
Triangulation for Altitude
A Practical Guide

R. E. Terry, 1st Lt
Howard Composite Squadron

Civil Air Patrol

1 Introduction

The problem altitude determination based on the elevation and azimuth angles
observed by two or more people on the ground has been discussed at some
length by Stine[1] and others. What we’ll do here is simplify and correct his
discussion somewhat, then extend it in some detail to the cases he treats only
briefly.

1.1 Geometry of Observation

In the first illustration, Fig. 1, the target (T) is observed along two lines of
sight: S1 and S2 from positions O1 and O2. The point I, directly below the
target, together with O1 and O2 forms a plane triangle on the ground. The
line segment IJ, is constructed from the ground plane image (I) to the point
J on the line D12 between the observers so as to meet this baseline at a right
angle. The other sides of the ground plane triangle, D1 and D2, intercept the
line IT at right angles as well. Thus, the altitude we seek, Htarget is just a
segment common to the two right triangles [T I O1] and [T I O2].

Given the ground plane triangle, elevation angles E1 and E2 are measured
from that plane up to the lines of sight, S1 and S2. Defined in the ground
plane, the azimuth angles A1 and A2 are measured from the baseline, D12,
to the segments O1I and O2I, respectively. Note that “D-one-two” means the
distance between points one and two.

For an altitude measurement we need only the dataset: [D12, E1,A1,E2,A2];
nothing more is required, and nothing less is acceptable.

In the second illustration, Fig. 2, the geometry encountered with three
observers is shown. Here the view is down onto the ground plane, so that the
image point (I) is all that is shown. The distances and angles as labeled in this
case would allow the same formulae used for two observers to be extended to
three, taken two at a time. The elevation angles for each observer would also be
used in that same pairwise manner. There are, in other words, three possible
datasets: [D12,E1,A1,E2,A2], [D13, E1,B1,E3,B3], and [D23,E2,C2, E3,C3].
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2 Development of a Two Observer Altitude

Rule

What do we need from plane trigonometry to analyze these figures? First
we can expect to be using the sin, cos, and tan functions as evaluated for
various of the observed angles. Moreover, we need to evaluate these functions
for particular sums of angles. Finally we need to organize the method into a
stepwise plan or algorithm for the easy evaluation of the altitude formula from
the data. In a field situation, where time is of the essence, one can expect the
altitude measurement and data reduction to be ready within half a minute to
a minute of a rocket’s ascent.

2.1 Proof of the Altitude Formula

First, skip this section if you are not a math fan, all we need from this devel-
opment is the final formula. Otherwise, you have entered the “theory zone”.
To begin, since we know (or at least hope) that the two lines of sight are
converged on the same target, there are two equivalent formulations for the
altitude:

Htarget = D1 tan(E1) = D2 tan(E2) . (1)

Next, since the point J in our baseline defines two right triangles, the length
of the baseline is just the sum

D12 = D1 cos(A1) +D2 cos(A2) . (2)

Similarly, just as for the common segment H, there are two formulations
for the length of segment IJ: �IJ = D1 sin(A1) = D2 sin(A2), and so

0 = D1 sin(A1)−D2 sin(A2) . (3)

Next, solve equations (2) and (3) for D1 and D2 in terms of the angles.
Multiply (2) by sin(A1), multiply (3) by cos(A1), and then add to eliminate
the term containing D1, and you get

D12 sin(A1) = D2 [cos(A2) sin(A1) + sin(A2) cos(A1)] . (4)

Multiply (2) by sin(A2), multiply (3) by −cos(A2), and then add to elim-
inate the term containing D2, and you get

D12 sin(A2) = D1 [cos(A1) sin(A2) + sin(A1) cos(A2)] . (5)
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Now, the common term [cos(A1) sin(A2) + sin(A1) cos(A2)] is just the
sin(A1 + A2). This gives expressions for D1 and D2

D1 = D12

(
sin(A2)

sin(A1 + A2)

)
; D2 = D12

(
sin(A1)

sin(A1 + A2)

)
. (6)

Substitute these expressions back into (1) and we get two equivalent cal-
culations for the altitude

H1 = D12

(
tan(E1) sin(A2)

sin(A1 + A2)

)
; H2 = D12

(
tan(E2) sin(A1)

sin(A1 + A2)

)
. (7)

In practice these two versions of H will not be identical, due to pointing
errors in the lines of sight and measurement errors in the angles. Both these
estimates must remain positive, however, because only one of the interior
angles A1 or A2 can exceed 90 degrees, and neither can their sum exceed 180
degrees. The usual practice is to check and see if H1 and H2 are within a given
tolerance, say 0.1, and then average them.

So, in terms of something easy to check, if it is true that

(
2|H1 −H2|

[H1 +H2]

)
≤ E = 0.1 ,

then estimate the altitude as:

Htarget = 0.5 D12

{(
tan(E1) sin(A2)

sin(A1 + A2)

)
+

(
tan(E2) sin(A1)

sin(A1 + A2)

)}
. (8)

If the test fails, then the measurement is usually thrown out. It is certainly
possible to be more precise about how much error is to be allowed, or whether
to weight the two estimates differently depending on the steepness of the ele-
vation angles. In model rocketry such hairs usually remain unsplit, but if the
requirement for higher precision arises, then the addition of a third or fourth
observer can drive the errors to very small values indeed.

2.2 Applications of the Two Observer Altitude Rule

Using our notation from the first illustration, the target altitude is the aver-
age of the two “equivalent” estimates for the segment IT. From the dataset
[D12,E1,A1,E2,A2], evaluate the formulation above,
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Htarget = 0.5 D12 csc(A1 + A2) {(tan(E1) sin(A2)) + (tan(E2) sin(A1))} .
(9)

As either of the interior angles A1 or A2 exceed 90 degrees, the corre-
sponding sine term will be shrinking, but still giving two positive terms of
about equal magnitude. The measurement is to be discarded whenever the
contributions differ by more than 10 %. In Stine[2] you will find the extra
computation step of first subtracting the sum of A1 and A2 from 180 and then
calculating the sine. Since sin(x) ≡ sin(π − x), that step is not required,
so this formulation, while equivalent, appears a bit different. The tabulated
trigonometric function cosecant(x), csc(x) ≡ 1/sin(x), has been used in this
final formulation

In any practical field measurement situation all that is necessary is to first
measure your baseline, and then have handy a set of tables for the factor
arising from the ground plane triangle that provides A1 and A2. A convenient
way to represent that table is to start with the sum, which must lay between
0 and 180 degrees. If the sum is near zero or 180, then the image point (I)
is very close to the baseline on one side or the other. If the sum is near 90
degrees, then the image point is far from the baseline. Higher precision in
measuring the angles is required as they approach zero, for the ratio we want
is then a quotient of smaller and smaller numbers. For this reason it is always
recommended, and usually possible, to move the baseline off to the side of
the launch range, and to situate it more or less along the probable direction of
travel for your targets. Similar constraints apply to the elevation angles. If the
target gets nearly overhead with respect to either one of the observers, then
the tangent of the corresponding elevation angle becomes arbitrarily large —
small errors in the measurement produce large swings in the tangent. Hence
the best policy is to keep the baseline “out from under the rockets”!

So what is the best structure for a table of ground plane triangle factors?
The tables shown below are constructed to take any pair of azimuth angles
[A1,A2] and show the value of S ≡ csc(A1+A2). Since the sum of these angles
must be less than 180, the table entries are zero for those combinations greater
than this value. Moreover, since only one of the azimuth angles can exceed 90,
the tables are broken up for those two cases. Simply choose the second table
if only one measured azimuth is acute, but use the first if both are acute.
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Distance Factor For Both Azimuth Angles Acute
A [deg] ...... 2.00000 5.00000 15.00000 25.00000 35.00000 45.00000 55.00000 65.00000 75.00000 85.00000 87.00000
....... sin(A) .03490 .08716 .25882 .42262 .57358 .70711 .81915 .90631 .96593 .99619 .99863

+------------------------------------------------------------------------------------------------------------
2.0 .03490 | 14.33559 8.20551 3.42030 2.20269 1.66164 1.36733 1.19236 1.08636 1.02630 1.00137 1.00015
5.0 .08716 | 8.20551 5.75877 2.92380 2.00000 1.55572 1.30541 1.15470 1.06418 1.01543 1.00000 1.00061
15.0 .25882 | 3.42030 2.92380 2.00000 1.55572 1.30541 1.15470 1.06418 1.01543 1.00000 1.01543 1.02234
25.0 .42262 | 2.20269 2.00000 1.55572 1.30541 1.15470 1.06418 1.01543 1.00000 1.01543 1.06418 1.07853
35.0 .57358 | 1.66164 1.55572 1.30541 1.15470 1.06418 1.01543 1.00000 1.01543 1.06418 1.15470 1.17918
45.0 .70711 | 1.36733 1.30541 1.15470 1.06418 1.01543 1.00000 1.01543 1.06418 1.15470 1.30541 1.34563

55.0 .81915 | 1.19236 1.15470 1.06418 1.01543 1.00000 1.01543 1.06418 1.15470 1.30541 1.55572 1.62427
65.0 .90631 | 1.08636 1.06418 1.01543 1.00000 1.01543 1.06418 1.15470 1.30541 1.55572 2.00000 2.13005
75.0 .96593 | 1.02630 1.01543 1.00000 1.01543 1.06418 1.15470 1.30541 1.55572 2.00000 2.92380 3.23607
85.0 .99619 | 1.00137 1.00000 1.01543 1.06418 1.15470 1.30541 1.55572 2.00000 2.92380 5.75877 7.18530
87.0 .99863 | 1.00015 1.00061 1.02234 1.07853 1.17918 1.34563 1.62427 2.13005 3.23607 7.18530 9.56677

Distance Factor For One Azimuth Angle Acute
A [deg] ...... 90.0000 92.0000 95.0000 105.0000 115.0000 125.0000 135.0000 145.0000 155.0000 165.0000 175.0000 177.0000
....... sin(A) 1.00000 .99939 .99619 .96593 .90631 .81915 .70711 .57358 .42262 .25882 .08716 .05234

+----------------------------------------------------------------------------------------------------------------------
2.0 .03490 | 1.00061 1.00244 1.00751 1.04569 1.12233 1.25214 1.46628 1.83608 2.55930 4.44541 19.10732 57.29869
5.0 .08716 | 1.00382 1.00751 1.01543 1.06418 1.15470 1.30541 1.55572 2.00000 2.92380 5.75877 .00000 .00000
15.0 .25882 | 1.03528 1.04569 1.06418 1.15470 1.30541 1.55572 2.00000 2.92380 5.75877 .00000 .00000 .00000
25.0 .42262 | 1.10338 1.12233 1.15470 1.30541 1.55572 2.00000 2.92380 5.75877 .00000 .00000 .00000 .00000
35.0 .57358 | 1.22077 1.25214 1.30541 1.55572 2.00000 2.92380 5.75877 .00000 .00000 .00000 .00000 .00000
45.0 .70711 | 1.41421 1.46628 1.55572 2.00000 2.92380 5.75877 .00000 .00000 .00000 .00000 .00000 .00000
55.0 .81915 | 1.74345 1.83608 2.00000 2.92380 5.75877 .00000 .00000 .00000 .00000 .00000 .00000 .00000

65.0 .90631 | 2.36620 2.55930 2.92380 5.75877 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
75.0 .96593 | 3.86370 4.44541 5.75877 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
85.0 .99619 | 11.47371 19.10732 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
87.0 .99863 | 19.10732 57.29869 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000

WORKSHEET

1. Note the S value for the azimuth set [A1,A2]:S = .

2. Note the sine of each azimuth: sin(A1) = , sin(A2) = .

3. Compute the elevation tangents: tan(E1) = , tan(E2) = .

4. Compute the factor 0.5 D12 S

5. Compute the factors sin(A1) tan(E2) = , sin(A2) tan(E1) = ,
which should be within 10 % of each other.

6. Compute the value for Htarget from equation 9:
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3 Development of a Three Observer Altitude

Rule

It is possible of course to use the two observer rule in a pairwise sense when one
has three observation stations, and therefore three datasets: [D12,E1,A1,E2,A2],
[D13, E1,B1,E3,B3], and [D23,E2,C2, E3,C3]. Here we just evaluate the work-
sheet given in last section for each combination and average. There is an
automatic means to reject bad data that may occur if the target is nearly
overhead for any the observation points, and the clear potential for a general
improvement in accuracy as well as reliability.

What can be developed for three observers that is in some way better than
this? Well, in the special case that all observers are in a straight line along the
ground, one can show that only elevation angles need be measured. Insofar
as quick sighting for two angles per observer is a bit more complicated than
sighting for only one, the existence of such a scheme can reduce the altitude
computation to a simpler and more precise set of operations.
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Htarget

D13
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D32

D3
A

D12

O1 O3 O2

Fig. 3  Elevation Only Geometry

3.1 Proof for Three Colinear Observers

So, once again, back to the “theory zone” whence to consider the geometry of
Fig. 3: each of three observers measures the elevation angle of a target. The
baseline distances are shown in the figure, so that just as above, we have five
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measurements in the dataset: [D13,D32,E1,E2,E3]. The vertex angle associated
with the triangles in the ground plane including O3 is A. The distances from
the observers to the ground plane image point (I) are D1,D2,and D3.

In our previous derivation, a common segment (IJ) normal to the baseline
was used to partition that baseline. In like manner we can apply the Law of
Cosines to the two ground plane triangles: [O1 O3 I] and [O2 O3 I] to obtain
two expressions relating the various distances in these triangles.

D21 = D
2
3 +D

2
13 − 2 D13D3 cos(A) , D

2
2 = D

2
3 +D

2
32 + 2 D32D3 cos(A) . (10)

Notice that the relation for D2 carries a positive sign for the cosine term,
arising from the fact: cos (π - A) = - cos (A) in the triangle [O2 O3 I]. Now
we may eliminate the common factor 2D3cos(A) between these relations, and
with it the last explicit reference to any azimuth in the ground plane:

D22 −D
2
3 −D

2
32

D32
= 2D3cos(A) =

D23 −D
2
1 +D

2
13

D13
. (11)

Next, divide out the factors containing the baseline distances, and arrange
the simple baseline terms on the right to obtain:

D22 −D
2
3

D32
+
D21 −D

2
3

D13
= D13 +D32 . (12)

Within equation 12, eliminate the ground plane to image distances by making
the following substitutions:

D1 = H cot(E1) ;D2 = H cot(E2) ;D3 = H cot(E3) , (13)

arising from the common altitude segment H and our three elevations. Finally,
make the following substitutions partioning the baseline by means of a factor
δ which is always between 0 and 1,

D13 = δD12 ;D23 = (1− δ)D12 ;D12 = D13 +D32 . (14)

Upon collecting terms and extracting the square root of the trigonometric
function expression, we obtain:

Htarget =
D12{(

cot2(E1) − cot2(E3)
δ

)
+

(
cot2(E2) − cot2(E3)

1−δ

)}1/2 . (15)
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Stine[3] claims incorrectly that such a formulation is only possible for the
case of equidistant observers, viz. δ=0.5. Notice that a proper set of observa-
tions will always retain a positive definite cotangent term in the denominator
because the largest elevation angle is always the one corresponding to the
observer nearest the ground plane image of the target, usually the middle
observer. If the “cotangant denominator” term ever evaluates negative, the
obervations are flawed and incompatible. The measurement must be disre-
garded.

3.2 Application of the Three Observer Rule

For the rule just derived, the beautiful advantage is the recording of three
angles rather than four. Moreover, since we only measure elevations, simpler
pointing and tracking equipment can be used. The central observer can be
spaced at any interval along the baseline, we need only record the fixed frac-
tion δ at the start of tracking when we measure the baseline. Since only the
cotangent function is needed there are no tables to build, a standard hand
calculator will easily suffice.

In the (rare) case that the target goes directly over one of the observers,
that corresponding cotangent factor simply vanishes. The problem is then a
solution for a plane right triangle with either of the two baseline fragments
as the base. The altitude can then be computed directly from the elevation
cotangent from either triangle, viz. equation 13 with Dj equal to δD12 for j=
1, 2, or 3.

WORKSHEET

1. Note the baseline distance value:D12 = .

2. Note the δ value for the baseline:δ = .

3. Compute the elevation cotangents: cot(E1) = , cot(E2) = ,
cot(E3) = .

4. Compute the value for Htarget from equation 15:
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4 Advanced Topics and Problems

The results just developed are readily extended in several directions that may
also be of practical use. It is easy to see that once the altitude is determined
by any of these techniques, the complete expression for the range to the target
from any observer station can be stated. Develop range formulas for one or
more of the altitude relations we have constructed.

Similar considerations occur in radio direction finding (DF), although we
almost never have precise pointing accuracy in the emergency location trans-
mitter (ELT) signals. So first, examine the range formulations that you de-
rived above to determine the sensitivity of the final estimate to errors in the
pointing. Do this by substituting (E+δE) for an elevation (and A+δA for an
azimuth) and determined how the final range changes for a small change δE
or δA.

Take the range formula that is least sensitive to the pointing error and
imagine “turning the original problem on its side”. By this I mean we take
three or more direction measurements from the air to a ground target. The
range is the direct distance along the line of sight, but the length we care about
for DF work is the distance along the ground. It is that distance which now
corresponds to the altitude we calculated for the rockets. Develop formulations
which show a ground team an inferred ELT location (range and azimuth) from
three or four direction measurements in an airplane assumed to fly at fixed
altitude on a straight course directly over your location, which plays a role
similar to the “ground plane image” point of the altitude calculation. How
much is the accuracy of this estimate improved if the airplane now flies a
second pass on a course perpendicular to the first and reports a similar set of
direction measurements?
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