problem is described
in [34].

The goal is hence to solve the differential problem constituted by equation (2.9) and bound-
ary conditions (2.10). The variable y varies in [−1,+1]. Some definitions are necessary, let be first
Tn the nth Chebychev’s polynomial of degree n. Then, an integer N is assumed to be chosen, it
characterises the chosen refinement for solving the differential problem, as it will be explained just
below. Let be :

ξj = cos
(
πj

N

)
j = 0, . . . , N

N + 1 points, which are called the ones of “Gauss-Lobatto”. The unknown amplitude function,
which will be noted ψ in this annex, is approximated by the polynomial :

ψ(ξ) =
N∑

j=0

λj(ξ)ψ(ξj)

where λ stands for

λj(ξ) =

(
1− ξ2j
ξ − ξj

)
(−1)j+1T

′
N (ξ)
N2cj

with T ′
N the derivative of the N th Chebychev’s polynomial. The N + 1 discrete values

ψj = ψ(ξj)

are explicitly the unknown of the (discretised) problem. This is the reason why N describes the
used accuracy for computing the unknown. As ψ is a solution of differential problem, we have now
to link between the derivative ψ′ and the function ψ itself. For this purpose, let be :

Ejk =
cj
ck

(−1)k+j

ξj − ξk
j 6= k

Ejj = − ξj
2(1− ξ2j )

j = 1, . . . , N − 1

E00 = −ENN =
2N2 + 1

6
defining a square matrix E with the coefficients cj given by :

c0 = cN = 2 cj = 1 j = 1, . . . , N − 1

Then, it can be proved that the derivative exactly corresponds for the discrete values to the matrix
multiplication by E :

dψ

dξ
(ξj) =

N∑
k=0

Ejkψk
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Typical stability code

Using the previous matrix multiplication as derivative operator leads to discretise the linearised
stability equations into an algebraic problem for X the vector of the unknowns ψj . Then, there
are usually two approaches, either the complete spectrum of the discretised problem is looked for
or by a shooting method a unique value of the spectrum is looked for.

Spectrum. In this case, if the unknown is the complex number ω, the discretised problem is
written under the form :

A.X = ωB.X

with A and B two matrices coming from derivation and intervention of the mean flow. All the
lines of the matrices correspond to the discretisation of the continuous equations at the collocation
points, for example ordered from -1 up to +1. Then the four homogeneous boundary conditions are
included by substituting the first line by the condition ψ̂(−1) = 0, the second line by ψ̂′(−1) = 0
and the two last lines in the same way (by the boundary conditions in +1). Thus the previous
algebraic problem is replaced by :

Ã.X = ωB̃.X

The last step consists in determining the eigenvalues ω by an appropriate method.

Shooting method. In this case, if the unknown is the complex number α, the discretised problem
is written under the form :

A(α).X = 0

As in the previous case, each lines expresses the continuous equation written in the corresponding
collocation point. The idea in this case is as before to introduce the boundary conditions, but only
three. In addition, a non homogenous one is introduced, for example a condition on the pressure
(or the second derivative of ψ̂). This non homogeneous condition acts as a normalisation condition.
The previous problem is then replaced by :

Ã(α).X = b

The next step consists in inverting Ã(α) and thus in determining X. Then, the omitted boundary
condition is examined and in fact all the described procedure is included into a loop : α is searched
until the omitted boundary condition is satisfied.

Code written in Matlab

A small program written using the commercial software Matlab is given below. The five routines
are organised as described in figure 4.5. The main program is called “OrrSom”. The initialisation
defines the collocation points and the matrix used for the derivation. Then, it is possible to
compute the whole spectrum of the linearised operator, this is achieved in the routine “spectre”.
Alternatively, the shooting method can be used, the initial guess is given in the main program,
the routine “balai” defines possible parametric computations (by varying regularly one parameter
among the Reynolds number, the frequency and the abscissa). This routine uses the one named
“Newton” whose goal is to determine the eigenvalue by a standard Newton iterative procedure.
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O r r - S o m

I n i t i a l i s a t i o n
S p e c t r e

B a l a i R e s o lN e w t o n

Figure 4.5: Representation of five Matlab routines for solving a stability problem with the spectral
collocation method either with a shooting method (upper line “Balai - Newton - Resol”) or by
determining the whole spectrum (lower line “Spectre”)

Each resolution of the stability equation called by “Newton” is performed thanks to the routine
“Resol”.

Main program : orrsom.m

%

% Programme principal ORRSOM.m

%

% résolution du problème de stabilité linéaire

% pour l’écoulement dans un conduit plan à parois débitantes.

% perturbation en forme de mode normal,

% formulation en fonction de courant

%

%

global npol xi e id alpha omega reynolds csol type_calcul xloc;

%

% valeurs de départ

%2.48746e-001 9.70805e-001

reynolds = 1000;

xloc = 10;

omega = 31.6;

alpha = complex(4.0158,-0.373);

%

type_calcul = ’spectre’;

%

initialisation;

%

switch lower(type_calcul)

case ’balai’

balai;

case ’spectre’

spectre;

otherwise

disp(’Orr-Som, non implémenté’)

end
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Subroutine : initialisation.m

%

% Sous-programme initialisation.m

%

% Initialisation dans la méthode de collocation spectrale

% npol est le nombre de points de collocation

% e est la matrice de dérivation

% id est la matrice identité

% xi est le vecteur des points de collocation

%

global npol xi e c id;

%

% Préliminaires

%

npol = 100;

iaff = 0;

xi = zeros(npol,1); c = zeros(npol,1); id = zeros(npol,npol); e = zeros(npol,npol);

%

% Calcul du vecteur xi et du vecteur technique c

%

for j = 0:npol

j1 = j+1;

xi(j1,1) = cos(pi*j/npol); c(j1,1) = 1;

end

id = diag(c,0);

c(1,1)=2; c(npol+1,1)=2;

%

% Calcul de la matrice e

%

for j = 0:npol

j1 = j+1;

for k = 0:npol

k1 = k+1;

if (k~=j)

e(j1,k1) = c(j1,1)*(-1)^(k+j)/(c(k1,1)*(xi(j1,1)-xi(k1,1)));

else

if (j~=0 & j~=npol)

e(j1,j1) = -xi(j1,1)/(2*(1-xi(j1,1)*xi(j1,1)));

end

end

end

end

e(1,1) = (2*npol*npol+1)/6; e(npol+1,npol+1) = -(2*npol*npol+1)/6;

Subroutine : spectre.m

%
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% Sous-programme spectre.m

%

% Détermination du spectre de l’opérateur d’Orr-Sommerfeld

% on écrit le probleme sous la forme :

% mat1.v = omega . mat2.v

%

% Paramètres

%

global npol xi e id alpha omega reynolds csol type_calcul vp xloc;

%

% initialisation

%

e2 = zeros(npol,npol); mat1 = zeros(npol,npol); mat2 = zeros(npol,npol) ;

ci = complex(0,1); e2=e*e ; e3=e2*e ;

%

% écoulement de base

%

u = pi*xloc*cos(pi*xi/2)/2; ddu = e2*u;

v = -sin(pi*xi/2); ddv = e2*v;

%

% remplissage des matrices mat1 et mat2

%

for i = 0:npol

i1 = i+1;

for j=0:npol

j1=j+1;

mat1(i1,j1) = -ci*alpha*(ddu(i1)+alpha*alpha*u(i1))*id(i1,j1);

mat1(i1,j1) = mat1(i1,j1)+ci*alpha*u(i1)*e2(i1,j1);

mat1(i1,j1) = mat1(i1,j1)-(alpha*alpha*v(i1)+ddv(i1))*e(i1,j1);

mat1(i1,j1) = mat1(i1,j1) + v(i1)*e3(i1,j1);

end

end

z1 =-1/reynolds; z2 = 2*alpha*alpha/reynolds ; z3 = -alpha.^4/reynolds;

mat1 = mat1 + z1*e2*e2 + z2*e2 + z3*id ;

mat2 = -ci*(alpha*alpha*id-e2) ;

%

% Conditions aux limites

%

for i = 0:npol

i1=i+1;

mat1(1,i1) = 0;mat2(1,i1) = 0;

mat1(2,i1) = e(1,i1);mat2(2,i1) = 0;

mat1(npol,i1) = e(npol+1,i1); mat2(npol,i1) = 0;

mat1(npol+1,i1) = 0; mat2(npol+1,i1) = 0;

end

mat1(npol+1,npol+1) = 1; mat1(1,1) = 1;

%
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% calcul des valeurs propres (généralisées)

%

bmat = eye(size(mat1));

l = eig(mat1,mat2);

%

% représentation graphique

%

plot(real(l),imag(l),’ob’,’MarkerSize’,6,’MarkerFaceColor’,’b’)

axis([0 100 -10 5])

Subroutine : balai.m

%

% Sous-programme balai.m

%

% calcul de valeurs propres avec Newton par variation de l’un des paramètres

%

% Ce paramètre peut etre :

% le nombre de Reynolds

% la position en abscisse

% la fréquence

%

%

global alpha omega reynolds xloc;

%

% Valeurs initiales pour la variation

%

type_balai = ’reynolds’;

nparam = 1; dparam = 100;

%

% Lecture du fichier où sont écrites les valeurs précédentes

%

fid = fopen(’C:\GREG\ONERA\SPADA\StabMatlab\varirey.txt’,’a+’);

%

[vect,count] = fscanf(fid,’%f %f %e %e %e’,inf);

nligne = count/5; indice = 5*(nligne-1);

reynolds = vect(indice+1); xloc = vect(indice+2);

omega = vect(indice+3);

alpha = complex(vect(indice+4),vect(indice+5));

%

% Valeurs pour démarrer le calcul

%

alphainit = alpha; omegainit = omega;

reynoldsinit = reynolds; xlocinit = xloc;

%

% Variation suivant le paramètre choisi

%

switch lower(type_balai)
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case ’frequence’

domega = dparam; dreynolds = 0; dxloc = 0;

case ’abscisse’

domega = 0; dreynolds = 0; dxloc = dparam;

case ’reynolds’

domega = 0; dreynolds = dparam; dxloc = 0;

otherwise

disp(’non implémenté (ou erreur) dans balai’)

end

%

% Boucle pour la variation du paramètre choisi

%

for iparam = 1:nparam

omega = omegainit + (iparam-1)*domega;

reynolds = reynoldsinit + (iparam-1)*dreynolds;

xloc = xlocinit + (iparam-1)*dxloc;

%

% Estimation des valeurs initiales

%

switch lower(iparam)

case 1

alpha = alphainit;

case 2

alpha = alpha1;

case 3

alpha = 2*alpha2 - alpha1;

otherwise

alpha = 3*(alpha3-alpha2) + alpha1;

end

%

% Appel à la convergence, méthode de Newton

%

newton;

%

% Stockage des au plus 3 dernières valeurs convergées

%

switch lower(iparam)

case 1

alpha1 = alpha;

case 2

alpha2 = alpha;

case 3

alpha3 = alpha;

otherwise

alpha1=alpha2; alpha2=alpha3; alpha3=alpha;

end

%
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% Affichage écran des résultats

%

fprintf(’iparam = %d, R = %0.1f, X = %0.1f, w = %0.5e, ar = %0.5e, ai = %0.5e\n\n\n’,...

iparam,reynolds,xloc,omega,real(alpha),imag(alpha))

%

% Ecriture sur fichier des résultats

%

fprintf(’\n’)

fprintf(fid,’%0.1f %0.1f %0.5e %0.5e %0.5e \n ’,...

reynolds,xloc,omega,real(alpha),imag(alpha));

end

%

status = fclose(fid);

Subroutine : newton.m

%

% Sous-programme Newton.m

%

% Méthode de Newton complexe pour

% résoudre csol = 0, alpha est l’inconnue complexe

%

global npol xi e id alpha omega reynolds csol type_calcul;

%

% Initialisation Newton

%

dval = 1E-4;

err = 1;

it = 0;

alphan = alpha ;

%

% Méthode de Newton (utilisation des relations de Cauchy)

%

while (err > 1E-08 & it < 10)

it = it + 1;

alpha = alphan;

resol; csol0 = csol ;

alpha = alphan + dval;

resol; csolm = csol;

dcsol = (csolm-csol0)/dval; cor = csol0/dcsol;

err = abs(cor)/abs(alphan);

alphan = alphan - cor;

end

if (err > 1E-06)

disp(’problème Newton’)

break

end
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Subroutine : resol.m

%

% Sous-programme resol.

%

% On ecrit Orr-Sommerfeld sous la forme mat.X = b

%

% e2 : matrice de dérivée seconde e2 = e*e

%

global npol xi e id c alpha omega reynolds csol xloc;

%

% initialisation

%

b = zeros(npol,1); e2 = zeros(npol,npol); mat = zeros(npol,npol);

e3 = zeros(npol,npol);

ci = complex(0,1); e2=e*e; e3=e2*e;

%

% écoulement de base

%

u = pi*xloc*cos(pi*xi/2)/2; ddu = e2*u;

v = -sin(pi*xi/2); ddv = e2*v;

%

% remplissage de la matrice mat

%

for i = 0:npol

i1 = i+1;

for j=0:npol

j1=j+1;

mat(i1,j1) = -ci*alpha*(ddu(i1)+alpha*alpha*u(i1))*id(i1,j1);

mat(i1,j1) = mat(i1,j1)+ci*alpha*u(i1)*e2(i1,j1);

mat(i1,j1) = mat(i1,j1)-(alpha*alpha*v(i1)+ddv(i1))*e(i1,j1);

mat(i1,j1) = mat(i1,j1) + v(i1)*e3(i1,j1);

mat(i1,j1) = mat(i1,j1) -ci*omega*e2(i1,j1) ;

end

end

z1 =-1/reynolds; z2 = 2*alpha*alpha/reynolds ;

z3 = -alpha.^4/reynolds + ci*omega*alpha*alpha ;

mat = mat + z1*e2*e2 + z2*e2 + z3*id ;

%

% conditions aux limites

% on écrit psi"(1) = 1, psi’(1) = 0, psi’(-1) = 0, psi(-1) = 0

%

for i = 0:npol

i1=i+1;

mat(1,i1) = e2(1, i1);

mat(2,i1) = e(1,i1);

mat(npol,i1) = e(npol+1,i1);

mat(npol+1,i1) = 0;
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b(i1) = 0;

end

mat(npol+1,npol+1) = 1; b(1) = 1;

%

% inversion

%

sol_v = mat\b ;

%

% si iaff=0, c’est Newton sur v(1), sinon affichage de la fonction propre

%

iaff = 0;

if (iaff == 0)

csol = sol_v(1);

else

sol_dv = e*sol_v;

plot(xi,abs(sol_v),xi,abs(sol_dv),’LineWidth’,2)

set(gca,’DefaulttextFontName’,’Times New Roman’);set(0,’DefaulttextFontSize’,14);

xlabel(’{\it y}’,’FontName’,’Times New Roman’,’FontSize’,16);

ylabel(’{\it u,v}’,’FontName’,’Times New Roman’,’FontSize’,16);

legend(’u’,’v’,0);

end
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NOTATIONS 

E total energy per unit of mass (J/kg) 

F convective flux vector in the x direction 

G convective flux vector in the y direction 

H convective flux vector in the z direction 

S source term vector 

k turbulent kinetic energy 

wm&  mass flow rate per injecting surface unit 
(kg/m2) 

P pressure (Pa) 

P’ fluctuating pressure (Pa) 

Q conservative variables vector of Navier-
Stokes equations 

qm total mass flow rate (kg/s) 

rb burning rate (mm/s) 

T temperature of the flow (K) 

Tf propellant flame temperature (K) 

u velocity component in the x-longitudinal 
direction (m/s) 

uv axial mean velocity (m/s) 

v velocity component in the y-lateral 
direction (m/s) 

vinj wall injection velocity (m/s) 

w velocity component in the w-lateral 
direction (m/s) 

x,y,z co-ordinate system (m)  

ε turbulent dissipation rate 

κ thermal conductivity (W/mK) 

µ dynamic viscosity (kg/ms) 

ρ density (kg/m3) 

ρs propellant density (kg/m3) 

Dimensionless Parameter 

Rec axial Reynolds number: ρ uv Dc/µ, where Dc is a characteristic diameter of the SRM 

Res wall injection Reynolds number: ρ vw Dc/µ 

γ isentropic exponent, equal to the specific heat ratio for a perfect gas 

INTRODUCTION [1] 

Internal ballistics in a SRM can be solved with various ways and for various objectives [2]. The motor 
design engineer wants to predict or understand the burning characteristics and the global performances of 
the motor, seek the efficiency of thermal insulation and nozzle design, check the reliability of ignition and 
motor design for the life cycle of the motor, take into account variability induced by manufacturing 
processes, etc. 

Paper presented at the RTO/VKI Special Course on “Internal Aerodynamics in Solid Rocket Propulsion”,  
held in Rhode-Saint-Genèse, Belgium, 27-31 May 2002, and published in RTO-EN-023. 
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Different ways can be followed to reach the same goal. The reasons why a project manager uses numerical 
simulations are multiple. In the predictive mode, the aim is to design the system which fulfils the 
specifications at the lowest development cost (by minimizing the number of prototypes and tests). In the 
explanatory mode, the desire is to explain an observed and unknown phenomenon that happened during 
the development phase of a program.  

For solid rocket motors, the objectives of internal flow computations are to predict the global  
performance and reliability of the rocket, avoid, minimize or master undesired behaviors (like thrust 
oscillations, erosive burning), take into account flow/grain and casing interactions (mechanical and 
thermal loads), etc. 

The internal aerodynamics inside a solid rocket motor can be modeled with increasing degrees of 
complexity from the simplest global equations to a full 3D numerical simulations. An AGARD Lecture 
Series has already been organized on the Design Methods in Solid Rocket Motors [3]. The objective of 
this special course is not to duplicate the materials developed in AGARD-LS-150. We will focus on 
multidimensional simulations of internal flows. 

Example of objectives and constraints: 
• 
• 
• 
• 

• 

• 

• 
• 
• 
• 
• 
• 
• 

• 

• 

• 

assessment of stability 
prediction of performances 
prediction of reliability 
prediction of variability, for instance thrust imbalance (important when using simultaneously 
more than one identical motor) 

Conception: 
choose the right propellant for the application, and design the initial geometry of the solid 
propellant charge that will deliver, with surface regression, the required time history of the gas 
flow 
assess reliability of the designed motor (mechanical loads, ignition, casting process and raw 
materials variability, thrust oscillations, …) 

Challenges of numerical modeling: 
two-phase reacting flow (aluminized propellants) 
gas in a wide range of temperatures 
multi-species and turbulence 
two or three dimensional geometry 
moving boundaries 
fluid/structure coupling, with heterogeneous surface combustion 
steady and unsteady compressible flows, with all range of Mach number 

The impact of numerical modeling in designing motors of new generation had a recent increase due to 
mainly three causes: 

large progress of computer power (hardware) and in computational fluid dynamics (software)  
in the last decades 
objective of cost reduction (mainly in the development phase of a new motor) 

new objectives of performance and reliability 
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An improved prediction reduces the number of qualifying fires, and for large and expensive motors, this is 
of prime importance.  

This lecture series will be divided in two special courses. The first one presents the general models for 
solving internal steady state aerodynamic in solid rocket motors, the second one focus on pressure and 
thrust oscillations modeling. 

GENERAL EQUATION FOR AERODYNAMICS 

At a starting point, the general equations describing fluid flows inside a solid rocket motor begins with the 
Navier-Stokes equation. We remind them as an introduction. 

The general form of the conservation equations for a three dimensional viscous flow can be written in the 
following form: 
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and S is the source term vector. 

These equations must be solved with appropriate solvers and on appropriate grids. 

Over the last twenty years, different grid technologies have been developed. Based on experience on finite 
difference schemes and for the sake of simplicity in software management, structured grids have been 
widely used. A structured grid is a grid where each component can be identified by two indices (i,j) in 2D 
and three indices (i,j,k) in 3D. Each index refers to a space dimension. Hence, the grid points are ordered, 
giving the name of “structured grid”. However, this technology was shown very precise and efficient for a 
simple geometry but limited for a complex geometry. Techniques of multiple structured domains 
overlapping have been developed, but with special difficulties for ensuring global conservation among the 
different domains and a good efficiency on distributed memory parallel computers. 

For an unstructured flow solver, the computational domain is tessellated using a grid composed of 
simplices, which are quadrilaterals or triangles in two dimensions and generally tetrahedras, pyramids, 
pentagons, prisms and hexahedras in three dimensions. Unstructured grids provide flexibility for 
tessellating about complex geometry and for adapting to flow features, such as shocks and boundary 
layers.  

On a given grid, one has the option of locating the variables at the cell centers or at the vertices of the grid, 
giving rise to cell-centered and cell-vertex schemes. Alternatively, it is possible to deal strictly with 
averages defined over volumes. This approach has certain advantages for higher order schemes. In the 
case of finite volume schemes, the governing equations are discretized. This allows discontinuities to be 
captured as part of the solution.  

SOLID PROPULSION MODELS 

General modern CFD codes for computing flows in solid rocket motors have the following features: 

• 

• 

• 

• 

• 

solves the 2D axisymmetrical, plane and 3D Navier-Stokes equations for laminar or turbulent 
flows  

uses unstructured meshes for complex geometry treatment 

has the possibility for treating the chemical reactions of multi-species and the coupling between a 
gas phase and a condensed phase, inert or not, with specific models 

has moving mesh facilities 

incorporates specific solid propulsion models for the burning rate, from simple laws (regression 
rate) to several coupling (ignition, erosive burning, unsteady combustion) as well as solid 
propellant grain coupling (mechanical, surface-burnback). 
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COMBUSTION AND EROSIVE BURNING 

Erosive burning is a phenomenon commonly experienced in a solid propellant rocket motor, represented 
by an increase of the local propellant burning rate due to high velocity combustion gas flow across the 
burning surface. Most propellants have a minimum cross-flow velocity below which erosive burning is not 
observed, referred to as the “threshold velocity”. 

The erosive burning mechanism is believed to be due to the: 

• 

• 

increase in gas-to-solid heat feedback caused by the increase in transport coefficients 

turbulence-enhanced mixing and chemical reaction of the oxidizer and fuel rich gases pyrolized 
for composite propellants 

Steady combustion is a complex mechanism including chemical and physical effects (nature and details  
of energetic materials and additives, particle size distribution, operating conditions: pressure, initial 
temperature, radiation, …). For erosive burning, the cross-flow velocity (parallel to the solid propellant 
burning surface) constitutes an additional operating condition of extreme importance. 

Several theoretical approaches have been reported, which can be grouped in five categories, following 
Kuo and coworkers [4]: 

1) phenomenological heat transfer theories 

2) modification of the propellant combustion mechanism 

3) integral boundary layer analysis 

4) chemically reacting turbulent boundary layer analysis 

5) others 

We focus on models 1 and 4. Models in the category 1 will have an interest for engineering design 
problems while models in the category 4, relying on more fundamental viewpoint, are thought to be more 
precise and thus more appropriate for being incorporated in complex CFD codes. 

Phenomenological Heat Transfer Theories 
Most of these models are based on or derived from Lenoir & Robillard [5] approach, giving the general 
expression for the burning rate in the form: 
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where α, β and g are three constants, G is the mass flux through the port, and Dh is the hydraulic diameter. 
The expression f(Dh) can include scale effects. In the original form, f(Dh)=Dh

0.2, β=53 is found to be 
independent of the propellant type, and g=0.8 (based on Chilton-Coburn correlation for evaluating the 
convective heat transfer coefficient ). 

This approach is well suited for 1D analysis. 

Chemically Reacting Turbulent Boundary Layer Analysis 
These models are well suited to aerothermochemical analysis of erosive burning of composite propellants, 
and many authors have contributed (King [6], Beddini, Kuo, and people from ONERA). We will focus on 
ONERA approach [7,8] used at SNPE. 
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The turbulent flow is solved in a high Reynolds approach and the propellant surface is treated as a wall 
zone. In this region, Couette equations are solved, from the propellant surface to the first integration point 
of the flow in the port. The temperature gradient in the flame is then computed, leading to the heat flux to 
the surface. A flame height criterion is used, assuming that the combustion between oxidizing and fuel 
gases is limited by the diffusion (valid for medium and large AP sizes). In the erosive regime, the solution 
of the Couette flow is coupled with the flame height criterion, including the turbulent contribution.  
This coupled system is solved in an iterative way, until the velocity and temperature profiles match the 
values of the first integration point in the flow. At convergence, the erosive burning rate is immediately 
obtained.  

Since it is driven by viscous effects, the erosive burning in a SRM will be sensitive to the scale of the 
motor. 

 

Figure 1: Flame Zone Computed by the ONERA Model at Different Scales (1, 1/10 and 1/100). 

 

Figure 2: Erosive Behavior as a Function of the Motor Scale (ONERA Model). 
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Figure 3: Erosive Threshold in Various Configurations (ONERA Model). 

TURBULENCE 

Turbulence modeling in the port becomes necessary for the evaluation of heat transfer and/or diffusion 
related phenomena (erosive burning, heat flux over thermal inhibitors and material decomposition, …).  

Cold flow experiments with wall injection have shown that this kind of flow have a delayed turbulent 
transition, as illustrated on Figure 4. The important parameter is the injection Reynolds number  
(defined with injection velocity at the blowing surface and port radius). For injection Reynolds number 
above 50, the transition from a laminar to a turbulent flow is delayed. 

 

Figure 4: Laminar / Turbulent Transition as a Function of the Injection Reynolds Number. 

The difficulty in simulating turbulence in a SRM comes from the fact that the transition is always inside 
the port, since the velocity at the head-end is equal to  zero. So, turbulence modeling must compute 
correctly the transition. A schematic view of laminar-turbulence interaction is given in Figure 5.  
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Figure 5: Schematic View of Laminar-Turbulence Transition in a SRM. 

Usually, classical turbulence models are used for internal flows in SRM. As in the usual treatment of 
turbulence, the velocity field u and pressure P are decomposed into mean u, P and fluctuating u’, P’ parts 
with Favre’s average for compressible flows. 

Two-equation models, like the k-ε model, solves transport equations for the turbulent kinetic energy k and 
the dissipation rate ε. Source terms (S) are accounted for modeling turbulence creation and dissipation. 
The eddy viscosity is expressed as a function of k2/ε and the Boussinesq hypothesis is used for computing 
the turbulent stresses.  

Classical k-ε turbulence models are isotropic, and this hypothesis is very restrictive for flows in SRM. 
Anisotropic turbulence models, like Algebraic Stress Models (ASM) are an efficient way for improving 
turbulence modeling without a dramatic CPU increase. 

Flow turbulence modeling must always be associated with a consistent injection modeling. As the 
difficulty is in predicting turbulence transition, the flow features must be well described at injection.  
This can be done by solving the boundary zone with Couette or Prantl equations, as for the erosive 
burning modeling, or with approximated laws [9]. 

 

Figure 6: Computation of Turbulence Level in a Finocyl SRM (SNPE). 
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TWO-PHASE FLOW EFFECTS 

Many solid rocket motors use aluminized propellants in order to improve their performances.  
The aluminum combustion produce a condensed phase (aluminum oxide), and therefore a two-phase flow 
in the rocket chamber.  

An important consequence of the presence of this liquid phase is two-phase losses, and in the case of large 
segmented motors with a submerged nozzle, slag accumulation, which may have several consequences on 
specific impulse, thermal insulation behavior and thrust vectoring.  

Continuous efforts have been done, for many years, in the USA, in Russia and in France, in order to 
develop numerical models able to predict accurately losses and the slag formation. 

More details can be fond in Salita special course [10].  

An eulerian or a lagrangian description can be used for the condensed phase.  

In the eulerian description, the condensed phase is assumed to be a continuous medium, and the 
conservation equation are derived from integrals of conservative quantities (mass, momentum and energy) 
on control volumes. The following vectors are added to the gas phase vector in the previous form of the 
conservation equation [11]: 
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and the source term S account for gas-condensed phase interactions. In these expressions, subscript p refers 
to the particulate phase. The volume fraction of the dispersed phase is noted αp and is supposed to be 
small (for being neglected in the gas phase equations). Apparent condensed phase density, ρp, is equal to 
ρp=αpρp where ρp is the condensed phase true density.  

The eulerian method is well suited for particles with a fixed diameter. Generally, aluminum oxide particle 
show a bi or trimodal distribution after aluminum combustion (resulting from smoke, nominal aluminum 
residues and agglomerated aluminum residues). According to its small size and relaxation time, the smoke 
can be treated with the equivalent gas. Generally, one or two classes (diameter) or particles are used in the 
computation. Even if it is possible in the eulerian form, for coupling the particle velocity field with 
turbulence or taking into account complex phenomena such as coalescence or break-up, the lagrangian 
method is more appropriate. 

RTO-EN-023 9 - 9 



Numerical Modeling of Internal Flow Aerodynamics 
Part 1: Steady State Computations  

In the lagrangian method, group of particles are emitted from the propellant surface and are explicitly 
followed in the flow. It allows more complex physics to be taken into account since it approaches the 
“discrete form” of the condensed phase, but the lagrangian method is CPU time consuming for a correct 
treatment of the flow (approaching the apparent particle density in the flow). 

 

Figure 7: Lagrangian Computation of the Two-Phase Flow in Ariane 5 SRM [13].  

Two-Phase Losses 
These losses are created by the non equilibrium between gas and condensed phase from the chamber to the 
throat. In the converging part of the nozzle, the flow is accelerated and the condensed phase is accelerated 
by the flow. An important parameter will be the ratio of condensed phase relaxation time over the transit 
time in the nozzle. If we note R this ratio: 

for small R, the particles are in equilibrium with the gas, they are accelerated and give their 
thermal energy (temperature) to the gas, contributing to the impulse; 

• 

• for large R, particles will be in non-equilibrium with the gas, and an impulse deficit will be 
created. 

Additional phenomena to take into account are particles break-up and phase changes. 

Investigation of the Slag Formation [12] 
Slag is generated, either when aluminum oxide droplets impinge on some portion of the back-face of the 
nozzle, or when they are captured in the recirculation zone behind the submerged nozzle.  
This phenomenon generally produces a slag pool in the aft end of the motor and an aluminum oxide liquid 
film on some part of the nozzle wall. 

 

Figure 8: Schematic View of Main Phenomena Leading to Slag Formation. 
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Different strategies can be applied to the slag formation investigation: a fully coupled numerical 
computation, or a two step, uncoupled, computation. 

The principle of a two-step uncoupled calculation can be summarized as follows [13]: 

1) The steady state of the gas flowfield must be calculated with an appropriate turbulence model;  
the presence of the liquid phase must be taken into account by assuming that the two phases are at 
equilibrium everywhere in the booster (same temperature, same velocity and constant density  
ratio deduced from the propellant composition), using the equivalent gas (see chapter on 
thermochemistry). 

2) The condensed phase consists only of aluminum oxide droplets, ejected directly from the 
propellant surface; when the combustion zone is small compared to motor geometry,  
no combustion model need to be used; the droplet size distributions, used in the simulations, must 
follow the experimental distribution, measured with a quench bomb. 

3) If the motion of the droplets is simulated by a Lagrangian method, all the trajectories are 
calculated on the steady gas flowfield and a stochastic model can be used to take into account the 
influence of the turbulence field on the droplet dispersion. 

4) The total slag rate can be calculated by summing the weights of all the droplets which impinged 
the nozzle back-face in the stagnation zone or which are trapped in the recirculation zone in the aft 
end of the motor. 

If the motor is unstable, a coupling may exists between vortex-shedding and particles behavior in the flow. 
In that particular case, an unsteady computation of this coupling is necessary [14]. 

 

Figure 9: Computation of the Coupling between Vortex-Shedding and Two-Phase  
Flow in an Unstable Segmented Solid Rocket Motor (Particles Volume Fraction). 

THERMOCHEMISTRY 

Since the flame zone in SRM is very small compared to motor length, we can consider that the injected 
gas from the burning surface are the final combustion products.  

Generally, their thermochemical properties are computed from equilibrium computer codes, most of them 
based on the original Gordon and Mc Bride CEC71 code [15]. Since classical computations are done with 
constant thermodynamic properties, the validity of assumptions made for computing them must be 
checked. Classically, two thermodynamic parameters are taken: the frozen heat capacity and γ in the 
motor. As an illustration, the evolution of the frozen heat capacity of a composite solid propellant is given 
as a function of the Mach number in a SRM (from the chamber to the throat) in Figure 10. 
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Figure 10: Example of the Evolution of the Heat Capacity with  

the Mach Number in the Convergent Part of a Nozzle. 

Another approximation can be made by writing the combination of Saint-Venant and enthalpy 
conservation equation: 

)
2

11( 2MTTf
−

+=
γ

 

and using this equation at the throat (M=1) for computing an approximated γ with the value of the 
temperature at the throat computed by the thermodynamical code.  

This equation also shows that temperature and velocity or pressure and density are correlated in a SRM, 
and that temperature and pressure are independant. 

The other thermodynamic parameter, for instance the specific heat capacity, can be adjusted for giving the 
correct characteristic velocity c*, hence the correct pressure.  
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Figure 11: Comparison of Theoretical and Approximated Pressure in a Nozzle. 
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Figure 12: Comparison of Theoretical and Approximated Pressure in a Nozzle. 

For a two-phase flow approximation, the following relations must be written for the heat capacity and 
specific heat ratio: 
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where the subscripts g and p are for the gaz and particulate phase in the two-phase approximation,  
and Cm is the condensed phase / gas phase mass flow rate ratio. 

RECENT DEVELOPMENTS: FLUID-STRUCTURE INTERACTION [16] 

Fully coupled solution of fluid flows with structural interactions is called fluid-structure interaction.  
The range of its applications is important in many engineering disciplines [17]. Some current applications 
are pressure waves in a piping system, sound waves traveling through fluid-solid media, biomedical 
problems such as blood flow in a diseased artery or coupled instabilities in power systems. Computer-
aided techniques for design optimization have been much promoted over the past decades and have 
subsequently reached a high level of sophistication within many single disciplines such as fluid or 
structural mechanics. However, because of complexity and computational cost issues, most often the 
coupling effects are neglected. For example, in aerodynamics optimization, the structure is assumed to be 
rigid. Another reason for separate treatment is the schismatic split-up of engineering disciplines,  
which makes it difficult for one person to have in-depth knowledge on all of these. With the computer 
power increasing and the advent of parallel processing, research on fluid-structure interaction in the field 
of numerical aeroelastic simulations has received growing interest in the last ten years. 

In fluid-structure interactions, the combined effects of inertial, elastic and aerodynamic forces impact the 
movement of the fluid and solid boundaries. The fluid movement exerts aerodynamic forces on the 
structure that reacts and in turn forces the flow to evolve at the interface with an interface velocity.  
This produces the coupling effect and suitable computational strategies need to be developed. The problem 
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of the motion of the fluid-structure interface that occurs in coupled aeroelastic problems is generally 
addressed by solving the fluid equations on moving dynamic meshes with an Arbitrary Lagrangian 
Eulerian formulation.  

Fluid structure computation has applications in solid propellant grain mechanical design and unsteady 
simulations. 

Main Features of the Modeling 
Mathematical models of coupled problems are usually coupled partial differential equations in space and 
time. Often, different discretization techniques are used on the different physical components. The most 
difficult part of handling numerically the fluid-structure coupling arises from the fact that the structural 
equations are usually formulated with lagrangian coordinates while the flow equations are expressed using 
eulerian coordinates. These physically heterogeneous system components are computationally treated as 
isolated entities that are separately advanced in time. Interaction effects are viewed as forcing effects that 
are communicated between the individual components.  

Arbitrary Lagrangian Eulerian Formulation 
The ALE formulation consists in solving the conservation equation on a moving grid. Since if the grid is 
fixed, the method is called eulerian, and the method is called lagrangian for grid points having the material 
velocity, the ALE formulation is a generalization. 

Numerical fluxes must be computed correctly through the moving faces [17]. 

In order to solve the problem, the computational mesh has to be moved or deformed during the time 
integration of the fluid. A common technique to deform a mesh is the spring analogy. The force exerted by 
the nodes j which are connected to the node i is mathematically expressed by: 

)( ij
j

ij xx rr
−∑κ  

where ijκ  is the stiffness of the spring between nodes i and j. At equilibrium state, the force at every node 
i has to be zero. After regrouping the terms, the iterative equation to be solved yields:  

∑∑=+

j
ij

j

k
jij

k
i xx κκ rr  1  

Structural Model 
The structural model can go from a simple reduction of stiffness, mass and damping matrices of the finite 
element mechanical model on the fluid boundary to the full resolution with a non linear structural 
mechanics code.  

Fluid-Structure Coupling Algorithm 
The coupling algorithm is performed in a staggered way. Structure and fluid are integrated on the same 
time scale (given by the fluid time step required by the fluid solver) although the characteristic scales for 
the structural system and for the fluid flow may be very different.  
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The fluid and structure equations are coupled by imposing that at the boundary, the structure stress tensor 
is in equilibrium with the fluid pressure and that wall boundary condition occurs on the fluid-structure 
interface. It implies that the forces and energies exchanged at the fluid-structure interface are balanced. 
Moreover, mesh and structure motions are also coupled by continuity conditions on the interface.  

A complete cycle takes place as follows: 

1) The fluid transmits to the structure a pressure profile obtained at time n to evaluate the pressure 
forces exerted by the fluid . nF

2) The structure model determines the displacements . 1+nq

3) This structure configuration is transmitted to the fluid model. 

4) Fluid variables W  are then advanced at time 1+n . 

5) Back to step 1. 

The position of the structure at time  is advanced with pressure force input 1+n nF  defined from a fluid 
pressure profile and then the flow state vector W  is computed from the mesh configurations  
to . The position of the dynamic fluid mesh does not lag behind that of the surface of the 
structure. 

1+n nn qx =
11 ++ = nn qx

With no damping matrix [D], the structural energy expresses as: 

[ ] [ ] 0     
2
1   

2
1 FqqMqqKqE ttt

s ++= &&  

and its variation during a time step is ( ) nntntn
s

n
ss FqqEEE  11 −=−= ++∆  deriving from the structural 

time integrator. On the other hand, the transferred energy through an element of the fluid-structure 
interface can be written as ( )Pxx ntn  1 −+E t

f =∆  where P is the nodal fluid force whose expression 
depends on the fluid pressure values used by the flow solver to compute the fluxes across the fluid-
structure interface. The force and energy exchanged between the fluid and the structure at their interface 
must be opposed. To ensure these principles, a procedure enforcing momentum or energy conservation is 
used at the interface in step 4. To do it, fluid pressure involved in the boundary flux is re-adjusted.  
The simplest way is to estimate  and P nF  with the mean value of the gas pressure available at the 
beginning of cycle. 

CONCLUDING REMARKS 

In this lecture, on overview of general problems and models used in CFD code for SRM steady interior 
flows has been made. The second paper will focus on unsteady phenomena. 
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NOTATIONS 

a  sound velocity (m/s) = rTγ  

fnL  nth longitudinal acoustic mode (Hz) 

(=
L

na
2

in a closed duct assumption) 

wm&  mass flow rate per injecting surface unit 
(kg/m2) 

P  pressure (Pa) 

qm  total mass flow rate (kg/s) 

R  port radius 

rb  burning rate (mm/s) 

T  temperature of the flow (K) 

Tf  propellant flame temperature (K) 

u  unsteady mean velocity component in 
the x-longitudinal direction (m/s) 

uv  axial mean velocity (m/s) 

v  unsteady mean velocity component in 
the y-lateral direction (m/s) 

vinj  wall injection velocity (m/s) 

w  unsteady mean velocity component in 
the w-lateral direction (m/s) 

x,y,z co-ordinate system (m)  

ρ  density (kg/m3) 

ρs  propellant density (kg/m3) 

 

Dimensionless Parameter 

Rec Reynolds number: ρ uv Dc/µ, where Dc is a characteristic diameter of the SRM 

Rew wall injection Reynolds number: ρ vw hc/µ 

γ  specific heat ratio 

INTRODUCTION 

It has been widely reported in the open literature that large segmented and axisymmetric Solid Rocket 
Motors (SRM) are subject to pressure oscillations caused by vortex shedding at annular restrictors or 
cavities in the grain, and acoustic feedback resulting from impingement of the vortices on the nozzle or 
other obstacles. If they are well suited for combustion instabilities studies in tactical rocket motors, 
acoustic balance methods have proven inefficient in predicting stability of large segmented rocket motors 
(e.g. Ariane 5 MPS and Titan IV SRMU). 

Paper presented at the RTO/VKI Special Course on “Internal Aerodynamics in Solid Rocket Propulsion”,  
held in Rhode-Saint-Genèse, Belgium, 27-31 May 2002, and published in RTO-EN-023. 
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For those situations, the full unsteady numerical simulation of the internal flow becomes the adequate 
solution. In general, simulations are done within two objectives: 

Explanation: this is the numerical simulation of a geometry defined at the time (web thickness) 
of maximum pressure oscillation after the firing of a SRM. This simulation will be generally made 
in a fixed geometry corresponding at that web thickness for a few acoustic periods. Frequencies 
and levels are expected from numerical simulation. The objective is to compute and explain the 
non linear coupling mechanisms between hydrodynamic instabilities and acoustics leading to such 
levels, with associated processes (conditions for resonance, aluminum combustion, fluid-structure 
coupling, ...). 

• 

• 

• 
• 
• 

Prediction: in this simulation, we want to assess the effect of a change in SRM geometry, 
propellant, burning rate [1],... on thrust oscillations, before any firing. In that case, all the firing 
has to be examined since there is no way to determine a priori the time of maximum pressure 
oscillation. 

The studies carried out in France during the last 10 years (POP and ASSM CNES programs)  
have displayed that vortex shedding due to annular restrictors is not the only process explaining the thrust 
oscillations of large SRM. It comes actually that pressure oscillations in large L/D ratio SRM could be due 
to three different vortex shedding phenomena [2]: 

Vortex shedding from annular restrictors, 
Vortex shedding over intersegment cavities, 
Surface vortex shedding [3]. 

This lecture will focus on some models used in CFD code for internal aerodynamics in SRM, validation 
cases, confrontations between experiments and simulations, and recent improvements. 

GRAIN REGRESSION EFFECT 

If we do not want to simulate the entire firing, but concentrate on a typical event (burst) some time during 
the firing, care must be taken for defining properly the computation initial conditions. 

During the burning of a solid propellant grain, the internal geometry evolves continuously, leading to an 
evolution of the aerodynamic flow field and acoustic modes. When a hydrodynamic instability matches an 
acoustic mode, this slow evolution creates slow frequency changes, and waterfalls on successive acoustic 
modes.  

We can define some characteristic times. 

For the sake of simplicity, a global approach is given. In a SRM and in the steady state, pressure and 
temperature fields can be shown independent. We define uv(x) to be the axial mean velocity at an x axial 
position in the motor: 

)()(
)(
xAx

xmuv ρ
&

=  

with being the mass flow rate through the port cross area A(x) at abscissa x. This expression shows 
that this means velocity can vary for at least three reasons: 

)(xm&

a variation of the forward mass flow  )(xm&• 

• 

• 

a variation of the density (that is to say the mean pressure) 

a variation of the port cross area 
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Hence, four characteristic times can be defined: 
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The two first characteristic times can be any during some events in the burning (for instance when the 
burning surface reaches the structure).  

The third characteristic time describes the slow evolution of the internal geometry.  

The last characteristic time, related to the evolution of the mean velocity, can characterize constant 
Strouhal evolution rates.  

Dimensionless parameters can be obtained through the product of these times with f1L. For instance,  
in Ariane 5 SRM and in the last third of the firing, tbf1L is around of 3000. It means that during 30 periods 
of the first acoustic mode, the port internal radius has varied of 1%. 

These considerations show that in the majority of applications, the geometry can be considered fixed, 
defined by a ballistics restitution, when we want to compute the unsteady internal flow during a few first 
acoustic mode periods, and a way for verifying this hypothesis can be by computing these characteristic 
times. 

PHYSICAL MODELS 

In order to extend the credibility of numerical calculations as a predicting tool to be used for industrial 
applications either in development phases or in conceptual analysis phases, one needs to improve the level 
of accuracy of physical models and the effectiveness of numerical schemes. Numerical schemes are the 
“classical” ones used in CFD (generally, finite volume methods based on approximate Riemann solvers, 
with at least second order accuracy in space and time). Important physical models are two-phase and 
unsteady combustion models. 

Unsteady Combustion Modeling 
The pressure-coupled response links the fluctuations of the propellant injected specific mass flow rate to 
the fluctuations of the pressure, both being functions of the frequency through the pulsation ω=2πf: 

     R
m m
p p

mp( )
& ' &

'
ω =  (1)   
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This linear expression accounts for the coupling between unsteady combustion phenomena in the 
propellant and fluctuating pressure above the burning surface. The real part of the response indicates the 
portion of the mass burning rate which fluctuates in phase with the pressure, which means energy is 
exchanged between the pressure waves in the gas phase and the propellant burning surface. According to 
the sign of the real part of Rmp, pressure waves will be amplified (Re(Rmp)>0) or damped (Re(Rmp)<0)  
by the combustion. The analytical expression of the response can be deduced by modeling the heat  
flux transfer from the flame to the propellant surface and the heat diffusion inside the solid phase. Several 
non-linear models were proposed [20-22], and they usually differ one from the other in the expression of 
the instantaneous heat flux transmitted to the propellant.  

Culick [21] has shown that all these models could lead to a same form for the linear response function,  
which is the two-parameter function: 

R
nAB

S A S A AB
mp( )

( )
ω =

+ − + +1
 (2) 

where: 

n is the pressure exponent of the steady-state burning rate law Vc = αpn . • 

• 

• 

A and B are non-dimensional parameters which characterize the propellant and depend on its 
physical and chemical properties. A is related to the pyrolysis kinematics and B to the energy 
released at the surface of the propellant. 

S is a Laplace variable, here defined by equation: S(S - 1) = iΩ, where Ω = aω/Vc
2, a being the 

propellant thermal diffusivity. 

In an internal CFD code, the pressure-coupled response can be modeled through a detailed physical model, 
CPU time consuming, or in a very simpler way (Traineau et al.) [16]. The ONERA representation of the 
unsteady propellant combustion prescribes the instantaneous specific injected mass flow rate as: 

[& ( ) &
&

( ) ( )m t m
m
p

R p t p d
t t

= + − −
−

∫ τ τ
0

0

] τ  (3) 

where R(τ) is the impulse response associated with propellant pressure-coupled response and quantities 
with an overbar are mean values. 

Assuming the response function Rmp is known (i.e. the values of A and B are determined from 
experimental points) for a given frequency range [0-fmax], its associated impulse response can be deduced 
easily by applying an inverse Fourier Transform to Rmp. The time resolution of the impulse response 
function has to be adjusted according to the time step of the Navier-Stokes simulation. 

The model implementation mainly consists in replacing the propellant boundary condition used in Navier-
Stokes solvers (calculation of the injected mass flow rate from the steady-state burning rate law in αpn)  
by a new boundary condition derived from equation (3). The injected specific mass flow rate is computed 
from Eq. (3) on each grid cell on the propellant surface, not necessarily for each time step dt since usually 
dτ is much greater than dt. One has to note that the use of this unsteady propellant combustion model 
implies the user has previously performed a reference computation with a steady-state burning rate,  
as expression (3) requires the estimate and storing of the means values of the pressure and injected mass 
flow rate, for each cell on the propellant burning surface.  
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Two-Phase Flows 
Aluminized propellants give liquid aluminum oxide in the chamber. This two-phase-flow can significantly 
influence motor performance in terms of acoustic stability, slag accumulation, nozzle erosion, two-phase 
losses, and so on… 

The internal unsteady two-phase flows can be solved with eulerian or lagrangian approaches and are 
described in the previous lecture [4]. 

The condensed phase can be considered inert or reactive. Most of aluminum combustion models are 
derived from Law’s model [5]. 

TURBULENCE 

Specific turbulence models must be used for studying unsteady flows in SRM. Usually, two kind of 
models are used: URANS and LES. These models must also take two-phase flow effects into account.  

VALIDATION CASES 

Many strategies can be used to validate multidimensional computations. The more logical one is to go 
from confrontations to simple 1D analytical results to full scale comparison with experiments. 

Comparison to Analytical Results  
Most of them are 1D theories. For instance, Morfouace and Tissier [6] have studied the acoustic wave 
damping of a two-phase flow in a duct in a very simple test case: the geometry in an open duct,  
a sinusoidal pressure signal is applied at the entrance, and a non reflecting boundary condition is used at 
the exit. They compared their results to Culick [7] and Temkin and Dobbins [8] theories. 

 

Figure 1: Comparison between 1D Computation (PATRIC) and TD Theory  
(Dispersion vs Dimensionless Frequency). 
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Figure 2: Comparison between 1D Computation (PATRIC) and TD Theory  
(Damping vs Dimensionless Frequency). 

Comparison to Acoustic Balance 
Vuillot et al. [9] have extended the validation to two-dimensional situation. In their paper, 2D Navier-
Stokes stability computations are performed on a simple cylindrical port motor.  

 L 

R 

x 

 

Figure 3: Schematic View of Vuillot et al. Test Case. 

The 2D results, in terms of motor frequency and damping, as well as in terms of full acoustic field,  
are compared to classical 1D linear acoustic balance performed for the first longitudinal mode. The 2D 
computations are performed in the following way: after convergence toward a steady state solution,  
the motor is excited close to its first longitudinal mode by means of one period of head end forcing.  
Then the response of the flow field to that perturbation is analyzed, in term of frequency and exponential 
damping. The 2D computations are performed with models representing the propellant combustion 
response and two-phase flow behavior. The models are used separately and then together.  

The results obtained for various model parameter settings as well as for various griddings are compared to 
linear results. 
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Noting Ω the interior of the chamber, ∂Ω its boundary, considering harmonic motions ( )exp(' ~ tiF F ω= ) 
and using the following notations: 
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where n’i is the inward pointing unit normal vector, the linear stability results are: 
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The surface integral is usually split over the propellant surface (combustion driving, αC) and the nozzle 
entrance plane (nozzle damping expressed as the sum of a convective part αNC and a radiative part αNR).  
It is a common use to add a so-called “flow-turning” damping term, αFT, or to correct the propellant 
admittance for the displacement effect of the ABL (αBL). The last two volume integrals are directly linked 
with the condensed phase and disappear for a one phase flow. δF and δQ are respectively the drag force 
exerted by the particles on the gas and the heat exchanged between the two phases. The overall expression 
for the resulting frequency shift and damping is: 

∆ω = ∆ωC + ∆ωNR + ∆ωp 

α = αC + αBL (or αFT) + αNC + αNR + αp 

The integral over the burning surface can be simplified by making use of the propellant pressure coupled 
combustion response, RMP, defined as: 
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so that: ( )
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For the simple cylindrical port, the damping take simplified expressions. The following relationships 
apply for this simple situation: 
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κ is the particle to gas mass ratio (κ=Cm/(1-Cm), where Cm is the propellant particle loading). τu and τT are 

relaxation times given by 
µ

ρ
τ

18

2
pmaterial

u

D
=  and uT Cp

C ττ Pr
2
3

=  with Pr, the Prandtl number. 

Comparison of linear acoustic balance and 2D computation on coarse and fine grids are given in Figure 4 
and Figure 5. 
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Figure 4: Summary of Computations with the Propellant Response Function Model  

(Coarse grid CG, fine grid FG, and two types of propellant response). 
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Figure 5: Particle Size Effect on Two-Phase Flow Damping. 

The results show that the overall tendencies are correctly obtained over a large range of model parameter 
settings. Surprisingly it is found that the 2D results do not depend on the grid spatial resolution and that 
the details of the so-called acoustic boundary layer (ABL) do not need to be resolved.  

This finding is also true for the two-phase flow damping. Analysis of the computed 2D acoustic field show 
that the ABL displacement effect is an effective damping source (even for an ABL penetrating into the 
core of the flow) and that an extra damping exists which is not incorporated into the classical acoustic 
balance. 

Cold Flows 
Since the internal flows in a solid-propellant rocket motor are difficult to instrument, cold flow 
experimental simulations are an alternative tool for a detailed aerodynamic effects understanding  
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(see Guéry et al [18]). The three different instability behaviours can be obtained. If absolute instabilities 
can be naturally computed by solving the Navier-Stokes equations, the surface vortex-shedding instability, 
as a convective instability, is more complex to obtain. Ugurtas [10] injects a gaussian noise with an 
amplitude of 0.4% vinj to simulate the VECLA experiments. Apte and Yang [11] forces the head end with 
a pressure oscillation equal to 5% of the head-end mean pressure at imposed acoustic frequencies in order 
to analyse unsteady flow organisation in Hervat and Traineau [12] cold flow simulation of a nozzleless 
rocket motor. 

 

Figure 6: Eddy Motions in the Forced Acoustic Environment [11].  

Validation on Simplified Rocket Motors 
Dupays [13] developed a whistling motor (small and naturally unstable, based on VSA instability).  
He studied the effect of inert particulate phase in the propellant on the instabilities (vortex-shedding) by 
adding alumina or zirconium silicate particles in a AP/HTPB propellant. Different sizes and loading were 
used. Pressure oscillations were identified on all the firings, with some burst corresponding to self-
sustained phenomena. 

Experimental results are well reproduced by computations. When studying the particulate loading effect, 
with 5, 10 and 20 % of condensed phase, he noticed a curious effect: oscillations levels are larger with  
10 % loading than 5 %, whereas 20 % loading damps out all the signal. These results are in contradiction 
with linear theory, and are not explained until now (particles/eddies interactions?). 

 

Figure 7: Comparison between Experiments and Computations (Dupays [13]). 

10 - 10 RTO-EN-023 



Numerical Modeling of Internal Flow Aerodynamics 
Part 2: Unsteady Flows 

RECENT IMPROVEMENTS 

Full Motor Firing Simulation 
The main project actually in the world leading to the detailed full numerical simulation of a SRM is the 
CSAR project at UIUC [14], and when GEN2 family codes (the last generation) will be operational,  
a large step in prediction will have been done.  

SNPE developed the CPS and MOPTI® computer codes for CFD computations inside SRM. CPS solves 
the two and three dimensional compressible unsteady Navier-Stokes equations for turbulent, reactive, 
multi-species, two-phase flows with a cell-centered finite volume method on an unstructured mesh with 
triangular and quadrilateral control cells in 2D and with hexahedrons, pentahedrons, pyramids, prisms and 
tetrahedrons in 3D. It incorporates fluid-structure coupling facility, and is parallel. MOPTI® manages 
exchanges between two principal computational modules: 

• 

• 

A varying burning rate surface burnback module, 

CFD code CPS. 

MOPTI® has been precisely described in reference [1]. The global structure of MOPTI is presented on  
Figure 8. 

  2d Aerodynamical
computation

Manufactoring 
Process

Surface Burnback
 Combustion Chamber 

geometry

Burning Rate

Pressure Field

Performance Prevision

Automatic 
mesh generation

 

Figure 8: Structure of MOPTI®. 

A MOPTI® simulation of the Ariane 5 1/15 subscale motor (LP6) is given [15]. On Figure 9 numerical 
vorticity fields are presented. They show that the flow becomes unstable after t≅5s. Before this time,  
the pressure signal is stable. 

  
t=5s t=6s 

  
t=7s t=8s 

Figure 9: Numerical Vorticity Fields. 
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Those figures show a very good agreement between numerical and experimental results. The first 
oscillations occur after t≅5s. A first waterfall on the first longitudinal acoustic mode is observed between  
5 an 6.5s. The levels are stronger on computational results but the global form is similar. The principal 
waterfall occurs between 6.5 and 8s, and a last one in the combustion tail off between 8 and 10s. For both 
waterfalls the numerical and experimental results are in really good agreement. The same comparison may 
be done on the second acoustic mode. 
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Figure 10: PSD Contours – Comparison of Experimental and Computational Results. 

Fluid-Structure Coupling 
In segmented motors with inhibited faces, a strong effect of the static bending of the emerging thermal 
inhibitors on pressure oscillation levels has been observed [16]. In order to investigate the influence of the 
dynamic behavior of the thermal inhibitor, CPS fluid-structure coupling facility has been used [17].  

 

Figure 11: Deformed Shape of the Inhibitor at Different Times in the FSC Computation. 
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This computation is noted FSC. Unsteady pressure signal and its Fourier analysis is given in Figure 12.  
A strong influence of this phenomenon is found in this configuration since the fluctuation levels reach  
3.5 times configuration without FSC.  

 
Static inhibitor Fluid structure coupling 

Figure 12: Head End Pressure Signal and its Fourier Transform. 

This influence needs to be investigated in details. That could be done through cold flow experiments [18]. 

Effects of Aluminum Combustion 

It is believed that aluminum distributed combustion and alumina droplets behavior might affect pressure 
oscillations of AP/Al propellant SRM, releasing heat inside the core of the flow. Such an eventuality has 
been assessed by using two-phase flow capabilities first at ONERA [15], then at SNPE [19]. A simplified 
combustion model has been used. 
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In these computations, Figure 13, particle distribution clearly displays vortex shedding and shows that 
momentum of particles are too large for their coming into vortex cores. The temperature map exhibits that 
combustion takes place very close to the surface and that some particles burn while passing round the 
vortices. Figure 14 presents pressure signals at the head end compared to the single phase computation in 
time and frequency space. It clearly points out a periodic signal and levels more than 4 times higher that 
those obtained with single phase computations. 
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Figure 13: Particle Volume Fraction (up) and Gas Temperature (down). 
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Bended inhibitor Al Combustion 

Figure 14: Head End Pressure Signal and its Fourier Transform. 

CONCLUDING REMARKS 

Ten years after Kuentzmann [20] AGARD Lecture Series on combustion instabilities, we can measure the 
progress made in the numerical simulations of aerodynamic/acoustics coupling in SRM. This fantastic 
progress is due to two reasons. The first one is the continuously increasing performance of computers, 
giving scientists and engineers the opportunities for continuously increasing the accuracy of both 
numerical and physical models. But computer codes are nothing without validated models. The second 
reason has been the support of research programs in the US and France (ASSM and POP CNES programs 
for the French part). 
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During these ten years, numerical computation has gone from an academic research topic to an industrial 
powerful tool. And this was the second challenge for driving progress in SRM conception.  
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COMBUSTION INSTABILITIES IN SOLID PROPELLANT ROCKET MOTORS

F.E.C. Culick
California Institute of Technology
1200 E. California Blvd., MC 205-45

Pasadena, CA 91125, U.S.A.

ABSTRACT

These notes for two lectures are intended to provide the basic ideas for understanding and interpreting
coherent oscillations is solid propellant rocket motors. The discussion is concerned mainly with the dynamics of a
system consisting of two coupled sub-systems: the chamber containing combustion products; and the combustion
processes con¯ned almost entirely to a thin region adjacent to the surface of burning propellant. Coupling between
the sub-systems is always present due to the sensitivity of the ocmbustion processes to local values of pressure
and velocity. Thus the primary mechanisms for instabilities in solid rockets are related to those interactions. A
second mechanism involves vortex shedding, a cause of instabilities mainly in large motors, notably the Space
Shuttle and Ariene V boost motors. Following a brief review of the history of combustion instabilities in solid
rockets, the mechanisms and their quantitative representations are discussed. The remainder of the lectures is
devoted to an approximate analysis providing a general framework convenient for understanding, predicting and
interpreting combustion instabilities.

1. A BRIEF SURVEY OF COMBUSTION INSTABILITIES IN SOLID ROCKETS

Chemical propulsion systems depend fundamentally on the conversion of energy stored in molecular bonds
to mechanical energy of a vehicle in motion. The ¯rst stage of the process, combustion of oxidizer and fuel, takes
place in a vessel open only to admit reactants and to exhaust the hot products. Higher performance is achieved
by increasing the rate of energy release per unit volume. For example, the power density in the Atlas engine
(1950s) was 146.4 gigawatts/m3. The power densities in solid rockets are much less. For a cylindrical bore, the
values are approximately 0.25(r=D) gigawatts/m3, where r is the linear burning rate, typically a few centimeters
per second, and D is the diameter. Thus the power densities rarely exceed one gigawatt/m3. These are indeed
very large power densities. We cannot be surprised that such enormous power densities should be accompanied
by relatively small °uctuations whose amplitudes may be merely annoying or possibly unacceptable in the worst
cases.

We are concerned in these lectures with the dynamics of combustion systems using solid propellants. The
motivation for addressing the subject arises from particular problems of combustion instabilities observed in all
types of solid rockets. Typically the instabilities are observed as pressure oscillations growing spontaneously
out of the noise during a ¯ring. As a practical matter, combustion instabilities are more likely encountered
during development of new combustion systems intended to possess considerable increases of performance in
some sense. The present state of theory and experiment has not provided a su±ciently strong foundation to
provide a complete basis for prediction. Hence there are only a few guidelines available to help designers avoid
combustion instabilities. In that respect, more is known about the dynamical behavior of solid rockets than about
corresponding problems in other propulsion systems.

Under such conditions, it is extremely important to pay attention to the experience gained in the laboratory
as well as in full-scale tests of devices: theory alone is quite helpless because of the impossibility of obtaining
quantitative results solely from ¯rst principles. Moreover, because of the many properties of the behavior common
to the various systems, much is to be gained from understanding the characteristics of systems other than the one
that may be of immediate concern. It is therefore proper to begin with a survey of some typical examples drawn
from many years' experience. Theory is an indispensable aid to making sense of observational results. Conversely,
discussion of various experimental observations is a natural place to introduce many of the basic ideas contained
in the theory.
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From the beginning of this subject, the central practical question has been: What must be done to eliminate
combustion instabilities? Traditionally, the approach taken has been based on passive measures, largely ad hoc
design changes or notably for solid propellant rockets, favorable changes of propellant composition. During the
past few years, considerable e®ort has been expended on the problem of applying active feedback control to
combustion systems. It's an attractive proposition to control or eliminate instabilities with feedback control,
particularly because one implication, often made explicit, is that the use of feedback will somehow allow one to
get around the di±cult problems of understanding the details of the system's behavior. Many laboratory, and
several full-scale demonstrations with gas turbines support that point of view. Proposals have been made for
active control of solid rockets but there seem to be no successful demonstrations. In any case, for at least two
reasons, serious application of feedback control must be based on understanding the dynamics of the system to
be controlled:

(i) all experience in the ¯eld of feedback control generally has demonstrated that the better the controlled
plant is understood, the more e®ective is the control;

(ii) without understanding, development of a control system for a full-scale device is an ad hoc matter, likely
to involve expensive development with neither guarantee of success nor assurance that the best possible
system has been designed.

Consequently, whatever one's motivation for investigating combustion instabilities, it is essential to have
a good understanding of experiences with as many systems as possible. Therefore we begin this book with a
lengthy survey of combustion instabilities observed in various systems. The theoretical framework is constructed
to accommodate these observations, but later emerges also as a perfect vehicle for investigating the use of active
feedback control.

1.1. Introduction. For the kinds of propulsion systems normally used, combustion chambers are intended
to operate under conditions that are steady or vary little. The central questions addressed in the monograph
concern the stability and behavior subsequent to instability of steady states in combustors. If a state is unstable
to small disturbances, then an oscillatory motion usually ensues. Such combustion instabilities commonly exhibit
well-de¯ned frequencies ranging from 15 hz or less to many kilohertz. Even at the highest amplitudes observed
in practice, the instabilities consume only a small fraction of the available chemical energy. Thus, except in
extremely severe instances, the oscillations do not normally a®ect the mean thrust or steady power produced
by the systems. Serious problems may nevertheless arise due to structural vibrations generated by oscillatory
pressures within the chamber or by °uctuations of the thrust. In extreme cases, internal surface heat transfer
rates may be ampli¯ed ten-fold or more, causing excessive erosion of the chamber walls.

An observer perceives an unstable motion in a combustion chamber as \self-excited," a consequence of the
internal coupling between combustion processes and unsteady motion. Except in cases of large disturbances
(e.g. due to passage of a ¯nite mass of solid material through the nozzle), the amplitude of the motion normally
seems to grow out of the noise without the intrusion of an external in°uence. Two fundamental reasons explain
the prevalence of instabilities in combustion systems:

(i) an exceedingly small part of the available energy is su±cient to produce unacceptably large unsteady
motions;

(ii) the processes tending to attenuate unsteady motions are weak, chie°y because combustion chambers are
nearly closed.

These two characteristics are common to all combustion chambers and imply that the possibility of instabilities
occurring during development of a new device must always be recognized and anticipated. Treating combustion
instabilities is part of the price to be paid for high-performance chemical propulsion systems. It is a corollary
of that condition that the problem will never be totally eliminated. Advances in research will strengthen the
methods for solution in practical applications, and will provide guidelines to help in the design process.

The fact that only a small part of the total power produced in a combustor is involved in combustion instabil-
ities suggests that their existence and severity may be sensitive to apparently minor changes in the system. That
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conclusion is con¯rmed by experience. Moreover, the complicated chemical and °ow processes block construc-
tion of a complete theory from ¯rst principles. It is therefore essential that theoretical work always be closely
allied with experimental results, and vice versa. No single analysis will encompass all possible instabilities in the
various practical systems. There are nevertheless many features common to all combustion chambers. Indeed, it
is one theme of this book that the characteristics shared by propulsion systems in many respects dominate the
di®erences. While it is not possible to predict accurately the occurrence or details of instabilities, a framework
does exist for understanding their general behavior, and for formulating statements summarizing their chief char-
acteristics. For practical purposes, the theory often serves most successfully when used to analyze, understand,
and predict trends of behavior, thereby also providing the basis for desirable changes in design. Experimental
data are always required to produce quantitative results and their accuracy in turn is limited by uncertainties in
the data.

Special problems may be caused by combustion instabilities interacting with the vehicle. Because the fre-
quencies are usually well-de¯ned in broad ranges, resonances with structural modes of the vehicle or with motions
of components are common. Perhaps the best known form of this sort of oscillation is the POGO instability in
liquid rockets. Strong couplings between chamber pressure oscillations, low-frequency structural vibrations, and
the propellant feed system sustain oscillations. The amplitudes may grow to unacceptable limits unless measures
are taken to introduce additional damping. A striking example occurred in the Apollo vehicle. The central engine
of the cluster of ¯ve in the ¯rst stage was routinely shut o® earlier than the others in order to prevent growth
of POGO oscillations to amplitudes such that the astronauts would be unable to read instruments. Comments
on the vibrations and the early shut o® may be heard in communications recorded during the launch phase of
several Apollo missions.

In the U.S., and possibly in other countries, notably Germany and Russia before and during World War
II, combustion instabilities were ¯rst observed in solid and liquid propellant rocket engines. Subsequent to the
war, considerable e®ort was expanded in Russia and in the U.S. to solve the problem, particularly in large liquid
systems. Probably the most expensive program was carried out during development of the F-1 engine for the
Apollo vehicle (Ofelein and Yang, 1993).

Liquid-fueled, air-breathing propulsion systems also commonly su®er combustion instabilities. Axial oscil-
lations in ramjet engines are troublesome because their in°uence on the shock system in the inlet di®user can
reduce the inlet stability margin. Owing to their high power densities and light construction, thrust augmenters
or afterburners are particularly susceptible to structural failures.

For any afterburner, conditions can be found under which steady operation is not possible. As a result,
the operating envelope is restricted by the requirement that combustion instabilities cannot be tolerated. Due to
structural constraints placed on the hardware, combustion instabilities in afterburners are particularly undesirable
and are therefore expensive to treat.

In recent years combustion instabilities in the main combustor of gas turbines have become increasingly
troublesome. The chief reason is ultimately due to requirements that emission of pollutants, notably oxides of
nitrogen, be reduced. A necessary strategy, particularly for applications to °ight, is reduction of the average
temperature at which combustion takes place. Generation of NO by the thermal or `Zel'dovich' mechanism is
then reduced. Lower combustion temperature may be achieved by operating under lean conditions, when the
°ame stabilization processes tend to be unstable. Fluctuations of the °ame cause °uctuations of energy release,
which in turn may produce °uctuations of pressure, exciting acoustical motions in the chamber and a®ecting the
generation of nitrogen oxides.

Finally, almost all solid rockets exhibit instabilities, at least during development, and occasionally motors are
approved even with low levels of oscillations. Actual failure of a motor itself is rare in operations, but vibrations
of the supporting structure and of the payload must always be considered. To accept the presence of weak
instabilities in an operational system one must have su±cient understanding and con¯dence that the amplitudes
will not unexpectedly grow to unacceptable levels. One purpose of these lectures is to provide an introduction to
the foundation for gaining the necessary understanding.

In the most general sense, a combustion instability may be regarded as an unsteady motion of a dynamical
system capable of sustaining oscillations over a broad range of frequencies. The source of energy associated
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with the motions is ultimately related to the combustion processes, but the term `combustion instability,' while
descriptive, is misleading. In most instances, and always for the practical problems we discuss in this book,
the combustion processes themselves are stable: uncontrolled explosions and other intrinsic chemical instabilities
are not an issue. Observations of the gas pressure or of accelerations of the enclosure establish the presence of
an instability in a combustion chamber. Excitation and sustenance of oscillations occur because coupling exists
between the combustion processes and the gasdynamical motions, both of which may be stable. What is unstable
is the entire system comprising the propellants, the propellant supply system, the combustion products that form
the medium supporting the unsteady motions, and the containing structure.

If the amplitude of the motions is small, the vibrations within the chamber are usually related to classical
acoustic behavior possible in the absence of combustion and mean °ow. The geometry of the chamber is therefore
a dominant in°uence. Corresponding to classical results, traveling and standing waves are found at frequencies
approximated quite well by familiar formulas depending only on the speed of sound and the dimensions of the
chamber. If we ignore any particular in°uences of geometry, we may describe the situation generally in the
following way, a view valid for any combustion instability irrespective of the geometry or the type of reactants.

Combustion processes are generally sensitive to °uctuations of pressure, density, and temperature of the
environment. A °uctuation of burning produces local changes in the properties of the °ow. Those °uctuations
propagate in the medium and join with the global unsteady ¯eld in the chamber. Under favorable conditions,
the ¯eld develops to a state observable as a combustion instability. As illustrated schematically in Figure 1.1,
we may view the process abstractly in analogy to a feedback ampli¯er in which addition of feedback to a stable
oscillator can produce oscillations. Here the oscillator is the combustion chamber, or more precisely, the medium
within the chamber that supports the unsteady wave motions. Feedback is associated with the in°uences of the
unsteady motions on the combustion processes or on the supply system, which in turn generate °uctuations of the
¯eld variables. The dynamical response of the medium converts the local °uctuations to global behavior. In the
language of control theory, the ¯eld in the chamber is the `plant,' described by the general equations of motion.

Figure 1.1. Schematic Diagram of a Combustion System as a Feedback Ampli¯er

The diagram in Figure 1.1 illustrates the global point of view taken here. Broadly, the subjects covered divide
into two categories: those associated with the plant|the °uid mechanics and other physical processes comprising
the combustor dynamics; and those connected primarily with the feedback path, chie°y combustion processes and
their sensitivity to time-dependent changes in the environment, the combustion dynamics. Splitting is particularly
clear for solid rockets because practically all of the combustion processes are completed in a thin region adjacent to
the burning propellant. The theory we will describe encompasses all types of combustion instabilities in a general
framework having the organization suggested by the sketch. External forcing functions are accommodated as
shown in the sketch, but the causes associated with the feedback path are far more signi¯cant in practice.

Figure 1.1 is motivated by more than a convenient analogy. For practical purposes in combustion systems, we
generally wish to eliminate instabilities. Traditionally that has meant designing systems so that small disturbances
are stable, or adding some form of energy dissipation to compensate the energy gained from the combustion
processes, that is, passive control. However, in the past few years interest has grown in the possibility of active
control of instabilities. If that idea is to be realized successfully, it will be necessary to combine modern control
theory with the sort of theory described here. It is advantageous to think from the beginning in terms that
encourage this merger of traditionally distinct disciplines.
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We will return to the subject of passive control for solid rockets at the end of these lectures. Any method
of control is rendered more e®ective the more ¯rmly it rests on understanding the problem to be solved. Un-
derstanding a problem of combustion instabilities always requires a combination of experiment and theory. For
many reasons, including intrinsic complexities and inevitable uncertainties in basic information (e.g., material
properties, chemical dynamics, turbulent behavior of the °ow ¯eld, ...), it is impossible to predict from ¯rst
principles the stability and nonlinear behavior of combustion systems. Hence the purpose of theory is to provide
a framework for interpreting observations, both in the laboratory and full-scale devices; to suggest experiments
to produce required ancillary data or to improve the empirical base for understanding; to formulate guidelines
for designing full-scale systems; and globally to serve, like any good theory, as the vehicle for understanding the
fundamental principles governing the physical behavior, thereby having predictive value as well.

All theoretical work in this ¯eld has been carried out in response to observational and experimental results.
We therefore spend much of the remainder of this introductory chapter on a survey of the characteristics of
combustion instabilities observed, and occasionally idealized, for combustion systems generally to be analyzed in
later chapters. The general point of view taken throughout the book will then be formulated in heuristic fashion,
based on experimental results.

1.2. Historical Background. Some of the consequences and symptoms of combustion instabilities were
¯rst observed in the late 1930s and early 1940s, roughly at the same time for liquid and solid propellant rockets,
and apparently somewhat earlier in the Soviet Union than in the U.S. With the later development of turbojet
engines, high-frequency instabilities were found in thrust augmenters or afterburners in the late 1940s and early
1950s. Although the problem had been encountered in ramjet engines in the 1950s, it became a matter of greater
concern in the late 1970s and 1980s. The introduction of compact dump combustors led to the appearance of
longitudinal or axial oscillations that interfered with the inlet shock system, causing loss of pressure margin and
'unstart' in the most severe cases. Owing to availability, almost all of the data cited here as examples will be
derived from liquid rockets, solid rockets and laboratory devices. Figure 1.2 is a qualitative representation of
the chronology of combustion instabilities. Due to the accessibility of documentation and the experiences of the
author, particular cases cited are mainly those reported in the U.S.

LOW  SMOKE  AND

SMOKELESS  TACTICAL  MOTORS

LABORATORY  TESTS

LINEAR  THEORY

NONLINEAR

THEORY

ACTIVE

CONTROL

1940              1950                1960                1970                1980                 1990                2000

LIQUID
&

SOLID
ROCKETS

AFTERBURNERS
&

RAMJETS
( HIGH  f )

APOLLO
(LIQUID)

AFTERBURNERS
&

RAMJETS
( LOW  f )

GAS
TURBINES

( LOW  F/O )
( HIGH  f )

POLARIS
(SOLID)

MINUTEMAN
(SOLID)

ARIANE
VIKING

(LIQUID)

Figure 1.2. A Chronology of Combustion Instabilities

Several reviews of early experiences with combustion instabilities have been prepared for liquid rockets (Ross
and Datner 1954) and for solid rockets (Wimpress 1950; Price 1968; Price and Flandro 1992). The details are
not important here, but the lessons learned certainly are. Often forgotten is the most important requirement of
good high-frequency instrumentation to identify and understand combustion instabilities in full-scale as well as in
laboratory systems. Until the early 1940s, transducers and instrumentation for measuring pressure had inadequate
dynamic response to give accurate results for unsteady motions. Ross and Datner note that \Prior to 1943,
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the resolution of Bourdon gauges, photographed at 64 and 128 fps, constituted the principal instrumentation."
Recording oscillographs were introduced sometime in 1943, but not until the late 1940s were transducers available
with su±cient bandwidth to identify instabilities at higher frequencies (hundreds of hertz and higher).

The situation was even more di±cult with solid rockets because of the practical di±culties of installing and
cooling pressure transducers. Probably the experience with cooling chamber and nozzle walls helps explain why
quantitative results were obtained for instabilities in liquid rockets earlier than for solid rockets (E. W. Price,
private communication). Prior to the appearance of high-frequency instrumentation, the existence of oscillations
was inferred from such averaged symptoms as excessive erosion of inert surfaces or propellant grains due to
increased heat transfer rates; erratic burning appearing as unexpected shifts in the mean pressure; structural
vibrations; visible °uctuations in the exhaust plume; and, on some occasions, audible changes in the noise
produced during a ¯ring.

Experimental work progressed for several years before various unexplained anomalies in test ¯rings were
unambiguously associated with oscillations. By the late 1940s, there was apparently general agreement among
researchers in the U.S. and Europe that combustion instabilities were commonly present in rocket motors and
that they were somehow related to waves in the gaseous combustion products. In addition to measurements with
accelerometers, strain gauges, and pressure transducers, methods for °ow visualization soon demonstrated their
value, mainly for studies of liquid propellant rockets (Altseimer 1950; Berman and Logan 1952; and Berman and
Scharres 1953). Characteristics of the instabilities as acoustic vibrations, or weak shock waves, were revealed.

It is much more di±cult to observe the °ow ¯eld in a solid rocket motor and during the early years of
development, the only results comparable to those for liquid rockets were obtained when excessive chamber
pressures caused structural failures. Partially burned grains often showed evidence of increased local burning
rates, suggesting (possibly) some sort of in°uence of the gas °ow. The same events also produced indications of
unusual heating of the unburned solid propellant, attributed to dissipation of mechanical vibrational energy (Price
and Flandro, 1992). Subsequently that interpretation was con¯rmed by direct measurements (Shuey, 1987).

High-frequency or `screech' oscillations were also ¯rst encountered in afterburners in the late 1940s; as a
result of the experience with rockets and the availability of suitable instrumentation, the vibrations were quickly
identi¯ed as combustion instabilities. The sta® of the Lewis Laboratory (1954) compiled most of the existing
data and performed tests to provide a basis for guidelines for design.

Thus by the early 1950s most of the basic characteristics of combustion instabilities had been discovered in
both liquid-fueled and solid-fueled systems. Many of the connections with acoustical properties of the systems,
including possible generation of shock waves, were recognized qualitatively. Although the frequencies of oscillations
found in tests could sometimes be estimated fairly closely with results of classical acoustics, no real theory having
useful predictive value existed. During the 1950s and the 1960s the use of sub-scale and laboratory tests grew
and became increasingly important as an aid to solving problems of combustion instabilities occurring in the
development of new combustion systems.

1.3. Solid Propellant Rocket Motors. Since the late 1950s, serious concern with instabilities in solid
propellant motors has been sustained by problems arising in both small (tactical) and large (strategic and large
launch systems) rockets. The volume of collected papers compiled and edited by Berle (1960) provides a good
view of the state of the ¯eld at the end of the 1950's in the Western countries. The level of activity remained
high and roughly unchanged through the 1960's, due entirely to the demands of the Cold War: the use of solid
rocket boosters in systems for launching spacecraft, and for changing trajectories, came later. During the 1950's
and 1960's strong emphasis was already placed on sub-scale and laboratory tests, a strategy dictated at least
partly by the large costs of full-scale tests. As a result, more is understood about combustion instabilities in solid
rockets than in other systems. Moreover, methods and viewpoints developed by the solid rocket community have
strongly in°uenced the approaches to treating combustion instabilities in other systems. The theory developed
in this book is an example of that trend.

A problem with the third stage of the Minuteman II launch vehicle in the late 1960's (Joint Prop. Mtg 1972)
initially motivated considerable research activity during the following decade, sponsored largely by the Air Force
Rocket Propulsion Laboratory. The causes of three failures in test °ights had been traced to the presence of
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combustion instabilities. Thorough investigation showed that although oscillations had been present throughout
the history of the motor, a signi¯cant change occurred during production, apparently associated with propellant
Lot 10. Figure 1.3 shows the main observable features.

(a)

(b)

Figure 1.3. Frequencies and Amplitudes of Combustion Instabilities in the Minuteman II, Stage
3 Motor: (a) A Pressure Record from a Flight Test; (b) Frequencies and Amplitudes Measured
During Static Tests.

The oscillations existed during the ¯rst ¯fteen seconds of every ¯ring and always had frequency around
500 Hertz. Whatever occurred with production Lot 10 caused the maximum amplitudes of oscillations to be
unpredictably larger in motors containing propellant from that and subsequent lots. The associated structural
vibrations caused failures of a component in the thrust control system.

This example exhibits several characteristics common to many instances of combustion instabilities in solid
rockets. In test-to-test comparisons, frequencies are reproducible and amplitudes show only slight variations unless
some change occurs in the motor. Any changes must be of two sorts: either geometrical, i.e. the internal shape
of the grain, or chemical, consequences of variations in the propellant. Chemical changes, i.e. small variations
in the propellant composition, are most likely to a®ect the dynamics of the combustion processes and indirectly
other physical processes in the motor. That is apparently what happened in the Minuteman.

Between production of propellant Lots 9 and 10, the supplier of aluminum particles was changed, because
the original production facility was accidentally destroyed. The new aluminum di®ered in two respects: shapes
of the particles, and the proportion of oxide coating. Testing during investigation of the instability led to the
conclusion that consequent changes in the processes responsible for the production of aluminum oxide products
of combustion generated smaller particle sizes of Al2O3. The smaller sizes less e®ectively attenuated acoustic
waves; the net tendency to excite waves therefore increased. As a result, the motors were evidently more unstable
and also supported larger amplitudes of oscillation. The second conclusion was purely speculative at the time of
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the investigation, but can now be demonstrated with the theory covered in this book. Nevertheless, the details
explaining why the change in the aluminum supplied led eventually to the signi¯cant changes in the combustion
products remain unknown.

Subsequent to the Minuteman problem, the Air Force Rocket Propulsion Laboratory supported a substantial
program of research on many of the most important problems related to combustion instabilities in solid rockets.
Broadly, the intellectual centroid of that program lay closer to the areas of combustor dynamics and combustion
dynamics than to the detailed behavior of propellants. The synthesis, chemistry and kinetics of known and new
materials belonged to programs funded by other agencies in the U.S. and in Europe, notably ONERA in France.
By far most of the related work in Russia has always been concerned with the characteristics and combustion of
propellants, with relatively little attention to the dynamics of combustors.

As the research activities related speci¯cally to solid rockets decreased during the 1980s and new programs
began for liquid-fueled systems, the communities, previously quite separate, grew closer together. For example,
prompted by contemporary concern with problems in ramjets, a workshop sponsored by JANNAF (Culick 1980)
was organized partly with the speci¯c intention to bring together people experienced in the various propulsion
systems. During the 1980s there was considerable interchange between the various research communities and
since that time, a signi¯cant number of people have worked on both solid and liquid-fueled systems. That shift
in the sociology of the ¯eld has provided the possibility and much of the justi¯cation for this book. Events of the
past decade have con¯rmed that the ¯eld of combustion instabilities is very usefully approached as a uni¯cation
of the problems arising in all systems.

In Europe during the 1990's, work on combustion instabilities in solid propellant rockets has been motivated
largely by low frequency oscillations in the booster motors for the Ariane 5. The most intensive and comprehensive
recent work in the U.S. has been carried out in two Multiuniversity Research Initiators (MURI) involving 15
di®erent universities. An unusual characteristic of those programs, active for ¯ve years beginning in 1995, was
the inclusion of coordinated research on all aspects of problems of combustion instabilities in solid propellant
rockets, from fundamental chemistry to the internal dynamics of motors. Results of recent works will be covered
here in the appropriate places.

1.4. Mechanisms of Combustion Instabilities. Just as for steady operation, the chief distinctions among
combustion instabilities in di®erent combustors must ultimately be traceable to di®erences in geometry and the
states of the reactants. The root causes, or `mechanisms', of instabilities are imbedded in that context and are
often very di±cult to identify with certainty. Possibly the most di±cult problem in this subject is to quantify
the mechanism. Solving that problem requires ¯nding an accurate representation of the relevant dynamics.

The simplest and most convenient characterization of an unstable oscillation is expressed in terms of the
mechanical energy of the motion. Linear theory produces the result that the rate of growth of the amplitude
is proportional to the fractional rate of change of energy, the sum of kinetic and potential energies. The idea
is discussed further in the following section. What matters at this point is that the term `mechanism' refers
to a process that causes transfer of energy to the unsteady motion from some other source. Thus, mechanisms
form the substance of the feedback path in Figure 1.1. Generally there are only three sorts of energy sources for
unsteady motions in a combustor: the combustion processes; the mean °ow, which of course itself is caused by
combustion; and a combination of combustion and mean °ow simultaneously acting. The distinction is important
because the physical explanations of the energy transfer are very di®erent in the three cases.

Combustion processes are sensitive to the macroscopic °ow variables, particularly pressure, temperature and
velocity. Even slow changes of those quantities a®ect the energy released according to rules that can be deduced
from the behavior for steady combustion. In general, however, representations of that sort, based on assuming
quasi-steady behavior, are inadequate. Combustion instabilities normally occur in frequency ranges such that
genuine dynamical behavior is signi¯cant. That is, the transient changes of energy release do not follow precisely
in phase with imposed changes of a °ow variable such as pressure.

The next simplest assumption is that the combustion processes behave as a ¯rst order dynamical system
characterized by a single time delay or relaxation time. That idea was apparently ¯rst suggested by Karman
as a basis for interpreting instabilities discovered in early experiments with liquid propellant rockets at Caltech
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(Summer¯eld, 1941). That representation, which came to be called the `n ¡ ¿ model' was developed most
extensively by Crocco and his students at Princeton during the 1950s and 1960s. Time delays may be due,
for example, to processes associated with ignition of reactants. Subsequent to injection as the reactants °ow
downstream, ¯nite times may be required for vaporization, mixing, and for the kinetics mechanism to reach
completions. Both e®ects may be interpreted as a convective time delay. Under unsteady conditions, the initial
state of the reactants, their concentrations, pressure, and velocity, also °uctuate, causing the delay time to be
both nonuniform in space and in time. As a result, rate of energy release downstream in the chamber is also
space- and time-dependent, and acts as a source of waves in the combustor.

The approximation of ¯rst order behavior fails entirely for the dynamics of burning solid propellants (Culick
1968). Although in good ¯rst approximation dominated by unsteady heat transfer in the condensed phase, a
di®usive process, the combustion dynamics in this case exhibits behavior closer to that of a second order system.
The frequency response of that burning rate tends normally to have a large broad peak centered at a frequency
falling well within the range of the frequencies characteristic of the chamber dynamics. Hence there is a clear
possibility for a resonance and instability suggested by the diagram in Figure 1.1. The chief mechanisms for
instabilities in solid rockets are discussed in the following chapter.

Generation of oscillations by the average °ow is due to causes roughly like those active in wind musical
instruments. In all such cases, °ow separation is involved, followed by instability of a shear layer and formation
of vortices. Direct coupling between the vortices and a local velocity °uctuation associated with an acoustic ¯eld
is relatively weak; that is, the rate of energy exchange is in some sense small. However, the interaction between
the velocity (or pressure) °uctuation and the initial portion of the shear layer is normally a basic reason that
feedback exists between the unsteady ¯eld in the volume of the combustor and vortex shedding.

It has long been known experimentally that vortices shed in a chamber more e®ectively generate acoustic
waves if they impinge in an obstacle downstream of their origin (Flandro and Jacobs, 1975; Magiawala and Culick,
1979; Flandro, 1986). The ¯rst example of this phenomenon was the solid rocket booster for the Shuttle launch
system in the 1970s. It was that problem that motivated the works just cited, but since then vortex shedding has
been recognized as a mechanism for generating acoustic oscillations in other systems as well, notably the booster
motors on the Space Shuttle and on the Ariane 5.

1.5. Physical Characteristics of Combustion Instabilities. Owing to the di±culty of making direct
measurements of the °ow ¯eld within a combustion chamber, virtually all that is known about combustion
instabilities rests on close coordination of experiment and theory. The subject is intrinsically semi-empirical,
theoretical work being founded on observational data both from full-scale machines and laboratory devices.
Conversely, the theoretical and analytical framework occupies a central position as the vehicle for planning
experimental work and for interpreting the results. The chief purpose of this section are to summarize brie°y the
most important basic characteristics of observed instabilities; and to introduce the way in which those observations
motivate the formulation of the theoretical framework.

In tests of full-scale propulsion systems, only three types of data are normally available; obtained from pressure
transducers, accelerometers, and strain gauges. Measurements of pressure are most direct but are always limited,
and often not possible when the necessary penetration of the enclosure to install instruments is not allowed. Hence
the unsteady internal pressure ¯eld is often inferred from data taken with accelerometers and strain gauges. In
any case, because it is the fundamental variable of the motions, the pressure will serve here as the focus of our
discussion.

Figure 1.4a and 1.4b is an example of a fully developed instability, shown with its power spectral densities. The
well-de¯ned peaks re°ect the clear presence of several frequencies in the waves, the larger amplitudes occurring
at the lower frequencies, as commonly happens. A substantial background of broad-band noise is of course
always present due to turbulent °uctuations of the °ow, noise emission by combustion processes, and possibly
other unsteady motions such as °ow separation. Some recent laboratory tests have shown that the level of
noise depends on the presence and amplitude of combustion instabilities, but the cause is unknown and no such
observations exist for full-scale combustors.
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(a)

(b)

Figure 1.4. Waveform and Spectrum for an Instability in the Caltech Dump Combustor

Much of these lectures is devoted to understanding the origins of the behavior illustrated by the examples
in Figures 1.3 and 1.4. The classical theory of acoustics has provided the basis for under standing combustion
instabilities since early recognition that some unexpected observations could be traced to pressure oscillations.
Many basic results of classical acoustics have been applied directly and with remarkable success to problems of
instabilities. It is often taken for granted that well-known acoustics formulas should be applicable|their use can
in fact be justi¯ed on fundamental grounds. However, in the ¯rst instance, it is surprising that they work so well,
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because the medium is far from the ideal uniform quiescent gas assumed in the classical acoustics of resonating
chambers.

A combustion chamber contains a non-uniform °ow of chemically reacting species, often present in condensed
as well as gaseous phases, exhausting through a nozzle that is choked in rockets, ramjets, and afterburners.
Moreover, the °ow is normally turbulent and may include regions of separation. Yet estimates of the frequencies
of oscillations computed with acoustics formulas for the natural modes of a closed chamber containing a uniform
gas at rest commonly lie within 10{15 percent or less of the frequencies observed for combustion instabilities, if
the speed of sound is correctly chosen.

There are three main reasons that the classical view of acoustics is a good ¯rst approximation to wave
propagation in combustion chamber: (1) the Mach number of the average °ow is commonly small, so convective
and refractive e®ects are small; (2) if the exhaust nozzle is choked, incident waves are e±ciently re°ected, so for
small Mach numbers the exit plane appears to be nearly a rigid surface; and (3) in the limit of small amplitude
disturbances, it is a fundamental result for compressible °ows that any unsteady motion can be decomposed into
three independent modes of propagation, of which one is acoustic (Chu and Kovazsnay 1956). The other two
modes of motion are vortical disturbances, the dominant component of turbulence, and entropy (or temperature)
waves. Hence even in the highly turbulent non-uniform °ow usually present in a combustion chamber, acoustic
waves behave in good ¯rst approximation according to their own simple classical laws. That conclusion has
simpli¯ed enormously the task of gaining qualitative understanding of instabilities arising in full-scale systems as
well as in laboratory devices.

Of course, it is precisely the departures from classical acoustics that de¯ne the class of problems we call
combustion instabilities. In that sense, this book is concerned chie°y with perturbations of a very old problem,
standing waves in an enclosure. That point of view has signi¯cant consequences; perhaps the most important is
that many of the physical characteristics of combustion instabilities can be described and understood quite well
in a familiar context. The remainder of this chapter is an elaboration of that conclusion.

The most obvious evidence that combustion instabilities are related to classical acoustic resonances is the
common observation that frequencies measured in tests agree fairly well with those computed with classical
formulas. Generally, the frequency f of a wave equals its speed of propagation, a, divided by the wavelength, ¸:

f =
a

¸
(1.1)

On dimensional grounds, or by recalling classical results, we know that the wavelength of a resonance or normal
mode of a chamber is proportional to a length, the unobstructed distance characterizing the particular mode in
question. Thus the wavelengths of the organ-pipe modes are proportional to the length, L, of the pipe, those of
modes of motion in transverse planes of a circular cylindrical chamber are proportional to the diameter, D, and
so forth. Hence (1.1) implies

f » a

L
longitudinal modes

f » a

D
transverse modes

(1.2 a, b)

There are two basic implications of the conclusion that the formulas (1.2 a, b), with suitable multiplying
constants, seem to predict observed frequencies fairly well: evidently the geometry is a dominant in°uence on
the special structure of the instabilities; and we can reasonably de¯ne some sort of average speed of sound in
the chamber, based on an approximation to the temperature distribution. In practice, estimates of a use the
classical formula a =

p
°RT with T the adiabatic °ame temperature for the chemical system in question, and

with the properties ° and R calculated according to the composition of the mixture in the chamber. Usually,
mass-averaged values, accounting for condensed species, seem to be close to the truth. If large di®erences of
temperature exist in the chamber, as in a °ow containing °ame fronts, nonuniformities in the speed of sound
must be accounted for to obtain good estimates of the frequencies.

Even for more complicated geometries, notably those often used in solid rockets, when the simple formulas
(1.2 a, b) are not directly applicable, numerical calculations of the classical acoustic motions normally give good
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approximations to the natural frequencies and pressure distributions. Thus quite generally we can adopt the
point of view that combustion instabilities are acoustical motions excited and sustained in the ¯rst instance by
interactions with combustion processes. That the classical theory works so well for estimating frequencies and
distributions of the unsteady motions means that computation of those quantities is not a serious test of a more
comprehensive theory. What is required ¯rst of a theory of combustion instabilities is a basis for understanding
how and why combustion instabilities di®er from classical acoustics.

In particular, two global aspects of minor importance in most of classical acoustics, are fundamental to
understanding combustion instabilities: transient characteristics and nonlinear behavior. Both are associated
with the property that with respect to combustion instabilities, a combustion chamber appears to an observer
to be a self-excited system: the oscillating appear without the action of externally imposed forces. Combustion
processes are the sources of energy which ultimately appear as the thermal and mechanical energy of the °uid
motions. If the processes tending to dissipate the energy of a °uctuation in the °ow are weaker than those adding
energy, then the disturbance is unstable.

1.6. Linear Behavior. When the amplitude of a disturbance is small, the rates of energy gains and losses
are usually proportional to the energy itself which in turn is proportional to the square of the amplitude of the
disturbance; the responsible processes are said to be linear because the governing equations are linear in the °ow
variables. An unstable disturbance then grows exponentially in time, without limit if all processes remain linear.
Exponential growth of the form A0e

®t, where A0 is the amplitude of the initial small disturbance, is characteristic
of the initial stage of an instability in a self-excited system, sketched in Figure 1.5(a). In contrast, the initial
transient in a linear system forced by an invariant external agent grows according to the form 1¡ e¡¯t, shown in
Figure 1.5(b). The curve e®t is concave upward and evolves into a constant limiting value for a physical system
only if nonlinear processes are active. However, the plot of 1 ¡ e¡¯t is concave downward and approaches a
limiting value for a linear system because the driving agent supplies only ¯nite power.

(a) (b)

Figure 1.5. Transient behavior of (a) Self Excited Linearly Unstable Motions; (b) Forced Mo-
tions.

Data of the sort reproduced in Figure 1.4 leave no doubt that the unstable motions in combustion chambers
are self-excited, having the characteristics shown in Figure 1.5(a). The physical origin of this behavior is the
dependence of the energy gains and losses on the motions themselves. For combustion instabilities, the `system'
is the dynamical system whose behavior is measured by the instrument sensing the pressure oscillations. Thus, in
view of earlier remarks, the dynamical system is in some sense the system of acoustical motions in the chamber
coupled to the mean °ow and combustion processes (recall Figure 1.1).

It is a fundamental and extremely important conclusion that by far most combustion instabilities are motions
of a self-excited dynamical system. Probably the most signi¯cant implication is that in order to understand fully
the observed behavior, and how to a®ect it and control it, one must understand the behavior of a nonlinear system.
When the motion in a combustion chamber is unstable, except in unusual cases of growth to destruction, the
amplitude typically settles down to a ¯nite value: the system then executes a limiting motion, usually a periodic
limit cycle. For practical applications, it is desirable to know how the amplitude of the limit cycle depends on the
parameters characterizing the system. That information may serve as the basis for changing the characteristics
to reduce the amplitude, the goal in practice being zero. In any case, good understanding of the properties of the
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limit cycle will also provide some appreciation for those variables which dominate the behavior and to which the
motions may be most sensitive, a practical matter indeed.

Our global view, then, is that a combustion instability is an oscillatory motion of the gases in the chamber,
which can in ¯rst approximation be synthesized of one or more modes related to classical acoustic modes. The
mode having lowest frequency is a `bulk' mode in which the pressure is nearly uniform in space but °uctuating
in time. Because the pressure gradient is everywhere small, the velocity °uctuations are nearly zero. This mode
corresponds to the vibration of a Helmholtz resonator obtained, for example, by blowing over the open end of
a bottle. The cause in a combustion chamber may be the burning process itself, or it may be associated with
oscillations in the supply of reactants, caused in turn by the variations of pressure in the chamber.

Structural vibrations of a solid rocket are not normally in°uential, but an instability of the bulk mode (there
is only one bulk mode for a given geometry) has often been a problem in motors designed for use in space vehicles.
In those cases, the term L*-instability has been used because the stability of the mode is predominantly a function
of the L* of the motor and the mean pressure (Sehgal and Strand 1964). The instability is associated with the time
lag between °uctuations of the burning rate and of mass °ux through the nozzles: that time lag is proportional
to the residence time, and hence L*, for °ow in the chamber. L*-instabilities occur in motors quali¯ed for space
°ight because they arise in the lower ranges of pressure at which such rockets operate.

Whatever the system, most combustion instabilities involve excitation of the acoustic modes, of which there
are an in¯nite number for any chamber. The values of the frequencies are functions primarily of the geometry and
of the speed of sound, the simplest examples being the longitudinal and transverse modes of a circular cylinder,
with frequencies behaving according to 1.2 a, b. Which modes are unstable depends on the balance of energy
supplied by the exciting mechanisms and extracted by the dissipating processes. We consider here only linear
behavior to illustrate the point.

In general the losses and gains of energy are strongly dependent on frequency. For example, the attenuation
due to viscous e®ects typically increases with the square root of the frequency. Other sources of energy loss
associated with interactions between the oscillations and the mean °ow tend to be weaker functions of frequency.
That is the case, for example for re°ections of waves by a choked exhaust nozzle. The gains of energy usually
depend in a more complicated way on frequency.

The sources of energy for combustion instabilities i.e. the mechanisms responsible for their existence, present
the most di±cult problems in this ¯eld. For the present we con¯ne our attention to qualitative features of energy
exchange between combustion to unsteady motions. For example, the magnitude of the energy addition due
to coupling between acoustic waves and combustion processes for a solid propellant normally rises from some
relatively small quasi-steady value at low frequencies, passes through a broad peak, and then decreases to zero
at high frequencies. Recent experimental results suggest that °ames may exhibit similar behavior (Pun 2001).
Energy is transferred to a pressure oscillation having a particular frequency at a rate proportional to the part of
the coupling that is in phase with the pressure at that frequency.1 Figure 1.6 is a schematic illustration of this
sort of behavior.

In Figure 1.6, the gains exceed the losses in the frequency range f1 < f < f2. Modes having frequencies in that
range will therefore be linearly unstable. An important characteristic, typical of combustion chambers generally,
is that in the lower ranges of frequency, from zero to somewhat above the maximum frequency of instability, the
net energy transfer is a small di®erence between relatively larger gains and losses. That implies the di±culty,
con¯rmed by many years' experience, of determining the net energy °ow accurately. Unavoidable uncertainties in
the gains and losses themselves become much more signi¯cant when their di®erence is formed. That is the main
reason for the statement made earlier that analysis of combustion instabilities has been useful in practice chie°y
for predicting and understanding trends of behavior rather than accurate calculations of the conditions under
which a given system is unstable. The ultimate source of all of these di±culties is the fact, cited in Section 1.1, is
the property that the motions in question consume and contain only small portions of the total energy available
within the system. Hence in both laboratory tests and in operational systems one is confronted with determining
the characteristics of essentially small disturbances imbedded in a complicated dynamic environment.

1It is possible, due to the behavior of the phase angle, that in a range of high frequencies the combustion processes may in fact
extract energy from the acoustic waves and hence contribute to the losses of energy.
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Figure 1.6. Qualitative Dependence of (a) Energy Gains and Losses; and (b) the Frequency
Response of a Combustor.

The best and most complete data illustrating the preceding remarks have been obtained with solid propellant
rockets. There are several reasons for that circumstance. First, the ignition period | the time to cause all of the
exposed propellant surface to begin burning | is relatively short and the average conditions in the chamber quickly
reach their intended values. Unless oscillations are severely unstable, and growing rapidly during the ignition
transient, there is a good opportunity to observe the exponential growth characteristic of a linear instability. The
measurements shown in Figures 1.4(a) and (b) are good examples.

Secondly, it is probably true that more e®ort has been spent on re¯ning the measurements and predictions
of linear stability for solid rockets than for other systems because of the expense and di±culty of carrying out
replicated tests. There is no practical, routine way of interrupting and resuming ¯rings and it is the nature of
the system that an individual motor can be ¯red only once. Particularly for large motors used in space launch
vehicles, successive ¯rings involve great expense. Development by empirical trial-and-error is costly and there is
considerable motivation to work out methods of analysis and design applicable to individual tests.

1.6.1. Gains and Losses of Acoustic Energy; Linear Stability. It is a general result of the theory of linear
systems that if a system is unstable, a small disturbance of an initial state will grow exponentially in time:

amplitude of disturbance » e®gt (1.3)

where ®g > 0 is called the growth constant. If a disturbance is linearly stable, then its amplitude decays expo-
nentially in time, being proportional to e¡®dt and ®d > 0 is the decay constant. The de¯nition (1.3) implies that
for a variable of the motion, say the pressure, having maximum amplitude p̂0 in one cycle of a linear oscillation:

p0(t) = p̂0e®g(t¡t0) (1.4)
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where p̂0 is the amplitude at time t = t0. Then if p
0
1, p

0
2 are the peak amplitudes at time t1, t2 as indicated in

Figure 1.7,

p̂2
p̂1
=
p0(t = t2)
p0(t = t1)

=
e®g(t2¡t0)

e®g(t1¡t0)
= e®g(t2¡t1) (1.5)

The logarithm of (1.5) is

log
p̂2
p̂1
= ®g(t2 ¡ t1) (1.6)

In practice, t2¡ t1 is taken equal to the period ¿ , the time between successive positive (or negative) peaks. Then
the logarithm of the ratio p̂2=p̂1 for a number of pairs of successive peaks is plotted versus the time t1 or t2 at
which the ¯rst or second peak occurs. The line is straight, having slope ®g.

Whatever the system, the analytical treatment of linear stability is essentially the same. There is really only
one problem to solve: ¯nd the growth and decay constants and the frequencies of the modes. Determining the
actual mode shapes is part of the general problem, but is often not essential for practical purposes. Typically, both
the frequency and the mode shape for small-amplitude motions in a combustion chamber are so little di®erent
from their values computed classically as to be indistinguishable by measurement in operating combustors. By
\classical" we mean here a computation according to the equations of classical acoustics for the geometry at hand,
and with account taken of large gradients in the temperature, which a®ect the speed of sound. The presence
of combustion processes and a mean °ow ¯eld are not accounted for explicitly, but it may be necessary for
satisfactory results, to include a good approximation to the boundary condition applied at the exhaust nozzle,
particularly if the average Mach number is not small.

Figure 1.7. Exponential Growth of a Linearly Unstable Motion (Perry 1968)

Hence the linear stability problem is really concerned with calculations of the growth and decay constants
for the modes corresponding to the classical acoustic resonances. An arbitrary small amplitude motion can,
in principle, be synthesized with the results, but that calculation is rarely required for practical applications.
Results for the net growth or decay constant have been the central issue in both theoretical and practical work.
In combustors, processes causing growth of disturbances and those causing decay act simultaneously. Hence an
unstable disturbance is characterized by a net growth constant that can be written ® = ®g ¡ ®d. Because the
problem is linear, the growth constants can quite generally be expressed as a sum of the contributions due to
processes accounted for in the formulation, as for example:

® := ®g ¡ ®d = (®)combustion + (®)nozzle + (®)mean °ow + (®)condensed + (®)structure + ¢ ¢ ¢ (1.7)

The labels refer to processes of interaction between the acoustic ¯eld and combustion, the nozzle, the mean
°ow, condensed species, the containing structure,.... Structural interactions comprise not only the vibrations
mentioned earlier as a necessary part of the POGO instability, but also quite generally any motions of mechanical
components, including propellant. For example, in large, solid propellant rockets, motions of the viscoelastic
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material of the grain may be a signi¯cant source of energy losses through internal dissipation (McClure, Hart,
and Bird 1960).

The stability boundary|the locus of parameters marking the boundary between unstable (® > 0) and stable
(® < 0) oscillations|is de¯ned by ® = 0 in (1.7). That statement is a formal rendition of the physical condition
that the energy gained per cycle should equal the energy lost per cycle:

®g = ®d (1.8)

Usually the main source of energy is combustion and in terms of the contributions shown in (1.7), this relation
becomes

(®)combustion = ¡(®)nozzle ¡ (®)mean °ow ¡ (®)condensed ¡ (®)structure (1.9)

There are situations in which the acoustic/mean °ow interactions may provide a gain of energy. That is, energy
is transferred from the average °ow to the unsteady motions (as happens, for example, in wind instruments and
sirens), but there is no need to consider the matter at this point.

As simple as it appears, equation (1.7) de¯ning ®, and its special form (1.8) de¯ning the stability boundary,
are basic and extremely important results. There is no evidence, for any propulsion system, contradicting the
view that these results are correct representations of actual linear behavior. Di±culties in practice arise either
because not all signi¯cant processes are accounted for, or, more commonly, insu±cient information is available to
assign accurately the values of the various individual growth or decay constants.

Figure 1.8. Stability Boundary for a Laboratory Gas-Fueled Rocket (Crocco, Grey, and Harrje)

As examples, Figure 1.8 shows stability boundaries computed for longitudinal oscillations in a gas-fueled
laboratory rocket motor (Crocco, Grey, and Harrje 1960) and Figure 1.9 shows the results of calculations for a
large, solid propellant rocket (Beckstead 1974). Those results illustrate the two uses mentioned above for the
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formula (1.9). In the case of the gas-¯red rocket, the calculations contained two parameters not known from
¯rst principles, namely n and ¿ arising in the time-delay model of the interactions between combustion and the
acoustic ¯eld. All other parameters de¯ning the geometry and the average °ow ¯eld were known. The purpose of
the work was to compare the calculations with measurements of the stability boundary to infer values of n and ¿ .

Figure 1.9. Predicted Stability Boundary for a Large Solid Propellant Rocket Motor, and the
Separate Contributions to ®d and ®g. (Beckstead 1974)

The purpose of the results reproduced in Figure 1.9 was to predict the stability of a full-scale motor prior to
test ¯ring. In that case, all of the parameters appearing in (1.7) must be known. Usually some of the information
is available only from ancillary laboratory tests, notably those required to characterize the coupling between
propellant combustion and the acoustic ¯eld.

Indeed, an important application of the formulas (1.11) and (1.12) is to do exactly that for a laboratory device
called the \T-burner". It is not necessary to restrict attention to the stability boundary if good measurements of
the growth constant can be made. Then if all the losses can be computed, one can ¯nd the value of the growth
constant due to combustion (or, more generally all energy gains) as the di®erence

®combustion = ®¡ ®losses (1.10)

Results for ®combustion can either be adapted for use directly in computing the stability of a motor; or they can
be interpreted with models of the combustion processes to obtain better understanding of unsteady combustion.
That procedure has been used extensively to assess the combustion dynamics of solid propellants and to investigate
trends of behavior with operating conditions and changes of composition.

The growth constant has a simple interpretation beyond that given by 1.10 as the slope of a semi-logarithmic
plot of the peak amplitudes versus time: twice ® is the fractional rate of change of time-averaged energy in the
classical acoustic ¯eld. We will prove the result more rigorously in Chapter 3 but this interpretation is so central
to all problems of linear stability that it is useful to have it in hand from the beginning. By the de¯nition of ®,
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both the pressure and velocity oscillations have the time dependence

p0 » e®t cos!t; u0 » e®t sin!t
multiplied by their spatial distributions. The acoustic energy density is the sum of the local kinetic energy,
proportional to u02, and potential energy, proportional to p02:

K.E. » e2®t cos2 !t; P.E. » e2®t sin2 !t
If we assume that the period of oscillation, ¿ = 2¼=!, is much smaller then the decay rate, 1=®, then the values of
these functions averaged over a cycle of the oscillation are proportional to e2®t. Hence the acoustic energy density
is itself proportional to e2®t. Integrating over the total volume of the chamber we ¯nd that the total averaged
energy hEi in the acoustic ¯eld has the form

hEi = hE0ie2®t (1.11)

where hE0i is a constant depending on the average °ow properties and the geometry. We then ¯nd directly from
(1.11) the result claimed:

2® =
1

hEi
dhEi
dt

(1.12)

Another elementary property worth noting is that 1=® is the time required for the amplitude of oscillation to
decay to 1=e of some chosen initial value. Also, the fractional change of the peak value in one cycle of oscillation
(t2 ¡ tl = ¿ = 2¼=!) is

jp02j ¡ jp01j = ±jp0jm » e®t1 ¡ e®t2 = e®t2
h
e®(t1¡t2) ¡ 1

i
where j jm denotes the magnitude of the peak amplitude. We assume as above that the fractional change in one
period ¿ is small so

e®(t1¡t2) ¼ 1 + ®(t1 ¡ t2) = 1 + ®¿
The amplitude itself is approximately proportional to e®t2 or e®t1 and we can write the fractional change as

±jp0jm
jp0jm ¼ ®¿ = ®

f
(1.13)

where f is the frequency in cycles per second, f = 1=¿ . The dimensionless ratio f=® is a convenient measure of
the growth or decay of an oscillation. According to the interpretation of 1=® noted above, (1=®)=¿ = f=® is the
number of cycles required for the maximum amplitudes of oscillation to decay to 1=e or grow to e times an initial
value.

The ratio ®=f must be small for the view taken here to be valid. Intuitively, ® must in some sense be
proportional to the magnitude of the perturbations of the classical acoustics problem. We will ¯nd that the most
important measure of the perturbations is a Mach number, ¹Mr, chacterizing the mean °ow; for many signi¯cant
processes, ®=f equals ¹Mr times a constant of order unity. Roughly speaking, then, the measured value of ®=f is
an initial indication of the validity of the view that a combustion instability can be regarded as a motion existing
because of relatively weak perturbations of classical acoustics.

1.7. Nonlinear Behavior. It is a fundamental and extremely important conclusion that combustion in-
stabilities are motions of a self-excited nonlinear dynamical system. Probably the most signi¯cant implication
is that in order to understand fully the observed behavior, and how to a®ect or control it, one must ultimately
understand the behavior of a nonlinear system. When the motion in a combustion chamber is unstable, except
in unusual cases of growth to destruction, the amplitude typically settles down to a ¯nite value: the system then
executes a limiting motion, usually a periodic limit cycle. For practical applications, it is desirable to know how
the amplitude of the limit cycle depends on the parameters characterizing the system. That information may
serve as the basis for changing the characteristics to reduce the amplitude, the goal in practice being zero. In any
case, good understanding of the properties of the limit cycle will also provide some appreciation for those variables
which determine the behavior and to which the motions may be most sensitive, a practical matter indeed.

Rarely do the motions in a combustion chamber exhibit clear limit oscillations of the sort commonly encoun-
tered with simpler mechanical systems. Figure 1.3 and 1.4illustrate the point. It appears that combustion devices
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are subject to in°uences, probably not easily identi¯ed, that prevent constant frequencies and amplitudes in the
limit motions. The motions seem not to be limit cycles in the strict sense. However, experience gained in the
past few years suggests that the deviations from the well-de¯ned behavior of simpler systems are normally due
to secondary in°uences. There are several possibilities, although not enough is known about the matter to make
de¯nite statements. Recent analysis (Burnley, 1996; Burnley and Culick, 1999) has demonstrated that noise,
and interactions between random and acoustical motions can cause departures from purely periodic limit cycles
appearing very similar to those found in pressure records for operating combustors. The random or stochastic
motions are likely associated with °ow separation, turbulence, and combustion noise.

Probably other causes of departures from strictly periodic limit cycles are associated with the parameters
characterizing steady operation of a combustor; and with `noise' or random °uctuation of °ow variables. As we
have already emphasized, the unsteady motions require only a negligibly small part of the energy supplied by the
combustion processes. Relatively minor variations in the combustion ¯eld, due, for example, to small °uctuations
in the supplies of reactants, may alter the rates of energy transfer to instabilities and hence a®ect features of a
limit cycle. Similarly, adjustments in the mean °ow, notably the velocity ¯eld and surface heat transfer rates, will
directly in°uence the unsteady ¯eld. Laboratory experiments clearly show such phenomena and considerable care
is required to achieve reproducible results. In solid propellant rockets, the internal geometry necessarily changes
during a ¯ring. That happens on a time scale much longer than periods of unsteady motions, but one obvious
result is the decrease of frequencies normally observed in tests. Because there is ample reason to believe that
the phenomena just mentioned are not essential to the global nonlinear behavior of combustion instabilities, we
ignore them in the following discussion.

1.7.1. Linear Behavior Interpreted as the Motion of a Simple Oscillator. Intuitively we may anticipate that
nonlinear behavior may be regarded in ¯rst approximation as an extension of the view of linear behavior described
in the preceding section, made more precise in the following way. Measurement of a transient pressure oscillation
often gives results similar to those shown in Figures 1.5(a). The frequency in each case varies little, remaining
close to a value computed classically for a natural resonance of the chamber, and the growth of the peak amplitude
during the initial transient period is quite well approximated by the rule for a linear instability, e®t. Thus the
behavior is scarcely distinguishable from that of a classical linear oscillator with damping, and having a single
degree of freedom. The governing equation for a simple mass (m)= spring (k)= dashpot (r) system is

m
d2x

dt2
+ r

dx

dt
+ kx = 0 (1.14)

It is surely tempting to model a linear combustion instability by identifying the pressure °uctuation, p0, with the
displacement x of the mass. Then upon dividing (1.14) by m and tentatively replacing x by p0, we have

d2p0

dt2
+ 2®

dp0

dt
+ !20p

0 = 0 (1.15)

where 2® = r=m and the undamped natural frequency is !0 =
p
k=m. The familiar solution to (1.15) has the

form of the records shown in Figures 1.5(a), p0 = p̂0e®t cos−t where − = !0
p
1¡ (®=!0)2 and ½̂0 is the value of

p0 at t = 0.

The preceding remarks suggest the course we should follow to investigate the linear behavior of combustion
instabilities, and indeed is the motivation behind the general view described earlier. But this is purely descriptive
heuristic reasoning. No basis is given for determining the quantities `mass,' `damping coe±cient,' and `spring
constant' for the pressure oscillation. The procedure for doing so is developed in Chapter 4; the gist of the matter
is the following, a brief description of the method used later to analyze combustion instabilities.

According to the theory of classical acoustics for a sound wave, we may identify both kinetic energy per unit
mass, proportional to the square of the acoustic velocity u0, and potential energy per unit mass, proportional to
the square of the acoustic pressure p0. The acoustic energy per unit volume is

1

2

Ã
¹½u02 +

p02

¹½¹a2

!
(1.16)
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where ¹½ and ¹a are the average density and speed of sound. This expression corresponds to the formula for the
energy of a simple oscillator,

1

2
(m _x2 + kx2) (1.17)

Now consider a stationary wave in a closed chamber. Both the velocity and pressure °uctuations have spatial
distributions such that the boundary condition of no velocity normal to a rigid wall is satis¯ed. Hence the local
pressure p0 in equation (1.15) must depend on position as well as time. However, the frequency !0 depends on the
geometry of the entire chamber and according to equation (1.12), we should be able to interpret 2® in equation
(1.15) as the fractional rate of change of averaged energy in the entire volume. Therefore, we expect that the
parameters m, k, and r implied by the de¯nitions ® = r=2m and !0 = k=m must be related to properties of the
entire chamber. The approximate analysis used in most of this book is based partly on spatial averaging de¯ned
so that the properties ascribed to a particular mode are local values weighted by the spatial distribution of the
mode in question, and averaged over the chamber volume.

Locally in the medium, the `spring constant' is supplied by the compressibility of the gas, and the mass
participating in the motion is proportional to the density of the undisturbed medium. When the procedure of
spatial averaging is applied, both the compressibility and the density are weighted by the appropriate spatial
structure of the acoustical motion. As a result, the damping constant and the natural frequency are expressed in
terms of global quantities characterizing the °uctuating motion throughout the chamber. We will ¯nd rigorously
that in the linear limit, an equation of the form (1.15) does apply, but instead of p0 itself, the variable is ´n(t),
the time dependent amplitude of an acoustic mode represented by

p0n = ¹p´n(t)Ãn(~r) (1.18)

where ¹p is the mean pressure and Ãn(~r) is the spatial structure of the classical acoustic mode identi¯ed by the
index ( )n. Hence the typical equation of motion is

d2´n
dt2

+ 2®n
d´n
dt

+ !2n´n = 0 (1.19)

The constants ®n and !n contain the in°uences of all linear processes distinguishing the oscillation in a
combustion chamber from the corresponding unperturbed classical motion governed by the equation

d2´n
dt2

+ !2n0´n = 0 (1.20)

if dissipation of energy is ignored. Because damping in a mechanical system causes a frequency shift, and the
actual frequency is not equal tot he unperturbed value, !n0.

For technical reasons not apparent at this point, it is convenient to regard the linear perturbing process as a
force Fn(´n; _́n) is acting on the `oscillator' and equation (1.19) is written

d2´n
dt2

+ !2n0´n = F
L
n (´n; _́n) (1.21)

The superscript ( )Lidenti¯es the `force' as linear, and for simplicity !2n0 is written !
2
n. We will consistently use

the symbol !n for the unperturbed classical acoustic frequency. If there is no linear coupling between the modes
(typically linear coupling is small), the force FLn consists of two terms, one representing the damping of the mode
and one the frequency shift:

FLn = ¡¢!2n´n + 2®n _́n (1.22)

Equations (1.21) and (1.22) produce (1.19) with !2n replaced by !
2
n +¢!

2
n.

With the above reasoning we have heuristically constructed equation (1.21) as the fundamental equation for a
linear combustion instability corresponding to a classical acoustic mode of the chamber. Its simplicity masks the
fact that a great amount of e®ort is required to determine realistic functions FLn (´n; _́n) applicable to the motions
in a combustion chamber. The approximate analysis developed later provides a framework for accommodating
all linear processes but does not contain explicit formulas for all of them. Most importantly, there are terms
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representing interactions between combustion processes and the unsteady motions, but their computation requires
modeling the mechanisms that cause combustion instabilities. Some of the purely gasdynamical processes, arising
with coupling between mean and °uctuating motions, are given explicitly.

According to classical acoustic theory, a closed chamber of gas at rest has an in¯nite number of normal or
resonant modes. The spatial structures (mode shapes) and resonant frequencies are found as solutions to an
eigenvalue problem. A general motion in the chamber, having any spatial structure, can then be represented as a
linear superposition of the normal modes. The process of spatial averaging, leading to equation (1.20), amounts
to representing any motion as an in¯nite collection of simple oscillators, one associated with each of the normal
modes. That interpretation holds as well for equation (1.21) except that now each mode may su®er attenuation
(®n < 0) or excitation (®n > 0). It is this point of view that allows natural extension of the analysis to nonlinear
behavior.

1.7.2. Nonlinear Behavior Interpreted as the Motion of a Nonlinear Oscillator. In view of the observation that
measurements often show development of limit cycles like those shown in Figure ??, it is tempting simply to add
a nonlinear term to the oscillator equation (1.21) and assume that a combustion instability involves only a single
mode. Thus, for example, we could add to the right-hand side a force FnLn = c1´

2
n + c2 _́

2
n + c3´n _́n + c4j´nj+ ¢ ¢ ¢

where the constants c1,... may be chosen by ¯tting the solution to data. Culick (1971) showed that quite good
results could be obtained with this approach applied to limited data. Figure 1.10 shows one example. Of course
this is a purely ad hoc approach and provides no means of computing the coe±cients from ¯rst principles.

Figure 1.10. An Example of Fitting T-Burner Data with the Model of a Simple Nonlinear
Oscillator (Culick 1971).
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Subsequently, Jensen and Beckstead (1973) applied that procedure to extensive data taken in laboratory
devices intended for measuring the characteristics of unsteady burning of solid propellants. The chief result was
that the data could be matched equally well with rather broad ranges of the constants, and no particular kind of
nonlinearity seemed to dominate the motions. Consequently, representation with a single mode was not successful.
Even though analysis of pressure records for limit cycles often showed relatively small (it seemed) amounts of
harmonics of the principle mode, it appeared necessary to account for two modes at least, with coupling due to
nonlinear processes.

In other contexts, that conclusion is surely not surprising. The development of a small amplitude compressive
disturbance into a shock wave is the oldest and most familiar example in gasdynamics. Steepening of a smooth
wave arises primarily from two nonlinear in°uences: convection of the disturbance by its own motion, and depen-
dence of the speed of sound on the local temperature, itself dependent on the wave motion. A good approximation
to the phenomenon is obtained if viscous stresses and heat conduction are ignored. If the disturbance is regarded
as a combination of various modes, the °ow of energy from modes in the low frequency range to those having
higher frequencies is favored by the nonlinear gasdynamic coupling. The rapid growth of the higher-frequency
modes having shorter wavelengths produces the steepening, eventually limited, in real °ows, by the actions of
various e®ects. In a combustion chamber possible consequences of nonlinear combustion processes cannot be
ignored.

In extreme cases of combustion instabilities, particularly in liquid and solid rockets, the approximately si-
nusoidal motions, substantially systems of stationary waves, may be absent or evolve into a di®erent form. The
motions then appear to be weak shock waves, or pulses having measurable width, propagating in the chamber. In-
stabilities of that type are commonly produced subsequent to excitation by ¯nite pulses. Examples were observed
early in tests of liquid rockets, typically involving motions mainly transverse to the axis, identi¯ed as `spinning'
transverse modes. Their presence is particularly harmful due to the greatly increased surface heat transfer rates
causing unacceptable scouring of the chamber walls.

The corresponding cases in solid rockets usually are longitudinal motions. They rarely occur in large motors
and seem to have been ¯rst observed in pulse testing of laboratory motors (Dickenson 1962; Brownlee 1964).
An example is reproduced in Figure 1.11 (Brownlee, 1964). Often this sort of instability is accompanied by a
substantial increase of the mean pressure, seriously a®ecting the steady performance of the motors. The primary
cause of the pressure rise is evidently the increased burn rate, although precisely why the rate increases is not well
understood. More recently, these pulsed instabilities have been the subject of successful comparisons between
laboratory test results and numerical simulations (Baum and Levine 1982; Baum, Levine, and Lovine 1988).
Figure 1.12 shows an example of their results.

For combustion instabilities, the situation is very di®erent from that for shock waves in a pure gas because
the processes governing the transfer of energy from combustion to the gasdynamical motions cannot be ignored
and in general depend strongly on frequency. Indeed, it may happen, as seems sometimes to be the case for
combustion of solid propellants, that the coupling may cause attenuation of higher frequencies. For that reason,
the tendency for steepening by the gasdynamics is partially compensated by the combustion processes, may be
linear or nonlinear. As a result, in a chamber, a limit cycle may be formed having very closely the spatial
structure and frequency of the unstable mode (commonly, but not always, the fundamental mode) and relatively
modest amounts of higher modes. It is that behavior that seems to be important in many combustion problems,
explaining in part why the approach taken in the approximate analysis has enjoyed some success.

Naturally the preceding is a greatly simpli¯ed and incomplete description of the events actually taking
place in a given combustion chamber. The essential conclusion that nonlinear gasdynamical processes are partly
augmented and partly compensated by combustion processes seems to be an important aspect of all combustion
instabilities. It appears that the idea was ¯rst explicitly recognized in work by Levine and Culick (1972, 1974),
showing that realistic limit cycles could be formed with nonlinear gasdynamics and linear combustion processes.
Perhaps the most important general implication of those works is that the nonlinear behavior familiar in °ows of
pure nonreacting gases is not a reliable guide to understanding the nonlinear behavior in combustion chambers.

For nonlinear problems, the governing equations obtained after spatial averaging have the form
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Figure 1.11. Steep-fronted Waves Observed in Solid Propellant Rocket Motors (Brownlee, 1964)

Figure 1.12. A Comparison of Observed and Simulated Steep-Fronted Waves in a Solid Pro-
pellant Rocket Motor. (a) Observed; (b) numerical Simulation (Baum and Levine, 1982).

d2´n
dt2

+ !2n´n = F
L
n (´n; _́n) + F

NL
n (´i; _́i) (1.23)

where FNLn (´i; _́i) is the nonlinear force depending on all amplitudes ´i, including ´n itself. Thus we may regard a
combustion instability as the time-evolution of the motions of a collection of nonlinear oscillators, one associated
with each of the classical acoustic modes for the chamber. In general the motions of the oscillators may be coupled
by linear as well as nonlinear processes, although linear coupling seems rarely to be important. The analytical
framework established by the dynamical system (1.23) will serve throughout this book as the primary means for
analyzing, predicting, and interpreting combustion instabilities.

Representation of unsteady motions in a combustion by expansion in acoustic modes (`modal expansion')
and application of spatial averaging was ¯rst accomplished by Culick (1961, 1963) using a Green's function. The
work by Jensen and Berkstead cited above motivated extension to nonlinear behavior (Culick 1971 and 1975;
and Zinn and Powell (1970a, 1970b) ¯rst used an extension of Galerkin's method to treat nonlinear behavior is
in liquid rockets; the method was subsequently extended to solid rockets by Zinn and Lores (1972). In practice,
application of a method based on modal expansion and spatial averaging is normally useful only if a small number
of modes is required. Yet there are a large number of experimental results showing the presence of steep-fronted
waves, often su±ciently steep to be interpreted as shock waves. Hence an analysis of the sort followed here would
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seem to be quite seriously limited unless one is prepared to accommodate a large number of modes. That is,
one would expect that wave motions exhibiting rapid temporal changes and large spatial gradients must contain
signi¯cant amounts of higher modes. However, results have also shown that due to fortunate phase relationships,
a surprisingly small number of modes serves quite well even to represent many features of waves having steep
fronts. The method gives quite a good approximation to both the limiting motions and the transient development
of disturbances into weak shock waves.

1.8. Analysis and Numerical Simulations of Combustion Instabilities. In these lectures, the vehicle
for uni¯cation is a theoretical framework originating in the late 1960s and early 1970s with treatments of insta-
bilities in liquid rockets (Culick 1961, 1963; Powell 1968; Zinn and Powell 1968; and Powell and Zinn 1971) and
in solid rockets (Culick 1971, 1976). Those analyses di®ered from previous work mainly in their use of a form
of spatial averaging, in some instances related to Galerkin's method, to replace the partial di®erential equations
of conservation by a system of ordinary di®erential equations. The dependent variables are the time-dependent
amplitudes of the acoustic modes used as the basis for series expansion of the unsteady pressure. It is the process
of spatial averaging over the volume of the chamber that produces a formulation convenient for handling models
of widely di®erent geometries and physical processes. Consequently, in return for the approximate nature of the
analysis (for example, the series must be truncated to a ¯nite number of terms), one obtains both convenience
and a certain generality of applications not normally possible when partial di®erential equations are used directly.
In general form, this approach is applicable to all types of combustors. Di®erent systems are distinguished by
di®erent geometries and the forms in which the reactants are supplied (liquid, solid, gas, slurry, : : : ). Those
di®erences a®ect chie°y the modeling of the dominant physical processes.

Some analysis of combustion instabilities has customarily accompanied experimental work as an aid to inter-
preting observations. The paper by Grad (1949) treating instabilities in solid rockets is probably the ¯rst entirely
theoretical work dealing with small amplitude acoustical motions in a mean °ow ¯eld with combustion sources.
During the 1950s and 1960s, many theoretical works were published on the subject of oscillations in solid rockets
(Bird, McClure, and Hart 1963; Cheng 1954, 1962; Hart and McClure 1959, 1965; Cantrell and Hart 1964; Culick
1966) and in liquid rockets (Crocco 1952, 1956, 1965; Crocco and Cheng 1956; Reardon 1961; Culick 1961, 1963;
Sirignano 1964; Sirignano and Crocco 1964; Zinn 1966, 1968, 1969; Mitchell, Crocco, and Sirignano 1969). It
was during that period that the view of combustion instability as a perturbation of classical acoustics was ¯rst
extensively developed.

Most of the analyses cited in the previous paragraph (those by Sirignano, Zinn and Mitchell are notable
exceptions) were restricted to linear problems. Their chief purpose was to compute the stability of small amplitude
motions. Indeed, since the earliest works on combustion instabilities, practical and theoretical considerations were
directed mainly to the general problem of linear stability: the reasoning is that if the system is stable to small
disturbances (e.g. associated with `noise' always present in a combustion chamber) then undesirable instabilities
cannot arise. There is a °aw in that reasoning: the processes in a combustion chamber are nonlinear, so a linearly
stable system may in fact be unstable to su±ciently large disturbances. In any case, oscillations in combustors
reach limiting amplitudes due to the action of nonlinear processes. Hence understanding nonlinear behavior
is the necessary context in which one can determine what changes to the system may reduce the amplitudes.
Ultimately, a complete theory, and therefore understanding, must include nonlinear behavior, a subject covered
at considerable length in these lectures, largely within the context cited in the ¯rst paragraph.

Recognition of the practical implications of the de¯ciencies of a view founded on linear behavior motivated
the development of the technique of \bombing" liquid rocket chambers in the 1960s by NASA in its Apollo
program. The idea is to subject an operating combustion chamber to a succession of increasingly large disturbances
(generated by small explosive charges) until sustained oscillations are produced. Then the size of the disturbance
required to \trigger" the instability is evidently a measure of the relative stability of the chamber. Another measure
is the rate of decay of oscillations subsequent to a pulse injected into a linearly stable system; the method was
invented by NASA during the development of engines for the Apollo vehicle in the 1960's. What constitutes the
correct `measure' of relative stability cannot of course be determined from experiments alone, but requires deeper
understanding accessible only through theoretical work. This is part of the reason that the nonlinear analyses
cited above were carried out; also an extensive program of numerical calculations was supported. Owing to the
limitations of computing resources at that time, those early numerical calculations involved solutions to quite
restricted problems, commonly sectors or annular regions of chambers. It was not possible to compute what are
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now usually called `numerical simulations.' Moreover, the results were often plagued|and were thus sometimes
rendered invalid|by noise in the computations or di±culties with stability of the numerical techniques.

While the intense activities on instabilities in liquid rockets nearly ceased in the early 1970s, work on numerical
simulation of combustion instabilities in solid rockets began (Levine and Culick 1972, 1974; Kooker 1974; Baum
and Levine 1982). In contrast to the case for liquid rockets, it is a good approximation to ignore chemical
processes within the cavity of a solid rocket, an enormous simpli¯cation. Combustion occurs largely in a thin
layer adjacent to the solid surface and its in°uences can be accommodated as boundary conditions. Consequently,
with the growth of the capabilities of computers, it became possible to carry out more complete computations
for the entire unsteady ¯eld in a motor. Also during this period appeared the ¯rst attempt to compare results of
an approximate analysis with those obtained by numerical simulation for the `same' problem (Culick and Levine
1974).

The main idea motivating that work was the following. At that time, the size and speed of available com-
puters did not allow numerical simulations of three-dimensional problems, nor in fact even two-dimensional or
axisymmetric cases. Moreover, no numerical calculations had been done of one-dimensional unsteady transient
motions in a solid rocket, with realistic models of the combustion dynamics and partial damping. Approximate
analysis of the sort mentioned above could be applied, in principle, to instabilities in arbitrary geometries, but
owing to the approximations involved, there were no means of determining the accuracy of the results. Exper-
imental data contain su±ciently large uncertainties that comparisons of analytical results with measurements
cannot be used to assess accuracy of the analysis. Hence it appeared that the only way to assess the limitations
of the approximate analysis must be based on comparison with numerical simulations. It was also important
to con¯rm the validity of the approximate analysis because of its great value for doing theoretical work and for
gaining general understanding of unsteady motions in combustion chambers.

That reasoning remains valid today. Despite the enormous advances in computing resources, it is true here as
in many ¯elds, that approximate analysis still occupies, and likely always will, a central position. A major reason
is its great value in providing understanding. Numerical simulations advanced considerably during the 1980s and
important work is in progress. Accomplishments for systems containing chemical processes, including combustion
of liquid fuels, within the chambers far exceed those possible twenty years ago (see, for example, Liang, Fisher,
and Chang 1988; Liou, Huang, and Hung 1988; Habiballah, Lourm¶e, and Pit 1991; Kailasanath, Gardner, Boris,
and Oran 1987a, b; and Menon and Jou 1988).

Numerical simulations of °ows in solid rockets have begun to incorporate current ideas and results of tur-
bulence modeling (Dunlop et al. 1986; Sabnis, Gibeling, and McDonald 1985; Tseng and Yang 1991; Sabnis,
Madabhushi, Gibeling, and McDonald 1989). The results have compared quite favorably with cold °ow exper-
iments carried out using chambers with porous walls. In the past ¯ve years, much progress has been made in
numerical simulations (some based on the ideas of LES) of solid rockets including computations of the burning
propellant. There is no reason to doubt that eventually it will be possible to produce accurate computations of
the steady turbulent °ow ¯elds in virtually any con¯guration expected in practical applications.

Remarkable success has also been achieved with computations of unsteady one-dimensional motions in straight
cylindrical chambers (e.g. Baum and Levine 1982; Baum, Lovine, and Levine 1988; Tseng and Yang 1991).
Particularly notable are the results obtained by Baum, Lovine, and Levine (1988) showing very good agreement
with data for highly nonlinear unsteady motions induced in the laboratory by pulses. Although parameters in the
representation of the unsteady combustion processes were adjusted as required to produce the good comparison,
a minimal conclusion must be that the numerical methods are already quite satisfactory.

Numerical simulation will always su®er some disadvantages already mentioned. In addition, because each
simulation is only one case and the problems are nonlinear, it is di±cult to generalize the results to gain funda-
mental understanding. However, the successes of this approach to investigating complicated reacting °ows are
growing rapidly and the methods are becoming increasingly important for both research and practical applica-
tion. Historically, we have seen that the three aspects of the subject|experimental, analytical, and numerical
simulations|began chronologically in that order. There seems to be no doubt that, as in many other ¯elds of
modern engineering, the three will coexist as more-or-less equal partners. We have therefore tried in this book
to balance our discussion of methods and results of experiment, analysis, and numerical simulation with much
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less emphasis on the last. The integration of those activities forms a body of knowledge within which one may
understand, interpret and predict physical behavior.

It is important to realize that experimental information about unsteady motions in combustion chambers is
very limited. Commonly only measurements of pressure are available. Accelerometers and strain gauges mounted
in a chamber may provide data from which some characteristics of the pressure ¯eld can be inferred. Quantitative
surveys of the internal °ow are virtually unavailable owing to the high temperatures, although optical methods
are useful in laboratory work to give qualitative information and, occasionally, useful quantitative data.

As a practical matter we are therefore justi¯ed in assuming only that the pressure is available, at most as a
function of time and position on the surface of the chamber. That restriction is a fundamental guide to the way in
which the theory and methods of analysis for combustion instabilities are developed. Throughout these lectures
we emphasize determining and understanding the unsteady pressure ¯eld. The approximate analysis constituting
the framework in which we will discuss instabilities is based on the pressure as the primary °ow variable.
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2. MECHANISMS OF COMBUSTION INSTABILITIES IN SOLID PROPELLANT ROCKETS

Identifying the ultimate cause, the mechanism, is probably the single most important task in understanding
combustion instabilities in full-scale systems. The term \mechanism" refers to that phenomenon or collection of
processes forming the chief reason that the instability exists. There may be more than one mechanism, but in
any case the ultimate reason for an instability is that energy is transferred from the combustion processes, or the
mean °ow, to unsteady organized motions. Instabilities are commonly observed as nearly periodic oscillations
having time-dependent amplitudes. As a practical matter, the chief goal is to reduce the amplitudes to acceptable
levels. For that purpose it is essential ¯rst to understand the cause, and then to work out the connections with
the chamber dynamics.

In the context de¯ned by Figure 1.1, understanding the mechanism of combustion instabilities is equivalent to
understanding combustion dynamics. It is essential to keep in mind always that by its very de¯nition, combustion
involves chemistry and chemical kinetics within the setting of °uid mechanics. Depending on the mechanism,
one or another of those phenomena may dominate. Hence, for example, in some cases involving the dynamics of
vortex formation and shedding, we may ¯nd that burning is not a central issue. Nevertheless, the presence of
the °ow ¯eld supporting the vortices is itself produced by combustion of reactants. We may therefore justi¯ably
include the phenomenon under the general label `combustion dynamics.' Hence all of the topics comprising the
subject of mechanisms belong largely to the feedback path in Figure 1.1.

In some respects combustion in a solid propellant rocket chamber appears to be less complicated than those
in any other type of combustor. The burning processes occur almost entirely within a thin region, normally
less than one millimeter thick, adjacent to the propellant surface. Although some residual combustion normally
occurs when the propellant contains aluminum or other metallic additives, there is no unambiguous evidence that
combustion within the volume contribute signi¯cantly as a cause of combustion instabilities. We assume that to
be the case, leaving surface combustion and purely °uid mechanical processes as origins of possible mechanisms.
Of these, the dynamics of surface combustion is by far the most common and most important. The four chief
mechanisms for instabilities in solid rockets are shown in Figure 2.1 surface combusiton; vortices shed from
obstacles, or growing out of the shear °ow at a burning surface; and residual combustion within the volume of
the chamber.

Vortex shedding from obstacles|as in the Shuttle solid rocket booster|or vortices produced at the lateral
surface (`parietal vortex shedding')|as in the Ariane 5 solid rocket booster|have been identi¯ed as mechanisms
only in large motors. Excitation of acoustic waves by vortices is of course a well-known phenomenon in a wide
variety of wind musical instruments. The idea that vortices might be responsible for oscillations in a combustion
chamber seems to have been proposed ¯rst by Flandro and Jacobs (1974).

The dynamics of residual combustion far from the burning surface|mostly likely associated with aluminum
or other metal fuel additives not completely burned at the surface|remains poorly understood. Although some
attention has been given to the process (Beckstead et al. 1987), analysis of the dynamics is incomplete. No
calculations exist assessing quantitatively the possible contributions of residual combustion to linear stability
relative to those of surface combustion.

On the other hand, there is no disagreement that the dynamics of surface combustion is the dominant
mechanism causing most combustion instabilities in all types and sizes of solid rockets. We therefore begin with
examination of that subject.

2.1. Qualitative Interpretation of the Basic Mechanism. The dependence of the burning rate of a
solid propellant on the pressure has long been known as a basic characteristic. Experiment and theory for the
combustion of gases shows that the reaction rates vary strongly with both pressure and temperature. It is
therefore not surprising that the burning rate of a solid is sensitive to the impressed temperature and pressure.
What is surprising is that the processes in the gas and condensed phases in the vicinity of the burning conspire to
produce a dynamical response that exhibits signi¯cant dependence in frequency. That dependence on frequency
is particularly important because the response is noticeably greater over a rather broad frequency range. In
that range the combustion processes act to amplify pressure °uctuations. That is, some of the energy released
in chemical reactions is transformed to mechanical energy of motions in the combustion products. Hence the
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u
p' (t)

m + m'(t)

u'u

m + m'(t)

(a)   Pressure  Coupling                                                     (b)   Velocity  Coupling

(c)   Vortex  Shedding                                                       (d)   Residual  Combustion

Figure 2.1. The Four Chief Mechanisms for Combustion Instabilities in Solid Rockets

dynamics in the feedback path, Figure 1.1, not only provide feedback but as well promote an unstable situation.
The burning surface exhibits a sort of resonant behavior but without possessing the inertial and spring-like (i.e.
restoring) forces associated with a resonant oscillating system such as the simple mass/spring oscillator.

Since the cavity in a solid rocket possesses its own acoustic resonances, we have a system of two coupled
oscillators. If it should happen that resonant frequencies of the two oscillators are close, then conditions clearly
favor an instability. That is the situation commonly occurring in solid rockets and is the simplest direct explanation
for the widespread occurrences of instabilities in tactical as well as strategic motors (Blomshield, 2000).

CHAMBER
FLOW

GAS  PHASEINERT
HEATED SOLID

SUB-
SURFACE
DECOM-

POSITION
INTERFACIAL

REGION

r

Figure 2.2. Sketch of Unsteady Combustion of a Solid Propellant.

The essential features of the combustion processes dominating the behavior just described have long been
known. Figure 2.2 is an idealized sketch showing the main characteristics of a burning composite propellant
exposed to an oscillation of the chamber pressure. Ultimately it is the °uctuation of velocity of gases leaving the
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combustion zone that is the essence of the mechanism. Oscillation of the °ow causes the surface to appear like an
acoustic speaker, a source of acoustic waves. Formally the situation is identical to a planar array of monopoles
having zero-average mass °ow superposed on the mean °ow due to combustion. However, the °uctuation of
burning rate is a consequence of °uctuating heat transfer so we can understand the mechanism best by examining
the behavior of the temperature pro¯le. We will treat the propellant as if it were a perfectly homogeneous
isotropic material in the condensed phase, and use the one-dimensional approximation throughout, from the cold
condensed solid phase to the hot combustion products. Figure 2.3 is one frame from a ¯lm of a burning solid
taken at the Naval Weapons Center, suggesting that any sort of one-dimensional approximation seems unrealistic.
That is certainly true on the scale of the particle sizes (10s to 100s of microns).

However, the variations of velocity and pressure in the chamber occur over distances of the order of the
chamber dimensions. Hence it is appealing to suppose that for interactions between the combustion zone and the
motions in the chamber, the heterogeneous character propellant can be overlooked in some sense. For example,
the linear burning rate of a propellant is measured without special regard for spatial variations on the small scale
of compositional inhomogeneities. No instrument is available to do otherwise. That is not to say, of course, that
the burn rate and the combustion dynamics do not depend on spatial variations of the condensed material and
the gas phase. Rather, we suppose that dependence in such things as the size distribution of oxidizer particles
is accounted for by some sort of averaging procedure. Thus, parameters appearing in the ¯nal results, such as
A and B in the QSHOD model discussed here, must depend on, for example, an average particle size. No rules
exist for the averaging, but recently impressive progress has been made for computed steady burning rates using
a \random packing" model (Kochevets and Buckmaster, 2001). In all of the discussion here we adhere to the
one-dimensional approximation with no attention paid to the possible errors incurred. In any case it seems a
good assumption that if the averaging process is good, any errors are likely to be less than uncertanties arising
in other parts of the problem, e.g. material properties.

The mechanism in question here is, broadly speaking, primarily a matter of combustion dynamics. It has
become customary to represent the mechanism quantitatively as an admittance or response function. We use the
latter here, de¯ned generally as the °uctuation of mass °ow rate of gases departing the combustion zone to the
imposed °uctuation of either the pressure or the velocity. Thus the response function for pressure °uctuations
(referred to as the \response to pressure coupling") is de¯ned in dimensionless form as R½,

R½ =
m0=m
p0=p

(2.1)

where ( )0 means °uctuation and ( ) is an average value. The average value m represents the average in°ow of
mass due to the propellant burning. In almost all applications, the °uctuations are steady sinusoidal oscillations,
written as

m0

m
=
m̂

m
e¡i!t

p0

p
=
p̂

p
e¡i!t

(2.2)a,b

and

R½ =
m̂=m

p̂=p
(2.3)

where ^( ) denotes the amplitude of the oscillation, including both magnitude and phase. Because generally the
oscillations of mass °ux rate are not in phase with the pressure oscillations, the function Rp is complex, the real
part representing that part of m0=m that is in phase with the pressure oscillation.

Although the response function for pressure coupling is most commonly used, there is a second response
function, that associated with velocity coupling, which under some practical circumstances is far more important.
At this point we con¯ne our remarks to the response function for pressure coupling.

A simple interpretation of the response function explains its importance to combustion instabilities. According
to the de¯nition (2.3), a pressure oscillation having amplitude p̂=p produces the oscillation m̂=m of mass °ow into
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the chamber
m̂

m
= R½

p̂

p
(2.4)

Viewed from the chamber, the boundary appears then to oscillate. The apparent motion is entirely analogous to
that of a speaker or piston mounted at the boundary. Thus pressure waves are generated in a fashion similar to
that of a loudspeaker in a room. Through a complicated sequence of processes whose details are not germane here,
those waves coalesce and combine with the original pressure waves causing the °uctuations of mass °ux. Whether
or not that merging process augments or subtracts from the existing wave system in the chamber depends on
the phase between m̂ and p̂. The part of m̂ in-phase with p̂ increases the amplitude of the wave system and is
therefore destabilizing. For a particular motor, the tendency for combustion dynamics to drive instabilities is
proportional to the integral of Rp over the entire area of burning surface. Hence it is clearly essential to know
the response function for the propellant used.

Figure 2.3. View of the Surface of a Burning Solid Propellant Containing Aluminum.

Traditional composite propellants using ammonium perchlorate as oxidizer, as well as advanced propellants
using higher energy oxidizers and binder, burn in qualitatively similar fashion. The interface between the con-
densed and gas phases is fairly well de¯ned, may be dry or wet, and may exhibit local dynamical activity owing to
the presence of solid particles and responsive collections of liquid pools or drops. The dynamics of the interfacial
region is particularly noticeable in microcinematography when the propellant contains aluminum. The metal
collects in molten droplets, mobile and ignitable on the surface; those not fully consumed are carried away by
the gaseous products of the interface. The high temperature at the surface is sustained by a balance between
heat °ow away from the interface, required to heat the cool propellant advancing to the surface; energy required
to e®ect the phase changes at and near the interface; and the heat transfer supplied to the interfacial region
from the combustion zone in the gas phase. It's a delicate balance, easily disturbed by changes in the chemical
processes in the interfacial region, particularly within the subsurface region in the condensed phase. Figure 2.4
is a sketch of the temperature ¯eld, showing also the possible consequences of additional exothermic reactions in
the sub-surface condensed phase. Note that in this ¯gure we imagine that the temperature exists in a spatially
averaged sense. Local variations on the scale of oxidizer particles are smeared out in the averaging procedure and
explicit e®ects of inhomogeneities are absent.

Tf

Ts

0 x1 xf

To

Tf

To

Ts

0 xf

(a)  Flame Front                                   (b)  Distributed  Combustion

Figure 2.4. Representation of the Temperature Field in a Burning Solid Propellant.

The essentials of the behavior represented macroscopically by response functions can be described as a se-
quence of elementary steps, described here in simpli¯ed form with reference to Figure 2.4:
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(i) Suppose that for some reason the rate of reactions in the combustion zone increases-perhaps due to a
°uctuation of pressure, or temperature, or to increased local mixing associated with greater intensity of
turbulence locally in the chamber.

(ii) Increased reaction rates produce a rise in the rate of energy release and an increase of temperature of the
combustion zone.

(iii) Due both to radiation and heat conduction, the heat transfer from the combustion zone to the interfacial
region increases, having at least two possible consequences: the temperature at the surface is increased;
and the rate at which condensed material is converted to gas is also increased.

(iv) Because the temperature in the interfacial region rises, so also does the heat °ow to the subsurface region
and further into the solid, tending to cool the interface.

(v) If there are subsurface reactions, the heat °ow will tend to increase their rate, with consequences depending
on the associated energy release (or absorption) rate.

(vi) Exothermic subsurface reactions will act to maintain higher temperature locally, thereby encouraging the
conversion of condensed material to gas at the interface, but also tending to increase the heat °ow to the
cooler solid.

(vii) The net result may be that if the °uctuation of heat °ow, and reduction of temperature, at the interface
does not happen too quickly, the enhanced reaction rate assumed in Step (i) may produce a °uctuation of
mass °ow leaving the surface, that is in phase with the initial perturbation. Hence in this event the entire
process is destabilizing in the sense that the initial disturbance has the result that the disturbed mass °ow
into the chamber tends to augment that initial disturbance.

Whether or not the preceding sequence will be destabilizing depends entirely on details of the processes
involved. Notably, if sub-surface reactions are endothermic, then the sequence (v){(vii) leads to the conclusion
that the reactions may cause the propellant combustion to be less sensitive to disturbances.

The model we will analyze ¯rst is the simplest possible capturing a dominant contribution to the combustion
dynamics. Only unsteady heat transfer in the condensed phase causes true dynamical behavior, i.e. dependence
of the response to pressure coupling. That process must in any case be present. This problem (model) is therefore
the reference always used to assess the possible in°uences of other dynamical processes, in particular, those in
the gas phase and decomposition in the condensed phase. The substance of the model is de¯ned by the following
assumptions:

(i) quasi-steady behavior of all processes except unsteady conductive heat transfer in the condensed phase;
(ii) homogeneous and constant material properties, non-reacting condensed phase;
(iii) one-dimensional variations in space;
(iv) conversion of condensed material to gas phase at an in¯nitesimally thin interface.

The acronym QSHOD for this model derives from the ¯ve letters in assumptions (i){(iii).

During the early years of this subject, from the mid-1950s to the mid-1960s, roughly ten analyses of the
response function were published in the Western literature, giving apparently distinct results. Culick (1968)
showed that, due to the fact that all of the models were based in the same set of assumptions (i){(iv), the results
were dynamically identical. That is, all had the same dependence on frequency and, with appropriate values
for the various parameters involved, give coincident numerical values. Hence the term QSHOD is a useful term
referring to a class of models. Di®erences between the models are associated with di®erent detailed models of the
steady processes, notably the °ame structure in the gas phase.

A di®erent approach to compute the combustion response was taken by Zel'dovitch (1942) in Russia and
elaborated in great depth by Novozhilov (1965, 1973, 1996). The result has come to be known as the Z-N model.
The Z-N representation of the response has certain distinct advantages, most importantly giving convenient
connections between the parameters in the response function and quantities easily measured in steady combustion.
The idea is explained in Section 2.

2.2. Analysis of the QSHOD Model. Analysis of the model sketched in Figure 2.2 amounts to quan-
titative representation of the sequence (i){(iv). Even in the simplest form described here, the problem is too
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complicated for a closed form solution. Apart from recent results obtained numerically for the entire region, cov-
ering the cold solid to the hot combustion products the usual procedure, familiar in many problems of this sort,
is based on solutions found for the separate regions de¯ned above, and matched the results at the interfaces. The
solutions and the matching conditions are based on the one-dimensional equations of motion. In the approach
taken here, the interfaces move, a feature that must be correctly incorporated in the analysis.

The following remarks are based on the review cited above, Culick (1968). Since that time much work has
been done to determine the consequences of relaxing the assumptions on which the following analysis (the QSHOD
model) is based. We will later examine some of those ideas. In this section we assume that the combustion proceeds
as transformation of a condensed phase at a single °at interface to the gas phase, requiring that solutions be
matched at only one interface. We choose a reference system with origin (x = 0) ¯xed2 to the average position
of the interface. Hence the cold unreacted solid material progresses inward from the lift. Figure 2.5 shows this
de¯nition and the matching conditions that must be satis¯ed at the interface. Note that the velocity _xs of the
interface appears explicitly in these conditions and is to be determined as part of the solution to the complete
problem.

v  = m/ρp

ρp (v  - x )

p

p s ρ (v  - x )g s

s

. .

λp

(v  - x )p sρp (cT +H  + Q  )s p g

T
x s-

λg
T
x s+

(v  - x )g sρ p(c T + Q )s g
.

x VELOCITIES

MASS  FLUX

ENERGY
BALANCE

Figure 2.5. Reference System and Matching Conditions for the QSHOD Model.

For the simple model used here, the analysis involves only three steps: solution for the temperature ¯eld in the
solid phase; solution for the temperature ¯eld in the gas phase; and matching the two solutions at the interface.
Because the temperature ¯eld is central to the analysis, the ¯nal results should correctly be regarded as a thermal
theory of steady and unsteady combustion of a solid propellant. No di®usive contributions are accounted for and
the pressure is uniform throughout the region considered: the momentum of the °ow does not enter the problem.

(a) Solid Phase

The energy equation for the temperature in the solid phase assumed to have uniform and constant properties,
is

¸p
@2T

@x2
¡mc@T

@x
¡ ½pc@T

@t
= ¡ _Qd (2.5)

where ( ) means time-averaged value; ( )p denotes propellant; c is the speci¯c heat of the solid; m = ½pr is the

average mass °ux in the reference system de¯ned in Figure 2.5; and _Qd is the rate at which energy is released per
unit volume due to decomposition of the solid ( _Qd > 0 for exothermic decomposition). We assume _Qd = 0 here
an assumption to be relaxed in Section 2. It is convenient to use the dimensionless variables

»p =
r

·c
x ; ¿ =

T

T s
(2.6)

2Alternatively, the reference frame may be ¯xed to the instantaneous position of the surface and therefore is not an inertial frame
for the unsteady problem. For the linear problem, it is easy to show the equivalence of the results obtained with the two choices of
reference systems. If more than three regions are treated|e.g. when an additional decomposition zone is included in the condensed
phase|it may be more convenient to take xs = 0 and account for the motions of the remaining interfaces.
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where values at the interface are identi¯ed by subscript s and ·p = ¸p=½pc is the thermal di®usivity of the
propellant. Equation (2.5) becomes

@2¿

@»2
¡ @¿

@»p
¡ ¸p½p
m2c

@¿

@t
= 0 (2.7)

Solution to (2.7) with the time derivative dropped gives the formula for the normalized mean temperature

¿ = ¿c + (1¡ ¿c)e»p (2.8)

satisfying the conditions ¿ = ¿s = 1 at the surface and ¿ c = Tc=T s far upstream (T = Tc) in the cold propellant.

For harmonic motions, with ¿ = ¿ + ¿ 0 and3 ¿ 0 = ¿̂ e¡i!t, ¿̂ being the amplitude, a complex function of
position in the solid material. Substitution in (2.7) leads to the equation for ¿̂(»p), easily solved to give

¿ 0 = ¿̂0e¸»pe¡i!t (2.9)

where ¸ satis¯es the relation

¸(¸¡ 1) = ¡i− (2.10)

and − is the important dimensionless frequency,

− =
¸p½p
m2c

! =
·p
r2
! (2.11)

In order that ¿ 0 ! 0 for x! ¡1, the solution of (2.10) with positive real part must be used; ¸ = ¸r ¡ i¸r and

¸r =
1

2

½
1 +

1p
2

h
(1 + 16−2)1=2 + 1

i1=2¾
¸i =

1

2
p
2

h
(1 + 16−2)1=2 ¡ 1

i (2.12)a,b

Due to the choice of reference system, ¿̂ in (2.9) is the °uctuation of temperature at the average position
of the interface (»p = 0). However, matching conditions at the interface requires values and derivatives of the
temperature at the interface itself, having position xs and velocity _xs. Values at the interface are calculated with
Taylor series expansions about x = 0; only the ¯rst order terms are retained for the linear problem, and on the
solid side of the interface4:

T s(xs) = T (0) + xs

µ
dT

dx

¶
0¡

;

µ
dT

dx

¶
s¡
=

µ
dT

dx

¶
0¡
+ xs

µ
d2T

dx2

¶
0¡

T 0s(xs) = T
0
0¡(0) + xs

µ
@T

dx

¶
0¡

;

µ
@T 0

@x

¶
s¡
=

µ
@T 0

@x

¶
0¡
+ xs

µ
@2T 0

@x2

¶
0¡

(2.13)

Hence the required results for the upstream side of the interface cannot be completed until the interfacial region
is analyzed.

(b) Interfacial Region

Three relations govern the behavior at the interface: conservation of mass and energy, and the law for
conversion of solid to gas. The ¯rst two are established by considering a small control volume placed about
the true burning surface, as sketched in Figure 2.5. The volume is then collapsed to give \jump" conditions
associated with the total unsteady mass and energy transfer in the upstream (s¡) and downstream (s+) sides of
the interface:

½p _xs
m

= ¡
·
1¡ ½gs

½ps

¸
m0
s

m
¼ ¡m

0
s

m·
¸g
@T

@x

¸
s+

=

·
¸p
@T

@x

¸
s¡
+m

·
1¡ ½p _xs

m

¸
(Ls)

(2.14)a,b

3Note that consistently throughout these notes we use the negative exponential, exp(¡i!t). In some of the literature the positive
exponential is used, so care must be taken when making comparisons of results.

4The temperature is continuous at the interface, but on x = 0, the °uctuations T 00¡ and T 00+ computed from the solutions for

the solid and gas phase need not be continuous.
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The mean gas density ½ near the surface is much smaller than the density of the condensed phase, for cases of
current interest, so the term ½=½p ¿ 1 will hereafter be dropped. For an exothermic surface reaction, the change
Ls = hs+ ¡ hs¡ of the enthalpy is positive and may be viewed as a `latent heat'. The heat °uxes [¸p@T=@x]s¡
and [¸g@T=@x]s+ are respectively °ows of heat from the interface to the condensed phase and to the interface
from the gas phase.

An Arrhenius law has commonly been assumed for the conversion of solid to gas, giving the total surface
mass °ux

ms = Bp
nse¡Es=R0Ts (2.15)

To ¯rst order in small quantities, the perturbed form of (2.15) is

m0
s

m
= Eei!¿1¿ 0s + nse

i!¿2
p0

p
(2.16)

where E = Es=R0Ts is the dimensionless activation energy for the surface reaction. Time delays or lags ¿1 and
¿2 are included in (2.16), but presently there is no way to compute them; hence they will largely be ignored here
except for some results given in Section 2.6.

For steady combustion, the energy balance (2.14)b, with (2.8) substituted for dT=dx, becomesµ
¸g
dT

dx

¶
s+

= m
£
c
¡
T s ¡ Tc

¢
+ Ls

¤
(2.17)

The linear unsteady part of (2.14)b isµ
¸g
@T

@x

¶0
s+

=

µ
¸p
@T

@x

¶0
s¡
+m0

sLs +m(cp ¡ c)T 0s (2.18)

Combination of (2.8) and (2.9) and the appropriate parts of (2.13) gives the formula for the heat transfer into
the condensed phase from the interface:µ

¸p
@T

@x

¶0
s¡
= mc

·
¸T 0s +

1

¸

¡
T s ¡ Tc

¢ m0
s

m

¸
(2.19)

In this result, the approximation in (2.14)a has been used. Substitution of (2.19) in (2.18) leads to the boundary
condition to be set on the unsteady temperature at the downstream side of the interface:µ

¸g
@T

@x

¶0
s+

= mc

·
¸T 0s +

³cp
c
¡ 1
´
T 0s +

½
1

¸

¡
T s ¡ Tc

¢
+
Ls
c

¾
m0
s

m

¸
(2.20)

This results contains two assumptions:

(i) ½g=½p ¿ 1 (x = xs)
(ii) nonreacting condensed phase having constant and uniform properties

Normally, the ¯rst is reasonable. However, the second is restrictive, possibly seriously so according to some
analyses; see Section 2.5. The important point is that (2.20) explicitly contains the transient behavior (the
dynamics) associated with unsteady heat transfer in a benign solid material. If no further dynamics is attributed
to the processes at the interface or in the gas phase, then the response function found with this analysis re°ects
only the dynamics of unsteady heat transfer in the condensed phase. That is the QSHOD result. Hence it is
apparent that the form of the dependence of the response function in frequency will necessarily in this case be
independent of the model chosen for the quasi-static behavior of the gas phase. The details of the model selected
will a®ect only the particular values of parameters appearing in the formula for the response function.

Thus, to complete the analysis, it is best at this stage to choose the simplest possibility. We assume that
the thermal conductivity is uniform in the gas phase and that the combustion processes (i.e. the rate of energy
release per unit volume) are also uniform in a region beginning some distance from the interface and extending
downstream, ending at a location, that is, by de¯nition, the edge of the °ame zone. This is a useful model
containing two simple limits: uniform combustion beginning at the interface; and a °ame sheet, obtained by
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letting the thickness of the combustion zone become in¯nitesimally thin. Figure 2.6 is a sketch of the model.
Analysis of the model for steady burning was given by Culick (1969) with the following results.

x = 0 ix = x fx = x

Tf

Uniform
Combustion

Tc

Ti

Ts

Figure 2.6. Sketch of the Model of a Solid Propellant Burning with Uniform Combustion in
the Gas Phase.

The governing equation for this thermal theory is

mcp
dT

dx
¡ d

dx

µ
¸g
dT

dx

¶
= ½gQf _s (2.21)

where Qf is the energy released per unit mass of reactant mixture (assumed to be constant), ½g is the local
gas density and _s is the local rate of reaction. At the downstream edge of the combustion zone, the boundary
conditions are

T = Tf ;
dT

dx
= 0 (x = xf ) (2.22)a,b

where Tf is the adiabatic °ame temperature. On the interface,

T = Ts (2.23)

and the energy balance at the interface givesµ
¸g
dT

dx

¶
s+

= m
£
c
¡
T s ¡ Tc

¢
+ Ls

¤
(2.24)

For steady combustion, consideration of the energy °ow across the gas phase givesµ
¸g
dT

dx

¶
s+

= m [Qf ¡ cp (Tf ¡ Ts)] (2.25)

On the other hand, integration of (2.21) across the combustion zone, and application of the boundary conditions
(2.22)a,b and (2.23) leads to µ

¸g
dT

dx

¶
s+

=

Z 1

0

½gQf _sdx¡mcp (Tf ¡ Ts) (2.26)

Because Qf is constant, comparison of (2.25) and (2.26) leads to the requirement on the overall reaction rateZ 1

0

½g _sdx = m (2.27)

We assume ¸g constant (an assumption that is easily relaxed) and transform from x to the dimensionless
variable ³:

³ = e
mcp
¸g

x (2.28)
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The energy equation (2.21) becomes

¡³2 d
2T

d³2
= ¤2 (2.29)

where the eigenvalue ¤2 is

¤2 =
¸gQfw

m2c2pTs
(2.30)

and

w = ½g _² (2.31)

Generally, of course, _² and hence w and therefore ¤2 are dependent at least on temperature, so ¤2 is implicitly a
function of ³. However, we assume ¤2 constant, de¯ning the condition of uniform combustion. Then with ³i the
value of ³ at the beginning of the combustion zone (where ignition is assumed to occur) and ³f the value at the
downstream edge of the °ame, the ¯rst integral of (2.29) givesµ

dT

d³

¶
s+

=

µ
³f ¡ ³i
³f³i

¶
¤2 (2.32)

Thus µ
¸g
dT

dx

¶
s+

=
¸gQf
cp

µ
1

³i
¡ 1

³f

¶
w

m
(2.33)

For ³f À ³i, and in the limit of combustion beginning at the solid/gas interface so ³i = 1,µ
¸g
dT

dx

¶
s+

=
¸gQf
cp

w

m
(2.34)

The assumption of quasi-steady behavior implies that the °uctuation of heat transfer at the surface is given
simply by the linearized form of (2.33):µ

¸g
dT

dx

¶0
s+

= mcpT s¤
2

µ
w0

w
¡ m

0

m

¶
(2.35)

We also ¯nd as the linearized form of (2.25):µ
¸g
dT

dx

¶0
s+

= m0 £Qf ¡ cp ¡T f ¡ T s¢¤¡mcp ¡T f ¡ T s¢ (2.36)

This equation gives a formula for the °uctuation of °ame temperature,

T 0f = T
0
s +

m0

m

·
Qf
cp
¡ ¡T f ¡ T s¢¸¡ 1

mcp

µ
¸g
dT

dx

¶0
s+

(2.37)

Substitution of (2.35) for the last term gives the formula for computing T 0f when the combustion is uniform.
In general, T 0f is not equal to the local °uctuation of temperature due to acoustical motions in the gas phase,
the di®erence appearing the temperature °uctuation associated with an entropy wave carried by the mean °ow
departing the combustion zone.

By letting ³i ! ³f , the corresponding results can be obtained for a °ame sheet; see Culick (1969; 2002). We
will consider here only the case of ¯nite combustion zone; the response functions found for the two cases di®er
only in small details.

To progress further, we must specify the form of w = ½g _s; the reaction rate per unit volume. For the quasi-
steady part of the processes, we assume that the mass °ow provided by the surface is well-approximated by the
Arrhenius law (2.15) and its °uctuation is (2.16) with zero time delays,

m0

m
= E

T 0s
T s
+ ns

p0

p
(2.38)

Due to the assumption of quasi-steady behavior, this formula represents the °uctuation of mass °ow throughout
the gas phase.
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Finally, we need an explicit form for w as a function of the °ow variables. To construct a consistent formula
for the reaction rate in the gas phase, we equate the two results for heat transfer to the interface during steady
burning: (2.24), the energy balance generally valid at the interface; and (2.34) found for the special case of
uniform combustion. We ¯nd the expression for w:

w =
cp
¸gQf

m2
£
c
¡
T s ¡ Tc

¢
+ Ls

¤
(2.39)

We assume that the right-hand side can be written as a function of pressure only by approximating the pyrolysis
law m = a(Ts)p

n as

m = apn = b(Ts ¡ Tc)spns (2.40)

so

Ts ¡ Tc =
³a
b
pn¡ns

´ 1
s

(2.41)

Then (2.39) becomes

w =
cp
¸gQf

(apn)2
·
c
³a
b
pn¡ns

´ 1
s

+ Ls

¸
(2.42)

The °uctuation w0 of the reaction rate is then

w0

w
=

³
1¡ Tc

T s

´
¤2

c

cp
w
p0

p
(2.43)

where ¤2 is given by (2.30) for the steady problem,

¤2 =
¸gQfw

m2c2pTs
(2.44)

and

w =

·
2(1 +H) +

cp
c

1¡ ns
n

c

¸
H = ¡ Ls

c(T s ¡ Tc)
(2.45)a,b

Instead of the calculations leading from (2.34) to (2.43) one could as well simply assune w0 » p0. The only
purpose of these remarks is to give an example of relating °uctuations of the reaction rate to the pressure for a
well-de¯ned model of combustion in the gas phase.

(c) Construction of the Response Function

We ¯nd the formula for the response function in the following way:

(i) Substitute the pyrolysis law (2.38) in (2.20) which combines the interfacial conditions for energy and mass
transfer:

1

mcT s

µ
¸g
@T

@x

¶0
st

=

µ
¸+

A

¸

¶
T 0s
T s
+

Ã
cp
c
¡ 1 + LA

1¡ Tc
T s

!
T 0s
T s
+ ns

Ã
L+

1¡ Tc
T s

¸

!
p0

p
(2.46)

where

L =
Ls

cT s

A = (1¡ Tc

T s
)(®s +

Es

RoT s
)

(2.47)a,b
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(ii) Substitute the reaction rate (2.43) into the expression (2.35) for the heat loss from the gas phase:

1

mcT s

µ
¸g
@T

@x

¶0
st

=

µ
1¡ Tc

T s

¶
w
p0

p
¡ cp
c
¤2
m0

m
(2.48)

(iii) Equation (2.46) and (2.48), use the pyrolysis law to eliminate T 0s=T s; this step leaves an equation which
can be rearranged to give the ratio de¯ned to be the response function for pressure coupling:

Rp =
m0=m
p0=p

=

¡
AW +

cp
c ns

¢
+ ns(¸¡ 1)

¸+ A
¸ +

£ cp
c E¤

2 ¡HA+ cp
c ¡ 1

¤ (2.49)

(iv) Write (2.49) in the form

Rp =
c1 + ns(¸¡ 1)
¸+ A

¸ + c2
(2.50)

For the assumed steady burning rate law, m = apn, the °uctuation can be written

Rp =
m0=m
p0=p

= n (2.51)

Thus in the limit of zero frequency (¸ = 1), the right-hand side of (2.50) must equal n, giving the condition
c1

1 +A+ c2
= n

De¯ne B with
c1 = nB

and
c2 = B ¡ (1 +A)

Hence (2.50) becomes

Rp =
nB + ns(¸¡ 1)

¸+ A
¸ ¡ (1 +A) +B

(2.52)
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Figure 2.7. Real and Imaginary Parts of a QSHOD Response Function Computed with Equa-
tion 2.52.

Figure 2.7 shows typical results for the real and imaginary parts of this formulas when ns = 0. Experimental
results given in the following section have long established that the QSHOD model captures a major contribution
to the dynamical behavior, due to unsteady heat transfer in the condensed phase. Thus it is important to
inderstand the preceding analysis. However, even with the large experimental errors associated with all current
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experimental methods, it seems there is little doubt that other dynamical processes cannot be ignored for many
propellants, especially in the range of frequencies above that where the broad peak of the real part of Rb appears.

2.3. Measurements of the Response Function; Comparison of Experimental Results and the
QSHOD Model. For more than forty years, measurement of the response function has been the most important
task is research on combustion instabilities in solid rockets. Without accurate data, the truth of theoretical results
cannot be assessed; predictions and interpretations of instabilities in motors are uncertain; and the ability to screen
propellants for optional behavior is seriously compromised. Unfortunately no entirely satisfactory method exists
for accurate measurements of the combustion response, irrespective of cost. Two recent reports of extended
programs (Caltech MURI, 2002 and UIUC MURI, 2002) have led to this conclusion after ¯ve years' investigation
of the ¯ve main existing methods:

(i) T-burner
(ii) ultrasonic apparatus
(iii) laser recoil method
(iv) magnetohydrodynamic method
(v) microwave technique

A sixth method based on using a burner (e.g. an L* burner) in which bulk oscillations are excited, was not
investigated, partly because it is intrinsically limited to low frequencies.

It is not our purpose here to review these methods; see the two MURI reports; Couty (1999) and references
contained in those works for all discussions of all but the last. The microwave technique was introduced in the
1970's and has been continually improved, but the accuracy of the data remains inadequate, particularly for
metallized propellants for which the method is useless under some conditions.

The central question for modeling and theory is: how good is the agreement between predicted and measured
values? It appears that the ¯rst extensive comparison for this purpose were carried out many years ago (Beckstead
and Culick, 1971) soon after the recognition that all the available models/analyses were equivalent to the QSHOD
(A,B) model. With only two parameters available to adjust the theoretical results to ¯t data, the task of comparing
theory and experiment became manageable. At that time, only T-burner data were available. Figures 2.8 and
2.9 show two results.

Figure 2.8. The real part of the response function vs. the non-dimensional frequency, ®t!=r
2

for A-13 propellant: the solid curve is calculated from the QSHOD formula for the values of A and
B shown; the dashed curves represent the T-burner data at the indicated pressures. (Beckstead
and Culick 1969).

One purpose of the report by Beckstead and Culick was to combine the formula for the QSHOD response
function with results obtained from analyses of the T-burner and the L*-burner to obtain formulas for the
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Figure 2.9. The real part of the response function vs. the non-dimensional frequency for A-35
propellant; the curves were calculated from the QSHOD formula. (Beckstead and Culick 1969).

parameters A and B in terms of measurable quantities. The main conclusion was that unique values of A and B
could not be obtained for a given propellant tested at a chosen value of operating pressure. Consequently, large
di®erences existed between the data and curves of the sort shown in Figure 2.7.

Since that time, many examples of using the A, B model to ¯t data have been given. Most, if not all, approach
the matter as a two-parameter (A and B) curve ¯tted to data for the real part of the response function only.
Strictly, that tactic is incorrect and could produce misleading results. The proper approach requires that the
two-parameter representation be used to ¯t simultaneously the real and imaginary parts of the response function.
There are also cases in which investigators have failed to respect the distinction between the response function
Rp » m0=p0 and the admittance function Ap » u0=p0 de¯ned for velocity °uctuations.

Without attention to both of those points, any comparisons between data and a model are suspect. Despite
those common de¯ciencies, there is no doubt that the QSHOD model cannot and does not represent the dynamics
of actual propellants. One would anticipate even without experimental results that the assumption of quasi-steady
behavior in the gas phase must fail at high frequencies, commonly believed to be around 1000 Hertz and higher.
Moreover, observations of steady combustion have shown that important decomposition processes take place in
the sub-surface zone near the interface of most propellants. Hence at least two improvements of the QSHOD
model should be made.

Before examining examples of more complicated models, we review the essentials of another approach to
deriving the QSHOD model, the Z-N model.

2.4. The Zel'dovich-Novozhilov (Z-N) Model . Zel'dovich (1942) was ¯rst to consider true combustion
dynamics for solid propellants. He was concerned with problems of transient burning|i.e. what happens to
combustion of a propellant when the impressed pressure is changed rapidly|but now explicitly with the response
function. Novozhilov (1965) later used Zel'dovich's basic ideas to ¯nd a formula for the response of a burning
propellant to sinusoidal oscillations of pressure. The result has exactly the same dependence on frequency as the
QSHOD model, i.e. it is identical with the formula obtained by Denison and Baum four years earlier.

The Z-N model incorporates quasi-steady behavior of the burning in a clever and instructive fashion. More-
over, the parameters|there are, of course two corresponding to A and B in the QSHOD model|are so de¯ned
as to be assigned values from measurements of steady combustion of the propellant in question. Hence there is no
need to become enmeshed in the details of modeling the combustion processes in the gas phase. If the measure-
ments could be done accurately, it would be possible to obtain good predictions of the combustion response for
propellants, subject of course to all the assumptions built into the QSHOD model. Unfortunately, the required
quantities are di±cult to measure accurately. Con¯rmation of the results still requires measurements of both the
real and imaginary parts of the response function.
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The condensed phase and interfacial region are treated as described in Section 2.2 for the QSHOD model.
Instead of detailed analysis of the gas phase, that is, construction of a \°ame model", the assumption of quasi-
steady behavior is applied by using relations among the properties of steady combustion, the burning rate and
the surface temperature as functions of the initial temperature of the cold propellant and the operating pressure:

m = m(Tc; p)

Ts = Ts(Tc; p)
(2.53)a,b

The assumption is also made that these functions are known su±ciently accurately that their derivatives can also
be formed, introducing the four parameters

º =

µ
@ lnm

@ ln p

¶
Tc

¹ =
1

T s ¡ Tc

µ
@T s
@ ln p

¶
Tc

k =
¡
T s ¡ Tc

¢µ@ lnm
@Tc

¶
p

rZN =

µ
@T s
@Tc

¶
p

(2.54)a,b,c,d

Subscript ZN is attached to r to distinguish it from the linear burning rate. It is not apparent from the remarks
here why the four parameters (2.54)a,b are signi¯cant in this theory.

Recall from Section 2.2 that the sole reason for analyzing a model of combustion in the gas phase was to
produce a formula for the heat feedback, ¸g(@T=@x)s+, to the interface. That is the central problem here as well:
to ¯nd the heat feedback from considerations of steady combustion and assume (the quasi-steady approximation)
that the form of the result holds under unsteady conditions. The trick is to work out the relation between the
feedback and the properties of steady combustion. It is in that process that the parameters (2.54)a{d appear.

The formula for the response function corresponding to (2.52) is usually written (e.g. Cozzi, DeLuca and
Novozhilov 1999)

Rp =
º + ±(¸¡ 1)

rZN (¸¡ 1) + k
¡
1
¸ ¡ 1

¢
+ 1

(2.55)

where

± = ºrZN ¡ ¹k (2.56)

Comparison of (2.52) and (2.55) gives the formulas connecting the parameters in the two formulations:

A =
k

rZN
; B =

1

k
; n = º ; ns =

±

rZN
(2.57)

Much emphasis has been placed in the Russian literature on the \boundary of intrinsic stability", the locus of
values of (A,B), or (k; rZN ) for which the denominator of (2.55) vanishes. Under those conditions, the propellant
burn rate su®ers a ¯nite perturbation in the limit of a vanishingly small change of pressure. Hence, from measured
values of º and rZN , one can infer how close an actual propellant is to that stability boundary.

With these models, the opportunity exists to use experimental results to determine how accurately the
QSHOD approximations capture the combustion dynamics of solid propellants:

(1) measure º; ¹; k; rZN from tests of steady combustion;
(2) measure the real and imaginary parts of Rp;
(3) compute Rp from (2.52) or (2.55) and compare with (2)

There seem to be no published reports of results for this procedure.
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2.5. Revisions and Extensions of the QSHOD Model. As we have already noted in Section 2.3, even
with the large uncertainties accompanying the experimental results obtained with current methods, it is clear that
the QSHOD model does not capture some important dynamical processes. Considerable e®ort has been devoted
to improving the model, with a certain amount of success, but unfortunately the de¯ciencies in the experimental
procedures still prevent de¯nitive identi¯cation of the most signi¯cant contributions.

Attention has been given to all three of the regions sketched in Figure 2.2. It is important to recognize that
simply changing the model for steady combustion|for example including a ¯nite zone of decomposition in the
solid phase|will not change the form of the QSHOD result. Any additional spatial zones or processes must also
contain new dynamics, a lesson the author learned the hard way (Culick 1969).

Here we will only cite a few of the recent works without giving details of the analyses. To be possibly unseemly
parochial, Section 2.6 contains a more extensive, but brief description of recent work at Caltech.

2.5.1. Additional Dynamics in the Condensed Phase. It seems that three types of processes have been con-
sidered:

1) temperature-dependent thermal properties;
2) phase transitions; and
3) decomposition zones.

Louwers and Gadiot (1999) have reported results for numerical calculations based on a model of HNF. Melting at
some interface within the condensed phase is accounted for, as well as energy released by sub-surface reactions.
Combustion in the gas phase is also treated numerically. The computed response functions also show that the

new processes may increase the values of R
(r)
p by as much as 10{30% and more in the frequency range above the

peak. The peak value is unchanged.

Brewster and his students at the University of Illinois have produced a number of interesting works treating
additional dynamics related to chemical processes in the condensed phase and at the interface (Zebrowski and
Brewster, 1996; Brewster and Son, 1995).

Gusachenko, Zarko and Rychkov (1999) have investigated the e®ects of melting in the response function,
¯nding quite signi¯cant consequences. Lower melting temperatures and larger energy absorption in the melt
layer increase the magnitude of the response function.

Cozzi, DeLuca and Novozhilov (1999) worked out an extension of the Z-N method to account for phase
transition at an in¯nitesimally thin interface in the condensed phase. The analysis includes new dynamics by
allowing di®erent properties of the thermal waves on the two sides of the interface. Additional heat release is
allowed only at the interface of the transition and with conversion of condensed material to gaseous products.
They found that the response function is increased by exothermic reaction at the internal interface and by reduced
temperature of the phase transition.

2.5.2. Additional Dynamics in the Gas Phase. DeLuca (1990; 1992) has given thorough reviews of the various
models used for the dynamics of the gas phase. Most, however, involve no dynamics, so there are no e®ects on
the dependence of the response function on frequency. Truly dynamical e®ects are covered in the next section.

2.6. Modeling the E®ects of Velocity Coupling on the Global Dynamics of Combustion Cham-
bers. The research summarized in this section has been reported in a Ph.D. Thesis (Isella, 2001) and in three
publications (Culick, Isella and Seywert, 1998; Isella and Culick, 2000a; 2000b). Chie°y two general problems
have been addressed:

1) develop a simple general analysis of the combustion dynamics of a solid propellant that will conveniently
accommodate models of the relevant chemical and physical processes, especially those in the interfaced
region; and

2) investigate the in°uences of changes in the combustion response function on observable features of the
combustor dynamics, particularly properties of limit cycles.
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Both of these problems were chosen to try to determine answers to the question: what properties of a solid
propellant are responsible for the often observed sensitivity of the dynamics of a solid rocket to apparently small
(sometimes not well-known) changes in the composition of the propellant. The main conclusions are:

(i) small changes in the composition and thermodynamic properties of a propellant have signi¯cant conse-
quences for dynamical behavior due to pressure coupling only if the propellant is burning near its intrinsic
instability boundary; and

(ii) on the contrary the dynamics due to velocity coupling is evidently signi¯cantly sensitive to small compo-
sitional changes.

If these conclusions are true, then future work in the area of combustion instabilities must include intensive
attention to modeling and measuring the combustion dynamics-i.e. the response function-associated with velocity
coupling.

2.6.1. The Model Framework. One important purpose of the work cited above was to construct a framework
within which it should be possible easily to investigate the consequences of various processes participating in the
combustion of a solid. Representation of the combustion dynamics must be in a form required for analyzing the
global dynamics (Section 3.2). The simplest approach is an extension of the well-known one-dimensional analysis
producing the QSHOD response function for pressure coupling (Culick, 1968; Beckstead et al., 1969; T'ien, 1972;
among many works). Others have followed a similar tack (e.g. Louwers and Gadiot, 1999); the main novel aspect
of this work is inclusion simultaneously of surface physical dynamics (e.g. due to mobility of liquid or solid
particles); dynamics, rather than quasi-steady behavior, of the gas phase; and an elementary representation of
velocity coupling.

On the submillimeter scale, a burning solid is heterogeneous both in the region adjacent to the interface and
in the gas phase where much of the conversion to products takes place. The °ow ¯eld in the chamber, in particular
the unsteady acoustic ¯eld, has spatial variations normally the order of centimeters and larger. The dynamics of
the combustion processes at the surface are formally accommodated as a boundary condition, a response function
of some sort, in the analytical framework for the global dynamics. Hence the vast di®erence in characteristic
scales is accommodated, in principle, by spatially averaging the combustion dynamics. The averaging is done
over a surface in some sense far from the interface so far as the propellant combustion is concerned, but practically
at the interface so far as the ¯eld within the chamber is concerned. In that way, the results of solution to the
\inner" problem of combustion dynamics in the surface region are used as the boundary conditions for solution
to the \outer" problem of the unsteady °ow ¯eld in the chamber.

We are not concerned here with the matter of spatial averaging: we assume it can be done, not necessarily an
easy or obvious process. It's an important part of the general problem. Therefore we proceed from the beginning
with a one-dimensional analysis. The spatial framework for the model shown in Figure 2.10.

Solid

Phase

Gas

Phase

Surface Layer

x
x = 0

0

1
2

Combustion

Zone

r (t)

Figure 2.10. Spatial De¯nition of the Model

The strategy of the analysis is not novel and has been used in many previous works: solve the relevant
equations, or postulate a model, governing the behavior in each of the three regions: solid phase; surface layer;
and gas phase, including the region called `combustion zone' in Figure 2.10. A major purpose of the analysis
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has been to determine the quantitative e®ects of the dynamics in the surface layer and gas phase in the response
function found from the QSHOD model. Hence throughout the work we assume the same model for the solid
phase: the dynamics is due to unsteady heat transfer in a homogeneous material having uniform and constant
properties.

Separate solutions or representations are obtained for each of the three regions. Unspeci¯ed constants or
functions are then eliminated by satisfying boundary conditions and applying matching conditions at the two
interfaces. Initially we intended, or hoped, to ¯nd such a form for the general behavior that di®erent models
for the surface layer and gas phase could easily be substituted and their consequences assessed. That goal has
not been realized and probably is unattainable. Results require detailed numerical calculations before interesting
information is obtained.

2.6.2. Models of the Surface Layer. From the beginning of this work we anticipated, because the dynamics
of the gas phase are fast (owing to the relatively low material density), that the dynamics of the surface region
should have greater e®ect on the combustion response function. We investigated two models of the region:

(i) ¯rst order dynamics represented by a constant time lag; and
(ii) unsteady heat transfer, with material properties di®erent from those in the solid phase.

The idea of using a time lag is of course an old one, having been used by Grad (1949) in the ¯rst analysis
of combustion instabilities, and later by Cheng (1982) as part of the Princeton group's extensive investigations
(nearly a technical love a®air) of time lag representations of unsteady combustion. The result in the present work,
for the °uctuation of mass °ux is

m0=m
p0=p

= Rp
e¡i−tq
1 + (−t)2

whereRp (sometimes written asRb) is the response function found in the QSHOD theory. ThusRp has the familiar
two-parameter (A,B) representation. The dimensionless frequency is − = !·=F 2· is the thermal di®usivity and
r is the linear burning rate and ¿ is the dimensionless time lag, equal to the physical time lag divided by ·=r2.
Figure 2.11 shows a typical result (A = 14; B = 0.85; ¿ = 1.5). The graphs illustrate clearly a basic problem with
a time lag theory: if the time lag is assumed constant (i.e. independent of frequency) the response (in this case
the real part) possesses an oscillatory behavior with period increasing with frequency. Such behavior has never
been observed.

10
-1

10
0

10
1

-4

-3

-2

-1

0

1

2

3

4

5

Rp

QS, AB form 

QS, plus time delay 

Ω

Figure 2.11. QSHOD Response Function with a Time lag: Thick Line, QSHOD Theory; Thin
Line, QSHOD Model Including a Surface Layer Having First Order (time lag) Dynamics.
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It is true that any response function can be written in a form showing a time lag behavior, but in general the
time lag varies with frequency (Culick, 1968). If the physical model is su±ciently detailed, the dependence of t on
frequency is found as part of the solution. In particular, the QSHOD theory gives ¿(−) such that the amplitude
of the response function decays smoothly for frequencies higher than that at which the single peak occurs.

The second model for the surface is the only one considered for the following results. It is a simple represen-
tation of the dynamical behavior making use of the same solution as that for the homogeneous solid phase, with
two di®erences:

(i) the uniform and constant properties are di®erent from those of the condensed solid material;
(ii) the solution is forced to satisfy matching conditions of continuous temperature and heat transfer at the

interfaces with the condensed phase and the gas phase.

2.6.3. Models of the Gas Phase. In this analysis, all combustion processes are assumed to occur in the gas
phase; upstream only phase changes are accounted for, assumed to take place at the interfaces. We assume
distributed combustion of a simpli¯ed form, a single one-step reaction as previous treatments have used (T'ien,
1972; Huang and Micci, 1990; Lazmi and Clavin, 1992). Solutions must then be found numerically for the steady
and linear unsteady temperature distributions, and subsequently matched to the solution for the surface layer.

2.6.4. Some Results for the Combustion Response Function. Many experimental results exist suggesting that
the responses of actual propellants tend often to be higher than that predicted by the QSHOD model for high
frequencies. Initially the strongest motivation for this work on the response function was to determine in simple
and relatively crude fashion what processes might have greatest e®ect on the values of the pressure-coupled
response at frequencies greater than that at which the peak magnitude occurs. Roughly what that means,
is ¯nding one or more processes having `resonant behavior' or characteristic times in the appropriate range.
Unfortunately the analysis is su±ciently complicated that it has not been possible yet to deduce any explicit
`rules of thumb.' Therefore we present here a few plots of computed results to illustrate the behavior.

Figure 2.12 shows the basic or reference response function computed from the simple QSHOD model. The
in°uences of dynamics in the surface layer and gas phase will be shown relative to that reference.
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Figure 2.12. Reference Case: QSHOD Result with A = 6.0, B = 0.60.

(i) In°uence of Gas Phase Dynamics.

Figure 2.13 is the result when only the dynamics in the gas phase is added to the QSHOD model. The results
are similar to those found by T'ien (1972) and Lazmi and Clavin (1992), not a surprising conclusion. As expected,
the dynamics of the gas phase introduce a single additional peak at a frequency higher than that of the peak
caused by unsteady heat transfer in the condensed phase.

(ii) Combined In°uences of the Dynamics of the Surface Layer and the Gas Phase.
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Figure 2.13. Combustion Response, QSHOD Model with Gas Phase Dynamics

The dynamics of the surface layer itself is the same as those of the condensed phase, but with di®erent values
of the de¯ning parameters Figure 2.14 illustrates the e®ects of changing the surface activation energy and the
material density on a function characterizing the response of heat transfer in the layer. The shape of this function
di®ers from that (Figure 2.12) of the basic response function because it depends on the dependence of several
°ow variables on frequency.
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Figure 2.14. E®ects of Activation Energy and Density on the Dynamics of the Surface Layer.

Finally, Figure 2.15 shows the result for one example of the response function with the dynamics of both the
surface layer and the gas phase accounted for. Evidently for the conditions examined here the dynamics of the
gas phase has more obvious in°uence on the response, in the higher frequency range, than does the surface layer.

One way of summarizing the results is shown in Figure 2.16, showing the contributions to the response
function by the solid (condensed) phase, the surface layer and the gas phase. The overall response function for
the propellant is the product of the three contributions.

2.7. Velocity Coupling, the Combustion Response, and Global Dynamics. The research summa-
rized in this section amounts to using some characteristics of the global combustor dynamics|the amplitudes and
harmonic context of limit cycles|to draw some inferences about qualitative features of the combustion dynamics.
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Figure 2.15. Combustion Response Function Including the Dynamics of the Surface Layer and
the Gas Phase.
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Figure 2.16. The Combustion Response Function Represented as Magnitudes and Phases of
Individual Contributions.

At the beginning of the MURI program, during completion of his dissertation, Burnley (1996) showed that recti¯-
cation associated with a velocity-coupled response function having also a threshold velocity, could be responsible
for nonlinear or pulsed instabilities in a solid rocket motor. This result con¯rmed a conclusion reached several
years previously by Levine and Baum (1983). That was the ¯rst example of using the behavior of the global
dynamics as essentially a diagnostic tool to learn about the in°uences of the combustion dynamics on observable
phenomena.
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In the current work, the main questions at hand have to do with the apparent sensitivity of the global
dynamics to small changes of propellant composition (see remarks (i) and (ii) in the introductory part of the
section). We assume that small changes of composition likely have relatively small e®ects on the magnitude
and phase of the response function. Therefore, we are really investigating the e®ects of small changes in the
response function on the observable global dynamics. Our main conclusion is that the sensitivity of the dynamics
to changes in the response associated with velocity coupling is signi¯cantly greater than that for the response due
to pressure coupling. The implications for directions in future research are substantial.

Isella (2001) and Isella and Culick (2000) have reported the main results. Here we will only cite a couple of
examples. The idea is to use the framework described in Section 3.2 below to compute the growth and limiting
amplitudes for limit cycles. Essentially a modest parameter study has been done, the response function itself
(i.e. the combustion dynamics) being the parameter. Following the tactic ¯rst introduced by Culick, Isella and
Seywert (1998), it is helpful to display the response function, as a function of frequency, and the amplitudes of
the modes forming a limit cycle, as two parts of the same ¯gure, such as Figure 2.17 prepared for a typical case
for the QSHOD response function. The chamber is cylindrical, 0.6 m long, 0.025 m in diameter, operated at a
chamber mean pressure equal to 1:06£ 107 Pa. It is the same motor considered by Culick and Yang (1992).
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Figure 2.17. Results of a Simulation with a QSHOD Combustion Response (Pressure Coupling:
A= 8.0, B = 0.6, n = 0.8).

Figures 2.18{2.20 show results obtained for the same motor and basic combustion response but including,
respectively, a time delay; surface layer dynamics; and dynamics of both a surface layer and gas phase, all
according to the analysis described above.

Owing to the signi¯cantly di®erent dynamics added to the basic QSHODmodel, the three examples illustrated
in Figures 2.18{2.20 show quite di®erent response functions|all, it must be emphasized-representing responses
due to pressure coupling. The question here concerns the sensitivity of the response function to changes of
composition (not the qualitative dynamics) and consequently the sensitivity of the global chamber dynamics.

For the examples chosen, the waveforms in the limit cycles are similar whether or not dynamics of the surface
layer and gas phase are accounted for. This result is due mainly to the substantial attenuation of higher harmonics
due to particle damping (Culick and Yang, 1992). If the damping is reduced, the amplitudes and amounts of
higher harmonics are substantially a®ected, as Figures 2.21 and 2.22 show.
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Figure 2.18. Results of a Simulation Including a Time Delay (¿ = 1.5)
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Figure 2.19. Results of a Simulation Including Dynamics of a Surface Layer

In general, models based on pressure coupling do not show dramatic sensitivity of the combustor dynamics
to small changes of composition. Hence we investigated similar problems with a simple model of the response due
to velocity coupling. The idea is based on the model introduced by Levine and Baum (1988).

Some recent work done on the dynamics resulting from functional form of the equations used in the analysis
by Ananthkrishnan (2002) (See attachment to these notes.) seems to prove that the absolute value function
in itself, as it appears in a simple model of velocity coupling, is su±cient to produce a subcritical bifurcation
(pitchfork) followed by a fold (saddle-node bifurcation).
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Figure 2.20. Results of a Simulation Including Dynamics of a Surface Layer and the Gas Phase
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Figure 2.21. Simulations with Dynamics of the Surface Layer and Gas Phase Included, but
with Reduced Particle Damping (10% Reduction Over the Entire Frequency Range)

In order to analyze the e®ect of velocity coupling on the overall dynamics, the following two relative sensi-
tivities are de¯ned:

SALC

~Rºc
=

1

ALC

@ALC

@ ~Rºc
(2.58)

S®BP~Rºc
=

1

®BP

@®BP

@ ~Rºc
(2.59)

where ALC is the amplitude of the limit cycle (de¯ned at a ¯xed value of ®), and ®BP is the value of the
growth rate at which the unstable fold turns to a stable fold. Equation (2.58) de¯nes the relative sensitivity of
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Figure 2.22. Waveforms for the Limit Cycles (a) Figure 2.20; (b) Figure 2.21.
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Figure 2.23. Bifurcation Diagram

the amplitude of the limit cycle to variations in the velocity coupling coe±cient; equation (2.59) refers to the
sensitivity of the turning point to the same coe±cient.

Figure 2.24 shows a plot of the sensitivities, calculated for the combustion chamber used in the examples of
the previous section, and using a six mode approximation of the system. Note that the sensitivity of the turning
point is very high, and also the sensitivity of the amplitude of the limit cycle is quite large in the range 0.15 to
0.25 of the coupling coe±cient.

We now analyze the same combustor described in Section 2.6 with the introduction of the extra terms due to
velocity coupling. For reference, Figure 2.25 presents the results of the simulation for the system with a combustion
response based on the quasi-steady theory. The top section presents the combustion response function; the vertical
lines mark the non-dimensional frequencies of the acoustic modes of the combustion chamber considered in the
simulations. The bottom half shows the time evolution of the amplitude of each mode. The values of the
parameters are: A = 6.0, B = 0.55, n = 0.50.
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Figure 2.24. Sensitivity of Global Dynamics to Variations of the Coupling Coe±cient
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Figure 2.25. Simulation Results for QSHOD Combustion Response

The ¯rst mode is unstable and rapidly grows to a limit amplitude, while the other modes are all stable, and
draw energy from the ¯rst mode (allowing the system to enter a limit cycle).

Figure 2.24 shows that there is a region of high sensitivity of the amplitude of the limit cycle for variations
in the velocity-coupling coe±cient. Figure 2.26 presents the global response for a small variation of the velocity
coupling coe±cient ( ~Rºc = 0.15 and ~Rºc = 0.165).

The simulation uses the same coe±cients for the pressure coupling as in the results of Figure 2.25, with the
addition of the velocity coupling terms. Figure 2.27 and 2.28 show the pressure trace and the harmonic content
for the same two cases.
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Figure 2.26. Simulations with Velocity Coupling for: (a) ~Rºc = 0.15, (b) ~Rºc = 0.165.
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Figure 2.27. Pressure Trace and Harmonic Content for the Case ~Rºc = 0.15
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Figure 2.28. Pressure Trace and Harmonic Content for the Case ~Rºc = 0.165

In summary, we have shown with these calculations that the global dynamics of a solid propellant motor seem
to be a®ected more signi¯cantly by small changes in the combustion response to velocity coupling then in the
combustion response to pressure coupling. We cannot claim at this time that this is a universal result but the
possible implications are important. It appears in any case that to determine why small changes of propellant
composition seem on a number of occasions to have relatively large e®ects in the chamber dynamics, one must
investigate the phenomenon of velocity coupling. The most serious need is experimental. Attention must be paid
to developing a method for measuring the combustion dynamics associated with velocity coupling.

2.8. Generation of Vorticity and Vortex Shedding. There are two principal connections between vor-
ticity and combustion instabilities in solid rockets:
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1) generation of unsteady vorticity at burning surfaces; and
2) coupling between acoustical motions and large vortices shed at obstacles or growing out of the region
adjacent to the lateral burning surface.

Both of these phenomena have motivated much interesting work|analytical, numerical and experimental. And
although both sorts of behavior fundamentally involve production of vorticity, their characters and the positions
they occupy in the area of oscillatory behavior are very di®erent.

2.8.1. Generation of Vorticity. The generation of vorticity at a burning surface is special to solid rockets. It
occurs whenever there is a variation of pressure °uctuation in the direction tangential to a surface from which
there is average mass °ow normal to surface into the chamber. The vorticity is created because the velocity inward
is perpendicular to the surface|the `no-slip' boundary condition. Imposition of a tangential velocity °uctuation,
due to the non-uniform pressure along the surface, on the average inward °ow constitutes an inviscid mechanism of
vorticity generation. Moreover, conservation of mass in the region close to the surface causes a periodic pumping
action normal to the surface. Both the vorticity generation and the pumping exist at the expense of work done
by the impressed acoustic ¯eld and therefore ultimately appear as losses to the acoustic ¯eld in the chamber.

An oversimpli¯ed and incomplete interpretation of the phenomenon is that the incoming average °ow normal
to the surface gains some kinetic energy because it must acquire the oscillatory motion parallel to the surface.
Thus there is e®ectively a \turning" of the °ow. The inelastic acceleration of the mass °ow causes a loss that is the
unsteady counterpart of the loss accompanying mass injection into a duct °ow. This \°ow-turning loss" was, not
surprisingly, discovered in an analysis of unsteady one-dimensional °ow with mass injection at the lateral surface
(Culick 1970). However, the connection with vorticity generation was not pointed out. It was Flandro (1995) who
clari¯ed the phenomenon in terms of the unsteady production of vorticity, emphasizing the central importance of
the no-slip boundary condition. Flandro carried out the ¯rst rigorous formal analysis of the problem, work that
has since prompted a stream of calculations on the basic problem at hand, as well as variations (e.g. Majdalani,
1999; Kassoy, 1999; Majdalani, Flandro and Roh, 2000; and many others).

Generation of vorticity can provide a signi¯cant contribution to the loss of acoustic energy and hence to
stability. That is why it has become the subject of some controversy in the community of researchers concerned
with combustion instabilities. There is not presently uniform agreement on the true e®ects of vorticity genera-
tion on linear stability (unfortunately). The situation in the analyses is more complicated than that described
super¯cially above. Besides the dissipation of vorticity in the chamber|due both to laminar viscous e®ects and
interactions between the vorticity and turbulence, there are one or two e®ects not mentioned above. Hence de-
pending on interpretation of the basic phenomenon, and also on the particular con¯guration of motor considered,
the next e®ect of vorticity generation may be stabilizing or de-stabilizing. The matter remains unresolved and
deserves resolution, but not in these notes.

We should note that there are also many experimental results related to this problem, some obtained in
university laboratories, and some gained in subscale practical con¯gurations (e.g. Dunlap et al. 1990).

2.8.2. Shedding of Large Scale Vortices. So far as practical consequences are concerned, the production of
large vortices in motors has been far more signi¯cant than has the generation of vorticity discussed above. The
latter is present in all solid rockets, and contributes always to linear stability, although the true quantitative
value remains controversial. On the other hand, while the prediction and in°uences of vortex shedding may
contain uncertainties, it is fair to say that the general characteristics are well-known and settled. Moreover,
vortex shedding has been identi¯ed unambiguously as the mechanism for oscillation observed in several large
motors including the Space Shullte SRM, the Titan IV SRMV and the Ariane 5 SRM. Note that the mechanism
is apparently active only in large motors.

The main reason for that conclusion seems to be the required special near-coincidence between the frequency
of sheding and the frequency of an acoustic mode. Simple laboratory tests demonstrate that basic feature
(Magiawala and Culick 1979; Nomoto and Culick 1982; Aaron and Culick 1984): satisfaction of the condition
requires suitable combinations of geometry, mean °ow speed, thichness of shear layer at the origin of the vortex
shedding and acoustic frequency which depends mainly on the speed of sound and length of chamber.
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Vortex shedding in large motors has appeared in two forms: shedding from obstacles or sharp edges; and
growth out of the region of reletively high shear near the lateral burning surface. Motivated by some experimental
results (Price et al. 1972) involving vortex shedding, Flandro and Jacobs (1974) ¯rst proposed the excitation of
acoustic modes in a chamber due to coupling with vortices shed from an obstacle. Within a couple of years that
process was discovered5 as the mechanism for potentially serious pressure oscillations in the Space Shuttle SRM
(Mathes 1980).

The appearance of vortex shedding in the Titan motors caused formation of a very useful program of extensive
tests of a subscale cold-°ow model of the motor (Dunlap and Brown 1981; Brown et al. 1981). Those tests
produced extensive date for the internal °ow ¯elds, eventually including results that formed part of the basis for
the theoretical work on unsteady vorticity cited in the preceeding section.

In 1986, Flandro reported his collaboration and extension of the analysis he had carried out with Jacobs
twelve years earlier. The work brought together previous ideas of instability of a shear layer as the initiation of
a shear wave; growth and roll-up of the wave into a vortex; propagation of the vortex at a speed something less
than that of the average °ow; and impingement of the vortices on a solid surface, producing a pulse of pressure
that can excite and sustain acoustic waves in the chamber. An acoustic pulse will propagate upstream to the
region of the shear instability, possibly to initiate another disturbance to be ampli¯ed within the layer, later to
develop into another vortex... The process will continue, becoming periodic when the frequency of the vortex
shedding is nearly equal to the acoustic frequency.

When that behavior occurs in a rocket, toroidal vortices are shed from the inner edge of an annular obstruction,
as in the Shuttle and Titan motors, or at the transition from slots to primary cylindrical chamber (Figure 2.29).
The acoustic frequency is determined mainly by the length of the chamber, while the vortex shedding frequency

Figure 2.29. Vortex Shedding from (a) a transition zone in a rocket chamber; and (b) a residual
annulus of inhibitor material (Flandro 1986).

is in°uenced by the local geometry and average °ow. The local geometry determines the growth of the shear
layer and in particular its momentum thickness, a fundamental parameter de¯ning the conditions for instability.
Flandro's analysis|an adaptation of earlier work by Michalle|and experimental results have con¯rmed that
the vortex shedding is characterized by the value of the Strouhal number S at which the growth rate of an
unstable disturbance is maximum. The Strouhal number is de¯ned as the product of shedding frequency fs times
a characteristic length ± divided by a characteristic speed U so the shedding frequency is given by the formula

fs = S
U

±
(2.60)

where S has some value roughly constant and set by the geometry. The frequencies of the acoustic modes are
only weakly dependent on the mean °ow of the Mach number so small but do depend strongly on the geometry.
For a chamber having length L and closed at both ends6, the longitudinal modes have frequencies given by

fa = `¼
a

L
(2.61)

5The initial report of those oscillations prompted the laboratory demonstration reported by Culick and Magiawala (1979).
6A rocket physically closed at one end and exhausting through a choked nozzle appears to acoustic waves as if it is approximately

closed at both ends.
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where a is the speed of sound and ` = 1; 2; : : : identi¯es the mode.

Some interesting results reported by Nomoto and Culick (1982) con¯rm the truth of the preceding ideas for
a simple laboratory apparatus consisting of two annuli ¯tted in a tube, separated by some distance ` and having
a mean °ow in the axial direction. Figure 2.30 shows lines drawn according to (2.60) and (2.61) and data points
indicating the occurences of oscillations without regard to amplitude. For the conditions of the experiment,
signi¯cant oscillations were excited only in regions in which (2.60) and (2.61) are simultaneously satis¯ed. Note
that the separate diagonal lines for shedding frequency given by (2.60) represent cases in which there are 1; 2; 3; : : :
vortices existing between the annuli at any given time.

Figure 2.30. Experimental Results for the Excitation of Acoustic Modes by Vortex Shedding
(Nomoto and Culick 1982).

An important implication of Figure 2.30 is that the dependence of the observed frequency of oscillation may
not have a simple|or obvious|dependence on the length and mean °ow speed during the ¯ring of a solid rocket.
In fact, as several researchers have noted (see, e.g., Vuillot 1995) the shift of frequency with time is a good basis
for distinguishing vortex shedding as the mechanism for oscillations.

Instabilities sustained by feedback involving combustion dynamics almost always show dependence on geom-
etry closely given vy the formulas of classical acoustics: fa » 1=L. Thus, if there is little or no propellant cast at
the head end, the longitudinal frequency is nearly constant in time. Or, if, as usually is the case for large motors,
there are slots and ¯ns at the head end, the e®ective length of the chamber tends to increase during a ¯ring and
hence the frequency of oscillation decreases.

However, according to the results given in Figure 2.30, because the mean velocity may increase during a
burn as more propellant is exposed, the frequency may increase. It is possible (and has been observed) that the
frequency su®ers discrete changes, corresponding to transition between groups of data points shown in Figure ??,
that is the state of the oscillating system shifts because the number of shed vortices present between the shedding
and impingement points changes.

An important and very interesting second cause of vortex shedding was discovered several years ago by Vuillot
and his colleagues at ONERA while investigating the mechanism for unstable oscillations observed in teh Ariane
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5 solid rocket boosters. Subscale ¯rings of motors showed that large vortices were initiated, grew, and were shed
from the region near the burning surface. (Vuillot et al. 1993; Traineau et al. 1997). Hence the phenomenon was
called \parietal vortex shedding" by Lupuglazo® and Vuillot (1996).

In an exemplary systematic research program, the group at ONERA have established most of the character-
istics of parietal vortex shedding relevant to practical applications. Some issues of scale apparently remain, but
very good agreement has been found between subscale hot ¯rings; subscale tests with °ow visualization (Avalon
et al. 2000); and numerical analyses of stability and vortex shedding. LeBreton et al. (1999) have given a good
review of the subject, including some results for the e®ects of resudual combustion.

Possibly the most important aspect of this subject is weak understanding of nonlinear behavior. No simple
explanation exists for the amplitudes of oscillations that can be generated by coupling with the shedding of
large vortices. According to LeBreton et al. (1999) parietal vortex shedding produces, in their examples, larger
amplitudes of oscillation than shedding from an annulus (inhibitor ring in a segmented rocket). It would clearly be
a signi¯cant aid to design and development if a rule of thumb could be constructed to place an upper limit to the
amplitudes of oscillation caused by vortex shedding. Because the mechanism involves conversion of mechanical
energy of the near °ow to acoustic energy, it is likely that the maximum possible amplitudes must be much smaller
than those that can be generated by coupling between acoustics and combustion dynamics.

2.9. Distributed Combustion. Combustion of the major components of a solid propellant|the primary
oxidizer and the binder in the case of composite solids|normally takes place to completion near the burning
surface. Thus the term `distributed combustion' refers to combustion of particles as they are carried into the
volume of the chamber. Almost all attention has been directed to residual combustion of aluminum for which
there is much photographic evidence. Steady combustion of aluminum particles has long been and continues to
be a subject of research owing to its vital importance to the e±ciency and performance of motors, and in the
formation of slag.

Relatively little notice has been taken of the possible in°uences of residual combustion on the stability of
motors. Probably the main reason for this lack of interest is the general view that generally the existence of
combustion instabilities in motors can be satisfactorily explained by other mechanisms, notably the dynamics
of surface combustion and vortex shedding. It appears that the dynamics of aluminum combustion within the
volume of the chamber must provide at most a small contribution to stability. There are at least two reasons
for this conclusion: the available data contain uncertainties too large to allow identi¯cation of the in°uences of
unsteady aluminum combustion; and any destabilizing tendencies of the particles are roughly compensated by
the attenuation of unsteady motions due to the presence of particles. The second is known to be signi¯cant if the
particles are inert and have suitable sizes for the frequencies of the instability in question.

Several works (Marble and Wooten (1970); Dupays and Vuillot 1998) have treated the e®ects of condensation
and vaporization of non-burning particles, on attenuation of acoustic waves. Whether the attenuation is increased
or decreased depends on many factors, including the sizes of particles and the rates at which the particles gain
or lose mass. When, for example, a particle is vaporizing, it seems that in the presence of an acoustic wave,
the phenomenon of `°ow turning' discussed in the preceding section should cause increased attenuation for a
given particle size and frequency. However, while the analysis by Wooten (1966) supports that conclusion, recent
work by Dupays (1999) suggests that the result is not always true. Moreover, suggestions have been made by
investigators of combustion instabilities in ramjets (Sirignano) and in liquid rockets (Merkl) that the process of
vaporization of liquid drops is destabilizing. Those conclusions may be misleading because due to implied direct
connections between the vaporization and burning rates. It may in fact be the case that the destabilization found
is due to combustion rather than vaporization per se.

Owing to the necessary connection between vaporization and combustion of particles, the problem of residual
combustion presents certain di±culties of distinguishing what process is really responsible for attenuation or
driving of waves. The most extensive work is the problem has been done by Beckstead and his students (Brooks
and Beckstead, 1995; Raun and Beckstead, 1993; Beckstead, Richards and Brewster, 1984). Probably the most
compelling reason for investigating the manner was the discover of anomalous (and still not completely understood)
results obtained with a device called the `velocity-coupled T-burner'. In this con¯guration, large areas of propellant
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are mounted in the lateral boundary to emphasize the interactions between surface combustion and velocity
°uctuations parallel to the surface.

For reasons not discussed here, Beckstead concluded that residual combustion was possibly a reason that
unusually large values of the response function were found. The idea was based partly on the suspicion that
the tangential velocity disturbances can strip incompletely burned aluminum from the surface. Subsequently,
with both calculations and further experiments (Raun and Beckstead, 1993). Beckstead has strengthened his
case that the e®ects of unsteady residual combustion should not be dismissed out-of-hand. However, there is
presently no analysis accommodating the process in computations of combustion instabilities in solid rockets. It
is worth noting the conclusion by Brooks and Beckstead (1995) that the greatest e®ect of residual combustion (of
aluminum) on stability was indirect, due to its e®ect on the mean temperature pro¯le.
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3. EQUATIONS FOR UNSTEADY MOTIONS IN COMBUSTION CHAMBERS

The examples described in Section 1, and many others, establish a ¯rm basis for interpreting unsteady
motions in a combustor in terms of acoustic modes of the chamber. That view has been formalized during the
past ¯fty years and has led to the most widely used methods for analyzing combustor dynamics. In this section,
we present the foundations of a particularly successful version of methods based on expansion in normal modes
and spatial averaging. We assume familiarity with most of the required background in classical °uid dynamics and
acoustics. Section 5 covers the principles and chief results of classical acoustics required as part of the foundation
for understanding combustion instabilities. The discussions in this and the following sections are quite formal,
intended to serve as the basis for a general framework within which unsteady motions, especially combustion
instabilities, in all types of combustors may be treated. Analyses using ad hoc models will be covered when
particular systems are considered, as in Section 2.

3.1. Modes of Wave Motion in a Compressible Medium. In this section, the term `modes' refers
not to natural motions or resonances of a chamber but rather to a type or class of motions in compressible
°ows generally. The brief discussion here is intended to address the question: how is it possible that apparently
coherent nearly-classic acoustic waves exist in chambers containing highly turbulent non-uniform °ow? It's a
fundamentally important observation that such is the case. The explanation has been most thoroughly clari¯ed
by Chu and Kovasznay (1957), who elaborated and combined some results known for nearly a century. Their
conclusions most signi¯cant for present purposes may be summarized as follows:

(1) Any small amplitude (linear) disturbance may be synthesized of three modes of propagation:
entropy waves or `spots', small regions having temperatures slightly di®erent from the ambi-
ent temperature of the °ow; vortical or shear waves characterized by nonuniform vorticity;
and acoustic waves.

(2) In the linear approximation, if the °ow is uniform, the three types of waves propagate
independently, but may be coupled at boundaries (e.g. nozzles) or in combustion zones.

Entropy and vortical waves propagate with the mean °ow speed (`convected') but acoustic waves propagate
with their own speeds of sound. Moreover, in this linear limit, only acoustic waves carry disturbances of pres-
sure. All three types of waves are accompanied by velocity °uctuations. If the °ow is non-uniform or at ¯nite
amplitudes, the three modes become coupled. As a result, each of the waves then carries pressure, temperature
and velocity °uctuations. Extension of the fundamental theory has not been accomplished completely (see Chu
and Kovasznay). Some of the consequences of these types of modal coupling arise in the theory developed here,
but much remains to be investigated. In particular, interactions between turbulence and an acoustic ¯eld is an
important process represented by coupling of the basic linear modes of propagation.

3.2. Equations of Motion for a Reacting Flow. Combustion systems commonly contain condensed
phases: liquid fuel or oxidizer, and combustion products including soot and condensed metal oxides. Hence the
equations of motion must be written for two phases consisting of at least one species each. For investigating
the dynamics of combustors, it is entirely adequate to represent each phase as its mass average over all member
species. For a medium consisting of a multicomponent mixture of reacting gases and, for simplicity, a single
liquid phase, it is a straightforward matter to construct a system of equations representing a single °uid. The
procedure is summarized in Appendix A. As a result we can treat combustor dynamics under broad conditions
as unsteady motions of a °uid having the mass-averaged properties of the actual medium.7 The dimensional
governing equations are (A.9){(A.14)

7We now use Cv ; °; R; ¢ ¢ ¢ to stand for the mass-averaged properties represented by bold-face symbols in Appendix A.
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Conservation of Mass

@½

@t
+ u ¢ r½ = ¡½r ¢ u+ W (3.1)

Conservation of Momentum

½

·
@u

@t
+ u ¢ ru

¸
= ¡rp+FFF (3.2)

Conservation of Energy

½Cv

·
@T

@t
+ u ¢ rT

¸
= ¡pr ¢ u+ Q (3.3)

Equation for the Pressure

@p

@t
+ u ¢ rp = ¡°pr ¢ u+ P (3.4)

Equation for the Entropy

½

·
@s

@t
+ u ¢ rs

¸
=
1

T
S (3.5)

Equation of State

p = R½T (3.6)

All de¯nitions are given in Appendix A.

It is particularly important to realize that the source functions W , FFF, Q and P contain all relevant processes
in the systems to be analyzed here. They include, for example, the modeling and representations of the actions
of actuation mechanisms used for active control. Eventually, the most di±cult problems arising in this ¯eld are
associated with modeling the physical processes dominant in the problems addressed.

Both for theoretical and computational purposes it is best to express the equations in dimensionless variables
using the reference values:

L : reference length

½r; pr; Tr; ar : reference density, pressure, temperature and speed of sound

Cvr; Cpr; Rr : reference values of Cv; Cp; R

Then de¯ne the dimensionless variables represented byM and the same symbols used for dimensional variables:

M =
u

ar
;

½

½r
! ½;

p

½ra2r
! p;

T

Tr
! T ;

Cv
Cvr

! Cv; etc.;
s

Cvr
! s

The dimensionless source functions are

L

½rar
W ! W ;

L

½ra2r
FFF ! FFF;

L

½ra3r
Q! Q;

L

½rar
P! P;

S

½rarCvr
! S
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Substitution of these de¯nitions in equations (3.1){(3.6) leads to the set of dimensionless equations for the
single °uid model:

Mass :
D½

Dt
= ¡½r ¢M+ W (3.7)

Momentum : ½
DM

Dt
= ¡rp+FFF (3.8)

Energy : ½Cv
DT

Dt
= ¡pr ¢M+ Q (3.9)

Pressure :
Dp

Dt
= ¡°pr ¢M+ P (3.10)

Entropy : ½
Ds

Dt
=
1

T
S (3.11)

State : p = ½RT (3.12)

and
D

Dt
=
@

@t
+M ¢ r (3.13)

We emphasize again that the source terms accommodate all relevant physical processes and can be interpreted
to include the in°uences of actuation used in active control.

3.3. Two-Parameter Expansion of the Equations of Motion. The general equations (3.7){(3.13) are
written in the form suggestive of problems that are dominated by °uid mechanical processes, a tactic dictated
by the observations described earlier. This point of view is the basis for the approach taken here to construct a
general framework within which both practical and theoretical results can be obtained by following systematic
procedures.

We are not concerned at this point with simulations or other methods relying essentially on some sort of
numerical anaylsis and large scale computations. The nature of the problems we face suggests perturbation
methods. If the source terms W , : : : were absent from (3.7){(3.11), the homogeneous equations then represent
nonlinear inviscid motions in a compressible °uid: Nonlinear acoustics in a medium without losses. One useful
method for investigating such problems is based on expansion of the equations in a small parameter, ", measuring
the amplitude of the motion. Speci¯cally, " can be taken equal to M 0

r, a Mach number characteristic of the
°uctuating °ow, " :=M 0

r.

The problems we are concerned with here are de¯ned essentially by the non-zero functions W , : : : . Because
observed behavior seems to be dominated by features recognizable as `acoustical', those sources which excite and
sustain the actual motions must in some sense be small. They should therefore be characterized by at least one
additional small parameter. It has become customary to select only one such parameter, ¹ := ¹Mr, a Mach number
¹Mr characterizing the mean °ow, for the following reasons.

8

Any operating combustion chamber contains an average steady °ow produced by combustion of the fuel and
oxidizer to generate products. The intensity of the °ow, partly measurable by the Mach number, is therefore
related to the intensity of combustion and both processes can in some sense be characterized by the same quantity,
namely the Mach number of the average °ow. Thus many of the processes represented in the source functions
may be characterized by ¹, in the sense that their in°uences become vanishingly small as ¹! 0 and are absent
when ¹ = 0.

8We use the symbols " and ¹ rather than M 0
r and

¹Mr to simplify writing.
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It is important to understand that the two small parameters " and ¹ have di®erent physical origins. Conse-
quently, they also participate di®erently in the formal perturbation procedures. Familiar nonlinear gas dynamical
behavior is, in the present context, governed by the parameter "; steepening of compressive waves is a notable
example. In the expansion procedure worked out here, the term `nonlinear behavior' refers to the consequences
of terms higher order in ".

On the other hand, the parameter ¹ characterizes perturbations of the gasdynamics due in the ¯rst instance
to combustion processes and the mean °ow. Terms of higher order in ¹, but linear in ", represent linear processes
in this scheme. Failure to recognize this basic distinction between " and ¹ can lead to incorrect applications
of formal procedures such as the method of time-averaging. Instances of this point will arise as the analysis is
developed.

3.3.1. Expansion in Mean and Fluctuating Values. There is no unique procedure for carrying out a two-
parameter expansion. We begin here by writing all dependent variables as sums of mean ¹( ) and °uctuating ( )0

parts without regard to ordering

p = ¹p+ p0; M = ¹M+M0; : : : ; W = ¹W = W 0; FFF = ¹F¹F¹F +FFF0; : : : (3.14)

We take the °uctuations of the primary °ow variables (p0, M0, ½0, T 0, s0) to be all of the same order in the
amplitude " of the unsteady motion. Generally, the source terms are complicated functions of the °ow variables
and therefore their °uctuations will contain terms of many orders in ". For example, suppose W = kp3. Then
setting p = ¹p+ p0 and expanding, we have

W = k(¹p+ p0)3 = k
h
¹p3 + 3¹p2p0 + 3¹pp

02 + p
03
i

Hence we de¯ne orders of the °uctuations of the source W and write

W = ¹W + W 0
1 + W

0
2 + W

0
3 + W

0
4 + : : :

where the subscript denotes the order with respect to the amplitude: Here, for the example W = kp3, W 0
2 =

(2k¹p)p
02. All source functions are written symbolically in the general form shown for !, but modeling is required

to give explicit formulas.

Most combustors contain °ows of relatively low Mach number, say ¹M . 0:3 or so. Thus we can assume that
for a broad range of circumstances, processes depending on the square of ¹M, i.e. of order ¹2, probably have small
in°uences on the unsteady motions. We therefore neglect all terms of order ¹2 and higher in the equations. As a
practical matter, the equations are greatly simpli¯ed with this assumption.

After substituting all variables split into sums of mean and °uctuating values, and collection of terms by
orders, we can rewrite (3.7){(3.13) as9

·
D¹½

Dt
+ ¹½r ¢ ¹M¡ ¹W

¸
+

·
@½0

@t
+ ¹½r ¢M0

¸
+
£
¹M ¢ r½0 + ½0r ¢ ¹M+M0 ¢ r¹½+r ¢ (½0M0)

¤¡ W 0 = 0 (3.15)

·
¹½
D ¹M

Dt
+r¹p¡ ¹FFF

¸
+

·
¹½
@ ¹M

@t
+rp0

¸
+

·
¹½
¡
¹M ¢ rM0 +M0 ¢ r ¹M¢+ ¹½ ¹D ¹M

Dt

¸
+

·
½0
@M0

@t
+ ¹½M0 ¢ rM0 + ½0

¡
¹M ¢ rM0 +M0 ¢ r ¹M¢¸+ [½0M0 ¢ rM0]¡F0F0F0 = 0

(3.16)

9We do not include here terms O( ¹MrM
02
r ), i.e. ¯rst order in the mean °ow and second order in °uctuations.
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·
¹½Cv

D ¹T

Dt
+ ¹pr ¢ ¹M¡ ¹Q

¸
+ Cv

·
¹½
@T 0

@t
+ ¹pr ¢M0

¸
+

·
¹½Cv

¡
¹M ¢ rT 0 +M0 ¢ r ¹T ¢+ Cv½0 ¹D ¹T

Dt
+ p0r ¢ ¹M

¸
+

·
Cv ¹½

@T 0

@t
+ Cv½

0 ¡ ¹M ¢ rT 0 +M0 ¢ r ¹T¢+ Cv½0M0 ¢ rT 0 + p0r ¢M0
¸
+ [Cv ¹½M

0 ¢ rT 0]¡ Q0 = 0
(3.17)

·
@¹p

@t
+ ¹M ¢ r¹p+ °¹pr ¢ ¹M¡ ¹P

¸
+

·
@p0

@t
+ °¹pr ¢M0

¸
+
£
¹M ¢ rp0 +M0 ¢ r¹p+ °p0r ¢ ¹M¤

+ [M0 ¢ rp0 + °p0r ¢M0]¡ P0 = 0
(3.18)

·
¹½ ¹T
¹D¹s

Dt
¡ ¹Ş +

·
¹½ ¹T
@s0

@t

¸
+

·
¹½ ¹M ¢ rs0 + ½0 ¹T

¹D¹s

Dt
+ ¹½ ¹TM0 ¢ r¹s+ ¹½T 0 ¹M ¢ r¹s

¸
+

·
½0 ¹T

¹Ds0

Dt
+ ½0T 0

¹D¹s

Dt
+ ½0 ¹TM0 ¢ r¹s+ ¹½T 0M0 ¢ r¹s+ ¹½T 0 @s

0

@t

¸
+
£¡
¹½T 0 + ½0 ¹T

¢
M0 ¢ rs0 + ½0T 0 ¡M0 ¢ r¹s+ ¹M ¢ rs0¢¤

+ [½0T 0M0 ¢ rs0]¡S0 = 0

(3.19)

£
¹p¡R¹½ ¹T ¤+ £p0 ¡R ¡¹½T 0 + ½0 ¹T¢¤+ [¡R½0T 0] = 0 (3.20)

where the convective derivative following the mean °ow is

¹D

Dt
=
@

@t
+ ¹M ¢ r (3.21)

As a convenience in writing, it is useful to introduce some symbols de¯ning groups of ordered terms. The set
of equations (3.15){(3.21) then become:

· ¹D¹½
Dt

+ ¹½r ¢ ¹M¡ ¹W

¸
+

µ
@½0

@t
+ ¹½r ¢M 0

¶
+ f[½]g1 + f½g2 ¡ W 0 = 0 (3.22)

·
¹½
¹D ¹M

Dt
+r¹p¡ ¹F¹F¹F

¸
+

µ
¹½
@M0

@t
+rp0

¶
+ f[M]g1 + fMg2 + fMg3 ¡F0F0F0 = 0 (3.23)

·
¹½Cv

¹D ¹T

Dt
+ ¹pr ¢ ¹M¡ ¹Q

¸
+

µ
¹½Cv

@T 0

@t
+ ¹pr ¢M 0

¶
+ f[T ]g1 + fTg2 + fTg3 ¡ Q0 = 0 (3.24)

· ¹D¹p
Dt

+ °¹pr ¢ ¹M¡ ¹P
¸
+

µ
¹½Cv

@P 0

@t
+ ¹pr ¢M 0

¶
+ f[p]g1 + fpg2 ¡ P0 = 0 (3.25)

·
¹½
¹D¹s

Dt
¡ ¹Ş +

µ
¹½ ¹T
@s0

@t

¶
+ f[s]g1 + fsg2 + fsg3 + fsg4 = 0 (3.26)

£
¹p¡R¹½ ¹T ¤+ fp¡R½Tg1 + fR½0Tg2 = 0 (3.27)

The de¯nitions of the bracketted terms f½g1, ¢ ¢ ¢ etc. are given in Appendix A, Section A.2; the subscript
f gn on the brackets identi¯es the orders of terms with respect to the °uctuations of °ow variables, and the
square brackets [ ] indicate that the terms are ¯rst order in the average Mach number. We have shown here
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in each equation terms of the highest order °uctuations generated by the purely °uid mechanical contributions
plus sources that must be expanded to orders appropriate to particular applications. Only the entropy equation
produces terms of fourth order.

Time derivatives of quantities identi¯ed with the mean °ow are retained to accommodate variations on a time
scale long relative to the scale of the °uctuations. This generality is not normally required for treating combustion
instabilities and unless otherwise stated, we will assume that all averaged quantities are independent of time.

3.3.2. Equations for the Mean Flow. At this point we have two choices. Commonly the assumption is made
that the equations for the mean °ow `satisfy their own equations'. That implies that the square brackets [ ] in
(3.22){(3.27) vanish identically. With the time derivatives absent, the equations for the mean °ow are:

¹M ¢ r¹½+ ¹½r ¢ ¹M = ¹W (3.28)

¹½ ¹M ¢ r ¹M+r¹p = FFF (3.29)

¹½Cv ¹M ¢ r ¹T + ¹pr ¢ ¹M = ¹Q (3.30)

¹M ¢ r¹p+ °¹pr ¢ ¹M = ¹P (3.31)

¹½ ¹T ¹M ¢ r¹s = ¹S (3.32)

¹p = R¹½ ¹T (3.33)

This set of equations certainly applies when the average °ow is strictly independent of time and there are no
°uctuations. The time derivatives cannot be ignored when the °ow variables change so slowly that the motion
may be considered as `quasi-steady' and °uctuations are still ignorable.

It is possible that when °uctuations are present, interactions among the °ow variables cause transfer of
mass, momentum and energy between the °uctuating and mean °ows, generating time variations of the averaged
variables. Then the appropriate equations are obtained by time-averaging (3.22){(3.27) to give10

¹D¹½

Dt
+ ¹½r ¢ ¹M = ¹W ¡ f[½]g1 ¡ f½g2 + W

0
(3.34)

¹½
¹D ¹M

Dt
+r¹p = ¹F¹F¹F ¡ f[M]g1 ¡ fMg2 ¡ fMg3 +F0F0F0 (3.35)

¹½Cv
¹D ¹T

Dt
+ ¹pr ¢ ¹M = ¹Q¡ f[T ]g1 ¡ fTg2 ¡ fTg3 + ¹Q0 (3.36)

¹D¹p

Dt
+ °¹pr ¢ ¹M = ¹P¡ fpg1 ¡ fpg2 + fpg3 (3.37)

¹½ ¹T
¹D¹s

Dt
= ¹S¡ fsg1 ¡ fsg2 ¡ fsg3 ¡ fsg4 (3.38)

¹p = R¹½ ¹T ¡ f½Tg1 ¡ f½Tg2 (3.39)

10Note that the °uctuations of the source terms, W 0 ¢ ¢ ¢ etc., actually contain squares and higher order products of the dependent
variables; hence their time averages will generally be non-zero.
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If the mean °ow is strictly independent of time, then time averages of all ¯rst-order brackets, f g1, must
vanish. For generality we allow them to be nonzero. There seem to be no analyses in which their variations have
been taken into account.

The two sets of equations governing the mean °ow in the presence of unsteady motion de¯ne two distinct
formulations of the general problem. In the ¯rst, equations (3.28){(3.33), computation of the mean °ow is
uncoupled from that of the unsteady °ow. Hence formally we are concerned with the stability and time evolution
of disturbances superposed on a given, presumed known, mean °ow una®ected by the unsteady motions. That is
the setting for all investigations of combustion instabilities founded on the splitting of small °ow variables into
sums of mean and °uctuating values. This approach excludes, for example, possible in°uences of oscillations on
the mean pressure in the chamber (often called `DC shift'), not an unusual occurrence in solid propellant rockets.
When they occur, DC shifts of this sort are almost always unacceptable in operational motors; they may or may
not be signi¯cantly and directly a®ected by the °uctuations.

In contrast, the set (3.34){(3.39) is strongly coupled to the °uctuating ¯eld. The situation is formally that
producing the problem of `closure' in the theory of turbulent °ows (see, for example, Tennekes and Lumley, 1972).
We will not explore the matter here, but we note only that the process of time averaging terms on the right-hand
sides of the equations introduces functions of the °uctuations that are additional unknowns. Formal analysis then
requires that those functions be modeled; perhaps the most familiar example in the theory of turbulence is the
introduction of a `mixing length' as part of the representation of stresses associated with turbulent motions.

Numerical simulations of combustion instabilities do not exhibit the problem of closure if the complete
equations are used, avoiding the consequences of the assumption (3.14). Thus, for example, the results obtained
by Baum and Levine (1982, 1988) do show time-dependence of the average pressure in examples of instabilities
in solid rockets. Another possible cause of that behavior, probably more important in many cases, is nonlinear
dependence of the burning rate on the pressure or velocity near the surface of a solid propellant rocket. Within
the structure given here, that behavior may arise from time-averaged functions of p0, M0, : : : contained in the
boundary conditions, or from some nonlinear dependence such as jM0j.

We use in these lectures the formulation assuming complete knowledge of the mean °ow, given either by
suitable modeling or by solution to the governing equations (3.28){(3.33) or (3.34){(3.39).

3.3.3. Systems of Equations for the Fluctuations. The general equations of motion (3.22){(3.27) and those for
the mean °ow written in Section 3.3.1 contain a restriction only on the magnitude of the average Mach number.
Such generality blocks progress with the analysis and for many applications is unnecessary. The set of equations
(3.22){(3.27) must be simpli¯ed to forms that can be solved to give useful results. Many possibilities exist. We
follow here a course that previous experience has shown to be particularly fruitful for investigations of combustor
dynamics. The choices of approximations and tactics are usually motivated by eventual applications and the type
of analysis used.

First we assume that the mean °ow is determined by its own system of equations; that is, we avoid the problem
of closure and use the ¯rst formulation, equations (3.28){(3.33), discussed in Section 3.3.1. Consequently, the
mean °ow is taken to be independent of time and the combinations in square brackets [ ], equations (3.22){(3.27),
vanish identically. Using the de¯nitions of the remaining brackets,

@½0

@t
+ ¹½r ¢M0 = ¡f[½]g1 ¡ f½g2 + W 0 (3.40)

¹½
@M0

@t
+rp0 = ¡f[M]g1 ¡ fMg2 ¡ fMg3 +F0F0F0 (3.41)

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡f[T ]g1 ¡ fTg2 ¡ fTg3 + Q0 (3.42)
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@p0

@t
+ °¹pr ¢M0 = ¡f[p]g1 ¡ fpg2 + P0 (3.43)

¹½ ¹T
@s0

@t
= ¡f[s]g1 ¡ fsg2 ¡ fsg3 ¡ fsg4 +S0 (3.44)

The various brackets are de¯ned in Section A.2 of Appendix A. They are formed to contain terms ordered with
respect to both the mean Mach number and the amplitude of the °uctuations:

[ ] : 1st order in ¹M; 1st order inM0; O(")

f g2 : 0th order in ¹M; 2nd order in M0; O("2)

f g3 : 0th order in ¹M; 3rd order in M0; O("3)

f g4 : 0th order in ¹M; 4th order in M0; O("4)

(3.45)

No terms have been dropped in passage from the set (3.22{(3.27) to the set (3.40){(3.44), but °uctuations of the
sources W 0; ¢ ¢ ¢ ;S0 are not now classi¯ed into the various types de¯ned by the brackets (3.45).

We have put the equations in the forms (3.40){(3.44) to emphasize the point of view that we are considering
classes of problems closely related to motions in classical acoustics. If the right-hand sides are ignored, (3.40){
(3.44) become the equations for linear acoustics of a uniform non-reacting medium at rest. The perturbations of
that limiting class arise from three types of processes:

(i) interactions of the linear acoustic ¯eld with the mean °ow, represented by the terms contained
in the square brackets, f[ ]g;

(ii) nonlinear interactions between the °uctuations, represented by the curly brackets conve-
niently referred to as: f g2, second order acoustics; f g3, third order acoustics; and f g4,
fourth order acoustics;

(iii) sources associated with combustion processes, represented by the source terms W 0;FFF0;Q0;P0

and S0.

By selectively retaining one or more of these types of perturbations we de¯ne a hierarchy of problems of
unsteady motions in combustors. We label these classes of problems O, I, II, III, IV according to the orders of
terms retained in the right-hand side when the left-hand side comprise only the terms of order " :=M0

r de¯ning
clssical linear acoustics.

O. Classical Acoustics, (¹ = 0; "! 0)

Perturbations to ¯rst order in " are retained in (3.40){(3.44):

@½0

@t
+ ¹½r ¢M0 = W 0

¹½
@M0

@t
+rp0 = FFF0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = Q0

@p0

@t
+ °¹pr ¢M0 = P0

¹½ ¹T
@s0

@t
= S0

(3.46) a-e



Combustion Instabilities in Solid Propellant Rocket Motors 

 

RTO-EN-023 11 - 67 

I. Linear Stability, O("; ¹")

Retain interactions linear in the average Mach number and in the °uctuations:

@½0

@t
+ ¹½r ¢M0 = ¡f[½]g1 + W 0

¹½
@M0

@t
+rp0 = ¡f[M]g1 +F0F0F0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡f[T ]g1 + Q0

@p0

@t
+ °¹pr ¢M0 = ¡f[p]g1 + P0

¹½ ¹T
@s0

@t
= ¡f[s]g1 +S0

(3.47) a-e

II. Second Order Acoustics, O("; ¹"; "2)

Retain the linear interactions and the nonlinear second order acoustics:

@½0

@t
+ ¹½r ¢M0 = ¡[f[½]g1 + f½g2] + W 0

¹½
@M0

@t
+rp0 = ¡[f[M]g1 + fMg2] +FFF0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡[f[T ]g1 + fTg2] + Q0

@p0

@t
+ °¹pr ¢M0 = ¡[f[p]g1 + fpg2] + P0

¹½ ¹T
@s0

@t
= ¡[f[s]g1 + fsg2] +S0

(3.48) a-e

III. Third Order Acoustics, O("; ¹"; "2; "3)

Retain the linear interactions and the nonlinear acoustics up to third order:

@½0

@t
+ ¹½r ¢M0 = ¡[f[½]g1 + f½g2] + W 0

¹½
@M0

@t
+rp0 = ¡[f[M]g1 + fMg2 + fMg3] +F0F0F0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡[f[T ]g1 + fTg2 + fTg3] + Q0

@p0

@t
+ °¹pr ¢M0 = ¡[f[p]g1 + fpg2] + P0

¹½ ¹T
@s0

@t
= ¡[f[s]g1 + fsg2 + fsg3] +S0

(3.49) a-e

Four other classes of problems possible to de¯ne in this context will not be considered here since no results
have been reported: second order acoustics with mean °ow interactions; fourth order acoustics; and third and
fourth order acoustics with nonlinear acoustics/mean °ow interactions.

In problems I{III, the source terms W 0; ¢ ¢ ¢ must be expanded to order consistent with the orders of the
°uid-mechanical perturbations retained.

3.4. Nonlinear Wave Equations for the Pressure Field. Practically all of the subsequent material
in this book will be either directly concerned with pressure waves, or with interpretations of behavior related
pressure waves. The presence of unsteady vorticity causes important revisions of such a restricted point of view,
as we have already mentioned in Section 3.1, but the basic ideas remain in any event. Hence the wave equation
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for pressure °uctuations occupies a meaningful position in all ¯ve classes of problems de¯ned in the preceding
section. Its formation follows the same procedure used in classical acoustics.

De¯ne MMM and R to contain all possible terms arising in the sets of equations constructed for the problems
O{III:

¹½
@M0

@t
+rp0 = ¡MMM +F0F0F0 (3.50)

@p0

@t
+ °¹pr ¢M0 = ¡R + P0 (3.51)

where

MMM = f[M]g1 + fMg2 ++fMg3 (3.52)

R = f[p]g1 + fpg2 (3.53)

Di®erentiate 3.50 with respect to time and substitute 3.50 for @M0=@t:

@2p0

@t2
¡ °¹pr ¢

·
¡1
¹½
rp0 ¡ 1

¹½

¡
MMM ¡F0F0F0¢¸ = ¡@R

@t
+
@P0

@t

Rearrange the equation to ¯nd

r2p0 ¡ 1

¹a2
@2p0

@t2
= h (3.54)

with

h = ¡¹½r ¢
·
1

¹½

¡
MMM ¡F0F0F0¢¸+ 1

¹a2
@

@t
(R ¡ P0) + 1

¹½
r¹½ ¢ rp0 (3.55)

The boundary condition for the pressure ¯eld is found by taking the scalar product of the outward normal,
at the chamber boundary, with:

n̂ ¢ rp0 = ¡f (3.56)

f = ¡¹½@M
0

@t
¢ n̂+ (MMM ¡FFF0) ¢ n̂ (3.57)

ReplacingMMM and R by their de¯nitions (3.52), we have the formulation based on the inhomogeneous nonlinear
wave equation and its boundary condition:

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(3.57) a,b

with

h = ¡
·
¹½r ¢ 1

¹½
f[M]g1 ¡ 1

¹a2
@f[p]g1
@t

¸
¡
½
¹½r ¢ 1

¹½
fMg2 ¡ 1

¹a2
@fpg2
@t

¾
¡ ¹½r ¢ 1

¹½
fMg3

+
1

¹½
r¹½ ¢ rp0 + ¹½r ¢ 1

¹½
FFF0 ¡ 1

¹a2
@P0

@t

(3.58)

f = ¹½
@M0

@t
¢ n̂+ n̂ ¢ [f[M]g1 + fMg2 + fMg3]¡F0F0F0 ¢ n̂ (3.59)

With this formulation, the wave equations and boundary conditions for the classes of problems de¯ned in
Section 3.3 are distinguished by the following functions h and f :
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O. Classical Acoustics

hO = ¹½r ¢ 1
¹½
FFF0 ¡ 1

¹a2
@P0

@t

fO = ¹½
@M0

@t
¢ n̂¡FFF0 ¢ n̂

(3.60) a,b

I. Linear Stability

hI = ¡
·
¹½r ¢ 1

¹½
f[M]g1 ¡ 1

¹a2
@f[p]g1
@t

¸
+
1

¹½
r¹½ ¢ rp0 + ¹½r ¢ 1

¹½
F0F0F0 ¡ 1

¹a2
@P0

@t

fI = ¹½
@M0

@t
¢ n̂+ n̂ ¢ f[M]g1 ¡F0F0F0 ¢ n̂

(3.61) a,b

Allowing F0F0F0 and P0 to be non-zero gives the opportunity for representing sources of mass, momentum,
and energy both within the volume and at the boundary. The ¯rst term in f0 accounts for motion of the
boundary.

II. Second Order Acoustics

hII =¡
·
¹½r ¢ 1

¹½
f[M]g1 ¡ 1

¹a2
@f[p]g1
@t

¸
¡
½
¹½r ¢ 1

¹½
fMg2 ¡ 1

¹a2
@fpg
@t

¾
+
1

¹½
r½0 ¢ rp0 + ¹½r ¢ 1

¹½
F0F0F0 ¡ 1

¹a2
@P0

@t

fII =¹½
@M0

@t
¢ n̂+ n̂ ¢ [f[M]g1 + fMg2]¡F0F0F0 ¢ n̂

(3.62) a,b

III. Third Order Acoustics

hIII =¡
·
¹½r ¢ 1

¹½
f[M]g1 ¡ 1

¹a2
@f[p]g1
@t

¸
¡
½
¹½r ¢ 1

¹½
fMg2 ¡ 1

¹a2
@fpg2
@t

¾
¡ ¹½r ¢ 1

¹½
fMg3 + 1

¹½
r¹½ ¢ rp0 + ¹½r ¢ 1

¹½
F0F0F0 ¡ 1

¹a2
@P0

@t

fIII =¹½
@M0

@t
¢ n̂+ n̂ ¢ [f[M]g1 + fMg2 + fMg3]¡F0F0F0 ¢ n̂

(3.63) a,b

With these de¯nitions of the functions h and f , the de¯nitions of the four classes of problems considered here
are complete, forming the basis for the analysis worked out in the remainder of these lectures. Only problems
within classical acoustics can be solved easily. All others require approximations, both in modeling physical
processes and in the method of solution. Modeling will be discussed in the contexts of speci¯c applications; a few
remarks help clarify the approximate method of solution described in the following section.

Remarks:

i) The classes of problems I{III de¯ned here are described by inhomogeneous equations that
even for linear stability cannot be generally solved in closed form. The chief obstacles to
solution arise because the functions h and f contain not only the unknown pressure but also
the velocity and temperature. For given functions F0F0F0 and P0, numerical solutions could be
obtained for a speci¯ed combustor and mean °ow ¯eld. The results would apply only to
the special case considered. To obtain some understanding of general behavior it would be
necessary to consider many special cases, a tedious and expensive procedure.
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ii) Therefore, we choose to work out an approximate method of solution applicable to all classes
of problems. Numerical solutions, or `simulations' then serve the important purpose of as-
sessing the validity and accuracy of the approximate results.

iii) The approximate method of solution is based ¯rst on spatial averaging, followed by an iter-
ation procedure involving extension of the expansion in two small parameters de¯ned in this
section. This method has been most widely used and con¯rmed in applications to combustion
instabilities in solid propellant rockets, but it can be applied to problems arising in any type
of combustor.

iv) Instabilities in solid rockets have been particularly helpful in developing the general theory
for at least three reasons: 1) the mean °ow ¯eld, nonuniform and generated by mass addition
at the boundary, requires careful attention to processes associated with interactions between
the mean °ow and unsteady motions; 2) more experimental results for transient behavior
have been obtained for solid rockets than for any other combustion system; and 3) although
still far from being satisfactorily understood, the dynamics of burning solid propellants is
better known than for any other combustion system.

v) The °uctuations of the source terms, W 0, FFF0, : : : S0 will be made explicit as required in
particular applications.
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4. MODAL EXPANSION AND SPATIAL AVERAGING;
AN ITERATIVE METHOD OF SOLUTION

From the point of view represented in Figure 1.1, we are concerned in this section with representing the
combustor dynamics. The procedure, often called `modeling' is based on the equations of motion constructed
in the preceding section and hence in principle will contain all relevant physical processes11. For the purposes
here, all modeling of combustor dynamics and of combustion dynamics|the mechanisms and feedback in Figure
1.1|must be done in the context developed in Section 1. Thus we always have in mind the idea of wave motions
somehow generated and sustained by interactions between the motions themselves and combustion processes, the
latter also including certain aspects of the mean °ow within the combustor.

The simplest model of the combustion dynamics is a single wave, a classical acoustic resonance as in an organ
pipe, but decaying or growing due to the other processes in the chamber. In practice, the combustion processes
and nonlinear gasdynamical e®ects inevitably lead to the presence of more than one acoustic mode. We need a
relatively simple yet accurate means of treating those phenomena for problems of the sort arising in the laboratory
and in practice. Modeling in this case begins with construction of a suitable method for solving the nonlinear
wave equations derived in Section 3.4. In this context we may regard the analysis of the Rijke tube covered in
Section 2 as a basic example of the procedure stripped of the formalism covered in this section.

The chief purpose of the analysis constructed here is, to devise methods capable of producing results useful
for prediction and interpretation of unsteady motions in full-scale combustion chambers as well as for laboratory
devices. That intention places serious demands on the methods used for at least two reasons:

1. processes that must be modeled are usually complicated and their theoretical representations
are necessarily approximate to extents which themselves are di±cult to assess; and

2. almost all input data required for quantitative evaluation of theoretical results are charac-
terized by large uncertainties.

In this situation it seems that for practical and, as it will turn out, for theoretical purposes as well, the
most useful methods will be based on some sort of spatial averaging. Direct solution of the partial di®erential
equations, even for linear problems, is practically a hopeless task except for very special cases for simple geometries.
Direct numerical simulations (DNS) or numerical solutions to the partial di®erential equations are not yet a real
alternative for practical purposes at this time, and are usually less attractive for obtaining basic understanding.
However, as we will see later, numerical solutions o®er the only means for assessing the validity of approximate
solutions and always can treat more complicated (realistic?) problems than we can reasonably handle with the
analytical methods discussed here. In any event, one should view theory and analysis on the one hand, and
numerical simulations on the other, as complementary activities.

The material on analysis and theory of combustion instabilities treated in these two lectures is based on
a method of spatial averaging. The essential idea is of course not new, the method being nearly identical with
similar methods used in other branches of continuum mechanics. There are a few special characteristics associated
with applications to combustor that will appear in the course of the following discussion.

4.1. Application of a Green's Function for Steady Waves. The method used later to analyze nonlinear
behavior has its origins in an early analysis of linear combustion instabilities in liquid rocket engines (Culick, 1961,
1963). That work was based on solution to problems of steady waves by introducing a Green's function. It is an
e®ective strategy for this application because departures from a known soluble problem are small, due either to
perturbations within the volume or at the boundary, all of order ¹ in the context developed in Section 3.

11That seems to be what some people (notably electrical engineers it seems) mean by the term `physics-based modeling.' What
would otherwise be the basis for acceptable modeling of a physical system has not been explained.
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The problem to be solved is de¯ned by equation (3.54) and its boundary conditions (3.56) derived in Section
3.4,

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(4.1) a,b

with h and f given by (3.61) a,b for linear stability. Because h and f are linear, various methods are available
to build general solutions by applying the principle of superposition to elementary solutions representing steady
waves. Hence we assume that the °uctuating pressure ¯eld is a steady wave system within the given chamber,
having unknown spatial structure and varying harmonically in time:

p0 = p̂ei¹akt (4.2)

where k is the complex wavenumber, also initially unknown,

k =
1

¹a
(! ¡ i®) (4.3)

As de¯ned here, ® positive means that the wave has growing amplitude, p0 » e®t. Of course the wave is not
strictly stationary, a condition existing only if ® = 0, certainly true when h = f = 0, as in classical acoustics.

Even when h; f are non-zero, it is still possible that ® = 0, now de¯ning a state of neutral stability. In general
one must expect ®6= 0; it is a basic assumption in all of the analysis covered in this book that ® is small compared
with !, so the waves are slowly growing or decaying|they are `almost' stationary, and their spatial structure
does not change much in time. However, the results obtained are quite robust and seem often to be usable even
when ®=! is not small.

The problem here is to determine the spatial distribution p̂ and the complex wavenumber k. For steady waves
we can write

h = ·ĥei¹akt ; f = ·f̂ei¹akt

where again · is a small parameter12 characterizing the smallness of h and f . Substitution in (4.1) a,b and
dropping the common exponential time factor gives

r2p̂+ k2p̂ = ·ĥ
n̂ ¢ rp̂ = ¡·f̂

(4.4) a,b

This is of course a well-known classical problem thoroughly discussed in many books. Many methods of solution
are available for the linear problem. We use here a procedure based on introducing a Green's function discussed,
for example, by Morse and Feshbach (1952, Chapter 10). This is an attractive method for several reasons,
including:

1. Conversion from a di®erential equation, and the iterative method of solution this suggests, is
an e®ective means for minimizing the consequences of the uncertainties inherent in problems
of combustor dynamics;

2. Explicit results can be obtained for real and imaginary parts of the complex wavenumber in
forms that are easily interpreted and remarkably convenient both for theoretical work and
for applications;

3. The method has motivated a straightforward extension to nonlinear problems, with consid-
erable success.

De¯ne a Green's function satisfying the homogeneous boundary and the wave equation homogeneous except
at the single point where a source is located having zero spatial extent and in¯nite strength such that is integral
over space is ¯nite. Thus the source is represented by a delta function ¡±(r ¡ r0) and G is determined as a
solution to the problem

r2G(rjr0) + k2G(rjr0) = ±(r¡ r0)
n̂ ¢ rG(rjr0) = 0

(4.5) a,b

12Later, · will be identi¯ed with ¹ introduced in Section 3.3 but it is useful in this discussion to maintain a distinction.
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The notation rjr0 as the argument of G(rjr0) represents the interpretation of the Green's function as the wave
observed at point r due to a steady oscillatory point source at r0.

Multiply ((4.4) a,b)a by G(rjr0), ((4.5) a,b)a by p̂(r), subtract the results and integrate over volume (in the
present case the volume of the chamber) to ¯ndZZZ

V

£
G(rjr0)r2p̂(r) ¡ p̂(r)r2G (rjr0)] dV + k2

ZZZ
V

[G(rjr0)p̂(r)¡ p̂(r)G(rjr0)] dV

= ·

ZZZ
V

G(rjr0)ĥ(r)¡
ZZZ

p̂(r)±(r¡ r0)dV
(4.6)

Because G(rjr0) and p̂(r) are scalar functions the second integral on the right-hand side vanishes. The ¯rst
integral is rewritten using a form of Green's theorem, and the basic property of the delta function is applied to
the second integral on the right-hand side:ZZZ

V

F (r)±(r¡ r0)dV = F (r) (r1; r0 in V ) (4.7)

Hence (4.6) becomesZZ
S

° [G(rjr0)rp̂(r)¡ p(r)rG(rjr0)] ¢ n̂dS = ·
ZZZ
V

G(rjr0)ĥ(r)dV ¡ p̂(r0)

where n̂ is the outward normal at the surface of the volume V in question.

Now apply the boundary conditions (4.4) a,b and (4.5) a,b and the last equation can be written in the form

p(r̂0) = ·

8<:
ZZ
V

°G(rjr0)ĥ(r)dV +
ZZ
S

G(rsjr0)f̂(rs)dS
9=; (4.8)

Subscript ( )s means the point rs lies on the boundary surface (actually on the inside surface of the boundary).
Because the operator for scalar waves is self-adjoint (see Morse and Feshbach 1952, Chapter 10), the Green's
function possesses the property of symmetry

G(rjr0) = G(r0jr) (4.9)

This property has the appealing physical interpretation that the wave observed at r due to a point source at r0
has the same amplitude and relative phase as for the wave observed at r0 when a point source is located at r.
With (4.9) we can interchange r and r0 in (4.8) to ¯nd for the steady ¯eld at position r:

p̂(r) = ·

8<:
ZZZ
V

G(rjr0)ĥ(r0)dV0 +

ZZ
S

°G(rjr0s)f̂(r0s)dS
9=; (4.10)

Equation (4.10) is not an explicit solution for the pressure ¯eld due to the source functions ĥ and f̂ , but is

rather, an integral equation because ĥ and f̂ in general depend on the °uctuating pressure and velocity ¯elds
themselves. However, because the sources are assumed to be small perturbations of the classical ¯eld having no
sources, · is small and p̂ will not di®er greatly from a solution to the homogeneous problem de¯ned by h = f = 0.
The result (4.10) represents the solution to the inhomogeneous problem; the complete solution is (4.10) plus a
homogeneous solution. Advantage will be taken of the smallness of · to ¯nd an approximate explicit solution for
p̂ by an iterative procedure discussed in Section 4.1.1.

Whatever tactic one may choose to follow, the result (4.10) is of no practical value without having a represen-
tation of G(rjr0). The most convenient form of G(rjr0) for our purpose is expansion in eigenfunctions Ãn(r), here
the normal modes of the classical acoustics problem with no sources in the volume and homogeneous boundary
conditions: G(rjr0) is therefore expressed as a modal expansion,

G(rjr0) =
1X
n=0

AnÃn(r) (4.11)
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where the Ãn satisfy

r2Ãn + k2nÃn = 0
n̂ ¢ rÃn = 0

(4.12) a,b

and the Ãn are orthogonal functions, ZZZ
V

Ãm(r)Ãn(r)dV = E
2
n±mn (4.13)

Substitute (4.11) in ((4.5) a,b)a, multiply by Ãm(r) and integrate over the volume to ¯ndZZZ
V

Ãm

1X
n=0

Anr2ÃndV + k2
ZZZ
V

Ãm

1X
n=0

AnÃndV =

Z
Ãm(r)±(r¡ r0)dV

With (4.7), ((4.12) a,b) and (4.13), this equation produces the formula for An:

An =
Ãn(r0)

k2n ¡ k2
(4.14)

Thus the expansion (4.11) for G(rjr0) is

G(rjr0) =
1X
n=0

Ãn(r)Ãn(r0)

E2n(k
2 ¡ k2n)

(4.15)

the modal expansion of the Green's function. Substitution of (4.15) in (4.10) leads to the formal modal expansion
of the pressure ¯eld,

p̂(r) = ·
1X
n=0

Ãn(r)

E2n(k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=; (4.16)

Suppose that for · tending to zero, p̂(r) approaches the unperturbed mode shape ÃN ; let the corresponding
function p̂ be denoted p̂N , so

p̂ ¡!
·!0

p̂N = ÃN (4.17)

Now separate the Nth term from the sum in (4.16) and write

p̂(r) = ÃN (r)
·

E2N (k
2 ¡ k2N )

8<:
ZZZ
V

ÃN (r0)ĥ(r0)dV0 +

ZZ
S

°ÃN (r0s)f̂(r0s)dS0

9=;
+·

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=;
(4.18)

where the prime in the summation sign means that the term n = N is missing. This form is consistent with the
requirement (4.17) only if the factor multiplying ÃN (r) is unity, giving the formula for the perturbed wavenumber

k2 = k2N +
·

E2N

8<:
ZZZ
V

ÃN (r0)ĥ(r0)dV0 +

ZZ
S

°ÃN (r0s)f̂(r0s)dS0

9=; (4.19)

and (4.18) becomes

p̂(r) = ÃN (r) + ·

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=; (4.20)

Another more direct derivation of (4.19) very useful in later analysis, may be had by ¯rst multiplying ((4.4)
a,b)a by ÃN and integrating over the volume:ZZZ

V

ÃNr2p̂dV + k2
ZZZ
V

ÃN p̂dV = ·

ZZZ
V

ÃN ĥdV
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Application of Green's theorem to the ¯rst integral givesZZZ
V

p̂r2ÃNdV +
ZZ
S

° [Ãnrp̂¡ p̂rÃn] ¢ n̂dS + k2
ZZZ
V

Ãnp̂dV =

ZZZ
S

°ÃN ĥdV

after inserting r2ÃN = ¡k2NÃN and rÃN ¢ n̂ = 0, rearrangement gives

k2 = k2N +
·RRR

V

ÃN p̂dV

8<:
ZZZ
V

ÃN (r)ĥ(r)dV +

ZZ
S

°ÃN (rs)f̂(rs)dS
9=; (4.21)

The integral of ÃN p̂ in the denominator of (4.21) can be evaluated by using (4.20) and is exactly E
2
n, providing

the series in (4.20) converges. Hence (4.21) is identical to (4.19). This simple calculation has shown that (4.19)
and (4.20) are consistent.

The preceding calculation contains several basic ideas behind much of the analysis used in these lectures. In
summary, the original problem described by the di®erential equation ((4.4) a,b)a and its boundary condition ((4.4)
a,b)b are converted to an integral equation, in this case (4.10), established by introducing a Green's function.
This is not an explicit solution because the functions h and f generally depend on the dependent variable p̂.
However, formulation as an integral equation forms a convenient basis for approximate solution by iteration.

4.1.1. Approximate Solution by Iteration. To apply an iterative procedure, it is necessary ¯rst to give the
Green's function G(rjr0) explicit form. The natural choice for problems of waves in a chamber is a series expansion
in the natural modes of the chamber, a modal expansion, (4.15). For the small parameter · tending to zero (i.e.
all perturbations of the classical acoustics problem are small), a straightforward argument produces the formula
(4.19) for the wavenumber and the integral equation (4.20) for p̂(r).

Equation (4.20) must be solved to give p̂ before the wavenumber can be computed with (4.19). We should
emphasize that for many practical purposes, it is really k that is required, because its imaginary part determines
the linear stability of the system (® = 0). The great advantage of this approach may be seen clearly with a simple

example. Suppose f̂ = 0 and ĥ = K(1 + p̂) in (4.4) a,b. Then (4.20) and (4.19) become

p̂(r) = ÃN (r) + ·K

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

ZZZ
V

Ãn(r0)(1 + p̂)dV0 (4.22)

k2 = k2N +
·K

E2N

ZZZ
V

ÃN(1 + p̂)dV0 (4.23)

Because · is assumed to be small, solution by successive approximation, i.e. an iterative procedure, is a logical way
to proceed. The initial (zeroth) approximation to the mode shape p̂ is (4.22) for · = 0, p̂(0) = ÃN . Substitution
in (4.23) gives k2 correct to ¯rst order in ·:

(k2)(1) = k2N +
·K

E2N

ZZZ
V

ÃN (1 + ÃN )dV0

= k2N + ·
KIN
E2N

(4.24)

where IN stands for the integral.

Calculation of p̂ to ¯rst order in · requires setting p̂ and k2 to their zeroth order values on the right-hand
side of (4.22), p̂(0) = ÃN , (k

2)(0) = k2N :

p̂(1)(r) = ÃN (r) + ·K

1X0

n=0

Ãn(r)

E2n(k
2
N ¡ k2n)

ZZZ
V

Ãn(r0)(1 + ÃN (r0))dV0

= ÃN + ·¾N
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Substitution of this formula for p̂ under the integral in (4.23) then gives the second approximation (k2)(2) to k2:

(k2)(2) = k2N +
·K

E2N

ZZZ
V

ÃN (1 + ÃN + ·¾N )dV0

= (k2)(1) + ·2
K

E2N

ZZZ
V

ÃN¾NdV0

(4.25)

A wonderful property of the procedure is already apparent: Calculation of the wavenumber to some order l
in the small parameter requires knowing the modal functions only to order l¡1. That is the basis for the current
standard practice of computing linear stability for solid propellant rockets (the Standard Stability Prediction
Program, Nickerson et al. 1983) using the unperturbed acoustic modes computed for the geometry in question.

The \perturbation-iteration" procedure just described is an old and widely used method to obtain solutions
to nonlinear as well as linear problems. Often much attention is paid to achieving more accurate solutions by
carrying the iterations to higher order in the small parameter. That is a legitimate process providing the equations
themselves are valid to the order sought. In Section 3 we emphasized the importance of the expansion procedure
largely for that reason. If the equations are valid, say, only to second order in the amplitude ("), there is no
need|in fact no justi¯cation|to try to ¯nd a solution to order "3 and higher. Similar remarks apply to the
expansion in the average Mach number (¹). The procedure is fully explained in Section 4.5 for the equations
derived in Section 3.4.

4.2. An Alternative Derivation of the First Order Formula. The results (4.19) and (4.21) for the
complex wavenumber and mode shape can be constructively obtained in a di®erent way. Both formulas provide
means for computing the di®erences k2 ¡ k2N and p̂¡ ÃN between the actual (perturbed) quantities and the un-
perturbed quantities. It is reasonable that those results should somehow follow from comparison of the perturbed
(· 6= 0) and unperturbed (· = 0) problems. The idea is to average the di®erence between the two problems
weighted respectively by the other's mode shape. That is, subtract p̂ times equation ((4.12) a,b)a from Ãn times
((4.4) a,b)a and integrate the result over the volume of the chamber:ZZZ

V

£
ÃNr2p̂¡ p̂r2ÃN

¤
dV +

ZZZ
V

(k2 ¡ k2N )Ãnp̂dV0 = ·
ZZZ
V

ÃN ĥdV

Now apply Green's theorem to the ¯rst integral, substitute the boundary conditions ((4.4) a,b)b and ((4.12) a,b)b
and rearrange the result to ¯nd (4.21):

k2 = k2N +
·RRR

V

ÃN p̂dV

8<:
ZZZ
V

ÃN (r)ĥ(r)dV +

ZZ
S

°ÃN (rs)f̂(rs)dS
9=; (4.26)

If k2 is to be calculated to ¯rst order in ·, then p̂ must be replaced by its zero order approximation p̂ = ÃN .
Because the correction to k2N contains the multiplier ·, any contributions of order · multiplying · give terms of
order ·2. Hence to ¯rst order, (4.26) of course becomes (4.19).

This approach does not provide a recipe for computing the modal or basis functions to higher order. That does
not cause di±culty here because we have the procedure given in the preceding section. We will ¯nd later that the
simple derivation just given suggests a useful extension to time-dependent nonlinear problems. In that situation
there is no result corresponding to (4.20) for computing the mode shapes to higher order. That de¯ciency is a
serious obstacle to further progress, a subject of current research.

4.3. Approximate Solution for Unsteady Nonlinear Motions. The method covered in the preceding
two sections, based essentially in the use of Green's functions, was the ¯rst application of modal expansions and
spatial averaging to combustion instabilities (Culick 1961, 1963). In the early 1970's the procedure was extended
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to treat nonlinear problems, necessarily involving time-dependence (Culick 1971, 1975). We summarize that
approach here.13

We begin with the general problem (4.1) a,b and assume an approximation ~p0(r) to the pressure ¯eld as a
truncated expansion in a set of basis functions Ãm,

~p0(r; t) = ¹pr

MX
m=0

´m(t)Ãm(r) (4.27)

In this work we will always take the Ãm to be acoustic modes de¯ned by the geometry, the distribution of average
temperature and suitable boundary conditions.14 We would like the right-hand side of (4.27) to become more
nearly equal to the actual pressure ¯eld in the combustor as more terms are included in the series, so that ~p0 ´ p0
in the limit:

lim
M!1

~p(r; t) = lim
M!1

MX
m=0

´m(t)Ãm(r) (4.28)

Because the Ãm do not satisfy the correct boundary conditions, this pointwise property certainly cannot be
satis¯ed at the boundary. It is reasonable, however, to expect convergence in integral-squared sense; that is the
integral of the square of the di®erence between the exact solution and (4.27) satis¯es

lim
M!1

ZZZ "
p0(r; t)¡ ¹pr

MX
m=0

´m(t)Ãm(r)

#2
dV = 0 (4.29)

We will not prove this properly, but assume its truth.

Convergence in the sense asserted by (4.29) is a common idea arising, for example, in formal treatments
of Sturm-Liouville problems; see Hildebrand 1952 for a very readable discussion. The matter of convergence of
approximate solutions in the present context is more complicated because one must take into account the fact
that the governing equations and their solutions are expanded in the two small parameters ¹ and " introduced in
Section 3. We will also not discuss that problem.

The synthesis of the pressure ¯eld expressed by (4.27) does not restrict in any practical fashion the generality
of the method. For de¯nitions here we assume that the modal functions satisfy the homogeneous Neumann
condition n̂ ¢ rÃn = 0, but for some applications a di®erent boundary condition, perhaps over only part of the
boundary, may serve better. Hence we will assume here that the Ãn are eigensolutions to the problem (4.12) a,b.

We require that the approximation (4.27) to p0 satisfy equation (4.1) a,b. Multiply (4.12) a,b written for ÃN
by ~p0(r; t), subtract from (4.1) a,b written for ~p0 multiplied by ÃN ; and integrate the di®erence over the volume
of the chamber to giveZZZ

V

£
ÃNr2~p0 ¡ ~p0r2ÃN

¤
dV ¡

ZZZ
V

1

¹a2
@2~p0

@t2
dV ¡ k2N

ZZZ
V

~p0ÃNdV =
ZZZ
V

ÃNhdV

13An alternative form based on an form of Galerkin's method, extended to accommodate the sorts of problems arising in the
present context, was introduced ¯rst by Zinn and his students. That procedure and the present method give identical equations
before the expansion procedure is applied and further approximations are used. The applicability of that method seems to have been
blunted in some cases by use of a velocity potential, thereby requiring that the unsteady ¯eld be irrotational. It seems also that the

ordering procedure (in terms of the small parameters ¹Mr and ¹M 0
r) (i.e. ¹ and ") has not been followed consistently, causing confusion

in some derivations and conclusions. Those matters are discussed elsewhere. It seems likely that the extended form of Galerkin's
method could give the same (or nearly so) results as found by the method discussed here, but the early works were not pursued
further. There is no basis for comparison.

14The selection of boundary conditions is part of the art of applying this method. Examples covered later will clarify the point.
For the present, it is helpful to think of the Ãm as classical acoustic modes for a volume having rigid walls and the same shape as the
combustion chamber in question. The Ãm therefore do not satisfy exactly the boundary conditions actually existing in a combustor.
Hence the right-hand side of (4.27) is an approximation in two respects: the series is truncated to a ¯nite number of terms and it does
not satisfy the correct boundary conditions. However, the solution carried out to the next order does satisfy the boundary conditions
to ¯rst order. This important point is discussed in Chapter 10 of Morse and Feshbach (1952). The approximate nature of the modal
expansion will be clari¯ed as the analysis proceeds.
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Apply Green's theorem to the ¯rst integral, substitute the boundary conditions (4.1) a,b and (4.12) a,b and
rearrange the result to giveZZZ

V

1

¹a2
@2~p0

@t2
ÃNdV + k

2
N

ZZZ
V

~p0ÃNdV = ¡
8<:
ZZZ
V

hÃNdV +

ZZ
S

°fÃNdS
9=; (4.30)

Now substitute the modal expansion (4.27) in the right-hand side:

¹pr
¹a2r

MX
m=0

Ä́m(t)

ZZZ
V

³¹ar
¹a

´2
ÃmÃNdV ¡ k2n¹pr

MX
m=0

´m

ZZZ
V

ÃmÃNdV = E
2
N

¹pr
¹a2r
FN (4.31)

where

FN = ¡ ¹a2r
¹prE2N

8<:
ZZZ
V

hÃNdV +

ZZ
S

°fÃNdS
9=; (4.32)

and ¹ar is a constant reference speed of sound. The second sum reduces, due to the orthogonality of the Ãm, to
´nE

2
n. Under the ¯rst integrals, write

¢a = 1¡
³¹ar
¹a

´2
(4.33)

Then the ¯rst sum in (4.31) is

MX
m=0

Ä́m(t)

ZZZ
V

(1¡¢a)ÃmÃNdV = E2N Ä́N ¡
MX
m=0

Ä́m(t)

ZZZ
V

¢aÃmÃNdV (4.34)

With these changes, equation (4.31) becomes

Ä́N + !
2
N´N = FN +

1

E2N

MX
m=0

Ä́m(t)

ZZZ
V

¢aÃmÃNdV (4.35)

The sum on the right-hand side represents part of the e®ect of a non-uniform speed of sound in the chamber (if
¢a 6= 0). To simplify writing we will ignore this term until we consider special problems in later chapters. For
solid rockets it is a negligible contribution. If the combustor contains °ame sheets, the temperature is piecewise
uniform and this term also doesn't appear, but the presence of the discontinuities generates corresponding terms
arising from FN . Thus there are useful situations in which we deal with the system of equations:

Ä́N + !
2
N´N = FN (4.36)

This result, a set of coupled nonlinear equations with the forcing function FN given by (4.34), is the basis for
practically all of the analysis and theory discussed in the remainder of this book. A corresponding result is given
in Appendix B for a purely one-dimensional formulation. In anticipation of later discussions, several general
remarks are in order.

(i) The formulation expressed by (4.36) accommodates all relevant physical processes. In the
derivation of the conservation equations in Appendix A, only inconsequential approximations
were made, notably the neglect of multi-component di®usion and the representation of the
reacting multi-phase medium by a single-°uid model. However, only the basic gasdynamics
are known explicitly. All other processes must be modeled in suitable forms.

(ii) Despite the apparent generality of (4.36) attention must be paid to an assumption implied in
the application of Green's theorem in spatial averaging. That is, the functions involved must
possess certain properties of continuity within the volume of averaging. The condition is not
satis¯ed, for example, at a °ame sheet, where the velocity is discontinuous, an important
exception.

(iii) The selection of functions for the modal expansion (4.27) is not unique; possible alternatives
must always be considered. What works best depends on the nature of the boundary con-
ditions. The closer the boundary is to a rigid re°ecting surface, the more e®ective is the
choice n̂ ¢ rÃN = 0, meaning that the acoustic velocity vanishes on the boundary. Because a
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combustor must provide for in°ow of reactants and exhaust of products, it is simply not pos-
sible that the actual enclosure be everywhere rigid and perfectly re°ecting. For n̂ ¢ rÃN = 0
to be a good approximation, as it should be for the modal expansion to serve successfully
as a zeroth approximation to the pressure ¯eld, the boundary must be `nearly' re°ecting.
Choked inlets and outlets satisfy the condition if the Mach number at the chamber side is
small (that is, the °ow within the volume is consistent with the assumption ¹¿ 1). Also, the
dynamical response of burning solid propellants is normally such that requiring n̂ ¢ rÃN = 0
is a good choice. Hence, over a broad useful range of practical conditions, de¯ning the modal
expansion functions with (4.12) a,b is a reasonable choice. Exceptions are not rare, however,
and care must be exercised. For example, a Rijke tube (Section 2) will contain a heater, or
a thin combustion region within the duct. Continuous functions ÃN may not be good zeroth
approximations to the actual behavior discontinuous at the heating zone; moreover, in that
case n̂ ¢ rÃN = 0 at the ends is the proper choice for boundary conditions on the modal
functions. More generally, if the temperature ¯eld is highly non-uniform, then the zeroth
order expansion functions should take that feature into account.

(iv) An enormous advantage of the result (4.36) is its clear interpretation. A general unsteady
motion in a combustor is represented by the time-evolution of a system of coupled nonlinear
oscillators in one-to-one correspondence with the modes ÃN . Although the left-hand side
of (4.36) describes the motion of a linear oscillator, the forcing function FN will in general
contain terms in ´N representing linear and nonlinear damping, springiness and inertia.
Consequently, as we will see, it is easy to ¯nd familiar nonlinear di®erential equations as
special cases of (4.36). Such special results aid greatly interpretation of complicated observed
behavior in terms of simpler elementary motions. Thus it is important to understand the
connections between parameter de¯ning the oscillators, the characteristics of the modes, and
the de¯nitions provided in the process of spatial averaging.

(v) Di®erent problems are distinguished chie°y in two respects: Geometry of the combustor;
and the form of the forcing function FN . The forcing function contains the in°uences of
gasdynamics explicitly, but all other processes must be modeled, either with theory or based
on experimental results. The geometry and the boundary conditions determine the modal
expansion functions ÃN and the frequencies !N . For complicated geometries, as for many
large solid propellant rockets and for most gas turbine combustors, computation of the ÃN
and !N has been a time-consuming and expensive process. That situation is gradually
changing with the development of more capable software.

(vi) The relatively general context in which the oscillator equations have been derived does not
exclude simpler problems which can either be treated as special cases or constructed without
reference to the procedures worked out here. However, it is then often more di±cult to be
certain that all important processes are accounted for or properly ignored.

4.4. Application of Time-Averaging. To this point the expansion procedure based on two small pa-
rameters has been used only to derive the systems of equations describing successively more di±cult classes or
problems in Section 3.3.2. There are at least two additional reasons for introducing that procedure. Later we will
see how an iterative method based partly on the expansion reduces those systems of equations to more readily
soluble forms. In this section we apply time-averaging to convert the second-order equations (4.36) to ¯rst order
equations. First, two remarks:

(i) Use of time-averaging is motivated by the experimental observation that combustion instabil-
ities commonly show slowly varying amplitudes and phases of the modes contributing to the
motions. That behavior is a consequence of the relative weakness of the disturbing processes
and is therefore measured by the small parameter ¹ characteristic of the Mach number of
the mean °ow. It is essential to understand that it is not the amplitudes themselves (i.e. the
parameter ") that matters. Thus the application of time-averaging in the present context
is not intended to treat nonlinear behavior, but is based on the weak coupling between the
mean °ow and the unsteady motions.
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(ii) Two-time scaling is an alternative method to time-averaging. The results obtained are iden-
tical up to second order acoustics (Section 3.3.3(II) and 3.4), a conclusion not shown here
but consistent with similar previous works in other ¯elds.

According to the discussion in Section 3.3.2, we can characterize the functions h and f , and hence the forcing
function Fn, as sums of terms each of which is of order ¹ and of zeroth or ¯rst order in ". Thus for example, the
right-hand side of (3.62) a,b has the form

¡¹"
½
f[M]g1 + "

¹
fMg2

¾
The divergence of these terms eventually appears in h and Fn. Hence we are justi¯ed in taking Fn of order ¹; to
show this explicitly write (4.36) as

Ä́N + !
2
N´N = ¹GN (4.37)

In any event, for ¹ small, the ´N di®er but little from sinusoids so (without approximation) it is reasonable to
express ´N (t) in the equivalent forms

´N (t) = rN (t) sin (!N t+ ÁN (t)) = AN (t) sin!N t+BN (t) cos!N t (4.38)

and

AN (t) = rN cosÁN ; BN = rN sinÁN

rN =
q
A2N +B

2
N ; ÁN = tan

¡1
µ
AN
BN

¶
(4.39)

One way to proceed follows a physical argument based on examining the time evolution of the energy of the
oscillator having amplitude ´N (Culick 1976). The energy EN is the sum of kinetic and potential energies,

EN (t) =
1

2
_́2N +

1

2
!2N´

2
N (4.40)

The time-averaged values of the energy and power input to the oscillator, due to the action of the force ¹GN ,
are

hEN i = 1

¿

Z t+¿

t

ENdt
0 ; h¹GN _́N i = 1

¿

Z t+¿

t

¹GN _́Ndt
0 (4.41)

Conservation of energy requires that the time-averaged rate of change of energy equal the time-averaged rate of
work done by ¹GN on the oscillator:

d

dt
hEN i = ¹hGN _́N i (4.42)

From (4.38), the velocity is

_́N = !NrN cos (!N t+ ÁN ) +
h
_rN sin (!N t+ ÁN ) + _ÁNrN cos (!N t+ ÁN )

i
(4.43)

Following Krylov and Bogoliubov (1947) we apply the `strong' condition that the velocity is always given by the
formula for an oscillator is force-free-motion,

_́N = !NrN cos (!N t+ ÁN) (4.44)

Hence (4.43) is consistent with this requirement only if

_rN sin (!N t+ ÁN ) + _ÁNrN cos (!N t+ ÁN ) = 0 (4.45)

Now use the de¯nitions (4.36), (4.38), (4.39) and (4.42) to ¯nd

EN =
1

2
!2Nr

2
N

¹GN _́N = ¹GN!NrN cos (!N t+ ÁN )
(4.46) a,b
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The statement \slowly varying amplitude and phase" means that the fractional changes of amplitude and
phase are small in one cycle of the oscillation and during the interval of averaging ¿ if ¿ is at least equal to the
period of the fundamental mode:

¿

rN

drN
dt

¿ 1 ;
¿

2¼

dÁN
dt

¿ 1 (4.47)

These inequalities imply that rN and ÁN may be treated as constants during the averaging carried out in (4.41). To
see this, imagine that rN for example, is expanded in Taylor series for some time t1 in the interval ¿ , t < t1 < t+¿ :

rN (t) = rN (t1) + (t¡ t1)
µ
drN
dt

¶
t1

+ ¢ ¢ ¢

For rN slowly varying, _rN doesn't vary much during a period and may be assigned some average value. The
increment t¡ t1 has maximum value ¿ ; so the second term is negligible according to the ¯rst of (4.41). Therefore
rN (t) ¼ rN (t1) for any t1 in the interval of averaging and the assertion is proved.

Substitution of (4.46) a,b in (4.42) then gives

!NrN
drN
dt

= ¹
rN
¿

Z t+¿

t

GN cos(!N t
0 + ÁN )dt0

and

drN
dt

= ¹
1

!N¿

Z t+¿

t

GN cos(!N t
0 + ÁN )dt0 (4.48)

The corresponding equation for the phase ÁN (t) is found by substituting (4.38) and (4.39) in (4.45) to give

rN
dÁN
dt

= ¡ ¹

!N
GN sin(!N t+ ÁN ) (4.49)

Now time average this equation over the interval ¿ , the left-hand side is approximately constant for theorem give
above, and the equation for ÁN(t) is

rN
dÁN
dt

= ¡¹ 1

!N¿

Z t+¿

t

GN sin(!N t
0 + ÁN )dt0 (4.50)

With the relations (4.39), equations (4.48) and (4.50) can be converted to equations for AN and BN :

dAN
dt

=
¹

!N¿

Z t+¿

t

GN cos!N t
0dt0

dBN
dt

= ¡ ¹

!N t

Z t+¿

t

GN sin!N t
0dt0

(4.51) a,b

Whichever pair one chooses to use, (4.48) and (4.50) or (4.51) a,b, the general formal problem of solving a system
of coupled second order equations (4.37) for the oscillators, has been converted to the simpler approximate formal
problem of solving a system of coupled ¯rst order equations. The essential basis for that conversion is the removal
of the fast oscillatory behavior with the de¯nition (4.38), a transformation made possible because the changes of
amplitudes and phases take place on a much slower (i.e. longer) time scale than do the oscillations. The presence
and role of two time scales is more evident in the following alternative derivation:

From the second equality of (4.38), we ¯nd the velocity

_́N = !N [AN cos!N t¡BN sin!N t] +
h
_AN sin!N t+ _BN cos!N t

i
Now enforce the condition corresponding to (4.45),

_AN sin!N t+ _BN cos!N t = 0 (4.52)

and the velocity is

_́N = !N [AN cos!N t¡BN sin!N t] (4.53)
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Substitution in (4.37) gives

!N

h
_AN cos!N t¡ _BN sin!N t

i
+ !2N [¡AN sin!N t¡BN cos!N t]
+ !2N [AN sin!N t+BN cos!N t] = ¹GN

and
_AN cos!N t¡ _BN sin!N t =

¹

!N
GN

Multiply by cos!N t and substitute (4.52) for _BN cos!N t to give

_AN cos
2 !N t¡ sin!N t

h
¡ _AN sin!N t

i
=

¹

!N
GN cos!N t

so
dAN
dt

=
¹

!N
GN cos!N t (4.54)

Similarly,

dBN
dt

= ¡ ¹

!N
GN sin!N t (4.55)

We now introduce two time-scales, ¿f the ¯rst scale, of the order of the period of the fundamental oscillation
(in fact, we might as well set ¿f = 2¼=!1); and ¿s, the slow scale characterizing transient changes of the amplitudes
and phases of the oscillations. Two corresponding dimensionless time variables can be de¯ned, tf = t=¿f and
ts = t=¿s. Thus we consider the amplitudes and phases to be functions of the slow variable ts while the forcing
functions GN depend on both tf and to because they depend on the ´N , (i = 1; 2; ¢ ¢ ¢ )

´N = AN (ts) sin
³
2¼
!N
!
tf

´
+BN (ts) cos

µ
2¼
!N
!1
tf

¶
In terms of the dimensionless time variables,

1

¿s

dAN
dts

=
¹

!N
GN cos!N t

and averaging over the fast variable we have

1

¿s

Z tf+¿f

tf

1

¿s

dAN
dt0s

dt0f =
¹

!N

1

¿f

Z t+¿f

tf

GN cos

µ
2¼
!N
!1
t0f

¶
dt0f

On the left-hand side, dAN=dt
0
s is assume to be sensibly constant in the interval ¿f and we have

1

¿s

dAN
dt0s

=
¹

!N¿f

Z t+¿f

tf

GN
¡
t0f ; t

0
s

¢
cos

µ
2¼
!N
!1
t0f

¶
dt0f (4.56)

Those parts of GN depending on t0s are taken also to be constant and if we now rewrite this equation in terms of
dimensional variables, we recover (4.51)a with ¿ = ¿f = 2¼=!. Similar calculations will produce again (4.51)b.
Note that due to the nonlinear coupling, the amplitude and phases of all modes normally change on roughly the
same scale as that for the fundamental mode; thus the single interval of averaging works for all modes.

In Section 7.2 we will use a continuation method to assess the ranges of parameters and other conditions
for which the ¯rst order equations give accurate results when compared with solutions to the complete oscillator
equations. In the development of the theoretical matters described in this book, the sets of ¯rst order equations
have been central. They remain extremely useful both for theoretical work and for applications.

4.5. The Procedure for Iterative Solution. The oscillator equations (4.33) and (4.34) are not yet in
a form that can be readily solved because the functions FN , de¯ned by (4.30) contain not only p

0 but also the
dependent variables ½0, T 0 and u0 in the functions h and f . With the two-parameter expansion as the basis,
the iteration procedure provides a means for expressing FN in terms of p0 only. Thus eventually the oscillator
equations become a system soluble for the modal amplitudes ´N (t). There are of course approximations required,
but magnitudes of their e®ects can always be estimated in terms of the parameters " and ¹. To appreciate how
the procedure is constructed, it is helpful always to keep in mind the correspondence between the smallness of "
and ¹, and the distortions they represent of the unperturbed classical acoustic ¯eld.
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There are two chief types of distortions or perturbations: Those represented by ", arising as nonlinear e®ects of
¯nite amplitudes,15 classi¯ed generally as energy transfer between modes; and those measured by ¹, consequences
of interactions, hence energy transfer, between the steady and unsteady ¯elds. Each of those types of perturbations
may be identi¯ed within the volume in question and at the boundary. Quite generally, then, we must take into
account perturbations of the classical acoustic ¯eld, associated with three kinds of energy transfer: linear transfer
between the mean and °uctuating motions; nonlinear transfer between modes, or mode coupling, independent of
the average °ow ¯eld; and nonlinear energy transfer between the mean °ow and °uctuating ¯elds. The way in
which we view and accommodate those perturbations determines our choice of basis functions ÃN used in the
modal expansion (4.27).

4.5.1. Linear Energy Transfer Between the Mean and Fluctuating Motions. Any combustor designed for
steady, or at most slowly varying conditions on the acoustic time scale, must have provision for supplying reactants
and exhausting products. There must therefore be average °ow within the volume and through openings in the
enclosing boundary. If the reactants are liquid or gaseous, then openings exist for both in°ow and out°ow. In
combustors for solid propellants, °ow enters at the boundary but there are not openings for that purpose.

(A) Volumetric Interactions

The general equations of motion in principle contain all interactions between the mean and °uctuating motions
within the volume. Many are shown explicitly as the bracketted terms [ ¹M],

©
¹M
ª
, [½1], fp1g, ¢ ¢ ¢ de¯ned in Section

(3.3). Those terms in the forms given there account for interactions of the mean °ow velocity with the acoustic
¯eld and have long served that purpose well in investigations of combustion instabilities. Additional consideration
are required to treat interactions associated with entropy and vorticity waves, including turbulence and noise, a
subject covered in Section (7.4).

Special e®ects also arise when the average temperature ¯eld is nonuniform; the last term in (4.33) represents
one consequence of nonuniform average temperature but others are contained in the formula given for h, equation
(3.55). Nonuniformities of temperature cause nonuniformities in the speed of sound which may be regarded
as nonuniformities in the index of refraction for acoustic waves. Thus in the general context of wave motions,
phenomena such as refraction and di®raction must arise. However, the analysis covered here for wave systems
slowly varying on the acoustic time scale, obscures wave phenomena of that sort; they have rarely been addressed
explicitly in the ¯eld of combustion instabilities and then only in connection with very special problems. However,
the consequences of refraction and di®raction are contained implicitly in distortions of the structure of the steady
waves.

It is extremely important that large di®erences in the average speed of sound be accounted for as accurately
as possible. That is best done by including them in the functions used in the modal expansion. Formally
that amounts to including all terms in h representing linear interactions between the acoustic and mean ¯elds,
in the equations for the Ãm. That is, such large perturbations are better not included in the procedure best
suited for dealing with small perturbations. In practice, the only example of this tactic have been concerned
with °ows in ducts containing a compact zone of heating thin relative to the acoustic wavelength. The modal
functions are then formed in piecewise fashion, the usual wave equation being solved separately for the two regions
characterized by di®erent uniform temperatures upstream and downstream of the zone of heating treated as a
surface of discontinuity. Then the functions are joined with suitable matching conditions.

For the most part, therefore, energy transfer between the acoustic ¯eld and the mean °ow within the volume
of a combustor is due to interactions with the mean velocity, characterized by the parameter ¹. The analysis is
strictly limited to perturbations linear in the Mach number of the mean °ow (see the footnote in the preceding
page).

(B) Boundary Conditions

The situation in respect to processes at the boundary is considerably more complicated and in fact cannot be
placed in a ¯rm basis without detailed examination of ancillary problems. Only two possibilities have so far been

15Recall that in this work, nonlinear behavior is measured in terms of the amplitude " of the unsteady motions. It is intrinsic
to their derivation (Section 3) that the governing equations are linear in ¹, i.e. in the Mach number of the mean °ow.
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of practical interest: physical openings in the boundary of the combustor; and a burning surface. Conditions to
be set on the acoustic ¯eld at an opening depend on the °ow ¯eld through and outside the boundary. In classical
acoustics with no °ow, an opening into an atmosphere held at constant pressure is almost perfectly re°ecting,
with the °uctuating pressure nearly zero in the plane of the opening. A perfectly re°ecting rigid wall causes
the °uctuating velocity to vanish there. Thus in those two limits, the boundary conditions to 0th order on the
pressure ¯eld are respectively p0 = 0 and n̂ ¢ rp0 = 0.

Subsonic °ow through an ori¯ce presents a boundary condition to acoustic waves closer to the case of no °ow,
p0 ¼ 0, than to a rigid wall. On the other hand, if the inlet °ow is choked upstream close16 to the ori¯ce, or the
outlet °ow exhausts through a choked nozzle, the boundary condition is closer to the for a rigid wall, n̂ ¢rp0 ¼ 0.
That is the case for propulsion systems, with the possible exception of the primary combustion chamber in a gas
turbine. The actual boundary conditions are more complicated but for linear behavior can be represented by
impedance or admittance functions de¯ned for steady waves. For the more common case of choked °ows, that
boundary condition is expressed as

n̂ ¢ û (rs; w) = As (rs; w) p̂ (rs; w) = ¹as (rs; w) p̂ (rs; w) (4.57)

where As = ¹as is the dimensional admittance function shown here to be proportional to the Mach number of
the average °ow. (Tsien 1952; Crocco and Cheng 1956; Culick 1961, 1963) Generally, As is a complex function,

As = jAsjeiÁA = ¹jasjeiÁA (4.58)

The representation (4.57) is based on the idea that when exposed to an oscillatory °uctuation of pressure,
a physical surface responds in ¯rst approximation such that its velocity normal to itself is proportional to the
impressed pressure, possibly with a phase or time delay. That idea is extended in the present context to describe
°uctuations of °ow at a ¯ctious surface forming part of the boundary enclosing the combustor volume, or at the
downstream edge of the combustion zone at a burning surface. Thus we have a simple and direct way of making
explicit the ¯rst term in the de¯nition (3.57) of the boundary function f for steady waves:

¹½
@M0

@t
¢ n̂ = ¹½¹a

@u0

@t
¢ n̂ = ¹½¹a

@

@t

£
n̂ ¢ û (rs; w) ei¹akt

¤
= ¹¹½¹aas (rs; t) i¹akp̂ (rs; w) e

i¹akt

= ¹¹½¹a2k
¡
ijasjeiÁa

¢
p̂ (rs; w) e

i¹akt

(4.59)

An equivalent form is

¹½
@M0

@t
¢ n̂ = ¹¹½¹a2k f¡Im(as) + iRe(as)g p̂ (rs; w) ei¹akt (4.60)

Although the admittance function is de¯ned for steady waves initially, (4.49) can be converted to a form
approximately applicable to problems having arbitrary dependence on time. The time derivative of some function
' for steady waves, so we can make the correspondence

@'

@t
Ã! i¹ak

@'

@t

Hence we write (4.49) as

¹½
@M0

@t
¢ n̂ = ¹¹½¹a

·
¹ak Im fasg p0 + Re fasg @p

0

@t

¸
(4.61)

This form of a boundary condition will be useful in later applications.

The chief point here is that for choked inlet and exhaust °ows, the function f in the boundary condition
n̂ ¢ rp0 = ¡f is of order ¹. That is, perturbations from the condition de¯ning a rigid impermeable wall are all
proportional to the magnitude of the Mach number of the mean °ow. Corresponding reasoning applies to the
less important case of subsonic °ow exhausting into surroundings held at constant pressure.17 Now we set the

16`Close' means within a short distance relative to the wavelength of the dominant oscillation.
17Less important for practical applications. However there are many laboratory devices operating at close to atmospheric

pressure and exhausting into the atmosphere for which the condition treated here is appropriate.
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boundary condition by using (3.51) evaluated at the boundary; for linear steady waves we have

p0 =
1

¹ak

·
°¹pr ¢M0

1 + ¹f[p]1g ¡
1

"
P0
¸
r=rs

(4.62)

Again we may de¯ne an admittance function to eliminate r ¢M0
1 in favor of the local pressure °uctuation. We

leave the calculation to special applications.

We conclude that for linear problems, perturbations of the classical acoustics problem due to energy transfer
between the mean and unsteady ¯elds are represented to order ¹, both within the volume and at the boundary.
This result is of course consistent with the order to which the di®erential equations are valid within the approx-
imation used here (see a remark following equation (3.39). For that reason, we cannot in any event carry terms
of higher order in ¹ unless the governing equations used here are re-derived.

As an example to illustrate some implications of the preceding remarks, consider the case of °ow through a
uniform duct of length L, supplied through choked valves and exhausting through a choked nozzle. Suppose that
by some means, for example by installing a speaker, oscillations can be excited and sustained in the duct. If there
were no °ow and rigid plates were placed at both ends (z = 0; L), classical `organ pipe' acoustic modes would be
found experimentally, having frequencies !N = n(¹a=L). The velocity and pressure distributions for these steady
axial modes are proportional to sin kNx and cos kNx respectively. Suppose we set, for example,

p0(z; t) = p̂0 cos kNz cos!N t (4.63)

where !N = ¹akN . The unperturbed acoustic momentum equation,

¹½
@u0

@t
= ¡rp0

is satis¯ed with (4.52) if u0 has only the axial component,

u0(z; t) =
p̂0
¹½¹a
sin kNz sin!N t (4.64)

The velocity ¯eld has nodes (u0 = 0) at the ends and the pressure ¯eld has anti-nodes, reaching maximum
amplitude p̂0 when t = 0, 2¼=!N , 4¼=!N , ¢ ¢ ¢ . Now suppose that average °ow is introduced and that the cross-
sectional areas available for the °ow upstream and downstream are small fractions of the cross-sectional area of
the duct. Then the average Mach numbers at z = 0, L are small (¹¿ 1). Hence the distortions of the classical
organ pipe modes are small. In particular, the modes of the velocity ¯eld are slightly displaced by the same
amounts downstream of their unperturbed positions at x = 0, L. Thus the wavelength and frequency of the
modes are unchanged and the unperturbed mode shapes are close approximations to the actual shapes with the
°ow, as sketched in Figure 4.1.

0 LL / 2 

NODES

Figure 4.1. Fundamental Longitudinal Mode, Velocity Mode Shape: { { { { Classical (no °ow);
|| Duct with °ow choked upstream and downstream

If the Mach numbers at the entrance (z = 0) and at the exit (z = L) are not small, then the nodes of the
velocity wave are displaced by larger amounts, but the wavelength, and hence the frequency, su®er only small
changes. This behavior suggests what is true quite generally in practice, that the processes in a combustion
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chamber have relatively small e®ects in the frequencies of the normal modes. Consequently, as we will empha-
size repeatedly, comparison of observed frequencies with those predicted is not a useful basis for assessing the
correctness of the theory in question.

4.5.2. Energy Transfer Between Modes; Nonlinear Mode Coupling. If the functions ÃN used in the modal
expansion are those computed according to classical acoustics, then in general linear coupling between modes
will appear in the right-hand sides of the systems (4.33) and (4.34). When the mean °ow ¯eld is nonuniform,
interactions between the mean and °uctuating ¯elds will cause linear mode coupling proportional to the average
Mach number. Formally such contributions are included among those discussed in the preceding section, i.e. they
are of order ¹.

In principle, linear coupling between modes can be formally eliminated by transformation to a new set of modal
expansion functions by diagonalizing the matrix of coe±cients (Culick 1997). There may be some applications for
which the linear coupling should be explicitly treated, but here we assume that either linear coupling is absent
on physical grounds or has been eliminated by suitable transformation.

Hence energy transfer between modes is of order "2 or higher and is necessarily nonlinear; calculations in the
next section show that we can write the system (4.34) schematically in the form

Ä́N + !
2
N´N = ¡¹ (DN _́N +EN´N ) + FNLN (4.65)

The function FNLN contains all nonlinear processes. According to its development in Section 3 consists of a sum
of groups of terms of order ", "2, ¢ ¢ ¢ , ¹", ¹"2, ¢ ¢ ¢ . In general, FN cannot be represented by a diagonal matrix:
Nonlinear coupling of the modes always exists and, among other consequences, is an important process in the
evolution of linear unstable motions into stable limit cycles.

4.5.3. Zeroth and First Order Solutions to the Oscillator Equation. We defer to a later section analysis
including nonlinear energy transfer of order ¹", and we assume that the average temperature is approximately
uniform, so the last term of (4.33) is negligible. The problem comes down to solving (4.34) for the ´N (t),

Ä́N + !
2
N´N = FN (4.66)

with

FN = ¡ ¹a2r
¹prE2N

8<:
ZZZ

v

hÃNdV +

ZZ
S

°fÃNdS
9=; (4.67)

and h and f are given by (3.55) and (3.57):

h =¡ ¹½
·
r ¢ ¡ ¹M ¢ rM0 +M0 ¢ r ¹M¢¡ 1

¹a2
@

@t

¡
¹M ¢ rp0 + °p0r ¢ ¹M¢¸

¡
½
¹½r ¢

µ
M0 ¢ rM0 +

½0

¹½

@ ¹M0

@t

¶
¡ 1

¹a2
@

@t
(M ¢ rp0 + °p0r ¢M)

¾
+

·
1

¹½
r ¢

µ
1

¹½
FFF0
¶
¡ 1

¹a2
@PPP0

@t

¸
+

½
1

¹p
r ¢

µ
1

¹½
FFF0
¶
¡ 1

¹a2
@PPP0

@t

¾ (4.68)

f =¹½
@M0

@t
¢ n̂+ n̂ ¢ £¹½M0 ¢ r ¹M+ ¹M ¢ rM0¤+ n̂ ¢½¹½M0 ¢ rM0 + ½0

@M0

@t

¾
+ [FFF0] ¢ n̂+ fFFF0g ¢ n̂ (4.69)

Recall that the left-hand side of (4.55) follows upon inserting in the linear wave operator the modal expansion
(4.27) for p0;

p0 = ¹pr

MX
m=1

´m(t)Ãm(r) (4.70)

The iterative procedure is a way of expressing the driving forces FN in terms of the amplitudes ´m, so (4.55)
becomes a system of equations for the amplitudes. As we have explained earlier (Section 3.3) we use " as a
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measure of the size of the pressure disturbance and write always

p0 = "p1(r1; t) (4.71)

However, we must allow the other dependent variables vary with " in a more complicated manner; it is reasonable
at this point to assume dependence as a power series in ":

M0 = "M1 + "
2M2 + ¢ ¢ ¢

T 0 = "T1 + "2T2 + ¢ ¢ ¢
(4.72)

and so forth. All components of the °uctuations, p1, M1, M2, ¢ ¢ ¢ , T1, T2, ¢ ¢ ¢ become distorted by the mean
°ow. That possibility is taken into account by writing

p0 ="p1 = "
£
p10 + ¹p11 + ¹

2p12 + ¢ ¢ ¢
¤

M0 ="M1 + "
2M2 + ¢ ¢ ¢ = " [M0

10 + ¹M11 + ¢ ¢ ¢ ]
+ "2 [M0

20 + ¹M21 + ¢ ¢ ¢ ]
T ="T1 + "

2T2 + ¢ ¢ ¢ = " [T10 + ¹T11 + ¢ ¢ ¢ ]
+ "2 [T20 + ¹T21 + ¢ ¢ ¢ ]

(4.73)

It is apparent that the number of functions to be determined rapidly gets out of hand as more terms are retained
in the series expansion. However to the order we choose to investigate here, that di±culty doesn't appear, for
the following reason. Examine a typical terms in h say the ¯rst in each of the brackets:

h = ¡¹½ £r ¢ ¡ ¹M1 ¢ rM0¢+ ¢ ¢ ¢ ¤¡ f¹½r ¢ (M0 ¢ rM0) + ¢ ¢ ¢ g+ ¢ ¢ ¢
= ¡¹¹½r ¢ £ ¹M1 ¢ r

¡
"M0

1 + "
2M0

2 + ¢ ¢ ¢
¢
+ ¢ ¢ ¢ ¤¡ ¹½©r ¢ ¡"M0

1 + "
2M0

2 + ¢ ¢ ¢
¢ ¢ r ¡"M0

1 + "
2M0

2 + ¢ ¢ ¢
¢
+ ¢ ¢ ¢ª+ ¢ ¢ ¢

Now substitute (4.62) to give

h =¡ ¹¹½r ¢ £ ¹M1 ¢ r
¡
"M0

10 + "¹M
0
11 + ¢ ¢ ¢+ "2M0

20 + "
2¹M0

21 + ¢ ¢ ¢
¢
+ ¢ ¢ ¢ ¤ =

¡ ¹½r ¢ f("M10 + "¹M
0
11 + ¢ ¢ ¢ ) ¢ r ("M0

10 + "¹M
0
11 + ¢ ¢ ¢ ) + ¢ ¢ ¢ g+ ¢ ¢ ¢

Multiplying the various brackets and showing explicitly only those terms to be retained, we ¯nd

h = ¡¹"¹½r ¢ £ ¹M1 ¢ rM0
10 + ¢ ¢ ¢

¤¡ ¹½r ¢ ©"2M10 ¢ rM10 + ¢ ¢ ¢
ª
+ ¢ ¢ ¢

This procedure leads eventually to the forms for h and f with only terms of order ¹" and "2:

h =¡ ¹"
·
¹½r ¢ ¡ ¹M1 ¢ rM10 +M10 ¢ r ¹M1

¢¡ 1

¹a2
@

@t

¡
¹M1 ¢ rp10 + °p10r ¢ ¹M1

¢¸
¡ "2

½
¹½r ¢

µ
M10 ¢ rM10 +

½10
¹½

@M10

@t

¶
¡ 1

¹a2
@

@t
(M10 ¢ rp10 + °p10r ¢M10)

¾
+ ¹"

·
1

¹½
r ¢

µ
1

¹½
FFF0
¶
¡ 1

¹a2
@PPP0

@t

¸
+ "2

½
1

¹½
r ¢

µ
1

¹½
F0F0F0
¶
¡ 1

¹a2
@PPP0

@t

¾
"2

(4.74)

f =¹½

·
@M0

@t
¢ n̂
¸
¹"

+ ¹½

½
@M0

@t
¢ n̂
¾
"2
+ ¹"¹½n̂ ¢ £M10 ¢ r ¹M1 + ¹M1 ¢ rM10

¤
+ "2¹½n̂ ¢ fM10 ¢ rM10g+ ¹" [FFF0 ¢ n̂]¹" + "2 fFFF0 ¢ n̂g"2

(4.75)
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5. SOME FUNDAMENTALS OF ACOUSTICS

According to the experiences related in Section 1, combustion instabilities may be regarded as unsteady
motions closely approximated as classical acoustical motions with perturbations due ultimately to combustion
processes. That view, initially an emprical conclusion, motivated the general form of the analytical framework
constructed in Section 4. Relatively little knowledge of classical acoustics is required to understand and apply
that construction formally.

However, interpretation of the details of observed behavior, and e®ective use of the theory to develop accurate
representations of actual motions in combustors require ¯rm understanding of the fundamentals of acoustics. The
purpose of this section is to provide a condensed summary of the basic parts of the subject most relevant to the
main subject of this book. We therefore ignore those processes distinguishing combustion chambers from other
acoustical systems. Except for brief discussion of nonlinear gas dynamics, we restrict attention to the Problem O
de¯ned in Sections 3.3.3 and 3.4.

5.1. The Linearized Equations of Motion; The Velocity Potential. We will be concerned here with
unsteady motions in a pure non-reacting gas at rest. The governing equations are 3.40 for Problem O, Classical
Acoustics, leading to the corresponding wave equation and its boundary condition, equations 3.52 with h0 and
f0 given by 3.55 for constant average density ¹½ and written with dimensional variables:

r2p0 ¡ 1

¹a2
@2p0

@t2
= r ¢FFF0 ¡ 1

¹a2
@P0

@t

n̂ ¢ rp0 = ¡¹½@u
0

@t
¢ n̂¡FFF0 ¢ n̂

(5.1) a,b

In the absence of condensed material, the de¯nitions (A.18) and (A.20) of the unperturbed functions FFF and PPP
are:

FFF = r ¢ $¿¿¿v +me ¡ uwe (5.2)

P=
R

Cv

h$
¿¿¿v ¢ r ¢ u¡r ¢ q¡Qe

i
+RTwe (5.3)

where
$
¿v¿v¿v : viscous stress tensor (force/area)

q : rate of conductive heat transfer (energy/area-s)

me : rate of momentum addition by external sources (mass-velocity/volume-s)

we : rate of mass addition by external sources (mass/volume-s)

Qe : rate of energy addition by external sources (energy/volume-s)

Thus the function FFF contains all processes causing changes of momentum of the gas, except for that due to
internal pressure di®erences; and P represents all sources of energy addition. The linearized forms of the source
terms will be constructed as required for speci¯c problems. For most of this section we will treat only problems
for which h0 and f0 vanish, giving the simplest equations for classical acoustics,

r2p0 ¡ 1

¹a2
@2p0

@t2
= 0

n̂ ¢ rp0 = 0
(5.4) a,b

With no sources in the volume or on the boundary, motions exist only for initial value problems in which the
pressure and its time derivative are speci¯ed at some initial time, t0.

In this case, the wave equation is used to describe freely propagating waves following an initial disturbance or,
when the boundary condition (5.13)b is enforced, the normal modes for a volume enclosed by a rigid boundary.
The condition n̂ ¢ rp0 = 0 means that the velocity normal to the boundary is zero, because the acoustic velocity
is computed from the acoustic momentum (3.40)b written in dimensional form with FFF = 0:

¹½
@u0

@t
= ¡rp0 (5.5)
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so

n̂ ¢ rp0 = ¹½
@u0

@t
from which

@

@t
(n̂ ¢ u0) = ¡1

¹½
n̂ ¢ rp0 = 0 (5.6)

Hence n̂ ¢ u0 = 0 always

We have just derived the equations for classical acoustics by specializing the general equations of unsteady
motion. It is also useful to arrive at the same conclusion in a slightly di®erent way, beginning with the equations
for inviscid motion in a homogeneous medium:

Conservation of Mass :
@½

@t
+r ¢ (½u) = 0 (5.7)

Conservation of Momentum : ½
@u

@t
+ ½u ¢ ru+rp = 0 (5.8)

Conservation of Energy : ½
@

@t

µ
e+

1

2
u2
¶
+ ½u ¢ r

µ
e+

1

2
u2
¶
+r ¢ (pu) = 0 (5.9)

Equation of State : p = ½RT (5.10)

Remove the kinetic energy from the energy equation by subtracting u¢ (momentum equation) to give

½
De

Dt
+ pr ¢ u = 0 (5.11)

where D
Dt =

@( )
@t +u ¢ r( ). Because all irreversible processes have been ignored the entropy of a °uid element

remains constant, DsDt = 0, a result that follows directly by substituting the mass and energy equations in the
thermodynamic de¯nition of the entropy of an element:

½
Ds

Dt
= ½

De

Dt
¡ p

½

D½

Dt
= ¡pr ¢ u+ p

½
(½r ¢ u) = 0 (5.12)

Taking the density to be a function of pressure and entropy, we can write for an isentropic process

d½ =

µ
@½

@s

¶
p

ds+

µ
@½

@p

¶
s

dp =

µ
@½

@p

¶
s

dp =
1

a2
dp (5.13)

where

a2 =

µ
@½

@p

¶
s

(5.14)

will turn out to be the speed of propagation of small disturbances, the 'speed of sound'. With this de¯nition, we
can rewrite the continuity equation (5.7) for the pressure:

@p

@t
+ ½a2r ¢ u+ u ¢ rp = 0 (5.15)

This result is quite general: in particular, its derivation did not involve using the special characteristics of a
perfect gas.

Alternatively, we may derive this equation for the special case of a perfect gas for which de = Cv(T )dT and
the equation of state is (5.10). Add T times (5.7) to C¡1v times (5.11) with de = CvdT ; then use (5.10) to ¯nd

@p

@t
+

µ
1 +

R

CV

¶
pr ¢ u+ u ¢ rp = 0 (5.16)

But R = Cp ¡ Cv, so R=Cv = ° ¡ 1 for a perfect gas. Comparison of (5.14) and (5.15) gives the formula for the
speed of sound in a perfect gas:

a2 =

r
°p

½
=
p
°RT (5.17)
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For an isentropic process of a perfect gas, equation (5.13) can be integrated,

d½ = a2dp =
½

°p
dp

which gives

p = p0

µ
½

½0

¶°
(5.18)

where ½0, p0 are constant reference values.

We may now eliminate the density from the momentum equation (5.8) to ¯nd

@u

@t
+ u ¢ ru+ 1

½0

µ
p0
p

¶1=2
rp = 0 (5.19)

Finally, we obtain the wave equation for the pressure by di®erentiating (5.16) with respect to time and substituting
(5.19) and a2 = °p=½:

@2p

@t2
¡ a20

p

p0
r ¢

· rp
(p=p0)1=°

¸
= °pr ¢ (u ¢ ru)¡ ° @p

@t
r ¢ u¡ @

@t
(u ¢ rp) (5.20)

The boundary condition is de¯ned by taking the component of (5.19) normal to the boundary:

n̂ ¢ rp = ¡
µ
p

p0

¶1=2
½0

·
n̂ ¢ @u

@t
+ n̂ ¢ r (u ¢ ru)

¸
(5.21)

Equation (5.20) and its boundary condition are easily linearized by assuming that the gas is at rest and that
the °uctuations are all of the same order. To second order in the °uctuations we ¯nd

@2p0

@t2
¡ a20r2p0 =

½
p0r ¢ (u0 ¢ ru0)¡ ° @p

0

@t
r ¢ u0 ¡ @

@t
(u0 ¢ rp0)

¾
+ ½0

(
(° ¡ 1)

µ
p0

p0

¶
r2
µ
p0

p0

¶
¡
µ
r p

0

p0

¶2) (5.22)

n̂ ¢ rp0 = ¡½0 @u
0

@t
¢ n̂¡ ½0

½
1

°

µ
p0

p0

¶
@u0

@t
¢ n̂+ n̂ ¢ (u0 ¢ ru0)

¾
(5.23)

Equations (5.4) a,b are recovered when the second order terms are neglected.

5.1.1. The Velocity Potential. It is often convenient to introduce scalar and vector potentials © and A from
which the velocity is found by di®erentiation:

u = ¡r©+r£A (5.24)

With this representation, the dilation and curl (rotation) of the velocity ¯eld are separated:

r ¢ u0 = ¡r2© ; r£ u0 = r£r£A (5.24)

In general, both potentials are required if the mean velocity is non-zero or sources are present in the °ow. The
boundary conditions may also induce non-zero rotational °ow. Here only the scalar potential is required for small
amplitude motions because in that limit, the classical acoustic momentum is (5.5); taking the curl with uniform
average density gives

¹½
@

@t
(r£ u0) = ¡r£ (rp0) = 0

Hence if r£ u0 = 0 initially, it remains so and we can take A = 0.

The acoustic equations for momentum, 3.40 and 3.40 in dimensional variables are

@u0

@t
+
1

¹½
rp0 = 0

@p0

@t
+ °¹½r ¢ u0 = 0

(5.25) a,b
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Di®erentiate the ¯rst with respect to time and insert the second to give the wave equation for the velocity
°uctuation,

@2u0

@2
¡ ¹a2r2u = 0 (5.26)

Now substitute u0 = ¡r© to give
r
·
@2©

@t2
¡ ¹a2r2©

¸
= 0

which is satis¯ed if the terms in brackets are a function of time only, so

@2©

@t2
¡ ¹a2r2© = f(t) (5.27)

The right-hand side represents a source ¯eld for the potential, uniform over all space. We may absorb f(t) by

de¯ning a new potential ©1 = ©+
R t
dt0
R t0
f(t1)dt1 and relabel ©1 ! © to ¯nd18 the wave equation for ©:

@2©

@t2
¡ ¹a2r2© = 0 (5.28)

When the velocity potential is used, the acoustic velocity is calculated with (5.24) and A = 0

u0 = ¡r© (5.29)

The acoustic pressure is found by setting u0 = ¡r© in the momentum equation (5.25) a,b, giving

r
µ
¡@©
@t
+
1

¹½
p0
¶
= 0

This solution is satis¯ed if the terms in parentheses are a function of t only, g(t), so

p0 = ¹½

µ
@©

@t
+ g(t)

¶
(5.30)

As above, we may de¯ne a new potential ©(t) +
R t
g(t0)dt0 = ©1(t) and hence absorb g(t) so we may rede¯ne

©1 ! © and

p0 = ¹½
@©

@t
(5.31)

The conditions under which the acoustic ¯eld can be completely described by a velocity potential alone are
precise and, so far as problems involving combustion are concerned, very restrictive. Any analysis or theory based
on the velocity potential alone must also include demonstration that the vector potential can be ignored, i.e. set
equal to a constant or zero. In general, the presence of a non-uniform mean °ow ¯eld and various kinds of sources
in the problems we are concerned with in this work, require that the velocity ¯eld be derived from both scalar
and vector potentials. Use of the unsteady pressure as the primary °ow variable provides a simpler approach for
many purposes, but, as we will ¯nd later, apparently possesses unavoidable fundamental limitations.

5.2. Energy and Intensity Associated with Acoustic Waves. In this section we establish de¯nitions
of energy density and the intensity|i.e. the °ow of energy|for classical acoustic waves. The de¯nitions are only
approximate under the more complicated conditions existing in a combustor but the general ideas remain.

Following Landau and Lifschitz (1959) we return to the basic energy equation (5.9) for inviscid °ow. The
idea is to establish a connection between the rate of change of something (the energy) within a volume and the
°ow of something (the intensity) through the closed boundary of that volume. Integrate the energy equation over
a volume ¯xed in space; and apply Gauss' theorem to the terms on the right-hand side:

@

@t

Z
½

µ
e+

u2

2

¶
dV = ¡

Z
r ¢

·
½u

µ
e+

u2

2

¶¸
dV ¡

Z
r ¢ (½u) dV

= ¡
ZZ
°
µ
e+

u2

2

¶
½u ¢ dS¡

ZZ
°½u ¢ dS

18Alternatively, one can reason that when the velocity is found by taking the gradient of © +
RR
f , the term in f contributes

nothing and hence can be simply dropped. The desired solution is una®ected by setting f = 0.
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This relation must be written to second order in the isentropic °uctuations; for example,

½e = ¹½¹e+ ½0
·
@

@½
(½e)

¸
¹½

+
1

2
½
02
·
@2(½e)

@½2

¸
¹½¹e

+ : : :

= ¹½¹e+ ½0¹k +
1

2

½
02

¹½¹a2
+ : : :

Eventually the result is

@

@t

Z
EdV = ¡

ZZ
°Eu ¢ dS¡

ZZ
°p0u0 ¢ dS (5.32)

where

E=
1

2

p
02

¹½¹a2
+
1

2
¹½u

02 (5.33)

is the acoustic energy per unit volume and p0u0 is the intensity, the °ux of acoustic energy through an area
normal to the direction of propagation (energy/area-S).

The ¯rst term on the right-hand side of (5.32) is third order in the °uctuations and must be dropped. Hence
we have the important result interpreted in Figure 5.1.

@E

@t
+r ¢ (p0u0) = 0

Figure 5.1. Acoustic Energy and Intensity

Table 5.1 summarizes the basic properties of plane sinusoidal waves. Brackets h i denote time averages over
some interval ¿

h( )i = 1

¿

Z t+¿

T

( )dt0 (5.34)

5.3. The Growth or Decay Constant. In practice, due to natural dissipative processes, freely propagating
waves and oscillations in a chamber will decay in space and time if there is no external source or energy. If there
is an internal source of energy, waves may be unstable, having amplitudes increasing in time. The basic measure
of the growth or decay of waves is the constant appearing in the exponent describing the sinusoidal spatial and
temporal dependence of small amplitude waves, the de¯nitions (5.62). For `standing' or `stationary' waves in a
chamber, the wavelength, and hence wavenumber, is real and constant, but the frequency is complex:

! ! ! + i® (5.35)

and the variables of the motion have the behavior in time

e¡i(!+i®)t ´ e¡i!te®t (5.36)

For this de¯nition (5.34), ® < 0 means that the waves decay.

Normally in practice,
¯̄
®
!

¯̄ ¿ 1, implying that the fractional change of amplitude is small in one cycle of
the oscillation. Thus when time averaging is carried out over one or a few cycles, e®t may be taken as roughly
constant, and the average energy density computed with (5.32) and (5.33), is

hEi = e2®t 1
4

· jp̂j2
¹½¹a2

+ ¹½jûj2
¸

(5.37)
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Table 5.1.

Results for Rightward and Leftward Traveling Sinusoidal Waves

Wave to Right Wave to Left

p0+ = p̂+e¡i(!t¡kx) p0¡ = p̂¡e¡i(!t+kx)

u0+ = p̂+e
¡i(!t¡kx) u0¡ = û¡e

¡i(!t+kx)

û+ =
p̂+
½0a0

û¡ = ¡ p̂¡
½0a0

"+ =
p
02
+

½0a0
"¡ =

p
02
¡

½0a0

l+ = p
0
+u

0
+ =

p
02
+

½0a0
l¡ = p0¡u0¡ = ¡ p

02
¡

½0a20

h( )i = 1
¿

R t+¿
t

( )dt0

hp02+i = 1
2 p̂
2
+ hp02¡i = 1

2 p̂
2¡

h"+i = p̂2+
2½0a20

h"¡i = p̂2¡
2½0a20

hl+i = p̂2+
2½0a0

hl¡i = p2¡
2½0a0

More generally: p0 = p̂ei(!t+') ; ¹u0 = ûei(!t+')

h"i = 1
4

h
jp̂j2
½0a20

+ ½0jûj2
i
= 1

4(p
0p

0¤ + ½0u0 ¢ u0¤)

hli = 1
2 jp̂jjûj cos('¡ Ã) = 1

4(p
0¤u0 + p0u

0¤)

where ( )¤ denotes complex conjugate.

Hence we have the important interpretations which serve as the basis for measuring values of ®:

® =
1

jp̂j
djp̂j
dt

® =
1

2hEi
dhEi
dt

(5.38) a,b

The sign of ® is a matter of de¯nition and has no fundamental signi¯cance. If the time dependence is taken to
be ei(!+i®)t then ® < 0 means that waves are ampli¯ed.

The formulas (5.39) de¯ne local values of the growth constant. It is often more meaningful to know the value
for the entire volume of the system in question, found by using

R hEidV rather than hEi:

® =
1

2
R hEidV d

dt

Z
hEidV (5.39)

5.4. Boundary Conditions: Re°ections from a Surface. In the absence of other sources, the linearized
boundary condition on the pressure at a surface is the ¯rst term of (5.1 b), here in dimensional form:

n̂ ¢ rp0 = ¡¹½@u
0

@t
¢ n̂ (5.40)
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The acoustic surface impedance za is de¯ned by

u0 ¢ n̂ = 1

za
p0 (5.41)

and the acoustic surface admittance ya is the reciprocal of the admittance:

ya =
1

za
(5.42)

Then for harmonic motions, p0 = p̂e¡i!t, we can rewrite (5.40) as

n̂ ¢ rp0 = ¡i ¹½!
za
p0 = ¡i¹½!yap0 (5.43)

The units of impedance are (pressure/velocity) ´ (density £ velocity). Hence for the medium, the product ¹½¹a is
called the characteristic impedance, having value 42 g/cm2-s. at standard conditions. Dimensionless forms are
de¯ned as:

acoustic impedance ratio: ³a =
za
¹½¹a

acoustic admittance ratio: ´a =
1

³a

(5.44)

In general, impedance functions are complex; the real and imaginary parts are called:

Re(za) : acoustic resistance

Im(za) : acoustic reactance
(5.45)

From (5.41) and (5.42), the surface admittance is

ya =
u ¢ n̂
p0

and the dimensionless surface admittance ratio is

´a = ¹½¹aya =
¹½¹a2

¹p

¹M0 ¢ n̂
p0=¹p

= °
M 0
n

p0=¹p
(5.46)

where M 0
n is the °uctuation of the Mach number normal to the surface.

If the surface is impermeable, the velocity at the surface is the velocity of the surface itself. However, if
the surface is permeable, or, as for a burning propellant, mass departs the surface, then the impedance and
admittance functions are de¯ned in terms of the local velocity °uctuations presented19 to the acoustic ¯eld, no
matter what their origin.

Quite generally then, the admittance function represents the physical response of processes at the surface.
It is of course an assumption that in response to an impressed pressure °uctuation, the °uctuation of velocity
normal to the surface is proportional to the pressure change. Alternative de¯nitions of quantities representing
the acoustic boundary condition at a surface will arise when we consider special situations.

5.4.1. Re°ections of Plane Waves at a Surface. Con¯nement of waves in a chamber to form modes necessarily
involves re°ections at the boundary surfaces. In solid propellant rockets the processes causing re°ection are
complicated, being responsible not only for con¯ning the waves but also are the dominant means for transferring
energy to the oscillating ¯eld in the chamber. Even at inert surfaces, more than the simple process of re°ection
is involved. Viscous stresses and heat conduction in the region adjacent to a surface cause dissipation of energy,
discussed in Section 5.6.

Here we assume that all activity at the surface can be represented by a complex impedance or admittance
function. The calculation follows that discussed by Morse and Ingard (1968). We consider re°ection of a planar
wave, Figure 5.2, allowing for the possibility of unequal angles of incidence and re°ection, and for simplicity we

19For burning propellants, care must be taken with de¯nition of the surface at which the boundary condition is imposed. Usually
the velocity at the `edge' of the combustion zone in the gas phase is the most convenient choice. Thus the admittance presented to
the acoustic ¯eld is not that at the burning surface itself.
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assume that there is no transmitted wave. The incident wave travels in the direction de¯ned by the unit vector
k̂i and the wavenumber vector is

k =
2¼

¸
k̂ (5.47)

We can represent the acoustic pressure and velocity in this plane wave by

Figure 5.2. Re°ection of a Plane Wave. Plane waves propagating in direction k = 2¼
¸ k̂

p0(r; t) = gi(ki ¢ r¡ !t)

u0(r; t) =
k̂r
¹½¹a
gi(ki ¢ r¡ !t)

(5.48) a,b

Similar formulas hold for the re°ected wave with ki replaced by kr lying in the direction de¯ned by the unit
vector k̂r. The representations are therefore:

Incident Wave Re°ected Wave

p0i = ui(»i) p0r = gr(»r)

u0i = k̂i
1
¹½¹agi(»i) u0r = k̂r

1
¹½¹agr(»r)

»i = ki ¢ r¡ !t »r = kr ¢ r¡ !t

= k(x sin µi ¡ y cos µi)¡ !t = k(x sin µr ¡ y cos µr)¡ !t

Because the frequency is the same for the incident and re°ected waves, so are the magnitudes of the wavenum-
bers:

jkij = !

¹a
= jkrj (5.49)

Re°ection is assumed to occur at y = 0. By de¯nition of za, the surface impedance, with the normal velocity
outward from the surface equal to uy = u ¢ ĵ = ¡u ¢ n̂ where n̂ is the unit outward normal vector:

za =

µ
p0

u0y

¶
y=0

= ¹½¹a
gi(kx sin µi ¡ !t) + gr(kx sin µr ¡ !t)

cos µigi(kx sin µi ¡ !t)¡ cos µrgr(kx sin µr ¡ !t) (5.50)

In general za is variable along the surface. Suppose that in fact za is constant, independent of x. That can be
true if

µi = µr = µ

gr(») = ¯gi(»)
(5.51)
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Then (5.50) becomes

za cos µ = ¹½¹a
1 + ¯

1¡ ¯ (5.52)

and the complex re°ection coe±cient ¯ is related to the surface impedance by

¯ =
za cos µ ¡ ¹½¹a
za cos µ + ¹½¹a

(5.53)

This result is special because no transmitted wave has been accounted for. For example, if za = ¹½¹a|perfect
impedance matching exists at the interface|(5.52) gives ¯ = 0 when µ = 0, so there is no re°ected wave. That is
true in one sense because in physical terms za = ¹½¹a means that the same gas exists in both sides of the interface.
Thus we are simply describing wave propagation in a continuous medium. On the other hand, the physical picture
treated here accommodates no transmitted wave, which means that when there is no re°ection, processes must
exist at the interface providing perfect absorption.

Now suppose µ 6= 0 but za = ¹½¹a. Then (5.52) gives ¯ non-zero, i.e. partial absorption and some of the
incident wave is re°ected.

5.5. Wave Propagation in Tubes; Normal Modes. The simplest form of combustor is a straight tube,
having generally non-uniform cross-section and not necessarily axisymmetric. Although the changes of cross-
section may be abrupt|even discontinuous|experience has shown that good results may be obtained by assuming
that the velocity °uctuations are uniform at every section and parallel to the axis: the °ow is treated as one-
dimensional. The governing equations are given in Appendix B, equations (B.2){(B.4) with no sources:

Conservation of Mass :
@½0

@t
+
@

@x
(¹½u0Sc) = 0 (5.54)

Conservation of Momentum : ¹½
@u0

@t
+
@p0

@x
= 0 (5.55)

Conservation of Energy : ¹½Cv
@T 0

@t
+ ¹p

1

Sc

@

@x
(u0Sc) = 0 (5.56)

The wave equation for the pressure is:

1

Sc

@

@x

µ
Sc
@p0

@x

¶
¡ 1

¹a2
@2p0

@t2
= 0 (5.57)

5.5.1. Waves in Tubes.

(a) Normal Modes for a Tube Closed at Both Ends

Results for a tube closed at both ends not only contain many ideas basic to general oscillations in chambers,
but also are widely useful for practical applications. For a tube closed by rigid walls, the boundary conditions
at the ends are that the velocity must vanish. The momentum equation (5.54) then states that acceleration and
therefore the pressure gradient must vanish at the ends for all time:

@p0

@x
= 0 x = 0; L; all t (5.58)

General linear motions within the tube can be constructed as superpositions of normal modes de¯ned in
general by two properties:

(i) sinusoidal variations in time

(ii) the motion at any point bears always a ¯xed phase relation with that at any other point in
the volume
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Those conditions imply here that the pressure can be expressed as

p0(x; t) = p̂(x)e¡i¹akt (5.59)

where k is the complex wavenumber, related in general to the complex frequency by the formula

¹ak = ! + i® (5.60)

Because there are no dissipative processes in this problem, ® = 0 so the wavenumber is real. Substitution of
(5.59) in (5.57) with S independent of x gives

d2p̂

dx2
+ k2p̂ = 0 (5.61)

A solution to (5.61) satisfying (5.58) at x = 0 is p̂ = A cos kx. To satisfy the condition at x = L, cos kL = 0.
Then k can assume only certain values kl, called characteristic or eigen values:

20

kl = l
¼

L
(l = 0; 1; 2; ¢ ¢ ¢ ) (5.62)

Corresponding to each kl is a characteristic function, or eigenfunction,

p̂l
¹p0
= Al cos(klx) (5.63)

For the problems we treat in this book, the motions represented by the kl, p̂l, and ûl are usually called normal
modes, ¹akl = !l being the normal or modal frequency, and p̂l, ûl are the mode shapes of pressure and velocity.
All of these terms are used for two- and three-dimensional motions as well.

A normal mode is characterized by its frequency and the spatial distributions, or `shapes' of all dependent
variables. The mode shape for the velocity is derived from the mode shape (5.63) by integrating the acoustic
momentum equation (5.55) written for ûl:

¡i¹aklûl = ¡1
¹½

dp̂l
dx

=
kl
¹½
¹plAl sin klx

Thus

ûl = i
¹pl
¹½¹a
Al sin klx (5.64)

or, written as the Mach number of the mode,

M̂l = i
1

°
Al sin klx (5.65)

(b) Normal Modes for a Tube Open at Both Ends

In this case, the pressure is assumed ¯xed at the ends, for example because the tube is immersed in a large

reservoir having constant pressure, and p0 = 0. For isentropic motions, ½
0

¹½ =
1
°
p0

¹½ so ½
0 = 1

¹a2 p
0 and the continuity

equation (5.54) is

@p0

@t
+
¹a2

¹½

@u0

@x
= 0 (5.66)

Hence if p0 is ¯xed, the velocity gradient must vanish at the ends. Set p0 = Ae¡i¹akt sin kx and substitute in (5.66)

i
¹a

¹p
kAe¡i¹akt sin kx = ¡¹a

2

¹½

@u0

@x

20Only for l ¸ 1 do we ¯nd wave modes. For l = 0, a qualitatively di®erent mode exists for which the pressure is uniform in the
volume but pulsates at a frequency well below that for the fundamental wave mode. The velocity is practically zero and the oscillator
is sustained by some sort of external action. A prosaic example is the low frequency sound one can create by blowing across the
narrow opening at the neck of a bottle. In this case the mode is called the Helmholtz mode and the bottle is behaving as a Helmholtz
resonator.
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The left-hand side vanishes (and hence @u0=@x = 0) at x = 0 for any k, but at x = L, we must have sin klL = 0.
Hence kl = (2l + 1)

¼
L and the normal mode shape and frequency are

p̂l
¹p
= Al sin(klx) ; kl = l

¼

L
(l = 1; 2; ¢ ¢ ¢ ) (5.67)

and the mode shape for the velocity is

ûl
¹a
= M̂l = i

1

°
Al cos klx (5.68)

(c) Normal Modes for a Tube Closed at One End and Open at the Other

Reasoning similar to the above leads in this case to the normal modes when the tube is closed at x = 0:

p̂l
¹p
= Al cos(klx) ;

³
kl = (2l + 1)

¼

2L

´
(l = 1; 2; ¢ ¢ ¢ )

ûl
a
= ¡i 1

°
Al sin(klx)

5.5.2. Normal Modes for Tubes Having Discontinuities of Cross-Sectional Area. Combustors having discontin-
uous area distributions are commonly used in solid propellant rockets and in various laboratory devices. Consider
the example sketched in Figure 5.3. The boundary conditions at the ends are:

x = 0 :
dp̂

dx
= 0

x = ¯L : p̂ = 0
(5.69) a,b

Figure 5.3. A Uniform Tube Having a Single Discontinuity.

Possible solutions in the regions to the left and right of the discontinuity are:

p̂

¹p
= A cos kx (0 · x · L)

p̂

¹p
= B sin k(¯L¡ x) (L < x · ¯L)

(5.70) a,b

Note that k = !=¹a is the same throughout the tube because the motion occurs everywhere at the same
frequency.

Completing the problem comes down to determining the conditions for matching the solutions. Two are
required:

(i) continuity of pressure:

lim
"!0

[p̂(L¡ ")¡ p̂(L+ ")] = 0
which gives

A cos kL = B sin(¯ ¡ 1)kL (5.71)
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(ii) continuity of acoustic mass °ow:
Integrate the wave equation (for harmonic motions) across the discontinuity,Z L+"

L¡"

·
d

dx
(Sc

dp̂

dx
+ k2Scp̂

¸
dx = 0

Because p̂ is continuous, this relation becomes

lim
"!0

"µ
Sc
dp̂

dx

¶
L+"

¡
µ
dp̂

dx

¶
L¡"

#
= 0

Thus, with ¹½ constant and dp̂
dx » û:

(¹½Scû)L+" ¡ (¹½Scû)L¡" (5.72)

After substituting the waveforms (5.70) a,b, and using (5.71) we ¯nd the transcendental equation for the
modal wavenumbers:

S1
S2
tan klL = cot kl(¯ ¡ 1)L (5.73)

This method of solving a problem with discontinuities is only approximate: a practical question is: how
large are the errors? To gain some idea of the errors incurred, tests at ambient temperature (`cold °ow tests')
were carried out by Mathis, Derr and Culick (1973) for the geometry of a T-burner used for measuring the
combustion response of burning solid propellants. Results are shown in Figure 5.4. The measured values of
both the frequencies and the mode shapes are surprisingly well-predicted by this theory. The principal reason
is that the in°uence of a discontinuity is con¯ned to a relatively small region near the change of area, but the
characteristics of the normal modes depend on the motion in the entire volume.

Figure 5.4. Comparison of Experimental and Theoretical Results for Normal Frequencies in a
T-Burner (Ambient Temperature)

5.6. Normal Acoustic Modes and Frequencies for a Chamber. We now consider a volume of any
shape enclosed by a rigid boundary and containing a uniform gas at rest. Unsteady small amplitude motions
therefore satisfy the linear wave equation (5.4) a,b and its boundary condition ((5.4) a,b)b requiring that the
velocity normal to the boundary vanish at all times. By this de¯nition given in Section 5.5.1, normal modes
are solutions to this problem which oscillate sinusoidally in time and have ¯xed phase relations throughout the
volume. We assume the form21 p0 = Ãe¡i¹akt. The formal problem is to ¯nd Ã satisfying the scalar wave equation,
also called the Helmholtz wave equation, with vanishing normal gradient at the surface:

r2Ã + k2Ã = 0
n̂ ¢ rÃ = 0 (5.74) a,b

21Consistent with the general character of this problem, we replace p̂ by Ã, introducing a common notation for normal modes.
The velocity potential © satis¯es the same pair of equations, a result re°ected by equation (5.31) which for sinusoidal motions means
that p0 and © are proportional: p0 = i¹ak¹½©.
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There are many well-written books covering this problem and its solution, for example Hildebrand (1952),
Morse and Feshbach (1952), and Morse and Ingard (1968). The simplest approach is based on the method of
separation of variables, applicable for closed form solutions in thirteen coordinate systems; see, e.g., Morse and
Feshbach (1952). In practical applications to combustors, only rectangular and circular cylindrical chambers are
important.

5.6.1. Normal Modes for Rectangular Chambers. The wave equation in Cartesian coordinates is

@2Ã

@x2
+
@2Ã

@y2
+
@2Ã

@z2
+ k2Ã = 0

and n̂ ¢ rÃ must vanish on the six °at surfaces each perpendicular to a coordinated axis, Figure 5.5. Applying
the method of separation of variables leads to a solution having the form

Ã = A cos(kxx) cos(kyy) cos(kzz) (5.75)

and

k2 = k2x + k
2
y + k

2
z (5.76)

y

x

z

0

b
2

− a
2

b
2

−

a
2

L

Figure 5.5. Rectangular Chamber

The boundary conditions must be satis¯ed:

@Ã

@x
= 0 x = 0; L

@Ã

@y
= 0 y = ¡a

2
;
a

2

@Ã

@z
= 0 z = ¡ b

2
;
b

2

(5.77) a,b,c

Reasoning similar to that given in Section 5.5.1 leads to the values of the wavenumbers

kx = l
¼

L

ky = m
¼

b

kz = n
¼

c

(5.78) a,b,c
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and the mode shapes are

Ãlmn = Almn cos
³
l
¼

L
x
´
cosm

¼

a

³
y +

a

2

´
cosn

¼

b

µ
z +

b

2

¶
(5.79)

The distributions of pressure therefore have the same form in all directions; of course the components (5.78) a,b,c
can assume any of the allowed values, and the frequency is given by (5.76), ! = ¹ak.

5.6.2. Normal Modes for a Circular Cylindrical Chamber. Let x be the polar axis (Figure 5.6) and the wave
equation in circular cylindrical coordinates is

1

r

@

@r

µ
r
@Ã

@r

¶
+
1

r2
@2Ã

@µ2
+
@2Ã

@x2
+ k2Ã = 0 (5.80)

Figure 5.6. Circular Cylindrical Coordinates

The boundary condition requires that n̂ ¢ rÃ vanish at the ends and on the lateral boundary:
@Ã

@x
= 0 x = 0; L

@Ã

@r
= 0 r = R

(5.81)

Application of the method of separation of variables leads to a solution of the form

Ã(r; x; µ; t) = A

½
cosnµ
sinnµ

¾
cos klzJm

³
·mn

r

R

´
(5.82)

To satisfy the boundary conditions, the values of kl are integral multiples of ¼=L as above and the ·mn are
the roots of the derivative of the Bessel function:

dJm(·mn)

dr
= 0 (5.83)

Figure 5.7 shows the lowest six modes in the transverse planes, and the identifying values of n and m. More
extended results are given in standard texts and collections of special functions.
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Figure 5.7. The First Six Transverse Modes in a Circular Cylinder
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6. LINEAR STABILITY OF COMBUSTOR DYNAMICS

All problems of unsteady motion in combustion systems can be divided into the two classes: linearized and
nonlinear. From the earliest discoveries of their transient behavior until the late 1950s `combustion instabilities'
implied small amplitude unsteady (and unwanted) motions growing out of a condition of linear instability. Even
with the expanding awareness that the nonlinear properties must be understood as well, the linear behavior
remains an essential part of understanding all aspects of combustion instabilities, including the consequences of
nonlinear processes.

The literature of linear combustion instabilities contains many papers dealing with special problems. There
seems often to be a tendency to regard the results as somehow disconnected. However, apparent di®erences arise
chie°y from the di®erences in the processes accounted for and in the choices of models for those processes. So
long as the problems are dominated by oscillating behavior in combustors, probably most, if not practically all
of the results can be obtained in equivalent forms by suitable applications of the methods explained here. That
statement is not as outrageous as it may seem, following as it does from the generality of the expansion procedures
and the method of averaging covered in Section 4.

6.1. Solution for the Problem of Linear Stability. By `solution' we mean here formulas for calculating
the amplitudes ´n(t) of modes retained in the expansion for the pressure ¯eld, p

0(r; t) = ¹p§´n(t)Ãn(r). The
amplitudes satisfy the oscillator wave equations (4.36)

d2´n
dt2

+ !2n´n = Fn + F
c
n (6.1)

where F cn stands for the generalized `force' associated with the exercise of control; and Fn is the spatial average
of that part (sometimes called the `projection' on the basis function Ãn) of the internal processes a®ecting the
motion of the nth oscillator, given by (4.32):

Fn = ¡ ¹a2

¹pE2n

½Z
hÃndV +

ZZ
°fÃndS

¾
(6.2)

Here we ignore F cn because we are concerned only with the internal behavior of the system. In general, the Fn
contain contributions associated with the motions of oscillators other than the nth|i.e. the modes are coupled.
For analysis of linear stability we are justi¯ed in ignoring that coupling, for reasons given by Culick (1997). Each
Fn is therefore a linear function of the amplitude and velocity of the oscillator, having the form

Fn = F
´
n´n + F

_́
n

d´n
dt

(6.3)

where the F ´n and F
_́
n are constants, depending only on the mode.

With these assumptions, the oscillator equations (6.1) are the uncoupled set

d2´n
dt2

¡ F _́
n

d´n
dt

+
¡
!2n ¡ F _́

n

¢
´n = 0 (6.4)

Because the equations are uncoupled, the normal modes Ãn for the corresponding classical acoustic problem are
also the normal modes for the linear problem of combustor dynamics. The general problem of determining linear
stability has therefore come down to the problem of determining the stability of the normal modes. In the usual
fashion we assume sinusoidal time dependence with complex frequency:

´n(t) = ^́ne
i−t (6.5)

Equation ((5.4) a,b) gives the quadratic equation for −n:

−2 ¡ iF _́
n−+

¡
!2n ¡ F ´n

¢
= 0 (6.6)

with solution

− = i
1

2
F _n
n + !n

s
1¡ 1

!2n

·
F ´n +

1

4

³
F _́
n

´2¸
(6.7)
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where we take the (+) sign on the radical to give a positive real frequency. Hence the amplitudes are

´n(t) = e
1
2F

_́
n te¡i!n

p
1¡³2nt (6.8)

and

³n =
1

!n

r
F ´n +

1

4

³
F _́
n

´2
(6.9)

The nth mode is stable of

F _́
n < 0 (6.10)

That is, the coe±cient of _́n in the expression for Fn must be positive for the n
th mode to be stable.

Now according to the methods of Fourier analysis, an arbitrary disturbance at some initial time (say t = 0)
in the chamber can be synthesized of the normal modes. The time-evolution of the disturbance is therefore
determined by the ´n(t). In particular, an arbitrary disturbance in a combustor is stable if (and only if) all of
the normal modes are stable and we arrive at the general result for the linear stability of a combustor:

(i) Write the linearized function for the force acting on the nth oscillator (spatially averaged
acoustic mode) in the form

Fn = F
´
n´n + F

_́
n

d´n
dt

(ii) Then any initial disturbance in a combustor is stable if and only if all the F _́
n are negative:

Linear Stability () F _́
n < 0 (all n)

The preceding calculation and its conclusion, illustrate further a point ¯rst made in Section 3. We have found
a means of computing the linear stability of a combustor without knowing the linear motions themselves. The
complex frequency (6.7) is in fact the frequency for the actual linear modes including the in°uences of all the
processes accounted for. But calculation of the F ´n and F

_́
n with the formula (6.2) requires knowledge only of

the unperturbed normal modes|their frequencies !n and shapes Ãn(r). The formal statement of this property
is that the eigenvalues (−n) to any order in the relevant expansion parameter (here ¹Mr := ¹) can be computed
knowing the eigenfunctions (Ãn) only to one less order. The eigenvalues −n are here given to ¯rst order in the
Mach number of the average °ow but only the unperturbed classical eigenfunctions Ãn are required. This is the
basic characteristic of the expansion procedures with spatial averaging that makes the method devised here so
useful in practice.

6.2. An Alternative Calculation of Linear Stability. An equivalent calculation of the result for linear
stability makes direct use of the formula for the wavenumber. Write

´n = ^́ne
¡i¹akt ; Fn = F̂ne

¡i¹akt

and substitute in (6.1) with F cn ignored to ¯nd

(¹ak)2 = (¹akn)
2 +

1

^́n

³
F̂ (r)n + iF̂ (i)n

´
(6.11)

With ¹ak = ! + i®, this formula is

!2 + i(2®!)¡ ®2 = !2n +
1

^́n

³
F̂ (r)n + iF̂ (i)n

´
where ( )(r) and ( )(i) stand for real and imaginary parts. Because ® and F̂n are of ¯rst order in the expansion
parameter and terms of higher order must be dropped22, we ignore ®2 with respect to !2. Then the real and
imaginary parts of the last equation give

!2 = !2n +
1

^́n
F̂ (r)n

® = ¡ 1

2!n
F̂ (i)n

22Recall the remarks in Section 4.
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where ! has been set equal to !n in the right-hand sides to ensure that higher order terms are not retained.
Now take the square root of the ¯rst equation and again drop higher order terms to ¯nd

! = !n ¡ 1

2!n

F̂
(r)
n

^́n

® = ¡ 1

2!n

F̂
(i)
n

^́n

(6.12) a,b

The system is unstable if F̂
(i)
n is negative. This condition is essentially a generalized form of Rayleigh's criteria

discussed further in Section 6.4.

After higher order terms are dropped from (6.7), the real and imaginary parts of ! are

! = !n ¡ 1

2!n
F ´n

® =
1

2
F _́
n

(6.14) a,b

Comparison of (6.12) a,b and 5.14 gives the connections between the two representations of the forcing function23:

F ´n =
F̂
(r)
n

^́n

F _́
n = ¡

1

!n

F̂
(i)
n

^́n

(6.15) a,b

Generally Fn will contain several processes, each of which will depend linearly on ´n and
d´n
dt and appears

additively in Fn. Hence formulas corresponding to (6.15) a,b apply to each of the individual processes. They are
often useful, if only for checking correctness, in detailed calculations.

6.3. An Example: Linear Stability with Distributed Sources of Heat and Motion of the Bound-
ary. As a ¯rst approximation to problems of combustion instabilities it is useful to ignore all processes involving
interactions between the unsteady and steady ¯elds, and focus attention on the two generic causes of instabili-
ties: time-dependent energy addition and motions of the boundary. With suitable interpretation the second may
represent the in°uence of unsteady combustion of a solid propellant. Then in dimensional variables the linearized
pressure and momentum equations ((3.46) a-e)d and ((3.46) a-e)b, and the boundary condition (3.57) on the
pressure °uctuations are

@p0

@t
+ °¹pr ¢ u0 = R

Cv
_Q0 (6.12)

¹½
@u0

@t
+rp0 = 0 (6.13)

n̂ ¢ rp0 = ¡¹½@u
0

@t
¢ n̂ (6.14)

Now form the wave equation as in Section 3.4, so the problem is governed by the two equations

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(6.19) a,b

where

h = ¡ 1

¹a2
R

Cv

@ _Q0

@t

f = ¡¹½@u
0

@t
¢ n̂

(6.20) a,b

23The (¡) sign in (6.15) a,b arises from the (¡) sign in the exponential time dependence.



Combustion Instabilities in Solid Propellant Rocket Motors 

 

11 - 108 RTO-EN-023 

The expansion procedure and application of spatial averaging leads to the explicit oscillator equations (4.36):

d2´n
dt2

+ !2n´n = ¡
¹a2

¹pE2n

(Z "
¡ 1

¹a2
R

Cv

@ _Q0

@t

#
ÃndV +

ZZ ·
¡¹½@u

0

@t
¢ n̂
¸
ÃndS

)
(6.21)

0 L

Q

Figure 6.1. A Tube with Distributed Heat Addition and an Oscillating Piston to Drive Waves

As a simple example, consider the one-dimensional problem of waves excited in a tube ¯tted with a piston,
Figure 6.1, and with distributed heat addition provided by an electrically heated coil. Only longitudinal modes
are accounted for, and

Ãn = cos(knx) ; kn = n
¼

L
; E2n =

1

2
ScL (6.21)

where Sc = ¼R
2 is the cross-section area of the tube. We ignore any average motion in the tube, and suppose

that the average thermodynamic properties are maintained constant and uniform by suitable steady heat losses
through the walls of the tube. The heat addition and motion of the piston are sinusoidal, having phases ÁQ and
Án with respect to pressure oscillations:

_Q0 =
¯̄̄
_̂Q(x)

¯̄̄
e¡i(¹akt¡ÁQ)

u0p ¢ n̂ = jûpj e¡i(¹akt¡Áp)
(6.22) a,b

Hence for use in h and f :

@ _Q0

@t
= ¡i¹ak

¯̄̄
_̂Q(x)

¯̄̄
e¡i(¹akt¡ÁQ)

@

@t

¡
u0p ¢ n̂

¢
= ¡i¹ak jûpj e¡i(¹akt¡Áu)

(6.23) a,b

With ´n = ^́ne
i¹akt, substitution in the oscillator equations (6.21) leads to£¡(¹ak)2 + !2n¤ ^́n = ¡ ¹a2

¹pE2n

½
¡ 1

¹a2
R

Cv
(¡i¹ak)

Z
cos(knx)

¯̄̄
_̂Q(x)

¯̄̄
eiÁQdV

+i¹½¹ak

ZZ
° cos(knx)jûpjeiÁu

¾
After some rearrangement, and setting ¹ak = ! ¡ i®, we ¯nd

(! + i®)2 = !2n ¡ i(! + i®)
¹a2

¹p( 12ScL)

8<: 1

¹a2
R

Cv
Sc

Z L

0

cos(knx)

¯̄̄
_̂Q(x)

¯̄̄
^́n

eiÁQdx

¡¹½Sc jûpj
^́n
eiÁp

¾
Because j _̂Qj and jûpj are small perturbations we can write this equation to ¯rst order in small quantities:

!2 ¡ i(2®!) = !2n ¡ i!n
2

¹pL

R

Cv

Z L

0

24cos(knx)
¯̄̄
_̂Q(x)

¯̄̄
^́n

eiÁpdx+ i!n
2°

L

jûpj
^́n
eiÁu

35 dx
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Take the real and imaginary parts to ¯nd

!2 = !2n +
2!n
¹pL

µ
R

Cv

¶Z L

0

24cos(knx)
¯̄̄
_̂Q(x)

¯̄̄
^́n

sinÁQdx¡ 2°!n
L

jûpj
^́n

sinÁu

35 dx
® =

1

¹pL

R

Cv

Z L

0

24cos(knx)
¯̄̄
_̂Q(x)

¯̄̄
^́n

cosÁQdx¡ °

L

jûpj
^́n

cosÁu

35 dx
(6.24) a,b

Internal feedback, and hence a condition for instability, exists of either or both j _̂Qj and jûpj depend on the
°uctuating pressure (or velocity). For example, set

j _̂Qj = q0 ^́nÃn = q0 ^́n cos knx
jûpj = u0 ^́n

(6.25) a,b

and (6.24) a,b becomes
!2 = !2n + 2!n (Aq0 sinÁq ¡Bu0 sinÁu)

where

A =
1

2¹p

R

Cv
; B =

°

L
(6.26)

To ¯rst order in small quantities we ¯nd the results for the frequency and decay or growth constant:

! = !n +Aq0 sinÁQ ¡Bu0 sinÁu
® = Aq0 cosÁQ ¡Bu0 cosÁu (6.27) a,b

Remarks:

(i) the nth mode is unstable if Aq0 cosÁQ > Bu0 cosÁu

(ii) the ¯rst term in ® is an example of Rayleigh's criterion discussed in Section 6.3:

a) if 0 · Áu · ¼
2 then a necessary condition for instability is 0 · ÁQ · ¼

2 .

b) instability of the nth mode is encouraged if j _̂Q(x)j cos knx is larger,
i.e. if the heat addition is greater where the mode shape of the pressure.

It is important also to notice that due to the spatial averaging, one cannot distinguish the ultimate e®ects
of volumetric and surface processes. There is an equivalence of the in°uences of the various processes, their
importance in respect to position within the chamber being dominated by their location with respect to the mode
shapes. That characteristic has far-reaching consequences.

6.4. Rayleigh's Criterion and Linear Stability. As part of his research on the excitation of acoustic
waves by heat addition in chambers, Lord Rayleigh (1878, 1945) formulated the following explanation for the
production of tones in a Rijke tube:

\If heat be periodically communicated to, and abstracted from, a mass of air vibrating (for example)
in a cylinder bounded by a piston, the e®ect produced will depend upon the phase of the vibration
at which the transfer of heat takes place. If heat be given to the air at the moment of greatest
condensation, or be taken from it at the moment of greatest rarefaction, the vibration is encouraged.
On the other hand, if heat be given at the moment of greatest rarefaction, or abstracted at the
moment of greatest condensation, the vibration is discouraged."

That paragraph has become probably the most widely cited explanation for the presence of combustion instabilities
generally. For easy reference, the explanation has long been referred to as \Rayleigh's Criterion."

It is important to realize that Rayleigh addressed only the conditions under which unsteady heat addition
`encourages' oscillations, i.e. is a destablilizing in°uence. Other processes, stabilizing or destabilizing are neither
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excluded nor included, and there is certainly no implication that satisfaction of the criterion is either a necessary
or a su±cient condition for instability to exist. Several published examples exist of quantitative realizations of
the criterion (Putnam 1971; Chu 1956; Zinn 1986; Culick 1987, 1992). The purpose of this section is to establish
a generalized form of Rayleigh's Criterion by using the analysis based on spatial averaging.

The main idea is that a positive change of the time-averaged energy of a modal oscillator in a cycle of
oscillation is exactly equivalent to the principle of linear instability, that the growth constant should be positive
for a motion to be unstable. To establish the connection we use the oscillator equations,

d2´n
dt2

+ !2n´n = Fn (6.27)

The instantaneous energy24 of the nth oscillator is

En =
1

2

¡
_́2n + !

2
n´

2
n

¢
(6.28)

and the change of energy in one cycle is the integral over one period of the rate at which work is done by the
force Fn:

¢En =

Z t+¿n

t

Fn(t
0) _́n(t0)dt0 (6.29)

Under the integral, Fn and _́n must be real quantities: here we use the real parts of both functions,

´n = ^́ne
¡i¹akt = j^́nje¡i¹akt

Fn = F̂ne
¡i¹akt = jF̂nje¡i(¹akt+ÁF ) = jF̂nj (cosÁF ¡ i sinÁF ) e¡i¹akt

(6.31) a,b

We measure all phases with respect to the pressure, so ^́n is real and, being the maximum amplitude, is positive.
Substitution in the oscillator equations gives

k2 =
1

¹a2

Ã
!2n ¡

F̂n
^́n

!
of which the real and imaginary parts are to ¯rst order in small quantities:

!2 = !2n ¡Re
Ã
F̂n
^́n

!
= !2n ¡

¯̄̄̄
¯ F̂n^́n

¯̄̄̄
¯ cosÁF

®n =
1

2!n
Im

Ã
F̂n
^́n

!
=
¡1
2!n

¯̄̄̄
¯ F̂n^́n

¯̄̄̄
¯ sinÁF

(6.32)a,b

Also for use in (6.29) we have

_́n = i¹akj^́nje¡i¹akt = ¹akj^́nje¡i(¹akt+¼
2 ) ¼ !nj^́nje¡i(!nt+¼

2 )

so

Re( _́n) = !nj^́nj cos
³
!nt+

¼

2

´
= ¡!nj^́nj sin!nt (6.33)

The real part of Fn is

Re(Fn) = jF̂nj cos (!nt+ ÁF ) = jF̂nj fcos!nt cosÁF ¡ sin!nt sinÁF g (6.34)

Hence the right-hand side of (6.29) is

¢En =

Z t+¿n

t

Re(Fn)Re(´n)dt
0 = !jF̂nj

Z t+¿n

t

½
sin2 !nt

0 sinÁF ¡ 1
2
sin 2!nt

0 cosÁF

¾
dt0

= !jF̂njj^́nj¿n
2
sinÁF

Substitution of (6.32)a,b leads to the formula

¢En = 2¼®n!nj^́nj2 (6.35)

which establishes the desired connection between Rayleigh's criterion and linear stability:

24En is not the energy of the nth acoustic mode, which is given by the integral of (5.33) over the volume of the chamber.
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Remarks:

(i) Positive ®n (the system is linearly unstable) implies that the average energy of the oscillator
increases, and vice-versa.

(ii) Rayleigh's original criterion is equivalent to the principle of linear instability if only heat
exchange is accounted for and is neither a necessary nor a su±cient condition for existence
of a combustion instability.

(iii) The extended form (6.35) of Rayleigh's criterion is exactly equivalent to the principle of linear
instability.

Putnam (1971) has made the widest use of Rayleigh's Criterion in practical situations. His book and papers
give many examples of applying the Criterion as an aid to making changes of design to avoid oscillations generated
by heat release, particularly in power generating and heating systems.

In the past ¯fteen years many groups have been making direct observations on laboratory systems to check
the validity of the Criterion's implications. The key step is based on the assumption that radiation by certain
intermediate species in hydrocarbon reactions (CH and OH are the most common indenti¯ers) can be interpreted
as a measure of the rate of chemical reactions taking place and hence of the rate at which energy is released.
Simultaneous measurement we made of the spatial distribution of radiation in a system, and of the pressure
oscillations, the results then allow at least a qualitative assessment of the extent to which the oscillations are
being driven by the energy released in the combustion ¯eld, or whether other mechanisms may be active.

It seems that the ¯rst report of that sort of e®ort appeared in a Ph.D. thesis (Sterling, 1987; Sterling and
Zukoski, 1991). Figure 6.2 is a sketch of the dump combustor used as the test device, and Figure 6.3 shows the
main result.

VPremixed
CH   / Air4 Exhaust  to

Atmosphere

Figure 6.2. The Caltech Dump Combustor (Sterling 1985)

6.5. Explicit Formulas For Linear Stability. The term `stability of motions' has several interpretations
for °ows in combustion chambers, including:

(i) the stability of laminar average °ow when viscous and inertial properties of the medium
dominate, leading to turbulence, a ¯eld of distributed vorticity if the steady °ow is unstable;

(ii) the stability of shear layers, commonly producing large scale vortex motions when a shear
layer is unstable;

(iii) the stability of laminar °ame fronts, responsible for one source of turbulent combustion when
fronts are unstable;

(iv) the stability of small disturbances which, when the compressibility and inertia of the medium
dominate, can develop into acoustic waves.

In terms of the modes of motion mentioned in Section 3.1 and discussed further in Section 3.3, the phenomena
(i){(iii) are classi¯ed as waves of vorticity and the fourth comprises acoustic waves. Here we are concerned only
with the stability of acoustic waves. The results are very general, accommodating all relevant processes and
applicable, in principle, to any combustion chamber. Eventually the obstacles to successful applications are
associated almost entirely with problems of modeling. In the ¯rst instance, the formal results given here establish
explicitly what modeling is required.

6.5.1. Linear Stability in Three Dimensions. The formulas (6.14) a,b are general, restricted only by the
approximations used in formulating the analytical framework. Hence the problem of obtaining results speci¯c to
any given problem comes down to ¯nding explicit forms for F ´n and F

_́
n , i.e. evaluating the integrals de¯ning Fn,
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Figure 6.3. Experimental Con¯rmation of Rayleigh's Criteria (Sterling and Zukoski, 1991)

equation (6.2). The functions h and f are given by (4.72) and (4.73) to second order in the °uctuations. Here we
need only the linear parts, terms of order ¹". With ¹ and " absorbed in the de¯nitions of the variables, we have

h = ¡¹½r ¢ ¡ ¹M ¢ rM0 +M0 ¢ r ¹M¢¡ 1

¹a2
@

@t

¡
¹M ¢ rp0 + °p0r ¢ ¹M¢

+

·
1

¹½
r ¢

µ
1

¹½
F0
¶
¡ 1

¹a2
@P 0

@t

¸
¹"

(6.36)

f = ¹½

·
@M0

@t
¢ n̂
¸
¹"

+ ¹½n̂ ¢ ¡ ¹M ¢ rM0 +M0 ¢ r ¹M¢+ [n̂ ¢ F0]¹" (6.37)

where the subscript ¹" means that the quantity in expanded to include only terms of ¯rst order in the mean °ow
and the °uctuations, i.e. terms O( ¹MrM

0
r).

Substitution of (6.36) and (6.37) and some rearrangement leads to the resultZ
ĥÃndV +

ZZ
°fÃndS = ¹½k2n

Z ³
¹M ¢ M̂

´
ÃndV

¡ ¹½
Z ³

M̂£r£ ¹M
´
¢ rÃndV

+ i
kn
¹a

Z
Ãn
£
¹M ¢ rp̂+ °p̂r ¢ ¹M¤ dV

¡ ikn
¹a

Z
ÃnP̂dV ¡

Z
F̂ ¢ rÃndV

+ ¹p¹akn

ZZ
°ÃnM̂ ¢ n̂dS

(6.38)
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Note that we have removed the exponential time factor for linear harmonic motions and (6.38) contains the

amplitudes of °uctuations, denoted by ^( ). Two remarks are important:

(i) the mean °ow ¯eld may be rotational (r£ ¹M6= 0) and sources are accommodated (r¢ ¹M6= 0).
(ii) owing to the ordinary procedure discussed in Section 3, the substitutions of classical acoustic

mode shapes are required in the right-hand side:

p̂ = ¹p^́nÃn ; M̂ =
i

°k2n
_́̂nrÃn (6.39)

where _́̂n = i¹akn´n.

Eventually the complex wavenumber, (6.11), is

k2 = k2n +
¹a2

¹pE2n

(
i¹p¹akn

ZZ
°
Ã
M̂

^́n
+
1

°
¹M°n

!
¢ n̂°ndS

+ i(° ¡ 1)kn
¹a
¹p

Z ¡r ¢ ¹M¢Ã2ndV ¡ ikn¹a
Z
P̂

^́n
ÃndV

¡
Z
F̂

^́n
¢ rÃndV

) (6.40)

It is important to understand that in the result unsteady gasdynamics (acoustics) and interactions between
the acoustics and the mean °ow are accounted for `exactly' to O( ¹Mr).

The real and imaginary parts of (6.40), written symbolically as equations (6.12) a,b and (6.14) a,b are sums
of contributions from the various processes accounted for. For example, the formula for the growth constant
appears in the form

® = (®)combustion + (®)mean flow=acoustics + (®)nozzle + ¢ ¢ ¢
Similar results can be derived for the case when the one-dimensional approximation is used. The required basis
for the calculations is given by Culick (1998). The results for the frequency and growth constant are:
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(6.42)

Two remarks on interpretation

(i) the ¯rst two terms in the formula for ® represent the dynamical response of the enclosing
surface and the net e®ect of linear interactions between the acoustic ¯eld and the mean °ow.

(ii) the last term represents a dissipative process commonly called `°ow turning' due to inelastic
acceleration of the incoming °ow, initially normal to the surface, to the local axial velocity
parallel to the surface. This process generates unsteady vorticity at the surface; the result
shown here does not capture the entire contribution. See Flandro (1995) and Mulhotra
(2001).
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These results for linear stability have been applied extensively to problems of combustion instabilities in solid
propellant rockets. Their validity has long been con¯rmed. However, their accuracy depends entirely on the
accuracy of modeling processes rather than the gasdynamics shown explicitly in (6.40){(6.42).

Due to the large uncertainties associated with modeling some processes, it is di±cult|in fact impossible at
this time|to make an entirely satisfactory comparison between theoretical results and measurements. Hence
the best way to check theory is to compare results obtained here with results of numerical simulations, all for
the same problem. Even this procedure is imperfect because di®erent approximations must be made in the two
approaches|it is impossible to solve the `same' problem numerically and with the analysis given here.

Results of an example for a solid propellant rocket are shown in Figures 6.4{6.6. The calculations were carried
out for nonlinear behavior. Figure 6.4 shows the development of the unstable motion into a stable limit cycle
and Figure 6.5 is a comparison of the spectra of the waveforms in the limit cycle. The approximate analysis
can be carried out only for a ¯nite number of modes. As a consequence, although the frequencies are accurately
predicted, the amplitudes have greater errors for the higher modes. Figure 6.6 shows one e®ect of truncating the
modal expansion. For this example the e®ect is not large|the two-mode approximation seems quite adequate.
That is not always true, a matter discussed in the following Section.

(a) Approximate Analysis (b) Numerical Simulation

Figure 6.4. Growth of Unstable Motions According to (a) the Approximate Analysis; and (b)
a Numerical Simulation
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(a)

(b)

Figure 6.5. Comparison of the Spectra for the Waveforms in Figure 6.4

Figure 6.6. E®ect of Truncation in the Waveforms
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7. NONLINEAR BEHAVIOR

It is linear behavior, especially linear stability, that is most easily understood and therefore has dominated
discussions of combustion instabilities. Almost no attention has been paid to nonlinear behavior in works on
control of combustion instabilities. One justi¯cation for that de¯ciency has been the view that if control of the
oscillations works properly, it should stop the growth before the amplitude reaches a large value. There are several
reasons why that reasoning is °awed:

² if the growth rates are unusually large the control system may not have a su±ciently large
bandwidth to be e®ective;

² because combustion systems are intrinsically nonlinear design of a control system based only
on linear behavior may produce a control system far from optimal;

² linear control demands actuation at the frequency of the oscillation to be controlled, while
nonlinear control of particular types are e®ective at lower frequencies; an example is described
in Section 7.

² observed nonlinear behavior contains much information about properties of the system in
question and in the interests of understanding should not be ignored.

Existing examples of controlling combustion instabilities have almost totally ignored issues of nonlinear be-
havior. In no demonstration, either in the laboratory or full-scale, have the amplitudes of the oscillations been
predicted or interpreted either before or after control has been exercised. Hence nothing has been learned about
why the initially unstable motions reach the amplitudes they did, or, why the control system a®ected them in the
observed way. In fact few attempts exist to determine quantitatively the stability of motions. Hence the subject
of controlling the dynamics of combustion systems has largely been a matter of exercising the principles of control
with little attention paid to the characteristics of the systems (`plants') being controlled. It seems that following
this strategy is likely not the most fruitful way of achieving meaningful progress. Especially, this is not a sound
approach to developing the basis for designing control systems. The current state of the art is that feedback
control is designed and applied in ad hoc fashion for systems already built and exhibiting instabilities.

A central concern of a controls designer is construction of a `reduced order' model of the system. What
that really means in the present context is the need to convert the partial di®erential equations of conservation
developed in Section 3, to a ¯nite system of ordinary di®erential equations. The analysis developed in Section 3 and
4 accomplishes exactly that purpose. It is not the only approach possible (e.g. proper orthogonal decomposition
has been examined brie°y) but the method of modal expansion and spatial averaging has many favorable properties
and has been proven to work well.

The main purposes of this section are to quote a few results displaying some aspects of the nonlinear behavior
arising from gasdynamics; and to illustrate some consequences of truncating the modal expansion, that is, what
might be the consequences of reducing the order of the model. Another important issue we will examine brie°y
is the application of time-averaging. As the calculations in Section 4 showed, the great advantage of time-
averaging is that it replaces N second order oscillator equation by 2N ¯rst order equations. That transformation
enormously reduces the cost of obtaining solutions, aids theoretical work, and provides a simpli¯ed representation
for application of feedback control. But as for truncation, the question arises: How accurate are the results and
what are the limits of the validity of time-averaging?

Only the nonlinearities due to gasdynamics are treated in this section. The results must be viewed with
that caveat, particularly because the forms of the nonlinearities are very special, if only because the dominant
coupling acts to cause energy to °ow from low to high frequency waves, the tendency which produces the familiar
steepening of compressive disturbances into shock waves.

7.1. The Two-Mode Approximation. This is the simplest class of problems for which nonlinear mode
coupling is accommodated. Each mode is characterized by two constants: ® (energy gain or loss) and µ (frequency
shift). The energy gain or loss may be nonlinear|that is, ® could in principle depend on amplitude|but here
both ® and µ are taken to be constant, characterizing entirely the linear processes. As a result of several works
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in the past few years, the two mode approximation is quite well understood (Awad and Culick, 1986; Paparizos
and Culick, 1989; Yang and Culick 1990; Jahnke and Culick, 1994; Culick, 1994).

Figure 7.1. Energy Flow in the Two Mode Approximation

Only gasdynamic nonlinearities to second order are accounted for here. Their special form allows the conve-
nient closed form solutions to the time-averaged equations, ¯rst found by Awad (1983). The results provide much
basic understanding which is applicable to more complicated nonlinear problems. For example, contrary to one's
expectation based on the behavior of shock waves, nonlinear behavior in the present context need not involve
large amplitudes, and the pressure oscillation may appear to be a clean sinusoid, free of signi¯cant harmonic
content. The basic reason is that here the two-mode system both gains and loses energy; each interaction with
the environment is necessary. In the absence of the nonlinear modal coupling, or some other linear process, limit
cycles cannot exist. Moreover, both stable and unstable limit cycles exist.

Truncation of the modal expansion to two modes introduces errors because the °ow of energy to higher modes
is blocked. The amplitude of the highest mode is therefore greater than the correct value in order to provide the
higher linear rate of energy loss required to sustain a limit cycle. The example in Section 6.5.1 shows this e®ect.

It's an interesting feature of the two-mode approximation that nonlinear instability to stable limit cycles
seems not to exist. Although no rigorous proof exists, experience with many examples has shown that conclusion
to be quite generally true if only the acoustic (gasdynamics) nonlinearities are accounted for. `Triggering' or
pulsing to stable limit cycles does occur for special forms of nonlinear energy gain from the environment (i.e.
extinction from the mean °ow or supply from combustion processes).

If we ignore linear mode coupling and account for acoustic nonlinearities to second order, the oscillator
equations can be put in the form

d2´n
dt2

+ !2n´n = ®n _́n + µn´n ¡
1X
i=1

1X
j=1

fAnij _́i _́j +Bnij´i´jg+ FNLn (7.1)

where FNLn represents other nonlinear contributions. The coe±cients Anij , Bnij are de¯ned as integrals involving
the basis functions Ãnij . Hence their values are ¯xed primarily by the geometry of the chamber in question.
See Culick (1976) for additional details of the derivation of (7.1). It is extremely important that the nonlinear
gasdynamic terms involve no cross-products _́i´j and also (not obvious here) no `self-coupling', terms proportional
to _́2n or ´

2
n. Those properties are the formal reasons that nonlinear instabilities do not exist if only these

nonlinearities are included.

Equation (7.1) simplify considerably for longitudinal modes. Due to orthogonality and special properties of
the cos knz, the double sum becomes a single sum and (7.1) can be put in the form:

d2´n
dt2

+ !2n´n = ®n _́n + µn´n ¡
1X
i=1

h
C
(1)
ni _́i _́n¡i +D

(1)
ni ´i´n¡i

i
¡

1X
i=1

h
C
(2)
ni _́i _́n+i +D

(2)
ni ´i´n+i

i
+ FNLn

(7.2)
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The time-averaged forms of (7.2) are

dAn
dt

= ®nAn + µnBn +
n¯

2

iX
[Ai(An¡i ¡Ai¡n ¡Ai+n)¡Bi(Bn¡i ¡Bi¡n ¡Bi+n)]

dBn
dt

= ¡µnAn + ®nBn + n¯
2

iX
[Ai(Bn¡i ¡Bi¡n ¡Bi+n)¡Bi(An¡i ¡Ai¡n ¡Ai+n)]

(7.3) a,b

where as in Section 3, ´n = An cos!nt + Bn sin!nt. For longitudinal modes, the frequencies are all integral
multiples of the fundamental, a property that is crucial to the forms of (7.3) a,b. For example, for transverse
modes in a cylindrical chamber, the nonlinear terms contain factors representing modulation.

For two modes, the four ¯rst order equations are

dA1
dt

= ®1A1 + µ1B1 ¡ ¯(A1A2 ¡B1B2)
dB1
dt

= ®1B1 + µ1A1 ¡ ¯(B1A2 ¡A1B2)
dA2
dt

= ®2A2 + µ2B2 ¡ ¯(A21 ¡B21)
dB2
dt

= ®2B2 + µ2A2 ¡ 2¯B1A1

(7.4) a,b,c,d

The great advantage of this system of equations is that some useful exact results can be found. One way to ¯nd
them is to change independent variables to the amplitude and phases (¡n; Án) of the two modes by writing

´1(t) = ¡1(t) sin(!1t+ Á1)

´2(t) = ¡2(t) sin(2!1t+ Á2)

where ¡n =
p
A2n +B

2
n. The governing equations for ¡1;¡2 and the e®ective relative phase Ã = 2Á1 ¡ Á2 are

d¡1
dt

= ®1¡1 ¡ ¯¡1¡2 cosÃ
d¡2
dt

= ®2¡2 ¡ ¯¡21 cosÃ
dÃ

dt
= (µ1 ¡ 2µ1) + ¯(2¡1 ¡ ¡

2
1

2
sinÃ

(7.5) a,b,c

where

¯ =
µ2 ¡ 2µ1
2®1®2

(7.6)

The problem of linear stability is solved directly:

®1; ®2 < 0() small amplitude motions are stable (7.7)

Nonlinear behavior in general poses two basic questions:

(i) What are the conditions for existence of limit cycles?
(ii) What are the conditions that the limit cycles are stable?

Stability of a limit cycle of course is a matter entirely separate from the linear stability of small amplitude
motions. We are concerned here with a system executing a steady limit cycle. If the limit cycle in stable, then if
slightly disturbed, the motion will eventually return to its initial form

(a) Existence of Limit Cycles

In this time-averaged formulation, existence of limit cycles corresponds to existence of stationary or equilib-
rium points of the system (7.5) a,b,c:

d¡

dt
=
d¡2
dt

=
dÃ

dt
= 0() transcendental algebraic equations
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The solutions are

¡10 =
1

K

p
¡®1®2(1 + ¯2)

¡20 =
1

K

q
®21(1 + ¯

2)

Ão = tan
¡1(¡¯)

(7.8) a,b,c

where

K =
° + 1

2°
!1 (7.9)

For ¡10 to be real, ¡®1®2 must be positive, implying that the constants ®1; ®2 must have opposite signs. The
physical interpretation is that if the ¯rst mode is unstable, for example, ® > 0, then the second mode must be
stable (®2 < 0): the rate of energy °ow into the ¯rst mode must equal the rate of loss from the second mode in
order that the amplitudes be constant in time. The transfer rate upwards due to coupling must have the same
value. Similar reasoning explains the care when the second grade is unstable, requiring that the ¯rst mode to be
stable.

(b) Stability of Limit Cycles

To determine the stability of the limit cycles, the variables are written as ¡i = ¡i0 + ¡
0
i; Ã = Ão + Ã

0 and
substituted in the governing equations (7.5) a,b,c. The linearized equations for the disturbances are then solved
for characteristic value ¸ in the assumed forms ¡0i = ¡

0
i0e

¸t; ¢ ¢ ¢ . For stability, an initial disturbance must decay.
Applying that requirement produces regions of stability in the plane of the parameters ¯o = (µ2¡2µ1)2=(®2+2®1)2
and ®2=®1, shown in Figure 7.2

Figure 7.2. Regions of Stability for Two Modes, Time-Averaged Equations

There is presently no basis for understanding why stable limit cycles occur only for the special ranges of
parameters shown in Figure 7.2. Moreover, it is impossible at this stage to understand the extent to which the
shapes of the regions of stability depend on the use of time-averaged equations and on truncation to two modes.
It is important for both practical and theoretical reasons to assess and quantify as far as possible the consequences
of time-averaging and truncation. Considerable progress has been made in that direction by using a continuation
method to solve the systems of oscillator equations. Some results are discussed in the following section.
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Here it is useful to examine several special cases. Figure 7.3 shows that if the parameters are chosen so that
the operating point lies with the range for stable limit cycles and the ¯rst mode is unstable, truncation may have
relatively small e®ects. On the other hand, if the limit cycle is unstable within the two-mode approximation with
an unstable ¯rst mode, it may become stable (with the same values of ®1; ®2; µ1; µ2) if more stable modes are
accounted for.

Figure 7.3. E®ects of Truncation for a Stable Limit Cycle/First Mode Unstable

Figure 7.4. Development of a Stable Limit Cycle when the Second Mode is Unstable

Figure 7.4 is interesting for a quite di®erent reason. In this case the second mode is unstable, and the motion
evolves to a stable limit cycle. However, unlike the example in Figure 7.3, the amplitudes do not grow smoothly
and monotonically to their values in the limit cycle. Their erratic behavior is due to the fact that with the second
mode unstable, energy must °ow from high frequency to low frequency. That is contrary to the direction of °ow
imposed naturally by the °uid mechanics (of the steepening of a compressive disturbance into a shock wave). The
con°ict between the natural action of the nonlinear coupling on the one hand and the °ow of energy imposed by
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energy exchange with the environment causes the amplitudes of the two modes to wander during the transient
phase before ¯nally reaching their ultimate values.

7.2. Application of a Continuation Method. Much of the work during the past decade at Caltech on
chamber dynamics has been directed to understanding the extent to which nonlinear behavior can be explained on
the basis of nonlinear gasdynamics. The reasoning is that ¯rst we know the model of gasdynamics|the Navier-
Stokes equations for compressible °ow|so we can do accurate analysis; and second, those features that cannot
be explained must be due to other causes so, by elimination we have some guidelines for what we should seek in
other processes. Experience has shown that `other processes' is this context most probably means combustion.

To carry out this program with numerical simulations|after all, few exact results exist|would be a formi-
dable task because of the number of characteristic parameters. The parameter space comprises those de¯ning
the geometry of a chamber and two parameters (®n; µn) characterizing linear behavior of each mode. The e®ect
required to search the parameter space is much reduced by applying a continuation method. The procedure is
an e±cient system means of locating values of parameters for which the dynamical behavior su®ers a qualitative
change, i.e. bifurcation points. The simplest|almost trivial|example is the Hopf bifurcation point which arises
when for a stable system one of the values ®n changes from a negative to a positive value; the system becomes
linearly unstable and under suitable conditions the motion develops into a stable limit cycle. In fact, linear
instability is not always such a simple matter. We have found cases with special sorts of nonlinear processes that
a Hopf bifurcation may occur when the critical value of the critical ®n is non-zero.

The essential idea of a continuation method applied to limit cycles is illustrated in Figure 7.5 where the
variables of the motion are x(t) and ¹ is the parameter in question, the bifurcation parameter. A continuation
method is a computational (numerical) scheme for following, in this case, the changes of a period solution|a
limit cycle|as the values of one or more parameters are changed. A picture like Figure 7.5 is impossible to draw
for more than three coordinates so the conventional display of information is a bifurcation diagram in which the
amplitude of one variable in the limit cycle is plotted versus the parameters varied as the continuation method is
applied. Figure 7.5 shows two examples, a Hopf bifurcation, also called a supercritical bifurcation and a subcritical
bifurcation with a turning point. Those are the two types of bifurcation most common in the present context.

Figure 7.5. Schematic Illustration of the Continuation Method Applied to Limit Cycles

Figure 7.6. Two Examples of Bifurcation

Thus a bifurcation diagram is a locus of equilibrium point traced as the bifurcation parameter is changed.
As a practical matter, application of a continuation method is more systematic and cheaper to use than use of
numerical simulations. We have successfully used a continuation method (Doedel et al. 1991a,b; Doedel et al.
1997) to investigate four classes of problems:
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(i) consequences of time-averaging
(ii) consequences of truncating the modal expansion
(iii) in°uences of the linear parameters (®n; µn) on nonlinear behavior
(iv) pulsed instabilities: the conditions for existence of stable limit cycles in a linearly stable

system.

The problems (i) and (ii) are central to the matter of constructing reduced-order models. Hence it is important
to emphasize that in our view, application of the continuation method to investigate the consequences of time-
averaging and truncation is part of the procedure for establishing the validity of reduced order models within the
framework of analysis based on modal expansion and spatial averaging.

The continuation method is a powerful means for investigating many nonlinear problems in the classic listed
above. For more extensive discussions see Jahnke and Culick (1994); Burnley (1996); Burnley and Culick (1996);
and Ananthkrishnan and Culick (2002). As an illustration we quote here some results for limit cycles for systems
of longitudinal modes when only the gasdynamical nonlinearities are accounted for. We are interested in the
consequences of truncation with time-averaging.

In Section 7.1 we cited a few results for the limiting case of two modes described by the four equations found
with time-averaging. Figure 7.3 shows the special example of as e®ect of truncating the series expansion for the
time-averaged system: increasing the number of modes apparently widens the region of stability. In fact, use of
the continuation method has established the result that the existence for region of stability for limit cycles with
two modes is due to truncation. When the ¯rst mode is unstable, stable limit cycles exist for all values of ®, if
more than two modes are taken into account. That is true even if the original oscillator equations are used.

Figure 7.7 shows that if time-averaging is not used, there is a turning point in the bifurcation diagram. If

Figure 7.7. E®ect of Time-Averaging for Two Modes

more than two modes are accounted for, the boundary of stability persists for the time-averaged equations but
does not appear if more than two modes are included. Figure 7.8 is the result for the time-averaged equations
and Figure 7.9 shows the case of 4 modes computed for the full oscillator equations.

It seems true that if the system is only slightly unstable, then the system of time-averaged equations for
two-longitudinal modes is a good approximate model for investigating nonlinear behavior. However, if one is
generally interested in producing reduced order models, the e®ects of truncation and time-averaging should be
investigated. Applying a continuation method seems to be the best approach for doing so.
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Figure 7.8. Stability Boundaries by Truncation of the Time-Averaged Equations

Figure 7.9. Maximum Amplitude of ´1 in The Limit Cycle: Four Modes, Comparison of Results
for the Full Oscillator and the Time-Averaged Equations

7.3. Hysteresis and Control of Combustion Instabilities. The existence of hysteresis in the dynamical
behavior of combustions is both an interesting phenomenon to investigation and a characteristic that has poten-
tially important practical consequences. It seems that the ¯rst evidence for hysteresis in combustors was found
by Russian researchers concerned with instabilities in liquid rockets (Natanzon et al 1993; Natanzon 1999). In
that case, Natanzon and his co-workers proposed bifurcation of steady states of combustion, and the associated
hysteresis, as a possible explanation for the random occurrences of combustion instabilities. The Russian workers
were in a special situation a®ording them the opportunity to make such observations. The large Russian boosters
were designed to use many (up to thirty-three) liquid rocket engines in a single stage. Hence large numbers of
nominally identical engines were manufactured and tested for operational use. Su±cient data were obtained that
statistical analysis of the behavior could be carried out. Hence a basis existed for identifying random behavior.
The idea is the following.
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In a liquid rocket many zones of recirculation are created at the injector where jets of liquid fuel and/or
oxidizer enter the chamber. As an approximation, one may regard a recirculation zone as a chemical reactor
whose behavior is known to be well-characterized by the temperature of the incoming gases entrained from the
environment, and the average temperature within the zone. A fairly simple calculation based on consideration
of energy and mass °ows leads to the results sketched in Figure 7.10. The upper and lower branches of the

Figure 7.10. Hysteresis Loop for a Recirculated Zone Idealized as a Simple Chemical Reactor

hysteresis loop represent di®erent branches of stable combustion. Those states have di®erent in°uences on the
state of combustion in the chamber. It was Natanzon's assertion that the state associated with the lower branch
in Figure 7.10 (the cold recirculation zone) is more unstable and prone to lead to combustion instabilities. Which
branch is reached depends on the history of the engine, starting from ignition or some other sort of abrupt
transient. The ¯nal state of a recirculation zone therefore depends on random `accidents' of history. Therefore
random occurences or combustion instabilities may be observed. Figure 7.11 is a sketch of a possible recirculation
zone and adjacent °ow of a fuel or oxidizer jet, this model has been used as the basis for numerical calculations
supporting Natanzon's proposal.

Figure 7.11. Sketch of a Recirculation Zone formed by a Jet of Fuel or Oxidizer

In the mid-1980's research with a dump combustor at Caltech revealed the presence of a di®erent kind of
hysteresis of dynamical states of combustion (Smith, 1985; Sterling, 1987). The combustor has been described in
Section 1, Figure 1.3; Figure 6.2 shows the inlet region and the recirculation zone at the dump plane during steady
combustion. The combustor showed combustion instabilities in the neighborhood of the stability boundary de¯ned
in the plane of °ow rate and equivalence ratio. Figure 7.12(a). Figure 7.12(b) shows the hysteresis loop, observed
as dependence of the level if pressure oscillation on equivalent ratio with the total °ow rate held constant. This
sort of behavior has been observed also in other dump combustors (J. Cohen, UTRC; and G. Richards, METC) as
well as as in a °ame-driven Rijke tube (Seywert, 2001) and in an electrically driven Rijke tube (Matveev, 2002).

More recent works (Knoop et al. 1996; Isella et al. 1996) have established the physical nature of the
hysteresis in this case and have shown how active control can be used to extend the range of steady operation
into the hysteretic region. High speed ¯lms have con¯rmed that the upper branch of the loop is associated
with shedding of large vortices which, causing periodic combustion of entrained reactants sustain high amplitude
pressure oscillations. The lower branch is associated with relatively quiet combustion in a shear layer shed from
the lip at the inlet.
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(a) (b)

Figure 7.12. (a) Stability Boundary and (b) an Idealized Hysteresis Loop for the Caltech Dump Combustor

Familiar considerations of dynamical behavior suggest that it should be possible to achieve pulsed transitions
between the two branches of stable dynamical states. Those processes were demonstrated by Knoop et al and
Isella et al by injecting pulses of fuel at the inlet plane. Single pulses of fuel always cause transition from the
upper to the lower branch. Thus with suitable sensing and actuation it is possible always to maintain the low
level of oscillations (e®ectively `noise') within the zone where hysteresis exists.

This is a form of nonlinear control. Although it has been demonstrated only for the range of equivalence ratio
covering the zone of hysteresis, it is an important demonstration of active control at a frequency far less than the
frequency of the oscillations. That is a signi¯cant characteristic because if the reduced bandwidth required of the
control system, particularly the actuation.

7.4. Representing Noise in Analysis of Combustor Dynamics. Even a small laboratory combustor
radiates considerable noise, generated by turbulent motions (often called `combustion noise') within the chamber.
See, for example, the spectrum reproduced earlier as Figure 1.4. The scaling laws are not known, but it is obvious
to any bystander that a full-scale combustor of any sort is noisy indeed. Presently it is not well understood
how important noise is to the behavior of combustion instabilities or to the application of feedback control. The
purpose of this section is to introduce a means for investigating those matters within the framework developed
in Sections 3 and 4.

There are three sorts of problems that will arise:

(i) formal construction of noise (stochastic) sources in the framework of spatially averaged equa-
tions for unsteady motions in a combustor;

(ii) modelling the noise sources;
(iii) solving the stochastic di®erential equations.

The ¯rst step, as explained in Section 3.1, is to apply the principle of splitting small disturbances into the
three basic modes of propagation: acoustic waves, vorticity waves, and entropy waves. All of the discussion so far
in these lectures has been devoted to the acoustic ¯eld. Noise is associated with the random motions comprising
mainly vorticity but also entropy (or temperature) waves in a combustion chamber. Our concern in the present
context is directed chie°y to interactions of those motions with the acoustic ¯eld. The formal representation will
be relatively simple and intuitively persuasive, but modelling the details remains to be accomplished. Numerical
results require assumptions that cannot be justi¯ed a priori.
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Following the principle of splitting, we write the °ow variables as sums of the three contributions, one each
corresponding to the three modes of motion:

p0 = p0a + p
0
− + p

0
s

−−−0 = −−−0a +−−−
0
− +−−−

0
s

s0 = s0a + s
0
− + s

0
s

u0 = u0a + u0− + u0s

(7.10) a,b,c,d

Subscripts ( )a, ( )−, ( )s denote acoustic, vortical and entropic contributions. Once again, the ordering
procedure explained in Sections 3 and 4 allows us to derive meaningful results by considering only the ¯rst order
components. Hence we assume that only the acoustic waves contain pressure °uctuation; only the waves of
vorticity contain vorticity °uctuations; and only the entropy waves have °uctuations of entropy. The velocity
¯eld possesses contributions from all three modes.

The idea then is to substitute the assumed general forms of the variables and substitute in the primitive
equations of motion expanded to third order in the °uctuations. Then form the nonlinear equation for the
pressure and apply spatial averaging. This procedure was ¯rst reported by Culick et al. (1992) but in revised and
corrected form by Burnley (1996) and Burnley and Culick (1999). Eventually one ¯nds the oscillator equations,
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and similar de¯nitions for the remaining integrals I1. See the references for details.

Then the unsteady velocity ¯eld is split according to (7.10) a,b,c,d. Eventually re-arrangement and application
of the assumptions discussed above leads to the result
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(7.11)

where the »vni, »ni and ¥n are stochastic sources de¯ned as integrals over the vortical and entropic °uctuations of
the velocity. See the references cited above for details.

No modeling based on experimental, theoretical or phenomenological grounds has been accomplished. Explicit
results have been obtained by approximating the stochastic sources as white noise processes having properties
chosen to be realistic, i.e. the results seem to be reasonably consistent with available measurements of actual
behavior.

Two types of stochastic in°uences arise in (7.11):

(i) ¥ni, ¥
v
ni represent stochastic in°uences on the `spring' or natural frequency of the n

th mode
and on the damping or growth rate. These are formally referred to as `multiplicative noise
sources' because they appear as factors multiplying the dependent variables, the displacement
and velocity of the nth oscillator.

(ii) ¥n represents a stochastic driving source causing excitation of the n
th oscillator even in

the absence of driving by combustion processes; the ¥n are formally called `additive noise
sources'.
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It is evident from the form of (7.11) that the random character of the stochastic sources will appear as
random °uctuations imposed on the amplitudes ´n(t) of the acoustic modes; exactly the sort of behavior found
experimentally. Thus, Fourier synthesis of the pressure ¯eld, the modal expansion, continues to serve as a good
approximate representation of the deterministic results can be obtained by retaining only a small number of
terms.

Results were obtained ¯rst for the simplest, case of two modes, with noise sources only in the fundamental
mode. Nonlinear gasdynamic coupling transfer stochastic behavior to the second mode. Computations have been
carried out with a Monte-Carlo method to give probability density functions, with the equations written in the
Stratonovich form of stochastic di®erential equations (Burnley, 1996). Figure 7.13 shows the pressure trace and
spectrum for a simulation in which the ¯rst mode is unstable.

Figure 7.13. Pressure Trace and Spectrum for a Simulation with Noise; Four Modes Included,
First Mode Unstable

This method of accounted for noise in a combustor seems to be very promising. However modeling the
noise sources is in a primitive state, and comparisons of results with experimental observations can only be done
qualitatively.

7.5. System Identi¯cation for Combustor Dynamics with Noise. Use of system identi¯cation in the
¯eld of combustor dynamics seems to have been developed ¯rst by Russian groups as part of their development of
liquid rocket engines, beginning perhaps as early as the 1950's but certainly in the 1960's (Agarkov et al. 1993).

In several papers during the 1980's, Hessler (1979, 1980, 1982) and Duer and Hessler (1984), and more recently
Hessler and Glick (1998) have asserted that the oscillations observed as combustion instabilities in solid rocket
motors are driven rather than self-excited. The sources of the driving|i.e. the `mechanisms'|are supposed to
be either vortex shedding or noise. Hessler and co-workers conclude that the properties of the noise measured in
a stable chamber can be used as the basis for infusing properties of the primary mechanism causing instabilities
when they arise or more correctly, such data will provide quantitative information about the static stability
margins|how close the dominant acoustic modes are to becoming unstable.

The basic idea is sound. When the mechanisms are interpreted as driving forces independent of the acoustic
¯eld, and they are assumed to be broad-band, then the acoustic modes are excited to amplitudes related directly
to the amount of damping (®n). Hence the idea is to process noisy records in such a fashion as to extract the
values of the linear parameters (®n; µn). The proposed method can be tested using the oscillator equations with
some sources derived in the preceding section.
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Seywert and Culick (1999) have reported results of some numerical simulations carried out to check the idea
just described. In particular, the main purpose was to determine the accuracy with which the experimental
method would give the linear parameters. The procedure is straightforward. To be de¯nite and to keep the
computations within practical bounds, we consider a system of four modes, each containing noise sources which,
as explained in Section 7.4, are assumed to be white noise. The amplitudes of the noise (rms values) are selected
so that random amplitude °uctuations in the pressure spectrum have values in the ranges experimentally observed
(Seywert and Culick).

Three types of problems arise, associated with the three types of noise sources: additive noise, ¥n; and two
kinds of multiplicative noise, »vn which a®ects mainly the growth and decay rates, and »n which causes random
variations of the frequency. In all cases we are concerned here with discovering the ways in which noise a®ects the
result of system identi¯cation. The idea is to select values of the ®n, µn and carry out numerical simulations. The
data are then processed to give values of the ®n, µn which now have mean values and some uncertainties due to the
presence of the noise. The questions to be answered are: How close are the mean values to the time values used as
inputs? and How large are the uncertainties? These are important practical matters. If the method is e®ective,
then data from hot ¯rings of full-scale combustors could be used to infer the linear parameters characterizing
the dynamics represented by several modes. Those parameters identify the poles of the response function of
the chamber. Hence a relatively straightforward process would give the information required to proceed with
designing a linear control system (see Section 2.5).

Actually there are two ways to get the information: process pressure records naturally occurring; or process
the pressure record following an pulse. The method of pulsing has long been used as means of assessing the
stability margin of liquid rockets (Harrje and Reardon, 1972). Both methods have been used for a stable system
of four longitudinal modes having the parameters given in the table; the fundamental frequency is 900 s¡1. Figure
7.14 shows a simulated pressure trace and Figure 7.15 shows its power spectrum and construction using Berg's
method.25

mode 1 2 3 4

®n(s
¡1) ¡50 ¡375 ¡584 ¡889

µn(s
¡1) 12:9 46:8 ¡29 ¡131

Table 7.1. Values of the Linear Parameters

Figure 7.14. Simulated Pressure Trace with Noise; All Modes Stable

25Berg's method is a standard method of signal processing, widely available. We have used the software included in the Signal
Processing Toolbox, and extension of MATLAB.
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In Figure 7.17, a simulated response to a pulse is ¯tted by the superposition of four modes:

p0

¹p
=

4X
i=1

Aie
®it cos(!it+ Ái)

The parameters Ai, ®i, !i, Ái are ¯tted using a least squares method.

Figure 7.15. Application of Berg's Method: Power Spectrum of the Pressure Trace in Figure
7.14 and its Reconstruction

Figure 7.16. Dependence of the Peak Amplitudes of the Power Spectra for Four Modes, on Noise Power

Without good data for the noise in an actual combustor and no model, we assume white noise sources. Their
amplitudes are chosen so that the average (rms) values of the simulated pressure records are reasonable Table 7.2
shows the relation between the rms value of the system response (p0=¹p) and the noise power of ¥. The `noisepower'
cannot be measured, being the height of the power spectral density of the noise. Figure 7.16 gives a more detailed
picture, showing how the amplitudes of the spectra of the four modes increase with noise power.

We use the noise power as a parameter. Figure 7.18 shows an example of the sort of results one ¯nds for
multiplicative noise in the modal damping (»vn 6= 0; »n = 0; ¥n = 0). The corresponding results of using the
pulse method are given in Figure 7.19.
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Noise Power of ¥n rms Values of p0=¹p

101 :005%

103 :05%

105 :5%

Table 7.2. Relation Between the Noise Power of ¥n and the rms Value of the Simulated Pressure
Fluctuation

Figure 7.17. Reconstructed Pressure Trace for the Transient Response Excited by a 10% Pulse

Figure 7.18. Values of Decay Rates (Modal Attenuation) Found with Berg's Method with
Multiplicative (»n) Noise

We conclude from these results that substantial errors may accompany system identi¯cation in the presence
of realistic (we believe) noise. How signi¯cant the errors are depends the particular application at hand and in
how small the stability margins are. For a weakly stable system, values of the margins determined in this way are
suspect because of the ¯nite uncertainties. The results would therefore not be useful as a basis for representing
the combustor's response function.
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Figure 7.19. Values of Decay Rates (Modal Attenuation) Found with the Method of Pulsing

It should be clear from the nature of the methods described here that the system must be stable (i.e. all
modes must be stable) for this application. For example, if data (simulated) for a limit cycle are processed in
this fashion, the inferred values of ®n, µn have no apparent connection with the correct values.
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8. PASSIVE CONTROL OF COMBUSTION INSTABILITIES

Given the irrefutable observational evidence that combustion instabilities will almost inevitably occur during
development of new motors, the problem of treating them becomes crucially important. The goal must be to
eliminate undesirable oscillation, but as a practical matter it may well be satisfactory to reduce their amplitudes
to acceptable levels. The manufacturer and the customer must then be con¯dent that the amplitudes will not
grow unexpectedly at some later time.

Figure 1.6 suggests the intentions or goals of introducing passive control:

(i) Increase the losses of acoustic energy so they exceed the gains in the frequency range where the instability
occurs;

(ii) Reduce the gains of acoustic energy below the losses; or

(iii) Shift the natural frequencies of the chamber modes so that none lie within the range of frequencies where
the gains of acoustic energy exceed the losses.

The chief ways of achieving these goals in practice are:

(i) Increase the losses of acoustic energy:
² modify the geometry including possibly, the shape of the nozzle entry section
² add resonators, ba²es or `resonant rods'
² introduce stability additives

(ii) Reduce the gains of acoustic energy:
² eliminate geometrical causes of vortex shedding
² change the composition of the propellant|notably the size distribution of oxidizer particles
² introduce stability additives

(iii) Shift the natural frequencies of the chamber
² change the geometry of the chamber

Of the various possibilities, the most commonly used now are changes of geometry, and introduction of stability
additives.

Generally there are three reasons to revise the internal design: eliminate possible causes of vortex shedding;
shift the frequencies of the normal modes; and increase the gains, or reduce the losses of acoustic energy. The
last tactic rests on understanding the contributions to the growth/decay constant, as well as the way in which
the shape of the grain changes with time during a ¯ring. The results shown in Figure 8.1 illustrate the point.

It is particularly important to know as well as possible the relative importance of pressure and velocity
coupling. That understanding requires knowing the acoustic mode shapes|easily acquired (or estimated if
necessary)|and, more importantly, the response functions of the propellant for pressure and velocity coupling.
We have emphasized in Section 2 that at the present time data for the pressure coupled response can be obtained
only with di±culty and considerable uncertainty. There is no method for routinely determining the velocity
coupled response.

The problem of relating changes of composition of a propellant to changes of its combustion dynamics remains
essentially unsolved. Experience has provided some guidelines (in°uences of AP particle size distribution is
perhaps the best example) but what is available has largely to do with the e®ects of quite signi¯cant changes of
composition on the pressure-coupled response. The consequences of small changes of composition (which may be
inadvertant and within manufacturing speci¯cations) are simply not understood. The inability to obtain accurate
experimental results is a serious obstacle to improving this situation.

To good approximation, the dynamics of velocity coupling are not understood. Qualitative ideas are available
(see Section 2) but|again due to the lack of a good test method|the true mechanisms cannot be determined
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and it is impossible to collect quantitative information. This remains, in the author's opinion, the most signi¯cant
and di±cult outstanding problem in this ¯eld.

In practice, much reliance has been placed on small changes of propellant composition, the use of `stability
additives.' Following the early use of resonance rods to provide stability in small motors, the favorable e®ects of
stability additives were ¯rst investigated in the 1950s and 1960s (Summer¯eld 1960; Waesche 1999; Price 1971;
Evans and Smith 1978). Much of the experience rests in proprietary company ¯les, possibly under the heading
\fairy dust."

Stability additives seem to have two main consequences: they may change the propellant response function
(pressure or velocity coupling or both); and they certainly a®ect the properties of condensed combustion products
that act to attenuate acoustic oscillations. As many as 80 di®erent additives have been studied, but only a very
small number have been widely used. The most common are aluminum oxide and zirconium oxide. Changing the
properties of the primary metallic aluminum in the propellant may have substantial favorable consquences.

Changes in the response function may be due both to physical and chemical processes. What actually happens
cannot be established unambiguously. In this situation, the collaboration of experimental tests (however crude);
observation of the behavior of sub- and full-scale motors; spectulation; and theory, is extremely important. The
continued elaboration of analyses of the sort discussed brie°y in Section 2 is basic to this process, including
calculation of linear and nonlinear dynamical behavior in motors.

For motors containing aluminum, the most signi¯cant damping process is the viscous interaction between
condensed material and the surrounding gases under oscillatory conditions. The amount of attenuation is pro-
portional to the amount of condensed material present but especially depends on the particle size distribution.
Figure 8.1 shows the results of calculations of the attenuation. The main and extremely important point is that
for a given frequency and particle loading (mass of particles per unit mass of gas/particle mixture) the maximum
attenuation is strongly dependent on particle size. Hence in practice, means are sought to alter the combustion of
the propellant and aluminum to generate particles of condensed aluminum oxide having size suitable for greastest
damping of the instability at hand. In recent years this has been possibly the most widely used (or at least
contemplated) strategy to treat instabilities in motors operating with metallized propellants and has often been
successful. The strategy is of course less relevant to smokeless and low smoke systems. Hence the search for `fairy
dust.'

Figure 8.1. Attenuation of Acoustic Waves by Particles Suspended in a Gas.
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A. EQUATIONS OF MOTION

Combustion systems commonly contain condensed phases: liquid fuel or oxidizer and combustion products
including soot and condensed metal oxides. Hence the equations of motion must account for two or three phases
and at least one species in each. For investigating the dynamics of combustors, it is entirely adequate to represent
each phase as its mass average over all member species. It is unnecessary to distinguish liquid and solid material
and we assume a single species in the condensed phase, devoted by subscript ( )l. For some applications it is
appropriate to extend the representation slightly to accommodate distributions of particle sizes, not included in
this appendix. There is some advantage to treating the gas phase as a multi-component reacting mixture. As the
primitive conservation equations we therefore begin with the following set:

A.1. General Equations of Motion. Conservation of Species

@½i
@t

+r ¢ (½iui) = wi + w(l)i + wei (A.1)

Global Conservation of Mass, Gas Phase

@½g
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+r ¢ (½gug) = w(l)g + weg (A.2)

Global Conservation of Mass, Condensed Phase26
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Global Conservation of Momentum
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Equation of State, Gas Phase

p = ½gRgTg (A.6)

For simpli¯cation, the above equations already contain some terms involving mass averaging over the species

comprising the gas phase, namely the viscous tensor
$
¿
$
¿
$
¿ v; the vector q representing heat conduction; and the

equation, of state (A.6). For more complete derivations of the equations for multicomponent mixtures, see for
example Chapman and Cowling (1958); Hirschfelder, Curtis and Bird (19 ); Truesdell and Toupin (1960); and
Williams (1985). Superscript ( )(l) means that the liquid phase is the source and subscript ( )e denotes an external
source. It follows from repeated use of the Gibbs-Dalton law for mixtures of perfect gases that p is the sum of
partial pressures, ½g is the sum of the densities and R is the mass average of the individual gas species, so for the
gas phase we have

p =
X

pi

½g =
X

½i (A.7) a,b,c

Rg =
1

½g

X
½iRi

26Note that ½l represents the mass of condensed material per unit volume of chamber, not the density of the material itself.
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Subscript ( )i identi¯es the i
th gaseous species; and in all cases except Tg, ( )g means a mass average over all gas

species as, for example,

ug =
1

½g

X
½iui =

X
Yiui (A.8)

where Yi = ½i=½g is the mass concentration of the i
th species.

Writing equations (A.1){(A.5) explicitly with sums over species allows proper accounting of the in°uencesof
di®usion, and leads to the formula for energy released by chemical reactions written in the conventional fashion.
Thus the basis for subsequently modeling is rigorously set. For analysis of unsteady motins in combustors it is
perfectly adequate to reduce the general description for a multicomponent mixture to a model representing a
single °uid having the mass-averaged properties of the actual mixture. Details of the procedure may be found
elsewhere (Culick 1999). Only the results are germane here. The set of equations forming the basis for the theory
and analysis we discuss in these lectures is:
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p = R½T (A.14)

For completeness we have also included the equation (A.13) for the entropy, obtained in familiar fashion by
applying the combined. First and Second Laws of Thermodynamics to an element of °uid. That is, the relation
de = Tds¡ pdv can be written
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Substitution of (A.9) and (A.11) gives (A.13) with the source

S= Q¡ p

½2
W (A.16)

It is important to realize that this formulation contains all relevant physical processes, including those repre-
senting the actions of external in°uences associated, for example, with active control of combustor dynamics.

The source functions in (A.9){(A.13) are

W = we ¡r ¢ (½l±u) (A.17)

FFF = r ¢$¿$¿$¿ v +me +mD ¡ ¾¾¾e ¡ ±ulw(l)g +Fl + ±Fl (A.18)
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(A.19)
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P=
R

Cv
Q+RT [W ¡r ¢ (½l±u)] (A.20)

S= Q¡ p

½2
W (A.21)

The quantities ±( ) represent di®erences between values for the gas and condensed phases. For example,
±T = Tl ¡ Tg in the di®erence in temperature between the temperature Tl of the condensed phase and that, Tg,
of the gas phase.

A.2. Expansions in Mean and Fluctuating Variables. Following the steps suggested in Section 3.3 to
produce equations (3.23){(3.28) will give the expressions for the brackets de¯ned there to simplify the appearance
of the equations:
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fsg4 = ½0T 0M0 ¢ rs0 (A.35)
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The subscript f gn on the curly brackets means that the contained quantities are written to order n in the
°uctuations of °ow variables. Similarly, the square brackets indicate that the terms are of ¯rst order in the Mach
number of the mean °ow. Higher order square brackets are not required, as explained in Section 3.3.1.
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B. THE EQUATIONS FOR ONE-DIMENSIONAL UNSTEADY MOTIONS

These are many problems for which the °ow may be approximated as one-dimensional. Even when the
approximation may not seem as accurate as we might like, it is always a good beginning. The desired results
are usually obtained without real e®ect and often are inspiringly close to the truth. An elementary example is
computation of the normal modes for a straight tube having discontinuities, Section 5.5.2. Here we are concerned
with situations in which in°uences at the lateral boundary must be accounted for. The formulation of the general
problem is then essentially the counterpart of the constitution of the one-dimensional equations for steady °ow
in ducts thoroughly discussed by Shapiro (1953).

Accounting for changes of area in the one-dimensional approximation is a straightforward matter; following
the rules applied to derivations appearing in the three-dimensional equations:

u ¢ r( )! u
@

@x
( )

r ¢ ( )! 1

Sc

@

@x
Sc( )

r2( ) =
1

Sc

@

@x
Sc
@( )

@x

(B.1)

where the axis of the duct lies along the x-direction and Sc(x) is the distribution of the cross-section area.

More interesting are consequences of processes at the lateral boundary, particularly when there is °ow through
the surface. The most important applications arise in solid propellant rockets when burning propellant forms
all or part of the lateral surface. In°ow of mass momentum and energy must be accounted for (Culick 1971,
1973; Culick and Yang 1992). The equations have the same form as the three-dimensional equations derived in
Appendix A, equations (A.9){(A.13) but the rule (B.1) applied and only the velocity component u along axis of
the duct taken to be non-zero:

Conservation of Mass
D½

dt
= ¡½ 1

Sc

@

@x
(Scu) + W 1 + W 1s (B.2)

Conservation of Momentum

½
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Conservation of Energy
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Equation for the Pressure
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Equation for the Entropy
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where
D
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=
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+ u

@
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The source terms W 1, F1, Q1, P1 and S1 are the one-dimensional forms of (A.17){(A.21) written for the axial
component of velocity only and with the rules (B.1) applied. In addition, sources of mass, momentum and energy
associated with °ow through the lateral boundary are represented by the symbols with subscript ( )s (Culick
1973, Culick and Yang 1995):
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Superscripts ( )(g) and ( )(l) refer respectively to the gas and liquid phases and subscript ( )s
denotes values at the surface. The mass °uxes at the surface, m

(g)
s and m

(l)
s are of course computed as values

normal to the boundary and are positive for inward °ow. Here q stands for the parameter of the local section
normal to the axis.

B.1. Equations for Unsteady One-Dimensional Motions. Forming the equations for the °uctuating
motions within the one-dimensional approximation is done in exactly the same way as for the general equations,
Appendix A. We need only apply the rules (B.1) and add to the inhomogeneous functions h and f the contributions
from processes at the boundary. As for the general three-dimensional equations, we defer writing the °uctuations
W 0
1, F

0
1, ¢ ¢ ¢ until we consider speci¯c problems.

The procedure introduced in Section 3.3.3 for forming the systems of equations for a hierarchy of problems
applies equally to one-dimensional motions. As above, the equations are obtained from the three-dimensional
equations by applying the rules (B.1): the results can be constructed when needed. However, the contributions
from processes at the lateral boundary are special. Written to ¯rst order in the °uctuations and the Mach number
of the mean °ow; the dimensional forms of (B.8){(B.12) are:
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Abstract

Future combustors designed for better e±ciency and lower pollutant emission are expected to operate closer to
their stability boundary, thereby increasing the risk of encountering combustion instability. Onset of combustion
instability leads to limit cycle oscillations in the acoustical °uctuations that can often reach amplitudes large
enough to cause severe damage. Active control strategies are, therefore, being considered to prevent combustion
instabilities, but their development requires nonlinear models that can faithfully capture the combustor system
dynamics. A framework for the approximate analysis of the nonlinear acoustics in a combustion chamber ex-
ists, which includes all relevant linear contributions and also second order gasdynamic nonlinearities. Nonlinear
combustion e®ects in the form of pressure and velocity coupling models have also been incorporated into the
analysis with the aim of capturing the phenomenon of triggered instability, where the acoustical °uctuations are
linearly stable to small perturbations, but show a limit cycle behavior for larger perturbations. However, several
questions such as those relating to 1) modal truncation of the equations for the acoustic dynamics, 2) absence
of triggered limit cycles in the formulation with only second order gasdynamic nonlinearities, and 3) the form of
the velocity coupling function, including the need for a threshold character, have not been satisfactorily resolved.
In this paper, we address some of these questions on modeling and dynamics of acoustic waves in combustion
chambers, using the approximate analysis, that have remained unanswered over the years.

1. Introduction

Combustion chambers operating under conditions that favor high e±ciency and low pollutant emission are prone
to su®er from combustion instabilities. These instabilities arise due to a coupling between the unsteady °uid mo-
tion and the combustion processes in the chamber. This interaction can be thought of as analogous to a positive
feedback mechanism where °uctuations in the °ow properties and in the combustion heat release drive each other
in a regenerative manner. Amplitude dependent nonlinearities then cut in to limit the growth in the °uctuations.
Thus, to an observer external to the chamber, combustion instabilities appear as self-excited limit cycle oscilla-
tions in the °ow variables. It was shown by Chu and Kovasznay [1] that the °uctuations could be represented by
a combination of acoustic, vortical, and entropic waves propagating in the combustion chamber. Traditionally,
the term combustion instability has been used to refer to instabilities in the acoustical °uctuations. These acous-
tic oscillations can often reach amplitudes large enough to cause severe damage, and sometimes even complete
failure. As a result, considerable e®ort has been made in the past to predict the onset of acoustic instabilities
in combustion chambers. Solid propellant rocket motors have been known to exhibit two qualitatively di®erent
kinds of behavior at onset of combustion instability: 1) linear instability, where the acoustical °uctuations, in
response to a small perturbation, build up to a limit cycle, and 2) nonlinear instability, where the acoustical
°uctuations show a stable, damped response for small perturbations, but show a limit cycle response to larger
perturbations. Nonlinear instability of this nature has been called pulsed or triggered instability [2, 3]. Both
linear and nonlinear (triggered) instability have been observed in recent experiments on a gas turbine combustor
as well [4].

Much of the early work on combustion instability dealt with the question of linear stability, assuming that the
acoustic oscillations could be described in terms of the classical acoustic modes of the combustion chamber. The
linear combustion instability problem appears to have been satisfactorily addressed, though work continues on the
e®ects of the vorticity and entropy waves in the combustion chamber on the stability of the acoustic oscillations
[5, 6]. It was, however, recognized early on that the dynamics of acoustic waves in combustion chambers was
essentially nonlinear, and that it was necessary to be able to understand and model the nonlinear behavior of
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these acoustic waves. The subject of nonlinear acoustics in combustion chambers began to be addressed by several
researchers in the 1960's and 1970's. Most of these developments have been reviewed by Culick [7, 8], and are,
therefore, not repeated here. The work by Culick [9, 10] during this period provided a general framework for the
analysis of the nonlinear dynamics and stability of acoustic waves in combustion chambers. Under this framework,
the partial di®erential equations of °uid conservation were approximated by a spatial averaging procedure to a set
of ordinary di®erential equations for the amplitudes of the acoustic modes. The approximations in the analysis,
and the derivation of the equations for the acoustic modes, have been described on several occasions [7, 8]. The
equations for the modal amplitudes form a set of coupled, nonlinear di®erential equations that account for all
relevant linear processes and include contributions from nonlinear gasdynamics to second order. On truncating
the equations to a ¯nite number of modes, the modal equations could be solved for the time evolution of the
acoustic oscillations.

Culick and Yang [11] reported a numerically computed solution for the acoustic oscillations with a ¯ve-mode
truncation of the approximate equations that was found to compare reasonably with a more exact numerical solu-
tion [11]. Conditions for the existence and stability of the limit cycle oscillations, and the qualitative dependence
of the limit cycles on the system parameters, for the case of two longitudinal acoustic modes, were reported by
Awad and Culick [12], and by Paparizos and Culick [13]. However, none of these studies were able to demonstrate
triggered instability. It was felt, but not conclusively established, that the approximate analysis with nonlinear,
second order gasdynamics alone was not capable of showing triggered instability. Extensions of the formulation
to include third order gasdynamic nonlinearities and higher order interactions between the mean °ow and the
acoustics were equally unsuccessful in capturing triggered instability [14] in contrast to earlier results reported by
Zinn [15]. The di®erence between the two conclusions remains unexplained. Nonlinear combustion models then
remained the most attractive candidate to represent triggered instability within the framework of the approximate
analysis. Unsteady combustion in solid propellant rockets had already been described in terms of pressure and
velocity coupling models [16]. Numerical studies by Levine and Baum [17] with an ad hoc velocity coupling model
showed that triggered instabilities could indeed be found when nonlinear combustion processes were accounted
for. However, the form of the velocity coupling function was purely empirical and it was di±cult to judge its
validity or uniqueness. Also, it was not easy to arrive at qualitative conclusions regarding the conditions for onset
of triggered instability from numerical simulations alone.

A signi¯cant step forward in the investigations came with the introduction of the methods of modern dynami-
cal systems theory by Jahnke and Culick [18] to the analysis of nonlinear combustion instabilities. By using a
continuation algorithm, it became possible to systematically and e±ciently compute all steady state and limit
cycle solutions over a range of parameter values. Stability of each steady state and limit cycle solution could be
numerically established, and points of onset of instability could be identi¯ed with bifurcations. The qualitative
behavior of the acoustic waves at onset of combustion instability then depends on the type of bifurcation, and
on the nature of the limit cycles that emerge at the bifurcation point. This information is usually represented in
the form of a plot of steady state values (peak amplitude in case of a limit cycle) against a suitable parameter
in a bifurcation diagram. For longitudinal acoustic modes in a combustion chamber of uniform cross section,
Jahnke and Culick [18] showed that results from a two-mode approximation were qualitatively dissimilar to those
from a four- or six-mode approximation. However, they could draw no conclusion about the number of acoustic
modes that need to be retained in their analysis, nor did their computations with second order gasdynamics alone
display triggered limit cycles. Culick et al [19] extended the work in [18] by including the nonlinear combustion
model of Levine and Baum [17] in addition to the second order gasdynamic nonlinearities. They con¯rmed that
the nonlinear velocity coupling term in the Levine-Baum model did induce triggered limit cycles. However, their
results with and without time-averaging showed signi¯cant discrepancies. Their studies also suggested that a
four-mode approximation could satisfactorily capture the qualitative dynamics for the case of a ¯rst mode insta-
bility. Experiments by Ma et al [20] have suggested that the velocity coupling function has a threshold nature,
i.e., there is a threshold value of the acoustic velocity below which the e®ects of nonlinear combustion are not
felt. In a recent paper, using a four-mode truncation and an ad hoc threshold velocity coupling model, Burnley
and Culick [21] have computed a bifurcation diagram which shows triggered limit cycles. Additional results are
available in the thesis by Burnley [22].
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Despite the impressive progress over the last three decades in modeling the nonlinear dynamics of acoustic waves
in combustion chambers, many questions yet remain unanswered. For example, ¯rst of all, there is still no convinc-
ing argument for how many modes need to be retained in a truncated model of the coupled oscillator equations
in order to predict the qualitative dynamics of the acoustic modes correctly. Secondly, though widely believed, it
has never been de¯nitely established that the approximate analysis with second order gasdynamics alone could
not show triggered instability. Thirdly, the form of the velocity coupling function and, in particular, the need
for a threshold character, has not been satisfactorily explained. These and such other questions have gained
signi¯cance in the light of recent focus on active control of combustion instabilities [23, 24]. Rather than restrict
operation to safe, stable regions at the cost of decreased performance, future combustors seeking higher perfor-
mance will be operated closer to their stability boundary, thereby increasing the risk of encountering combustion
instability. Active control strategies promise to provide a feasible solution to the problem of preventing instability
in these combustors, but they are expected to depend heavily on nonlinear models that can successfully capture
the qualitative features of the combustion system dynamics. The approximate formulation developed by Culick
and his co-workers appears to provide a suitable framework for the development of active control laws for combus-
tion instability, but there is a need to address questions such as those listed above before the Culick framework
can be con¯dently applied to devise active combustion control strategies. Recent developments [25, 26, 27] in
the use of bifurcation theory for the modeling of large-amplitude limit cycle oscillations have made it possible to
seek answers to some questions on the qualitative dynamics of the acoustic waves at onset of combustion instability.

In the remainder of this paper, we ¯rst closely examine the coupled oscillator equations for the acoustic modal
amplitudes. A careful study of the energy transfer between the acoustic modes provides a clue to the number
of modes that need to be retained for a qualitatively correct analysis of the limit cycles at onset of combus-
tion instability. The minimum order of the modal truncation for the ¯rst and second mode instability cases is
determined, thereby resolving a longstanding issue in the modeling of acoustic waves in combustion chambers.
Following this, two known mechanisms for triggered instability in coupled oscillator systems are brie°y reviewed.
With this knowledge, we then explain the lack of triggered limit cycles in the approximate formulation contain-
ing only second order gasdynamic nonlinearities. This is a result that, though widely believed in the past, has
been theoretically established here for the ¯rst time. Finally, nonlinear combustion mechanisms for triggering
are studied. Observations by Culick et al [19] that nonlinear pressure coupling does not lead to triggering are
now explained. Velocity coupling models used in the past are evaluated and are found to display non-physical
dynamical behavior. The need for a threshold velocity coupling function is critically examined and a new form of
the velocity coupling function is derived that naturally shows a threshold character. The approach at all times is
from the viewpoint of the qualitative theory of dynamical systems. However, numerical results are provided to
illustrate the conclusions arrived at from the theory.

2. Coupled Oscillator Equations

The nonlinear dynamics of acoustic waves in a combustion chamber has been modeled by Culick [10] as a set of
coupled second order oscillators, one for each acoustic mode. For the case of a combustion chamber of uniform
cross section as considered in [18, 19], the modal natural frequencies can be assumed to be integral multiples of
the primary acoustic mode frequency. Then, the coupled oscillator equations, with time non-dimensionalized by
the primary mode frequency, can be written as follows:

Ä́n ¡ 2®̂n _́n + n(n¡ 2µ̂n)´n = ¡
n¡1X
i=1

³
Ĉ
(1)
ni _́i _́n¡i + D̂

(1)
ni ´i´n¡i

´
¡

1X
i=1

³
Ĉ
(2)
ni _́i _́n+i + D̂

(2)
ni ´i´n+i

´
(2.1)

where ´n is the amplitude of the n
th acoustic mode. Equation (2.1) includes linear contributions from combustion

processes, gas-particle interactions, boundary conditions, and interactions between the steady and unsteady °ow
¯elds. Additionally, Eq. (2.1) also includes contributions from nonlinear gasdynamics to second order as given by

the quadratic terms on the right hand side, where the coe±cients Ĉ; D̂ are as follows:

Ĉ
(1)
ni =

¡1
2°i(n¡ i) [n

2 + i(n¡ i)(° ¡ 1)]
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Ĉ
(2)
ni =

1

°i(n+ i)
[n2 ¡ i(n+ i)(° ¡ 1)]

D̂
(1)
ni =

° ¡ 1
4°

[n2 ¡ 2i(n¡ i)]

D̂
(2)
ni =

° ¡ 1
2°

[n2 + 2i(n+ i)]

The parameters ®̂n and µ̂n in Eq. (2.1) are de¯ned as

®̂n = ®n=!1; µ̂n = µn=!1

where !1 is the natural frequency of the ¯rst acoustic mode. For a cylindrical chamber of L=D = 11:8, the ¯rst
mode frequency, !1, is 5654:86 rad/s, and typical values for the linear growth rates, ®n, and frequency shifts, µn,
are as given in Table 1. It can be seen from Table 1 that the modes are generally lightly damped and have only
small frequency shifts, which means that the shifted modal frequencies remain appoximately integral multiples of
the shifted primary mode frequency. It may also be noticed that the oscillators in Eq. (2.1) are linearly uncoupled,
but are coupled through the nonlinear gasdynamic terms. In particular, it will be seen later that the quadratic
terms on the right hand side of Eq. (2.1) with coe±cients Ĉ(1) and D̂(1) ensure that the set of oscillators is
resonantly coupled. For a set of resonantly coupled, lightly damped, nonlinear oscillators as in Eq. (2.1), it is not
immediately obvious as to which modes a®ect the stability of a particular mode. Therefore, the question of how
many higher order modes need to be retained for a correct solution of the nth mode instability problem is not
easy to answer. Previous numerical results [18, 19] suggest that when too few modes are retained in an analysis,
the qualitative predictions of the nonlinear dynamic behavior at instability may be incorrect. At the same time,
inclusion of higher order modes beyond a point does not seem to have a signi¯cant in°uence on the quantitative
accuracy. Both these observations are not surprising, but `How few (modes) is too few?' is a question that has
not received a satisfactory answer to date.

Table 1. Data for parameters ®n and µn.

Mode 1 2 3 4 5 6
®n, 1/s Free ¡324:8 ¡583:6 ¡889:4 ¡1262:7 ¡1500:0
µn, rad/s 12:9 46:8 ¡29:3 ¡131:0 ¡280:0 ¡300:0

2.1. Energy Transfer. Looking at Eq. (2.1), it is clear that in the absence of the second order gasdynamic
terms on the right hand side, the individual modes behave as uncoupled linear oscillators. The coupling, and
hence the energy transfer, between the modes is entirely due to the nonlinear gasdynamics. The in°uence of the
nonlinear terms in the energy transfer process is presented in a concise form in Table 2 for the ¯rst eight modes.
Each entry in the second column of Table 2 represents a pair of nonlinear gasdynamic terms that transfer energy
to a particular mode from a lower numbered mode, i.e., energy transfer up the mode numbers from lower to
higher modes. The third column, on the other hand, lists the terms that cause reverse energy transfer, i.e., from
higher mode numbers to the lower ones. For instance, in the row for mode number 2, a term `13' implies that
the second mode is excited by terms of the form ´1´3 and _́1 _́3. The term `13' represents a reverse transfer of
energy from the third mode to the second mode. It can be seen that terms with Ĉ(1) and D̂(1) as coe±cients
appear in the second column of Table 2, while the third column consists of terms with Ĉ(2) and D̂(2) as coe±cients.

Table 2. Inter-modal energy transfers.

Mode number Energy transfer up the modes Reverse energy transfer
1 12, 23, 34, 45, 56, 67, 78
2 11 13, 24, 35, 46, 57, 68
3 12, 21 14, 25, 36, 47, 58
4 13, 22, 31 15, 26, 37, 48
5 14, 23, 32, 41 16, 27, 38
6 15, 24, 33, 42, 51 17, 28
7 16, 25, 34, 43, 52, 61 18
8 17, 26, 35, 44, 53, 62, 71
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A look down the second column of Table 2 shows that every term in the energy transfer up the modes acts
as a near-resonant excitation. For instance, consider the ¯rst mode to be oscillating at its (shifted) natural
frequency !s1, and recall that the (shifted) natural frequencies of the higher modes are approximately integral
multiples of that of the ¯rst mode. Then, the terms `11' will excite the second mode at exactly 2!s1, which is
approximately equal to its (shifted) natural frequency. Likewise, terms like `12' and `21' will excite the third mode
at a frequency 3!s1, which will nearly resonate with its (shifted) natural frequency, and so on. Hence, the modes
in Eq. (2.1) represent a set of resonantly coupled oscillators. In contrast, the reverse energy transfer terms in
the third column of Table 2 typically excite the modes at frequencies much higher than their resonant frequency,
and hence contribute little to the overall modal amplitudes, except for the terms in boldface. The boldface terms
represent parametric excitations which can alter the dynamics of the modes, in contrast to the other terms which
act as external forcings that can merely contribute to the modal amplitude at a particular frequency. When the
boldfaced terms are taken to the left hand side of the respective oscillator equation in Eq. (2.1), they can be seen
to alter the frequency and damping of the modes, and thus, they can change the qualitative dynamical behavior.
This can be clearly seen, for example, by writing the dynamical equation for the ¯rst mode with the parametric
excitations moved to the left hand side as follows:

Ä́1 + [¡2®̂1 + Ĉ(2)11 _́2] _́1 + [(1¡ 2µ̂1) + D̂(2)
11 ´2]´1 = [other RHS terms] (2.2)

The term involving Ĉ
(2)
11 represents a reverse transfer of energy from the second to the ¯rst mode that could

potentially destabilize the ¯rst mode. The e®ect of the other boldface terms in Table 2 can be similarly interpreted
as a change in the damping and frequency of the oscillator equation in which they appear.

2.2. Modal Truncation. We are now in a position to answer the question of how many modes need to
be retained in an analysis to obtain qualitatively correct results for an nth mode instability. Consider the case
where the ¯rst mode goes linearly unstable and begins oscillating at a frequency − (which may be slightly dif-
ferent from its shifted natural frequency !s1 due to nonlinear e®ects). Energy is then transferred to the second
mode, which is resonantly excited by the terms `11' and set into oscillation at a frequency of 2−. A part of the
energy from the second mode is reverse transferred to the ¯rst mode due to the boldfaced `12' terms in Table 2.
Thus, the dynamics of the ¯rst mode is nonlinearly coupled to that of the second mode, and it is necessary to
consider the ¯rst and second mode oscillators coupled together. However, since the parametric excitation terms
`12' can signi¯cantly alter the dynamics of the ¯rst mode, it is important that they are correctly represented.
When the third and higher modes are neglected, the second mode cannot transfer energy up the mode numbers
as per the terms in the second column of Table 2. Instead, it is forced to reverse transfer part of this energy
to the ¯rst mode, due to which the parametric excitations are larger than they ought to be, and the resulting
dynamics may show large-amplitude limit cycles that are spurious. Such spurious limit cycles were observed,
but could not be explained, in the two-mode continuation results of Jahnke and Culick [18], and, previously, in
the two-mode analytical results reported by Awad and Culick [12], and by Paparizos and Culick [13]. Hence,
the modal truncation should be such that all signi¯cant energy transfers up the modes are accommodated. This
requires that all modes that directly receive energy from modes 1 and 2, individually or collectively, should be
represented in the truncated set of equations. It is seen from Table 2 that direct energy transfer from modes 1
and 2 to the higher modes occurs through the terms `12' and `21' to the third mode, and through the term `22'
to the fourth mode. All other energy transfers to the higher modes are indirect in the sense that they require
the participation of the ¯rst/second mode and another higher mode. Thus, in a ¯rst mode instability, the third
and fourth modes play an important role as energy sinks and must be included in the modal truncation, even
though their direct in°uence on the dynamics of the ¯rst mode is not signi¯cant. In summary, the truncated set
of equations for correct qualitative analysis of a ¯rst mode instability should contain at least four modes | the
unstable mode (mode 1), the coupled modes (mode 2), and the energy sinks (modes 3 and 4). This argument
can be easily extended to determine the minimum order of the modal truncation for analysis of an nth mode
instability. For example, in case of a second mode instability, it can be shown that the modal truncation must
retain at least the ¯rst eight modes.

Continuation results for ¯rst and second mode instability have been reported in [18, 19, 22], where upto sixteen
modes have been retained. Examination of these results con¯rms that computations for ¯rst mode instability with
a modal truncation that did not retain at least four modes were qualitatively incorrect. Similarly, second mode
instability computations that retained fewer than eight modes are seen to be qualitatively inconsistent. In the
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following sections of this paper, we shall examine the ¯rst mode instability problem with a four-mode truncation.
In particular, we shall be interested in conditions under which triggered limit cycles occur.

3. Triggered Limit Cycles

The set of coupled acoustic oscillators in Eq. (2.1) can be seen to have an equilibrium state where each ´n = 0,
i.e., none of the acoustic modes are excited. Since the oscillators are all linearly decoupled, the linear damping
coe±cient for each mode, ®̂n, determines whether or not that particular mode is linearly stable. When each
®̂n is negative, then the equilibrium state of the set of acoustic oscillators is linearly stable. In that case, small
perturbations from the equilibrium state damp out with time, and the system of oscillators tends to return to its
equilibrium state. Combustion instability occurs when one of the modes gets undamped, i.e., the corresponding
®̂n changes sign from negative to positive. For positive ®̂n, the equilibrium state is linearly unstable, and small
perturbations in the acoustic mode amplitudes initially grow with time. Nonlinear e®ects then become important
and the modal amplitudes eventually settle down to a periodic oscillation called a limit cycle. Thus, given a model
for the nonlinear dynamics of the acoustic waves, such as that in Eq. (2.1), one needs to predict the amplitude
and frequency of the limit cycle oscillations at onset of combustion instability. This is easily done by using a
continuation and bifurcation software such as AUTO97 [28]. Consider the ¯rst mode instability problem with
a four-mode truncation of the set of oscillators in Eq. (2.1), where the only nonlinear terms are due to second
order gasdynamics. Equilibrium states and limit cycles for this case have been computed for varying values of
¯rst mode damping parameter ®̂1 using the data in Table 1. Results are obtained for the amplitudes of the ¯rst
four modes and, in case of limit cycles, also the time period of the oscillation. Of these, the ¯rst mode amplitude
is plotted in Fig. 1 (plots for the other modal amplitudes are qualitatively similar) over a range of values of the
parameter ®̂1. Figure 1 shows that the zero-amplitude equilibrium is linearly stable for ®̂1 < 0 and becomes
unstable for ®̂1 > 0, with onset of instability occuring at ®̂1 = 0. Stable limit cycles emerge at the critical point
®̂1 = 0, which is called a supercritical Hopf bifurcation point. For any negative value of ®̂1, the only stable
solution is the zero-amplitude equilibrium, and the acoustic waves tend to damp out, no matter how large the
initial perturbation. Thus, the coupled oscillator model with second order gasdynamics alone shows only linear
instability.

Figure 1. Stable limit cycles at a supercritical Hopf bifurcation for a ¯rst mode instability
with second order gasdynamics alone (full line | stable equilibrium, dashed line | unstable
equilibrium, ¯lled circle | stable limit cycle, ¯lled square | Hopf bifurcation).

Solid propellant rockets, as discussed earlier, have been known to show both linear and nonlinear or triggered
instability. Examples of triggered instability are shown in the schematic bifurcation diagrams in Fig. 2, where x
is a variable and ¹ is a parameter. In each of the diagrams in Fig. 2, there is a range of values of the parameter
¹ for which a stable equilibrium state co-exists with a stable limit cycle. For any parameter value in this range,
small perturbations in x from the equilibrium state will tend to decay with time, but for larger perturbations,
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the system may show stable limit cycle oscillations. That is, though the equilibrium state is linearly stable, the
system could be pulsed or triggered into limit cycle behavior. These stable limit cycles are called triggered limit
cycles. The triggered limit cycles in Fig. 2 are qualitatively di®erent from the stable limit cycles in Fig. 1 in two
respects: 1) Triggered limit cycles in Fig. 2 exist to the left of the Hopf bifurcation point that signi¯es onset of
(linear) combustion instability, whereas the stable limit cycles in Fig. 1 occur only for parameter values to the
right of the Hopf bifurcation. 2) Moving along the parameter axis from left to right, the triggered limit cycles
in Fig. 2 begin abruptly with a ¯nite non-zero amplitude at a fold bifurcation, as against the stable limit cycles
in Fig. 1 whose amplitude starts from zero at the Hopf bifurcation point. Triggered limit cycles are, therefore,
also called large-amplitude limit cycles in the literature [25, 26, 27]. The onset of triggered limit cycles at a fold
bifurcation can be considered to be a nonlinear combustion instability phenomenon. Thus, with increasing values
of the parameter ¹, the systems in Fig. 2 ¯rst show a nonlinear combustion instability at a fold bifurcation, and
then a linear combustion instability at a Hopf bifurcation.

Figure 2. Triggered limit cycles at (a) subcritical Hopf bifurcation, and (b) supercritical Hopf
bifurcation (full line | stable equilibrium, dashed line | unstable equilibrium, ¯lled circle |
stable limit cycle, empty circle | unstable limit cycle, ¯lled square | Hopf bifurcation, empty
square | fold bifurcation).

Triggered limit cycles can be a disquieting phenomenon due to the sudden increase in the amplitudes of the
acoustic modes. Moreover, the phenomenon is worrisome because triggered instability could occur even when
linearly stable operating conditions have been ensured. Hence, there is a need to develop models that can faithfully
capture the qualitative dynamics of triggered limit cycles in combustion chambers. Unfortunately, the coupled
acoustic oscillator model in Eq. (2.1), from past experience and as seen in Fig. 1, does not seem to accommodate
triggered limit cycles, but this has never been de¯nitely established. We can now explain the lack of triggered
limit cycles in the oscillator model of Eq. (2.1) by comparing the in°uence of the second order gasdynamic
nonlinearities with nonlinear terms that are known to cause triggering in coupled oscillator systems. There are
two known mechanisms for generation of triggered limit cycles in systems of resonantly coupled oscillators.

1. Nonlinear damping terms of the form jf(´n)j _́n or jf( _́n)j _́n have been shown to produce triggered limit
cycles with either subcritical or supercritical Hopf bifurcations, as sketched in Fig. 2 [26].

2. Parametric excitation terms of the form c _́2n _́n or c´2n _́n are also known to be able to create a subcritical
Hopf bifurcation and triggered limit cycles, as pictured in Fig. 2(a), depending on the sign of the coe±cient
c, i.e., c < 0 for triggering, and c > 0 for non-triggering [27].

Examining the nonlinear terms in the equation for the ¯rst acoustic mode, which is reproduced below from
Eq. (2.2),

Ä́1 + [¡2®̂1 + Ĉ(2)11 _́2] _́1 + [(1¡ 2µ̂1) + D̂(2)
11 ´2]´1 = [other RHS terms] (3.3)

it can be observed that there are no nonlinear damping terms, but the second order gasdynamic term Ĉ
(2)
11 _́2 _́1 does

indeed act as a parametric excitation of the desired form as listed in 2. above. (The other parametric excitation

term D̂
(2)
11 ´2´1 is clearly not of the desired form.) However, on using the expressions following Eq. (2.1), the
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coe±cient Ĉ
(2)
11 can be evaluated to be

Ĉ
(2)
11 = (3¡ 2°)=2°

which is usually positive, where ° is the ratio of speci¯c heats. The term Ĉ
(2)
11 _́2 _́1, thus, turns out to be a

parametric excitation of the non-triggering type. It follows that second order gasdynamic nonlinearities, as they
exist, are incapable of inducing triggered limit cycles. As an academic exercise, one may choose an arbitrary non-

physical value of ° that makes the coe±cient Ĉ
(2)
11 negative; then, triggered limit cycles can indeed be observed

[29]. In summary, triggered limit cycles observed in solid propellant rockets cannot be explained by modeling the
second order gasdynamic nonlinearities alone.

The most promising source for the triggering mechanism then appears to be nonlinear combustion. The approx-
imate formulation of Eq. (2.1) already accounts for contributions from linear combustion processes. Nonlinear
combustion phenomena can be included in the coupled oscillator system of Eq. (2.1) by introducing additional
terms Fncn representing pressure and velocity coupling e®ects. The modal equations for the set of coupled oscil-
lators then appear as

Ä́n ¡ 2®̂n _́n + n(n¡ 2µ̂n)´n = ¡
n¡1X
i=1

³
Ĉ
(1)
ni _́i _́n¡i + D̂

(1)
ni ´i´n¡i

´
¡

1X
i=1

³
Ĉ
(2)
ni _́i _́n+i + D̂

(2)
ni ´i´n+i

´
+ Fncn (3.4)

where ´n is again the amplitude of the n
th acoustic mode. Culick et al [19] and Burnley [22] considered the

nonlinear pressure coupling terms in the Levine-Baum model as a possible candidate for the creation of triggered
limit cycles. They observed that the nonlinear pressure coupling terms did indeed cause triggering, but the
required values of the coe±cients of these terms turned out to be unrealistically large. Their observations can
now be explained by noting that the nonlinear pressure coupling terms in the Levine-Baum model are in fact
second order parametric excitation terms with a negative coe±cient (see Eq. (33) of Culick et al [19]), and, hence,
of the type that can cause triggering. Then, for a ¯rst mode instability problem with second order gasdynamics
and nonlinear pressure coupling, the parametric excitation terms in the equation for the ¯rst acoustic mode appear

as (Ĉ
(2)
11 + C

pc
1 ) _́2 _́1, where C

pc
1 is the coe±cient of the pressure coupling term. Now, the combined coe±cient

(Ĉ
(2)
11 +C

pc
1 ) is required to be negative for triggering to occur, and although C

pc
1 is known to be negative, it clearly

needs to be large enough to overcome the positive value due to Ĉ
(2)
11 . Unfortunately, for reasonable values of C

pc
1 ,

the combined coe±cient is still positive, and, as a result, the nonlinear pressure coupling model does not lead to
triggering. This leaves us to consider velocity coupling models as a possible candidate to explain the occurrence
of triggered instability.

4. Velocity Coupling Models

Levine and Baum [17] suggested a velocity coupling function of the form Fncn = f( _́n) _́n, with f( _́n) = C
vc
n j _́nj,

to model the nonlinear combustion response to an acoustic velocity parallel to the burning surface. The equation
for the ¯rst acoustic mode, with second order gasdynamics and the Levine-Baum velocity coupling model, is then
of the form

Ä́1 + [¡2®̂1 + Ĉ(2)11 _́2 + Cvc1 j _́1j] _́1 + [(1¡ 2µ̂1) + D̂(2)
11 ´2]´1 = [other RHS terms] (4.5)

The velocity coupling function in Eq. (4.5) represents a nonlinear damping mechanism, and can, therefore, be
expected to create triggered limit cycles at onset of ¯rst mode combustion instability. This is con¯rmed by
computing equilibrium points and limit cycles for a four-mode truncation of the coupled oscillator system Eq. (3.4)
for the data in Table 1. The velocity coupling function in the equation for the ¯rst acoustic mode is taken as
shown in Eq. (4.5) with Cvc1 = 0:2. Results for the ¯rst mode amplitude are plotted in Fig. 3 for varying values of
the parameter ®̂1. Triggered limit cycles are clearly seen in Fig. 3 at a subcritical Hopf bifurcation, similar to that
sketched in the schematic bifurcation diagram of Fig. 2(a). Thus, the Levine-Baum velocity coupling model along
with the second order gasdynamic nonlinearities is adequate to capture triggered limit cycles in solid propellant
combustion systems. However, from a qualitative point of view, the dynamics represented by the bifurcation
diagram in Fig. 3 is not entirely satisfactory. This is because the stable triggered limit cycles terminate at some
positive value of ®̂1 beyond which there are no stable equilibrium or limit cycle solutions. This implies that,
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where there are no stable solutions, the slightest perturbation will cause the modal amplitudes to eventually grow
to in¯nity. Such dynamical behavior is clearly non-physical and must be eliminated.

Figure 3. Triggered limit cycles at a subcritical Hopf bifurcation for a ¯rst mode instability with
second order gasdynamics and the Levine-Baum velocity coupling function (full line | stable
equilibrium, dashed line | unstable equilibrium, ¯lled circle | stable limit cycle, empty circle
| unstable limit cycle, ¯lled square | Hopf bifurcation).

Levine and Baum [17] also suggested that threshold e®ects that had been observed experimentally be incorporated
in the velocity coupling function. Burnley and Culick [21] modi¯ed the Levine-Baum velocity coupling function
by introducing a dead zone to obtain an ad hoc velocity coupling function with a threshold, as follows:

f( _́1) = 0; j _́1j < j _́t1j
f( _́1) = Cvc1 j _́1 ¡ _́t1j; j _́1j ¸ j _́t1j (4.6)

where _́t1 is the threshold value of _́1. Computation of equilibrium and limit cycle solutions is carried out as
before, but with the Burnley-Culick velocity coupling function in Eq. (4.6) instead of the Levine-Baum model.
The parameter Cvc1 in Eq. (4.6) is retained unchanged, i.e., Cvc1 = 0:2, and a threshold value of _́t1 = 0:02 is
chosen. A plot of the ¯rst mode amplitude for this case with varying values of the parameter ®̂1 is shown in
Fig. 4, where triggered limit cycles of the form sketched in Fig. 2(b) may be observed at a supercritical Hopf
bifurcation. However, it is known that functions f( _́1) that are approximately quadratic in shape, e.g., the Levine-
Baum function, show triggered limit cycles of the subcritical type, while those that are approximately quartic
(fourth-order), like the Burnley-Culick function, show triggered limit cycles of the supercritical type [26]. It is not
di±cult to come up with velocity coupling models with no threshold, but with an approximately quartic function
f( _́1), that also produce triggered limit cycles of the supercritical type as in Fig. 4 [30]. Thus, the change from
subcritical triggering in Fig. 3 to supercritical triggering in Fig. 4 cannot be attributed to the threshold e®ect in
the Burnley-Culick velocity coupling function. Besides, the non-physical dynamical behavior seen over a range of
positive values of ®̂1 in Fig. 3 persists in Fig. 4 as well.

To resolve this issue, we go back to the bifurcation diagram of Fig. 3 and the Levine-Baum velocity coupling model.
It is clear that the qualitative dynamics of triggered limit cycles at onset of ¯rst mode combustion instability at
the subcritical Hopf bifurcation is adequately captured in Fig. 3. This means that the form of the Levine-Baum
velocity coupling function is appropriate for small _́1, i.e., near the region of onset of instability. The non-physical
dynamics in Fig. 3 occurs for larger values of ´1 and _́1, which implies that the form of the Levine-Baum velocity
coupling model requires to be corrected for large _́1, without a®ecting its shape in the neighborhood of _́1 = 0.
The lowest order correction term to the Levine-Baum function which meets these requirements is a quadratic
term with value zero at _́1 = 0, slope zero at _́1 = 0, and a magnitude that subtracts from the value of the
function for large _́1. The new velocity coupling function, with such a quadratic term included, can be expressed
as

f( _́1) = C
vc
1 j _́1j ¡Dvc

1 j _́1j2 (4.7)
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Figure 4. Triggered limit cycles at a supercritical Hopf bifurcation for a ¯rst mode instability
with second order gasdynamics and the Burnley-Culick threshold velocity coupling function (full
line | stable equilibrium, dashed line | unstable equilibrium, ¯lled circle | stable limit cycle,
empty circle | unstable limit cycle, ¯lled square | Hopf bifurcation).

For a particular choice of the coe±cients, Cvc1 = 0:2 and Dvc
1 = 0:8, the shape of the new velocity coupling

function appears as plotted in Fig. 5. Surprisingly, the nonlinear function in Fig. 5 naturally shows a threshold
character, but one that is quite di®erent from the Burnley-Culick function. Computations are now carried out
for equilibrium solutions and limit cycle amplitudes under identical conditions as was done for Fig. 3, but with
the new velocity coupling function in Eq. (4.7) instead of the Levine-Baum model. Results for the ¯rst mode
amplitude with varying parameter ®̂1 are shown in Fig. 6. As expected, the subcritical Hopf bifurcation in Fig. 6
is identical to that in Fig. 3, and the qualitative dynamics of the triggered limit cycles in the vicinity of the Hopf
bifurcation point, i.e., for small ´1 and _́1, remains unchanged. However, the stable limit cycles persist for all
positive values of the parameter ®̂1, and the non-physical dynamical behavior in Fig. 3 is, therefore, eliminated
in Fig. 6. Thus, the new velocity coupling function in Fig. 5 provides a satisfactory picture of the qualitative
dynamics of the triggered limit cycles created at onset of combustion instability. In addition, the new velocity
coupling function that is derived from dynamical considerations naturally satis¯es the physical requirement of
having a threshold character.

Figure 5. The form of the velocity coupling function obtained by correcting the Levine-Baum
function with a suitable quadratic term.
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Figure 6. Triggered limit cycles at a subcritical Hopf bifurcation for a ¯rst mode instability
with second order gasdynamics and the threshold velocity coupling function in Fig. 5 (full line |
stable equilibrium, dashed line | unstable equilibrium, ¯lled circle | stable limit cycle, empty
circle | unstable limit cycle, ¯lled square | Hopf bifurcation).

5. Conclusions

Several questions regarding the modeling and dynamics of acoustic waves in combustion chambers have been
addressed in this paper using the approximate analysis originally developed by Culick. First among these is the
question of modal truncation, i.e., how many modes need to be retained in a truncated model of the coupled
oscillator equations in order to predict the qualitative dynamics of the acoustic waves correctly. Previous studies of
¯rst and second mode instabilities arbitrarily chose to retain between two and sixteen modes. We have now shown
that a ¯rst mode instability requires a minimum of four modes in the modal truncation, while for a second mode
instability, one needs to retain at least the ¯rst eight modes. Secondly, it has been widely believed from previous
studies that the approximate analysis with only second order gasdynamic nonlinearities could not show triggered
limit cycles. This has now been theoretically established by recognizing that second order gasdynamics does
not contribute either nonlinear damping or parametric excitation terms in the form required to cause triggered
limit cycles. Finally, nonlinear combustion mechanisms for triggering based on pressure and velocity coupling
models have been studied. Results from a previous study which suggested that pressure coupling does not lead to
triggering have now been explained. Velocity coupling models have been shown to induce triggered instability due
to a nonlinear damping mechanism. Velocity coupling models used in the past have been examined, and a new
velocity coupling function has been derived that captures the qualitative dynamics at onset of triggered instability.
Interestingly, our velocity coupling function naturally shows a threshold nature unlike previous velocity coupling
models that had an arti¯cially imposed threshold character.
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