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In my work on the VCP program, it was necessary to collect the equations describing the various nose 
cone shapes.  This collection also brought together some nomenclature and nose cone information that I 
have never seen gathered in a single source, so I’ve tried to tidy it up and present it here for your 
amusement. 
 
GENERAL DIMENSIONS 
 
In all of the following nosecone shape 
equations, L is the overall length of the 
nosecone, and R is the radius of the base of 
the nosecone.   y is the radius at any point 
x, as x varies from 0, at the tip of the 
nosecone, to L.  The equations define the 
2-dimensional profile of the nose shape.  
The full body of revolution of the nosecone 
is formed by rotating the profile around the 
centerline (C/L).  Note that the equations 
describe the ‘perfect’ shape; practical nosecones are often blunted or truncated for manufacturing or 
aerodynamic reasons (see the following section on ‘Bluffness Ratio’). 
 
While a practical nose cone used in modeling usually includes a shoulder for mounting to a tube, that 
aspect will be ignored here, as it has no aerodynamic effects, and its mass and inertial contributions are 
easily handled separately. 
 

 
NOSE CONE SHAPE EQUATIONS 
 
CONICAL 
A very common nose cone shape is a 
simple cone.  This shape is often chosen 
for its ease of manufacture, and is also 
often (mis)chosen for its drag 
characteristics.  The sides of a conical 
profile are straight lines, so the diameter 
equation is simply, 
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Cones are sometimes defined by their ‘half angle’, φ  : 
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Cones are also special cases of the Power and Parabolic series, as shown in the following sections. 
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BI-CONIC 
A Bi-Conic  nosecone shape is simply a 
cone stacked on top of a frustrum of a cone 
(commonly known to modelers as a 
‘conical transition section’ shape), where 
the base of the upper cone is equal in 
diameter to the smaller diameter of the 
frustrum.   
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POWER SERIES 
The Power Series includes the shape 
commonly known to modelers as a 
‘parabolic’ nose cone.  (Oddly enough, the 
shape correctly known as a parabolic nose 
cone is a member of the Parabolic Series, 
and is something completely different.)  
The Power Series shape is characterized by 
its (usually) blunt tip, and by the fact that its 
base is not tangent to the body tube.  There 
is always a discontinuity at the nosecone-body joint that looks distinctly non-aerodynamic; however the 
shape is sometimes modified at the base to smooth out this discontinuity.  Often people speak of a 
parabola shape, when what they are actually looking for is an elliptical shape, which is tangent at its base.   
It is also interesting to note that both a flat -faced cylinder and a cone are shapes that are members of the 
Power Series 
 
The Power series nose shape is generated by rotating a parabola about its axis.  The base of the nosecone 
is parallel to the lattus rectum of the parabola, and the factor ‘n’ controls the ‘bluntness’ of the shape. As 
n decreases towards zero, the Power Series nose shape becomes increasingly blunt; at values of n above 
about .7, the tip becomes sharp. 
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Where: n = 1  for a  CONE 

  n = .75  for a  ¾ POWER 
n = .5  for a  ½ POWER (PARABOLA) 

  n = 0 for a  CYLINDER 
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TANGENT OGIVE  
Next to a simple cone, the Tangent Ogive shape 
is the most familiar in hobby rocketry.  The 
profile of this shape is formed by a segment of 
a circle such that the rocket body is tangent to 
the curve of the nosecone at its base; and the 
base is on the radius of the circle.   The 
popularity of this shape is largely due to the 
ease of constructing its profile, since that 
profile is just a segment of a circle that can be 
simply drawn with a compass.   
 
The radius of the circle that forms the ogive is 
called the Ogive Radius, ρρ, and it is related to 
the length and base radius of the nose cone: 
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The radius y at any point x, as x varies from 0 
to L is: 

 

( ) ( )y x L R= − − + −ρ ρ2 2
 

 
The nosecone length, L, must be equal to, or less than the Ogive Radius.  If they are equal, then the shape 
is a hemisphere.   

 
 
 
 
 
 
 
 
 

SECANT OGIVE  
The profile of this shape is also formed by a 
segment of a circle, but the base of the shape 
is not on the radius of the circle defined by 
the ogive radius.  The rocket body will not be 
tangent to the curve of the nose at its base. 
The Ogive Radius, ρρ, is not determined by R 
and L (as it is for a tangent ogive), but rather 
is one of the factors to be chosen to define 
the nose shape.  If the chosen Ogive Radius of 
a Secant Ogive is greater than the Ogive Radius of a Tangent Ogive with the same R and L, then the 
resulting Secant Ogive appears as a Tangent Ogive with a portion of the base truncated; figure n 
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Then the radius y at any point x, as x varies from 0 to L is:   

 

( )y x= − − +ρ ρ α ρ α2 2
cos sin  

 
If the chosen ρρ is less than the Tangent Ogive  
ρρ , then the result will be a Secant Ogive that 
bulges out to a maximum diameter that is 
greater than the base diameter; figure n+1.  The 
classic example of this shape is the nose cone 
of the Honest John.  Also, the chosen ogive 
radius must be greater than twice the length of 
the nose cone. 
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Programming note:  The inverse cosine function, required in the equations above, is not directly 
supported by most programming languages.  The derived function for the inverse cosine, in BASIC syntax, 
is as follows: 

( ) ( )( )cos * ( )− = +1 2 1z atn - z / sqr - z *z + 1 atn  ,where atn(1) is pi/4 radians. 

Arcsin(z) = atn(z/sqr(-z*z+1)) 
 

 

R 

L ρ 

C/L 

Secant Ogive 



 ELLIPTICAL 
The profile of this shape is one-half of an 
ellipse, with the major axis being the 
centerline and the minor axis being the 
base of the nosecone.  A rotation of a full 
ellipse about its major axis is called a 
prolate spheroid, so an elliptical nose 
shape would properly be known as a 
prolate hemispheroid.  This shape is 
popular in model rocketry due to the blunt 
nose and tangent base, which are attractive 
features for subsonic flight.  Note however, that this is not a shape normally found in professional 
rocketry.  Note also, that if R equals L, this shape is a hemisphere. 
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PARABOLIC SERIES 
The Parabolic Series nose shape is not the blunt 
shape that is envisioned when people commonly 
refer to a ‘parabolic’ nose cone.  The Parabolic 
Series nose shape is generated by rotating a 
segment of a parabola around a line parallel to its 
Latus Rectum.  (Shutup Beavis.)  This 
construction is similar to that of the Tangent 
Ogive, except that a parabola is the defining shape 
rather than a circle.  Just as it does on an Ogive, 
this construction produces a nose shape with a sharp tip. For the blunt shape typically associated with a 
‘parabolic’ nose, see the Power Series.  (And, of course, the ‘parabolic’ shape is also often confused with 
the elliptical shape.)  
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K’ can vary anywhere between 0 and 1, but the most common values used for nose cone shapes are: 
 

K’ = 0  for a  CONE 
 K’ = .5 for a  1/2 PARABOLA 

 K’ = .75 for a  3/4 PARABOLA  
K’ = 1 for a  PARABOLA 

 
For the case of the full Parabola (K’=1) the shape is tangent to the body at its base, and the base is on the 
axis of the parabola.  Values of K’ less than one result in a ‘slimmer’ shape, whose appearance is similar 
to that of the secant ogive.  The shape is no longer tangent at the base, and the base is parallel to, but offset 
from, the axis of the parabola. 
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HAACK SERIES  
Unlike all of the previous nose cone shapes 
the Haack Series shapes are not constructed 
from geometric figures.  Their shape is 
instead mathematically derived for the 
purpose of minimizing drag. While the 
series is a continuous set of shapes 
determined by the value of C in the 
equations below, two values of C have 
particular significance.  When C=0, the notation ‘LD’ signifies minimum drag for the given length and 
diameter, and when C=1/3, ‘LV’ indicates minimum drag for a given length and volume.  Note that the 
Haack series nose cones are not perfectly tangent to the body at their base, however the discontinuity is 
usually so slight as to be imperceptible.  Likewise, the Haack nose tips do not come to a sharp point, but 
are slightly rounded. 
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Where:   C = 1/3  for  LV-HAACK 
  C = 0  for  LD-HAACK  (This shape is also known as the Von Karman, or, the Von  
   Karman Ogive) 

 
 

 
 
NOSECONE CENTER-OF-PRESSURE CALCULATIONS 

Standard Barrowman values, TIR-33 
Normal force on the nose, regardless of shape: (Exception: a ‘bulgy’ secant ogive?) 
 

 ( )CN nα = 2  

 
Center of Pressure (CP) location of the nose, measured from the base of the nose is: 
 

 For a conical nosecone, X n
L

=
3

  

 For an ogive nosecone, X n L= .534  (estimate for L>6R) 

 For a parabolic nosecone, X n
L

=
2

 (Power Series, Parabola)  

  
(Note that these formulas have been altered to place the reference point for any longitudinal 
measurements to be the aft end of the nose cone [excluding any shoulder].  Although it is the 
most common reference point in most aeronautical texts, the tip of the nose cone becomes a 
remarkably inconvenient reference point in practical use.)   
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These equations for the CP location are all determined from the formula: 

  X
n

V

A
=    

where L is the length, V is the volume, and A is the base area of the nose cone.  The base area is 
simply πR 2 , and equations are readily available for the volume of a cone and parabola.  Likewise 
we can get an equation for the volume of an ellipse (prolate hemispheroid), and determine a CP 
location for that shape: 

For an elliptical nosecone, X n
L

=
3

2
 

It is interesting to note that the common value used for the CP position on a Tangent Ogive is 
actually  not simply proportional to length  The value of .534L that is commonly used is only an 
approximation that holds well when L ≥ 6R.  This is normal for most ogive nosecones, but there are many 
exceptions.  The exact volume of a Tangent Ogive is: 
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and the equation X n
V

A
=   

 
 can be used to determine the CP location.  We must remember that when Jim 
Barrowman simplified aerodynamic analysis methods for model rocketry use, it was an era when 
slide rules were the, ah, rule.  When currently programming applications, it is a simple matter to 
use the more rigorous forms.  

 
For some of the other shapes, I do not have convenient expressions for their volumes.  However it is 

a simple matter to perform a numerical integration on those shapes to determine their volume.  In the case 
of the LV-HAACK and Von Karman shapes, numerical integration on a variety of examples shows that the 
CP location is not dependent upon the diameter, but is simply proportional to the length: 

For an LV_HAACK nosecone, Xn L= .437   

 For a Von Karman nosecone, Xn L= .500  

The secant ogive, and the Power and Parabolic series that aren’t covered by the Conical and 
Parabolic CP equations, do not have simple proportional relationships.  We must resort to numerical 
integration to determine the CP location for each individual instance of these shapes. 
 
Examples 
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Note that some nose cones occasionally include a cylindrical section extending aft of the actual 
nose cone shape, usually to expand the payload section of the nose.  A cylindrical body section has no 
effect on the CP location within the Barrowman Equations.  It is only necessary to adjust the reference 
point of the nose shape to account for the cylindrical section. 

 
 
 
 
 
 
 

NOSE CONE DRAG CHARACTERISTICS 
 
Below Mach .8, the nose pressure drag is essentially zero for all shapes.  The major significant factor is 
friction drag, which is largely dependent upon the wetted area, the surface smoothness of that area, and the 
presence of any discontinuities in the shape.  In strictly subsonic model rockets, a short, blunt, smooth 
elliptical shape is usually best.  In the transonic region and beyond, where the pressure drag increases 
dramatically, the effect of nose shape on drag becomes highly significant.  The factors influencing the 
pressure drag are the general shape of the nosecone, its fineness ratio, and its bluffness ratio. 
 
Wetted Area - The wetted area is the total surface area of the nosecone shape that is exposed to the 
airflow.  This does not include the base area of the nosecone.  Friction drag on the rocket will depend 
upon the total wetted area.  Equations for determining wetted area are provided in the appendix, but for a 
quick comparison, the following table compares the wetted areas for nosecone shapes of a similar 4:1 
fineness ratio: 
 
{table TBD} 
 
General Shape - Many of the references contain empirical data comparing the drag characteristics of 
various nose shapes in different flight regimes.   The chart below, from reference 4, seems to be the most 
comprehensive and useful compilation of data for the flight regime of greatest interest.  This chart 
generally agrees with more detailed, but less comprehensive data found in other references (most notably 
the USAF Datcom).   
 



 
Many high-power and amateur rockets are striving to accomplish the goal of “Mach-busting”.  Therefore 
their greatest concern is flight performance in the transonic region from 0.8 to 1.2 Mach, and nosecone 
shapes should be chosen with that in mind.  Although data is not available for many shapes in the transonic 
region, the table clearly suggests that either the Von Karman shape, or Power Series shape with n = ½, 
would be preferable to the popular Conical or Ogive shapes, for this purpose.   
 
This observation goes against the often-repeated conventional wisdom that a conical nose is optimum for 
a Mach-breaking rocket.  I suspect that this belief derives from observations of sounding rockets that 
often utilize conical nose shapes, such as the Black Brant III, for example.  Such sounding rockets spend 
little of their flight time in the transonic region, accelerating quickly to multiple Mach numbers.  When it 
decelerates after burnout, the sounding rocket remains at multiple Mach for most of its remaining flight 
due to the decreased air density at altitude.  At the higher Mach numbers where it spends most of its 
flight, a cone then becomes the optimum low-drag shape.  Fighter aircraft are probably good examples of 
nose shapes optimized for the transonic region, although their nose shapes are often distorted by other 
considerations of avionics and inlets.  An F-16 nose appears to be a very close match to a Von Karman 
shape.  (What we really need is a nosecone whose shape can be transmorgified in flight to match the 
regime - see the Disney movie ‘The Flight of the Navigator’ for a good example of this concept.)  
 
Note that at present, commercially available Von Karman nosecones are very rare.  If you desire to 
fabricate your own nosecones, the VCP program will print any size profile of the Von Karman, or any of 
the other shapes, to a Windows printer.  (Royalties will gladly be accepted, in care of the author.) 
 
Due to the close visual similarity of the Von Karman shape with a Tangent Ogive, I suspect that some full 
size rockets that are reported in documentation to have “Ogive” nosecones, may actually have “Von 
Karman Ogive” nose shapes.  Without exact measurements, it would be difficult to distinguish between 
the two shapes in photographs. 
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Fineness Ratio - The ratio of the length of 
a nosecone compared to its the base 
diameter is known as the ‘Fineness Ratio’; 
e.g., a nosecone that is 10 inches long and 2 
inches in diameter would have a fineness 
ratio of 5:1. Note that this is sometimes 
also called the ‘Aspect Ratio’, though that 
term is usually applied to wings and fins.  
Note also that the term ‘fineness ratio’ is 
often applied to the entire vehicle, 
considering the overall length and diameter.  
The length/diameter relation is also often 
called the ‘Caliber’ of a nosecone; the 
previous example would have a caliber of 
‘5’.  At supersonic speeds, the fineness 
ratio has a very significant affect on nose 
cone wave drag, particularly at low ratios; 
but there is very little additional gain for 
ratios increasing beyond 5:1.  Remember 
that as the fineness ratio increases, the wetted area, and thus the skin friction component of drag, is also 
going to increase.  Therefore the minimum drag fineness ratio is ultimately going to be a tradeoff between 
the decreasing wave drag and increasing friction drag. 
 
 
 
 
 
 
 
 
 
 
 
Bluffness Ratio - While most of the nosecone shapes ideally come to a sharp tip, they are often blunted 
to some degree as a practical matter for ease of manufacturing, resistance to handling and flight damage, 
and safety.  This blunting is most often specified as a hemispherical ‘tip diameter’ of the nosecone.  The 
term ‘Bluffness Ratio’ is often used to describe a blunted tip, and is equal to the tip diameter divided by 
the base diameter.  Fortunately, there is little or no drag increase for slight blunting of a sharp nose shape.  
In fact, for constant overall lengths, there is a decrease in drag for bluffness ratios of up to 0.2, with an 
optimum at about 0.15.  A flat truncation of a nose tip is known as a Me’plat diameter, and the drag 
reduction effect of a Me’plat truncation is shown in the diagram below.  The diagram data are for noses 
that have been blunted to different diameters while maintaining a constant overall length (i.e., the ogive 
radius or cone angle is adjusted).  It is interesting to note that many types of rifle bullets and artillery 
shells feature Me’plat truncated tips. 
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           4:1 Von Karman Ogive with     Percent Change in Drag Coefficient vs Me’plat Diameter 
         0.15 caliber Me’plat truncation.           
 
Note that this does not mean that you should immediately chop all of the sharp tips off of your nose 
cones!  Removing a tip decreases the fineness ratio, which results in increased pressure drag.  However, if 
you are limited by materials or tools to a 15” finished nosecone length, for example, then your maximum 
fineness ratio is fixed by that length and the base diameter.  With such a limit, then using a 16” sharp-tip 
shape, and blunting the tip to fit the 15” limit will produce a lower drag shape than a 15” sharp tipped 
nosecone.  Whether by design or coincidence, most commercially-made tangent ogive hobby nosecones 
are blunted to a bluffness ratio of about .1. 
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TRANSONIC EFFECTS ON NOSE CONE CENTER OF PRESSURE AND 
NORMAL FORCE 
 
The Barrowman equations are very specific in their assumption that the flight regime is below .5 Mach.  In 
this range it is a good assumption that the nose cone center of pressure and the normal force are constant.  
Above this point, however, there are significant changes that should be considered.   
 
TBD 

 
 

OTHER MEASURATION FORMULAE 
 
 
Reference Area - CP and drag calculations are always based upon a particular reference area of a 
rocket.  That reference area is nearly always chosen to be the area of the base of the nose cone, 

which is: A R= π 2
 (Exception - a ‘bulgy’ secant ogive?) 

 
Fineness Ratio - For any shape, the fineness ratio of a nose cone is its length divided by its 
diameter.  For example, one might speak of a 5-to-1 (also written as 5:1) ogive nosecone shape, 
meaning that its length is five times its diameter.  This ratio is sometimes also called the ‘Aspect 
Ratio’. 
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Volume - When computing volume for purposes of CP calculations, exclude any nosecone 
shoulder.  When computing volume for mass or density calculations, the shoulder would be 
included. 

     

   For a cylinder:  V R L AL= =π 2
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For a Cone:  V
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For a Parabola:  V
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For all others, numerically integrate the volume of a conical frustrum over the length of the 
shape: 

   ( )V
h

R R R R= + +
π
3 1

2
2
2

1 2   

where: R1 and R2 are the forward and aft radii, and h is the height, of the frustrum. 
 

  
Wetted Area -  The wetted area is the total surface area of the  nosecone shape that is exposed to the 
airflow.  This does not include the base area or the area of any shoulder section.  The wetted area 
value is used in drag calculations. 

 
For a cylinder:  A RLwet = 2π   (Does not include face.) 
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For a Cone:  A R R Lwet = +π 2 2
  2pi? Nope, this looks ok. 
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R

wet = +

+
−

















π

π
ε

ε
ε2

2 1

1

2

ln

  where:ε =
−L R

L

2 2

 

half of this? 
 
For all others, numerically integrate the surface area of a conical frustrum over the length of 
the shape:  

   ( ) ( )S R R R R h= + − +π 1 2 1 2

2 2   

where: R1 and R2 are the forward and aft radii, and h is the height, of the frustrum. 
 

Mass  For any homogenous solid shape, the mass is simply the volume times the density of the 
material.  But it gets interesting when the shape is hollow, as most hobby nose cones are. 

Numerically integrate the volume of an annular conical frustrum: 
 

   ( )V ht R R t= + +π 1 2   

where: R1 and R2 are the forward and aft radii, h is the height, and t is the wall thickness 
of the hollow frustrum. (Assuming that the thickness remains constant over the height of 
the frustrum.)  When either radius is less than the wall thickness (as would be the case 
near the tip of the nose cone), the equation for volume of a solid frustrum would be 
used. 

 
Note that the mass of any nose cone shoulder should be similarly calculated and included.  For 
this, the equation for volume of a hollow cylinder might be useful: 

  ( )V L t R ts s= −π 2   



where: Rs is radius, t is the wall thickness, and Ls is the length of the shoulder. 
 
Lateral Area -   This value can be used for CP estimates using the center-of-lateral area method, in 
cases where the Barrowman CP does not apply.  Alat is the lateral area, and Xlat is the distance from 
the base of the figure to the center of lateral area of that figure. 
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For all others, numerically integrate the lateral area of a conical frustrum over the length of the 
shape: 
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1
2 1

2 1
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where: R1 and R2 are the forward and aft radii, and h is the height, of the frustrum. 

 
 
Center-of-Gravity   Solid/Hollow/Shoulder?  Material Density  - show how by numerical 
integration 
Inertial Moments   Solid/Hollow/Shoulder?   Material Density - show how by numerical 
integration. Rotational and Longitudinal. 
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