
LINUX: Rute User’s Tutorial and Exposition

Paul Sheer

August 14, 2001

Pages up to and including this page are not included by Prentice Hall.

2

“The reason we don’t sell billions and billions of Guides,” continued Harl,
after wiping his mouth, “is the expense. What we do is we sell one Guide billions
and billions of times. We exploit the multidimensional nature of the Universe to
cut down on manufacturing costs. And we don’t sell to penniless hitchhikers.
What a stupid notion that was! Find the one section of the market that, more or
less by definition, doesn’t have any money, and try to sell to it. No. We sell to
the affluent business traveler and his vacationing wife in a billion, billion different
futures. This is the most radical, dynamic and thrusting business venture in the
entire multidimensional infinity of space-time-probability ever.”

. . .

Ford was completely at a loss for what to do next.

“Look,” he said in a stern voice. But he wasn’t certain how far saying things
like “Look” in a stern voice was necessarily going to get him, and time was not on
his side. What the hell, he thought, you’re only young once, and threw himself out
of the window. That would at least keep the element of surprise on his side.

. . .

In a spirit of scientific inquiry he hurled himself out of the window again.

Douglas Adams
Mostly Harmless

Strangely, the thing that least intrigued me was how they’d managed to get it
all done. I suppose I sort of knew. If I’d learned one thing from traveling, it was
that the way to get things done was to go ahead and do them. Don’t talk about
going to Borneo. Book a ticket, get a visa, pack a bag, and it just happens.

Alex Garland
The Beach

vi

Chapter Summary

1 Introduction . 1
2 Computing Sub-basics . 5
3 PC Hardware . 15
4 Basic Commands . 25
5 Regular Expressions . 49
6 Editing Text Files . 53
7 Shell Scripting . 61
8 Streams and sed — The Stream Editor 73
9 Processes, Environment Variables . 81
10 Mail . 97
11 User Accounts and Ownerships . 101
12 Using Internet Services . 111
13 LINUX Resources . 117
14 Permission and Modification Times . 123
15 Symbolic and Hard Links . 127
16 Pre-installed Documentation . 131
17 Overview of the UNIX Directory Layout 135
18 UNIX Devices . 141
19 Partitions, File Systems, Formatting, Mounting 153
20 Advanced Shell Scripting . 171
21 System Services and lpd . 193
22 Trivial Introduction to C . 207
23 Shared Libraries . 233
24 Source and Binary Packages . 237
25 Introduction to IP . 247
26 TCP and UDP . 263

vii

Chapter Summary

27 DNS and Name Resolution . 273
28 Network File System, NFS . 285
29 Services Running Under inetd . 291
30 exim and sendmail . 299
31 lilo, initrd, and Booting . 317
32 init, ?getty, and UNIX Run Levels . 325
33 Sending Faxes . 333
34 uucp and uux . 337
35 The LINUX File System Standard . 347
36 httpd — Apache Web Server . 389
37 crond and atd . 409
38 postgres SQL Server . 413
39 smbd — Samba NT Server . 425
40 named — Domain Name Server . 437
41 Point-to-Point Protocol — Dialup Networking 453
42 The LINUX Kernel Source, Modules, and Hardware Support 463
43 The X Window System . 485
44 UNIX Security . 511
A Lecture Schedule . 525
B LPI Certification Cross-Reference . 531
C RHCE Certification Cross-Reference . 543
D LINUX Advocacy FAQ . 551
E The GNU General Public License Version 2 573

Index 581

viii

Contents

Acknowledgments xxxi

1 Introduction 1
1.1 What This Book Covers . 1
1.2 Read This Next. 1
1.3 What Do I Need to Get Started? . 1
1.4 More About This Book . 2
1.5 I Get Frustrated with UNIX Documentation That I Don’t Understand . . 2
1.6 LPI and RHCE Requirements . 2
1.7 Not RedHat: RedHat-like . 3
1.8 Updates and Errata . 3

2 Computing Sub-basics 5
2.1 Binary, Octal, Decimal, and Hexadecimal 5
2.2 Files . 7
2.3 Commands . 8
2.4 Login and Password Change . 9
2.5 Listing Files . 10
2.6 Command-Line Editing Keys . 10
2.7 Console Keys . 11
2.8 Creating Files . 12
2.9 Allowable Characters for File Names . 12
2.10 Directories . 12

3 PC Hardware 15
3.1 Motherboard . 15
3.2 Master/Slave IDE . 19

ix

Contents

3.3 CMOS . 20

3.4 Serial Devices . 20

3.5 Modems . 23

4 Basic Commands 25

4.1 The ls Command, Hidden Files, Command-Line Options 25

4.2 Error Messages . 26

4.3 Wildcards, Names, Extensions, and glob Expressions 29

4.3.1 File naming . 29

4.3.2 Glob expressions . 32

4.4 Usage Summaries and the Copy Command 33

4.5 Directory Manipulation . 34

4.6 Relative vs. Absolute Pathnames . 34

4.7 System Manual Pages . 35

4.8 System info Pages . 36

4.9 Some Basic Commands . 36

4.10 The mc File Manager . 40

4.11 Multimedia Commands for Fun . 40

4.12 Terminating Commands . 41

4.13 Compressed Files . 41

4.14 Searching for Files . 42

4.15 Searching Within Files . 43

4.16 Copying to MS-DOS and Windows Formatted Floppy Disks 44

4.17 Archives and Backups . 45

4.18 The PATH Where Commands Are Searched For 46

4.19 The -- Option . 47

5 Regular Expressions 49

5.1 Overview . 49

5.2 The fgrep Command . 51

5.3 Regular Expression \{ \} Notation . 51

5.4 + ? \< \> () | Notation . 52

5.5 Regular Expression Subexpressions . 52

x

Contents

6 Editing Text Files 53
6.1 vi . 53
6.2 Syntax Highlighting . 57
6.3 Editors . 57

6.3.1 Cooledit . 58
6.3.2 vi and vim . 58
6.3.3 Emacs . 59
6.3.4 Other editors . 59

7 Shell Scripting 61
7.1 Introduction . 61
7.2 Looping: the while and until Statements 62
7.3 Looping: the for Statement . 63
7.4 breaking Out of Loops and continueing 65
7.5 Looping Over Glob Expressions . 66
7.6 The case Statement . 66
7.7 Using Functions: the function Keyword 67
7.8 Properly Processing Command-Line Args: shift 68
7.9 More on Command-Line Arguments: $@ and $0 70
7.10 Single Forward Quote Notation . 70
7.11 Double-Quote Notation . 70
7.12 Backward-Quote Substitution . 71

8 Streams and sed — The Stream Editor 73
8.1 Introduction . 73
8.2 Tutorial . 74
8.3 Piping Using | Notation . 74
8.4 A Complex Piping Example . 75
8.5 Redirecting Streams with >& . 75
8.6 Using sed to Edit Streams . 77
8.7 Regular Expression Subexpressions . 77
8.8 Inserting and Deleting Lines . 79

9 Processes, Environment Variables 81
9.1 Introduction . 81
9.2 ps — List Running Processes . 82
9.3 Controlling Jobs . 82

xi

Contents

9.4 Creating Background Processes . 83

9.5 killing a Process, Sending Signals . 84

9.6 List of Common Signals . 86

9.7 Niceness of Processes, Scheduling Priority 87

9.8 Process CPU/Memory Consumption, top 88

9.9 Environments of Processes . 90

10 Mail 97

10.1 Sending and Reading Mail . 99

10.2 The SMTP Protocol — Sending Mail Raw to Port 25 99

11 User Accounts and Ownerships 101

11.1 File Ownerships . 101

11.2 The Password File /etc/passwd . 102

11.3 Shadow Password File: /etc/shadow 103

11.4 The groups Command and /etc/group 104

11.5 Manually Creating a User Account . 105

11.6 Automatically: useradd and groupadd 106

11.7 User Logins . 106

11.7.1 The login command . 106

11.7.2 The set user, su command . 107

11.7.3 The who, w, and users commands to see who is logged in 108

11.7.4 The id command and effective UID 109

11.7.5 User limits . 109

12 Using Internet Services 111

12.1 ssh, not telnet or rlogin . 111

12.2 rcp and scp . 112

12.3 rsh . 112

12.4 FTP . 113

12.5 finger . 114

12.6 Sending Files by Email . 114

12.6.1 uuencode and uudecode . 114

12.6.2 MIME encapsulation . 115

xii

Contents

13 LINUX Resources 117
13.1 FTP Sites and the sunsite Mirror . 117
13.2 HTTP — Web Sites . 118
13.3 SourceForge . 119
13.4 Mailing Lists . 119

13.4.1 Majordomo and Listserv . 119
13.4.2 *-request . 120

13.5 Newsgroups . 120
13.6 RFCs . 121

14 Permission and Modification Times 123
14.1 The chmod Command . 123
14.2 The umask Command . 125
14.3 Modification Times: stat . 126

15 Symbolic and Hard Links 127
15.1 Soft Links . 127
15.2 Hard Links . 129

16 Pre-installed Documentation 131

17 Overview of the UNIX Directory Layout 135
17.1 Packages . 135
17.2 UNIX Directory Superstructure . 136
17.3 LINUX on a Single Floppy Disk . 138

18 UNIX Devices 141
18.1 Device Files . 141
18.2 Block and Character Devices . 142
18.3 Major and Minor Device Numbers . 143
18.4 Common Device Names . 143
18.5 dd, tar, and Tricks with Block Devices 147

18.5.1 Creating boot disks from boot images 147
18.5.2 Erasing disks . 147
18.5.3 Identifying data on raw disks . 148
18.5.4 Duplicating a disk . 148
18.5.5 Backing up to floppies . 149

xiii

Contents

18.5.6 Tape backups . 149
18.5.7 Hiding program output, creating blocks of zeros 149

18.6 Creating Devices with mknod and /dev/MAKEDEV 150

19 Partitions, File Systems, Formatting, Mounting 153
19.1 The Physical Disk Structure . 153

19.1.1 Cylinders, heads, and sectors . 153
19.1.2 Large Block Addressing . 154
19.1.3 Extended partitions . 154

19.2 Partitioning a New Disk . 155
19.3 Formatting Devices . 160

19.3.1 File systems . 160
19.3.2 mke2fs . 160
19.3.3 Formatting floppies and removable drives 161
19.3.4 Creating MS-DOS floppies . 162
19.3.5 mkswap, swapon, and swapoff 162

19.4 Device Mounting . 163
19.4.1 Mounting CD-ROMs . 163
19.4.2 Mounting floppy disks . 164
19.4.3 Mounting Windows and NT partitions 164

19.5 File System Repair: fsck . 165
19.6 File System Errors on Boot . 165
19.7 Automatic Mounts: fstab . 166
19.8 Manually Mounting /proc . 167
19.9 RAM and Loopback Devices . 167

19.9.1 Formatting a floppy inside a file 167
19.9.2 CD-ROM files . 168

19.10 Remounting . 168
19.11 Disk sync . 169

20 Advanced Shell Scripting 171
20.1 Lists of Commands . 171
20.2 Special Parameters: $?, $*,. 172
20.3 Expansion . 173
20.4 Built-in Commands . 175
20.5 Trapping Signals — the trap Command 176

xiv

Contents

20.6 Internal Settings — the set Command 177
20.7 Useful Scripts and Commands . 178

20.7.1 chroot . 178
20.7.2 if conditionals . 179
20.7.3 patching and diffing . 179
20.7.4 Internet connectivity test . 180
20.7.5 Recursive grep (search) . 180
20.7.6 Recursive search and replace . 181
20.7.7 cut and awk — manipulating text file fields 182
20.7.8 Calculations with bc . 183
20.7.9 Conversion of graphics formats of many files 183
20.7.10 Securely erasing files . 184
20.7.11 Persistent background processes 184
20.7.12 Processing the process list . 185

20.8 Shell Initialization . 186
20.8.1 Customizing the PATH and LD LIBRARY PATH 187

20.9 File Locking . 187
20.9.1 Locking a mailbox file . 188
20.9.2 Locking over NFS . 190
20.9.3 Directory versus file locking . 190
20.9.4 Locking inside C programs . 191

21 System Services and lpd 193
21.1 Using lpr . 193
21.2 Downloading and Installing . 194
21.3 LPRng vs. Legacy lpr-0.nn . 195
21.4 Package Elements . 195

21.4.1 Documentation files . 195
21.4.2 Web pages, mailing lists, and download points 195
21.4.3 User programs . 196
21.4.4 Daemon and administrator programs 196
21.4.5 Configuration files . 196
21.4.6 Service initialization files . 196
21.4.7 Spool files . 197
21.4.8 Log files . 198
21.4.9 Log file rotation . 198

xv

Contents

21.4.10 Environment variables . 199

21.5 The printcap File in Detail . 199

21.6 PostScript and the Print Filter . 200

21.7 Access Control . 202

21.8 Printing Troubleshooting . 203

21.9 Useful Programs . 204

21.9.1 printtool . 204

21.9.2 apsfilter . 204

21.9.3 mpage . 204

21.9.4 psutils . 204

21.10 Printing to Things Besides Printers . 205

22 Trivial Introduction to C 207

22.1 C Fundamentals . 208

22.1.1 The simplest C program . 208

22.1.2 Variables and types . 209

22.1.3 Functions . 210

22.1.4 for, while, if, and switch statements 211

22.1.5 Strings, arrays, and memory allocation 213

22.1.6 String operations . 215

22.1.7 File operations . 217

22.1.8 Reading command-line arguments inside C programs 218

22.1.9 A more complicated example . 218

22.1.10 #include statements and prototypes 220

22.1.11 C comments . 221

22.1.12 #define and #if — C macros 222

22.2 Debugging with gdb and strace . 223

22.2.1 gdb . 223

22.2.2 Examining core files . 227

22.2.3 strace . 227

22.3 C Libraries . 227

22.4 C Projects — Makefiles . 230

22.4.1 Completing our example Makefile 231

22.4.2 Putting it all together . 231

xvi

Contents

23 Shared Libraries 233

23.1 Creating DLL .so Files . 233

23.2 DLL Versioning . 234

23.3 Installing DLL .so Files . 235

24 Source and Binary Packages 237

24.1 Building GNU Source Packages . 237

24.2 RedHat and Debian Binary Packages . 240

24.2.1 Package versioning . 240

24.2.2 Installing, upgrading, and deleting 240

24.2.3 Dependencies . 241

24.2.4 Package queries . 241

24.2.5 File lists and file queries . 242

24.2.6 Package verification . 243

24.2.7 Special queries . 244

24.2.8 dpkg/apt versus rpm . 245

24.3 Source Packages . 246

25 Introduction to IP 247

25.1 Internet Communication . 247

25.2 Special IP Addresses . 249

25.3 Network Masks and Addresses . 250

25.4 Computers on a LAN . 250

25.5 Configuring Interfaces . 251

25.6 Configuring Routing . 252

25.7 Configuring Startup Scripts . 254

25.7.1 RedHat networking scripts . 254

25.7.2 Debian networking scripts . 255

25.8 Complex Routing — a Many-Hop Example 256

25.9 Interface Aliasing — Many IPs on One Physical Card 259

25.10 Diagnostic Utilities . 260

25.10.1 ping . 260

25.10.2 traceroute . 261

25.10.3 tcpdump . 261

xvii

Contents

26 TCP and UDP 263
26.1 The TCP Header . 264
26.2 A Sample TCP Session . 265
26.3 User Datagram Protocol (UDP) . 268
26.4 /etc/services File . 269
26.5 Encrypting and Forwarding TCP . 270

27 DNS and Name Resolution 273
27.1 Top-Level Domains (TLDs) . 273
27.2 Resolving DNS Names to IP Addresses 274

27.2.1 The Internet DNS infrastructure 275
27.2.2 The name resolution process . 276

27.3 Configuring Your Local Machine . 277
27.4 Reverse Lookups . 281
27.5 Authoritative for a Domain . 281
27.6 The host, ping, and whois Command 281
27.7 The nslookup Command . 282

27.7.1 NS, MX, PTR, A and CNAME records 283
27.8 The dig Command . 284

28 Network File System, NFS 285
28.1 Software . 285
28.2 Configuration Example . 286
28.3 Access Permissions . 288
28.4 Security . 289
28.5 Kernel NFS . 289

29 Services Running Under inetd 291
29.1 The inetd Package . 291
29.2 Invoking Services with /etc/inetd.conf 291

29.2.1 Invoking a standalone service . 292
29.2.2 Invoking an inetd service . 292
29.2.3 Invoking an inetd “TCP wrapper” service 293
29.2.4 Distribution conventions . 294

29.3 Various Service Explanations . 294
29.4 The xinetd Alternative . 295
29.5 Configuration Files . 295

xviii

Contents

29.5.1 Limiting access . 296
29.6 Security . 297

30 exim and sendmail 299
30.1 Introduction . 299

30.1.1 How mail works . 299
30.1.2 Configuring a POP/IMAP server 301
30.1.3 Why exim? . 301

30.2 exim Package Contents . 301
30.3 exim Configuration File . 302

30.3.1 Global settings . 303
30.3.2 Transports . 304
30.3.3 Directors . 305
30.3.4 Routers . 306

30.4 Full-blown Mail server . 306
30.5 Shell Commands for exim Administration 308
30.6 The Queue . 309
30.7 /etc/aliases for Equivalent Addresses 310
30.8 Real-Time Blocking List — Combating Spam 311

30.8.1 What is spam? . 311
30.8.2 Basic spam prevention . 312
30.8.3 Real-time blocking list . 313
30.8.4 Mail administrator and user responsibilities 313

30.9 Sendmail . 314

31 lilo, initrd, and Booting 317
31.1 Usage . 317
31.2 Theory . 318

31.2.1 Kernel boot sequence . 318
31.2.2 Master boot record . 318
31.2.3 Booting partitions . 318
31.2.4 Limitations . 319

31.3 lilo.conf and the lilo Command . 319
31.4 Creating Boot Floppy Disks . 321
31.5 SCSI Installation Complications and initrd 322
31.6 Creating an initrd Image . 322
31.7 Modifying lilo.conf for initrd . 324
31.8 Using mkinitrd . 324

xix

Contents

32 init, ?getty, and UNIX Run Levels 325
32.1 init — the First Process . 325
32.2 /etc/inittab . 326

32.2.1 Minimal configuration . 326
32.2.2 Rereading inittab . 328
32.2.3 The respawning too fast error 328

32.3 Useful Run Levels . 328
32.4 getty Invocation . 329
32.5 Bootup Summary . 329
32.6 Incoming Faxes and Modem Logins . 330

32.6.1 mgetty with character terminals 330
32.6.2 mgetty log files . 330
32.6.3 mgetty with modems . 330
32.6.4 mgetty receiving faxes . 331

33 Sending Faxes 333
33.1 Fax Through Printing . 333
33.2 Setgid Wrapper Binary . 335

34 uucp and uux 337
34.1 Command-Line Operation . 338
34.2 Configuration . 338
34.3 Modem Dial . 341
34.4 tty/UUCP Lock Files . 342
34.5 Debugging uucp . 343
34.6 Using uux with exim . 343
34.7 Scheduling Dialouts . 346

35 The LINUX File System Standard 347
35.1 Introduction . 349

35.1.1 Purpose . 349
35.1.2 Conventions . 349

35.2 The Filesystem . 349
35.3 The Root Filesystem . 351

35.3.1 Purpose . 351
35.3.2 Requirements . 352
35.3.3 Specific Options . 352

xx

Contents

35.3.4 /bin : Essential user command binaries (for use by all users) . . 353
35.3.5 /boot : Static files of the boot loader 354
35.3.6 /dev : Device files . 355
35.3.7 /etc : Host-specific system configuration 355
35.3.8 /home : User home directories (optional) 358
35.3.9 /lib : Essential shared libraries and kernel modules 358
35.3.10 /lib<qual> : Alternate format essential shared libraries (optional)359
35.3.11 /mnt : Mount point for a temporarily mounted filesystem 359
35.3.12 /opt : Add-on application software packages 360
35.3.13 /root : Home directory for the root user (optional) 361
35.3.14 /sbin : System binaries . 361
35.3.15 /tmp : Temporary files . 362

35.4 The /usr Hierarchy . 362
35.4.1 Purpose . 362
35.4.2 Requirements . 363
35.4.3 Specific Options . 363
35.4.4 /usr/X11R6 : X Window System, Version 11 Release 6 (optional) 363
35.4.5 /usr/bin : Most user commands 364
35.4.6 /usr/include : Directory for standard include files. 365
35.4.7 /usr/lib : Libraries for programming and packages 365
35.4.8 /usr/lib<qual> : Alternate format libraries (optional) 366
35.4.9 /usr/local : Local hierarchy . 366
35.4.10 /usr/sbin : Non-essential standard system binaries 367
35.4.11 /usr/share : Architecture-independent data 367
35.4.12 /usr/src : Source code (optional) 373

35.5 The /var Hierarchy . 373
35.5.1 Purpose . 373
35.5.2 Requirements . 373
35.5.3 Specific Options . 374
35.5.4 /var/account : Process accounting logs (optional) 374
35.5.5 /var/cache : Application cache data 374
35.5.6 /var/crash : System crash dumps (optional) 376
35.5.7 /var/games : Variable game data (optional) 376
35.5.8 /var/lib : Variable state information 377
35.5.9 /var/lock : Lock files . 379
35.5.10 /var/log : Log files and directories 379

xxi

Contents

35.5.11 /var/mail : User mailbox files (optional) 379
35.5.12 /var/opt : Variable data for /opt 380
35.5.13 /var/run : Run-time variable data 380
35.5.14 /var/spool : Application spool data 381
35.5.15 /var/tmp : Temporary files preserved between system reboots . 382
35.5.16 /var/yp : Network Information Service (NIS) database files (op-

tional) . 382
35.6 Operating System Specific Annex . 382

35.6.1 Linux . 382
35.7 Appendix . 386

35.7.1 The FHS mailing list . 386
35.7.2 Background of the FHS . 386
35.7.3 General Guidelines . 386
35.7.4 Scope . 386
35.7.5 Acknowledgments . 387
35.7.6 Contributors . 387

36 httpd — Apache Web Server 389
36.1 Web Server Basics . 389
36.2 Installing and Configuring Apache . 393

36.2.1 Sample httpd.conf . 393
36.2.2 Common directives . 394
36.2.3 User HTML directories . 398
36.2.4 Aliasing . 398
36.2.5 Fancy indexes . 399
36.2.6 Encoding and language negotiation 399
36.2.7 Server-side includes — SSI . 400
36.2.8 CGI — Common Gateway Interface 401
36.2.9 Forms and CGI . 403
36.2.10 Setuid CGIs . 405
36.2.11 Apache modules and PHP . 406
36.2.12 Virtual hosts . 407

37 crond and atd 409
37.1 /etc/crontab Configuration File . 409
37.2 The at Command . 411
37.3 Other cron Packages . 412

xxii

Contents

38 postgres SQL Server 413
38.1 Structured Query Language . 413
38.2 postgres . 414
38.3 postgres Package Content . 414
38.4 Installing and Initializing postgres . 415
38.5 Database Queries with psql . 417
38.6 Introduction to SQL . 418

38.6.1 Creating tables . 418
38.6.2 Listing a table . 419
38.6.3 Adding a column . 420
38.6.4 Deleting (dropping) a column . 420
38.6.5 Deleting (dropping) a table . 420
38.6.6 Inserting rows, “object relational” 420
38.6.7 Locating rows . 421
38.6.8 Listing selected columns, and the oid column 421
38.6.9 Creating tables from other tables 421
38.6.10 Deleting rows . 421
38.6.11 Searches . 422
38.6.12 Migrating from another database; dumping and restoring tables

as plain text . 422
38.6.13 Dumping an entire database . 423
38.6.14 More advanced searches . 423

38.7 Real Database Projects . 423

39 smbd — Samba NT Server 425
39.1 Samba: An Introduction by Christopher R. Hertel 425
39.2 Configuring Samba . 431
39.3 Configuring Windows . 433
39.4 Configuring a Windows Printer . 434
39.5 Configuring swat . 434
39.6 Windows NT Caveats . 435

40 named — Domain Name Server 437
40.1 Documentation . 438
40.2 Configuring bind . 438

40.2.1 Example configuration . 438
40.2.2 Starting the name server . 443

xxiii

Contents

40.2.3 Configuration in detail . 444
40.3 Round-Robin Load-Sharing . 448
40.4 Configuring named for Dialup Use . 449

40.4.1 Example caching name server . 449
40.4.2 Dynamic IP addresses . 450

40.5 Secondary or Slave DNS Servers . 450

41 Point-to-Point Protocol — Dialup Networking 453
41.1 Basic Dialup . 453

41.1.1 Determining your chat script . 455
41.1.2 CHAP and PAP . 456
41.1.3 Running pppd . 456

41.2 Demand-Dial, Masquerading . 458
41.3 Dialup DNS . 460
41.4 Dial-in Servers . 460
41.5 Using tcpdump . 462
41.6 ISDN Instead of Modems . 462

42 The LINUX Kernel Source, Modules, and Hardware Support 463
42.1 Kernel Constitution . 463
42.2 Kernel Version Numbers . 464
42.3 Modules, insmod Command, and Siblings 464
42.4 Interrupts, I/O Ports, and DMA Channels 466
42.5 Module Options and Device Configuration 467

42.5.1 Five ways to pass options to a module 467
42.5.2 Module documentation sources 469

42.6 Configuring Various Devices . 470
42.6.1 Sound and pnpdump . 470
42.6.2 Parallel port . 472
42.6.3 NIC — Ethernet, PCI, and old ISA 472
42.6.4 PCI vendor ID and device ID . 474
42.6.5 PCI and sound . 474
42.6.6 Commercial sound drivers . 474
42.6.7 The ALSA sound project . 475
42.6.8 Multiple Ethernet cards . 475
42.6.9 SCSI disks . 475

xxiv

Contents

42.6.10 SCSI termination and cooling . 477
42.6.11 CD writers . 477
42.6.12 Serial devices . 479

42.7 Modem Cards . 480
42.8 More on LILO: Options . 481
42.9 Building the Kernel . 481

42.9.1 Unpacking and patching . 481
42.9.2 Configuring . 482

42.10 Using Packaged Kernel Source . 483
42.11 Building, Installing . 483

43 The X Window System 485
43.1 The X Protocol . 485
43.2 Widget Libraries and Desktops . 491

43.2.1 Background . 491
43.2.2 Qt . 492
43.2.3 Gtk . 492
43.2.4 GNUStep . 493

43.3 XFree86 . 493
43.3.1 Running X and key conventions 493
43.3.2 Running X utilities . 494
43.3.3 Running two X sessions . 495
43.3.4 Running a window manager . 495
43.3.5 X access control and remote display 496
43.3.6 X selections, cutting, and pasting 497

43.4 The X Distribution . 497
43.5 X Documentation . 497

43.5.1 Programming . 498
43.5.2 Configuration documentation . 498
43.5.3 XFree86 web site . 498

43.6 X Configuration . 499
43.6.1 Simple 16-color X server . 499
43.6.2 Plug-and-Play operation . 500
43.6.3 Proper X configuration . 501

43.7 Visuals . 504
43.8 The startx and xinit Commands . 505

xxv

Contents

43.9 Login Screen . 506
43.10 X Font Naming Conventions . 506
43.11 Font Configuration . 508
43.12 The Font Server . 509

44 UNIX Security 511
44.1 Common Attacks . 511

44.1.1 Buffer overflow attacks . 512
44.1.2 Setuid programs . 513
44.1.3 Network client programs . 514
44.1.4 /tmp file vulnerability . 514
44.1.5 Permission problems . 514
44.1.6 Environment variables . 515
44.1.7 Password sniffing . 515
44.1.8 Password cracking . 515
44.1.9 Denial of service attacks . 515

44.2 Other Types of Attack . 516
44.3 Counter Measures . 516

44.3.1 Removing known risks: outdated packages 516
44.3.2 Removing known risks: compromised packages 517
44.3.3 Removing known risks: permissions 517
44.3.4 Password management . 517
44.3.5 Disabling inherently insecure services 517
44.3.6 Removing potential risks: network 518
44.3.7 Removing potential risks: setuid programs 519
44.3.8 Making life difficult . 520
44.3.9 Custom security paradigms . 521
44.3.10 Proactive cunning . 522

44.4 Important Reading . 523
44.5 Security Quick-Quiz . 523
44.6 Security Auditing . 524

A Lecture Schedule 525
A.1 Hardware Requirements . 525
A.2 Student Selection . 525
A.3 Lecture Style . 526

xxvi

Contents

B LPI Certification Cross-Reference 531
B.1 Exam Details for 101 . 531
B.2 Exam Details for 102 . 536

C RHCE Certification Cross-Reference 543
C.1 RH020, RH030, RH033, RH120, RH130, and RH133 543
C.2 RH300 . 544
C.3 RH220 (RH253 Part 1) . 547
C.4 RH250 (RH253 Part 2) . 549

D LINUX Advocacy FAQ 551
D.1 LINUX Overview . 551
D.2 LINUX, GNU, and Licensing . 556
D.3 LINUX Distributions . 560
D.4 LINUX Support . 563
D.5 LINUX Compared to Other Systems . 563
D.6 Migrating to LINUX . 567
D.7 Technical . 569

E The GNU General Public License Version 2 573

Index 581

xxvii

Contents

xxviii

Preface

When I began working with GNU/LINUX in 1994, it was straight from the DOS
world. Though UNIX was unfamiliar territory, LINUX books assumed that anyone
using LINUX was migrating from System V or BSD—systems that I had never heard
of. It is a sensible adage to create, for others to share, the recipe that you would most
like to have had. Indeed, I am not convinced that a single unifying text exists, even
now, without this book. Even so, I give it to you desperately incomplete; but there is
only so much one can explain in a single volume.

I hope that readers will now have a single text to guide them through all facets
of GNU/LINUX.

xxix

Contents

xxx

Acknowledgments

A special thanks goes to my technical reviewer, Abraham van der Merwe, and my
production editor, Jane Bonnell. Thanks to Jonathan Maltz, Jarrod Cinman, and Alan
Tredgold for introducing me to GNU/Linux back in 1994 or so. Credits are owed to all
the Free software developers that went into LATEX, TEX, GhostScript, GhostView, Au-
totrace, XFig, XV, Gimp, the Palatino font, the various LATEX extension styles, DVIPS,
DVIPDFM, ImageMagick, XDVI, XPDF, and LaTeX2HTML without which this docu-
ment would scarcely be possible. To name a few: John Bradley, David Carlisle, Eric
Cooper, John Cristy, Peter Deutsch, Nikos Drakos, Mark Eichin, Brian Fox, Carsten
Heinz, Spencer Kimball, Paul King, Donald Knuth, Peter Mattis, Frank Mittelbach,
Ross Moore, Derek B. Noonburg, Johannes Plass, Sebastian Rahtz, Chet Ramey, Tomas
Rokicki, Bob Scheifler, Rainer Schoepf, Brian Smith, Supoj Sutanthavibul, Herb Swan,
Tim Theisen, Paul Vojta, Martin Weber, Mark Wicks, Masatake Yamato, Ken Yap, Her-
man Zapf.

Thanks to Christopher R. Hertel for contributing his introduction to Samba.

An enormous thanks to the GNU project of the Free Software Foundation, to the count-
less developers of Free software, and to the many readers that gave valuable feedback
on the web site.

xxxi

Acknowledgments

xxxii

Chapter 1

Introduction

Whereas books shelved beside this one will get your feet wet, this one lets you actually
paddle for a bit, then thrusts your head underwater while feeding you oxygen.

1.1 What This Book Covers

This book covers GNU /LINUX system administration, for popular distributions
like RedHat and Debian , as a tutorial for new users and a reference for advanced
administrators. It aims to give concise, thorough explanations and practical examples
of each aspect of a UNIX system. Anyone who wants a comprehensive text on (what is
commercially called) “LINUX” need look no further—there is little that is not covered
here.

1.2 Read This Next. . .

The ordering of the chapters is carefully designed to allow you to read in sequence
without missing anything. You should hence read from beginning to end, in order that
later chapters do not reference unseen material. I have also packed in useful examples
which you must practice as you read.

1.3 What Do I Need to Get Started?

You will need to install a basic LINUX system. A number of vendors now ship point-
and-click-install CDs: you should try get a Debian or “RedHat-like” distribution.

1

1.4. More About This Book 1. Introduction

One hint: try and install as much as possible so that when I mention a software pack-
age in this text, you are likely to have it installed already and can use it immediately.
Most cities with a sizable IT infrastructure will have a LINUX user group to help you
source a cheap CD. These are getting really easy to install, and there is no longer much
need to read lengthy installation instructions.

1.4 More About This Book

Chapter 16 contains a fairly comprehensive list of all reference documentation avail-
able on your system. This book supplements that material with a tutorial that is both
comprehensive and independent of any previous UNIX knowledge.

The book also aims to satisfy the requirements for course notes for a
GNU /LINUX training course. Here in South Africa, I use the initial chapters as
part of a 36-hour GNU /LINUX training course given in 12 lessons. The details of
the layout for this course are given in Appendix A.

Note that all “LINUX ” systems are really composed mostly of GNU soft-
ware, but from now on I will refer to the GNU system as “LINUX ” in the way
almost everyone (incorrectly) does.

1.5 I Get Frustrated with UNIX Documentation
That I Don’t Understand

Any system reference will require you to read it at least three times before you get a reasonable
picture of what to do. If you need to read it more than three times, then there is probably
some other information that you really should be reading first. If you are reading a
document only once, then you are being too impatient with yourself.

It is important to identify the exact terms that you fail to understand in a docu-
ment. Always try to backtrack to the precise word before you continue.

Its also probably not a good idea to learn new things according to deadlines. Your
UNIX knowledge should evolve by grace and fascination, rather than pressure.

1.6 Linux Professionals Institute (LPI) and
RedHat Certified Engineer (RHCE) Requirements

The difference between being able to pass an exam and being able to do something
useful, of course, is huge.

2

1. Introduction 1.7. Not RedHat: RedHat-like

The LPI and RHCE are two certifications that introduce you to LINUX . This
book covers far more than both these two certifications in most places, but occasionally
leaves out minor items as an exercise. It certainly covers in excess of what you need to
know to pass both these certifications.

The LPI and RHCE requirements are given in Appendix B and C.

These two certifications are merely introductions to UNIX. To earn them, users
are not expected to write nifty shell scripts to do tricky things, or understand the subtle
or advanced features of many standard services, let alone be knowledgeable of the
enormous numbers of non-standard and useful applications out there. To be blunt:
you can pass these courses and still be considered quite incapable by the standards of
companies that do system integration. &System integration is my own term. It refers to the act
of getting LINUX to do nonbasic functions, like writing complex shell scripts; setting up wide-area dialup
networks; creating custom distributions; or interfacing database, web, and email services together.- In
fact, these certifications make no reference to computer programming whatsoever.

1.7 Not RedHat: RedHat-like

Throughout this book I refer to examples specific to “RedHat” and “Debian ”. What
I actually mean by this are systems that use .rpm (redHat package manager) packages
as opposed to systems that use .deb (debian) packages—there are lots of both. This
just means that there is no reason to avoid using a distribution like Mandrake, which
is .rpm based and viewed by many as being better than RedHat.

In short, brand names no longer have any meaning in the Free software community.

(Note that the same applies to the word UNIX which we take to mean the com-
mon denominator between all the UNIX variants, including RISC, mainframe, and PC
variants of both System V and BSD.)

1.8 Updates and Errata

Corrections to this book will be posted on http://www.icon.co.za/˜psheer/rute-errata.html.
Please check this web page before notifying me of errors.

3

1.8. Updates and Errata 1. Introduction

4

Chapter 2

Computing Sub-basics

This chapter explains some basics that most computer users will already be familiar
with. If you are new to UNIX, however, you may want to gloss over the commonly
used key bindings for reference.

The best way of thinking about how a computer stores and manages information
is to ask yourself how you would. Most often the way a computer works is exactly
the way you would expect it to if you were inventing it for the first time. The only
limitations on this are those imposed by logical feasibility and imagination, but almost
anything else is allowed.

2.1 Binary, Octal, Decimal, and Hexadecimal

When you first learned to count, you did so with 10 digits. Ordinary numbers (like
telephone numbers) are called “base ten” numbers. Postal codes that include letters
and digits are called “base 36” numbers because of the addition of 26 letters onto the
usual 10 digits. The simplest base possible is “base two” which uses only two dig-
its: 0 and 1. Now, a 7-digit telephone number has 10 × 10 × 10 × 10 × 10 × 10 × 10

︸ ︷︷ ︸

7 digits

=

107 = 10, 000, 000 possible combinations. A postal code with four characters has
364 = 1, 679, 616 possible combinations. However, an 8-digit binary number only has
28 = 256 possible combinations.

Since the internal representation of numbers within a computer is binary and
since it is rather tedious to convert between decimal and binary, computer scientists
have come up with new bases to represent numbers: these are “base sixteen” and
“base eight,” known as hexadecimal and octal, respectively. Hexadecimal numbers use

5

2.1. Binary, Octal, Decimal, and Hexadecimal 2. Computing Sub-basics

the digits 0 through 9 and the letters A through F, whereas octal numbers use only the
digits 0 through 7. Hexadecimal is often abbreviated as hex.

Consider a 4-digit binary number. It has 24 = 16 possible combinations and can
therefore be easily represented by one of the 16 hex digits. A 3-digit binary number
has 23 = 8 possible combinations and can thus be represented by a single octal digit.
Hence, a binary number can be represented with hex or octal digits without much
calculation, as shown in Table 2.1.

Table 2.1 Binary hexadecimal, and octal representation
Binary Hexadecimal Binary Octal
0000 0 000 0
0001 1 001 1
0010 2 010 2
0011 3 011 3
0100 4 100 4
0101 5 101 5
0110 6 110 6
0111 7 111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

A binary number 01001011 can be represented in hex as 4B and in octal as 113 by
simply separating the binary digits into groups of four or three, respectively.

In UNIX administration, and also in many programming languages, there is of-
ten the ambiguity of whether a number is in fact a hex, decimal, or octal number. For
instance, a hex number 56 is 01010110, but an octal number 56 is 101110, whereas a
decimal number 56 is 111000 (computed through a more tedious calculation). To dis-
tinguish between them, hex numbers are often prefixed with the characters “0x”, while
octal numbers are prefixed with a “0”. If the first digit is 1 through 9, then it is a deci-
mal number that is probably being referred to. We would then write 0x56 for hex, and
056 for octal. Another representation is to append the letter H, D, O, or B (or h, d, o, b)
to the number to indicate its base.

UNIX makes heavy use of 8-, 16-, and 32-digit binary numbers, often representing
them as 2-, 4-, and 8-digit hex numbers. You should get used to seeing numbers like
0xffff (or FFFFh), which in decimal is 65535 and in binary is 1111111111111111.

6

2. Computing Sub-basics 2.2. Files

2.2 Files

Common to every computer system invented is the file. A file holds a single contiguous
block of data. Any kind of data can be stored in a file, and there is no data that cannot
be stored in a file. Furthermore, there is no kind of data that is stored anywhere else
except in files. A file holds data of the same type, for instance, a single picture will be
stored in one file. During production, this book had each chapter stored in a file. It is
uncommon for different types of data (say, text and pictures) to be stored together in
the same file because it is inconvenient. A computer will typically contain about 10,000
files that have a great many purposes. Each file will have its own name. The file name
on a LINUX or UNIX machine can be up to 256 characters long.

The file name is usually explanatory—you might call a letter you wrote to your
friend something like Mary Jones.letter (from now on, whenever you see the
typewriter font&A style of print: here is typewriter font.-, it means that those are words
that might be read off the screen of the computer). The name you choose has no mean-
ing to the computer and could just as well be any other combination of letters or digits;
however, you will refer to that data with that file name whenever you give an instruc-
tion to the computer regarding that data, so you would like it to be descriptive. &It
is important to internalize the fact that computers do not have an interpretation for anything. A computer
operates with a set of interdependent logical rules. Interdependent means that the rules have no apex, in the
sense that computers have no fixed or single way of working. For example, the reason a computer has files
at all is because computer programmers have decided that this is the most universal and convenient way of
storing data, and if you think about it, it really is.-

The data in each file is merely a long list of numbers. The size of the file is
just the length of the list of numbers. Each number is called a byte. Each byte con-
tains 8 bits. Each bit is either a one or a zero and therefore, once again, there are
2 × 2 × 2 × 2 × 2 × 2 × 2 × 2
︸ ︷︷ ︸

8 bits

= 256
︸︷︷︸

1 byte

possible combinations. Hence a byte can only

hold a number as large as 255. There is no type of data that cannot be represented as a
list of bytes. Bytes are sometimes also called octets. Your letter to Mary will be encoded
into bytes for storage on the computer. We all know that a television picture is just a
sequence of dots on the screen that scan from left to right. In that way, a picture might
be represented in a file: that is, as a sequence of bytes where each byte is interpreted as
a level of brightness—0 for black and 255 for white. For your letter, the convention is to
store an A as 65, a B as 66, and so on. Each punctuation character also has a numerical
equivalent.

A mapping between numbers and characters is called a character mapping or a
character set. The most common character set in use in the world today is the ASCII
character set which stands for the American Standard Code for Information Inter-
change. Table 2.2 shows the complete ASCII mappings between characters and their
hex, decimal, and octal equivalents.

7

2.3. Commands 2. Computing Sub-basics

Table 2.2 ASCII character set
Oct Dec Hex Char Oct Dec Hex Char Oct Dec Hex Char Oct Dec Hex Char
000 0 00 NUL 040 32 20 SPACE 100 64 40 @ 140 96 60 ‘
001 1 01 SOH 041 33 21 ! 101 65 41 A 141 97 61 a
002 2 02 STX 042 34 22 " 102 66 42 B 142 98 62 b
003 3 03 ETX 043 35 23 # 103 67 43 C 143 99 63 c
004 4 04 EOT 044 36 24 $ 104 68 44 D 144 100 64 d
005 5 05 ENQ 045 37 25 % 105 69 45 E 145 101 65 e
006 6 06 ACK 046 38 26 & 106 70 46 F 146 102 66 f
007 7 07 BEL 047 39 27 ’ 107 71 47 G 147 103 67 g
010 8 08 BS 050 40 28 (110 72 48 H 150 104 68 h
011 9 09 HT 051 41 29) 111 73 49 I 151 105 69 i
012 10 0A LF 052 42 2A * 112 74 4A J 152 106 6A j
013 11 0B VT 053 43 2B + 113 75 4B K 153 107 6B k
014 12 0C FF 054 44 2C , 114 76 4C L 154 108 6C l
015 13 0D CR 055 45 2D - 115 77 4D M 155 109 6D m
016 14 0E SO 056 46 2E . 116 78 4E N 156 110 6E n
017 15 0F SI 057 47 2F / 117 79 4F O 157 111 6F o
020 16 10 DLE 060 48 30 0 120 80 50 P 160 112 70 p
021 17 11 DC1 061 49 31 1 121 81 51 Q 161 113 71 q
022 18 12 DC2 062 50 32 2 122 82 52 R 162 114 72 r
023 19 13 DC3 063 51 33 3 123 83 53 S 163 115 73 s
024 20 14 DC4 064 52 34 4 124 84 54 T 164 116 74 t
025 21 15 NAK 065 53 35 5 125 85 55 U 165 117 75 u
026 22 16 SYN 066 54 36 6 126 86 56 V 166 118 76 v
027 23 17 ETB 067 55 37 7 127 87 57 W 167 119 77 w
030 24 18 CAN 070 56 38 8 130 88 58 X 170 120 78 x
031 25 19 EM 071 57 39 9 131 89 59 Y 171 121 79 y
032 26 1A SUB 072 58 3A : 132 90 5A Z 172 122 7A z
033 27 1B ESC 073 59 3B ; 133 91 5B [173 123 7B {
034 28 1C FS 074 60 3C < 134 92 5C \ 174 124 7C |
035 29 1D GS 075 61 3D = 135 93 5D] 175 125 7D }
036 30 1E RS 076 62 3E > 136 94 5E ˆ 176 126 7E ˜
037 31 1F US 077 63 3F ? 137 95 5F _ 177 127 7F DEL

2.3 Commands

The second thing common to every computer system invented is the command. You
tell the computer what to do with single words typed into the computer one at a time.
Modern computers appear to have done away with the typing of commands by having
beautiful graphical displays that work with a mouse, but, fundamentally, all that is
happening is that commands are being secretly typed in for you. Using commands is
still the only way to have complete power over the computer. You don’t really know
anything about a computer until you come to grips with the commands it uses. Using
a computer will very much involve typing in a word, pressing , and then waiting
for the computer screen to spit something back at you. Most commands are typed in
to do something useful to a file.

8

2. Computing Sub-basics 2.4. Login and Password Change

2.4 Login and Password Change

Turn on your LINUX box. After a few minutes of initialization, you will see the lo-
gin prompt. A prompt is one or more characters displayed on the screen that you are
expected to follow with some typing of your own. Here the prompt may state the
name of the computer (each computer has a name—typically consisting of about eight
lowercase letters) and then the word login:. LINUX machines now come with a
graphical desktop by default (most of the time), so you might get a pretty graphi-
cal login with the same effect. Now you should type your login name—a sequence of
about eight lower case letters that would have been assigned to you by your computer
administrator—and then press the Enter (or Return) key (that is,).

A password prompt will appear after which you should type your password. Your
password may be the same as your login name. Note that your password will not be
shown on the screen as you type it but will be invisible. After typing your password,
press the Enter or Return key again. The screen might show some message and prompt
you for a log in again—in this case, you have probably typed something incorrectly
and should give it another try. From now on, you will be expected to know that the
Enter or Return key should be pressed at the end of every line you type in, analogous
to the mechanical typewriter. You will also be expected to know that human error is
very common; when you type something incorrectly, the computer will give an error
message, and you should try again until you get it right. It is uncommon for a person
to understand computer concepts after a first reading or to get commands to work on
the first try.

Now that you have logged in you will see a shell prompt—a shell is the place
where you can type commands. The shell is where you will spend most of your time
as a system administrator &Computer manager.-, but it needn’t look as bland as you
see now. Your first exercise is to change your password. Type the command passwd.
You will be asked for a new password and then asked to confirm that password. The
password you choose should consist of letters, numbers, and punctuation—you will
see later on why this security measure is a good idea. Take good note of your password
for the next time you log in. Then the shell will return. The password you have chosen
will take effect immediately, replacing the previous password that you used to log in.
The password command might also have given some message indicating what effect it
actually had. You may not understand the message, but you should try to get an idea
of whether the connotation was positive or negative.

When you are using a computer, it is useful to imagine yourself as being in dif-
ferent places within the computer, rather than just typing commands into it. After you
entered the passwd command, you were no longer in the shell, but moved into the
password place. You could not use the shell until you had moved out of the passwd
command.

9

2.5. Listing Files 2. Computing Sub-basics

2.5 Listing Files

Type in the command ls. ls is short for list, abbreviated to two letters like most other
UNIX commands. ls lists all your current files. You may find that ls does nothing,
but just returns you back to the shell. This would be because you have no files as yet.
Most UNIX commands do not give any kind of message unless something went wrong
(the passwd command above was an exception). If there were files, you would see
their names listed rather blandly in columns with no indication of what they are for.

2.6 Command-Line Editing Keys

The following keys are useful for editing the command-line. Note that UNIX has had a
long and twisted evolution from the mainframe, and the , and other keys may
not work properly. The following keys bindings are however common throughout
many LINUX applications:

Ctrl-a Move to the beginning of the line ().

Ctrl-e Move to the end of the line ().

Ctrl-h Erase backward ().

Ctrl-d Erase forward ().

Ctrl-f Move forward one character ().

Ctrl-b Move backward one character ().

Alt-f Move forward one word.

Alt-b Move backward one word.

Alt-Ctrl-f Erase forward one word.

Alt-Ctrl-b Erase backward one word.

Ctrl-p Previous command (up arrow).

Ctrl-n Next command (down arrow).

Note that the prefixes Alt for , Ctrl for , and Shift for , mean to hold the
key down through the pressing and releasing of the letter key. These are known as key
modifiers. Note also, that the Ctrl key is always case insensitive; hence Ctrl-D (i.e. –

–) and Ctrl-d (i.e. –) are identical. The Alt modifier (i.e., –?) is

10

2. Computing Sub-basics 2.7. Console Keys

in fact a short way of pressing and releasing before entering the key combination;
hence Esc then f is the same as Alt-f—UNIX is different from other operating systems in
this use of Esc. The Alt modifier is not case insensitive although some applications will
make a special effort to respond insensitively. The Alt key is also sometimes referred to
as the Meta key. All of these keys are sometimes referred to by their abbreviations: for
example, C-a for Ctrl-a, or M-f for Meta-f and Alt-f. The Ctrl modifier is sometimes also
designated with a caret: for example, ˆC for Ctrl-C.

Your command-line keeps a history of all the commands you have typed in. Ctrl-
p and Ctrl-n will cycle through previous commands entered. New users seem to gain
tremendous satisfaction from typing in lengthy commands over and over. Never type
in anything more than once—use your command history instead.

Ctrl-s is used to suspend the current session, causing the keyboard to stop re-
sponding. Ctrl-q reverses this condition.

Ctrl-r activates a search on your command history. Pressing Ctrl-r in the middle
of a search finds the next match whereas Ctrl-s reverts to the previous match (although
some distributions have this confused with suspend).

The Tab command is tremendously useful for saving key strokes. Typing a par-
tial directory name, file name, or command, and then pressing Tab once or twice in
sequence completes the word for you without your having to type it all in full.

You can make Tab and other keys stop beeping in the irritating way that they do
by editing the file /etc/inputrc and adding the line

✞ �

set bell-style none
✝ ✆

and then logging out and logging in again. (More about this later.)

2.7 Console Keys

There are several special keys interpreted directly by the LINUX console or text mode
interface. The Ctrl-Alt-Del combination initiates a complete shutdown and hardware
reboot, which is the preferred method of restarting LINUX .

The Ctrl-PgUp and Ctrl-PgDn keys scroll the console, which is very useful for
seeing text that has disappeared off the top of the terminal.

You can use Alt-F2 to switch to a new, independent login session. Here you can
log in again and run a separate session. There are six of these virtual consoles—Alt-
F1 through Alt-F6—to choose from; they are also called virtual terminals. If you are
in graphical mode, you will have to instead press Ctrl-Alt-F? because the Alt-F? keys
are often used by applications. The convention is that the seventh virtual console is
graphical, so Alt-F7 will always take you back to graphical mode.

11

2.8. Creating Files 2. Computing Sub-basics

2.8 Creating Files

There are many ways of creating a file. Type cat > Mary Jones.letter and then
type out a few lines of text. You will use this file in later examples. The cat command
is used here to write from the keyboard into a file Mary Jones.letter. At the end
of the last line, press one more time and then press – . Now, if you type
ls again, you will see the file Mary Jones.letter listed with any other files. Type
cat Mary Jones.letter without the >. You will see that the command cat writes
the contents of a file to the screen, allowing you to view your letter. It should match
exactly what you typed in.

2.9 Allowable Characters for File Names

Although UNIX file names can contain almost any character, standards dictate that
only the following characters are preferred in file names:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . - ˜

Hence, never use other punctuation characters, brackets, or control characters to name
files. Also, never use the space or tab character in a file name, and never begin a file
name with a - character.

2.10 Directories

I mentioned that a system may typically contain 10,000 files. Since it would be cum-
bersome if you were to see all 10,000 of them whenever you typed ls, files are placed
in different “cabinets” so that files of the same type are placed together and can be
easily isolated from other files. For instance, your letter above might go in a sepa-
rate “cabinet” with other letters. A “cabinet” in computer terms is actually called a
directory. This is the third commonality between all computer systems: all files go in
one or another directory. To get an idea of how directories work, type the command
mkdir letters, where mkdir stands for make directory. Now type ls. This will
show the file Mary Jones.letter as well as a new file, letters. The file letters
is not really a file at all, but the name of a directory in which a number of other files
can be placed. To go into the directory letters, you can type cd letters where cd
stands for change directory. Since the directory is newly created, you would not expect
it to contain any files, and typing ls will verify such by not listing anything. You can
now create a file by using the cat command as you did before (try this). To go back

12

2. Computing Sub-basics 2.10. Directories

to the original directory that you were in, you can use the command cd .. where the
.. has the special meaning of taking you out of the current directory. Type ls again
to verify that you have actually gone up a directory.

It is, however, bothersome that we cannot tell the difference between files and
directories. The way to differentiate is with the ls -l command. -l stands for long
format. If you enter this command, you will see a lot of details about the files that
may not yet be comprehensible to you. The three things you can watch for are the file
name on the far right, the file size (i.e., the number of bytes that the file contains) in
the fifth column from the left, and the file type on the far left. The file type is a string
of letters of which you will only be interested in one: the character on the far left is
either a - or a d. A - signifies a regular file, and a d signifies a directory. The command
ls -l Mary Jones.letter will list only the single file Mary Jones.letter and
is useful for finding out the size of a single file.

In fact, there is no limitation on how many directories you can create within
each other. In what follows, you will glimpse the layout of all the directories on the
computer.

Type the command cd /, where the / has the special meaning to go to the top-
most directory on the computer called the root directory. Now type ls -l. The listing
may be quite long and may go off the top of the screen; in that case, try ls -l | less
(then use PgUp and PgDn, and press q when done). You will see that most, if not all, are
directories. You can now practice moving around the system with the cd command,
not forgetting that cd .. takes you up and cd / takes you to the root directory.

At any time you can type pwd (present working directory) to show the directory you
are currently in.

When you have finished, log out of the computer by using the logout command.

13

2.10. Directories 2. Computing Sub-basics

14

Chapter 3

PC Hardware

This chapter explains a little about PC hardware. Readers who have built their own PC
or who have configuring myriad devices on Windows can probably skip this section.
It is added purely for completeness. This chapter actually comes under the subject of
Microcomputer Organization, that is, how your machine is electronically structured.

3.1 Motherboard

Inside your machine you will find a single, large circuit board called the motherboard
(see Figure 3.1). It is powered by a humming power supply and has connector leads to
the keyboard and other peripheral devices. &Anything that is not the motherboard, not the power
supply and not purely mechanical.-

The motherboard contains several large microchips and many small ones. The
important ones are listed below.

RAM Random Access Memory or just memory. The memory is a single linear sequence
of bytes that are erased when there is no power. It contains sequences of simple
coded instructions of one to several bytes in length. Examples are: add this num-
ber to that; move this number to this device; go to another part of RAM to get
other instructions; copy this part of RAM to this other part. When your machine
has “64 megs” (64 megabytes), it has 64 � 1024 � 1024 bytes of RAM. Locations
within that space are called memory addresses, so that saying “memory address
1000” means the 1000th byte in memory.

ROM A small part of RAM does not reset when the computer switches off. It is called
ROM, Read Only Memory. It is factory fixed and usually never changes through
the life of a PC, hence the name. It overlaps the area of RAM close to the end of

15

3.1. Motherboard 3. PC Hardware

Figure 3.1 Partially assembled motherboard

16

3. PC Hardware 3.1. Motherboard

the first megabyte of memory, so that area of RAM is not physically usable. ROM
contains instructions to start up the PC and access certain peripherals.

CPU Central Processing Unit. It is the thing that is called 80486, 80586, Pentium, or
whatever. On startup, it jumps to memory address 1040475 (0xFE05B) and starts
reading instructions. The first instructions it gets are actually to fetch more in-
structions from disk and give a Boot failure message to the screen if it finds
nothing useful. The CPU requires a timer to drive it. The timer operates at a high
speed of hundreds of millions of ticks per second (hertz). That’s why the machine
is named, for example, a “400 MHz” (400 megahertz) machine. The MHz of the
machine is roughly proportional to the number of instructions it can process per
second from RAM.

I/O ports Stands for Input/Output ports. The ports are a block of RAM that sits in par-
allel to the normal RAM. There are 65,536 I/O ports, hence I/O is small compared
to RAM. I/O ports are used to write to peripherals. When the CPU writes a byte
to I/O port 632 (0x278), it is actually sending out a byte through your parallel
port. Most I/O ports are not used. There is no specific I/O port chip, though.

There is more stuff on the motherboard:

ISA slots ISA (eye-sah) is a shape of socket for plugging in peripheral devices like mo-
dem cards and sound cards. Each card expects to be talked to via an I/O port (or
several consecutive I/O ports). What I/O port the card uses is sometimes con-
figured by the manufacturer, and other times is selectable on the card through
jumpers &Little pin bridges that you can pull off with your fingers.- or switches on the
card. Other times still, it can be set by the CPU using a system called Plug and
Pray &This means that you plug the device in, then beckon your favorite deity for spiritual as-
sistance. Actually, some people complained that this might be taken seriously—no, it’s a joke: the
real term is Plug ’n Play- or PnP. A card also sometimes needs to signal the CPU to
indicate that it is ready to send or receive more bytes through an I/O port. They
do this through 1 of 16 connectors inside the ISA slot. These are called Interrupt
Request lines or IRQ lines (or sometimes just Interrupts), so numbered 0 through
15. Like I/O ports, the IRQ your card uses is sometimes also jumper selectable,
sometimes not. If you unplug an old ISA card, you can often see the actual cop-
per thread that goes from the IRQ jumper to the edge connector. Finally, ISA
cards can also access memory directly through one of eight Direct Memory Access
Channels or DMA Channels, which are also possibly selectable by jumpers. Not
all cards use DMA, however.

In summary, the peripheral and the CPU need to cooperate on three things: the
I/O port, the IRQ, and the DMA. If any two cards clash by using either the same I/O
port, IRQ number, or DMA channel then they won’t work (at worst your machine will
crash). &Come to a halt and stop responding.-

17

3.1. Motherboard 3. PC Hardware

“8-bit” ISA slots Old motherboards have shorter ISA slots. You will notice yours is a
double slot (called “16-bit” ISA) with a gap between them. The larger slot can
still take an older 8-bit ISA card: like many modem cards.

PCI slots PCI (pee-see-eye) slots are like ISA but are a new standard aimed at high-
performance peripherals like networking cards and graphics cards. They also
use an IRQ, I/O port and possibly a DMA channel. These, however, are auto-
matically configured by the CPU as a part of the PCI standard, hence there will
rarely be jumpers on the card.

AGP slots AGP slots are even higher performance slots for Accelerated Graphics Pro-
cessors, in other words, cards that do 3D graphics for games. They are also auto-
configured.

Serial ports A serial port connection may come straight from your motherboard to a
socket on your case. There are usually two of these. They may drive an external
modem and some kinds of mice and printers. Serial is a simple and cheap way to
connect a machine where relatively slow (less that 10 kilobytes per second) data
transfer speeds are needed. Serial ports have their own “ISA card” built into the
motherboard which uses I/O port 0x3F8–0x3FF and IRQ 4 for the first serial port
(also called COM1 under DOS/Windows) and I/O port 0x2F8–0x2FF and IRQ 3
for COM2. A discussion on serial port technology proceeds in Section 3.4 below.

Parallel port Normally, only your printer would plug in here. Parallel ports are, how-
ever, extremely fast (being able to transfer 50 kilobytes per second), and hence
many types of parallel port devices (like CD-ROM drives that plug into a par-
allel port) are available. Parallel port cables, however, can only be a few meters
in length before you start getting transmission errors. The parallel port uses I/O
port 0x378–0x37A and IRQ 7. If you have two parallel ports, then the second one
uses I/O port 0x278–0x27A, but does not use an IRQ at all.

USB port The Universal Serial Bus aims to allow any type of hardware to plug into one
plug. The idea is that one day all serial and parallel ports will be scrapped in
favor of a single USB socket from which all external peripherals will daisy chain.
I will not go into USB here.

IDE ribbon The IDE ribbon plugs into your hard disk drive or C: drive on Win-
dows/DOS and also into your CD-ROM drive (sometimes called an IDE CD-
ROM). The IDE cable actually attaches to its own PCI card internal to the moth-
erboard. There are two IDE connectors that use I/O ports 0xF000–0xF007 and
0xF008–0xF00F, and IRQ 14 and 15, respectively. Most IDE CD-ROMs are also
ATAPI CD-ROMs. ATAPI is a standard (similar to SCSI, below) that enables
many other kinds of devices to plug into an IDE ribbon cable. You get special
floppy drives, tape drives, and other devices that plug into the same ribbon. They
will be all called ATAPI-(this or that).

18

3. PC Hardware 3.2. Master/Slave IDE

SCSI ribbon Another ribbon might be present, coming out of a card (called the SCSI
host adaptor or SCSI card) or your motherboard. Home PCs will rarely have
SCSI, such being expensive and used mostly for high-end servers. SCSI cables
are more densely wired than are IDE cables. They also end in a disk drive, tape
drive, CD-ROM, or some other device. SCSI cables are not allowed to just-be-
plugged-in: they must be connected end on end with the last device connected
in a special way called SCSI termination. There are, however, a few SCSI devices
that are automatically terminated. More on this on page 477.

3.2 Master/Slave IDE

Two IDE hard drives can be connected to a single IDE ribbon. The ribbon alone has
nothing to distinguish which connector is which, so the drive itself has jumper pins
on it (see Figure 3.2) that can be set to one of several options. These are one of Master
(MA), Slave (SL), Cable Select (CS), or Master-only/Single-Drive/and-like. The MA op-
tion means that your drive is the “first” drive of two on this IDE ribbon. The SL option
means that your drive is the “second” drive of two on this IDE ribbon. The CS option
means that your machine is to make its own decision (some boxes only work with this
setting), and the Master-only option means that there is no second drive on this ribbon.

Figure 3.2 Connection end of a typical IDE drive

There might also be a second IDE ribbon, giving you a total of four possible
drives. The first ribbon is known as IDE1 (labeled on your motherboard) or the primary
ribbon, and the second is known as IDE2 or the secondary ribbon. Your four drives are

19

3.3. CMOS 3. PC Hardware

then called primary master, primary slave, secondary master, and secondary slave. Their
labeling under LINUX is discussed in Section 18.4.

3.3 CMOS

The “CMOS”&Stands for Complementary Metal Oxide Semiconductor, which has to do with the technol-
ogy used to store setup information through power-downs.- is a small application built into ROM.
It is also known as the ROM BIOS configuration. You can start it instead of your oper-
ating system (OS) by pressing or (or something else) just after you switch your
machine on. There will usually be a message Press <key> to enter setup to
explain this. Doing so will take you inside the CMOS program where you can change
your machine’s configuration. CMOS programs are different between motherboard
manufacturers.

Inside the CMOS, you can enable or disable built-in devices (like your mouses
and serial ports); set your machine’s “hardware clock” (so that your machine has the
correct time and date); and select the boot sequence (whether to load the operating sys-
tem off the hard drive or CD-ROM—which you will need for installing LINUX from
a bootable CD-ROM). Boot means to start up the computer. &The term comes from the lack
of resources with which to begin: the operating system is on disk, but you might need the operating system
to load from the disk—like trying to lift yourself up from your “bootstraps.”- You can also configure
your hard drive. You should always select Hardrive autodetection&Autodetection
refers to a system that, though having incomplete information, configures itself. In this case the CMOS pro-
gram probes the drive to determine its capacity. Very old CMOS programs required you to enter the drive’s
details manually.- whenever installing a new machine or adding/removing disks. Dif-
ferent CMOSs will have different procedures, so browse through all the menus to see
what your CMOS can do.

The CMOS is important when it comes to configuring certain devices built into
the motherboard. Modern CMOSs allow you to set the I/O ports and IRQ numbers
that you would like particular devices to use. For instance, you can make your CMOS
switch COM1 with COM2 or use a non-standard I/O port for your parallel port. When
it comes to getting such devices to work under LINUX , you will often have to power
down your machine to see what the CMOS has to say about that device. More on this
in Chapter 42.

3.4 Serial Devices

Serial ports facilitate low speed communications over a short distance using simple
8 core (or less) cable. The standards are old and communication is not particularly
fault tolerant. There are so many variations on serial communication that it has be-
come somewhat of a black art to get serial devices to work properly. Here I give a

20

3. PC Hardware 3.4. Serial Devices

short explanation of the protocols, electronics, and hardware. The Serial-HOWTO and
Modem-HOWTO documents contain an exhaustive treatment (see Chapter 16).

Some devices that communicate using serial lines are:

• Ordinary domestic dial-up modems.
• Some permanent modem-like Internet connections.
• Mice and other pointing devices.
• Character text terminals.
• Printers.
• Cash registers.
• Magnetic card readers.
• Uninterruptible power supply (UPS) units.
• Embedded microprocessor devices.

A device is connected to your computer by a cable with a 9-pin or 25-pin, male

or female connector at each end. These are known as DB-9 (
1 2 3 4 5

6 7 8 9

) or DB-25

(
1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25

) connectors. Only eight of the pins are ever used, how-

ever. See Table 3.1.

Table 3.1 Pin assignments for DB-9 and DB-25 sockets

DB-9 pin DB-25 pin Direction
number number Acronym Full-Name PC device

3 2 TD Transmit Data →
2 3 RD Receive Data ←
7 4 RTS Request To Send →
8 5 CTS Clear To Send ←
6 6 DSR Data Set Ready ←
4 20 DTR Data Terminal Ready →
1 8 CD Data Carrier Detect ←
9 22 RI Ring Indicator ←
5 7 Signal Ground

The way serial devices communicate is very straightforward: A stream of bytes
is sent between the computer and the peripheral by dividing each byte into eight bits.
The voltage is toggled on a pin called the TD pin or transmit pin according to whether
a bit is 1 or 0. A bit of 1 is indicated by a negative voltage (-15 to -5 volts) and a bit of
0 is indicated by a positive voltage (+5 to +15 volts). The RD pin or receive pin receives

21

3.4. Serial Devices 3. PC Hardware

bytes in a similar way. The computer and the serial device need to agree on a data rate
(also called the serial port speed) so that the toggling and reading of voltage levels is
properly synchronized. The speed is usually quoted in bps (bits per second). Table 3.2
shows a list of possible serial port speeds.

Table 3.2 Serial port speeds in bps

50 200 2,400 57,600 576,000 2,000,000
75 300 4,800 115,200 921,600 2,500,000

110 600 9,600 230,400 1,000,000 3,000,000
134 1,200 19,200 460,800 1,152,000 3,500,000
150 1,800 38,400 500,000 1,500,000 4,000,000

A typical mouse communicates between 1,200 and 9,600 bps. Modems communi-
cate at 19,200, 38,400, 57,600, or 115,200 bps. It is rare to find serial ports or peripherals
that support the speeds not blocked in Table 3.2.

To further synchronize the peripheral with the computer, an additional start bit
proceeds each byte and up to two stop bits follow each byte. There may also be a parity
bit which tells whether there is an even or odd number of 1s in the byte (for error
checking). In theory, there may be as many as 12 bits sent for each data byte. These
additional bits are optional and device specific. Ordinary modems communicate with
an 8N1 protocol—8 data bits, No parity bit, and 1 stop bit. A mouse communicates
with 8 bits and no start, stop, or parity bits. Some devices only use 7 data bits and
hence are limited to send only ASCII data (since ASCII characters range only up to
127).

Some types of devices use two more pins called the request to send (RTS) and clear
to send (CTS) pins. Either the computer or the peripheral pull the respective pin to +12
volts to indicate that it is ready to receive data. A further two pins call the DTR (data
terminal ready) pin and the DSR (data set ready) pin are sometimes used instead—
these work the same way, but just use different pin numbers. In particular, domestic
modems make full use of the RTS/CTS pins. This mechanism is called RTS/CTS flow
control or hardware flow control. Some simpler devices make no use of flow control at
all. Devices that do not use flow control will loose data which is sent without the receiver’s
readiness.

Some other devices also need to communicate whether they are ready to receive
data, but do not have RTS/CTS pins (or DSR/DTR pins) available to them. These emit
special control characters, sent amid the data stream, to indicate that flow should halt
or restart. This is known as software flow control. Devices that optionally support either
type of flow control should always be configured to use hardware flow control. In
particular, a modem used with LINUX must have hardware flow control enabled.

22

3. PC Hardware 3.5. Modems

Two other pins are the ring indicator (RI) pin and the carrier detect (CD) pin. These
are only used by modems to indicate an incoming call and the detection of a peer
modem, respectively.

The above pin assignments and protocol (including some hard-core electrical
specifications which I have omitted) are known as RS-232. It is implemented using
a standard chip called a 16550 UART (Universal Asynchronous Receiver-Transmitter)
chip. RS-232 is easily effected by electrical noise, which limits the length and speed at
which you can communicate: A half meter cable can carry 115,200 bps without errors,
but a 15 meter cable is reliable at no more than 19,200 bps. Other protocols (like RS-423
or RS-422) can go much greater distances and there are converter appliances that give
a more advantageous speed/distance tradeoff.

3.5 Modems

Telephone lines, having been designed to carry voice, have peculiar limitations when
it comes to transmitting data. It turns out that the best way to send a binary digit over
a telephone line is to beep it at the listener using two different pitches: a low pitch for
0 and a high pitch for 1. Figure 3.3 shows this operation schematically.

Figure 3.3 Communication between two remote computers by modem

23

3.5. Modems 3. PC Hardware

Converting voltages to pitches and back again is known as modulation-
demodulation and is where the word modem comes from. The word baud means the
number of possible pitch switches per second, which is sometimes used interchange-
ably with bps. There are many newer modulation techniques used to get the most out
of a telephone line, so that 57,600 bps modems are now the standard (as of this writ-
ing). Modems also do other things to the data besides modulating it: They may pack
the data to reduce redundancies (bit compression) and perform error detection and com-
pensation (error correction). Such modem protocols are given names like V.90 (57,600 bps),
V.34 (33,600 bps or 28,800 bps), V.42 (14,400 bps) or V.32 (14,400 bps and lower). When
two modems connect, they need to negotiate a “V” protocol to use. This negotiation is
based on their respective capabilities and the current line quality.

A modem can be in one of two states: command mode or connect mode. A modem is
connected if it can hear a peer modem’s carrier signal over a live telephone call (and is
probably transmitting and receiving data in the way explained), otherwise it is in com-
mand mode. In command mode the modem does not modulate or transmit data but
interprets special text sequences sent to it through the serial line. These text sequences
begin with the letters AT and are called ATtention commands. AT commands are sent
by your computer to configure your modem for the current telephone line conditions,
intended function, and serial port capability—for example, there are commands to:
enable automatic answering on ring; set the flow control method; dial a number; and
hang up. The sequence of commands used to configure the modem is called the modem
initialization string. How to manually issue these commands is discussed in Section
32.6.3, 34.3, and 41.1 and will become relevant when you want to dial your Internet
service provider (ISP).

Because each modem brand supports a slightly different set of modem com-
mands, it is worthwhile familiarizing yourself with your modem manual. Most mod-
ern modems now support the Hayes command set—a generic set of the most useful
modem commands. However, Hayes has a way of enabling hardware flow control
that many popular modems do not adhere to. Whenever in this book I give exam-
ples of modem initialization, I include a footnote referring to this section. It is usu-
ally sufficient to configure your modem to “factory default settings”, but often a sec-
ond command is required to enable hardware flow control. There are no initializa-
tion strings that work on all modems. The web sites http://www.spy.net/˜dustin/modem/
and http://www.teleport.com/˜curt/modems.html are useful resources for finding out mo-
dem specifications.

24

Chapter 4

Basic Commands

All of UNIX is case sensitive. A command with even a single
letter’s capitalization altered is considered to be a completely
different command. The same goes for files, directories, config-
uration file formats, and the syntax of all native programming
languages.

4.1 The ls Command, Hidden Files,
Command-Line Options

In addition to directories and ordinary text files, there are other types of files, although
all files contain the same kind of data (i.e., a list of bytes). The hidden file is a file that
will not ordinarily appear when you type the command ls to list the contents of a
directory. To see a hidden file you must use the command ls -a. The -a option
means to list all files as well as hidden files. Another variant is ls -l, which lists
the contents in long format. The - is used in this way to indicate variations on a
command. These are called command-line options or command-line arguments, and most
UNIX commands can take a number of them. They can be strung together in any way
that is convenient&Commands under the GNU free software license are superior in this way: they
have a greater number of options than traditional UNIX commands and are therefore more flexible.-, for
example, ls -a -l, ls -l -a, or ls -al —any of these will list all files in long
format.

All GNU commands take the additional arguments -h and --help. You can
type a command with just this on the command-line and get a usage summary. This is
some brief help that will summarize options that you may have forgotten if you are

25

4.2. Error Messages 4. Basic Commands

already familiar with the command—it will never be an exhaustive description of the
usage. See the later explanation about man pages.

The difference between a hidden file and an ordinary file is merely that the file
name of a hidden file starts with a period. Hiding files in this way is not for security,
but for convenience.

The option ls -l is somewhat cryptic for the novice. Its more explanatory ver-
sion is ls --format=long. Similarly, the all option can be given as ls --all, and
means the same thing as ls -a.

4.2 Error Messages

Although commands usually do not display a message when they execute &The com-
puter accepted and processed the command. - successfully, commands do report errors in
a consistent format. The format varies from one command to another but often ap-
pears as follows: command-name: what was attempted: error message. For example, the
command ls -l qwerty gives an error ls: qwerty: No such file or di-
rectory. What actually happened was that the command ls attempted to read the
file qwerty. Since this file does not exist, an error code 2 arose. This error code cor-
responds to a situation where a file or directory is not being found. The error code
is automatically translated into the sentence No such file or directory. It is
important to understand the distinction between an explanatory message that a com-
mand gives (such as the messages reported by the passwd command in the previous
chapter) and an error code that was just translated into a sentence. The reason is that
a lot of different kinds of problems can result in an identical error code (there are only
about a hundred different error codes). Experience will teach you that error messages
do not tell you what to do, only what went wrong, and should not be taken as gospel.

The file /usr/include/asm/errno.h contains a complete list of basic error
codes. In addition to these, several other header files&Files ending in .h-might define
their own error codes. Under UNIX, however, these are 99% of all the errors you are
ever likely to get. Most of them will be meaningless to you at the moment but are
included in Table 4.1 as a reference.

Table 4.1 LINUX error codes
Number define Message
0 Success
1 EPERM Operation not permitted
2 ENOENT No such file or directory
3 ESRCH No such process
4 EINTR Interrupted system call
5 EIO Input/output error
6 ENXIO Device not configured
7 E2BIG Argument list too long
8 ENOEXEC Exec format error
9 EBADF Bad file descriptor

continues...

26

4. Basic Commands 4.2. Error Messages

Table 4.1 (continued)

Number define Message
10 ECHILD No child processes
11 EAGAIN Resource temporarily unavailable
11 EWOULDBLOCK Resource temporarily unavailable
12 ENOMEM Cannot allocate memory
13 EACCES Permission denied
14 EFAULT Bad address
15 ENOTBLK Block device required
16 EBUSY Device or resource busy
17 EEXIST File exists
18 EXDEV Invalid cross-device link
19 ENODEV No such device
20 ENOTDIR Not a directory
21 EISDIR Is a directory
22 EINVAL Invalid argument
23 ENFILE Too many open files in system
24 EMFILE Too many open files
25 ENOTTY Inappropriate ioctl for device
26 ETXTBSY Text file busy
27 EFBIG File too large
28 ENOSPC No space left on device
29 ESPIPE Illegal seek
30 EROFS Read-only file system
31 EMLINK Too many links
32 EPIPE Broken pipe
33 EDOM Numerical argument out of domain
34 ERANGE Numerical result out of range
35 EDEADLK Resource deadlock avoided
35 EDEADLOCK Resource deadlock avoided
36 ENAMETOOLONG File name too long
37 ENOLCK No locks available
38 ENOSYS Function not implemented
39 ENOTEMPTY Directory not empty
40 ELOOP Too many levels of symbolic links

EWOULDBLOCK (same as EAGAIN)
42 ENOMSG No message of desired type
43 EIDRM Identifier removed
44 ECHRNG Channel number out of range
45 EL2NSYNC Level 2 not synchronized
46 EL3HLT Level 3 halted
47 EL3RST Level 3 reset
48 ELNRNG Link number out of range
49 EUNATCH Protocol driver not attached
50 ENOCSI No CSI structure available
51 EL2HLT Level 2 halted
52 EBADE Invalid exchange
53 EBADR Invalid request descriptor
54 EXFULL Exchange full
55 ENOANO No anode
56 EBADRQC Invalid request code
57 EBADSLT Invalid slot

EDEADLOCK (same as EDEADLK)
59 EBFONT Bad font file format
60 ENOSTR Device not a stream
61 ENODATA No data available
62 ETIME Timer expired
63 ENOSR Out of streams resources
64 ENONET Machine is not on the network
65 ENOPKG Package not installed
66 EREMOTE Object is remote
67 ENOLINK Link has been severed
68 EADV Advertise error
69 ESRMNT Srmount error

continues...

27

4.2. Error Messages 4. Basic Commands

Table 4.1 (continued)

Number define Message
70 ECOMM Communication error on send
71 EPROTO Protocol error
72 EMULTIHOP Multihop attempted
73 EDOTDOT RFS specific error
74 EBADMSG Bad message
75 EOVERFLOW Value too large for defined data type
76 ENOTUNIQ Name not unique on network
77 EBADFD File descriptor in bad state
78 EREMCHG Remote address changed
79 ELIBACC Can not access a needed shared library
80 ELIBBAD Accessing a corrupted shared library
81 ELIBSCN .lib section in a.out corrupted
82 ELIBMAX Attempting to link in too many shared libraries
83 ELIBEXEC Cannot exec a shared library directly
84 EILSEQ Invalid or incomplete multibyte or wide character
85 ERESTART Interrupted system call should be restarted
86 ESTRPIPE Streams pipe error
87 EUSERS Too many users
88 ENOTSOCK Socket operation on non-socket
89 EDESTADDRREQ Destination address required
90 EMSGSIZE Message too long
91 EPROTOTYPE Protocol wrong type for socket
92 ENOPROTOOPT Protocol not available
93 EPROTONOSUPPORT Protocol not supported
94 ESOCKTNOSUPPORT Socket type not supported
95 EOPNOTSUPP Operation not supported
96 EPFNOSUPPORT Protocol family not supported
97 EAFNOSUPPORT Address family not supported by protocol
98 EADDRINUSE Address already in use
99 EADDRNOTAVAIL Cannot assign requested address
100 ENETDOWN Network is down
101 ENETUNREACH Network is unreachable
102 ENETRESET Network dropped connection on reset
103 ECONNABORTED Software caused connection abort
104 ECONNRESET Connection reset by peer
105 ENOBUFS No buffer space available
106 EISCONN Transport endpoint is already connected
107 ENOTCONN Transport endpoint is not connected
108 ESHUTDOWN Cannot send after transport endpoint shutdown
109 ETOOMANYREFS Too many references: cannot splice
110 ETIMEDOUT Connection timed out
111 ECONNREFUSED Connection refused
112 EHOSTDOWN Host is down
113 EHOSTUNREACH No route to host
114 EALREADY Operation already in progress
115 EINPROGRESS Operation now in progress
116 ESTALE Stale NFS file handle
117 EUCLEAN Structure needs cleaning
118 ENOTNAM Not a XENIX named type file
119 ENAVAIL No XENIX semaphores available
120 EISNAM Is a named type file
121 EREMOTEIO Remote I/O error
122 EDQUOT Disk quota exceeded
123 ENOMEDIUM No medium found
124 EMEDIUMTYPE Wrong medium type

28

4. Basic Commands 4.3. Wildcards, Names, Extensions, and glob Expressions

4.3 Wildcards, Names, Extensions, and glob Expressions

ls can produce a lot of output if there are a large number of files in a directory. Now
say that we are only interested in files that ended with the letters tter. To list only
these files, you can use ls *tter. The * matches any number of any other characters.
So, for example, the files Tina.letter, Mary Jones.letter and the file splat-
ter, would all be listed if they were present, whereas a file Harlette would not be
listed. While the * matches any length of characters, the ? matches only one character.
For example, the command ls ?ar* would list the files Mary Jones.letter and
Harlette.

4.3.1 File naming

When naming files, it is a good idea to choose names that group files of the
same type together. You do this by adding an extension to the file name that de-
scribes the type of file it is. We have already demonstrated this by calling a file
Mary Jones.letter instead of just Mary Jones. If you keep this convention, you
will be able to easily list all the files that are letters by entering ls *.letter. The
file name Mary Jones.letter is then said to be composed of two parts: the name,
Mary Jones, and the extension, letter.

Some common UNIX extensions you may see are:

.a Archive. lib*.a is a static library.

.alias X Window System font alias catalog.

.avi Video format.

.au Audio format (original Sun Microsystems generic sound file).

.awk awk program source file.

.bib bibtex LATEX bibliography source file.

.bmp Microsoft Bitmap file image format.

.bz2 File compressed with the bzip2 compression program.

.cc, .cxx, .C, .cpp C++ program source code.

.cf, .cfg Configuration file or script.

.cgi Executable script that produces web page output.

.conf, .config Configuration file.

29

4.3. Wildcards, Names, Extensions, and glob Expressions 4. Basic Commands

.csh csh shell script.

.c program source code.

.db Database file.

.dir X Window System font/other database directory.

.deb Debian package for the Debian distribution.

.diff Output of the diff program indicating the difference between files or source
trees.

.dvi Device-independent file. Formatted output of .tex LATEX file.

.el Lisp program source.

.g3 G3 fax format image file.

.gif, .giff GIF image file.

.gz File compressed with the gzip compression program.

.htm, .html, .shtm, .html Hypertext Markup Language. A web page of some sort.

.h /C++ program header file.

.i SWIG source, or preprocessor output.

.in configure input file.

.info Info pages read with the info command.

.jpg, .jpeg JPEG image file.

.lj LaserJet file. Suitable input to a HP LaserJet printer.

.log Log file of a system service. This file grows with status messages of some system
program.

.lsm LINUX Software Map entry.

.lyx LyX word processor document.

.man Man page.

.mf Meta-Font font program source file.

.pbm PBM image file format.

.pcf PCF image file—intermediate representation for fonts. X Window System font.

.pcx PCX image file.

30

4. Basic Commands 4.3. Wildcards, Names, Extensions, and glob Expressions

.pfb X Window System font file.

.pdf Formatted document similar to PostScript or dvi.

.php PHP program source code (used for web page design).

.pl Perl program source code.

.ps PostScript file, for printing or viewing.

.py Python program source code.

.rpm RedHat Package Manager rpm file.

.sgml Standard Generalized Markup Language. Used to create documents to be con-
verted to many different formats.

.sh sh shell script.

.so Shared object file. lib*.so is a Dynamically Linked Library. &Executable program
code shared by more than one program to save disk space and memory.-

.spd Speedo X Window System font file.

.tar tarred directory tree.

.tcl Tcl/Tk source code (programming language).

.texi, .texinfo Texinfo source. Info pages are compiled from these.

.tex TEX or LATEX document. LATEX is for document processing and typesetting.

.tga TARGA image file.

.tgz Directory tree that has been archived with tar, and then compressed with gzip.
Also a package for the Slackware distribution.

.tiff TIFF image file.

.tfm LATEX font metric file.

.ttf Truetype font.

.txt Plain English text file.

.voc Audio format (Soundblaster’s own format).

.wav Audio format (sound files common to Microsoft Windows).

.xpm XPM image file.

.y yacc source file.

31

4.3. Wildcards, Names, Extensions, and glob Expressions 4. Basic Commands

.Z File compressed with the compress compression program.

.zip File compressed with the pkzip (or PKZIP.EXE for DOS) compression pro-
gram.

.1, .2 . . . Man page.

In addition, files that have no extension and a capitalized descriptive name are
usually plain English text and meant for your reading. They come bundled with pack-
ages and are for documentation purposes. You will see them hanging around all over
the place.

Some full file names you may see are:

AUTHORS List of people who contributed to or wrote a package.

ChangeLog List of developer changes made to a package.

COPYING Copyright (usually GPL) for a package.

INSTALL Installation instructions.

README Help information to be read first, pertaining to the directory the README is
in.

TODO List of future desired work to be done to package.

BUGS List of errata.

NEWS Info about new features and changes for the layman about this package.

THANKS List of contributors to a package.

VERSION Version information of the package.

4.3.2 Glob expressions

There is a way to restrict file listings to within the ranges of certain characters. If you
only want to list the files that begin with A through M, you can run ls [A-M]*. Here
the brackets have a special meaning—they match a single character like a ?, but only
those given by the range. You can use this feature in a variety of ways, for example,
[a-dJW-Y]* matches all files beginning with a, b, c, d, J, W, X or Y; and *[a-d]id
matches all files ending with aid, bid, cid or did; and *.{cpp,c,cxx} matches all
files ending in .cpp, .c or .cxx. This way of specifying a file name is called a glob
expression. Glob expressions are used in many different contexts, as you will see later.

32

4. Basic Commands 4.4. Usage Summaries and the Copy Command

4.4 Usage Summaries and the Copy Command

The command cp stands for copy. It duplicates one or more files. The format is

cp <file> <newfile>
cp <file> [<file> ...] <dir>

or

cp file newfile
cp file [file ...] dir

The above lines are called a usage summary. The < and > signs mean that you don’t
actually type out these characters but replace <file> with a file name of your own.
These are also sometimes written in italics like, cp file newfile. In rare cases they are
written in capitals like, cp FILE NEWFILE. <file> and <dir> are called parameters.
Sometimes they are obviously numeric, like a command that takes <ioport>. &Any-
one emailing me to ask why typing in literal, <, i, o, p, o, r, t and > characters did not work will get a rude
reply.- These are common conventions used to specify the usage of a command. The
[and] brackets are also not actually typed but mean that the contents between them
are optional. The ellipses ... mean that <file> can be given repeatedly, and these
also are never actually typed. From now on you will be expected to substitute your
own parameters by interpreting the usage summary. You can see that the second of
the above lines is actually just saying that one or more file names can be listed with a
directory name last.

From the above usage summary it is obvious that there are two ways to use the
cp command. If the last name is not a directory, then cp copies that file and renames it
to the file name given. If the last name is a directory, then cp copies all the files listed
into that directory.

The usage summary of the ls command is as follows:
✞ �

ls [-l, --format=long] [-a, --all] <file> <file> ...
ls -al

✝ ✆

where the comma indicates that either option is valid. Similarly, with the passwd
command:

✞ �

passwd [<username>]
✝ ✆

You should practice using the cp command now by moving some of your files from
place to place.

33

4.5. Directory Manipulation 4. Basic Commands

4.5 Directory Manipulation

The cd command is used to take you to different directories. Create a directory
new with mkdir new. You could create a directory one by doing cd new and then
mkdir one, but there is a more direct way of doing this with mkdir new/one. You
can then change directly to the one directory with cd new/one. And similarly you
can get back to where you were with cd ../... In this way, the / is used to represent
directories within directories. The directory one is called a subdirectory of new.

The command pwd stands for present working directory (also called the cur-
rent directory) and tells what directory you are currently in. Entering pwd gives
some output like /home/<username>. Experiment by changing to the root di-
rectory (with cd /) and then back into the directory /home/<username> (with
cd /home/<username>). The directory /home/<username> is called your home di-
rectory, and is where all your personal files are kept. It can be used at any time with the
abbreviation ˜. In other words, entering cd /home/<username> is the same as en-
tering cd ˜. The process whereby a ˜ is substituted for your home directory is called
tilde expansion.

To remove (i.e., erase or delete) a file, use the command rm <filename>. To
remove a directory, use the command rmdir <dir>. Practice using these two com-
mands. Note that you cannot remove a directory unless it is empty. To remove a
directory as well as any contents it might contain, use the command rm -R <dir>.
The -R option specifies to dive into any subdirectories of <dir> and delete their con-
tents. The process whereby a command dives into subdirectories of subdirectories of
. . . is called recursion. -R stands for recursively. This is a very dangerous command.
Although you may be used to “undeleting” files on other systems, on UNIX a deleted
file is, at best, extremely difficult to recover.

The cp command also takes the -R option, allowing it to copy whole direc-
tories. The mv command is used to move files and directories. It really just re-
names a file to a different directory. Note that with cp you should use the option
-p and -d with -R to preserve all attributes of a file and properly reproduce symlinks
(discussed later). Hence, always use cp -dpR <dir> <newdir> instead of cp -
R <dir> <newdir>.

4.6 Relative vs. Absolute Pathnames

Commands can be given file name arguments in two ways. If you are in the same di-
rectory as the file (i.e., the file is in the current directory), then you can just enter the
file name on its own (e.g., cp my file new file). Otherwise, you can enter the full
path name, like cp /home/jack/my file /home/jack/new file. Very often ad-
ministrators use the notation ./my file to be clear about the distinction, for instance,

34

4. Basic Commands 4.7. System Manual Pages

cp ./my file ./new file. The leading ./makes it clear that both files are relative
to the current directory. File names not starting with a / are called relative path names,
and otherwise, absolute path names.

4.7 System Manual Pages

(See Chapter 16 for a complete overview of all documentation on the system, and also
how to print manual pages in a properly typeset format.)

The command man [<section>|-a] <command> displays help on a particu-
lar topic and stands for manual. Every command on the entire system is documented in
so-named man pages. In the past few years a new format of documentation, called info,
has evolved. This is considered the modern way to document commands, but most
system documentation is still available only through man. Very few packages are not
documented in man however.

Man pages are the authoritative reference on how a command works because
they are usually written by the very programmer who created the command. Under
UNIX, any printed documentation should be considered as being second-hand infor-
mation. Man pages, however, will often not contain the underlying concepts needed
for understanding the context in which a command is used. Hence, it is not possible
for a person to learn about UNIX purely from man pages. However, once you have the
necessary background for a command, then its man page becomes an indispensable
source of information and you can discard other introductory material.

Now, man pages are divided into sections, numbered 1 through 9. Section 1 con-
tains all man pages for system commands like the ones you have been using. Sections
2-7 contain information for programmers and the like, which you will probably not
have to refer to just yet. Section 8 contains pages specifically for system administra-
tion commands. There are some additional sections labeled with letters; other than
these, there are no manual pages besides the sections 1 through 9. The sections are

. . ./man1 User programs

. . ./man2 System calls

. . ./man3 Library calls

. . ./man4 Special files

. . ./man5 File formats

. . ./man6 Games

. . ./man7 Miscellaneous

. . ./man8 System administration

. . ./man9 Kernel documentation

You should now use the man command to look up the manual pages for all
the commands that you have learned. Type man cp, man mv, man rm, man mkdir,
man rmdir, man passwd, man cd, man pwd, and of course man man. Much of the

35

4.8. System info Pages 4. Basic Commands

information might be incomprehensible to you at this stage. Skim through the pages to
get an idea of how they are structured and what headings they usually contain. Man
pages are referenced with notation like cp(1), for the cp command in Section 1, which
can be read with man 1 cp. This notation will be used from here on.

4.8 System info Pages

info pages contain some excellent reference and tutorial information in hypertext
linked format. Type info on its own to go to the top-level menu of the entire info
hierarchy. You can also type info <command> for help on many basic commands.
Some packages will, however, not have info pages, and other UNIX systems do not
support info at all.

info is an interactive program with keys to navigate and search documentation. In-
side info, typing will invoke the help screen from where you can learn more com-
mands.

4.9 Some Basic Commands

You should practice using each of these commands.

bc A calculator program that handles arbitrary precision (very large) numbers. It is
useful for doing any kind of calculation on the command-line. Its use is left as an
exercise.

cal [[0-12] 1-9999] Prints out a nicely formatted calender of the current month,
a specified month, or a specified whole year. Try cal 1 for fun, and
cal 9 1752, when the pope had a few days scrapped to compensate for round-
off error.

cat <filename> [<filename> ...] Writes the contents of all the files listed to
the screen. cat can join a lot of files together with cat <filename> <file-
name> ... > <newfile>. The file <newfile> will be an end-on-end concate-
nation of all the files specified.

clear Erases all the text in the current terminal.

date Prints out the current date and time. (The command time, though, does some-
thing entirely different.)

df Stands for disk free and tells you how much free space is left on your system. The
available space usually has the units of kilobytes (1024 bytes) (although on some
other UNIX systems this will be 512 bytes or 2048 bytes). The right-most column

36

4. Basic Commands 4.9. Some Basic Commands

tells the directory (in combination with any directories below that) under which
that much space is available.

dircmp Directory compare. This command compares directories to see if changes
have been made between them. You will often want to see where two trees differ
(e.g., check for missing files), possibly on different computers. Run man dircmp

(that is, dircmp(1)). (This is a System 5 command and is not present on LINUX .
You can, however, compare directories with the Midnight Commander, mc).

du <directory> Stands for disk usage and prints out the amount of space occupied
by a directory. It recurses into any subdirectories and can print only a summary
with du -s <directory>. Also try du --max-depth=1 /var and du -
x / on a system with /usr and /home on separate partitions. &See page 143.-

dmesg Prints a complete log of all messages printed to the screen during the bootup
process. This is useful if you blinked when your machine was initializing. These
messages might not yet be meaningful, however.

echo Prints a message to the terminal. Try echo ’hello there’, echo
$[10*3+2], echo ‘$[10*3+2]’. The command echo -e allows interpreta-
tion of certain backslash sequences, for example echo -e "\a", which prints
a bell, or in other words, beeps the terminal. echo -n does the same without
printing the trailing newline. In other words, it does not cause a wrap to the next
line after the text is printed. echo -e -n "\b", prints a back-space character
only, which will erase the last character printed.

exit Logs you out.

expr <expression> Calculates the numerical expression expression. Most
arithmetic operations that you are accustomed to will work. Try expr
5 + 10 ’*’ 2. Observe how mathematical precedence is obeyed (i.e., the *
is worked out before the +).

file <filename> Prints out the type of data contained in a file.
file portrait.jpg will tell you that portrait.jpg is a JPEG im-
age data, JFIF standard. The command file detects an enormous
amount of file types, across every platform. fileworks by checking whether the
first few bytes of a file match certain tell-tale byte sequences. The byte sequences
are called magic numbers. Their complete list is stored in /usr/share/magic.
&The word “magic” under UNIX normally refers to byte sequences or numbers that have a specific
meaning or implication. So-called magic numbers are invented for source code, file formats, and file
systems.-

free Prints out available free memory. You will notice two listings: swap space and
physical memory. These are contiguous as far as the user is concerned. The
swap space is a continuation of your installed memory that exists on disk. It is
obviously slow to access but provides the illusion of much more available RAM

37

4.9. Some Basic Commands 4. Basic Commands

and avoids the possibility of ever running out of memory (which can be quite
fatal).

head [-n <lines>] <filename> Prints the first <lines> lines of a file or 10
lines if the -n option is not given. (See also tail below).

hostname [<new-name>] With no options, hostname prints the name of your ma-
chine, otherwise it sets the name to <new-name>.

kbdrate -r <chars-per-second> -d <repeat-delay> Changes the repeat
rate of your keys. Most users will like this rate set to kbdrate -r 32 -d 250
which unfortunately is the fastest the PC can go.

more Displays a long file by stopping at the end of each page. Run the following:
ls -l /bin > bin-ls, and then try more bin-ls. The first command cre-
ates a file with the contents of the output of ls. This will be a long file because
the directory /bin has a great many entries. The second command views the file.
Use the space bar to page through the file. When you get bored, just press .
You can also try ls -l /bin | more which will do the same thing in one go.

less The GNU version of more, but with extra features. On your system, the two
commands may be the same. With less, you can use the arrow keys to page
up and down through the file. You can do searches by pressing , and then
typing in a word to search for and then pressing . Found words will be
highlighted, and the text will be scrolled to the first found word. The important
commands are:

– Go to the end of a file.

– ssss Search backward through a file for the text ssss.

ssss Search forward through a file for the text ssss. &Actually ssss is a regular
expression. See Chapter 5 for more info.-

– Scroll forward and keep trying to read more of the file in case some
other program is appending to it—useful for log files.

nnn– Go to line nnn of the file.

Quit. Used by many UNIX text-based applications (sometimes –).

(You can make less stop beeping in the irritating way that it does by editing the
file /etc/profile and adding the lines

✞ �

LESS=-Q
export LESS

✝ ✆

and then logging out and logging in again. But this is an aside that will make
more sense later.)

38

4. Basic Commands 4.9. Some Basic Commands

lynx <url> Opens a URL &URL stands for Uniform Resource Locator—a web address.- at the
console. Try lynx http://lwn.net/.

links <url> Another text-based web browser.

nohup <command> & Runs a command in the background, appending any output
the command may produce to the file nohup.out in your home directory. no-
hup has the useful feature that the command will continue to run even after you
have logged out. Uses for nohup will become obvious later.

sleep <seconds> Pauses for <seconds> seconds. See also usleep.

sort <filename> Prints a file with lines sorted in alphabetical order. Create a file
called telephone with each line containing a short telephone book entry. Then
type sort telephone, or sort telephone | less and see what happens.
sort takes many interesting options to sort in reverse (sort -r), to eliminate
duplicate entries (sort -u), to ignore leading whitespace (sort -b), and so on.
See the sort(1) for details.

strings [-n <len>] <filename> Writes out a binary file, but strips any unread-
able characters. Readable groups of characters are placed on separate lines. If you
have a binary file that you think may contain something interesting but looks
completely garbled when viewed normally, use strings to sift out the inter-
esting stuff: try less /bin/cp and then try strings /bin/cp. By default
strings does not print sequences smaller than 4. The -n option can alter this
limit.

split ... Splits a file into many separate files. This might have been used when
a file was too big to be copied onto a floppy disk and needed to be split into,
say, 360-KB pieces. Its sister, csplit, can split files along specified lines of text
within the file. The commands are seldom used on their own but are very useful
within programs that manipulate text.

tac <filename> [<filename> ...] Writes the contents of all the files listed to
the screen, reversing the order of the lines—that is, printing the last line of the
file first. tac is cat backwards and behaves similarly.

tail [-f] [-n <lines>] <filename> Prints the last <lines> lines of a file or
10 lines if the -n option is not given. The -f option means to watch the file for
lines being appended to the end of it. (See also head above.)

uname Prints the name of the UNIX operating system you are currently using. In this
case, LINUX .

uniq <filename> Prints a file with duplicate lines deleted. The file must first be
sorted.

39

4.10. The mc File Manager 4. Basic Commands

usleep <microseconds> Pauses for <microseconds> microseconds
(1/1,000,000 of a second).

wc [-c] [-w] [-l] <filename> Counts the number of bytes (with -c for
character), or words (with -w), or lines (with -l) in a file.

whatis <command> Gives the first line of the man page corresponding to <com-
mand>, unless no such page exists, in which case it prints nothing appropri-
ate.

whoami Prints your login name.

4.10 The mc File Manager

Those who come from the DOS world may remember the famous Norton Commander
file manager. The GNU project has a Free clone called the Midnight Commander, mc.
It is essential to at least try out this package—it allows you to move around files and
directories extremely rapidly, giving a wide-angle picture of the file system. This will
drastically reduce the number of tedious commands you will have to type by hand.

4.11 Multimedia Commands for Fun

You should practice using each of these commands if you have your sound card con-
figured. &I don’t want to give the impression that LINUX does not have graphical applications to do
all the functions in this section, but you should be aware that for every graphical application, there is a text-
mode one that works better and consumes fewer resources.- You may also find that some of these
packages are not installed, in which case you can come back to this later.

play [-v <volume>] <filename> Plays linear audio formats out through your
sound card. These formats are .8svx, .aiff, .au, .cdr, .cvs, .dat, .gsm,
.hcom, .maud, .sf, .smp, .txw, .vms, .voc, .wav, .wve, .raw, .ub, .sb,
.uw, .sw, or .ul files. In other words, it plays almost every type of “basic”
sound file there is: most often this will be a simple Windows .wav file. Specify
<volume> in percent.

rec <filename> Records from your microphone into a file. (play and rec are from
the same package.)

mpg123 <filename> Plays audio from MPEG files level 1, 2, or 3. Useful options are
-b 1024 (for increasing the buffer size to prevent jumping) and --2to1 (down-
samples by a factor of 2 for reducing CPU load). MPEG files contain sound
and/or video, stored very compactly using digital signal processing techniques
that the commercial software industry seems to think are very sophisticated.

40

4. Basic Commands 4.12. Terminating Commands

cdplay Plays a regular music CD . cdp is the interactive version.

aumix Sets your sound card’s volume, gain, recording volume, etc. You can use it
interactively or just enter aumix -v <volume> to immediately set the volume
in percent. Note that this is a dedicated mixer program and is considered to be an
application separate from any that play music. Preferably do not set the volume
from within a sound-playing application, even if it claims this feature—you have
much better control with aumix.

mikmod --interpolate -hq --renice Y <filename> Plays Mod files. Mod
files are a special type of audio format that stores only the duration and pitch of
the notes that constitute a song, along with samples of each musical instrument
needed to play the song. This makes for high-quality audio with phenomenally
small file size. mikmod supports 669, AMF, DSM, FAR, GDM, IMF, IT, MED,
MOD, MTM, S3M, STM, STX, ULT, UNI, and XM audio formats—that is, proba-
bly every type in existence. Actually, a lot of excellent listening music is available
on the Internet in Mod file format. The most common formats are .it, .mod,
.s3m, and .xm. &Original .mod files are the product of Commodore-Amiga computers and
had only four tracks. Today’s 16 (and more) track Mod files are comparable to any recorded music.-

4.12 Terminating Commands

You usually use – to stop an application or command that runs continuously.
You must type this at the same prompt where you entered the command. If this doesn’t
work, the section on processes (Section 9.5) will explain about signalling a running ap-
plication to quit.

4.13 Compressed Files

Files typically contain a lot of data that one can imagine might be represented with a
smaller number of bytes. Take for example the letter you typed out. The word “the”
was probably repeated many times. You were probably also using lowercase letters
most of the time. The file was by far not a completely random set of bytes, and it
repeatedly used spaces as well as using some letters more than others. &English text
in fact contains, on average, only about 1.3 useful bits (there are eight bits in a byte) of data per byte.-

Because of this the file can be compressed to take up less space. Compression involves
representing the same data by using a smaller number of bytes, in such a way that the
original data can be reconstructed exactly. Such usually involves finding patterns in
the data. The command to compress a file is gzip <filename>, which stands for
GNU zip. Run gzip on a file in your home directory and then run ls to see what
happened. Now, use more to view the compressed file. To uncompress the file use

41

4.14. Searching for Files 4. Basic Commands

gzip -d <filename>. Now, use more to view the file again. Many files on the
system are stored in compressed format. For example, man pages are often stored
compressed and are uncompressed automatically when you read them.

You previously used the command cat to view a file. You can use the com-
mand zcat to do the same thing with a compressed file. Gzip a file and then type
zcat <filename>. You will see that the contents of the file are written to the screen.
Generally, when commands and files have a z in them they have something to do with
compression—the letter z stands for zip. You can use zcat <filename> | less to
view a compressed file proper. You can also use the command zless <filename>,
which does the same as zcat <filename> | less. (Note that your less may ac-
tually have the functionality of zless combined.)

A new addition to the arsenal is bzip2. This is a compression program very
much like gzip, except that it is slower and compresses 20%–30% better. It is useful
for compressing files that will be downloaded from the Internet (to reduce the transfer
volume). Files that are compressed with bzip2 have an extension .bz2. Note that
the improvement in compression depends very much on the type of data being com-
pressed. Sometimes there will be negligible size reduction at the expense of a huge
speed penalty, while occasionally it is well worth it. Files that are frequently com-
pressed and uncompressed should never use bzip2.

4.14 Searching for Files

You can use the command find to search for files. Change to the root directory, and
enter find. It will spew out all the files it can see by recursively descending &Goes into
each subdirectory and all its subdirectories, and repeats the command find.- into all subdirectories.
In other words, find, when executed from the root directory, prints all the files on the
system. find will work for a long time if you enter it as you have—press – to
stop it.

Now change back to your home directory and type find again. You will see all
your personal files. You can specify a number of options to find to look for specific
files.

find -type d Shows only directories and not the files they contain.

find -type f Shows only files and not the directories that contain them, even
though it will still descend into all directories.

find -name <filename> Finds only files that have the name <filename>. For
instance, find -name ’*.c’ will find all files that end in a .c extension
(find -name *.c without the quote characters will not work. You will see
why later). find -name Mary Jones.letter will find the file with the name
Mary Jones.letter.

42

4. Basic Commands 4.15. Searching Within Files

find -size [[+|-]]<size> Finds only files that have a size larger (for +) or
smaller (for -) than <size> kilobytes, or the same as <size> kilobytes if the
sign is not specified.

find <directory> [<directory> ...] Starts find in each of the specified di-
rectories.

There are many more options for doing just about any type of search for a file. See
find(1) for more details (that is, run man 1 find). Look also at the -exec option
which causes find to execute a command for each file it finds, for example:

✞ �

find /usr -type f -exec ls ’-al’ ’{}’ ’;’
✝ ✆

find has the deficiency of actively reading directories to find files. This process
is slow, especially when you start from the root directory. An alternative command is
locate <filename>. This searches through a previously created database of all the
files on the system and hence finds files instantaneously. Its counterpart updatedb
updates the database of files used by locate. On some systems, updatedb runs
automatically every day at 04h00.

Try these (updatedb will take several minutes):
✞ �

updatedb
locate rpm
locate deb
locate passwd

5 locate HOWTO
locate README

✝ ✆

4.15 Searching Within Files

Very often you will want to search through a number of files to find a particular word
or phrase, for example, when a number of files contain lists of telephone numbers with
people’s names and addresses. The command grep does a line-by-line search through
a file and prints only those lines that contain a word that you have specified. grep has
the command summary:

✞ �

grep [options] <pattern> <filename> [<filename> ...]
✝ ✆

&The words word, string, or pattern are used synonymously in this context, basically meaning a short length
of letters and-or numbers that you are trying to find matches for. A pattern can also be a string with kinds of
wildcards in it that match different characters, as we shall see later.-

43

4.16. Copying to MS-DOS and Windows Formatted Floppy Disks 4. Basic Commands

Run grep for the word “the” to display all lines containing it: grep
’the’ Mary Jones.letter. Now try grep ’the’ *.letter.

grep -n <pattern> <filename> shows the line number in the file where the
word was found.

grep -<num> <pattern> <filename> prints out <num> of the lines that came
before and after each of the lines in which the word was found.

grep -A <num> <pattern> <filename> prints out <num> of the lines that came
After each of the lines in which the word was found.

grep -B <num> <pattern> <filename> prints out <num> of the lines that came
Before each of the lines in which the word was found.

grep -v <pattern> <filename> prints out only those lines that do not contain
the word you are searching for. & You may think that the -v option is no longer doing the
same kind of thing that grep is advertised to do: i.e., searching for strings. In fact, UNIX commands
often suffer from this—they have such versatility that their functionality often overlaps with that of
other commands. One actually never stops learning new and nifty ways of doing things hidden in
the dark corners of man pages.-

grep -i <pattern> <filename> does the same as an ordinary grep but is case
insensitive.

4.16 Copying to MS-DOS and Windows Formatted
Floppy Disks

A package, called the mtools package, enables reading and writing to MS-
DOS/Windows floppy disks. These are not standard UNIX commands but are pack-
aged with most LINUX distributions. The commands support Windows “long file
name” floppy disks. Put an MS-DOS disk in your A: drive. Try

✞ �

mdir A:
touch myfile
mcopy myfile A:
mdir A:

✝ ✆

Note that there is no such thing as an A: disk under LINUX . Only the mtools pack-
age understands A: in order to retain familiarity for MS-DOS users. The complete list
of commands is

✞ �

floppyd mcopy mformat mmount mshowfat
mattrib mdel minfo mmove mtoolstest

44

4. Basic Commands 4.17. Archives and Backups

mbadblocks mdeltree mkmanifest mpartition mtype
mcat mdir mlabel mrd mzip

5 mcd mdu mmd mren xcopy
✝ ✆

Entering info mtools will give detailed help. In general, any MS-DOS command,
put into lower case with an m prefixed to it, gives the corresponding LINUX com-
mand.

4.17 Archives and Backups

Never begin any work before you have a fail-safe method of
backing it up.

One of the primary activities of a system administrator is to make backups. It is
essential never to underestimate the volatility&Ability to evaporate or become chaotic.- of
information in a computer. Backups of data are therefore continually made. A backup
is a duplicate of your files that can be used as a replacement should any or all of the
computer be destroyed. The idea is that all of the data in a directory&As usual, meaning
a directory and all its subdirectories and all the files in those subdirectories, etc.- are stored in a sep-
arate place—often compressed—and can be retrieved in case of an emergency. When
we want to store a number of files in this way, it is useful to be able to pack many files
into one file so that we can perform operations on that single file only. When many
files are packed together into one, this packed file is called an archive. Usually archives
have the extension .tar, which stands for tape archive.

To create an archive of a directory, use the tar command:
✞ �

tar -c -f <filename> <directory>
✝ ✆

Create a directory with a few files in it, and run the tar command to back it up.
A file of <filename> will be created. Take careful note of any error messages that tar
reports. List the file and check that its size is appropriate for the size of the directory
you are archiving. You can also use the verify option (see the man page) of the tar
command to check the integrity of <filename>. Now remove the directory, and then
restore it with the extract option of the tar command:

✞ �

tar -x -f <filename>
✝ ✆

You should see your directory recreated with all its files intact. A nice option to give
to tar is -v. This option lists all the files that are being added to or extracted from the
archive as they are processed, and is useful for monitoring the progress of archiving.

45

4.18. The PATH Where Commands Are Searched For 4. Basic Commands

It is obvious that you can call your archive anything you like, however; the common
practice is to call it <directory>.tar, which makes it clear to all exactly what it is.
Another important option is -p which preserves detailed attribute information of files.

Once you have your .tar file, you would probably want to compress it with
gzip. This will create a file <directory>.tar.gz, which is sometimes called <di-
rectory>.tgz for brevity.

A second kind of archiving utility is cpio. cpio is actually more powerful than
tar, but is considered to be more cryptic to use. The principles of cpio are quite similar
and its use is left as an exercise.

4.18 The PATH Where Commands Are Searched For

When you type a command at the shell prompt, it has to be read off disk out of one
or other directory. On UNIX, all such executable commands are located in one of about
four directories. A file is located in the directory tree according to its type, rather than
according to what software package it belongs to. For example, a word processor may
have its actual executable stored in a directory with all other executables, while its font
files are stored in a directory with other fonts from all other packages.

The shell has a procedure for searching for executables when you type them in.
If you type in a command with slashes, like /bin/cp, then the shell tries to run the
named program, cp, out of the /bin directory. If you just type cp on its own, then it
tries to find the cp command in each of the subdirectories of your PATH. To see what
your PATH is, just type

✞ �

echo $PATH
✝ ✆

You will see a colon separated list of four or more directories. Note that the
current directory . is not listed. It is important that the current directory not be
listed for reasons of security. Hence, to execute a command in the current directory,
we hence always ./<command>.

To append, for example, a new directory /opt/gnome/bin to your PATH, do
✞ �

PATH="$PATH:/opt/gnome/bin"
export PATH

✝ ✆

LINUX supports the convenience of doing this in one line:
✞ �

export PATH="$PATH:/opt/gnome/bin"
✝ ✆

46

4. Basic Commands 4.19. The -- Option

There is a further command, which, to check whether a command is locatable
from the PATH. Sometimes there are two commands of the same name in different di-
rectories of the PATH.&This is more often true of Solaris systems than LINUX .- Typing which
<command> locates the one that your shell would execute. Try:

✞ �

which ls
which cp mv rm
which which
which cranzgots

✝ ✆

which is also useful in shell scripts to tell if there is a command at all, and hence
check whether a particular package is installed, for example, which netscape.

4.19 The -- Option

If a file name happens to begin with a - then it would be impossible to use that file
name as an argument to a command. To overcome this circumstance, most commands
take an option --. This option specifies that no more options follow on the command-
line—everything else must be treated as a literal file name. For instance

✞ �

touch -- -stupid_file_name
rm -- -stupid_file_name

✝ ✆

47

4.19. The -- Option 4. Basic Commands

48

Chapter 5

Regular Expressions

A regular expression is a sequence of characters that forms a template used to search
for strings &Words, phrases, or just about any sequence of characters. - within text. In other
words, it is a search pattern. To get an idea of when you would need to do this, consider
the example of having a list of names and telephone numbers. If you want to find a
telephone number that contains a 3 in the second place and ends with an 8, regular
expressions provide a way of doing that kind of search. Or consider the case where
you would like to send an email to fifty people, replacing the word after the “Dear”
with their own name to make the letter more personal. Regular expressions allow for
this type of searching and replacing.

5.1 Overview

Many utilities use the regular expression to give them greater power when manipulat-
ing text. The grep command is an example. Previously you used the grep command
to locate only simple letter sequences in text. Now we will use it to search for regular
expressions.

In the previous chapter you learned that the ? character can be used to signify
that any character can take its place. This is said to be a wildcard and works with
file names. With regular expressions, the wildcard to use is the . character. So, you
can use the command grep .3....8 <filename> to find the seven-character tele-
phone number that you are looking for in the above example.

Regular expressions are used for line-by-line searches. For instance, if the seven
characters were spread over two lines (i.e., they had a line break in the middle), then
grep wouldn’t find them. In general, a program that uses regular expressions will
consider searches one line at a time.

49

5.1. Overview 5. Regular Expressions

Here are some regular expression examples that will teach you the regular ex-
pression basics. We use the grep command to show the use of regular expressions
(remember that the -w option matches whole words only). Here the expression itself
is enclosed in ’ quotes for reasons that are explained later.

grep -w ’t[a-i]e’ Matches the words tee, the, and tie. The brackets have a
special significance. They mean to match one character that can be anything
from a to i.

grep -w ’t[i-z]e’ Matches the words tie and toe.

grep -w ’cr[a-m]*t’ Matches the words craft, credit, and cricket. The *
means to match any number of the previous character, which in this case is any
character from a through m.

grep -w ’kr.*n’ Matches the words kremlin and krypton, because the .
matches any character and the * means to match the dot any number of times.

egrep -w ’(th|sh).*rt’ Matches the words shirt, short, and thwart. The
| means to match either the th or the sh. egrep is just like grep but supports
extended regular expressions that allow for the | feature. & The | character often denotes
a logical OR, meaning that either the thing on the left or the right of the | is applicable. This is true of
many programming languages.- Note how the square brackets mean one-of-several-
characters and the round brackets with |’s mean one-of-several-words.

grep -w ’thr[aeiou]*t’ Matches the words threat and throat. As you can
see, a list of possible characters can be placed inside the square brackets.

grep -w ’thr[ˆa-f]*t’ Matches the words throughput and thrust. The ˆ af-
ter the first bracket means to match any character except the characters listed. For
example, the word thrift is not matched because it contains an f.

The above regular expressions all match whole words (because of the -w option).
If the -w option was not present, they might match parts of words, resulting in a far
greater number of matches. Also note that although the * means to match any number
of characters, it also will match no characters as well; for example: t[a-i]*e could
actually match the letter sequence te, that is, a t and an ewith zero characters between
them.

Usually, you will use regular expressions to search for whole lines that match, and
sometimes you would like to match a line that begins or ends with a certain string. The
ˆ character specifies the beginning of a line, and the $ character the end of the line. For
example, ˆThe matches all lines that start with a The, and hack$ matches all lines that
end with hack, and ’ˆ *The.*hack *$’ matches all lines that begin with The and
end with hack, even if there is whitespace at the beginning or end of the line.

50

5. Regular Expressions 5.2. The fgrep Command

Because regular expressions use certain characters in a special way (these are . \
[] * + ?), these characters cannot be used to match characters. This restriction severely
limits you from trying to match, say, file names, which often use the . character. To
match a . you can use the sequence \. which forces interpretation as an actual . and
not as a wildcard. Hence, the regular expression myfile.txt might match the let-
ter sequence myfileqtxt or myfile.txt, but the regular expression myfile\.txt
will match only myfile.txt.

You can specify most special characters by adding a \ character before them, for
example, use \[for an actual [, a \$ for an actual $, a \\ for and actual \, \+ for an
actual +, and \? for an actual ?. (? and + are explained below.)

5.2 The fgrep Command

fgrep is an alternative to grep. The difference is that while grep (the more commonly
used command) matches regular expressions, fgrep matches literal strings. In other
words you can use fgrep when you would like to search for an ordinary string that is
not a regular expression, instead of preceding special characters with \.

5.3 Regular Expression \{ \} Notation

x* matches zero to infinite instances of a character x. You can specify other ranges of
numbers of characters to be matched with, for example, x\{3,5\}, which will match
at least three but not more than five x’s, that is xxx, xxxx, or xxxxx.

x\{4\} can then be used to match 4 x’s exactly: no more and no less. x\{7,\}
will match seven or more x’s—the upper limit is omitted to mean that there is no
maximum number of x’s.

As in all the examples above, the x can be a range of characters (like [a-k]) just
as well as a single charcter.

grep -w ’th[a-t]\{2,3\}t’ Matches the words theft, thirst, threat,
thrift, and throat.

grep -w ’th[a-t]\{4,5\}t’ Matches the words theorist, thicket, and
thinnest.

51

5.4. + ? \< \> () | Notation 5. Regular Expressions

5.4 Extended Regular Expression + ? \< \> () |
Notation with egrep

An enhanced version of regular expressions allows for a few more useful features.
Where these conflict with existing notation, they are only available through the egrep
command.

+ is analogous to \{1,\}. It does the same as * but matches one or more characters
instead of zero or more characters.

? is analogous to “–1“˝. It matches zero or one character.

\< \> can surround a string to match only whole words.

() can surround several strings, separated by |. This notation will match any of these
strings. (egrep only.)

\(\) can surround several strings, separated by \|. This notation will match any of
these strings. (grep only.)

The following examples should make the last two notations clearer.

grep ’trot’ Matches the words electrotherapist, betroth, and so on, but

grep ’\<trot\>’ matches only the word trot.

egrep -w ’(this|that|c[aeiou]*t)’ Matches the words this, that, cot,
coat, cat, and cut.

5.5 Regular Expression Subexpressions

Subexpressions are covered in Chapter 8.

52

Chapter 6

Editing Text Files

To edit a text file means to interactively modify its content. The creation and modifi-
cation of an ordinary text file is known as text editing. A word processor is a kind of
editor, but more basic than that is the UNIX or DOS text editor.

6.1 vi

The important editor to learn how to use is vi. After that you can read why, and a little
more about other, more user-friendly editors.

Type simply,
✞ �

vi <filename>
✝ ✆

to edit any file, or the compatible, but more advanced
✞ �

vim <filename>
✝ ✆

To exit vi, press , then the key sequence :q! and then press .

vi has a short tutorial which should get you going in 20 minutes. If you get
bored in the middle, you can skip it and learn vi as you need to edit things. To read
the tutorial, enter:

✞ �

vimtutor
✝ ✆

which edits the file

53

6.1. vi 6. Editing Text Files

/usr/doc/vim-common-5.7/tutor,
/usr/share/vim/vim56/tutor/tutor, or
/usr/share/doc/vim-common-5.7/tutor/tutor,

depending on your distribution. &By this you should be getting an idea of the kinds of differences
there are between different LINUX distributions.- You will then see the following at the top of
your screen:

✞ �
===
= W e l c o m e t o t h e V I M T u t o r - Version 1.4 =
===

5 Vim is a very powerful editor that has many commands, too many to
explain in a tutor such as this. This tutor is designed to describe
enough of the commands that you will be able to easily use Vim as
an all-purpose editor.

10 The approximate time required to complete the tutor is 25-30 minutes,
✝ ✆

You are supposed to edit the tutor file itself as practice, following through 6
lessons. Copy it first to your home directory.

Table 6.1 is a quick reference for vi. It contains only a few of the many hundreds
of available commands but is enough to do all basic editing operations. Take note of
the following:

• vi has several modes of operation. If you press , you enter insert-mode. You
then enter text as you would in a normal DOS text editor, but you cannot arbitrarily
move the cursor and delete characters while in insert mode. Pressing will get you
out of insert mode, where you are not able to insert characters, but can now do
things like arbitrary deletions and moves.

• Pressing – (i.e., :) gets you into command-line mode, where you can
do operations like importing files, saving of the current file, searches, and text
processing. Typically, you type : then some text, and then hit .

• The word register is used below. A register is a hidden clipboard.

• A useful tip is to enter :set ruler before doing anything. This shows, in the
bottom right corner of the screen, what line and column you are on.

54

6. Editing Text Files 6.1. vi

Table 6.1 Common vi commands

Key combination Function

h or Cursor left
l or Cursor right.
k or Cursor up.
j or Cursor down.
b Cursor left one word.
w Cursor right one word.
{ Cursor up one paragraph.
} Cursor down one paragraph.
ˆ Cursor to line start.
$ Cursor to line end.
gg Cursor to first line.
G Cursor to last line.

Get out of current mode.
i Start insert mode.
o Insert a blank line below the current

line and then start insert mode.
O Insert a blank line above the current

line and then start insert mode.
a Append (start insert mode after the

current character).
R Replace (start insert mode with over-

write).
:wq Save (write) and quit.
:q Quit.
:q! Quit forced (without checking

whether a save is required).
x Delete (delete under cursor and copy

to register).
X Backspace (delete left of cursor and

copy to register).
dd Delete line (and copy to register).
:j! Join line (remove newline at end of

current line).
Ctrl-J Same.
u Undo.
Ctrl-R Redo.
de Delete to word end (and copy to reg-

ister).
continues...

55

6.1. vi 6. Editing Text Files

Table 6.1 (continued)

Key combination Function
db Delete to word start (and copy to reg-

ister).
d$ Delete to line end (and copy to regis-

ter).
dˆ Delete to line beginning (and copy to

register).
dd Delete current line (and copy to regis-

ter).
2dd Delete two lines (and copy to register).
5dd Delete five lines (and copy to register).
p Paste clipboard (insert register).
Ctrl-G Show cursor position.
5G Cursor to line five.
16G Cursor to line sixteen.
G Cursor to last line.
/search-string Search forwards for search-string.
?search-string Search backwards for search-string.
:-1,$s/search-string/replace-string/gc Search and replace with confirmation

starting at current line.
:,$s/search-string/replace-string/gc Search and replace with confirmation

starting at line below cursor.
:,$s/\<search-string\>/replace-string/gc Search and replace whole words.
:8,22s/search-string/replace-string/g Search and replace in lines 8 through

22 without confirmation.
:%s/search-string/replace-string/g Search and replace whole file without

confirmation.
:w filename Save to file filename.
:5,20w filename Save lines 5 through 20 to file file-

name (use Ctrl-G to get line numbers
if needed).

:5,$w! filename Force save lines 5 through to last line
to file filename.

:r filename Insert file filename.
v Visual mode (start highlighting).
y Copy highlighted text to register.
d Delete highlighted text (and copy to

register).
p Paste clipboard (insert register).
Press v, then move cursor Search and replace within
down a few lines, then, highlighted text.

continues...

56

6. Editing Text Files 6.2. Syntax Highlighting

Table 6.1 (continued)

Key combination Function
:s/search-string/replace-string/g
:help Reference manual (open new window

with help screen inside—probably the
most important command here!).

:new Open new blank window.
:split filename Open new window with filename.
:q Close current window.
:qa Close all windows.
Ctrl-W j Move cursor to window below.
Ctrl-W k Move cursor to window above.
Ctrl-W - Make window smaller.
Ctrl-W + Make window larger.

6.2 Syntax Highlighting

Something all UNIX users are used to (and have come to expect) is syntax highlighting.
This basically means that a bash (explained later) script will look like:

instead of

Syntax highlighting is meant to preempt programming errors by colorizing correct
keywords. You can set syntax highlighting in vim by using :syntax on (but not
in vi). Enable syntax highlighting whenever possible—all good text editors support
it.

6.3 Editors

Although UNIX has had full graphics capability for a long time now, most administra-
tion of low-level services still takes place inside text configuration files. Word process-
ing is also best accomplished with typesetting systems that require creation of ordinary
text files. &This is in spite of all the hype regarding the WYSIWYG (what you see is what you get) word
processor. This document itself was typeset with LATEX and the Cooledit text editor.-

Historically, the standard text editor used to be ed. ed allows the user to see only
one line of text of a file at a time (primitive by today’s standards). Today, ed is mostly
used in its streaming version, sed. ed has long since been superseded by vi.

57

6.3. Editors 6. Editing Text Files

The editor is the place you will probably spend most of your time. Whether you
are doing word processing, creating web pages, programming, or administrating. It is
your primary interactive application.

6.3.1 Cooledit

(Read this if you “just-want-to-open-a-file-and-start-typing-like-under-Windows.”)

cooledit The best editor for day-to-day work is Cooledit, &As Cooledit’s
author, I am probably biased in this view.- available from the Cooledit web page
http://cooledit.sourceforge.net/. Cooledit is a graphical (runs under X) editor. It is also
a full-featured Integrated Development Environment (IDE) for whatever you may be
doing. Those considering buying an IDE for development need look no further than
installing Cooledit for free.

People coming from a Windows background will find Cooledit the easiest and
most powerful editor to use. It requires no tutelage; just enter cooledit under X and
start typing. Its counterpart in text mode is mcedit, which comes with the GNU
Midnight Commander package mc. The text-mode version is inferior to other text
mode editors like emacs and jed but is adequate if you don’t spend a lot of time in
text mode.

Cooledit has pull-down menus and intuitive keys. It is not necessary to read any
documentation before using Cooledit.

6.3.2 vi and vim

Today vi is considered the standard. It is the only editor that will be installed by de-
fault on any UNIX system. vim is a “Charityware” version that (as usual) improves
upon the original vi with a host of features. It is important to learn the basics of vi
even if your day-to-day editor is not going to be vi. The reason is that every admin-
istrator is bound to one day have to edit a text file over some really slow network link
and vi is the best for this.

On the other hand, new users will probably find vi unintuitive and tedious and
will spend a lot of time learning and remembering how to do all the things they need
to. I myself cringe at the thought of vi pundits recommending it to new UNIX users.

In defense of vi, it should be said that many people use it exclusively, and it
is probably the only editor that really can do absolutely everything. It is also one of
the few editors that has working versions and consistent behavior across all UNIX and
non-UNIX systems. vim works on AmigaOS, AtariMiNT, BeOS, DOS, MacOS, OS/2,
RiscOS, VMS, and Windows (95/98/NT4/NT5/2000) as well as all UNIX variants.

58

6. Editing Text Files 6.3. Editors

6.3.3 Emacs

Emacs stands for Editor MACroS. It is the monster of all editors and can do almost
everything one could imagine that a single software package might. It has become a
de facto standard alongside vi.

Emacs is more than just a text editor. It is a complete system of using a computer
for development, communications, file management, and things you wouldn’t even
imagine there are programs for. There is even an Window System version available
which can browse the web.

6.3.4 Other editors

Other editors to watch out for are joe, jed, nedit, pico, nano, and many others that
try to emulate the look and feel of well-known DOS, Windows, or Apple Mac devel-
opment environments, or to bring better interfaces by using Gtk/Gnome or Qt/KDE.
The list gets longer each time I look. In short, don’t think that the text editors that your
vendor has chosen to put on your CD are the best or only free ones out there. The same
goes for other applications.

59

6.3. Editors 6. Editing Text Files

60

Chapter 7

Shell Scripting

This chapter introduces you to the concept of computer programming. So far, you have
entered commands one at a time. Computer programming is merely the idea of getting
a number of commands to be executed, that in combination do some unique powerful
function.

7.1 Introduction

To execute a number of commands in sequence, create a file with a .sh extension, into
which you will enter your commands. The .sh extension is not strictly necessary but
serves as a reminder that the file contains special text called a shell script. From now
on, the word script will be used to describe any sequence of commands placed in a text
file. Now do a

✞ �

chmod 0755 myfile.sh
✝ ✆

which allows the file to be run in the explained way.

Edit the file using your favorite text editor. The first line should be as follows
with no whitespace. &Whitespace are tabs and spaces, and in some contexts, newline (end of line)
characters.-

✞ �

#!/bin/sh
✝ ✆

The line dictates that the following program is a shell script, meaning that it accepts the
same sort of commands that you have normally been typing at the prompt. Now enter
a number of commands that you would like to be executed. You can start with

✞ �

echo "Hi there"

61

7.2. Looping: the while and until Statements 7. Shell Scripting

echo "what is your name? (Type your name here and press Enter)"
read NM
echo "Hello $NM"

✝ ✆

Now, exit from your editor and type ./myfile.sh. This will execute&Cause the
computer to read and act on your list of commands, also called running the program.- the file. Note
that typing ./myfile.sh is no different from typing any other command at the shell
prompt. Your file myfile.sh has in fact become a new UNIX command all of its own.

Note what the read command is doing. It creates a pigeonhole called NM, and
then inserts text read from the keyboard into that pigeonhole. Thereafter, whenever
the shell encounters NM, its contents are written out instead of the letters NM (provided
you write a $ in front of it). We say that NM is a variable because its contents can vary.

You can use shell scripts like a calculator. Try
✞ �

echo "I will work out X*Y"
echo "Enter X"
read X
echo "Enter Y"

5 read Y
echo "X*Y = $X*$Y = $[X*Y]"

✝ ✆

The [and] mean that everything between must be evaluated&Substituted, worked out, or
reduced to some simplified form.- as a numerical expression&Sequence of numbers with +, -, *, etc.
between them.-. You can, in fact, do a calculation at any time by typing at the prompt

✞ �

echo $[3*6+2*8+9]
✝ ✆

&Note that the shell that you are using allows such [] notation. On some UNIX systems you will have to
use the expr command to get the same effect.-

7.2 Looping to Repeat Commands: the while and until
Statements

The shell reads each line in succession from top to bottom: this is called program flow.
Now suppose you would like a command to be executed more than once—you would
like to alter the program flow so that the shell reads particular commands repeatedly.
The while command executes a sequence of commands many times. Here is an ex-
ample (-le stands for less than or equal):

✞ �

N=1
while test "$N" -le "10"
do

62

7. Shell Scripting 7.3. Looping: the for Statement

echo "Number $N"
5 N=$[N+1]

done
✝ ✆

The N=1 creates a variable called N and places the number 1 into it. The while com-
mand executes all the commands between the do and the done repetitively until the
test condition is no longer true (i.e., until N is greater than 10). The -le stands for
less than or equal to. See test(1) (that is, run man 1 test) to learn about the other
types of tests you can do on variables. Also be aware of how N is replaced with a new
value that becomes 1 greater with each repetition of the while loop.

You should note here that each line is a distinct command—the commands are
newline-separated. You can also have more than one command on a line by separating
them with a semicolon as follows:

✞ �

N=1 ; while test "$N" -le "10"; do echo "Number $N"; N=$[N+1] ; done
✝ ✆

(Try counting down from 10 with -ge (greater than or equal).) It is easy to see that shell
scripts are extremely powerful, because any kind of command can be executed with
conditions and loops.

The until statement is identical to while except that the reverse logic is ap-
plied. The same functionality can be achieved with -gt (greater than):

✞ �

N=1 ; until test "$N" -gt "10"; do echo "Number $N"; N=$[N+1] ; done
✝ ✆

7.3 Looping to Repeat Commands: the for Statement

The for command also allows execution of commands multiple times. It works like
this:

✞ �

for i in cows sheep chickens pigs
do

echo "$i is a farm animal"
done

5 echo -e "but\nGNUs are not farm animals"
✝ ✆

The for command takes each string after the in, and executes the lines between
do and done with i substituted for that string. The strings can be anything (even
numbers) but are often file names.

The if command executes a number of commands if a condition is met (-gt stands for
greater than, -lt stands for less than). The if command executes all the lines between
the if and the fi (“if” spelled backwards).

63

7.3. Looping: the for Statement 7. Shell Scripting

✞ �

X=10
Y=5
if test "$X" -gt "$Y" ; then

echo "$X is greater than $Y"
5 fi

✝ ✆

The if command in its full form can contain as much as:
✞ �

X=10
Y=5
if test "$X" -gt "$Y" ; then

echo "$X is greater than $Y"
5 elif test "$X" -lt "$Y" ; then

echo "$X is less than $Y"
else

echo "$X is equal to $Y"
fi

✝ ✆

Now let us create a script that interprets its arguments. Create a new script called
backup-lots.sh, containing:

✞ �

#!/bin/sh
for i in 0 1 2 3 4 5 6 7 8 9 ; do

cp $1 $1.BAK-$i
done

✝ ✆

Now create a file important datawith anything in it and then run ./backup-
lots.sh important data, which will copy the file 10 times with 10 different exten-
sions. As you can see, the variable $1 has a special meaning—it is the first argument
on the command-line. Now let’s get a little bit more sophisticated (-e test whether the
file exists):

✞ �

#!/bin/sh
if test "$1" = "" ; then

echo "Usage: backup-lots.sh <filename>"
exit

5 fi
for i in 0 1 2 3 4 5 6 7 8 9 ; do

NEW_FILE=$1.BAK-$i
if test -e $NEW_FILE ; then

echo "backup-lots.sh: **warning** $NEW_FILE"
10 echo " already exists - skipping"

else
cp $1 $NEW_FILE

64

7. Shell Scripting 7.4. breaking Out of Loops and continueing

fi
done

✝ ✆

7.4 breaking Out of Loops and continueing

A loop that requires premature termination can include the break statement within it:
✞ �

#!/bin/sh
for i in 0 1 2 3 4 5 6 7 8 9 ; do

NEW_FILE=$1.BAK-$i
if test -e $NEW_FILE ; then

5 echo "backup-lots.sh: **error** $NEW_FILE"
echo " already exists - exitting"
break

else
cp $1 $NEW_FILE

10 fi
done

✝ ✆

which causes program execution to continue on the line after the done. If two loops
are nested within each other, then the command break 2 causes program execution
to break out of both loops; and so on for values above 2.

The continue statement is also useful for terminating the current iteration of
the loop. This means that if a continue statement is encountered, execution will
immediately continue from the top of the loop, thus ignoring the remainder of the
body of the loop:

✞ �

#!/bin/sh
for i in 0 1 2 3 4 5 6 7 8 9 ; do

NEW_FILE=$1.BAK-$i
if test -e $NEW_FILE ; then

5 echo "backup-lots.sh: **warning** $NEW_FILE"
echo " already exists - skipping"
continue

fi
cp $1 $NEW_FILE

10 done
✝ ✆

Note that both break and continuework inside for, while, and until loops.

65

7.5. Looping Over Glob Expressions 7. Shell Scripting

7.5 Looping Over Glob Expressions

We know that the shell can expand file names when given wildcards. For instance, we
can type ls *.txt to list all files ending with .txt. This applies equally well in any
situation, for instance:

✞ �

#!/bin/sh
for i in *.txt ; do

echo "found a file:" $i
done

✝ ✆

The *.txt is expanded to all matching files. These files are searched for in the cur-
rent directory. If you include an absolute path then the shell will search in that directory:

✞ �

#!/bin/sh
for i in /usr/doc/*/*.txt ; do

echo "found a file:" $i
done

✝ ✆

This example demonstrates the shell’s ability to search for matching files and
expand an absolute path.

7.6 The case Statement

The case statement can make a potentially complicated program very short. It is best
explained with an example.

✞ �
#!/bin/sh
case $1 in

--test|-t)
echo "you used the --test option"

5 exit 0
;;
--help|-h)

echo "Usage:"
echo " myprog.sh [--test|--help|--version]"

10 exit 0
;;
--version|-v)

echo "myprog.sh version 0.0.1"
exit 0

15 ;;
-*)

echo "No such option $1"
echo "Usage:"

66

7. Shell Scripting 7.7. Using Functions: the function Keyword

echo " myprog.sh [--test|--help|--version]"
20 exit 1

;;
esac

echo "You typed \"$1\" on the command-line"
✝ ✆

Above you can see that we are trying to process the first argument to a program.
It can be one of several options, so using if statements will result in a long program.
The case statement allows us to specify several possible statement blocks depending
on the value of a variable. Note how each statement block is separated by ;;. The
strings before the) are glob expression matches. The first successful match causes that
block to be executed. The | symbol enables us to enter several possible glob expres-
sions.

7.7 Using Functions: the function Keyword

So far, our programs execute mostly from top to bottom. Often, code needs to be re-
peated, but it is considered bad programming practice to repeat groups of statements
that have the same functionality. Function definitions provide a way to group state-
ment blocks into one. A function groups a list of commands and assigns it a name. For
example:

✞ �

#!/bin/sh

function usage ()
{

5 echo "Usage:"
echo " myprog.sh [--test|--help|--version]"

}

case $1 in
10 --test|-t)

echo "you used the --test option"
exit 0

;;
--help|-h)

15 usage
;;
--version|-v)

echo "myprog.sh version 0.0.2"
exit 0

20 ;;
-*)

67

7.8. Properly Processing Command-Line Args: shift 7. Shell Scripting

echo "Error: no such option $1"
usage
exit 1

25 ;;
esac

echo "You typed \"$1\" on the command-line"
✝ ✆

Wherever the usage keyword appears, it is effectively substituted for the two
lines inside the { and }. There are obvious advantages to this approach: if you would
like to change the program usage description, you only need to change it in one place
in the code. Good programs use functions so liberally that they never have more than
50 lines of program code in a row.

7.8 Properly Processing Command-Line Arguments: the
shift Keyword

Most programs we have seen can take many command-line arguments, sometimes in
any order. Here is how we can make our own shell scripts with this functionality. The
command-line arguments can be reached with $1, $2, etc. The script,

✞ �
#!/bin/sh

echo "The first argument is: $1, second argument is: $2, third argument is: $3"
✝ ✆

can be run with
✞ �
myfile.sh dogs cats birds

✝ ✆

and prints
✞ �
The first argument is: dogs, second argument is: cats, third argument is: birds

✝ ✆

Now we need to loop through each argument and decide what to do with it. A
script like

✞ �
for i in $1 $2 $3 $4 ; do

<statments>
done

✝ ✆

doesn’t give us much flexibilty. The shift keyword is meant to make things easier.
It shifts up all the arguments by one place so that $1 gets the value of $2, $2 gets the
value of $3, and so on. (!= tests that the "$1" is not equal to "", that is, whether it is
empty and is hence past the last argument.) Try

68

7. Shell Scripting 7.8. Properly Processing Command-Line Args: shift

✞ �
while test "$1" != "" ; do

echo $1
shift

done
✝ ✆

and run the program with lots of arguments.

Now we can put any sort of condition statements within the loop to process the
arguments in turn:

✞ �
#!/bin/sh

function usage ()
{

5 echo "Usage:"
echo " myprog.sh [--test|--help|--version] [--echo <text>]"

}

while test "$1" != "" ; do
10 case $1 in

--echo|-e)
echo "$2"
shift

;;
15 --test|-t)

echo "you used the --test option"
;;
--help|-h)

usage
20 exit 0

;;
--version|-v)

echo "myprog.sh version 0.0.3"
exit 0

25 ;;
-*)

echo "Error: no such option $1"
usage
exit 1

30 ;;
esac
shift

done
✝ ✆

myprog.sh can now run with multiple arguments on the command-line.

69

7.9. More on Command-Line Arguments: $@ and $0 7. Shell Scripting

7.9 More on Command-Line Arguments: $@ and $0

Whereas $1, $2, $3, etc. expand to the individual arguments passed to the program, $@
expands to all arguments. This behavior is useful for passing all remaining arguments
onto a second command. For instance,

✞ �

if test "$1" = "--special" ; then
shift
myprog2.sh "$@"

fi
✝ ✆

$0means the name of the program itself and not any command-line argument. It is the
command used to invoke the current program. In the above cases, it is ./myprog.sh.
Note that $0 is immune to shift operations.

7.10 Single Forward Quote Notation

Single forward quotes ’ protect the enclosed text from the shell. In other words,
you can place any odd characters inside forward quotes, and the shell will treat them
literally and reproduce your text exactly. For instance, you may want to echo an actual
$ to the screen to produce an output like costs $1000. You can use echo ’costs
$1000’ instead of echo "costs $1000".

7.11 Double-Quote Notation

Double quotes " have the opposite sense of single quotes. They allow all shell inter-
pretations to take place inside them. The reason they are used at all is only to group
text containing whitespace into a single word, because the shell will usually break up
text along whitespace boundaries. Try,

✞ �
for i in "henry john mary sue" ; do

echo "$i is a person"
done

✝ ✆

compared to
✞ �
for i in henry john mary sue ; do

echo $i is a person
done

✝ ✆

70

7. Shell Scripting 7.12. Backward-Quote Substitution

7.12 Backward-Quote Substitution

Backward quotes ‘ have a special meaning to the shell. When a command is inside
backward quotes it means that the command should be run and its output substituted
in place of the backquotes. Take, for example, the cat command. Create a small file,
to be catted, with only the text daisy inside it. Create a shell script

✞ �

X=‘cat to_be_catted‘
echo $X

✝ ✆

The value of X is set to the output of the cat command, which in this case is the
word daisy. This is a powerful tool. Consider the expr command:

✞ �

X=‘expr 100 + 50 ’*’ 3‘
echo $X

✝ ✆

Hence we can use expr and backquotes to do mathematics inside our shell script.
Here is a function to calculate factorials. Note how we enclose the * in forward quotes.
They prevent the shell from expanding the * into matching file names:

✞ �

function factorial ()
{

N=$1
A=1

5 while test $N -gt 0 ; do
A=‘expr $A ’*’ $N‘
N=‘expr $N - 1‘

done
echo $A

10 }
✝ ✆

We can see that the square braces used further above can actually suffice for most
of the times where we would like to use expr. (However, $[] notation is an extension
of the GNU shells and is not a standard feature on all varients of UNIX.) We can now
run factorial 20 and see the output. If we want to assign the output to a variable,
we can do this with X=‘factorial 20‘.

Note that another notation which gives the effect of a backward quote is $(command),
which is identical to ‘command‘. Here, I will always use the older backward quote
style.

71

7.12. Backward-Quote Substitution 7. Shell Scripting

72

Chapter 8

Streams and sed — The Stream
Editor

The ability to use pipes is one of the powers of UNIX. This is one of the principle
deficiencies of some non-UNIX systems. Pipes used on the command-line as explained
in this chapter are a neat trick, but pipes used inside programs enormously simplify
program interaction. Without pipes, huge amounts of complex and buggy code usually
needs to be written to perform simple tasks. It is hoped that this chapter will give the
reader an idea of why UNIX is such a ubiquitous and enduring standard.

8.1 Introduction

The commands grep, echo, df and so on print some output to the screen. In fact,
what is happening on a lower level is that they are printing characters one by one
into a theoretical data stream (also called a pipe) called the stdout pipe. The shell itself
performs the action of reading those characters one by one and displaying them on the
screen. The word pipe itself means exactly that: A program places data in the one end
of a funnel while another program reads that data from the other end. Pipes allow two
separate programs to perform simple communications with each other. In this case,
the program is merely communicating with the shell in order to display some output.

The same is true with the cat command explained previously. This command,
when run with no arguments, reads from the stdin pipe. By default, this pipe is the key-
board. One further pipe is the stderr pipe to which a program writes error messages.
It is not possible to see whether a program message is caused by the program writing
to its stderr or stdout pipe because usually both are directed to the screen. Good pro-
grams, however, always write to the appropriate pipes to allow output to be specially
separated for diagnostic purposes if need be.

73

8.2. Tutorial 8. Streams and sed — The Stream Editor

8.2 Tutorial

Create a text file with lots of lines that contain the word GNU and one line that
contains the word GNU as well as the word Linux. Then run grep GNU my-
file.txt. The result is printed to stdout as usual. Now try grep GNU my-
file.txt > gnu lines.txt. What is happening here is that the output of the grep
command is being redirected into a file. The > gnu lines.txt tells the shell to cre-
ate a new file gnu lines.txt and to fill it with any output from stdout instead of
displaying the output as it usually does. If the file already exists, it will be truncated.
&Shortened to zero length.-

Now suppose you want to append further output to this file. Using >> instead
of > does not truncate the file, but appends output to it. Try

✞ �

echo "morestuff" >> gnu_lines.txt
✝ ✆

then view the contents of gnu lines.txt.

8.3 Piping Using | Notation

The real power of pipes is realized when one program can read from the output of
another program. Consider the grep command, which reads from stdin when given
no arguments; run grep with one argument on the command-line:

✞ �

[root@cericon]# grep GNU
A line without that word in it
Another line without that word in it
A line with the word GNU in it

5 A line with the word GNU in it
I have the idea now
ˆC
#

✝ ✆

grep’s default behavior is to read from stdin when no files are given. As you can
see, it is doing its usual work of printing lines that have the word GNU in them. Hence,
lines containing GNU will be printed twice—as you type them in and again when grep
reads them and decides that they contain GNU.

Now try grep GNU myfile.txt | grep Linux. The first grep outputs all
lines with the word GNU in them to stdout. The | specifies that all stdout is to be typed
as stdin (as we just did above) into the next command, which is also a grep command.
The second grep command scans that data for lines with the word Linux in them.
grep is often used this way as a filter &Something that screens data.- and can be used
multiple times, for example,

74

8. Streams and sed — The Stream Editor 8.4. A Complex Piping Example

✞ �

grep L myfile.txt | grep i | grep n | grep u | grep x
✝ ✆

The < character redirects the contents of a file in place of stdin. In other words,
the contents of a file replace what would normally come from a keyboard. Try

✞ �

grep GNU < gnu_lines.txt
✝ ✆

8.4 A Complex Piping Example

In Chapter 5 we used grep on a dictionary to demonstrate regular expressions.
This is how a dictionary of words can be created (your dictionary might be under
/var/share/ or under /usr/lib/aspell instead):

✞ �

cat /usr/lib/ispell/english.hash | strings | tr ’A-Z’ ’a-z’ \
| grep ’ˆ[a-z]’ | sort -u > mydict

✝ ✆

&A backslash \ as the last character on a line indicates that the line is to be continued. You can leave out
the \ but then you must leave out the newline as well — this is known as line continuation.-

The file english.hash contains the UNIX dictionary normally used for spell
checking. With a bit of filtering, you can create a dictionary that will make solving
crossword puzzles a breeze. First, we use the command strings, explained previ-
ously, to extract readable bits of text. Here we are using its alternate mode of operation
where it reads from stdin when no files are specified on its command-line. The com-
mand tr (abbreviated from translate—see tr(1)) then converts upper to lower case.
The grep command then filters out lines that do not start with a letter. Finally, the
sort command sorts the words in alphabetical order. The -u option stands for unique,
and specifies that duplicate lines of text should be stripped. Now try less mydict.

8.5 Redirecting Streams with >&

Try the command ls nofile.txt > A. We expect that lswill give an error message
if the file doesn’t exist. The error message is, however, displayed and not written into
the file A. The reason is that ls has written its error message to stderr while > has only
redirected stdout. The way to get both stdout and stderr to both go to the same file is
to use a redirection operator. As far as the shell is concerned, stdout is called 1 and stderr
is called 2, and commands can be appended with a redirection like 2>&1 to dictate that
stderr is to be mixed into the output of stdout. The actual words stderr and stdout are
only used in programming, where the number 1, 2 are known as file numbers or file
descriptors. Try the following:

75

8.5. Redirecting Streams with >& 8. Streams and sed — The Stream Editor

✞ �

touch existing_file
rm -f non-existing_file
ls existing_file non-existing_file

✝ ✆

ls will output two lines: a line containing a listing for the file existing file
and a line containing an error message to explain that the file non-existing file
does not exist. The error message would have been written to stderr or file descriptor
number 2, and the remaining line would have been written to stdout or file descriptor
number 1.

Next we try
✞ �

ls existing_file non-existing_file 2>A
cat A

✝ ✆

Now A contains the error message, while the remaining output came to the
screen. Now try

✞ �

ls existing_file non-existing_file 1>A
cat A

✝ ✆

The notation 1>A is the same as >A because the shell assumes that you are referring to
file descriptor 1 when you don’t specify a file descriptor. Now A contains the stdout
output, while the error message has been redirected to the screen.

Now try
✞ �

ls existing_file non-existing_file 1>A 2>&1
cat A

✝ ✆

Now A contains both the error message and the normal output. The >& is called a
redirection operator. x>&y tells the shell to write pipe x into pipe y. Redirection is specified
from right to left on the command-line. Hence, the above command means to mix stderr
into stdout and then to redirect stdout to the file A.

Finally,
✞ �

ls existing_file non-existing_file 2>A 1>&2
cat A

✝ ✆

We notice that this has the same effect, except that here we are doing the reverse: redi-
recting stdout into stderr and then redirecting stderr into a file A.

To see what happens if we redirect in reverse order, we can try,

76

8. Streams and sed — The Stream Editor 8.6. Using sed to Edit Streams

✞ �

ls existing_file non-existing_file 2>&1 1>A
cat A

✝ ✆

which means to redirect stdout into a file A, and then to redirect stderr into stdout. This
command will therefore not mix stderr and stdout because the redirection to A came
first.

8.6 Using sed to Edit Streams

ed used to be the standard text editor for UNIX. It is cryptic to use but is compact and
programmable. sed stands for stream editor and is the only incarnation of ed that is
commonly used today. sed allows editing of files non-interactively. In the way that
grep can search for words and filter lines of text, sed can do search-replace opera-
tions and insert and delete lines into text files. sed is one of those programs with no
man page to speak of. Do info sed to see sed’s comprehensive info pages with
examples.

The most common usage of sed is to replace words in a stream with alterna-
tive words. sed reads from stdin and writes to stdout. Like grep, it is line buffered,
which means that it reads one line in at a time and then writes that line out again after
performing whatever editing operations. Replacements are typically done with

✞ �

cat <file> | sed -e ’s/<search-regexp>/<replace-text>/<option>’ \
> <resultfile>

✝ ✆

where <search-regexp> is a regular expression, <replace-text> is the text you
would like to replace each occurrence with, and <option> is nothing or g, which
means to replace every occurrence in the same line (usually sed just replaces the first
occurrence of the regular expression in each line). (There are other <option>; see the
sed info page.) For demonstration, type

✞ �

sed -e ’s/e/E/g’
✝ ✆

and type out a few lines of English text.

8.7 Regular Expression Subexpressions

The section explains how to do the apparently complex task of moving text around
within lines. Consider, for example, the output of ls: say you want to automatically
strip out only the size column—sed can do this sort of editing if you use the special
\(\) notation to group parts of the regular expression together. Consider the follow-
ing example:

77

8.7. Regular Expression Subexpressions 8. Streams and sed — The Stream Editor

✞ �

sed -e ’s/\(\<[ˆ]*\>\)\([]*\)\(\<[ˆ]*\>\)/\3\2\1/g’
✝ ✆

Here sed is searching for the expression \<.*\>[]*\<.*\>. From the chapter on
regular expressions, we can see that it matches a whole word, an arbitrary amount
of whitespace, and then another whole word. The \(\) groups these three so that
they can be referred to in <replace-text>. Each part of the regular expression
inside \(\) is called a subexpression of the regular expression. Each subexpres-
sion is numbered—namely, \1, \2, etc. Hence, \1 in <replace-text> is the first
\<[ˆ]*\>, \2 is []*, and \3 is the second \<[ˆ]*\>.

Now test to see what happens when you run this:
✞ �

sed -e ’s/\(\<[ˆ]*\>\)\([]*\)\(\<[ˆ]*\>\)/\3\2\1/g’
GNU Linux is cool
Linux GNU cool is

✝ ✆

To return to our ls example (note that this is just an example, to count file sizes
you should instead use the du command), think about how we could sum the bytes
sizes of all the files in a directory:

✞ �

expr 0 ‘ls -l | grep ’ˆ-’ | \
sed ’s/ˆ\([ˆ]*[]*\)\{4,4\}\([0-9]*\).*$/ + \2/’‘

✝ ✆

We know that ls -l output lines start with - for ordinary files. So we use grep to
strip lines not starting with -. If we do an ls -l, we see that the output is divided into
four columns of stuff we are not interested in, and then a number indicating the size of
the file. A column (or field) can be described by the regular expression [ˆ]*[]*, that
is, a length of text with no whitespace, followed by a length of whitespace. There are
four of these, so we bracket it with \(\) and then use the \{ \} notation to specify
that we want exactly 4. After that come our number [0-9]*, and then any trailing
characters, which we are not interested in, .*$. Notice here that we have neglected
to use \< \> notation to indicate whole words. The reason is that sed tries to match
the maximum number of characters legally allowed and, in the situation we have here,
has exactly the same effect.

If you haven’t yet figured it out, we are trying to get that column of byte sizes
into a format like

✞ �

+ 438
+ 1525
+ 76
+ 92146

✝ ✆

so that expr can understand it. Hence, we replace each line with subexpression \2 and
a leading + sign. Backquotes give the output of this to expr, which studiously sums

78

8. Streams and sed — The Stream Editor 8.8. Inserting and Deleting Lines

them, ignoring any newline characters as though the summation were typed in on a
single line. There is one minor problem here: the first line contains a + with nothing
before it, which will cause expr to complain. To get around this, we can just add a 0
to the expression, so that it becomes 0 +

8.8 Inserting and Deleting Lines

sed can perform a few operations that make it easy to write scripts that edit configu-
ration files for you. For instance,

✞ �

sed -e ’7a\
an extra line.\
another one.\
one more.’

✝ ✆

appends three lines after line 7, whereas
✞ �

sed -e ’7i\
an extra line.\
another one.\
one more.’

✝ ✆

inserts three lines before line 7. Then
✞ �

sed -e ’3,5D’
✝ ✆

Deletes lines 3 through 5.

In sed terminology, the numbers here are called addresses, which can also be
regular expressions matches. To demonstrate:

✞ �

sed -e ’/Dear Henry/,/Love Jane/D’
✝ ✆

deletes all the lines starting from a line matching the regular expression Dear Henry
up to a line matching Love Jane (or the end of the file if one does not exist).

This behavior applies just as well to to insertions:
✞ �

sed -e ’/Love Jane/i\
Love Carol\
Love Beth’

✝ ✆

Note that the $ symbol indicates the last line:
✞ �

sed -e ’$i\
The new second last line\

79

8.8. Inserting and Deleting Lines 8. Streams and sed — The Stream Editor

The new last line.’
✝ ✆

and finally, the negation symbol, !, is used to match all lines not specified; for instance,
✞ �

sed -e ’7,11!D’
✝ ✆

deletes all lines except lines 7 through 11.

80

Chapter 9

Processes and Environment
Variables

From this chapter you will get an idea about what is happening under the hood of your
UNIX system, but go have some coffee first.

9.1 Introduction

On UNIX, when you run a program (like any of the shell commands you have been
using), the actual computer instructions are read from a file on disk from one of the
bin/ directories and placed in RAM. The program is then executed in memory and
becomes a process. A process is some command/program/shell-script that is being run
(or executed) in memory. When the process has finished running, it is removed from
memory. There are usually about 50 processes running simultaneously at any one time
on a system with one person logged in. The CPU hops between each of them to give a
share of its execution time.&Time given to carry out the instructions of a particular program. Note this
is in contrast to Windows or DOS where the program itself has to allow the others a share of the CPU: under
UNIX, the process has no say in the matter.-Each process is given a process number called the
PID (process ID). Besides the memory actually occupied by the executable, the process
itself seizes additional memory for its operations.

In the same way that a file is owned by a particular user and group, a process
also has an owner—usually the person who ran the program. Whenever a process
tries to access a file, its ownership is compared to that of the file to decide if the access
is permissible. Because all devices are files, the only way a process can do anything is
through a file, and hence file permission restrictions are the only kind of restrictions
ever needed on UNIX. &There are some exceptions to this.- This is how UNIX access control
and security works.

81

9.2. ps — List Running Processes 9. Processes, Environment Variables

The center of this operation is called the UNIX kernel. The kernel is what actually
does the hardware access, execution, allocation of process IDs, sharing of CPU time,
and ownership management.

9.2 ps — List Running Processes

Log in on a terminal and type the command ps. You should get some output like:
✞ �

PID TTY STAT TIME COMMAND
5995 2 S 0:00 /bin/login -- myname
5999 2 S 0:00 -bash
6030 2 R 0:00 ps

✝ ✆

ps with no options shows three processes to be running. These are the only three
processes visible to you as a user, although there are other system processes not be-
longing to you. The first process was the program that logged you in by displaying
the login prompt and requesting a password. It then ran a second process call bash,
the Bourne Again shell&The Bourne shell was the original UNIX shell- where you have been
typing commands. Finally, you ran ps, which must have found itself when it checked
which processes were running, but then exited immediately afterward.

9.3 Controlling Jobs

The shell has many facilities for controlling and executing processes—this is called job
control. Create a small script called proc.sh:

✞ �

#!/bin/sh
echo "proc.sh: is running"
sleep 1000

✝ ✆

Run the script with chmod 0755 proc.sh and then ./proc.sh. The shell
blocks, waiting for the process to exit. Now press ˆZ. This will cause the process to
stop (that is, pause but not terminate). Now do a ps again. You will see your script
listed. However, it is not presently running because it is in the condition of being
stopped. Type bg (for background). The script will now be “unstopped” and run in the
background. You can now try to run other processes in the meantime. Type fg, and
the script returns to the foreground. You can then type ˆC to interrupt the process.

82

9. Processes, Environment Variables 9.4. Creating Background Processes

9.4 Creating Background Processes

Create a program that does something a little more interesting:
✞ �

#!/bin/sh
echo "proc.sh: is running"
while true ; do

echo -e ’\a’
5 sleep 2

done
✝ ✆

Now perform the ˆZ, bg, fg, and ˆC operations from before. To put a process immedi-
ately into the background, you can use:

✞ �

./proc.sh &
✝ ✆

The JOB CONTROL section of the bash man page (bash(1)) looks like this1: (the
footnotes are mine)

JOB CONTROL

Job control refers to the ability to selectively stop (suspend) the execution of processes
and continue (resume) their execution at a later point. A user typically employs this
facility via an interactive interface supplied jointly by the system’s terminal driver
and bash.

The shell associates a job with each pipeline. &What does this mean? It means
that each time you execute something in the background, it gets its own unique number,
called the job number.- It keeps a table of currently executing jobs, which may be
listed with the jobs command. When bash starts a job asynchronously (in the
background), it prints a line that looks like:

[1] 25647

indicating that this job is job number 1 and that the process ID of the last pro-
cess in the pipeline associated with this job is 25647. All of the processes in a single
pipeline are members of the same job. Bash uses the job abstraction as the basis for
job control.

To facilitate the implementation of the user interface to job control, the system
maintains the notion of a current terminal process group ID. Members of this process
group (processes whose process group ID is equal to the current terminal process
group ID) receive keyboard-generated signals such as SIGINT. These processes are
said to be in the foreground. Background processes are those whose process group
ID differs from the terminal’s; such processes are immune to keyboard-generated

1Thanks to Brian Fox and Chet Ramey for this material.

83

9.5. killing a Process, Sending Signals 9. Processes, Environment Variables

signals. Only foreground processes are allowed to read from or write to the termi-
nal. Background processes which attempt to read from (write to) the terminal are
sent a SIGTTIN (SIGTTOU) signal by the terminal driver, which, unless caught,
suspends the process.

If the operating system on which bash is running supports job control, bash
allows you to use it. Typing the suspend character (typically ˆZ, Control-Z) while
a process is running causes that process to be stopped and returns you to bash.
Typing the delayed suspend character (typically ˆY, Control-Y) causes the process
to be stopped when it attempts to read input from the terminal, and control to
be returned to bash. You may then manipulate the state of this job, using the bg
command to continue it in the background, the fg command to continue it in the
foreground, or the kill command to kill it. A ˆZ takes effect immediately, and has
the additional side effect of causing pending output and typeahead to be discarded.

There are a number of ways to refer to a job in the shell. The character % in-
troduces a job name. Job number n may be referred to as %n. A job may also be
referred to using a prefix of the name used to start it, or using a substring that
appears in its command line. For example, %ce refers to a stopped ce job. If a
prefix matches more than one job, bash reports an error. Using %?ce, on the other
hand, refers to any job containing the string ce in its command line. If the substring
matches more than one job, bash reports an error. The symbols %% and %+ refer
to the shell’s notion of the current job, which is the last job stopped while it was in
the foreground. The previous job may be referenced using %-. In output pertaining
to jobs (e.g., the output of the jobs command), the current job is always flagged
with a +, and the previous job with a -.

Simply naming a job can be used to bring it into the foreground: %1 is a syn-
onym for “fg %1”, bringing job 1 from the background into the foreground.
Similarly, “%1 &” resumes job 1 in the background, equivalent to “bg %1”.

The shell learns immediately whenever a job changes state. Normally, bash
waits until it is about to print a prompt before reporting changes in a job’s status
so as to not interrupt any other output. If the -b option to the set builtin command
is set, bash reports such changes immediately. (See also the description of notify
variable under Shell Variables above.)

If you attempt to exit bash while jobs are stopped, the shell prints a message
warning you. You may then use the jobs command to inspect their status. If you
do this, or try to exit again immediately, you are not warned again, and the stopped
jobs are terminated.

9.5 killing a Process, Sending Signals

To terminate a process, use the kill command:

84

9. Processes, Environment Variables 9.5. killing a Process, Sending Signals

✞ �

kill <PID>
✝ ✆

The kill command actually sends a termination signal to the process. The sending of a
signal simply means that the process is asked to execute one of 30 predefined functions.
In some cases, developers would not have bothered to define a function for a particular
signal number (called catching the signal); in which case the kernel will substitute the
default behavior for that signal. The default behavior for a signal is usually to ignore
the signal, to stop the process, or to terminate the process. The default behavior for the
termination signal is to terminate the process.

To send a specific signal to a process, you can name the signal on the command-
line or use its numerical equivalent:

✞ �

kill -SIGTERM 12345
✝ ✆

or
✞ �

kill -15 12345
✝ ✆

which is the signal that kill normally sends when none is specified on the command-
line.

To unconditionally terminate a process:
✞ �

kill -SIGKILL 12345
✝ ✆

or
✞ �

kill -9 12345
✝ ✆

which should only be used as a last resort. Processes are prohibited from ever catching the
SIGKILL signal.

It is cumbersome to have to constantly look up the PID of a process. Hence the
GNU utilities have a command, killall, that sends a signal to all processes of the
same name:

✞ �

killall -<signal> <process_name>
✝ ✆

This command is useful when you are sure that there is only one of a process running,
either because no one else is logged in on the system or because you are not logged in
as superuser. Note that on other UNIX systems, the killall command kills all the processes
that you are allowed to kill. If you are root, this action would crash the machine.

85

9.6. List of Common Signals 9. Processes, Environment Variables

9.6 List of Common Signals

The full list of signals can be gotten from signal(7), and in the file
/usr/include/asm/signal.h.

SIGHUP (1) Hang up. If the terminal becomes disconnected from a process, this signal
is sent automatically to the process. Sending a process this signal often causes
it to reread its configuration files, so it is useful instead of restarting the process.
Always check the man page to see if a process has this behavior.

SIGINT (2) Interrupt from keyboard. Issued if you press ˆC.

SIGQUIT (3) Quit from keyboard. Issued if you press ˆD.

SIGFPE (8) Floating point exception. Issued automatically to a program performing
some kind of illegal mathematical operation.

SIGKILL (9) Kill signal. This is one of the signals that can never be caught by a process.
If a process gets this signal it must quit immediately and will not perform any
clean-up operations (like closing files or removing temporary files). You can send
a process a SIGKILL signal if there is no other means of destroying it.

SIGUSR1 (10), SIGUSR2 (12) User signal. These signals are available to developers
when they need extra functionality. For example, some processes begin logging
debug messages when you send them SIGUSR1.

SIGSEGV (11) Segmentation violation. Issued automatically when a process tries to ac-
cess memory outside of its allowable address space, equivalent to a Fatal Excep-
tion or General Protection Fault under Windows. Note that programs with bugs
or programs in the process of being developed often get these signals. A program
receiving a SIGSEGV, however, can never cause the rest of the system to be com-
promised. If the kernel itself were to receive such an error, it would cause the
system to come down, but such is extremely rare.

SIGPIPE (13) Pipe died. A program was writing to a pipe, the other end of which is
no longer available.

SIGTERM (15) Terminate. Cause the program to quit gracefully

SIGCHLD (17) Child terminate. Sent to a parent process every time one of its spawned
processes dies.

86

9. Processes, Environment Variables 9.7. Niceness of Processes, Scheduling Priority

9.7 Niceness of Processes, Scheduling Priority

All processes are allocated execution time by the kernel. If all processes were allocated
the same amount of time, performance would obviously get worse as the number of
processes increased. The kernel uses heuristics&Sets of rules.- to guess how much time
each process should be allocated. The kernel tries to be fair—two users competing for
CPU usage should both get the same amount.

Most processes spend their time waiting for either a key press, some network
input, some device to send data, or some time to elapse. They hence do not consume
CPU.

On the other hand, when more than one process runs flat out, it can be difficult for
the kernel to decide if it should be given greater priority than another process. What if a
process is doing some operation more important than another process? How does the
kernel tell? The answer is the UNIX feature of scheduling priority or niceness. Scheduling
priority ranges from +20 to -20. You can set a process’s niceness with the renice
command.

✞ �

renice <priority> <pid>
renice <priority> -u <user>
renice <priority> -g <group>

✝ ✆

A typical example is the SETI program. &SETI stands for Search for Extraterrestrial In-
telligence. SETI is an initiative funded by various obscure sources to scan the skies for radio signals from
other civilizations. The data that SETI gathers has to be intensively processed. SETI distributes part of that
data to anyone who wants to run a seti program in the background. This puts the idle time of millions of
machines to “good” use. There is even a SETI screen-saver that has become quite popular. Unfortunately
for the colleague in my office, he runs seti at -19 instead of +19 scheduling priority, so nothing on his
machine works right. On the other hand, I have inside information that the millions of other civilizations in
this galaxy and others are probably not using radio signals to communicate at all :-)- Set its priority to
+19 with:

✞ �

renice +19 <pid>
✝ ✆

to make it disrupt your machine as little as possible.

Note that nice values have the reverse meaning that you would expect: +19 means a
process that eats little CPU, while -19 is a process that eats lots. Only superuser can set
processes to negative nice values.

Mostly, multimedia applications and some device utilities are the only processes
that need negative renicing, and most of these will have their own command-line op-
tions to set the nice value. See, for example, cdrecord(1) and mikmod(1) — a negative
nice value will prevent skips in your playback. &LINUX will soon have so called real time pro-
cess scheduling. This is a kernel feature that reduces scheduling latency (the gaps between CPU execution

87

9.8. Process CPU/Memory Consumption, top 9. Processes, Environment Variables

time of a process, as well as the time it takes for a process to wake). There are already some kernel patches
that accomplish this goal.-

Also useful are the -u and -g options, which set the priority of all the processes
that a user or group owns.

Further, we have the nice command, which starts a program under a defined
niceness relative to the current nice value of the present user. For example,

✞ �

nice +<priority> <pid>
nice -<priority> <pid>

✝ ✆

Finally, the snice command can both display and set the current niceness. This
command doesn’t seem to work on my machine.

✞ �

snice -v <pid>
✝ ✆

9.8 Process CPU/Memory Consumption, top

The top command sorts all processes by their CPU and memory consumption and
displays the top twenty or so in a table. Use top whenever you want to see what’s
hogging your system. top -q -d 2 is useful for scheduling the top command itself
to a high priority, so that it is sure to refresh its listing without lag. top -n 1 -b >
top.txt lists all processes, and top -n 1 -b -p <pid> prints information on one
process.

top has some useful interactive responses to key presses:

f Shows a list of displayed fields that you can alter interactively. By default the only
fields shown are USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME
COMMAND which is usually what you are most interested in. (The field meanings
are given below.)

r Renices a process.

k Kills a process.

The top man page describes the field meanings. Some of these are confusing and
assume knowledge of the internals of programs. The main question people ask is:
How much memory is a process using? The answer is given by the RSS field, which stands
for Resident Set Size. RSS means the amount of RAM that a process consumes alone.
The following examples show totals for all processes running on my system (which
had 65536 kilobytes of RAM at the time). They represent the total of the SIZE, RSS,
and SHARE fields, respectively.

88

9. Processes, Environment Variables 9.8. Process CPU/Memory Consumption, top

✞ �
echo ‘echo ’0 ’ ; top -q -n 1 -b | sed -e ’1,/PID *USER *PRI/D’ | \

awk ’{print "+" $5}’ | sed -e ’s/M/*1024/’‘ | bc
68016

5 echo ‘echo ’0 ’ ; top -q -n 1 -b | sed -e ’1,/PID *USER *PRI/D’ | \
awk ’{print "+" $6}’ | sed -e ’s/M/*1024/’‘ | bc

58908

echo ‘echo ’0 ’ ; top -q -n 1 -b | sed -e ’1,/PID *USER *PRI/D’ | \
10 awk ’{print "+" $7}’ | sed -e ’s/M/*1024/’‘ | bc

30184
✝ ✆

The SIZE represents the total memory usage of a process. RSS is the same, but ex-
cludes memory not needing actual RAM (this would be memory swapped to the swap
partition). SHARE is the amount shared between processes.

Other fields are described by the top man page (quoted verbatim) as follows:

uptime This line displays the time the system has been up, and the three load
averages for the system. The load averages are the average number of pro-
cesses ready to run during the last 1, 5 and 15 minutes. This line is just like the
output of uptime(1). The uptime display may be toggled by the interactive l
command.

processes The total number of processes running at the time of the last update.
This is also broken down into the number of tasks which are running, sleeping,
stopped, or undead. The processes and states display may be toggled by the t
interactive command.

CPU states Shows the percentage of CPU time in user mode, system mode, niced
tasks, and idle. (Niced tasks are only those whose nice value is negative.) Time
spent in niced tasks will also be counted in system and user time, so the total
will be more than 100%. The processes and states display may be toggled by
the t interactive command.

Mem Statistics on memory usage, including total available memory, free memory,
used memory, shared memory, and memory used for buffers. The display of
memory information may be toggled by the m interactive command.

Swap Statistics on swap space, including total swap space, available swap space,
and used swap space. This and Mem are just like the output of free(1).

PID The process ID of each task.

PPID The parent process ID of each task.

UID The user ID of the task’s owner.

USER The user name of the task’s owner.

PRI The priority of the task.

NI The nice value of the task. Negative nice values are higher priority.

SIZE The size of the task’s code plus data plus stack space, in kilobytes, is shown
here.

89

9.9. Environments of Processes 9. Processes, Environment Variables

TSIZE The code size of the task. This gives strange values for kernel processes and
is broken for ELF processes.

DSIZE Data + Stack size. This is broken for ELF processes.
TRS Text resident size.
SWAP Size of the swapped out part of the task.
D Size of pages marked dirty.
LIB Size of use library pages. This does not work for ELF processes.
RSS The total amount of physical memory used by the task, in kilobytes, is shown

here. For ELF processes used library pages are counted here, for a.out pro-
cesses not.

SHARE The amount of shared memory used by the task is shown in this column.
STAT The state of the task is shown here. The state is either S for sleeping, D for

uninterruptible sleep, R for running, Z for zombies, or T for stopped or traced.
These states are modified by a trailing ¡ for a process with negative nice value,
N for a process with positive nice value, W for a swapped out process (this
does not work correctly for kernel processes).

WCHAN depending on the availability of either /boot/psdatabase or the kernel link
map /boot/System.map this shows the address or the name of the kernel
function the task currently is sleeping in.

TIME Total CPU time the task has used since it started. If cumulative mode is on,
this also includes the CPU time used by the process’s children which have
died. You can set cumulative mode with the S command line option or toggle
it with the interactive command S. The header line will then be changed to
CTIME.

%CPU The task’s share of the CPU time since the last screen update, expressed as a
percentage of total CPU time per processor.

%MEM The task’s share of the physical memory.
COMMAND The task’s command name, which will be truncated if it is too long to be

displayed on one line. Tasks in memory will have a full command line, but
swapped-out tasks will only have the name of the program in parentheses (for
example, ”(getty)”).

9.9 Environments of Processes

Each process that runs does so with the knowledge of several var=value text pairs. All
this means is that a process can look up the value of some variable that it may have
inherited from its parent process. The complete list of these text pairs is called the
environment of the process, and each var is called an environment variable. Each process
has its own environment, which is copied from the parent process’s environment.

After you have logged in and have a shell prompt, the process you are using
(the shell itself) is just like any other process with an environment with environment
variables. To get a complete list of these variables, just type:

90

9. Processes, Environment Variables 9.9. Environments of Processes

✞ �

set
✝ ✆

This command is useful for finding the value of an environment variable whose name
you are unsure of:

✞ �

set | grep <regexp>
✝ ✆

Try set | grep PATH to see the PATH environment variable discussed previously.

The purpose of an environment is just to have an alternative way of passing pa-
rameters to a program (in addition to command-line arguments). The difference is that
an environment is inherited from one process to the next: for example, a shell might
have a certain variable set and may run a file manager, which may run a word pro-
cessor. The word processor inherited its environment from file manager which inher-
ited its environment from the shell. If you had set an environment variable PRINTER
within the shell, it would have been inherited all the way to the word processor, thus
eliminating the need to separately configure which printer the word processor should
use.

Try
✞ �

X="Hi there"
echo $X

✝ ✆

You have set a variable. But now run
✞ �

bash
✝ ✆

You have now run a new process which is a child of the process you were just in. Type
✞ �

echo $X
✝ ✆

You will see that X is not set. The reason is that the variable was not exported as an
environment variable and hence was not inherited. Now type

✞ �

exit
✝ ✆

which breaks to the parent process. Then
✞ �

export X
bash
echo $X

✝ ✆

You will see that the new bash now knows about X.

Above we are setting an arbitrary variable for our own use. bash (and many
other programs) automatically set many of their own environment variables. The bash

91

9.9. Environments of Processes 9. Processes, Environment Variables

man page lists these (when it talks about unsetting a variable, it means using the com-
mand unset <variable>). You may not understand some of these at the moment,
but they are included here as a complete reference for later.

The following is quoted verbatim from the bash man page. You will see that
some variables are of the type that provide special information and are read but never
never set, whereas other variables configure behavioral features of the shell (or other
programs) and can be set at any time2.

Shell Variables
The following variables are set by the shell:

PPID The process ID of the shell’s parent.

PWD The current working directory as set by the cd command.

OLDPWD The previous working directory as set by the cd command.

REPLY Set to the line of input read by the read builtin command when no argu-
ments are supplied.

UID Expands to the user ID of the current user, initialized at shell startup.

EUID Expands to the effective user ID of the current user, initialized at shell
startup.

BASH Expands to the full pathname used to invoke this instance of bash.

BASH VERSION Expands to the version number of this instance of bash.

SHLVL Incremented by one each time an instance of bash is started.

RANDOM Each time this parameter is referenced, a random integer is generated.
The sequence of random numbers may be initialized by assigning a value to
RANDOM. If RANDOM is unset, it loses its special properties, even if it is
subsequently reset.

SECONDS Each time this parameter is referenced, the number of seconds since
shell invocation is returned. If a value is assigned to SECONDS. the value
returned upon subsequent references is the number of seconds since the as-
signment plus the value assigned. If SECONDS is unset, it loses its special
properties, even if it is subsequently reset.

LINENO Each time this parameter is referenced, the shell substitutes a decimal
number representing the current sequential line number (starting with 1)
within a script or function. When not in a script or function, the value substi-
tuted is not guaranteed to be meaningful. When in a function, the value is not
the number of the source line that the command appears on (that information
has been lost by the time the function is executed), but is an approximation of
the number of simple commands executed in the current function. If LINENO
is unset, it loses its special properties, even if it is subsequently reset.

HISTCMD The history number, or index in the history list, of the current com-
mand. If HISTCMD is unset, it loses its special properties, even if it is subse-
quently reset.

2Thanks to Brian Fox and Chet Ramey for this material.

92

9. Processes, Environment Variables 9.9. Environments of Processes

OPTARG The value of the last option argument processed by the getopts builtin
command (see SHELL BUILTIN COMMANDS below).

OPTIND The index of the next argument to be processed by the getopts builtin
command (see SHELL BUILTIN COMMANDS below).

HOSTTYPE Automatically set to a string that uniquely describes the type of ma-
chine on which bash is executing. The default is system-dependent.

OSTYPE Automatically set to a string that describes the operating system on
which bash is executing. The default is system-dependent.

The following variables are used by the shell. In some cases, bash assigns a default
value to a variable; these cases are noted below.

IFS The Internal Field Separator that is used for word splitting after expansion and
to split lines into words with the read builtin command. The default value is
“<space><tab><newline>”.

PATH The search path for commands. It is a colon-separated list of di-
rectories in which the shell looks for commands (see COMMAND EX-
ECUTION below). The default path is system-dependent, and is
set by the administrator who installs bash. A common value is
“/usr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usr/bin:.”.

HOME The home directory of the current user; the default argument for the cd
builtin command.

CDPATH The search path for the cd command. This is a colon-separated list of
directories in which the shell looks for destination directories specified by the
cd command. A sample value is ‘‘.:˜:/usr’’.

ENV If this parameter is set when bash is executing a shell script, its value is inter-
preted as a filename containing commands to initialize the shell, as in .bashrc.
The value of ENV is subjected to parameter expansion, command substitu-
tion, and arithmetic expansion before being interpreted as a pathname. PATH
is not used to search for the resultant pathname.

MAIL If this parameter is set to a filename and the MAILPATH variable is not set,
bash informs the user of the arrival of mail in the specified file.

MAILCHECK Specifies how often (in seconds) bash checks for mail. The default is
60 seconds. When it is time to check for mail, the shell does so before prompt-
ing. If this variable is unset, the shell disables mail checking.

MAILPATH A colon-separated list of pathnames to be checked for mail. The mes-
sage to be printed may be specified by separating the pathname from the mes-
sage with a ‘?’. $ stands for the name of the current mailfile. Example:
MAILPATH=’/usr/spool/mail/bfox?"You have mail":˜/shell-mail?"$_ has mail!"’ Bash supplies a de-
fault value for this variable, but the location of the user mail files that it uses
is system dependent (e.g., /usr/spool/mail/$USER).

MAIL WARNING If set, and a file that bash is checking for mail has been accessed
since the last time it was checked, the message “The mail in mailfile has been
read” is printed.

93

9.9. Environments of Processes 9. Processes, Environment Variables

PS1 The value of this parameter is expanded (see PROMPTING below) and used
as the primary prompt string. The default value is “bash“$ ”.

PS2 The value of this parameter is expanded and used as the secondary prompt
string. The default is “> ”.

PS3 The value of this parameter is used as the prompt for the select command (see
SHELL GRAMMAR above).

PS4 The value of this parameter is expanded and the value is printed before each
command bash displays during an execution trace. The first character of PS4
is replicated multiple times, as necessary, to indicate multiple levels of indi-
rection. The default is “+ ”.

HISTSIZE The number of commands to remember in the command history (see
HISTORY below). The default value is 500.

HISTFILE The name of the file in which command history is saved. (See HISTORY
below.) The default value is ˜/.bash history. If unset, the command history is
not saved when an interactive shell exits.

HISTFILESIZE The maximum number of lines contained in the history file. When
this variable is assigned a value, the history file is truncated, if necessary, to
contain no more than that number of lines. The default value is 500.

OPTERR If set to the value 1, bash displays error messages generated by
the getopts builtin command (see SHELL BUILTIN COMMANDS below).
OPTERR is initialized to 1 each time the shell is invoked or a shell script is
executed.

PROMPT COMMAND If set, the value is executed as a command prior to issuing
each primary prompt.

IGNOREEOF Controls the action of the shell on receipt of an EOF character as the
sole input. If set, the value is the number of consecutive EOF characters typed
as the first characters on an input line before bash exits. If the variable exists
but does not have a numeric value, or has no value, the default value is 10.
If it does not exist, EOF signifies the end of input to the shell. This is only in
effect for interactive shells.

TMOUT If set to a value greater than zero, the value is interpreted as the number
of seconds to wait for input after issuing the primary prompt. Bash terminates
after waiting for that number of seconds if input does not arrive.

FCEDIT The default editor for the fc builtin command.

FIGNORE A colon-separated list of suffixes to ignore when performing filename
completion (see READLINE below). A filename whose suffix matches one of
the entries in FIGNORE is excluded from the list of matched filenames. A
sample value is “.o:˜”.

INPUTRC The filename for the readline startup file, overriding the default of
˜/.inputrc (see READLINE below).

notify If set, bash reports terminated background jobs immediately, rather than
waiting until before printing the next primary prompt (see also the -b option
to the set builtin command).

94

9. Processes, Environment Variables 9.9. Environments of Processes

history control

HISTCONTROL If set to a value of ignorespace, lines which begin with a space
character are not entered on the history list. If set to a value of ignoredups, lines
matching the last history line are not entered. A value of ignoreboth combines
the two options. If unset, or if set to any other value than those above, all lines
read by the parser are saved on the history list.

command oriented history If set, bash attempts to save all lines of a multiple-line
command in the same history entry. This allows easy re-editing of multi-line
commands.

glob dot filenames If set, bash includes filenames beginning with a ‘.’ in the re-
sults of pathname expansion.

allow null glob expansion If set, bash allows pathname patterns which match no
files (see Pathname Expansion below) to expand to a null string, rather than
themselves.

histchars The two or three characters which control history expansion and tok-
enization (see HISTORY EXPANSION below). The first character is the his-
tory expansion character, that is, the character which signals the start of a history
expansion, normally ‘!’. The second character is the quick substitution charac-
ter, which is used as shorthand for re-running the previous command entered,
substituting one string for another in the command. The default is ‘ˆ’. The op-
tional third character is the character which signifies that the remainder of the
line is a comment, when found as the first character of a word, normally ‘#’.
The history comment character causes history substitution to be skipped for
the remaining words on the line. It does not necessarily cause the shell parser
to treat the rest of the line as a comment.

nolinks If set, the shell does not follow symbolic links when executing commands
that change the current working directory. It uses the physical directory struc-
ture instead. By default, bash follows the logical chain of directories when
performing commands which change the current directory, such as cd. See
also the description of the -P option to the set builtin (SHELL BUILTIN COM-
MANDS below).

hostname completion file

HOSTFILE Contains the name of a file in the same format as /etc/hosts that should
be read when the shell needs to complete a hostname. The file may be changed
interactively; the next time hostname completion is attempted bash adds the
contents of the new file to the already existing database.

noclobber If set, bash does not overwrite an existing file with the >, >&, and <>
redirection operators. This variable may be overridden when creating output
files by using the redirection operator >— instead of > (see also the -C option
to the set builtin command).

auto resume This variable controls how the shell interacts with the user and job
control. If this variable is set, single word simple commands without redi-
rections are treated as candidates for resumption of an existing stopped job.
There is no ambiguity allowed; if there is more than one job beginning with
the string typed, the job most recently accessed is selected. The name of a

95

9.9. Environments of Processes 9. Processes, Environment Variables

stopped job, in this context, is the command line used to start it. If set to the
value exact, the string supplied must match the name of a stopped job exactly;
if set to substring, the string supplied needs to match a substring of the name
of a stopped job. The substring value provides functionality analogous to the
%? job id (see JOB CONTROL below). If set to any other value, the supplied
string must be a prefix of a stopped job’s name; this provides functionality
analogous to the % job id.

no exit on failed exec If this variable exists, a non-interactive shell will not exit if
it cannot execute the file specified in the exec builtin command. An interactive
shell does not exit if exec fails.

cdable vars If this is set, an argument to the cd builtin command that is not a di-
rectory is assumed to be the name of a variable whose value is the directory
to change to.

96

Chapter 10

Mail

Electronic Mail, or email, is the way most people first come into contact with the Inter-
net. Although you may have used email in a graphical environment, here we show you
how mail was first intended to be used on a multiuser system. To a large extent what
applies here is really what is going on in the background of any system that supports
mail.

A mail message is a block of text sent from one user to another, using some mail
command or mailer program. A mail message will usually also be accompanied by a
subject explaining what the mail is about. The idea of mail is that a message can be
sent to someone even though he may not be logged in at the time and the mail will
be stored for him until he is around to read it. An email address is probably familiar
to you, for example: bruce@kangeroo.co.au. This means that bruce has a user
account on a computer called kangeroo.co.au, which often means that he can log
in as bruce on that machine. The text after the @ is always the name of the machine.
Today’s Internet does not obey this exactly, but there is always a machine that bruce
does have an account on where mail is eventually sent. &That machine is also usually a UNIX

machine.-

Sometimes email addresses are written in a more user-friendly form
like Bruce Wallaby <bruce@kangeroo.co.au> or bruce@kangeroo.co.au
(Bruce Wallaby). In this case, the surrounding characters are purely cosmetic; only
bruce@kangeroo.co.au is ever used.

When mail is received for you (from another user on the system or from a user
from another system) it is appended to the file /var/spool/mail/<username>
called the mail file or mailbox file; <username> is your login name. You then run some
program that interprets your mail file, allowing you to browse the file as a sequence of
mail messages and read and reply to them.

An actual addition to your mail file might look like this:

97

10. Mail

✞ �
From mands@inetafrica.com Mon Jun 1 21:20:21 1998
Return-Path: <mands@inetafrica.com>
Received: from pizza.cranzgot.co.za (root@pizza.cranzgot.co.za [192.168.2.254])

by onion.cranzgot.co.za (8.8.7/8.8.7) with ESMTP id VAA11942
5 for <psheer@icon.co.za>; Mon, 1 Jun 1998 21:20:20 +0200

Received: from mail450.icon.co.za (mail450.icon.co.za [196.26.208.3])
by pizza.cranzgot.co.za (8.8.5/8.8.5) with ESMTP id VAA19357
for <psheer@icon.co.za>; Mon, 1 Jun 1998 21:17:06 +0200

Received: from smtp02.inetafrica.com (smtp02.inetafrica.com [196.7.0.140])
10 by mail450.icon.co.za (8.8.8/8.8.8) with SMTP id VAA02315

for <psheer@icon.co.za>; Mon, 1 Jun 1998 21:24:21 +0200 (GMT)
Received: from default [196.31.19.216] (fullmoon)

by smtp02.inetafrica.com with smtp (Exim 1.73 #1)
id 0ygTDL-00041u-00; Mon, 1 Jun 1998 13:57:20 +0200

15 Message-ID: <357296DF.60A3@inetafrica.com>
Date: Mon, 01 Jun 1998 13:56:15 +0200
From: a person <mands@inetafrica.com>
Reply-To: mands@inetafrica.com
Organization: private

20 X-Mailer: Mozilla 3.01 (Win95; I)
MIME-Version: 1.0
To: paul sheer <psheer@icon.co.za>
Subject: hello
Content-Type: text/plain; charset=us-ascii

25 Content-Transfer-Encoding: 7bit
Status: RO
X-Status: A

hey paul
30 its me

how r u doing
i am well
what u been upot
hows life

35 hope your well
amanda

✝ ✆

Each mail message begins with a From at the beginning of a line, followed by
a space. Then comes the mail header, explaining where the message was routed from
to get to your mailbox, who sent the message, where replies should go, the subject of
the mail, and various other mail header fields. Above, the header is longer than the mail
messages. Examine the header carefully.

The header ends with the first blank line. The message itself (or body) starts right
after. The next header in the file will once again start with a From. Froms on the
beginning of a line never exist within the body. If they do, the mailbox is considered to
be corrupt.

Some mail readers store their messages in a different format. However the above
format (called the mbox format) is the most common for UNIX. Of interest is a for-
mat called Maildir, which is one format that does not store mail messages in a single
contiguous file. Instead, Maildir stores each message as a separate file within a direc-
tory. The name of the directory is then considered to be the mailbox “file”; by default
Maildir uses a directory Maildir within the user’s home directory.

98

10. Mail 10.1. Sending and Reading Mail

10.1 Sending and Reading Mail

The simplest way to send mail is to use the mail command. Type mail -
s "hello there" <username>. The mail program will then wait for you to type
out your message. When you are finished, enter a . on its own on a single line. The
user name will be another user on your system. If no one else is on your system,
then send mail to rootwith mail -s "Hello there" root or mail -s "Hello
there" root@localhost (if the @ is not present, then the local machine, local-
host, is implied). Sending files over email is discussed in Section 12.6.

You can use mail to view your mailbox. This is a primitive utility in compari-
son with modern graphical mail readers but is probably the only mail reader that can
handle arbitrarily sized mailboxes. Sometimes you may get a mailbox that is over a
gigabyte in size, and mail is the only way to delete messages from it. To view your
mailbox, type mail, and then z to read your next window of messages, and z- to view
the previous window. Most commands work like command message number, for exam-
ple, delete 14 or reply 7. The message number is the left column with an N next
to it (for a New message).

For the state of the art in terminal-based mail readers (also called mail clients), try
mutt and pine. &pine’s license is not Free.-

There are also some graphical mail readers in various stages of development. At
the time I am writing this, I have been using balsa for a few months, which was the
best mail reader I could find.

10.2 The SMTP Protocol — Sending Mail Raw to Port 25

To send mail, you need not use a mail client at all. The mail client just follows SMTP
(Simple Mail Transfer Protocol), which you can type in from the keyboard.

For example, you can send mail by telneting to port 25 of a machine that has an
MTA (Mail Transfer Agent—also called the mailer daemon or mail server) running. The
word daemon denotes programs that run silently without user intervention.

This is, in fact, how so-called anonymous mail or spam mail &Spam is a term used to
indicate unsolicited email—that is, junk mail that is posted in bulk to large numbers of arbitrary email ad-
dresses. Sending spam is considered unethical Internet practice.- is sent on the Internet. A mailer
daemon runs in most small institutions in the world and has the simple task of receiv-
ing mail requests and relaying them on to other mail servers. Try this, for example
(obviously substituting mail.cranzgot.co.za for the name of a mail server that
you normally use):

✞ �
[root@cericon]# telnet mail.cranzgot.co.za 25
Trying 192.168.2.1...

99

10.2. The SMTP Protocol — Sending Mail Raw to Port 25 10. Mail

Connected to 192.168.2.1.
Escape character is ’ˆ]’.

5 220 onion.cranzgot.co.za ESMTP Sendmail 8.9.3/8.9.3; Wed, 2 Feb 2000 14:54:47 +0200
HELO cericon.cranzgot.co.za
250 onion.cranzgot.co.za Hello cericon.ctn.cranzgot.co.za [192.168.3.9], pleased to meet yo
MAIL FROM:psheer@icon.co.za
250 psheer@icon.co.za... Sender ok

10 RCPT TO:mands@inetafrica.com
250 mands@inetafrica.com... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself
Subject: just to say hi

15

hi there
heres a short message

.
20 250 OAA04620 Message accepted for delivery

QUIT
221 onion.cranzgot.co.za closing connection
Connection closed by foreign host.
[root@cericon]#

✝ ✆

The above causes the message “hi there heres a short message” to be
delivered to mands@inetafrica.com (the ReCiPienT). Of course, I can enter any ad-
dress that I like as the sender, and it can be difficult to determine who sent the message.
In this example, the Subject: is the only header field, although I needn’t have sup-
plied a header at all.

Now, you may have tried this and gotten a rude error message. This might be be-
cause the MTA is configured not to relay mail except from specific trusted machines—
say, only those machines within that organization. In this way anonymous email is
prevented.

On the other hand, if you are connecting to the user’s very own mail server, it has
to necessarily receive the mail, regardless of who sent it. Hence, the above is a useful
way to supply a bogus FROM address and thereby send mail almost anonymously. By
“almost” I mean that the mail server would still have logged the machine from which
you connected and the time of connection—there is no perfect anonymity for properly
configured mail servers.

The above technique is often the only way to properly test a mail server, and
should be practiced for later.

100

Chapter 11

User Accounts and User
Ownerships

UNIX intrinsically supports multiple users. Each user has a personal home directory
/home/<username> in which the user’s files are stored, hidden from other users.

So far you may have been using the machine as the root user, who is the system
administrator and has complete access to every file on the system. The root is also
called the superuser. The home directory of the root user is /root. Note that there is
an ambiguity here: the root directory is the topmost directory, known as the / directory. The
root user’s home directory is /root and is called the home directory of root.

Other than the superuser, every other user has limited access to files and directo-
ries. Always use your machine as a normal user. Log in as root only to do system
administration. This practice will save you from the destructive power that the root
user has. In this chapter we show how to manually and automatically create new users.

Users are also divided into sets, called groups. A user can belong to several
groups and there can be as many groups on the system as you like. Each group is
defined by a list of users that are part of that set. In addition, each user may have a
group of the same name (as the user’s login name), to which only that user belongs.

11.1 File Ownerships

Each file on a system is owned by a particular user and also owned by a particular group.
When you run ls -al, you can see the user that owns the file in the third column
and the group that owns the file in the fourth column (these will often be identical,
indicating that the file’s group is a group to which only the user belongs). To change the
ownership of the file, simply use the chown, change ownerships, command as follows.

101

11.2. The Password File /etc/passwd 11. User Accounts and Ownerships

✞ �

chown <user>[:<group>] <filename>
✝ ✆

11.2 The Password File /etc/passwd

The only place in the whole system where a user name is registered is in this file.
&Exceptions to this rule are several distributed authentication schemes and the Samba package, but you
needn’t worry about these for now.- Once a user is added to this file, that user is said to
exist on the system. If you thought that user accounts were stored in some unreachable
dark corner, then this should dispel that idea. This is also known as the password file to
administrators. View this file with less:

✞ �

root:x:0:0:Paul Sheer:/root:/bin/bash
bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/sbin:
adm:x:3:4:adm:/var/adm:

5 lp:x:4:7:lp:/var/spool/lpd:
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:

10 news:x:9:13:news:/var/spool/news:
uucp:x:10:14:uucp:/var/spool/uucp:
gopher:x:13:30:gopher:/usr/lib/gopher-data:
ftp:x:14:50:FTP User:/home/ftp:
nobody:x:99:99:Nobody:/:

15 alias:x:501:501::/var/qmail/alias:/bin/bash
paul:x:509:510:Paul Sheer:/home/paul:/bin/bash
jack:x:511:512:Jack Robbins:/home/jack:/bin/bash
silvia:x:511:512:Silvia Smith:/home/silvia:/bin/bash

✝ ✆

Above is an extract of my own password file. Each user is stored on a separate
line. Many of these are not human login accounts but are used by other programs.

Each line contains seven fields separated by colons. The account for jack looks
like this:

jack The user’s login name. It should be composed of lowercase letters and numbers.
Other characters are allowed, but are not preferable. In particular, there should
never be two user names that differ only by their capitalization.

x The user’s encrypted password. An x in this field indicates that it is stored in a sep-
arate file, /etc/shadow. This shadow password file is a later addition to UNIX
systems. It contains additional information about the user.

102

11. User Accounts and Ownerships 11.3. Shadow Password File: /etc/shadow

511 The user’s user identification number, UID.&This is used by programs as a short alterna-
tive to the user’s login name. In fact, internally, the login name is never used, only the UID.-

512 The user’s group identification number, GID.&Similarly applies to the GID. Groups will
be discussed later.-

Jack Robbins The user’s full name. &Few programs ever make use of this field.-

/home/jack The user’s home directory. The HOME environment variable will be set
to this when the user logs in.

/bin/bash The shell to start when the user logs in.

11.3 Shadow Password File: /etc/shadow

The problem with traditional passwd files is that they had to be world readable &Ev-
eryone on the system can read the file.- in order for programs to extract information, such as
the user’s full name, about the user. This means that everyone can see the encrypted
password in the second field. Anyone can copy any other user’s password field and
then try billions of different passwords to see if they match. If you have a hundred
users on the system, there are bound to be several that chose passwords that matched
some word in the dictionary. The so-called dictionary attack will simply try all 80,000
common English words until a match is found. If you think you are clever to add a
number in front of an easy-to-guess dictionary word, password cracking algorithms
know about these as well. &And about every other trick you can think of.- To solve this prob-
lem the shadow password file was invented. The shadow password file is used only
for authentication&Verifying that the user is the genuine owner of the account.- and is not world
readable—there is no information in the shadow password file that a common pro-
gram will ever need—no regular user has permission to see the encrypted password
field. The fields are colon separated just like the passwd file.

Here is an example line from a /etc/shadow file:
✞ �

jack:Q,Jpl.or6u2e7:10795:0:99999:7:-1:-1:134537220
✝ ✆

jack The user’s login name.

Q,Jpl.or6u2e7 The user’s encrypted password known as the hash of the pass-
word. This is the user’s 8-character password with a one-way hash function ap-
plied to it. It is simply a mathematical algorithm applied to the password that
is known to produce a unique result for each password. To demonstrate: the
(rather poor) password Loghimin hashes to :lZ1F.0VSRRucs: in the shadow
file. An almost identical password loghimin gives a completely different hash

103

11.4. The groups Command and /etc/group 11. User Accounts and Ownerships

:CavHIpD1W.cmg:. Hence, trying to guess the password from the hash can only
be done by trying every possible password. Such a brute force attack is therefore
considered computationally expensive but not impossible. To check if an entered
password matches, just apply the identical mathematical algorithm to it: if it
matches, then the password is correct. This is how the login command works.
Sometimes you will see a * in place of a hashed password. This means that the
account has been disabled.

10795 Days since January 1, 1970, that the password was last changed.

0 Days before which password may not be changed. Usually zero. This field is not
often used.

99999 Days after which password must be changed. This is also rarely used, and will
be set to 99999 by default.

7 Days before password is to expire that user is warned of pending password expira-
tion.

-1 Days after password expires that account is considered inactive and disabled. -
1 is used to indicate infinity—that is, to mean we are effectively not using this
feature.

-1 Days since January 1, 1970, when account will be disabled.

134537220 Flag reserved for future use.

11.4 The groups Command and /etc/group

On a UNIX system you may want to give a number of users the same access rights. For
instance, you may have five users that should be allowed to access some privileged file
and another ten users that are allowed to run a certain program. You can group these
users into, for example, two groups previl and wproc and then make the relevant
file and directories owned by that group with, say,

✞ �

chown root:previl /home/somefile
chown root:wproc /usr/lib/wproc

✝ ✆

Permissions &Explained later.- dictate the kind of access, but for the meantime, the
file/directory must at least be owned by that group.

The /etc/group file is also colon separated. A line might look like this:
✞ �

wproc:x:524:jack,mary,henry,arthur,sue,lester,fred,sally
✝ ✆

104

11. User Accounts and Ownerships 11.5. Manually Creating a User Account

wproc The name of the group. There should really also be a user of this name as well.

x The group’s password. This field is usually set with an x and is not used.

524 The GID group ID. This must be unique in the group’s file.

jack,mary,henry,arthur,sue,lester,fred,sally The list of users that belong to the group.
This must be comma separated with no spaces.

You can obviously study the group file to find out which groups a user belongs
to, &That is, not “which users does a group consist of?” which is easy to see at a glance.- but when
there are a lot of groups, it can be tedious to scan through the entire file. The groups
command prints out this information.

11.5 Manually Creating a User Account

The following steps are required to create a user account:

/etc/passwd entry To create an entry in this file, simply edit it and copy an existing
line. &When editing configuration files, never write out a line from scratch if it has some kind of
special format. Always copy an existing entry that has proved itself to be correct, and then edit in the
appropriate changes. This will prevent you from making errors.-Always add users from the
bottom and try to preserve the “pattern” of the file—that is, if you see numbers
increasing, make yours fit in; if you are adding a normal user, add it after the
existing lines of normal users. Each user must have a unique UID and should
usually have a unique GID. So if you are adding a line to the end of the file, make
your new UID and GID the same as the last line but incremented by 1.

/etc/shadow entry Create a new shadow password entry. At this stage you do not
know what the hash is, so just make it a *. You can set the password with the
passwd command later.

/etc/group entry Create a new group entry for the user’s group. Make sure the
number in the group entry matches that in the passwd file.

/etc/skel This directory contains a template home directory for the user. Copy
the entire directory and all its contents into /home directory, renaming it to the
name of the user. In the case of our jack example, you should have a directory
/home/jack.

Home directory ownerships You need to now change the ownerships of the home di-
rectory to match the user. The command chown -R jack:jack /home/jack
will accomplish this change.

Setting the password Use passwd <username> to set the user’s password.

105

11.6. Automatically: useradd and groupadd 11. User Accounts and Ownerships

11.6 Automatically Creating a User Account: useradd
and groupadd

The above process is tedious. The commands that perform all these updates automat-
ically are useradd, userdel, and usermod. The man pages explain the use of these
commands in detail. Note that different flavors of UNIX have different commands to
do this. Some may even have graphical programs or web interfaces to assist in creating
users.

In addition, the commands groupadd, groupdel, and groupmod do the same
with respect to groups.

11.7 User Logins

It is possible to switch from one user to another, as well as view your login status and
the status of other users. Logging in also follows a silent procedure which is important
to understand.

11.7.1 The login command

A user most often gains access to the system through the login program. This pro-
gram looks up the UID and GID from the passwd and group file and authenticates
the user.

The following is quoted from the login man page, and explains this procedure
in detail:

login is used when signing onto a system. It can also be used to switch from one
user to another at any time (most modern shells have support for this feature built
into them, however).
If an argument is not given, login prompts for the username.
If the user is not root, and if /etc/nologin exists, the contents of this file are printed
to the screen, and the login is terminated. This is typically used to prevent logins
when the system is being taken down.
If special access restrictions are specified for the user in /etc/usertty, these must be
met, or the login attempt will be denied and a syslog&System error log program—
syslog writes all system messages to the file /var/log/messages.- message will be
generated. See the section on ”Special Access Restrictions.”
If the user is root, then the login must be occuring on a tty listed in /etc/securetty.
&If this file is not present, then root logins will be allowed from anywhere. It is worth deleting
this file if your machine is protected by a firewall and you would like to easily login from

106

11. User Accounts and Ownerships 11.7. User Logins

another machine on your LAN. If /etc/securetty is present, then logins are only allowed
from the terminals it lists.- Failures will be logged with the syslog facility.
After these conditions have been checked, the password will be requested and
checked (if a password is required for this username). Ten attempts are allowed
before login dies, but after the first three, the response starts to get very slow. Login
failures are reported via the syslog facility. This facility is also used to report any
successful root logins.
If the file .hushlogin exists, then a ”quiet” login is performed (this disables the check-
ing of mail and the printing of the last login time and message of the day). Other-
wise, if /var/log/lastlog exists, the last login time is printed (and the current login is
recorded).
Random administrative things, such as setting the UID and GID of the tty are per-
formed. The TERM environment variable is preserved, if it exists (other environ-
ment variables are preserved if the -p option is used). Then the HOME, PATH,
SHELL, TERM, MAIL, and LOGNAME environment variables are set. PATH de-
faults to /usr/local/bin:/bin:/usr/bin:. &Note that the . —the current directory—is
listed in the PATH. This is only the default PATH however.- for normal users, and to
/sbin:/bin:/usr/sbin:/usr/bin for root. Last, if this is not a ”quiet” login, the message of
the day is printed and the file with the user’s name in /usr/spool/mail will be checked,
and a message printed if it has non-zero length.
The user’s shell is then started. If no shell is specified for the user in /etc/passwd,
then /bin/sh is used. If there is no directory specified in /etc/passwd, then / is used
(the home directory is checked for the .hushlogin file described above).

11.7.2 The set user, su command

To temporarily become another user, you can use the su program:
✞ �

su jack
✝ ✆

This command prompts you for a password (unless you are the root user to begin
with). It does nothing more than change the current user to have the access rights of
jack. Most environment variables will remain the same. The HOME, LOGNAME, and
USER environment variables will be set to jack, but all other environment variables
will be inherited. su is, therefore, not the same as a normal login.

To get the equivalent of a login with su, run
✞ �

su - jack
✝ ✆

This will cause all initialization scripts (that are normally run when the user logs in)
to be executed. &What actually happens is that the subsequent shell is started with a - in front of the
zero’th argument. This makes the shell read the user’s personal profile. The login command also does
this.- Hence, after running su with the - option, you logged in as if with the login
command.

107

11.7. User Logins 11. User Accounts and Ownerships

11.7.3 The who, w, and users commands to see who is logged in

who and w print a list of users logged in to the system, as well as their CPU consump-
tion and other statistics. who --help gives:

✞ �
Usage: who [OPTION]... [FILE | ARG1 ARG2]

-H, --heading print line of column headings
-i, -u, --idle add user idle time as HOURS:MINUTES, . or old

5 -m only hostname and user associated with stdin
-q, --count all login names and number of users logged on
-s (ignored)
-T, -w, --mesg add user’s message status as +, - or ?

--message same as -T
10 --writable same as -T

--help display this help and exit
--version output version information and exit

If FILE is not specified, use /var/run/utmp. /var/log/wtmp as FILE is common.
15 If ARG1 ARG2 given, -m presumed: ‘am i’ or ‘mom likes’ are usual.

✝ ✆

A little more information can be gathered from the info pages for this command.
The idle time indicates how long since the user has last pressed a key. Most often, one
just types who -Hiw.

w is similar. An extract of the w man page says:

w displays information about the users currently on the machine, and their pro-
cesses. The header shows, in this order, the current time, how long the system has
been running, how many users are currently logged on, and the system load aver-
ages for the past 1, 5, and 15 minutes.

The following entries are displayed for each user: login name, the tty name, the
remote host, login time, idle time, JCPU, PCPU, and the command line of their
current process.

The JCPU time is the time used by all processes attached to the tty. It does not
include past background jobs, but does include currently running background jobs.

The PCPU time is the time used by the current process, named in the ”what” field.

Finally, from a shell script the users command is useful for just seeing who is
logged in. You can use in a shell script, for example:

✞ �

for user in ‘users‘ ; do
<etc>

done
✝ ✆

108

11. User Accounts and Ownerships 11.7. User Logins

11.7.4 The id command and effective UID

id prints your real and effective UID and GID. A user normally has a UID and a GID
but may also have an effective UID and GID as well. The real UID and GID are what
a process will generally think you are logged in as. The effective UID and GID are the
actual access permissions that you have when trying to read, write, and execute files.

11.7.5 User limits

There is a file /etc/security/limits.conf that stipulates the limitations on CPU
usage, process consumption, and other resources on a per-user basis. The documenta-
tion for this config file is contained in
/usr/[share/]doc/pam-<version>/txts/README.pam limits.

109

11.7. User Logins 11. User Accounts and Ownerships

110

Chapter 12

Using Internet Services

This chapter summarizes remote access and the various methods of transferring files
and data over the Internet.

12.1 ssh, not telnet or rlogin

telnet is a program for talking to a UNIX network service. It is most often used to do
a remote login. Try

✞ �

telnet <remote_machine>
telnet localhost

✝ ✆

to log in to your remote machine. It needn’t matter if there is no physical network;
network services always work regardless because the machine always has an internal
link to itself.

rlogin is like a minimal version of telnet that allows login access only. You
can type

✞ �

rlogin -l <username> <remote_machine>
rlogin -l jack localhost

✝ ✆

if the system is configured to support remote logins.

These two services are the domain of old world UNIX; for security reasons, ssh
is now the preferable service for logging in remotely:

✞ �

ssh [-l <username>] <remote_machine>
✝ ✆

111

12.2. rcp and scp 12. Using Internet Services

Though rlogin and telnet are very convenient, they should never be used across a
public network because your password can easily be read off the wire as you type it in.

12.2 rcp and scp

rcp stands for remote copy and scp is the secure version from the ssh package. These
two commands copy files from one machine to another using a similar notation to cp.

✞ �
rcp [-r] [<remote_machine>:]<file> [<remote_machine>:]<file>
scp [-l <username>] [-r] [<remote_machine>:]<file> [<remote_machine>:]<file>

✝ ✆

Here is an example:
✞ �
[psheer@cericon]# rcp /var/spool/mail/psheer \
divinian.cranzgot.co.za:/home/psheer/mail/cericon
[psheer@cericon]# scp /var/spool/mail/psheer \
divinian.cranzgot.co.za:/home/psheer/mail/cericon

5 The authenticity of host ’divinian.cranzgot.co.za’ can’t be established.
RSA key fingerprint is 43:14:36:5d:bf:4f:f3:ac:19:08:5d:4b:70:4a:7e:6a.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ’divinian.cranzgot.co.za’ (RSA) to the list of known hosts.
psheer@divinian’s password:

10 psheer 100% |***************************************| 4266 KB 01:18
✝ ✆

The -r option copies recursively and copies can take place in either direction or
even between two nonlocal machines.

scp should always be used instead of rcp for security reasons. Notice also the warn-
ing given by scp for this first-time connection. See the ssh documentation for how to
make your first connection securely. All commands in the ssh package have this same
behavior.

12.3 rsh

rsh (remote shell) is a useful utility for executing a command on a remote machine.
Here are some examples:

✞ �
[psheer@cericon]# rsh divinian.cranzgot.co.za hostname
divinian.cranzgot.co.za
[psheer@cericon]# rsh divinian.cranzgot.co.za \
tar -czf - /home/psheer | dd of=/dev/fd0 bs=1024

5 tar: Removing leading ‘/’ from member names
20+0 records in
20+0 records out

112

12. Using Internet Services 12.4. FTP

[psheer@cericon]# cat /var/spool/mail/psheer | rsh divinian.cranzgot.co.za \
sh -c ’cat >> /home/psheer/mail/cericon’

✝ ✆

The first command prints the host name of the remote machine. The second com-
mand backs up my remote home directory to my local floppy disk. (More about dd and
/dev/fd0 come later.) The last command appends my local mailbox file to a remote
mailbox file. Notice how stdin, stdout, and stderr are properly redirected to the local
terminal. After reading Chapter 29 see rsh(8) or in.rshd(8) to configure this service.

Once again, for security reasons rsh should never be available across a public network.

12.4 FTP

FTP stands for File Transfer Protocol. If FTP is set up on your local machine, then other
machines can download files. Type

✞ �

ftp metalab.unc.edu
✝ ✆

or
✞ �

ncftp metalab.unc.edu
✝ ✆

ftp is the traditional command-line UNIX FTP client, &“client” always indicates the
user program accessing some remote service.- while ncftp is a more powerful client that will
not always be installed.

You will now be inside an FTP session. You will be asked for a login name and
a password. The site metalab.unc.edu is one that allows anonymous logins. This
means that you can type anonymous as your user name, and then anything you like
as a password. You will notice that the session will ask you for an email address as
your password. Any sequence of letters with an @ symbol will suffice, but you should
put your actual email address out of politeness.

The FTP session is like a reduced shell. You can type cd, ls, and ls -al to view
file lists. help brings up a list of commands, and you can also type help <command>
to get help on a specific command. You can download a file by using the get <file-
name> command, but before you do this, you must set the transfer type to binary. The
transfer type indicates whether or not newline characters will be translated to DOS for-
mat. Typing ascii turns on this feature, while binary turns it off. You may also want
to enter hash which will print a # for every 1024 bytes of download. This is useful for
watching the progress of a download. Go to a directory that has a README file in it and
enter

✞ �

get README
✝ ✆

113

12.5. finger 12. Using Internet Services

The file will be downloaded into your current directory.

You can also cd to the /incoming directory and upload files. Try
✞ �

put README
✝ ✆

to upload the file that you have just downloaded. Most FTP sites have an /incoming
directory that is flushed periodically.

FTP allows far more than just uploading of files, although the administrator has
the option to restrict access to any further features. You can create directories, change
ownerships, and do almost anything you can on a local file system.

If you have several machines on a trusted LAN (Local Area Network—that is, your
private office or home network), all should have FTP enabled to allow users to easily
copy files between machines. How to install and configure one of the many available
FTP servers will become obvious later in this book.

12.5 finger

finger is a service for remotely listing who is logged in on a remote system. Try
finger @<hostname> to see who is logged in on <hostname>. The finger service
will often be disabled on machines for security reasons.

12.6 Sending Files by Email

Mail is being used more and more for transferring files between machines. It is bad
practice to send mail messages over 64 kilobytes over the Internet because it tends to
excessively load mail servers. Any file larger than 64 kilobytes should be uploaded
by FTP onto some common FTP server. Most small images are smaller than this size,
hence sending a small JPEG&A common Internet image file format. These are especially compressed
and are usually under 100 kilobytes for a typical screen-sized photograph.- image is considered ac-
ceptable.

12.6.1 uuencode and uudecode

If you must send files by mail then you can do it by using uuencode. This utility
packs binary files into a format that mail servers can handle. If you send a mail mes-
sage containing arbitrary binary data, it will more than likely be corrupted on the way
because mail agents are only designed to handle a limited range of characters. uuen-
code represents a binary file with allowable characters, albeit taking up slightly more
space.

114

12. Using Internet Services 12.6. Sending Files by Email

Here is a neat trick to pack up a directory and send it to someone by mail.
✞ �

tar -czf - <mydir> | uuencode <mydir>.tar.gz \
| mail -s "Here are some files" <user>@<machine>

✝ ✆

To unpack a uuencoded file, use the uudecode command:
✞ �

uudecode <myfile>.uu
✝ ✆

12.6.2 MIME encapsulation

Most graphical mail readers have the ability to attach files to mail messages and read
these attachments. The way they do this is not with uuencode but in a special format
known as MIME encapsulation. MIME (Multipurpose Internet Mail Extensions) is a way
of representing multiple files inside a single mail message. The way binary data is
handled is similar to uuencode, but in a format known as base64.

Each MIME attachment to a mail message has a particular type, known as the
MIME type. MIME types merely classify the attached file as an image, an audio clip,
a formatted document, or some other type of data. The MIME type is a text tag with
the format <major>/<minor>. The major part is called the major MIME type and the
minor part is called the minor MIME type. Available major types match all the kinds
of files that you would expect to exist. They are usually one of application, audio,
image, message, text, or video. The application type means a file format spe-
cific to a particular utility. The minor MIME types run into the hundreds. A long list of
MIME types can be found in /etc/mime.types.

If needed, some useful command-line utilities in the same vein as uuencode can
create and extract MIME messages. These are mpack, munpack, and mmencode (or
mimencode).

115

12.6. Sending Files by Email 12. Using Internet Services

116

Chapter 13

LINUX Resources

Very often it is not even necessary to connect to the Internet to find the information you
need. Chapter 16 contains a description of most of the documentation on a LINUX
distribution.

It is, however, essential to get the most up-to-date information where security
and hardware driver support are concerned. It is also fun and worthwhile to interact
with LINUX users from around the globe. The rapid development of Free software
could mean that you may miss out on important new features that could streamline IT
services. Hence, reviewing web magazines, reading newsgroups, and subscribing to
mailing lists are essential parts of a system administrator’s role.

13.1 FTP Sites and the sunsite Mirror

The metalab.unc.edu FTP site (previously called sunsite.unc.edu) is one of the
traditional sites for free software. It is mirrored in almost every country that has a
significant IT infrastructure. If you point your web browser there, you will find a list
of mirrors. For faster access, do pick a mirror in your own country.

It is advisable to browse around this FTP site. In particular you should try to find
the locations of:

• The directory where all sources for official GNU packages are stored. This
would be a mirror of the Free Software Foundation’s FTP archives. These are
packages that were commissioned by the FSF and not merely released under the
GPL (GNU General Public License). The FSF will distribute them in source
form (.tar.gz) for inclusion into various distributions. They will, of course,
compile and work under any UNIX.

117

13.2. HTTP — Web Sites 13. LINUX Resources

• The generic Linux download directory. It contains innumerable UNIX packages
in source and binary form, categorized in a directory tree. For instance, mail
clients have their own directory with many mail packages inside. metalab is the
place where new developers can host any new software that they have produced.
There are instructions on the FTP site to upload software and to request it to be
placed into a directory.

• The kernel sources. This is a mirror of the kernel archives where Linus and other
maintainers upload new stable&Meaning that the software is well tested and free of serious
bugs.- and beta&Meaning that the software is in its development stages.- kernel versions
and kernel patches.

• The various distributions. RedHat, Debian , and possibly other popular distri-
butions may be present.

This list is by no means exhaustive. Depending on the willingness of the site
maintainer, there may be mirrors to far more sites from around the world.

The FTP site is how you will download free software. Often, maintainers will
host their software on a web site, but every popular package will almost always have
an FTP site where versions are persistently stored. An example is metalab.unc.edu
in the directory /pub/Linux/apps/editors/X/cooledit/ where the author’s
own Cooledit package is distributed.

13.2 HTTP — Web Sites

Most users should already be familiar with using a web browser. You should
also become familiar with the concept of a web search. &Do I need to explain this?-

You search the web when you point your web browser to a popular search engine
like http://www.google.com/, http://www.google.com/linux, http://infoseek.go.com/, http://www.-
altavista.com/, or http://www.yahoo.com/ and search for particular key words. Searching is
a bit of a black art with the billions of web pages out there. Always consult the search
engine’s advanced search options to see how you can do more complex searches than
just plain word searches.

The web sites in the FAQ (Frequently Asked Questions) (see Appendix D) should
all be consulted to get an overview on some of the primary sites of interest to LINUX
users.

Especially important is that you keep up with the latest LINUX news. I find the
Linux Weekly News http://lwn.net/ an excellent source. Also, the famous (and infamous)
SlashDot http://slashdot.org/ web site gives daily updates about “stuff that matters” (and
therefore contains a lot about free software).

Fresh Meat http://freshmeat.net/ is a web site devoted to new software releases. You
will find new or updated packages announced every few hours or so.

118

13. LINUX Resources 13.3. SourceForge

Linux Planet http://www.linuxplanet.com/ seems to be a new (?) web site that I
just found while writing this. It looks like it contains lots of tutorial information on
LINUX .

News Forge http://www.newsforge.net/ also contains daily information about soft-
ware issues.

Lycos http://download.lycos.com/static/advanced search.asp is an efficient FTP search
engine for locating packages. It is one of the few search engines that understand regu-
lar expressions.

Realistically, though, a new LINUX web site is created every week; almost any-
thing prepended or appended to “linux” is probably a web site already.

13.3 SourceForge

A new phenomenon in the free software community is the SourceForge web site,
http://www.sourceforge.net/. Developers can use this service at no charge to host their
project’s web site, FTP archives, and mailing lists. SourceForge has mushroomed so
rapidly that it has come to host the better half of all free software projects.

13.4 Mailing Lists

A mailing list is a special address that, when posted to, automatically sends email
to a long list of other addresses. You usually subscribe to a mailing list by sending
some specially formatted email or by requesting a subscription from the mailing list
manager.

Once you have subscribed to a list, any email you post to the list will be sent to
every other subscriber, and every other subscriber’s posts to the list will be sent to you.

There are mostly three types of mailing lists: the majordomo type, the listserv type,
and the *-request type.

13.4.1 Majordomo and Listserv

To subscribe to the majordomo variety, send a mail message to majordomo@<machine>
with no subject and a one-line message:

✞ �

subscribe <mailing-list-name>
✝ ✆

119

13.5. Newsgroups 13. LINUX Resources

This command adds your name to the mailing list <mailing-list-
name>@<machine>, to which messages are posted.

Do the same for listserv-type lists, by sending the same message to list-
serv@<machine>.

For instance, if you are an administrator for any machine that is exposed to the
Internet, you should get on bugtraq. Send email to

✞ �

subscribe bugtraq
✝ ✆

to listserv@netspace.org, and become one of the tens of thousands of users that
read and report security problems about LINUX .

To unsubscribe to a list is just as simple. Send an email message:
✞ �

unsubscribe <mailing-list-name>
✝ ✆

Never send subscribe or unsubscribe messages to the mailing list itself. Send
subscribe or unsubscribe messages only to to the address majordomo@<machine>
or listserv@<machine>.

13.4.2 *-request

You subscribe to these mailing lists by sending an empty email message to <mailing-
list-name>-request@<machine> with the word subscribe as the subject. The
same email with the word unsubscribe removes you from the list.

Once again, never send subscribe or unsubscribe messages to the mailing list
itself.

13.5 Newsgroups

A newsgroup is a notice board that everyone in the world can see. There are tens of
thousands of newsgroups and each group is unique in the world.

The client software you use to read a newsgroup is called a news reader (or news
client). rtin is a popular text mode reader, while netscape is graphical. pan is an
excellent graphical news reader that I use.

Newsgroups are named like Internet hosts. One you might be interested in is
comp.os.linux.announce. The comp is the broadest subject description for com-
puters; os stands for operating systems; and so on. Many other linux newsgroups are
devoted to various LINUX issues.

120

13. LINUX Resources 13.6. RFCs

Newsgroups servers are big hungry beasts. They form a tree-like structure on the
Internet. When you send mail to a newsgroup it takes about a day or so for the mail
you sent to propagate to every other server in the world. Likewise, you can see a list
of all the messages posted to each newsgroup by anyone anywhere.

What’s the difference between a newsgroup and a mailing list? The advantage of
a newsgroup is that you don’t have to download the messages you are not interested
in. If you are on a mailing list, you get all the mail sent to the list. With a newsgroup
you can look at the message list and retrieve only the messages you are interested in.

Why not just put the mailing list on a web page? If you did, then everyone in the
world would have to go over international links to get to the web page. It would load
the server in proportion to the number of subscribers. This is exactly what SlashDot is.
However, your newsgroup server is local, so you retrieve mail over a faster link and
save Internet traffic.

13.6 RFCs

An indispensable source of information for serious administrators or developers is the
RFCs. RFC stands for Request For Comments. RFCs are Internet standards written by
authorities to define everything about Internet communication. Very often, documen-
tation will refer to RFCs. &There are also a few nonsense RFCs out there. For example there is an
RFC to communicate using pigeons, and one to facilitate an infinite number of monkeys trying to write the
complete works of Shakespeare. Keep a close eye on Slashdot http://slashdot.org/ to catch these.-

ftp://metalab.unc.edu/pub/docs/rfc/ (and mirrors) has the complete RFCs archived for
download. There are about 2,500 of them. The index file rfc-index.txt is probably
where you should start. It has entries like:

✞ �
2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format of

Internet Message Bodies. N. Freed & N. Borenstein. November 1996.
(Format: TXT=72932 bytes) (Obsoletes RFC1521, RFC1522, RFC1590)
(Updated by RFC2184, RFC2231) (Status: DRAFT STANDARD)

5

2046 Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types. N. Freed & N. Borenstein. November 1996. (Format: TXT=105854
bytes) (Obsoletes RFC1521, RFC1522, RFC1590) (Status: DRAFT STANDARD)

✝ ✆

and
✞ �
2068 Hypertext Transfer Protocol -- HTTP/1.1. R. Fielding, J. Gettys,

J. Mogul, H. Frystyk, T. Berners-Lee. January 1997. (Format:
TXT=378114 bytes) (Status: PROPOSED STANDARD)

✝ ✆

Well, you get the idea.

121

13.6. RFCs 13. LINUX Resources

122

Chapter 14

Permission and Modification
Times

Every file and directory on a UNIX system, besides being owned by a user and a group,
has access flags&A switch that can either be on or off.- (also called access bits) dictating what
kind of access that user and group have to the file.

Running ls -ald /bin/cp /etc/passwd /tmp gives you a listing like this:
✞ �

-rwxr-xr-x 1 root root 28628 Mar 24 1999 /bin/cp
-rw-r--r-- 1 root root 1151 Jul 23 22:42 /etc/passwd
drwxrwxrwt 5 root root 4096 Sep 25 15:23 /tmp

✝ ✆

In the leftmost column are flags which completely describe the access rights to
the file.

So far I have explained that the furthest flag to the left is either - or d, indicating
an ordinary file or directory. The remaining nine have a - to indicate an unset value
or one of several possible characters. Table 14.1 gives a complete description of file
system permissions.

14.1 The chmod Command

You use the chmod command to change the permissions of a file. It’s usually used as
follows:

✞ �

chmod [-R] [u|g|o|a][+|-][r|w|x|s|t] <file> [<file>] ...
✝ ✆

123

14.1. The chmod Command 14. Permission and Modification Times

Table 14.1 File and directory permissions
Possible
chars, -
for unset

Effect for directories Effect for files

r User can read the contents of the
directory.

User can read the file.

User, u w With x or s, user can create and
remove files in the directory.

User can write to the file.

x s S User can access the contents of
the files in a directory for x or s.
S has no effect.

User can execute the file for x
or s. s, known as the setuid bit,
means to set the user owner of
the subsequent process to that of
the file. S has no effect.

r Group can read the contents of
the directory.

Group can read the file.

Group, g w With x or s, group can create
and remove files in the directory.

Group can write to the file.

x s S Group can access the contents of
the files in a directory for x. For
s, force all files in this directory
to the same group as the direc-
tory. S has no effect.

Group can execute the file for x
or s. s, known as the setgid bit,
means to set the group owner of
the subsequent process to that of
the file. S has no effect.

r Everyone can read the contents
of the directory.

Everyone can read the file.

Other, o w With x or t, everyone can create
and remove files in the directory.

Everyone can write to the file.

x t T Everyone can access the con-
tents of the files in a directory
for x and t. t, known as the
sticky bit, prevents users from
removing files that they do not
own, hence users are free to ap-
pend to the directory but not to
remove other users’ files. T has
no effect.

Group can execute the file for x
or t. For t, save the process
text image to the swap device so
that future loads will be faster (I
don’t know if this has an effect
on LINUX). T has no effect.

For example,
✞ �

chmod u+x myfile
✝ ✆

adds execute permissions for the user of myfile. And,
✞ �

chmod a-rx myfile
✝ ✆

124

14. Permission and Modification Times 14.2. The umask Command

removes read and execute permissions for all—that is, user, group, and other.

The -R option, once again means recursive, diving into subdirectories as usual.

Permission bits are often represented in their binary form, especially in programs.
It is convenient to show the rwxrwxrwx set in octal,&See Section 2.1.-where each digit
fits conveniently into three bits. Files on the system are usually created with mode
0644, meaning rw-r--r--. You can set permissions explicitly with an octal number,
for example,

✞ �

chmod 0755 myfile
✝ ✆

gives myfile the permissions rwxr-xr-x. For a full list of octal values for all kinds
of permissions and file types, see /usr/include/linux/stat.h.

In Table 14.1 you can see s, the setuid or setgid bit. If it is used without execute
permissions then it has no meaning and is written as a capitalized S. This bit effectively
colorizes an x into an s, so you should read an s as execute with the setuid or setgid
bit set. t is known as the sticky bit. It also has no meaning if there are no execute
permissions and is written as a capital T.

The leading 0 can in be ignored, but is preferred for explicitness. It can take on a
value representing the three bits, setuid (4), setgid (2), and sticky (1). Hence a value of
5764 is 101 111 110 100 in binary and gives -rwsrw-r-T.

14.2 The umask Command

umask sets the default permissions for newly created files; it is usually 022. This de-
fault value means that the permissions of any new file you create (say, with the touch
command) will be masked with this number. 022 hence excludes write permissions of
group and of other. A umask of 006 would exclude read and write permissions of
other, but would allow read and write of group. Try

✞ �

umask
touch <file1>
ls -al <file1>
umask 026

5 touch <file2>
ls -al <file2>

✝ ✆

026 is probably closer to the kind of mask we like as an ordinary user. Check your
/etc/profile file to see what umask your login defaults to, when, and also why.

125

14.3. Modification Times: stat 14. Permission and Modification Times

14.3 Modification Times: stat

In addition to permissions, each file has three integers associated with it that represent,
in seconds, the last time the file was accessed (read), when it was last modified (written
to), and when its permissions were last changed. These are known as the atime, mtime,
and ctime of a file respectively.

To get a complete listing of the file’s permissions, use the stat command. Here
is the result of stat /etc:

✞ �
File: "/etc"
Size: 4096 Filetype: Directory
Mode: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

Device: 3,1 Inode: 14057 Links: 41
5 Access: Sat Sep 25 04:09:08 1999(00000.15:02:23)

Modify: Fri Sep 24 20:55:14 1999(00000.22:16:17)
Change: Fri Sep 24 20:55:14 1999(00000.22:16:17)

✝ ✆

The Size: quoted here is the actual amount of disk space used to store the directory
listing, and is the same as reported by ls. In this case it is probably four disk blocks
of 1024 bytes each. The size of a directory as quoted here does not mean the sum of all
files contained under it. For a file, however, the Size: would be the exact file length
in bytes (again, as reported by ls).

126

Chapter 15

Symbolic and Hard Links

Very often, a file is required to be in two different directories at the same time. Think
for example of a configuration file that is required by two different software packages
that are looking for the file in different directories. The file could simply be copied,
but to have to replicate changes in more than one place would create an administrative
nightmare. Also consider a document that must be present in many directories, but
which would be easier to update at one point. The way two (or more) files can have the
same data is with links.

15.1 Soft Links

To demonstrate a soft link, try the following:
✞ �

touch myfile
ln -s myfile myfile2
ls -al
cat > myfile

5 a
few
lines
of
text

10 ˆD
cat myfile
cat myfile2

✝ ✆

127

15.1. Soft Links 15. Symbolic and Hard Links

Notice that the ls -al listing has the letter l on the far left next to myfile2,
and the usual - next to myfile. This indicates that the file is a soft link (also known as
a symbolic link or symlink) to some other file.

A symbolic link contains no data of its own, only a reference to another file. It can
even contain a reference to a directory. In either case, programs operating on the link
will actually see the file or directory it points to.

Try
✞ �

mkdir mydir
ln -s mydir mydir2
ls -al .
touch ./mydir/file1

5 touch ./mydir2/file2
ls -al ./mydir
ls -al ./mydir2

✝ ✆

The directory mydir2 is a symbolic link to mydir2 and appears as though it is a replica
of the original. Once again the directory mydir2 does not consume additional disk
space—a program that reads from the link is unaware that it is seeing into a different
directory.

Symbolic links can also be copied and retain their value:
✞ �

cp mydir2 /
ls -al /
cd /mydir2

✝ ✆

You have now copied the link to the root directory. However, the link points to a
relative path mydir in the same directory as the link. Since there is no mydir here, an
error is raised.

Try
✞ �

rm -f mydir2 /mydir2
ln -s ‘pwd‘/mydir mydir2
ls -al

✝ ✆

Now you will see mydir2 has an absolute path. You can try
✞ �

cp mydir2 /
ls -al /
cd /mydir2

✝ ✆

and notice that it now works.

One of the common uses of symbolic links is to make mounted (see Section 19.4)
file systems accessible from a different directory. For instance, you may have a large

128

15. Symbolic and Hard Links 15.2. Hard Links

directory that has to be split over several physical disks. For clarity, you can mount the
disks as /disk1, /disk2, etc., and then link the various subdirectories in a way that
makes efficient use of the space you have.

Another example is the linking of /dev/cdrom to, say, /dev/hdc so that pro-
grams accessing the device file /dev/cdrom (see Chapter 18) actually access the cor-
rect IDE drive.

15.2 Hard Links

UNIX allows the data of a file to have more than one name in separate places in the
same file system. Such a file with more than one name for the same data is called a
hard-linked file and is similar to a symbolic link. Try

✞ �

touch mydata
ln mydata mydataB
ls -al

✝ ✆

The files mydata and mydataB are indistinguishable. They share the same data, and
have a 2 in second column of the ls -al listing. This means that they are hard-linked
twice (that there are two names for this file).

The reason why hard links are sometimes used in preference to symbolic links is
that some programs are not fooled by a symbolic link: If you have, say, a script that
uses cp to copy a file, it will copy the symbolic link instead of the file it points to. &cp

actually has an option to override this behavior.- A hard link, however, will always be seen as
a real file.

On the other hand, hard links cannot be made between files on different file sys-
tems nor can they be made between directories.

129

15.2. Hard Links 15. Symbolic and Hard Links

130

Chapter 16

Pre-installed Documentation

This chapter tells you where to find documentation on a common LINUX distribu-
tion. The paths are derived from a RedHat distribution, but are no less applicable to
other distributions, although the exact locations might be different. One difference
between distributions is the migration of documentation source from /usr/???? to
/usr/share/????—the proper place for them—on account of their being shareable
between different machines. See Chapter 35 for the reason documentation goes where
it does. In many cases, documentation may not be installed or may be in completely
different locations. Unfortunately, I cannot keep track of what the 20 major vendors
are doing, so it is likely that this chapter will quickly become out of date.

For many proprietary operating systems, the definitive reference for their oper-
ating system is printed texts. For LINUX , much of documentation is written by the
authors themselves and is included with the source code. A typical LINUX distribu-
tion will package documentation along with the compiled binaries. Common distribu-
tions come with hundreds of megabytes of printable, hyperlinked, and plain text docu-
mentation. There is often no need to go the the World Wide Web unless something is
outdated.

If you have not already tried this, run
✞ �

ls -ld /usr/*/doc /usr/*/*/doc /usr/share/*/*/doc \
/opt/*/doc /opt/*/*/doc

✝ ✆

This is a somewhat unreliable way to search for potential documentation directories,
but it gives at least the following list of directories for an official RedHat 7.0 with a
complete set of installed packages:

✞ �
/usr/X11R6/doc /usr/share/vim/vim57/doc
/usr/lib/X11/doc /usr/share/doc
/usr/local/doc /usr/share/gphoto/doc

131

16. Pre-installed Documentation

/usr/share/texmf/doc /usr/share/lout/doc
✝ ✆

• Kernel documentation: /usr/src/linux/Documentation/

This directory contains information on all hardware drivers except graphic cards. The
kernel has built-in drivers for networking cards, SCSI controllers, sound cards, and so
on. If you need to find out if one of these is supported, this is the first place to look.

• X Window System graphics hardware support: /usr/X11R6/lib/X11/doc/

(This is the same as /usr/X11R6/doc/.) In this directory you will find documenta-
tion on all of the graphics hardware supported by , how to configure , tweak video
modes, cope with incompatible graphics cards, and so on. See Section 43.5 for details.

• TEX and Meta-Font reference: /usr/share/texmf/doc/

This directory has an enormous and comprehensive reference to the TEX typesetting
language and the Meta-Font font generation package. It is not, however, an exhaustive
reference.

• LATEX HTML documentation: /usr/share/texmf/doc/latex/latex2e-html/

This directory contains a large reference to the LATEX typesetting language. (This book
itself was typeset using LATEX.)

• HOWTOs: /usr/doc/HOWTO or /usr/share/doc/HOWTO

HOWTOs are an excellent source of layman tutorials for setting up almost any kind
of service you can imagine. RedHat seems to no longer ship this documentation with
their base set of packages. It is worth listing the contents here to emphasize diversity
of topics covered. These are mirrored all over the Internet, so you should have no
problem finding them from a search engine (in particular, from http://www.linuxdoc.org/):

3Dfx-HOWTO Finnish-HOWTO Modem-HOWTO Security-HOWTO
AX25-HOWTO Firewall-HOWTO Multi-Disk-HOWTO Serial-HOWTO
Access-HOWTO French-HOWTO Multicast-HOWTO Serial-Programming-HOWTO
Alpha-HOWTO Ftape-HOWTO NET-3-HOWTO Shadow-Password-HOWTO
Assembly-HOWTO GCC-HOWTO NFS-HOWTO Slovenian-HOWTO
Bash-Prompt-HOWTO German-HOWTO NIS-HOWTO Software-Release-Practice-HOWTO
Benchmarking-HOWTO Glibc2-HOWTO Networking-Overview-HOWTO Sound-HOWTO
Beowulf-HOWTO HAM-HOWTO Optical-Disk-HOWTO Sound-Playing-HOWTO
BootPrompt-HOWTO Hardware-HOWTO Oracle-HOWTO Spanish-HOWTO
Bootdisk-HOWTO Hebrew-HOWTO PCI-HOWTO TeTeX-HOWTO
Busmouse-HOWTO INDEX.html PCMCIA-HOWTO Text-Terminal-HOWTO

132

16. Pre-installed Documentation

CD-Writing-HOWTO INFO-SHEET PPP-HOWTO Thai-HOWTO
CDROM-HOWTO IPCHAINS-HOWTO PalmOS-HOWTO Tips-HOWTO
COPYRIGHT IPX-HOWTO Parallel-Processing-HOWTO UMSDOS-HOWTO
Chinese-HOWTO IR-HOWTO Pilot-HOWTO UPS-HOWTO
Commercial-HOWTO ISP-Hookup-HOWTO Plug-and-Play-HOWTO UUCP-HOWTO
Config-HOWTO Installation-HOWTO Polish-HOWTO Unix-Internet-Fundamentals-HOWTO
Consultants-HOWTO Intranet-Server-HOWTO Portuguese-HOWTO User-Group-HOWTO
Cyrillic-HOWTO Italian-HOWTO PostgreSQL-HOWTO VAR-HOWTO
DNS-HOWTO Java-CGI-HOWTO Printing-HOWTO VME-HOWTO
DOS-Win-to-Linux-HOWTO Kernel-HOWTO Printing-Usage-HOWTO VMS-to-Linux-HOWTO
DOS-to-Linux-HOWTO Keyboard-and-Console-HOWTO Quake-HOWTO Virtual-Services-HOWTO
DOSEMU-HOWTO KickStart-HOWTO README WWW-HOWTO
Danish-HOWTO LinuxDoc+Emacs+Ispell-HOWTO RPM-HOWTO WWW-mSQL-HOWTO
Distribution-HOWTO META-FAQ Reading-List-HOWTO XFree86-HOWTO
ELF-HOWTO MGR-HOWTO Root-RAID-HOWTO XFree86-Video-Timings-HOWTO
Emacspeak-HOWTO MILO-HOWTO SCSI-Programming-HOWTO XWindow-User-HOWTO
Esperanto-HOWTO MIPS-HOWTO SMB-HOWTO
Ethernet-HOWTO Mail-HOWTO SRM-HOWTO

• Mini HOWTOs: /usr/doc/HOWTO/mini or /usr/share/doc/HOWTO/mini

These are smaller quick-start tutorials in the same vein (also available from
http://www.linuxdoc.org/):

3-Button-Mouse DHCPcd Leased-Line PLIP Software-RAID
ADSL DPT-Hardware-RAID Linux+DOS+Win95+OS2 Partition Soundblaster-AWE
ADSM-Backup Diald Linux+FreeBSD Partition-Rescue StarOffice
AI-Alife Diskless Linux+FreeBSD-mini-HOWTO Path Term-Firewall
Advocacy Ext2fs-Undeletion Linux+NT-Loader Pre-Installation-Checklist TkRat
Alsa-sound Fax-Server Linux+Win95 Process-Accounting Token-Ring
Apache+SSL+PHP+fp Firewall-Piercing Loadlin+Win95 Proxy-ARP-Subnet Ultra-DMA
Automount GIS-GRASS Loopback-Root-FS Public-Web-Browser Update
Backup-With-MSDOS GTEK-BBS-550 Mac-Terminal Qmail+MH Upgrade
Battery-Powered Hard-Disk-Upgrade Mail-Queue Quota VAIO+Linux
Boca INDEX Mail2News RCS VPN
BogoMips INDEX.html Man-Page README Vesafb
Bridge IO-Port-Programming Modules RPM+Slackware Visual-Bell
Bridge+Firewall IP-Alias Multiboot-with-LILO RedHat-CD Windows-Modem-Sharing
Bzip2 IP-Masquerade NCD-X-Terminal Remote-Boot WordPerfect
Cable-Modem IP-Subnetworking NFS-Root Remote-X-Apps X-Big-Cursor
Cipe+Masq ISP-Connectivity NFS-Root-Client SLIP-PPP-Emulator XFree86-XInside
Clock Install-From-ZIP Netrom-Node Secure-POP+SSH Xterm-Title
Coffee Kerneld Netscape+Proxy Sendmail+UUCP ZIP-Drive
Colour-ls LBX Netstation Sendmail-Address-Rewrite ZIP-Install
Cyrus-IMAP LILO News-Leafsite Small-Memory
DHCP Large-Disk Offline-Mailing Software-Building

• LINUX documentation project: /usr/doc/LDP or /usr/share/doc/ldp

The LDP project’s home page is http://www.linuxdoc.org/. The LDP is a consolidation of
HOWTOs, FAQs, several books, man pages, and more. The web site will have anything
that is not already installed on your system.

• Web documentation: /home/httpd/html or /var/www/html

Some packages may install documentation here so that it goes online automati-
cally if your web server is running. (In older distributions, this directory was
/home/httpd/html.)

133

16. Pre-installed Documentation

• Apache reference: /home/httpd/html/manual or /var/www/html/manual

Apache keeps this reference material online, so that it is the default web page shown
when you install Apache for the first time. Apache is the most popular web server.

• Manual pages: /usr/man/ or /usr/share/man/

Manual pages were discussed in Section 4.7. Other directory superstructures (see page
137) may contain man pages—on some other UNIX systems man pages are littered ev-
erywhere.

To convert a man page to PostScript (for printing or viewing), use, for example
(for the cp command),

✞ �

groff -Tps -mandoc /usr/man/man1/cp.1 > cp.ps ; gv cp.ps
groff -Tps -mandoc /usr/share/man/man1/cp.1 > cp.ps ; gv cp.ps

✝ ✆

• info pages: /usr/info/ or /usr/share/info/

Info pages were discussed in Section 4.8.

• Individual package documentation: /usr/doc/* or /usr/share/doc/*

Finally, all packages installed on the system have their own individual documenta-
tion directory. A package foo will most probably have a documentation directory
/usr/doc/foo (or /usr/share/doc/foo). This directory most often contains doc-
umentation released with the sources of the package, such as release information, fea-
ture news, example code, or FAQs. If you have a particular interest in a package, you
should always scan its directory in /usr/doc (or /usr/share/doc) or, better still,
download its source distribution.

Below are the /usr/doc (or /usr/share/doc) directories that contained more
than a trivial amount of documentation for that package. In some cases, the package
had complete references. (For example, the complete Python references were contained
nowhere else.)

ImageMagick-5.2.2 gcc-c++-2.96 libtool-1.3.5 pmake-2.1.34
LPRng-3.6.24 ghostscript-5.50 libxml-1.8.9 pygtk-0.6.6
XFree86-doc-4.0.1 gimp-1.1.25 lilo-21.4.4 python-docs-1.5.2
bash-2.04 glibc-2.1.92 lsof-4.47 rxvt-2.6.3
bind-8.2.2 P5 gtk+-1.2.8 lynx-2.8.4 sane-1.0.3
cdrecord-1.9 gtk+-devel-1.2.8 ncurses-devel-5.1 sgml-tools-1.0.9
cvs-1.10.8 ipchains-1.3.9 nfs-utils-0.1.9.1 slang-devel-1.4.1
fetchmail-5.5.0 iproute-2.2.4 openjade-1.3 stylesheets-1.54.13rh
freetype-1.3.1 isdn4k-utils-3.1 openssl-0.9.5a tin-1.4.4
gawk-3.0.6 krb5-devel-1.2.1 pam-0.72 uucp-1.06.1
gcc-2.96 libtiff-devel-3.5.5 pine-4.21 vim-common-5.7

134

Chapter 17

Overview of the UNIX Directory
Layout

Here is an overview of how UNIX directories are structured. This is a simplistic and
theoretical overview and not a specification of the LINUX file system. Chapter 35
contains proper details of permitted directories and the kinds of files allowed within
them.

17.1 Packages

LINUX systems are divided into hundreds of small packages, each performing some
logical group of operations. On LINUX , many small, self-contained packages inter-
operate to give greater functionality than would large, aggregated pieces of software.
There is also no clear distinction between what is part of the operating system and
what is an application—every function is just a package.

A software package on a RedHat type system is distributed in a single RedHat
Package Manager (RPM) file that has a .rpm extension. On a Debian distribution, the
equivalent is a .deb package file, and on the Slackware distribution there are Slackware
.tgz files.

Each package will unpack as many files, which are placed all over the system.
Packages generally do not create major directories but unpack files into existing, well-
known, major directories.

Note that on a newly installed system there are no files anywhere that do not
belong to some package.

135

17.2. UNIX Directory Superstructure 17. Overview of the UNIX Directory Layout

17.2 UNIX Directory Superstructure

The root directory on a UNIX system typically looks like this:
✞ �
drwxr-xr-x 2 root root 2048 Aug 25 14:04 bin
drwxr-xr-x 2 root root 1024 Sep 16 10:36 boot
drwxr-xr-x 7 root root 35840 Aug 26 17:08 dev
drwxr-xr-x 41 root root 4096 Sep 24 20:55 etc

5 drwxr-xr-x 24 root root 1024 Sep 27 11:01 home
drwxr-xr-x 4 root root 3072 May 19 10:05 lib
drwxr-xr-x 2 root root 12288 Dec 15 1998 lost+found
drwxr-xr-x 7 root root 1024 Jun 7 11:47 mnt
dr-xr-xr-x 80 root root 0 Sep 16 10:36 proc

10 drwxr-xr-x 3 root root 3072 Sep 23 23:41 sbin
drwxrwxrwt 5 root root 4096 Sep 28 18:12 tmp
drwxr-xr-x 25 root root 1024 May 29 10:23 usr

✝ ✆

The /usr directory typically looks like this:
✞ �
drwxr-xr-x 9 root root 1024 May 15 11:49 X11R6
drwxr-xr-x 6 root root 27648 Sep 28 17:18 bin
drwxr-xr-x 2 root root 1024 May 13 16:46 dict
drwxr-xr-x 261 root root 7168 Sep 26 10:55 doc

5 drwxr-xr-x 7 root root 1024 Sep 3 08:07 etc
drwxr-xr-x 2 root root 2048 May 15 10:02 games
drwxr-xr-x 4 root root 1024 Mar 21 1999 i386-redhat-linux
drwxr-xr-x 36 root root 7168 Sep 12 17:06 include
drwxr-xr-x 2 root root 9216 Sep 7 09:05 info

10 drwxr-xr-x 79 root root 12288 Sep 28 17:17 lib
drwxr-xr-x 3 root root 1024 May 13 16:21 libexec
drwxr-xr-x 15 root root 1024 May 13 16:35 man
drwxr-xr-x 2 root root 4096 May 15 10:02 sbin
drwxr-xr-x 39 root root 1024 Sep 12 17:07 share

15 drwxr-xr-x 3 root root 1024 Sep 4 14:38 src
drwxr-xr-x 3 root root 1024 Dec 16 1998 var

✝ ✆

The /usr/local directory typically looks like this:
✞ �
drwxr-xr-x 3 root root 4096 Sep 27 13:16 bin
drwxr-xr-x 2 root root 1024 Feb 6 1996 doc
drwxr-xr-x 4 root root 1024 Sep 3 08:07 etc
drwxr-xr-x 2 root root 1024 Feb 6 1996 games

5 drwxr-xr-x 5 root root 1024 Aug 21 19:36 include
drwxr-xr-x 2 root root 1024 Sep 7 09:08 info
drwxr-xr-x 9 root root 2048 Aug 21 19:44 lib
drwxr-xr-x 12 root root 1024 Aug 2 1998 man
drwxr-xr-x 2 root root 1024 Feb 6 1996 sbin

10 drwxr-xr-x 15 root root 1024 Sep 7 09:08 share
✝ ✆

136

17. Overview of the UNIX Directory Layout 17.2. UNIX Directory Superstructure

and the /usr/X11R6 directory also looks similar. What is apparent here is that
all these directories contain a similar set of subdirectories. This set of subdirectories
is called a directory superstructure or superstructure. &To my knowledge this is a new term not
previously used by UNIX administrators.-

The superstructure always contains a bin and lib subdirectory, but almost all
others are optional.

Each package will install under one of these superstructures, meaning that it will
unpack many files into various subdirectories of the superstructure. A RedHat pack-
age would always install under the /usr or / superstructure, unless it is a graphical

Window System application, which installs under the /usr/X11R6/ superstruc-
ture. Some very large applications may install under a /opt/<package-name> su-
perstructure, and homemade packages usually install under the /usr/local/ su-
perstructure (local means specific to this very machine). The directory superstructure
under which a package installs is often called the installation prefix. Packages almost
never install files across different superstructures. &Exceptions to this are configuration files which
are mostly stored in /etc/.-

Typically, most of the system is under /usr. This directory can be read-only,
since packages should never need to write to this directory—any writing is done un-
der /var or /tmp (/usr/var and /usr/tmp are often just symlinked to /var or
/tmp, respectively). The small amount under / that is not part of another superstruc-
ture (usually about 40 megabytes) performs essential system administration functions.
These are commands needed to bring up or repair the system in the absence of /usr.

The list of superstructure subdirectories and their descriptions is as follows:

bin Binary executables. Usually all bin directories are in the PATH environment vari-
able so that the shell will search all these directories for binaries.

sbin Superuser binary executables. These are programs for system administration only.
Only the root will have these executables in their PATH.

lib Libraries. All other data needed by programs goes in here. Most packages have
their own subdirectory under lib to store data files into. Dynamically Linked
Libraries (DLLs or .so files.) &Executable program code shared by more than one program
in the bin directory to save disk space and memory.- are stored directly in lib.

etc Et cetera. Configuration files.

var Variable data. Data files that are continually being re-created or updated.

doc Documentation. This directory is discussed in Chapter 16.

man Manual pages. This directory is discussed in Chapter 16.

info Info pages. This directory is discussed in Chapter 16.

137

17.3. LINUX on a Single Floppy Disk 17. Overview of the UNIX Directory Layout

share Shared data. Architecture-independent files. Files that are independent of the
hardware platform go here. This allows them to be shared across different ma-
chines, even though those machines may have a different kind of processor alto-
gether.

include header files. These are for development.

src source files. These are sources to the kernel or locally built packages.

tmp Temporary files. A convenient place for a running program to create a file for tem-
porary use.

17.3 LINUX on a Single 1.44 Megabyte Floppy Disk

You can get LINUX to run on a 1.44 megabyte floppy disk if you trim all unneeded
files off an old Slackware distribution with a 2.0.3x kernel. You can compile a small
2.0.3x kernel to about 400 kilobytes (compressed) (see Chapter 42). A file system can
be reduced to 2–3 megabytes of absolute essentials and when compressed will fit into
1 megabyte. If the total is under 1.44 megabytes, then you have your LINUX on one
floppy. The file list might be as follows (includes all links):

/bin /etc /lib /sbin /var
/bin/sh /etc/default /lib/ld.so /sbin/e2fsck /var/adm
/bin/cat /etc/fstab /lib/libc.so.5 /sbin/fdisk /var/adm/utmp
/bin/chmod /etc/group /lib/ld-linux.so.1 /sbin/fsck /var/adm/cron
/bin/chown /etc/host.conf /lib/libcurses.so.1 /sbin/ifconfig /var/spool
/bin/cp /etc/hosts /lib/libc.so.5.3.12 /sbin/iflink /var/spool/uucp
/bin/pwd /etc/inittab /lib/libtermcap.so.2.0.8 /sbin/ifsetup /var/spool/uucp/SYSLOG
/bin/dd /etc/issue /lib/libtermcap.so.2 /sbin/init /var/spool/uucp/ERRLOG
/bin/df /etc/utmp /lib/libext2fs.so.2.3 /sbin/mke2fs /var/spool/locks
/bin/du /etc/networks /lib/libcom err.so.2 /sbin/mkfs /var/tmp
/bin/free /etc/passwd /lib/libcom err.so.2.0 /sbin/mkfs.minix /var/run
/bin/gunzip /etc/profile /lib/libext2fs.so.2 /sbin/mklost+found /var/run/utmp
/bin/gzip /etc/protocols /lib/libm.so.5.0.5 /sbin/mkswap
/bin/hostname /etc/rc.d /lib/libm.so.5 /sbin/mount /home/user
/bin/login /etc/rc.d/rc.0 /lib/cpp /sbin/route
/bin/ls /etc/rc.d/rc.K /sbin/shutdown /mnt
/bin/mkdir /etc/rc.d/rc.M /usr /sbin/swapoff
/bin/mv /etc/rc.d/rc.S /usr/adm /sbin/swapon /proc
/bin/ps /etc/rc.d/rc.inet1 /usr/bin /sbin/telinit
/bin/rm /etc/rc.d/rc.6 /usr/bin/less /sbin/umount /tmp
/bin/stty /etc/rc.d/rc.4 /usr/bin/more /sbin/agetty
/bin/su /etc/rc.d/rc.inet2 /usr/bin/sleep /sbin/update /dev/<various-devices>
/bin/sync /etc/resolv.conf /usr/bin/reset /sbin/reboot
/bin/zcat /etc/services /usr/bin/zless /sbin/netcfg
/bin/dircolors /etc/termcap /usr/bin/file /sbin/killall5
/bin/mount /etc/motd /usr/bin/fdformat /sbin/fsck.minix
/bin/umount /etc/magic /usr/bin/strings /sbin/halt
/bin/bash /etc/DIR COLORS /usr/bin/zgrep /sbin/badblocks
/bin/domainname /etc/HOSTNAME /usr/bin/nc /sbin/kerneld
/bin/head /etc/mtools /usr/bin/which /sbin/fsck.ext2
/bin/kill /etc/ld.so.cache /usr/bin/grep
/bin/tar /etc/psdevtab /usr/sbin
/bin/cut /etc/mtab /usr/sbin/showmount
/bin/uname /etc/fastboot /usr/sbin/chroot
/bin/ping /usr/spool
/bin/ln /usr/tmp
/bin/ash

Note that the etc directory differs from that of a RedHat distribution. The sys-
tem startup files /etc/rc.d are greatly simplified under Slackware.

138

17. Overview of the UNIX Directory Layout 17.3. LINUX on a Single Floppy Disk

The /lib/modules directory has been stripped for the creation of this floppy.
/lib/modules/2.0.36 would contain dynamically loadable kernel drivers (mod-
ules). Instead, all needed drivers are compiled into the kernel for simplicity (explained
in Chapter 42).

At some point, try creating a single floppy distribution as an exercise. This task
should be most instructive to a serious system administrator. At the very least, you
should look through all of the commands in the bin directories and the sbin directo-
ries above and browse through the man pages of any that are unfamiliar.

The preceding file system comes from the morecram-1.3 package available
from http://rute.sourceforge.net/morecram-1.3.tar.gz. It can be downloaded to provide a
useful rescue and setup disk. Note that there are many such rescue disks available
which are more current than morecram.

139

17.3. LINUX on a Single Floppy Disk 17. Overview of the UNIX Directory Layout

140

Chapter 18

UNIX Devices

UNIX was designed to allow transparent access to hardware devices across all CPU
architectures. UNIX also supports the philosophy that all devices be accessible using
the same set of command-line utilities.

18.1 Device Files

UNIX has a beautifully consistent method of allowing programs to access hardware.
Under UNIX, every piece of hardware is a file. To demonstrate this novelty, try viewing
the file /dev/hda (you will have to be root to run this command):

✞ �

less -f /dev/hda
✝ ✆

/dev/hda is not really a file at all. When you read from it, you are actually reading
directly from the first physical hard disk of your machine. /dev/hda is known as a
device file, and all of them are stored under the /dev directory.

Device files allow access to hardware. If you have a sound card installed and
configured, you can try:

✞ �

cat /dev/dsp > my_recording
✝ ✆

Say something into your microphone and then type:
✞ �

cat my_recording > /dev/dsp
✝ ✆

The system will play out the sound through your speakers. (Note that this does not
always work, since the recording volume or the recording speed may not be set cor-
rectly.)

141

18.2. Block and Character Devices 18. UNIX Devices

If no programs are currently using your mouse, you can also try:
✞ �

cat /dev/mouse
✝ ✆

If you now move the mouse, the mouse protocol commands will be written directly
to your screen (it will look like garbage). This is an easy way to see if your mouse is
working, and is especially useful for testing a serial port. Occasionally this test doesn’t
work because some command has previously configured the serial port in some odd
way. In that case, also try:

✞ �

cu -s 1200 -l /dev/mouse
✝ ✆

At a lower level, programs that access device files do so in two basic ways:

• They read and write to the device to send and retrieve bulk data (much like less
and cat above).

• They use the ioctl (IO Control) function to configure the device. (In the case
of the sound card, this might set mono versus stereo, recording speed, or other
parameters.)

Because every kind of device that one can think of (except for network cards) can
be twisted to fit these two modes of operation, UNIX’s scheme has endured since its
inception and is the universal method of accessing hardware.

18.2 Block and Character Devices

Hardware devices can generally be categorized into random access devices like disk
and tape drives, and serial devices like mouse devices, sound cards, and terminals.

Random access devices are usually accessed in large contiguous blocks of data
that are stored persistently. They are read from in discrete units (for most disks, 1024
bytes at a time). These are known as block devices. Running an ls -l /dev/hda
shows a b on the far left of the listing, which means that your hard disk is a block
device:

✞ �

brw-r----- 1 root disk 3, 64 Apr 27 1995 /dev/hdb
✝ ✆

Serial devices, on the other hand, are accessed one byte at a time. Data can be
read or written only once. For example, after a byte has been read from your mouse,
the same byte cannot be read by some other program. Serial devices are called character
devices and are indicated by a c on the far left of the listing. Your /dev/dsp (Digital
Signal Processor—that is, your sound card) device looks like:

142

18. UNIX Devices 18.3. Major and Minor Device Numbers

✞ �

crw-r--r-- 1 root sys 14, 3 Jul 18 1994 /dev/dsp
✝ ✆

18.3 Major and Minor Device Numbers

Devices are divided into sets called major device numbers. For instance, all SCSI disks
are major number 8. Further, each individual device has a minor device number like
/dev/sda, which is minor device 0. Major and minor device numbers identify the
device to the kernel. The file name of the device is arbitrary and is chosen for conve-
nience and consistency. You can see the major and minor device number (8, 0) in
the ls listing for /dev/sda:

✞ �

brw-rw---- 1 root disk 8, 0 May 5 1998 /dev/sda
✝ ✆

18.4 Common Device Names

A list of common devices and their descriptions follows. The major num-
bers are shown in parentheses. The complete reference for devices is the file
/usr/src/linux/Documentation/devices.txt.

/dev/hd?? hd stands for hard disk, but refers here only to IDE devices—that is, com-
mon hard disks. The first letter after the hd dictates the physical disk drive:

/dev/hda (3) First drive, or primary master.

/dev/hdb (3) Second drive, or primary slave.

/dev/hdc (22) Third drive, or secondary master.

/dev/hdd (22) Fourth drive, or secondary slave.

When accessing any of these devices (with, say, less /dev/hda), you would
be reading raw from the actual physical disk starting at the first sector of the first
track, sequentially, until the last sector of the last track.

Partitions &With all operating systems, disk drives are divided into sections called partitions. A
typical disk might have 2 to 10 partitions. Each partition acts as a whole disk on its own, giving the
effect of having more than one disk. For instance, you might have Windows installed on one partition
and LINUX installed on another. More details come in Chapter 19.- are named /dev/hda1,
/dev/hda2, etc., indicating the first, second, etc., partition on physical drive a.

143

18.4. Common Device Names 18. UNIX Devices

/dev/sd?? (8) sd stands for SCSI disk, the high-end drives mostly used by servers.
sda is the first physical disk probed, and so on. Probing goes by SCSI ID and has
a system completely different from that of IDE devices. /dev/sda1 is the first
partition on the first drive, etc.

/dev/ttyS? (4) These are serial devices numbered from 0 up. /dev/ttyS0 is your
first serial port (COM1 under MS-DOS or Windows). If you have a multiport
card, these can go to 32, 64, and up.

/dev/psaux (10) PS/2 mouse.

/dev/mouse A symlink to /dev/ttyS0 or /dev/psaux. Other mouse devices are
also supported.

/dev/modem A symlink to /dev/ttyS1 or whatever port your modem is on.

/dev/cua? (4) Identical to ttyS? but now fallen out of use.

/dev/fd? (2) Floppy disk. fd0 is equivalent to your A: drive and fd1 your B: drive.
The fd0 and fd1 devices autodetect the format of the floppy disk, but you can
explicitly specify a higher density by using a device name like /dev/fd0H1920,
which gives you access to 1.88 MB, formatted, 3.5-inch floppies. Other floppy
devices are shown in Table 18.1.

See Section 19.3.4 on how to format these devices.

/dev/par? (6) Parallel port. /dev/par0 is your first parallel port or LPT1 under DOS.

/dev/lp? (6) Line printer. Identical to /dev/par?.

/dev/urandom Random number generator. Reading from this device gives pseudo-
random numbers.

/dev/st? (9) SCSI tape. SCSI backup tape drive.

/dev/zero (1) Produces zero bytes, and as many of them as you need. This is useful
if you need to generate a block of zeros for some reason. Use dd (see Section
18.5.2) to read a specific number of zeros.

/dev/null (1) Null device. Reads nothing. Anything you write to the device is dis-
carded. This is very useful for discarding output.

/dev/pd? Parallel port IDE disk.

/dev/pcd? Parallel port ATAPI CD-ROM.

/dev/pf? Parallel port ATAPI disk.

/dev/sr? SCSI CD-ROM.

/dev/scd? SCSI CD-ROM (Identical, alternate name).

144

18. UNIX Devices 18.4. Common Device Names

Table 18.1 Floppy device names
Floppy devices are named /dev/fdlmnnnn
l 0 A: drive

1 B: drive
m d “double density” 360 KB or 5.25 inch

h “high density” 1.2 MB or 5.25 inch
q “quad density” 5.25 inch
D “double density” 720 KB or 3.5 inch
H “high density” 1.44 MB or 3.5 inch
E Extra density 3.5 inch.
u Any 3.5-inch floppy. Note that u now replaces

D, H, and E, thus leaving it up to the user to de-
cide if the floppy has enough density for the
format.

nnnn 360 410 420 720
800 820 830 880
1040 1120 1200
1440 1476 1494
1600 1680 1722
1743 1760 1840
1920 2880 3200
3520 3840

The size of the format. With D, H, and E, 3.5-
inch floppies have devices only for the sizes
that are likely to work. For instance, there is no
/dev/fd0D1440 because double density disks
won’t manage 1440 KB. /dev/fd0H1440 and
/dev/fd0H1920 are probably the ones you
are most interested in.

/dev/sg? SCSI generic. This is a general-purpose SCSI command interface for devices
like scanners.

/dev/fb? (29) Frame buffer. This represents the kernel’s attempt at a graphics driver.

/dev/cdrom A symlink to /dev/hda, /dev/hdb, or /dev/hdc. It can also be linked
to your SCSI CD-ROM.

/dev/ttyI? ISDN modems.

/dev/tty? (4) Virtual console. This is the terminal device for the virtual console itself
and is numbered /dev/tty1 through /dev/tty63.

/dev/tty?? (3) and /dev/pty?? (2) Other TTY devices used for emulating a termi-
nal. These are called pseudo-TTYs and are identified by two lowercase letters
and numbers, such as ttyq3. To nondevelopers, these are mostly of theoretical
interest.

The file /usr/src/linux/Documentation/devices.txt also has this to say
(quoted verbatim):

145

18.4. Common Device Names 18. UNIX Devices

Recommended links

It is recommended that these links exist on all systems:

/dev/core /proc/kcore symbolic Backward compatibility
/dev/ramdisk ram0 symbolic Backward compatibility
/dev/ftape qft0 symbolic Backward compatibility
/dev/bttv0 video0 symbolic Backward compatibility
/dev/radio radio0 symbolic Backward compatibility
/dev/i2o* /dev/i2o/* symbolic Backward compatibility
/dev/scd? sr? hard Alternate SCSI CD-ROM

name

Locally defined links

The following links may be established locally to conform to the configuration of
the system. This is merely a tabulation of existing practice, and does not constitute
a recommendation. However, if they exist, they should have the following uses:

/dev/mouse mouse port symbolic Current mouse device
/dev/tape tape device symbolic Current tape device
/dev/cdrom CD-ROM device symbolic Current CD-ROM device
/dev/cdwriter CD-writer symbolic Current CD-writer device
/dev/scanner scanner symbolic Current scanner device
/dev/modem modem port symbolic Current dialout device
/dev/root root device symbolic Current root file system
/dev/swap swap device symbolic Current swap device

/dev/modem should not be used for a modem which supports dial-in as well as
dialout, as it tends to cause lock file problems. If it exists, /dev/modem should
point to the appropriate primary TTY device (the use of the alternate callout devices
is deprecated).

For SCSI devices, /dev/tape and /dev/cdrom should point to the “cooked”
devices (/dev/st* and /dev/sr*, respectively), whereas /dev/cdwriter and
/dev/scanner should point to the appropriate generic SCSI devices (/dev/sg*).

/dev/mouse may point to a primary serial TTY device, a hardware mouse device,
or a socket for a mouse driver program (e.g. /dev/gpmdata).

Sockets and pipes

Non-transient sockets and named pipes may exist in /dev. Common entries are:

/dev/printer socket lpd local socket
/dev/log socket syslog local socket
/dev/gpmdata socket mouse multiplexer

146

18. UNIX Devices 18.5. dd, tar, and Tricks with Block Devices

18.5 dd, tar, and Tricks with Block Devices

dd probably originally stood for disk dump. It is actually just like cat except it can
read and write in discrete blocks. It essentially reads and writes between devices while
converting the data in some way. It is generally used in one of these ways:

✞ �
dd if=<in-file> of=<out-file> [bs=<block-size>] \

[count=<number-of-blocks>] [seek=<output-offset>] \
[skip=<input-offset>]

5 dd if=<in-file> [bs=<block-size>] [count=<number-of-blocks>] \
[skip=<input-offset>] > <outfile>

dd of=<out-file> [bs=<block-size>] [count=<number-of-blocks>] \
[seek=<output-offset>] < <infile>

✝ ✆

To use dd, you must specify an input file and an output file with the if= and
of= options. If the of= option is omitted, then dd writes to stdout. If the if= option
is omitted, then dd reads from stdin. &If you are confused, remember that dd thinks of in and out
with respect to itself.-

Note that dd is an unforgiving and destructive command that should be used with
caution.

18.5.1 Creating boot disks from boot images

To create a new RedHat boot floppy, find the boot.img file on ftp.redhat.com,
and with a new floppy, run:

✞ �

dd if=boot.img of=/dev/fd0
✝ ✆

This command writes the raw disk image directly to the floppy disk. All distributions
will have similar disk images for creating installation floppies (and sometimes rescue
floppies).

18.5.2 Erasing disks

If you have ever tried to repartition a LINUX disk back into a DOS/Windows disk,
you will know that DOS/Windows FDISK has bugs in it that prevent it from recreating
the partition table. A quick

✞ �

dd if=/dev/zero of=/dev/hda bs=1024 count=10240
✝ ✆

147

18.5. dd, tar, and Tricks with Block Devices 18. UNIX Devices

will write zeros to the first 10 megabytes of your first IDE drive. This will wipe out the
partition table as well as any file system information and give you a “brand new” disk.

To zero a floppy disk is just as easy:
✞ �

dd if=/dev/zero of=/dev/fd0 bs=1024 count=1440
✝ ✆

Even writing zeros to a floppy may not be sufficient. Specialized equipment can
probably still read magnetic media after it has been erased several times. If, however,
you write random bits to the floppy, it becomes completely impossible to determine
what was on it:

✞ �

mknod /dev/urandom c 1 9
for i in 1 2 3 4 ; do

dd if=/dev/urandom of=/dev/fd0 bs=1024 count=1440
done

✝ ✆

18.5.3 Identifying data on raw disks

Here is a nice trick to find out something about a hard drive:
✞ �

dd if=/dev/hda1 count=1 bs=512 | file -
✝ ✆

gives x86 boot sector.

To discover what a floppy disk is, try
✞ �

dd if=/dev/fd0 count=1 bs=512 | file -
✝ ✆

which gives x86 boot sector, system)k?/bIHC, FAT (12 bit) for DOS
floppies.

18.5.4 Duplicating a disk

If you have two IDE drives that are of identical size, and provided that you are sure
they contain no bad sectors and provided neither are mounted, you can run

✞ �

dd if=/dev/hdc of=/dev/hdd
✝ ✆

to copy the entire disk and avoid having to install an operating system from scratch.
It doesn’t matter what is on the original (Windows, LINUX , or whatever) since each
sector is identically duplicated; the new system will work perfectly.

(If they are not the same size, you will have to use tar or mirrordir to replicate the
file system exactly.)

148

18. UNIX Devices 18.5. dd, tar, and Tricks with Block Devices

18.5.5 Backing up to floppies

You can use tar to back up to any device. Consider periodic backups to an ordinary
IDE drive instead of a tape. Here we back up to the secondary slave:

✞ �

tar -cvzf /dev/hdd /bin /boot /dev /etc /home /lib /sbin /usr /var
✝ ✆

tar can also back up across multiple floppy disks:
✞ �

tar -cvMf /dev/fd0 /home/simon
✝ ✆

18.5.6 Tape backups

tar traditionally backs up onto tape drives. The commands
✞ �

mt -f /dev/st0 rewind
tar -cvf /dev/st0 /home

✝ ✆

rewind scsi tape 0 and archive the /home directory onto it. You should not try to use
compression with tape drives because they are error prone, and a single error could
make the entire archive unrecoverable. The mt command stands for magnetic tape
and controls generic SCSI tape devices. See also mt(1).

18.5.7 Hiding program output, creating blocks of zeros

If you don’t want to see any program output, just append > /dev/null to the com-
mand. For example, we aren’t often interested in the output of make. &make is discussed
later.-Here we absorb everything save for error messages.

✞ �

make > /dev/null
✝ ✆

Then, of course, we can absorb all output including error messages with either
✞ �

make >& /dev/null
✝ ✆

or
✞ �

make > /dev/null 2>&1
✝ ✆

The device /dev/null finds innumerable uses in shell scripting to suppress the out-
put of a command or to feed a command dummy (empty) input. /dev/null is a safe

149

18.6. Creating Devices with mknod and /dev/MAKEDEV 18. UNIX Devices

file from a security point of view. It is often used when a file is required for some fea-
ture in a configuration script, and you would like the particular feature disabled. For
instance, specifying the users shell to /dev/null inside the password file will certainly
prevent insecure use of a shell, and is an explicit way of saying that that account does
not allow shell logins.

You can also use /dev/null to create a file containing nothing:
✞ �

cat /dev/null > myfile
✝ ✆

or alternatively, to create a file containing only zeros. Try
✞ �

dd if=/dev/zero bs=1024 count=<number-of-kilobytes> > myfile
✝ ✆

18.6 Creating Devices with mknod and /dev/MAKEDEV

Although all devices are listed in the /dev directory, you can create a device anywhere
in the file system by using the mknod command:

✞ �

mknod [-m <mode>] <file-name> [b|c] <major-number> <minor-number>
✝ ✆

The letters b and c are for creating a block or character device, respectively.

To demonstrate, try
✞ �

mknod -m 0600 ˜/my-floppy b 2 0
ls -al /dev/fd0 ˜/my-floppy

✝ ✆

my-floppy can be used just like /dev/fd0

Note carefully the mode (i.e., the permissions) of /dev/fd0. /dev/fd0 should
be readable and writable only to root and to users belonging to the floppy group,
since we obviously don’t want an arbitrary user to be able to log in (remotely) and
overwrite a floppy disk.

In fact, this is the reason for having devices represented as files in the first place.
UNIX files naturally support group access control, and therefore so do devices.

To create devices that are missing from your /dev directory (some esoteric de-
vices will not be present by default), simply look up the device’s major and minor num-
ber in /usr/src/linux/Documentation/devices.txt and use the mknod com-
mand. This procedure is, however, somewhat tedious, and the script /dev/MAKEDEV
is usually available for convenience. You must be in the /dev directory before you run this
script.

150

18. UNIX Devices 18.6. Creating Devices with mknod and /dev/MAKEDEV

Typical usage of MAKEDEV is
✞ �

cd /dev
./MAKEDEV -v fd0
./MAKEDEV -v fd1

✝ ✆

to create a complete set of floppy disk devices.

The man page for MAKEDEV contains more details. In particular, it states:

Note that programs giving the error “ENOENT: No such file or directory” normally
means that the device file is missing, whereas “ENODEV: No such device” normally
means the kernel does not have the driver configured or loaded.

151

18.6. Creating Devices with mknod and /dev/MAKEDEV 18. UNIX Devices

152

Chapter 19

Partitions, File Systems,
Formatting, Mounting

19.1 The Physical Disk Structure

Physical disks are divided into partitions. &See /dev/hd?? under Section 18.4.- Informa-
tion as to how the disk is partitioned up is stored in a partition table, which is a small
area of the disk separate from the partitions themselves.

19.1.1 Cylinders, heads, and sectors

The physical drive itself usually comprises several actual disks of which both sides are
used. The sides are labelled 0, 1, 2, 3, and so on, and are also called heads because
one magnetic head per side does the actual reading and writing. Each side/head has
tracks, and each track is divided into segments called sectors. Each sector typically
holds 512 bytes. The total amount of space on the drive in bytes is therefore:

512 � (sectors-per-track) � (tracks-per-side) � (number-of-sides)

A single track and all the tracks of the same diameter (on all the sides) are called a
cylinder. Disks are normally talked about in terms of “cylinders and sectors” instead of
“sides, tracks, and sectors.” Partitions are (usually) divided along cylinder boundaries.
Hence, disks do not have arbitrarily sized partitions; rather, the size of the partition is
usually a multiple of the amount of data held in a single cylinder. Partitions therefore
have a definite inner and outer diameter. Figure 19.1 illustrates the layout of a hard
disk.

153

19.1. The Physical Disk Structure 19. Partitions, File Systems, Formatting, Mounting

Side 0

Side 1
Side 2

Side 3
Side 4

Side 5

SectorPartition

Cylinder

Figure 19.1 Hard drive platters and sector layout

19.1.2 Large Block Addressing

The system above is quite straightforward except for the curious limitation that par-
tition tables have only 10 bits in which to store the partition’s cylinder offset. This
means that no disk can have more than 1024 cylinders. This limitation was overcome
by multiplying up the number of heads in software to reduce the number of cylinders,
&Called LBA (Large Block Addressing) mode.- hence portraying a disk of impossible propor-
tions. The user, however, need never be concerned that the physical disk is completely
otherwise.

19.1.3 Extended partitions

The partition table has room for only four partitions. For more partitions, one of these
four partitions can be divided into many smaller partitions, called logical partitions.
The original four are then called primary partitions. If a primary partition is subdivided
in this way, it is known as an extended primary or extended partition. Typically, the
first primary partition will be small (/dev/hda1, say). The second primary partition
will fill the rest of the disk as an extended partition (/dev/hda2, say). In this case,
the entries in the partition table of /dev/hda3 and /dev/hda4 will be blank. The

154

19. Partitions, File Systems, Formatting, Mounting 19.2. Partitioning a New Disk

extended partition can be subdivided repeatedly to give /dev/hda5, /dev/hda6, and
so on.

19.2 Partitioning a New Disk

A new disk has no partition information. Typing fdisk will start an interactive parti-
tioning utility. The command

✞ �

fdisk /dev/hda
✝ ✆

fdisks your primary master.

What follows is an example of the partitioning of a new hard drive. Most dis-
tributions these days have a simpler graphical system for creating partitions, so using
fdisk will not be necessary at installation time. However, adding a new drive or
transferring/copying a LINUX system to new hardware will require partitioning.

On UNIX, each partition has its own directory. Files under one directory might be
stored on a different disk or a different partition to files in another directory. Typically, the
/var directory (and all subdirectories beneath it) is stored on a different partition from
the /usr directory (and all subdirectories beneath it).

Table 19.2 offers a general guideline as to how a server machine should be set
up (with home computers, you can be far more liberal—most home PCs can do with
merely a swap and / partition.). When you install a new server, your distribution
should allow you to customize your partitions to match this table.

If another operating system is already installed in the first partition, you can type
p and might see:

✞ �
Command (m for help): p

Disk /dev/hda: 255 heads, 63 sectors, 788 cylinders
Units = cylinders of 16065 * 512 bytes

5

Device Boot Start End Blocks Id System
/dev/hda1 1 312 2506108+ c Win95 FAT32 (LBA)

✝ ✆

In such a case, you can just start adding further partitions.

The exact same procedure applies in the case of SCSI drives. The only differ-
ence is that /dev/hd? changes to /dev/sd?. (See Chapter 42 for SCSI device driver
information.)

Here is a partitioning session with fdisk:
✞ �
[root@cericon /root]# fdisk /dev/hda
Device contains neither a valid DOS partition table, nor Sun or SGI disklabel

155

19.2. Partitioning a New Disk 19. Partitions, File Systems, Formatting, Mounting

Table 19.1 Which directories should have their own partitions, and their partitions’
sizes

Directory Size
(Megabytes)

Why?

swap Twice the
size of your
RAM

This is where memory is drawn from when you run out. The swap partition gives pro-
grams the impression that you have more RAM than you actually do, by swapping data
in and out of this partition.

Swap partitions cannot be over 128 MB, but you can have many of them. This limitation
has been removed in newer kernels.

Disk access is obviously slow compared to direct RAM, but when a lot of idle programs
are running, swapping to disk allows more real RAM for needy programs.

/boot 5–10 This directory need not be on a different partition to your / partition (below). Whatever
you choose, there must be no chance that a file under /boot could span sectors that are
over the 1024 cylinder boundary (i.e., outside of the first 500 megabytes of your hard
drive). This is why /boot (or /) is often made the first primary partition of the hard
drive. If this requirment is not met, you get the famous LI prompt on a nonbooting
system. See Section 31.2.4.

/var 100–1000 Here is variable data, like log files, mail spool files, database files, and your web proxy
cache (web cache and databases may need to be much bigger though). For newer distri-
butions, this directory also contains any local data that this site serves (like FTP files or
web pages). If you are going to be using a web cache, either store the stuff in a separate
partition/disk or make your /var partition huge. Also, log files can grow to enormous
sizes when there are problems. You don’t want a full or corrupted /var partition to effect
the rest of your disk. This is why it goes in its own partition.

/tmp 50 Here is temporary data. Programs access this frequently and need it to be fast. It goes in
a separate partition because programs really need to create a temporary file sometimes,
and this should not be affected by other partitions becoming full. This partition is also
more likely to be corrupted.

/usr 500–1500 Here is your distribution (Debian , RedHat, Mandrake, etc.). It can be mounted read-
only. If you have a disk whose write access can physically be disabled (like some SCSI
drives), then you can put /usr on a separate drive. Doing so will make for a much more
secure system. Since /usr is stock standard, this is the partition you can most afford
to lose. Note however that /usr/local/ may be important to you—possibly link this
elsewhere.

/home Remainder
of disk

Here are your users’ home directories. For older distributions, this directory also contains
any local data that this site serves (like FTP files or web pages).

/ 50–100 Anything not in any of the other directories is directly under your / directory. These
are the /bin (5MB), (possibly) /boot (3MB), /dev (0.1MB), /etc (4MB), /lib (20MB),
/mnt (0MB), /proc (0MB), and /sbin (4MB) directories. They are essential for the sys-
tem to start up and contain minimal utilities for recovering the other partitions in an
emergency. As stated above, if the /boot directory is in a separate partition, then / must
be below the 1024 cylinder boundary (i.e., within the first 500 megabytes of your hard
drive).

Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous

5 content won’t be recoverable.
✝ ✆

First, we use the p option to print current partitions—
✞ �
Command (m for help): p

Disk /dev/hda: 255 heads, 63 sectors, 788 cylinders
Units = cylinders of 16065 * 512 bytes

5

Device Boot Start End Blocks Id System
✝ ✆

156

19. Partitions, File Systems, Formatting, Mounting 19.2. Partitioning a New Disk

—of which there are clearly none. Now n lets us add a new partition:
✞ �
Command (m for help): n
Command action

e extended
p primary partition (1-4)

5 p
✝ ✆

We want to define the first physical partition starting at the first cylinder:
✞ �
Partition number (1-4): 1
First cylinder (1-788, default 1): 1

✝ ✆

We would like an 80-megabyte partition. fdisk calculates the last cylinder au-
tomatically with:

✞ �
Last cylinder or +size or +sizeM or +sizeK (1-788, default 788): +80M

✝ ✆

Our next new partition will span the rest of the disk and will be an extended
partition:

✞ �
Command (m for help): n
Command action

e extended
p primary partition (1-4)

5 e
Partition number (1-4): 2
First cylinder (12-788, default 12): 12
Last cylinder or +size or +sizeM or +sizeK (12-788, default 788): 788

✝ ✆

Our remaining logical partitions fit within the extended partition:
✞ �
Command (m for help): n
Command action

l logical (5 or over)
p primary partition (1-4)

5 l
First cylinder (12-788, default 12): 12
Last cylinder or +size or +sizeM or +sizeK (12-788, default 788): +64M

Command (m for help): n
10 Command action

l logical (5 or over)
p primary partition (1-4)

l
First cylinder (21-788, default 21): 21

15 Last cylinder or +size or +sizeM or +sizeK (21-788, default 788): +100M

157

19.2. Partitioning a New Disk 19. Partitions, File Systems, Formatting, Mounting

Command (m for help): n
Command action

l logical (5 or over)
20 p primary partition (1-4)

l
First cylinder (34-788, default 34): 34
Last cylinder or +size or +sizeM or +sizeK (34-788, default 788): +200M

25 Command (m for help): n
Command action

l logical (5 or over)
p primary partition (1-4)

l
30 First cylinder (60-788, default 60): 60

Last cylinder or +size or +sizeM or +sizeK (60-788, default 788): +1500M

Command (m for help): n
Command action

35 l logical (5 or over)
p primary partition (1-4)

l
First cylinder (252-788, default 252): 252
Last cylinder or +size or +sizeM or +sizeK (252-788, default 788): 788

✝ ✆

The default partition type is a single byte that the operating system will look at to
determine what kind of file system is stored there. Entering l lists all known types:

✞ �
Command (m for help): l

0 Empty 16 Hidden FAT16 61 SpeedStor a6 OpenBSD
[...]

5 8 AIX 4d QNX4.x 82 Linux swap db CP/M / CTOS / .
9 AIX bootable 4e QNX4.x 2nd part 83 Linux e1 DOS access
[...]

12 Compaq diagnost 56 Golden Bow a5 BSD/386 ff BBT
14 Hidden FAT16 <3 5c Priam Edisk

✝ ✆

fdisk will set the type to Linux by default. We only need to explicitly set the
type of the swap partition:

✞ �
Command (m for help): t
Partition number (1-9): 5
Hex code (type L to list codes): 82
Changed system type of partition 5 to 82 (Linux swap)

✝ ✆

Now we need to set the bootable flag on the first partition, since BIOS’s will not
boot a disk without at least one bootable partition:

✞ �
Command (m for help): a

158

19. Partitions, File Systems, Formatting, Mounting 19.2. Partitioning a New Disk

Partition number (1-10): 1
✝ ✆

Displaying our results gives:
✞ �
Command (m for help): p

Disk /dev/hda: 255 heads, 63 sectors, 788 cylinders
Units = cylinders of 16065 * 512 bytes

5

Device Boot Start End Blocks Id System
/dev/hda1 * 1 11 88326 83 Linux
/dev/hda2 12 788 6241252+ 5 Extended
/dev/hda5 12 20 72261 82 Linux swap

10 /dev/hda6 21 33 104391 83 Linux
/dev/hda7 34 59 208813+ 83 Linux
/dev/hda8 60 251 1542208+ 83 Linux
/dev/hda9 252 788 4313421 83 Linux

✝ ✆

At this point, nothing has been committed to disk. We write it as follows (Note:
this step is irreversible):

✞ �
Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
5 Syncing disks.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.

✝ ✆

Even having written the partition, fdiskmay give a warning that the kernel does
not know about the new partitions. This happens if the disk is already in use. In this
case, you will need to reboot. For the above partition, the kernel will give the following
information at boot time:

✞ �

Partition check:
hda: hda1 hda2 < hda5 hda6 hda7 hda8 hda9 >

✝ ✆

The < . . .> shows that partition hda2 is extended and is subdivided into five smaller
partitions.

159

19.3. Formatting Devices 19. Partitions, File Systems, Formatting, Mounting

19.3 Formatting Devices

19.3.1 File systems

Disk drives are usually read in blocks of 1024 bytes (two sectors). From the point of
view of anyone accessing the device, blocks are stored consecutively—there is no need
to think about cylinders or heads—so that any program can read the disk as though it
were a linear tape. Try

✞ �

less /dev/hda1
less -f /dev/hda1

✝ ✆

Now a complex directory structure with many files of arbitrary size needs to be
stored in this contiguous partition. This poses the problem of what to do with a file
that gets deleted and leaves a data “hole” in the partition, or a file that has to be split
into parts because there is no single contiguous space big enough to hold it. Files also
have to be indexed in such a way that they can be found quickly (consider that there
can easily be 10,000 files on a system). UNIX’s symbolic/hard links and devices files
also have to be stored.

To cope with this complexity, operating systems have a format for storing files
called the file system (fs). Like MS-DOS with its FAT file system or Windows with its
FAT32 file system, LINUX has a file system called the 2nd extended file system, or ext2.

Whereas ext2 is the traditional native LINUX file system, three other native file
systems have recently become available: SGI’s XFS file system, the ext3fs file system,
and the reiserfs file system. These three support fast and reliable recovery in the event
of a power failure, using a feature called journaling. A journaling file system prewrites
disk alterations to a separate log to facilitate recovery if the file system reaches an
incoherent state. (See Section 19.5.)

19.3.2 mke2fs

To create a file system on a blank partition, use the command mkfs (or one of its vari-
ants). To create a LINUX ext2 file system on the first partition of the primary master
run:

✞ �

mkfs -t ext2 -c /dev/hda1
✝ ✆

or, alternatively
✞ �

mke2fs -c /dev/hda1
✝ ✆

The -c option means to check for bad blocks by reading through the entire disk first.

160

19. Partitions, File Systems, Formatting, Mounting 19.3. Formatting Devices

This is a read-only check and causes unreadable blocks to be flagged as such and not
be used. To do a full read-write check, use the badblocks command. This command
writes to and verifies every bit in that partition. Although the -c option should always
be used on a new disk, doing a full read-write test is probably pedantic. For the above
partition, this test would be:

✞ �

badblocks -o blocks-list.txt -s -w /dev/hda1 88326
mke2fs -l blocks-list.txt /dev/hda1

✝ ✆

After running mke2fs, we will find that
✞ �

dd if=/dev/hda1 count=8 bs=1024 | file -
✝ ✆

gives Linux/i386 ext2 filesystem.

19.3.3 Formatting floppies and removable drives

New kinds of removable devices are being released all the time. Whatever the device,
the same formatting procedure is used. Most are IDE compatible, which means you
can access them through /dev/hd?.

The following examples are a parallel port IDE disk drive, a parallel port ATAPI
CD-ROM drive, a parallel port ATAPI disk drive, and your “A:” floppy drive, respec-
tively:

✞ �

mke2fs -c /dev/pda1
mke2fs -c /dev/pcd0
mke2fs -c /dev/pf0
mke2fs -c /dev/fd0

✝ ✆

Actually, using an ext2 file system on a floppy drive wastes a lot of space.
Rather, use an MS-DOS file system, which has less overhead and can be read by anyone
(see Section 19.3.4).

You often will not want to be bothered with partitioning a device that is only
going to have one partition anyway. In this case, you can use the whole disk as one
partition. An example is a removable IDE drive as a primary slave&LS120 disks and Jazz
drives as well as removable IDE brackets are commercial examples.-:

✞ �

mke2fs -c /dev/hdb
✝ ✆

161

19.3. Formatting Devices 19. Partitions, File Systems, Formatting, Mounting

19.3.4 Creating MS-DOS floppies

Accessing files on MS-DOS/Windows floppies is explained in Section 4.16. The com-
mand mformat A: will format a floppy, but this command merely initializes the file
system; it does not check for bad blocks or do the low-level formatting necessary to
reformat floppies to odd storage sizes.

A command, called superformat, from the fdutils package&You may have to
find this package on the Internet. See Chapter 24 for how to compile and install source packages.- formats
a floppy in any way that you like. A more common (but less thorough) command
is fdformat from the util-linux package. It verifies that each track is working
properly and compensates for variations between the mechanics of different floppy
drives. To format a 3.5-inch 1440-KB, 1680-KB, or 1920-KB floppy, respectively, run:

✞ �

cd /dev
./MAKEDEV -v fd0
superformat /dev/fd0H1440
superformat /dev/fd0H1690

5 superformat /dev/fd0H1920
✝ ✆

Note that these are “long file name” floppies (VFAT), not old 13-character-
filename MS-DOS floppies.

Most users would have only ever used a 3.5-inch floppy as a “1.44 MB” floppy.
In fact, the disk media and magnetic head can write much more densely than this
specification, allowing 24 sectors per track to be stored instead of the usual 18. This
is why there is more than one device file for the same drive. Some inferior disks will,
however, give errors when trying to format that densely—superformat will show
errors when this happens.

See Table 18.1 on page 145 for the naming conventions of floppy devices, and
their many respective formats.

19.3.5 mkswap, swapon, and swapoff

The mkswap command formats a partition to be used as a swap device. For our disk,
✞ �

mkswap -c /dev/hda5
✝ ✆

-c has the same meaning as previously—to check for bad blocks.

Once the partition is formatted, the kernel can be signalled to use that partition
as a swap partition with

✞ �

swapon /dev/hda5
✝ ✆

162

19. Partitions, File Systems, Formatting, Mounting 19.4. Device Mounting

and to stop usage,
✞ �

swapoff /dev/hda5
✝ ✆

Swap partitions cannot be larger than 128 MB, although you can have as many of them
as you like. You can swapon many different partitions simultaneously.

19.4 Device Mounting

The question of how to access files on an arbitrary disk (without C:, D:, etc., notation,
of course) is answered here.

In UNIX, there is only one root file system that spans many disks. Different di-
rectories may actually exist on a different physical disk.

To bind a directory to a physical device (like a partition or a
CD-ROM) so that the device’s file system can be read is called
mounting the device.

The mount command is used as follows:
✞ �

mount [-t <fstype>] [-o <option>] <device> <directory>
umount [-f] [<device>|<directory>]

✝ ✆

The -t option specifies the kind of file system, and can often be omitted since LINUX
can autodetect most file systems. <fstype> can be one of adfs, affs, autofs, coda,
coherent, devpts, efs, ext2, hfs, hpfs, iso9660, minix, msdos, ncpfs, nfs,
ntfs, proc, qnx4, romfs, smbfs, sysv, ufs, umsdos, vfat, xenix, or xiafs. The
most common file systems are discussed below. The -o option is not usually used. See
mount(8) for all possible options.

19.4.1 Mounting CD-ROMs

Put your distribution CD-ROM disk into your CD-ROM drive and mount it with
✞ �

ls /mnt/cdrom
mount -t iso9660 -o ro /dev/hdb /mnt/cdrom

✝ ✆

(Your CD-ROM might be /dev/hdc or /dev/hdd, however—in this case you should
make a soft link /dev/cdrom pointing to the correct device. Your distribution may
also prefer /cdrom over /mnt/cdrom.) Now cd to your /mnt/cdrom directory. You

163

19.4. Device Mounting 19. Partitions, File Systems, Formatting, Mounting

will notice that it is no longer empty, but “contains” the CD-ROM’s files. What is
happening is that the kernel is redirecting all lookups from the directory /mnt/cdrom
to read from the CD-ROM disk. You can browse around these files as though they were
already copied onto your hard drive. This is one of the things that makes UNIX cool.

When you are finished with the CD-ROM unmount it with
✞ �

umount /dev/hdb
eject /dev/hdb

✝ ✆

19.4.2 Mounting floppy disks

Instead of using mtools, you could mount the floppy disk with
✞ �

mkdir /mnt/floppy
mount -t vfat /dev/fd0 /mnt/floppy

✝ ✆

or, for older MS-DOS floppies, use
✞ �

mkdir /mnt/floppy
mount -t msdos /dev/fd0 /mnt/floppy

✝ ✆

Before you eject the floppy, it is essential to run
✞ �

umount /dev/fd0
✝ ✆

in order that cached data is committed to the disk. Failing to umount a floppy before
ejecting will probably corrupt its file system.

19.4.3 Mounting Windows and NT partitions

Mounting a Windows partition can also be done with the vfat file system, and NT
partitions (read-only) with the ntfs file system. VAT32 is also supported (and autode-
tected). For example,

✞ �

mkdir /windows
mount -t vfat /dev/hda1 /windows
mkdir /nt
mount -t ntfs /dev/hda2 /nt

✝ ✆

164

19. Partitions, File Systems, Formatting, Mounting 19.5. File System Repair: fsck

19.5 File System Repair: fsck

fsck stands for file system check. fsck scans the file system, reporting and fixing er-
rors. Errors would normally occur only if the kernel halted before the file system was
umounted. In this case, it may have been in the middle of a write operation which left
the file system in an incoherent state. This usually happens because of a power failure.
The file system is then said to be unclean.

fsck is used as follows:
✞ �

fsck [-V] [-a] [-t <fstype>] <device>
✝ ✆

-V means to produce verbose output. -a means to check the file system
noninteractively—meaning to not ask the user before trying to make any repairs.

Here is what you would normally do with LINUX if you don’t know a whole
lot about the ext2 file system:

✞ �

fsck -a -t ext2 /dev/hda1
✝ ✆

although you can omit the -t option because LINUX autodetects the file system.
Note that you should not run fsck on a mounted file system. In exceptional circum-
stances it is permissible to run fsck on a file system that has been mounted read-only.

fsck actually just runs a program specific to that file system. In the case of
ext2, the command e2fsck (also known as fsck.ext2) is run. See e2fsck(8) for
exhaustive details.

During an interactive check (without the -a option, or with the -r option—
the default), various questions may be asked of you, as regards fixing and sav-
ing things. It’s best to save stuff if you aren’t sure; it will be placed in the
lost+found directory below the root directory of the particular device. In the
example system further below, there would exist the directories /lost+found,
/home/lost+found, /var/lost+found, /usr/lost+found, etc. After doing a
check on, say, /dev/hda9, list the /home/lost+found directory and delete what
you think you don’t need. These will usually be temporary files and log files (files that
change often). It’s rare to lose important files because of an unclean shutdown.

19.6 File System Errors on Boot

Just read Section 19.5 again and run fsck on the file system that reported the error.

165

19.7. Automatic Mounts: fstab 19. Partitions, File Systems, Formatting, Mounting

19.7 Automatic Mounts: fstab

Manual mounts are explained above for new and removable disks. It is, of course nec-
essary for file systems to be automatically mounted at boot time. What gets mounted
and how is specified in the configuration file /etc/fstab.

/etc/fstab will usually look something like this for the disk we partitioned
above:

✞ �
/dev/hda1 / ext2 defaults 1 1
/dev/hda6 /tmp ext2 defaults 1 2
/dev/hda7 /var ext2 defaults 1 2
/dev/hda8 /usr ext2 defaults 1 2

5 /dev/hda9 /home ext2 defaults 1 2
/dev/hda5 swap swap defaults 0 0
/dev/fd0 /mnt/floppy auto noauto,user 0 0
/dev/cdrom /mnt/cdrom iso9660 noauto,ro,user 0 0
none /proc proc defaults 0 0

10 none /dev/pts devpts mode=0622 0 0
✝ ✆

For the moment we are interested in the first six lines only. The first three fields
(columns) dictate the partition, the directory where it is to be mounted, and the file
system type, respectively. The fourth field gives options (the -o option to mount).

The fifth field tells whether the file system contains real files. The field is used by
the dump command to decide if it should be backed up. This is not commonly used.

The last field tells the order in which an fsck should be done on the partitions.
The / partition should come first with a 1, and all other partitions should come directly
after. Placing 2’s everywhere else ensures that partitions on different disks can be
checked in parallel, which speeds things up slightly at boot time.

The floppy and cdrom entries enable you to use an abbreviated form of the
mount command. mount will just look up the corresponding directory and file system
type from /etc/fstab. Try

✞ �

mount /dev/cdrom
✝ ✆

These entries also have the user option, which allows ordinary users to mount these
devices. The ro option once again tells to mount the CD-ROM read only, and the
noauto command tells mount not to mount these file systems at boot time. (More
comes further below.)

proc is a kernel information database that looks like a file system. For example
/proc/cpuinfo is not any kind of file that actually exists on a disk somewhere. Try
cat /proc/cpuinfo.

Many programs use /proc to get dynamic information on the status and config-
uration of your machine. More on this is discussed in Section 42.4.

166

19. Partitions, File Systems, Formatting, Mounting 19.8. Manually Mounting /proc

The devpts file system is another pseudo file system that generates terminal
master/slave pairs for programs. This is mostly of concern to developers.

19.8 Manually Mounting /proc

You can mount the proc file system with the command
✞ �

mount -t proc /proc /proc
✝ ✆

This is an exception to the normal mount usage. Note that all common LINUX in-
stallations require /proc to be mounted at boot time. The only times you will need
this command are for manual startup or when doing a chroot. (See page 178.)

19.9 RAM and Loopback Devices

A RAM device is a block device that can be used as a disk but really points to a physical
area of RAM.

A loopback device is a block device that can be used as a disk but really points to
an ordinary file somewhere.

If your imagination isn’t already running wild, consider creating a floppy disk
with file system, files and all, without actually having a floppy disk, and being able to
dump this creation to floppy at any time with dd. You can also have a whole other
LINUX system inside a 500 MB file on a Windows partition and boot into it—thus
obviating having to repartition a Windows machine just to run LINUX . All this can
be done with loopback and RAM devices.

19.9.1 Formatting a floppy inside a file

The operations are quite trivial. To create an ext2 floppy inside a 1440 KB file, run:
✞ �

dd if=/dev/zero of=˜/file-floppy count=1440 bs=1024
losetup /dev/loop0 ˜/file-floppy
mke2fs /dev/loop0
mkdir ˜/mnt

5 mount /dev/loop0 ˜/mnt
ls -al ˜/mnt

✝ ✆

When you are finished copying the files that you want into ˜/mnt, merely run

167

19.10. Remounting 19. Partitions, File Systems, Formatting, Mounting

✞ �

umount ˜/mnt
losetup -d /dev/loop0

✝ ✆

To dump the file system to a floppy, run
✞ �

dd if=˜/file-floppy of=/dev/fd0 count=1440 bs=1024
✝ ✆

A similar procedure for RAM devices is
✞ �

dd if=/dev/zero of=/dev/ram0 count=1440 bs=1024
mke2fs /dev/ram0
mkdir ˜/mnt
mount /dev/ram0 ˜/mnt

5 ls -al ˜/mnt
✝ ✆

When you are finished copying the files that you want into ˜/mnt, merely run
✞ �

umount ˜/mnt
✝ ✆

To dump the file system to a floppy or file, respectively, run:
✞ �

dd if=/dev/ram0 of=/dev/fd0 count=1440 bs=1024
dd if=/dev/ram0 of=˜/file-floppy count=1440 bs=1024

✝ ✆

19.9.2 CD-ROM files

Another trick is to move your CD-ROM to a file for high-speed access. Here, we use a
shortcut instead of the losetup command:

✞ �

dd if=/dev/cdrom of=some_name.iso
mount -t iso9660 -o ro,loop=/dev/loop0 some_name.iso /cdrom

✝ ✆

19.10 Remounting from Read-Only to Read-Write

A file system that is already mounted as read-only can be remounted as read-write,
for example, with

168

19. Partitions, File Systems, Formatting, Mounting 19.11. Disk sync

✞ �

mount -o rw,remount /dev/hda1 /
✝ ✆

This command is useful when you log in in single-user mode with no write access to
your root partition.

19.11 Disk sync

The kernel caches write operations in memory for performance reasons. These flush
(physically commit to the magnetic media) every so often, but you sometimes want to
force a flush. This is done simply with

✞ �

sync
✝ ✆

169

19.11. Disk sync 19. Partitions, File Systems, Formatting, Mounting

170

Chapter 20

Advanced Shell Scripting

This chapter completes our discussion of sh shell scripting begun in Chapter 7 and
expanded on in Chapter 9. These three chapters represent almost everything you can
do with the bash shell.

20.1 Lists of Commands

The special operator && and || can be used to execute functions in sequence. For
instance:

✞ �

grep ’ˆharry:’ /etc/passwd || useradd harry
✝ ✆

The || means to only execute the second command if the first command returns an
error. In the above case, grep will return an exit code of 1 if harry is not in the
/etc/passwd file, causing useradd to be executed.

An alternate representation is
✞ �

grep -v ’ˆharry:’ /etc/passwd && useradd harry
✝ ✆

where the -v option inverts the sense of matching of grep. && has the opposite mean-
ing to ||, that is, to execute the second command only if the first succeeds.

Adept script writers often string together many commands to create the most
succinct representation of an operation:

✞ �

grep -v ’ˆharry:’ /etc/passwd && useradd harry || \
echo "‘date‘: useradd failed" >> /var/log/my_special_log

✝ ✆

171

20.2. Special Parameters: $?, $*,. . . 20. Advanced Shell Scripting

20.2 Special Parameters: $?, $*,. . .

An ordinary variable can be expanded with $VARNAME. Commonly used variables
like PATH and special variables like PWD and RANDOM were covered in Chapter 9. Fur-
ther special expansions are documented in the following section, quoted verbatim from
the bash man page (the footnotes are mine).1

Special Parameters

The shell treats several parameters specially. These parameters may only be
referenced; assignment to them is not allowed.

$* Expands to the positional parameters (i.e., the command-line arguments passed
to the shell script, with $1 being the first argument, $2 the second etc.), starting
from one. When the expansion occurs within double quotes, it expands to a
single word with the value of each parameter separated by the first character
of the IFS special variable. That is, ”$*” is equivalent to ”$1c$2c...”, where
c is the first character of the value of the IFS variable. If IFS is unset, the
parameters are separated by spaces. If IFS is null, the parameters are joined
without intervening separators.

$@ Expands to the positional parameters, starting from one. When the expansion
occurs within double quotes, each parameter expands to a separate word.
That is, ”$@” is equivalent to ”$1” ”$2” ... When there are no positional pa-
rameters, ”$@” and $@ expand to nothing (i.e., they are removed).&Hint: this
is very useful for writing wrapper shell scripts that just add one argument.-

$# Expands to the number of positional parameters in decimal (i.e. the number of
command-line arguments).

$? Expands to the status of the most recently executed foreground pipeline. &I.e.,
the exit code of the last command.-

$- Expands to the current option flags as specified upon invocation, by the set
builtin command, or those set by the shell itself (such as the -i option).

$$ Expands to the process ID of the shell. In a () subshell, it expands to the process
ID of the current shell, not the subshell.

$! Expands to the process ID of the most recently executed background (asyn-
chronous) command. &I.e., after executing a background command with com-
mand &, the variable $! will give its process ID.-

$0 Expands to the name of the shell or shell script. This is set at shell initialization.
If bash is invoked with a file of commands, $0 is set to the name of that file.
If bash is started with the -c option, then $0 is set to the first argument after
the string to be executed, if one is present. Otherwise, it is set to the file name
used to invoke bash, as given by argument zero. &Note that basename $0 is a
useful way to get the name of the current command without the leading path.-

1Thanks to Brian Fox and Chet Ramey for this material.

172

20. Advanced Shell Scripting 20.3. Expansion

$- At shell startup, set to the absolute file name of the shell or shell script being
executed as passed in the argument list. Subsequently, expands to the last
argument to the previous command, after expansion. Also set to the full file
name of each command executed and placed in the environment exported to
that command. When checking mail, this parameter holds the name of the
mail file currently being checked.

20.3 Expansion

Expansion refers to the way bash modifies the command-line before executing it. bash
performs several textual modifications to the command-line, proceeding in the follow-
ing order:

Brace expansion We have already shown how you can use, for example, the shorthand
touch file {one,two,three}.txt to create multiple files file one.txt,
file two.txt, and file three.txt. This is known as brace expansion and
occurs before any other kind of modification to the command-line.

Tilde expansion The special character ˜ is replaced with the full path contained in the
HOME environment variable or the home directory of the users login (if $HOME is
null). ˜+ is replaced with the current working directory and ˜- is replaced with
the most recent previous working directory. The last two are rarely used.

Parameter expansion This refers to expanding anything that begins with a $. Note
that $VAR and ${VAR} do exactly the same thing, except in the latter case, VAR
can contain non-“whole word” characters that would normally confuse bash.

There are several parameter expansion tricks that you can use to do string ma-
nipulation. Most shell programmers never bother with these, probably because
they are not well supported by other UNIX systems.

${VAR:-default} This will result in $VAR unless VAR is unset or null, in which
case it will result in default.

${VAR:=default} Same as previous except that default is also assigned to VAR if
it is empty.

${VAR:-default} This will result in an empty string if VAR is unset or null;
otherwise it will result in default. This is the opposite behavior of ${VAR:-
default}.

${VAR:?message} This will result in $VAR unless VAR is unset or null, in which
case an error message containing message is displayed.

${VAR:offset} or ${VAR:n:l} This produces the nth character of $VAR and
then the following l characters. If l is not present, then all characters to the
right of the nth character are produced. This is useful for splitting up strings.
Try:

173

20.3. Expansion 20. Advanced Shell Scripting

✞ �

TEXT=scripting_for_phun
echo ${TEXT:10:3}
echo ${TEXT:10}

✝ ✆

${#VAR} Gives the length of $VAR.

${!PRE*} Gives a list of all variables whose names begin with PRE.

${VAR#pattern} $VAR is returned with the glob expression pattern removed
from the leading part of the string. For instance, ${TEXT#scr} in the above
example will return ripting for phun.

${VAR##pattern} This is the same as the previous expansion except that if pat-
tern contains wild cards, then it will try to match the maximum length of
characters.

${VAR%pattern} The same as ${VAR#pattern} except that characters are re-
moved from the trailing part of the string.

${VAR%%pattern} The same as ${VAR##pattern} except that characters are re-
moved from the trailing part of the string.

${VAR/search/replace} $VAR is returned with the first occurrence of the string
search replaced with replace.

${VAR/#search/replace} Same as ${VAR/search/replace} except that the match
is attempted from the leading part of $VAR.

${VAR/%search/replace} Same as ${VAR/search/replace} except that the match
is attempted at the trailing part of $VAR.

${VAR//search/replace} Same as ${VAR/search/replace} except that all in-
stances of search are replaced.

Backquote expansion We have already shown backquote expansion in 7.12. Note that
the additional notation $(command) is equivalent to ‘command‘ except that es-
capes (i.e., \) are not required for special characters.

Arithmetic expansion We have already shown arithmetic expansion on page 62. Note
that the additional notation $((expression)) is equivalent to $[expression].

Finally The last modifications to the command-line are the splitting of the command-
line into words according to the white space between them. The IFS (Inter-
nal Field Separator) environment variable determines what characters delimit
command-line words (usually whitespace). With the command-line divided into
words, path names are expanded according to glob wild cards. Consult bash(1)
for a comprehensive description of the pattern matching options that most peo-
ple don’t know about.

174

20. Advanced Shell Scripting 20.4. Built-in Commands

20.4 Built-in Commands

Many commands operate some built-in functionality of bash or are especially inter-
preted. These do not invoke an executable off the file system. Some of these were
described in Chapter 7, and a few more are discussed here. For an exhaustive descrip-
tion, consult bash(1).

: A single colon by itself does nothing. It is useful for a “no operation” line such as:
✞ �

if <command> ; then
:

else
echo "<command> was unsuccessful"

5 fi
✝ ✆

. filename args ... A single dot is the same as the source command. See below.

alias command=value Creates a pseudonym for a command. Try:
✞ �

alias necho="echo -n"
necho "hello"

✝ ✆

Some distributions alias the mv, cp, and rm commands to the same pseudonym
with the -i (interactive) option set. This prevents files from being deleted with-
out prompting, but can be irritating for the administrator. See your ˜/.bashrc
file for these settings. See also unalias.

unalias command Removes an alias created with alias.

alias -p Prints list of aliases.

eval arg ... Executes args as a line of shell script.

exec command arg ... Begins executing command under the same process ID as the
current script. This is most often used for shell scripts that are mere “wrapper”
scripts for real programs. The wrapper script sets any environment variables and
then execs the real program binary as its last line. exec should never return.

local var=value Assigns a value to a variable. The resulting variable is visible only
within the current function.

pushd directory and popd These two commands are useful for jumping around di-
rectories. pushd can be used instead of cd, but unlike cd, the directory is saved
onto a list of directories. At any time, entering popd returns you to the previous
directory. This is nice for navigation since it keeps a history of wherever you have
been.

175

20.5. Trapping Signals — the trap Command 20. Advanced Shell Scripting

printf format args ... This is like the printf function. It outputs to the terminal
like echo but is useful for more complex formatting of output. See printf(3)
for details and try printf "%10.3e\n" 12 as an example.

pwd Prints the present working directory.

set Prints the value of all environment variables. See also Section 20.6 on the set
command.

source filename args ... Reads filename into the current current shell environment.
This is useful for executing a shell script when environment variables set by that
script must be preserved.

times Prints the accumulated user and system times for the shell and for processes
run from the shell.

type command Tells whether command is an alias, a built-in or a system executable.

ulimit Prints and sets various user resource limits like memory usage limits and
CPU limits. See bash(1) for details.

umask See Section 14.2.

unset VAR Deletes a variable or environment variable.

unset -f func Deletes a function.

wait Pauses until all background jobs have completed.

wait PID Pauses until background process with process ID of PID has exited, then
returns the exit code of the background process.

wait %job Same with respect to a job spec.

20.5 Trapping Signals — the trap Command

You will often want to make your script perform certain actions in response to a signal.
A list of signals can be found on page 86. To trap a signal, create a function and then
use the trap command to bind the function to the signal.

✞ �

#!/bin/sh

function on_hangup ()
{

5 echo ’Hangup (SIGHUP) signal recieved’
}

176

20. Advanced Shell Scripting 20.6. Internal Settings — the set Command

trap on_hangup SIGHUP

10 while true ; do
sleep 1

done

exit 0
✝ ✆

Run the above script and then send the process ID the -HUP signal to test it. (See
Section 9.5.)

An important function of a program is to clean up after itself on exit. The special
signal EXIT (not really a signal) executes code on exit of the script:

✞ �

#!/bin/sh

function on_exit ()
{

5 echo ’I should remove temp files now’
}

trap on_exit EXIT

10 while true ; do
sleep 1

done

exit 0
✝ ✆

Breaking the above program will cause it to print its own epitaph.

If - is given instead of a function name, then the signal is unbound (i.e., set to its
default value).

20.6 Internal Settings — the set Command

The set command can modify certain behavioral settings of the shell. Your current
options can be displayed with echo $-. Various set commands are usually entered
at the top of a script or given as command-line options to bash. Using set +option
instead of set -option disables the option. Here are a few examples:

set -e Exit immediately if any simple command gives an error.

set -h Cache the location of commands in your PATH. The shell will become con-
fused if binaries are suddenly inserted into the directories of your PATH, perhaps
causing a No such file or directory error. In this case, disable this option
or restart your shell. This option is enabled by default.

177

20.7. Useful Scripts and Commands 20. Advanced Shell Scripting

set -n Read commands without executing them. This command is useful for syntax
checking.

set -o posix Comply exactly with the POSIX 1003.2 standard.

set -u Report an error when trying to reference a variable that is unset. Usually
bash just fills in an empty string.

set -v Print each line of script as it is executed.

set -x Display each command expansion as it is executed.

set -C Do not overwrite existing files when using >. You can use >| to force over-
writing.

20.7 Useful Scripts and Commands

Here is a collection of useful utility scripts that people are always asking for on the
mailing lists. See page 517 for several security check scripts.

20.7.1 chroot

The chroot command makes a process think that its root file system is not actually /.
For example, on one system I have a complete Debian installation residing under a
directory, say, /mnt/debian. I can issue the command

✞ �

chroot /mnt/debian bash -i
✝ ✆

to run the bash shell interactively, under the root file system /mnt/debian. This
command will hence run the command /mnt/debian/bin/bash -i. All further
commands processed under this shell will have no knowledge of the real root directory,
so I can use my Debian installation without having to reboot. All further commands
will effectively behave as though they are inside a separate UNIX machine. One caveat:
you may have to remount your /proc file system inside your chroot’d file system—
see page 167.

This useful for improving security. Insecure network services can change to a
different root directory—any corruption will not affect the real system.

Most rescue disks have a chroot command. After booting the disk, you can
manually mount the file systems on your hard drive, and then issue a chroot to begin
using your machine as usual. Note that the command chroot <new-root> without
arguments invokes a shell by default.

178

20. Advanced Shell Scripting 20.7. Useful Scripts and Commands

20.7.2 if conditionals

The if test ... was used to control program flow in Chapter 7. Bash, however, has
a built-in alias for the test function: the left square brace, [.

Using [instead of test adds only elegance:
✞ �

if [5 -le 3] ; then
echo ’5 < 3’

fi
✝ ✆

It is important at this point to realize that the if command understands nothing
of arithmetic. It merely executes a command test (or in this case [) and tests the exit
code. If the exit code is zero, then the command is considered to be successful and if
proceeds with the body of the if statement block. The onus is on the test command
to properly evaluate the expression given to it.

if can equally well be used with any command:
✞ �

if echo "$PATH" | grep -qwv /usr/local/bin ; then
export PATH="$PATH:/usr/local/bin"

fi
✝ ✆

conditionally adds /usr/local/bin if grep does not find it in your PATH.

20.7.3 patching and diffing

You may often want to find the differences between two files, for example to see what
changes have been made to a file between versions. Or, when a large batch of source
code may have been updated, it is silly to download the entire directory tree if there
have been only a few small changes. You would want a list of alterations instead.

The diff utility dumps the lines that differ between two files. It can be used as
follows:

✞ �

diff -u <old-file> <new-file>
✝ ✆

You can also use diff to see difference netween two directory trees. diff recursively
compares all corresponding files:

✞ �

diff -u --recursive --new-file <old-dir> <new-dir> > <patch-file>.diff
✝ ✆

The output is known as a patch file against a directory tree, that can be used both to see
changes, and to bring <old-dir> up to date with <new-dir>.

Patch files may also end in .patch and are often gzipped. The patch file can be
applied to <old-dir> with

179

20.7. Useful Scripts and Commands 20. Advanced Shell Scripting

✞ �

cd <old-dir>
patch -p1 -s < <patch-file>.diff

✝ ✆

which makes <old-dir> identical to <new-dir>. The -p1 option strips the leading
directory name from the patch file. The presence of a leading directory name in the
patch file often confuses the patch command.

20.7.4 Internet connectivity test

You may want to leave this example until you have covered more networking theory.

The acid test for an Internet connection is a successful DNS query. You can use
ping to test whether a server is up, but some networks filter ICMP messages and ping
does not check that your DNS is working. dig sends a single UDP packet similar to
ping. Unfortunately, it takes rather long to time out, so we fudge in a kill after 2
seconds.

This script blocks until it successfully queries a remote name server. Typically,
the next few lines of following script would run fetchmail and a mail server queue
flush, or possibly uucico. Do set the name server IP to something appropriate like
that of your local ISP; and increase the 2 second time out if your name server typically
takes longer to respond.

✞ �

MY_DNS_SERVER=197.22.201.154

while true ; do
(

5 dig @$MY_DNS_SERVER netscape.com IN A &
DIG_PID=$!
{ sleep 2 ; kill $DIG_PID ; } &
sleep 1
wait $DIG_PID

10) 2>/dev/null | grep -q ’ˆ[ˆ;]*netscape.com’ && break
done

✝ ✆

20.7.5 Recursive grep (search)

Recursively searching through a directory tree can be done easily with the find and
xargs commands. You should consult both these man pages. The following command
pipe searches through the kernel source for anything about the “pcnet” Ethernet card,
printing also the line number:

180

20. Advanced Shell Scripting 20.7. Useful Scripts and Commands

✞ �

find /usr/src/linux -follow -type f | xargs grep -iHn pcnet
✝ ✆

(You will notice how this command returns rather a lot of data. However, going
through it carefully can be quite instructive.)

Limiting a search to a certain file extension is just another common use of this
pipe sequence.

✞ �
find /usr/src/linux -follow -type f -name ’*.[ch]’ | xargs grep -iHn pcnet

✝ ✆

Note that new versions of grep also have a -r option to recursively search
through directories.

20.7.6 Recursive search and replace

Often you will want to perform a search-and-replace throughout all the files in an
entire source tree. A typical example is the changing of a function call name throughout
lots of source. The following script is a must for any /usr/local/bin/. Notice the
way it recursively calls itself.

✞ �

#!/bin/sh

N=‘basename $0‘

5 if ["$1" = "-v"] ; then
VERBOSE="-v"
shift

fi

10 if ["$3" = "" -o "$1" = "-h" -o "$1" = "--help"] ; then
echo "$N: Usage"
echo " $N [-h|--help] [-v] <regexp-search> \

<regexp-replace> <glob-file>"
echo

15 exit 0
fi

S="$1" ; shift ; R="$1" ; shift
T=$$replc

20

if echo "$1" | grep -q / ; then
for i in "$@" ; do

SEARCH=‘echo "$S" | sed ’s,/,\\\\/,g’‘
REPLACE=‘echo "$R" | sed ’s,/,\\\\/,g’‘

25 cat $i | sed "s/$SEARCH/$REPLACE/g" > $T

181

20.7. Useful Scripts and Commands 20. Advanced Shell Scripting

D="$?"
if ["$D" = "0"] ; then

if diff -q $T $i >/dev/null ; then
:

30 else
if ["$VERBOSE" = "-v"] ; then

echo $i
fi
cat $T > $i

35 fi
rm -f $T

fi
done

else
40 find . -type f -name "$1" | xargs $0 $VERBOSE "$S" "$R"

fi
✝ ✆

20.7.7 cut and awk — manipulating text file fields

The cut command is useful for slicing files into fields; try
✞ �

cut -d: -f1 /etc/passwd
cat /etc/passwd | cut -d: -f1

✝ ✆

The awk program is an interpreter for a complete programming language call AWK. A
common use for awk is in field stripping. It is slightly more flexible than cut—

✞ �

cat /etc/passwd | awk -F : ’{print $1}’
✝ ✆

—especially where whitespace gets in the way,
✞ �

ls -al | awk ’{print $6 " " $7 " " $8}’
ls -al | awk ’{print $5 " bytes"}’

✝ ✆

which isolates the time and size of the file respectively.

Get your nonlocal IP addresses with:
✞ �
ifconfig | grep ’inet addr:’ | fgrep -v ’127.0.0.’ | \

cut -d: -f2 | cut -d’ ’ -f1
✝ ✆

Reverse an IP address with:
✞ �

echo 192.168.3.2 | awk -F . ’{print $4 "." $3 "." $2 "." $1 }’
✝ ✆

182

20. Advanced Shell Scripting 20.7. Useful Scripts and Commands

Print all common user names (i.e., users with UID values greater than 499 on
RedHat and greater than 999 on Debian):

✞ �

awk -F: ’$3 >= 500 {print $1}’ /etc/passwd
(awk -F: ’$3 >= 1000 {print $1}’ /etc/passwd)

✝ ✆

20.7.8 Calculations with bc

Scripts can easily use bc to do calculations that expr can’t handle. For example, con-
vert to decimal with

✞ �

echo -e ’ibase=16;FFFF’ | bc
✝ ✆

to binary with
✞ �

echo -e ’obase=2;12345’ | bc
✝ ✆

or work out the SIN of 45 degrees with
✞ �

pi=‘echo "scale=10; 4*a(1)" | bc -l‘
echo "scale=10; s(45*$pi/180)" | bc -l

✝ ✆

20.7.9 Conversion of graphics formats of many files

The convert program of the ImageMagick package is a command many Windows
users would love. It can easily be used to convert multiple files from one format
to another. Changing a file’s extension can be done with echo filename | sed -
e ’s/\.old$/.new/’‘. The convert command does the rest:

✞ �

for i in *.pcx ; do
CMD="convert -quality 625 $i ‘echo $i | sed -e ’s/\.pcx$/.png/’‘"

Show the command-line to the user:
echo $CMD

5 # Execute the command-line:
eval $CMD

done
✝ ✆

Note that the search-and-replace expansion mechanism could also be used to replace
the extensions: ${i/%.pcx/.png} produces the desired result.

183

20.7. Useful Scripts and Commands 20. Advanced Shell Scripting

Incidentally, the above nicely compresses high-resolution pcx files—possibly the
output of a scanning operation, or a LATEX compilation into PostScript rendered with
GhostScript (i.e. gs -sDEVICE=pcx256 -sOutputFile=’page%d.pcx’ file.ps).

20.7.10 Securely erasing files

Removing a file with rm only unlinks the file name from the data. The file blocks may
still be on disk, and will only be reclaimed when the file system reuses that data. To
erase a file proper, requires writing random bytes into the disk blocks occupied by the
file. The following overwrites all the files in the current directory:

✞ �

for i in * ; do
dd if=/dev/urandom \

of="$i" \
bs=1024 \

5 count=‘expr 1 + \
\‘stat "$i" | grep ’Size:’ | awk ’{print $2}’\‘ \

/ 1024‘
done

✝ ✆

You can then remove the files normally with rm.

20.7.11 Persistent background processes

Consider trying to run a process, say, the rxvt terminal, in the background. This can
be done simply with:

✞ �

rxvt &
✝ ✆

However, rxvt still has its output connected to the shell and is a child process of the
shell. When a login shell exits, it may take its child processes with it. rxvtmay also die
of its own accord from trying to read or write to a terminal that does not exist without
the parent shell. Now try:

✞ �

{ rxvt >/dev/null 2>&1 </dev/null & } &
✝ ✆

This technique is known as forking twice, and redirecting the terminal to dev null. The
shell can know about its child processes but not about the its “grand child” processes.
We have hence create a daemon process proper with the above command.

Now, it is easy to create a daemon process that restarts itself if it happens to die.
Although such functionality is best accomplished within (which you will get a taste
of in Chapter 22), you can make do with:

184

20. Advanced Shell Scripting 20.7. Useful Scripts and Commands

✞ �

{ { while true ; do rxvt ; done ; } >/dev/null 2>&1 </dev/null & } &
✝ ✆

You will notice the effects of all these tricks with:
✞ �

ps awwwxf
✝ ✆

20.7.12 Processing the process list

The following command uses the custom format option of ps to print every conceiv-
able attribute of a process:

✞ �
ps -awwwxo %cpu,%mem,alarm,args,blocked,bsdstart,bsdtime,c,caught,cmd,comm,\
command,cputime,drs,dsiz,egid,egroup,eip,esp,etime,euid,euser,f,fgid,fgroup,\
flag,flags,fname,fsgid,fsgroup,fsuid,fsuser,fuid,fuser,gid,group,ignored,\
intpri,lim,longtname,lstart,m_drs,m_trs,maj_flt,majflt,min_flt,minflt,ni,\

5 nice,nwchan,opri,pagein,pcpu,pending,pgid,pgrp,pid,pmem,ppid,pri,rgid,rgroup,\
rss,rssize,rsz,ruid,ruser,s,sess,session,sgi_p,sgi_rss,sgid,sgroup,sid,sig,\
sig_block,sig_catch,sig_ignore,sig_pend,sigcatch,sigignore,sigmask,stackp,\
start,start_stack,start_time,stat,state,stime,suid,suser,svgid,svgroup,svuid,\
svuser,sz,time,timeout,tmout,tname,tpgid,trs,trss,tsiz,tt,tty,tty4,tty8,ucomm,\

10 uid,uid_hack,uname,user,vsize,vsz,wchan
✝ ✆

The output is best piped to a file and viewed with a nonwrapping text editor. More
interestingly, the awk command can print the process ID of a process with

✞ �

ps awwx | grep -w ’htt[p]d’ | awk ’{print $1}’
✝ ✆

which prints all the processes having httpd in the command name or command-line.
This filter is useful for killing netscape as follows:

✞ �

kill -9 ‘ps awx | grep ’netsc[a]pe’ | awk ’{print $1}’‘
✝ ✆

(Note that the [a] in the regular expression prevents grep from finding itself in the
process list.)

Other useful ps variations are:
✞ �

ps awwxf
ps awwxl
ps awwxv
ps awwxu

5 ps awwxs
✝ ✆

The f option is most useful for showing parent-child relationships. It stands for forest,
and shows the full process tree. For example, here I am running an desktop with two
windows:

185

20.8. Shell Initialization 20. Advanced Shell Scripting

✞ �
PID TTY STAT TIME COMMAND
1 ? S 0:05 init [5]
2 ? SW 0:02 [kflushd]
3 ? SW 0:02 [kupdate]

5 4 ? SW 0:00 [kpiod]
5 ? SW 0:01 [kswapd]
6 ? SW< 0:00 [mdrecoveryd]

262 ? S 0:02 syslogd -m 0
272 ? S 0:00 klogd

10 341 ? S 0:00 xinetd -reuse -pidfile /var/run/xinetd.pid
447 ? S 0:00 crond
480 ? S 0:02 xfs -droppriv -daemon
506 tty1 S 0:00 /sbin/mingetty tty1
507 tty2 S 0:00 /sbin/mingetty tty2

15 508 tty3 S 0:00 /sbin/mingetty tty3
509 ? S 0:00 /usr/bin/gdm -nodaemon
514 ? S 7:04 _ /etc/X11/X -auth /var/gdm/:0.Xauth :0
515 ? S 0:00 _ /usr/bin/gdm -nodaemon
524 ? S 0:18 _ /opt/icewm/bin/icewm

20 748 ? S 0:08 _ rxvt -bg black -cr green -fg whi
749 pts/0 S 0:00 | _ bash
5643 pts/0 S 0:09 | _ mc
5645 pts/6 S 0:02 | _ bash -rcfile .bashrc
25292 pts/6 R 0:00 | _ ps awwxf

25 11780 ? S 0:16 _ /usr/lib/netscape/netscape-commu
11814 ? S 0:00 _ (dns helper)
15534 pts/6 S 3:12 cooledit -I /root/.cedit/projects/Rute
15535 pts/6 S 6:03 _ aspell -a -a

✝ ✆

The u option shows the useful user format, and the others show virtual memory, signal
and long format.

20.8 Shell Initialization

Here I will briefly discuss what initialization takes place after logging in and how to
modify it.

The interactive shell invoked after login will be the shell specified in the last
field of the user’s entry in the /etc/passwd file. The login program will invoke
the shell after authenticating the user, placing a - in front of the the command name,
which indicates to the shell that it is a login shell, meaning that it reads and execute
several scripts to initialize the environment. In the case of bash, the files it reads
are: /etc/profile, ˜/.bash profile, ˜/.bash login and ˜/.profile, in that
order. In addition, an interactive shell that is not a login shell also reads ˜/.bashrc.
Note that traditional sh shells only read /etc/profile and ˜/.profile.

186

20. Advanced Shell Scripting 20.9. File Locking

20.8.1 Customizing the PATH and LD LIBRARY PATH

Administrators can customise things like the environment variables by modifying
these startup scripts. Consider the classic case of an installation tree under /opt/.
Often, a package like /opt/staroffice/ or /opt/oracle/ will require the PATH
and LD LIBRARY PATH variables to be adjusted accordingly. In the case of RedHat, a
script,

✞ �

for i in /opt/*/bin /usr/local/bin ; do
test -d $i || continue
echo $PATH | grep -wq "$i" && continue
PATH=$PATH:$i

5 export PATH
done

if test ‘id -u‘ -eq 0 ; then
for i in /opt/*/sbin /usr/local/sbin ; do

10 test -d $i || continue
echo $PATH | grep -wq "$i" && continue
PATH=$PATH:$i
export PATH

done
15 fi

for i in /opt/*/lib /usr/local/lib ; do
test -d $i || continue
echo $LD_LIBRARY_PATH | grep -wq "$i" && continue

20 LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$i
export LD_LIBRARY_PATH

done
✝ ✆

can be placed as /etc/profile.d/my local.sh with execute permissions. This
will take care of anything installed under /opt/ or /usr/local/. For Debian , the
script can be inserted directly into /etc/profile.

Page 235 of Section 23.3 contains details of exactly what LD LIBRARY PATH is.

(Unrelated, but you should also edit your /etc/man.config to add man page
paths that appear under all installation trees under /opt/.)

20.9 File Locking

Often, one would like a process to have exclusive access to a file. By this we mean that
only one process can access the file at any one time. Consider a mail folder: if two
processes were to write to the folder simultaneously, it could become corrupted. We

187

20.9. File Locking 20. Advanced Shell Scripting

also sometimes want to ensure that a program can never be run twice at the same time;
this insurance is another use for “locking.”

In the case of a mail folder, if the file is being written to, then no other process
should try read it or write to it: and we would like to create a write lock on the file.
However if the file is being read from, no other process should try to write to it: and
we would like to create a read lock on the file. Write locks are sometimes called exclusive
locks; read locks are sometimes called shared locks. Often, exclusive locks are preferred
for simplicity.

Locking can be implemented by simply creating a temporary file to indicate to
other processes to wait before trying some kind of access. UNIX also has some more
sophisticated builtin functions.

20.9.1 Locking a mailbox file

There are currently four methods of file locking. &The exim sources seem to indicate thorough
research in this area, so this is what I am going on.-

1. “dot lock” file locking. Here, a temporary file is created with the same name as
the mail folder and the extension .lock added. So long as this file exists, no
program should try to access the folder. This is an exclusive lock only. It is easy
to write a shell script to do this kind of file locking.

2. “MBX” file locking. Similar to 1, but a temporary file is created in /tmp. This is
also an exclusive lock.

3. fcntl locking. Databases require areas of a file to be locked. fcntl is a system
call to be used inside programs.

4. flock file locking. Same as fcntl, but locks whole files.

The following shell function does proper mailbox file locking.
✞ �
function my_lockfile ()
{

TEMPFILE="$1.$$"
LOCKFILE="$1.lock"

5 echo $$ > $TEMPFILE 2>/dev/null || {
echo "You don’t have permission to access ‘dirname $TEMPFILE‘"
return 1

}
ln $TEMPFILE $LOCKFILE 2>/dev/null && {

10 rm -f $TEMPFILE
return 0

}
STALE_PID=‘< $LOCKFILE‘

188

20. Advanced Shell Scripting 20.9. File Locking

test "$STALE_PID" -gt "0" >/dev/null || {
15 return 1

}
kill -0 $STALE_PID 2>/dev/null && {

rm -f $TEMPFILE
return 1

20 }
rm $LOCKFILE 2>/dev/null && {

echo "Removed stale lock file of process $STALE_PID"
}
ln $TEMPFILE $LOCKFILE 2>/dev/null && {

25 rm -f $TEMPFILE
return 0

}
rm -f $TEMPFILE
return 1

30 }
✝ ✆

(Note how instead of ‘cat $LOCKFILE‘, we use ‘< $LOCKFILE‘, which is faster.)

You can include the above function in scripts that need to lock any kind file. Use
the function as follows:

✞ �

wait for a lock
until my_lockfile /etc/passwd ; do

sleep 1
done

5

The body of the program might go here
[...]

Then to remove the lock,
10 rm -f /etc/passwd.lock

✝ ✆

This script is of academic interest only but has a couple of interesting features. Note
how the ln function is used to ensure “exclusivity.” ln is one of the few UNIX func-
tions that is atomic, meaning that only one link of the same name can exist, and its
creation excludes the possibility that another program would think that it had success-
fully created the same link. One might naively expect that the program

✞ �

function my_lockfile ()
{

LOCKFILE="$1.lock"
test -e $LOCKFILE && return 1

5 touch $LOCKFILE
return 0

}
✝ ✆

is sufficient for file locking. However, consider if two programs, running simultane-

189

20.9. File Locking 20. Advanced Shell Scripting

ously, executed line 4 at the same time. Both would think that the lock did not exist
and proceed to line 5. Then both would successfully create the lock file—not what you
wanted.

The kill command is then useful for checking whether a process is running.
Sending the 0 signal does nothing to the process, but the signal fails if the process does
not exist. This technique can be used to remove a lock of a process that died before
removing the lock itself: that is, a stale lock.

20.9.2 Locking over NFS

The preceding script does not work if your file system is mounted over NFS (network
file system—see Chapter 28). This is obvious because the script relies on the PID of the
process, which is not visible across different machines. Not so obvious is that the ln
function does not work exactly right over NFS—you need to stat the file and actually
check that the link count has increased to 2.

The commands lockfile (from the procmail package) and mutt dotlock
(from the mutt email reader but perhaps not distributed) do similar file locking. These
commands, however, but do not store the PID in the lock file. Hence it is not possible
to detect a stale lock file. For example, to search your mailbox, you can run:

✞ �

lockfile /var/spool/mail/mary.lock
grep freddy /var/spool/mail/mary
rm -f /var/spool/mail/mary.lock

✝ ✆

This sequence ensures that you are searching a clean mailbox even if /var is a remote
NFS share.

20.9.3 Directory versus file locking

File locking is a headache for the developer. The problem with UNIX is that whereas
we are intuitively thinking about locking a file, what we really mean is locking a file
name within a directory. File locking per se should only be used on perpetual files, such
as database files. For mailbox and passwd files we need directory locking &My own
term.-, meaning the exclusive access of one process to a particular directory entry. In
my opinion, lack of such a feature is a serious deficiency in UNIX, but because it will
require kernel, NFS, and (possibly) library extensions, will probably not come into
being any time soon.

190

20. Advanced Shell Scripting 20.9. File Locking

20.9.4 Locking inside C programs

This topic is certainly outside of the scope of this text, except to say that you should
consult the source code of reputable packages rather than invent your own locking
scheme.

191

20.9. File Locking 20. Advanced Shell Scripting

192

Chapter 21

System Services and lpd — the
Printer Service

This chapter covers a wide range of concepts about the way UNIX services function.

Every function of UNIX is provided by one or another package. For instance, mail
is often handled by the sendmail or other package, web by the apache package.

Here we examine how to obtain, install, and configure a package, using lpd
as an example. You can then apply this knowledge to any other package, and later
chapters assume that you know these concepts. This discussion will also suffice as an
explanation of how to set up and manage printing.

21.1 Using lpr

Printing under UNIX on a properly configured machine is as simple as typing lpr
-Plp <filename> (or cat <filename> | lpr -Plp). The “lp” in -Plp is the
name of the printer queue on the local machine you would like to print to. You can
omit it if you are printing to the default (i.e., the first listed) queue. A queue belongs to
a physical printer, so users can predict where paper will come spewing out, by what
queue they print to. Queues are conventionally named lp, lp0, lp1, and so on, and
any number of them may have been redirected to any other queue on any other ma-
chine on the network.

The command lprm removes pending jobs from a print queue; lpq reports jobs
in progress.

The service that facilitates all this is called lpd. The lpr user program makes a
network connection to the lpd background process, sending it the print job. lpd then
queues, filters, and feeds the job until it appears in the print tray.

193

21.2. Downloading and Installing 21. System Services and lpd

Printing typifies the client/server nature of UNIX services. The lpd background
process is the server and is initiated by the root user. The remaining commands are
client programs, and are run mostly by users.

21.2 Downloading and Installing

The following discussion should relieve the questions of “Where do I get xxx ser-
vice/package?” and “How do I install it?”. Full coverage of package management
comes in Section 24.2, but here you briefly see how to use package managers with
respect to a real system service.

Let us say we know nothing of the service except that it has something to do
with a file /usr/sbin/lpd. First, we use our package managers to find where the file
comes from (Debian commands are shown in parentheses):

✞ �

rpm -qf /usr/sbin/lpd
(dpkg -S /usr/sbin/lpd)

✝ ✆

Returns lpr-0.nn-n (for RedHat 6.2, or LPRng-n.n.nn-n on RedHat 7.0, or lpr on
Debian). On RedHat you may have to try this on a different machine because rpm
does not know about packages that are not installed. Alternatively, if we would like to
see whether a package whose name contains the letters lpr is installed:

✞ �

rpm -qa | grep -i lpr
(dpkg -l ’*lpr*’)

✝ ✆

If the package is not present, the package file will be on your CD-ROM and is
easily installable with (RedHat 7.0 and Debian in braces):

✞ �

rpm -i lpr-0.50-4.i386.rpm
(rpm -i LPRng-3.6.24-2)
(dpkg -i lpr_0.48-1.deb)

✝ ✆

(Much more about package management is covered in Chapter 24.)

The list of files which the lpr package is comprises (easily obtained with rpm -
ql lpr or dpkg -L lpr) is approximately as follows:

✞ �
/etc/init.d/lpd /usr/share/man/man1/lprm.1.gz
/etc/cron.weekly/lpr /usr/share/man/man5/printcap.5.gz
/usr/sbin/lpf /usr/share/man/man8/lpc.8.gz
/usr/sbin/lpc /usr/share/man/man8/lpd.8.gz

5 /usr/sbin/lpd /usr/share/man/man8/pac.8.gz
/usr/sbin/pac /usr/share/man/man8/lpf.8.gz
/usr/bin/lpq /usr/share/doc/lpr/README.Debian

194

21. System Services and lpd 21.3. LPRng vs. Legacy lpr-0.nn

/usr/bin/lpr /usr/share/doc/lpr/copyright
/usr/bin/lprm /usr/share/doc/lpr/examples/printcap

10 /usr/bin/lptest /usr/share/doc/lpr/changelog.gz
/usr/share/man/man1/lpr.1.gz /usr/share/doc/lpr/changelog.Debian.gz
/usr/share/man/man1/lptest.1.gz /var/spool/lpd/lp
/usr/share/man/man1/lpq.1.gz /var/spool/lpd/remote

✝ ✆

21.3 LPRng vs. Legacy lpr-0.nn

(The word legacy with regard to software means outdated, superseded, obsolete, or just
old.)

RedHat 7.0 has now switched to using LPRng rather than the legacy lpr that
Debian and other distributions use. LPRng is a more modern and comprehensive
package. It supports the same /etc/printcap file and identical binaries as did the
legacy lpr on RedHat 6.2. The only differences are in the control files created in your
spool directories, and a different access control mechanism (discussed below). Note
that LPRng has strict permissions requirements on spool directories and is not trivial
to install from source.

21.4 Package Elements

A package’s many files can be loosely grouped into functional elements. In this sec-
tiom, each element will be explained, drawing on the lpr package as an example.
Refer to the list of files in Section 21.2.

21.4.1 Documentation files

Documentation should be your first and foremost interest. Man pages will
not always be the only documentation provided. Above we see that lpr
does not install very much into the /usr/share/doc directory. How-
ever, other packages, like rpm -ql apache, reveal a huge user manual (in
/home/httpd/html/manual/ or /var/www/html/manual/), and rpm -ql wu-
ftpd shows lots inside /usr/doc/wu-ftpd-?.?.?.

21.4.2 Web pages, mailing lists, and download points

Every package will probably have a team that maintains it as well as a web page.
In the case of lpd, however, the code is very old, and the various CD vendors do

195

21.4. Package Elements 21. System Services and lpd

maintenance on it themselves. A better example is the lprNG package. Go to The
LPRng Web Page http://www.astart.com/lprng/LPRng.html with your web browser. There
you can see the authors, mailing lists, and points of download. If a particular package
is of much interest to you, then you should become familiar with these resources. Good
web pages will also have additional documentation like troubleshooting guides and
FAQs (Frequently Asked Questions). Some may even have archives of their mailing
lists. Note that some web pages are geared more toward CD vendors who are trying to
create their own distribution and so will not have packages for download that beginner
users can easily install.

21.4.3 User programs

User programs are found in one or another bin directory. In this case, we can see lpq,
lpr, lprm, and lptest, as well as their associated man pages.

21.4.4 Daemon and administrator programs

Daemon and administrator command will an sbin directory. In this case we can see
lpc, lpd, lpf, and pac, as well as their associated man pages. The only daemon (back-
ground) program is really the lpd program itself, which is the core of the whole pack-
age.

21.4.5 Configuration files

The file /etc/printcap controls lpd. Most system services will have a file in /etc.
printcap is a plain text file that lpd reads on startup. Configuring any service pri-
marily involves editing its configuration file. Several graphical configuration tools are
available that avoid this inconvenience (printtool, which is especially for lpd, and
linuxconf), but these actually just silently produce the same configuration file.

Because printing is so integral to the system, printcap is not actually provided
by the lpr package. Trying rpm -qf /etc/printcap gives setup-2.3.4-1, and
dpkg -S /etc/printcap shows it to not be owned (i.e., it is part of the base sys-
tem).

21.4.6 Service initialization files

The files in /etc/rc.d/init.d/ (or /etc/init.d/) are the startup and shutdown
scripts to run lpd on boot and shutdown. You can start lpd yourself on the command-
line with

196

21. System Services and lpd 21.4. Package Elements

✞ �

/usr/sbin/lpd
✝ ✆

but it is preferably to use the given script:
✞ �

/etc/rc.d/init.d/lpd start
/etc/rc.d/init.d/lpd stop

✝ ✆

(or /etc/init.d/lpd). The script has other uses as well:
✞ �

/etc/rc.d/init.d/lpd status
/etc/rc.d/init.d/lpd restart

✝ ✆

(or /etc/init.d/lpd).

To make sure that lpd runs on startup, you can check that it has a symlink under
the appropriate run level. The symlinks can be explained by running

✞ �

ls -al ‘find /etc -name ’*lpd*’‘
find /etc -name ’*lpd*’ -ls

✝ ✆

showing,
✞ �
-rw-r--r-- 1 root root 17335 Sep 25 2000 /etc/lpd.conf
-rw-r--r-- 1 root root 10620 Sep 25 2000 /etc/lpd.perms
-rwxr-xr-x 1 root root 2277 Sep 25 2000 /etc/rc.d/init.d/lpd
lrwxrwxrwx 1 root root 13 Mar 21 14:03 /etc/rc.d/rc0.d/K60lpd -> ../init.d/lpd

5 lrwxrwxrwx 1 root root 13 Mar 21 14:03 /etc/rc.d/rc1.d/K60lpd -> ../init.d/lpd
lrwxrwxrwx 1 root root 13 Mar 21 14:03 /etc/rc.d/rc2.d/S60lpd -> ../init.d/lpd
lrwxrwxrwx 1 root root 13 Mar 24 01:13 /etc/rc.d/rc3.d/S60lpd -> ../init.d/lpd
lrwxrwxrwx 1 root root 13 Mar 21 14:03 /etc/rc.d/rc4.d/S60lpd -> ../init.d/lpd
lrwxrwxrwx 1 root root 13 Mar 28 23:13 /etc/rc.d/rc5.d/S60lpd -> ../init.d/lpd

10 lrwxrwxrwx 1 root root 13 Mar 21 14:03 /etc/rc.d/rc6.d/K60lpd -> ../init.d/lpd
✝ ✆

The “3” in rc3.d is the what are interested in. Having S60lpd symlinked to lpd
under rc3.d means that lpd will be started when the system enters run level 3, which
is the system’s state of usual operation.

Note that under RedHat the command setup has a menu option System Ser-
vices. The Services list will allow you to manage what services come alive on
boot, thus creating the symlinks automatically. For Debian , check the man page for
the update-rc.d command.

More details on bootup are in Chapter 32.

21.4.7 Spool files

Systems services like lpd, innd, sendmail, and uucp create intermediate files in the
course of processing each request. These are called spool files and are stored some-
where under the /var/spool/ directory, usually to be processed and then deleted in
sequence.

197

21.4. Package Elements 21. System Services and lpd

lpd has a spool directory /var/spool/lpd, which may have been created on
installation. You can create spool directories for the two printers in the example below,
with

✞ �

mkdir -p /var/spool/lpd/lp /var/spool/lpd/lp0
✝ ✆

21.4.8 Log files

UNIX has a strict policy of not reporting error messages to the user interface whenever
there might be no user around to read those messages. Whereas error messages of in-
teractive commands are sent to the terminal screen, error or information messages pro-
duced by non-interactive commands are “logged” to files in the directory /var/log/.

A log file is a plain text file that continually has one-liner status messages ap-
pended to it by a daemon process. The usual directory for log files is /var/log. The
main log files are /var/log/messages and possibly /var/log/syslog. It contains
kernel messages and messages from a few primary services. When a service would
produce large log files (think web access with thousands of hits per hour), the service
would use its own log file. sendmail, for example, uses /var/log/maillog. Actu-
ally, lpd does not have a log file of its own—one of its failings.

View the system log file with the follow option to tail:
✞ �

tail -f /var/log/messages
tail -f /var/log/syslog

✝ ✆

Restarting the lpd service gives messages like: &Not all distributions log this information.-
✞ �

Jun 27 16:06:43 cericon lpd: lpd shutdown succeeded
Jun 27 16:06:45 cericon lpd: lpd startup succeeded

✝ ✆

21.4.9 Log file rotation

Log files are rotated daily or weekly by the logrotate package. Its configuration
file is /etc/logrotate.conf. For each package that happens to produce a log file,
there is an additional configuration file under /etc/logrotate.d/. It is also easy
to write your own—begin by using one of the existing files as an example. Rotation
means that the log file is renamed with a .1 extension and then truncated to zero
length. The service is notified by the logrotate program, sometimes with a SIGHUP.
Your /var/log/ may contain a number of old log files named .2, .3, etc. The point
of log file rotation is to prevent log files from growing indefinitely.

198

21. System Services and lpd 21.5. The printcap File in Detail

21.4.10 Environment variables

Most user commands of services make use of some environment variables. These can
be defined in your shell startup scripts as usual. For lpr, if no printer is specified
on the command-line, the PRINTER environment variable determines the default print
queue. For example, export PRINTER=lp1 will force use of the lp1 print queue.

21.5 The printcap File in Detail

The printcap (printer capabilities) file is similar to (and based on) the termcap (ter-
minal capabilities) file. Configuring a printer means adding or removing text in this file.
printcap contains a list of one-line entries, one for each printer. Lines can be broken
by a \ before the newline. Here is an example of a printcap file for two printers.

✞ �

lp:\
:sd=/var/spool/lpd/lp:\
:mx#0:\
:sh:\

5 :lp=/dev/lp0:\
:if=/var/spool/lpd/lp/filter:

lp0:\
:sd=/var/spool/lpd/lp0:\
:mx#0:\

10 :sh:\
:rm=edison:\
:rp=lp3:\
:if=/bin/cat:

✝ ✆

Printers are named by the first field: in this case lp is the first printer and lp0 the
second printer. Each printer usually refers to a different physical device with its own
queue. The lp printer should always be listed first and is the default print queue used
when no other is specified. Here, lp refers to a local printer on the device /dev/lp0
(first parallel port). lp0 refers to a remote print queue lp3 on the machine edison.

The printcap has a comprehensive man page. However, the following fields
are most of what you will ever need:

sd Spool directory. This directory contains status and spool files.

mx Maximum file size. In the preceding example, unlimited.

sh Suppress headers. The header is a few informational lines printed before or after
the print job. This option should always be set to off.

lp Line printer device.

199

21.6. PostScript and the Print Filter 21. System Services and lpd

if Input filter. This is an executable script into which printer data is piped. The output
of this script is fed directly to the printing device or remote machine. This filter
will translate from the application’s output into the printer’s native code.

rm Remote machine. If the printer queue is not local, this is the machine name.

rp Remote printer queue name. The remote machine will have its own printcap file
with possibly several printers defined. This specifies which printer to use.

21.6 PostScript and the Print Filter

On UNIX the standard format for all printing is the PostScript file. PostScript .ps files
are graphics files representing arbitrary scalable text, lines, and images. PostScript
is actually a programming language specifically designed to draw things on a page;
hence, .ps files are really PostScript programs. The last line in any PostScript program
is always showpage, meaning that all drawing operations are complete and that the
page can be displayed. Hence, it is easy to see the number of pages inside a PostScript
file by grepping for the string showpage.

The procedure for printing on UNIX is to convert whatever you would like to
print into PostScript. PostScript files can be viewed with a PostScript “emulator,” like
the gv (GhostView) program. A program called gs (GhostScript) is the standard utility
for converting the PostScript into a format suitable for your printer. The idea behind
PostScript is that it is a language that can easily be built into any printer. The so-called
“PostScript printer” is one that directly interprets a PostScript file. However, these
printers are relatively expensive, and most printers only understand the lesser PCL
(printer control language) dialect or some other format.

In short, any of the hundreds of different formats of graphics and text have a
utility that will convert a file into PostScript, whereafter gs will convert it for any of
the hundreds of different kinds of printers. &There are actually many printers not supported by
gs at the time of this writing. This is mainly because manufacturers refuse to release specifications to their
proprietary printer communication protocols-. The print filter is the workhorse of this whole
operation.

Most applications conveniently output PostScript whenever printing. For exam-
ple, netscape’s menu selection shows

200

21. System Services and lpd 21.6. PostScript and the Print Filter

which sends PostScript through the stdin of lpr. All applications without their own
printer drivers will do the same. This means that we can generally rely on the fact
that the print filter will always receive PostScript. gs, on the other hand, can convert
PostScript for any printer, so all that remains is to determine its command-line options.

If you have chosen “Print To: File,” then you can view the resulting output with
the gv program. Try gv netscape.ps, which shows a print preview. On UNIX, most
desktop applications do not have their own preview facility because the PostScript
printer itself is emulated by gv.

Note that filter programs should not be used with remote filters; remote printer
queues can send their PostScript files “as is” with :if=/bin/cat: (as in the example
printcap file above). This way, the machine connected to the device need be the only
one especially configured for it.

The filter program we are going to use for the local print queue will be a shell
script /var/spool/lpd/lp/filter. Create the filter with

✞ �

touch /var/spool/lpd/lp/filter
chmod a+x /var/spool/lpd/lp/filter

✝ ✆

then edit it so that it looks like
✞ �

#!/bin/bash
cat | gs -sDEVICE=ljet4 -sOutputFile=- -sPAPERSIZE=a4 -r600x600 -q -
exit 0

✝ ✆

The -sDEVICE option describes the printer, in this example a Hewlett Packard
LaserJet 1100. Many printers have similar or compatible formats; hence, there are far
fewer DEVICE’s than different makes of printers. To get a full list of supported devices,
use gs -h and also consult one of the following files (depending on your distribution):

/usr/doc/ghostscript-?.??/devices.txt
/usr/share/doc/ghostscript-?.??/Devices.htm
/usr/share/doc/gs/devices.txt.gz

The -sOutputFile=- sets to write to stdout (as required for a filter). The -
sPAPERSIZE can be set to one of 11x17, a3, a4, a5, b3, b4, b5, halfletter,
ledger, legal, letter, note, and others listed in the man page. You can also use
-g<width>x<height> to set the exact page size in pixels. -r600x600 sets the reso-
lution, in this case, 600 dpi (dots per inch). -q means to set quiet mode, suppressing
any informational messages that would otherwise corrupt the PostScript output, and
- means to read from stdin and not from a file.

Our printer configuration is now complete. What remains is to start lpd and test
print. You can do that on the command-line with the enscript package. enscript
is a program to convert plain text files into nicely formatted PostScript pages. The man
page for enscript shows an enormous number of options, but we can simply try:

201

21.7. Access Control 21. System Services and lpd

✞ �

echo hello | enscript -p - | lpr
✝ ✆

21.7 Access Control

You should be very careful about running lpd on any machine that is exposed to the
Internet. lpd has had numerous security alerts &See Chapter 44.- and should really
only be used within a trusted LAN.

To prevent any remote machine from using your printer, lpd first looks in the
file /etc/hosts.equiv. This is a simple list of all machines allowed to print to your
printers. My own file looks like this:

✞ �

192.168.3.8
192.168.3.9
192.168.3.10
192.168.3.11

✝ ✆

The file /etc/hosts.lpd does the same but doesn’t give administrative control by
those machines to the print queues. Note that other services, like sshd and rshd (or
in.rshd), also check the hosts.equiv file and consider any machine listed to be
equivalent. This means that they are completed trusted and so rshd will not request
user logins between machines to be authenticated. This behavior is hence a grave
security concern.

LPRng on RedHat 7.0 has a different access control facility. It can arbitrarily limit
access in a variety of ways, depending on the remote user and the action (such as who is
allowed to manipulate queues). The file /etc/lpd.perms contains the configuration.
The file format is simple, although LPRng’s capabilities are rather involved—to make
a long story short, the equivalent hosts.equiv becomes in lpd.perms

✞ �

ACCEPT SERVICE=* REMOTEIP=192.168.3.8
ACCEPT SERVICE=* REMOTEIP=192.168.3.9
ACCEPT SERVICE=* REMOTEIP=192.168.3.10
ACCEPT SERVICE=* REMOTEIP=192.168.3.11

5 DEFAULT REJECT
✝ ✆

Large organizations with many untrusted users should look more closely at the
LPRng-HOWTO in /usr/share/doc/LPRng-n.n.nn. It explains how to limit access
in more complicated ways.

202

21. System Services and lpd 21.8. Printing Troubleshooting

21.8 Printing Troubleshooting

Here is a convenient order for checking what is not working.

1. Check that your printer is plugged in and working. All printers have a way of
printing a test page. Read your printer manual to find out how.

2. Check your printer cable.

3. Check your CMOS settings for your parallel port.

4. Check your printer cable.

5. Try echo hello > /dev/lp0 to check that the port is operating. The printer
should do something to signify that data has at least been received. Chapter 42
explains how to install your parallel port kernel module.

6. Use the lpc program to query the lpd daemon. Try help, then status lp,
and so on.

7. Check that there is enough space in your /var and /tmp devices for any inter-
mediate files needed by the print filter. A large print job may require hundreds of
megabytes. lpd may not give any kind of error for a print filter failure: the print
job may just disappear into nowhere. If you are using legacy lpr, then complain
to your distribution vendor about your print filter not properly logging to a file.

8. For legacy lpr, stop lpd and remove all of lpd’s runtime&At or pertaining to the
program being in a running state.- files from /var/spool/lpd and from any of its
subdirectories. (New LPRng should never require this step.) The unwanted files
are .seq, lock, status, lpd.lock, and any left over spool files that failed to
disappear with lprm (these files are recognizable by long file names with a host
name and random key embedded in the file name). Then, restart lpd.

9. For remote queues, check that you can do forward and reverse lookups on both
machines of both machine’s host names and IP address. If not, you may get Host
name for your address (ipaddr) unknown error messages when trying an
lpq. Test with the command host <ip-address> and also host <machine-
name> on both machines. If any of these do not work, add entries for both ma-
chines in /etc/hosts from the example on page 278. Note that the host com-
mand may be ignorant of the file /etc/hosts and may still fail. Chapter 40 will
explain name lookup configuration.

10. Run your print filter manually to check that it does, in fact, pro-
duce the correct output. For example, echo hello | enscript -p - |
/var/spool/lpd/lp/filter > /dev/lp0.

11. Legacy lpd is a bit of a quirky package—meditate.

203

21.9. Useful Programs 21. System Services and lpd

21.9 Useful Programs

21.9.1 printtool

printtool is a graphical printer setup program that helps you very quickly set up
lpd. It immediately generates a printcap file and magic filter, and you need not
know anything about lpd configuration.

21.9.2 apsfilter

apsfilter stands for any to PostScript filter. The setup described above requires ev-
erything be converted to PostScript before printing, but a filter could foreseeably use
the file command to determine the type of data coming in and then invoke a program
to convert it to PostScript before piping it through gs. This would enable JPEG, GIF,
plain text, DVI files, or even gzipped HTML to be printed directly, since PostScript
converters have been written for each of these. apsfilter is one of a few such filters,
which are generally called magic filters.&This is because the file command uses magic numbers.
See page 37.-

I personally find this feature a gimmick rather than a genuine utility, since most
of the time you want to lay out the graphical object on a page before printing, which
requires you to preview it, and hence convert it to PostScript manually. For most situ-
ations, the straight PostScript filter above will work adequately, provided users know
to use enscript instead of lpr when printing plain text.

21.9.3 mpage

mpage is a useful utility for saving the trees. It resizes PostScript input so that two,
four or eight pages fit on one. Change your print filter to:

✞ �
#!/bin/bash
cat | mpage -4 | gs -sDEVICE=ljet4 -sOutputFile=- -sPAPERSIZE=a4 -r600x600 -q -
exit 0

✝ ✆

21.9.4 psutils

The package psutils contains a variety of command-line PostScript manipulation
programs—a must for anyone doing fancy things with filters.

204

21. System Services and lpd 21.10. Printing to Things Besides Printers

21.10 Printing to Things Besides Printers

The printcap allows anything to be specified as the printer device. If we set it to
/dev/null and let our filter force the output to an alternative device, then we can use
lpd to redirect “print” jobs to any kind of service imaginable.

Here, my filter.sh is a script that might send the print job through an SMB
(Windows NT) print share (using smbclient—see Chapter 39), to a printer previewer,
or to a script that emails the job somewhere.

✞ �

lp1:\
:sd=/var/spool/lpd/lp1:\
:mx#0:\
:sh:\

5 :lp=/dev/null:\
:if=/usr/local/bin/my_filter.sh:

✝ ✆

We see a specific example of redirecting print jobs to a fax machine in Chapter 33.

205

21.10. Printing to Things Besides Printers 21. System Services and lpd

206

Chapter 22

Trivial Introduction to C

was invented for the purpose of writing an operating system that could be recom-
piled (ported) to different hardware platforms (different CPUs). Because the operating
system is written in , this language is the first choice for writing any kind of applica-
tion that has to communicate efficiently with the operating system.

Many people who don’t program very well in think of as an arbitrary lan-
guage out of many. This point should be made at once: is the fundamental basis of all
computing in the world today. UNIX, Microsoft Windows, office suites, web browsers
and device drivers are all written in . Ninety-nine percent of your time spent at a
computer is probably spent using an application written in . About 70% of all “open
source” software is written in , and the remaining 30% written in languages whose
compilers or interpreters are written in . &C++ is also quite popular. It is, however, not as
fundamental to computing, although it is more suitable in many situations.-

Further, there is no replacement for . Since it fulfills its purpose almost flaw-
lessly, there will never be a need to replace it. Other languages may fulfill other purposes,
but fulfills its purpose most adequately. For instance, all future operating systems will
probably be written in for a long time to come.

It is for these reasons that your knowledge of UNIX will never be complete until
you can program in . On the other hand, just because you can program in does
not mean that you should. Good programming is a fine art which many veteran
programmers never manage to master, even after many years. It is essential to join a Free
software project to properly master an effective style of development.

207

22.1. C Fundamentals 22. Trivial Introduction to C

22.1 C Fundamentals

We start with a simple program and then add fundamental elements to it. Before
going too far, you may wish to review bash functions in Section 7.7.

22.1.1 The simplest C program

A simple program is:
✞ �
#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
5 {

printf ("Hello World!\n");
return 3;

}
✝ ✆

Save this program in a file hello.c. We will now compile the program. &Compiling
is the process of turning C code into assembler instructions. Assembler instructions are the program code
that your 80?86/SPARC/RS6000 CPU understands directly. The resulting binary executable is fast because
it is executed natively by your processor—it is the very chip that you see on your motherboard that does
fetch Hello byte for byte from memory and executes each instruction. This is what is meant by million
instructions per second (MIPS). The megahertz of the machine quoted by hardware vendors is very roughly
the number of MIPS. Interpreted languages (like shell scripts) are much slower because the code itself is
written in something not understandable to the CPU. The /bin/bash program has to interpret the shell
program. /bin/bash itself is written in , but the overhead of interpretation makes scripting languages
many orders of magnitude slower than compiled languages. Shell scripts do not need to be compiled.-

Run the command
✞ �
gcc -Wall -o hello hello.c

✝ ✆

The -o hello option tells gcc &GNU Compiler. cc on other UNIX systems.- to produce
the binary file hello instead of the default binary file named a.out. &Called a.out for
historical reasons.- The -Wall option means to report all Warnings during the compila-
tion. This is not strictly necessary but is most helpful for correcting possible errors in
your programs. More compiler options are discussed on page 239.

Then, run the program with
✞ �
./hello

✝ ✆

Previously you should have familiarized yourself with bash functions. In all
code is inside a function. The first function to be called (by the operating system) is the
main function.

208

22. Trivial Introduction to C 22.1. C Fundamentals

Type echo $? to see the return code of the program. You will see it is 3, the
return value of the main function.

Other things to note are the " on either side of the string to be printed. Quotes are
required around string literals. Inside a string literal, the \n escape sequence indicates a
newline character. ascii(7) shows some other escape sequences. You can also see a
proliferation of ; everywhere in a program. Every statement in is terminated by a
; unlike statements in shell scripts where a ; is optional.

Now try:
✞ �
#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
5 {

printf ("number %d, number %d\n", 1 + 2, 10);
exit (3);

}
✝ ✆

printf can be thought of as the command to send output to the terminal. It is also
what is known as a standard library function. In other words, it is specified that a
implementation should always have the printf function and that it should behave in
a certain way.

The %d specifies that a decimal should go in at that point in the text. The num-
ber to be substituted will be the first argument to the printf function after the string
literal—that is, the 1 + 2. The next %d is substituted with the second argument—that
is, the 10. The %d is known as a format specifier. It essentially converts an integer number
into a decimal representation. See printf(3) for more details.

22.1.2 Variables and types

With bash, you could use a variable anywhere, anytime, and the variable would just
be blank if it had never been assigned a value. In , however, you have to explicitly
tell the compiler what variables you are going to need before each block of code. You
do this with a variable declaration:

✞ �
#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
5 {

int x;
int y;
x = 10;
y = 2:

10 printf ("number %d, number %d\n", 1 + y, x);
exit (3);

209

22.1. C Fundamentals 22. Trivial Introduction to C

}
✝ ✆

The int x is a variable declaration. It tells the program to reserve space for one
integer variable that it will later refer to as x. int is the type of the variable. x =
10 assigned a value of 10 to the variable. There are types for each kind of number you
would like to work with, and format specifiers to convert them for printing:

✞ �
#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
5 {

char a;
short b;
int c;
long d;

10 float e;
double f;
long double g;
a = ’A’;
b = 10;

15 c = 10000000;
d = 10000000;
e = 3.14159;
f = 10e300;
g = 10e300;

20 printf ("%c, %hd, %d, %ld, %f, %f, %Lf\n", a, b, c, d, e, f, g);
exit (3);

}
✝ ✆

You will notice that %f is used for both floats and doubles. The reason is
that a float is always converted to a double before an operation like this. Also try
replacing %f with %e to print in exponential notation—that is, less significant digits.

22.1.3 Functions

Functions are implemented as follows:
✞ �
#include <stdlib.h>
#include <stdio.h>

void mutiply_and_print (int x, int y)
5 {

printf ("%d * %d = %d\n", x, y, x * y);
}

int main (int argc, char *argv[])
10 {

mutiply_and_print (30, 5);

210

22. Trivial Introduction to C 22.1. C Fundamentals

mutiply_and_print (12, 3);
exit (3);

}
✝ ✆

Here we have a non-main function called by the main function. The function is
first declared with

✞ �
void mutiply_and_print (int x, int y)

✝ ✆

This declaration states the return value of the function (void for no return value),
the function name (mutiply and print), and then the arguments that are going to be
passed to the function. The numbers passed to the function are given their own names,
x and y, and are converted to the type of x and y before being passed to the function—
in this case, int and int. The actual code that comprises the function goes between
curly braces { and }.

In other words, the above function is equivalent to:
✞ �
void mutiply_and_print ()
{

int x;
int y;

5 x = <first-number-passed>
y = <second-number-passed>
printf ("%d * %d = %d\n", x, y, x * y);

}
✝ ✆

22.1.4 for, while, if, and switch statements

As with shell scripting, we have the for, while, and if statements:
✞ �
#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
5 {

int x;

x = 10;

10 if (x == 10) {
printf ("x is exactly 10\n");
x++;

} else if (x == 20) {
printf ("x is equal to 20\n");

15 } else {

211

22.1. C Fundamentals 22. Trivial Introduction to C

printf ("No, x is not equal to 10 or 20\n");
}

if (x > 10) {
20 printf ("Yes, x is more than 10\n");

}

while (x > 0) {
printf ("x is %d\n", x);

25 x = x - 1;
}

for (x = 0; x < 10; x++) {
printf ("x is %d\n", x);

30 }

switch (x) {
case 9:

printf ("x is nine\n");
35 break;

case 10:
printf ("x is ten\n");
break;

case 11:
40 printf ("x is eleven\n");

break;
default:

printf ("x is huh?\n");
break;

45 }

return 0;
}

✝ ✆

It is easy to see the format that these statements take, although they are vastly different
from shell scripts. code works in statement blocks between curly braces, in the same
way that shell scripts have do’s and done’s.

Note that with most programming languages when we want to add 1 to a vari-
able we have to write, say, x = x + 1. In , the abbreviation x++ is used, meaning
to increment a variable by 1.

The for loop takes three statements between (. . .): a statement to start things
off, a comparison, and a statement to be executed on each completion of the statement
block. The statement block after the for is repeatedly executed until the comparison
is untrue.

The switch statement is like case in shell scripts. switch considers the argu-
ment inside its (. . .) and decides which case line to jump to. In this example it will
obviously be printf ("x is ten\n"); because x was 10 when the previous for
loop exited. The break tokens mean that we are through with the switch statement
and that execution should continue from Line 46.

212

22. Trivial Introduction to C 22.1. C Fundamentals

Note that in the comparison == is used instead of =. The symbol = means to
assign a value to a variable, whereas == is an equality operator.

22.1.5 Strings, arrays, and memory allocation

You can define a list of numbers with:
✞ �
int y[10];

✝ ✆

This list is called an array:
✞ �
#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
5 {

int x;
int y[10];
for (x = 0; x < 10; x++) {

y[x] = x * 2;
10 }

for (x = 0; x < 10; x++) {
printf ("item %d is %d\n", x, y[x]);

}
return 0;

15 }
✝ ✆

If an array is of type character, then it is called a string:
✞ �
#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
5 {

int x;
char y[11];
for (x = 0; x < 10; x++) {

y[x] = 65 + x * 2;
10 }

for (x = 0; x < 10; x++) {
printf ("item %d is %d\n", x, y[x]);

}
y[10] = 0;

15 printf ("string is %s\n", y);
return 0;

}
✝ ✆

Note that a string has to be null-terminated. This means that the last character must be
a zero. The code y[10] = 0 sets the 11th item in the array to zero. This also means
that strings need to be one char longer than you would think.

213

22.1. C Fundamentals 22. Trivial Introduction to C

(Note that the first item in the array is y[0], not y[1], as with some other pro-
gramming languages.)

In the preceding example, the line char y[11] reserved 11 bytes for the string.
But what if you want a string of 100,000 bytes? allows you to request memory from
the kernel. This is called allocate memory. Any non-trivial program will allocate mem-
ory for itself and there is no other way of getting large blocks of memory for your
program to use. Try:

✞ �
#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
5 {

int x;
char *y;
y = malloc (11);
printf ("%ld\n", y);

10 for (x = 0; x < 10; x++) {
y[x] = 65 + x * 2;

}
y[10] = 0;
printf ("string is %s\n", y);

15 free (y);
return 0;

}
✝ ✆

The declaration char *y means to declare a variable (a number) called y that
points to a memory location. The * (asterisk) in this context means pointer. For example,
if you have a machine with perhaps 256 megabytes of RAM + swap, then y poten-
tially has a range of this much. The numerical value of y is also printed with printf
("%ld\n", y);, but is of no interest to the programmer.

When you have finished using memory you must give it back to the operating
system by using free. Programs that don’t free all the memory they allocate are said
to leak memory.

Allocating memory often requires you to perform a calculation to determine the
amount of memory required. In the above case we are allocating the space of 11 chars.
Since each char is really a single byte, this presents no problem. But what if we were
allocating 11 ints? An int on a PC is 32 bits—four bytes. To determine the size of a
type, we use the sizeof keyword:

✞ �
#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
5 {

int a;
int b;

214

22. Trivial Introduction to C 22.1. C Fundamentals

int c;
int d;

10 int e;
int f;
int g;
a = sizeof (char);
b = sizeof (short);

15 c = sizeof (int);
d = sizeof (long);
e = sizeof (float);
f = sizeof (double);
g = sizeof (long double);

20 printf ("%d, %d, %d, %d, %d, %d, %d\n", a, b, c, d, e, f, g);
return 0;

}
✝ ✆

Here you can see the number of bytes required by all of these types. Now we can easily
allocate arrays of things other than char.

✞ �
#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
5 {

int x;
int *y;
y = malloc (10 * sizeof (int));
printf ("%ld\n", y);

10 for (x = 0; x < 10; x++) {
y[x] = 65 + x * 2;

}
for (x = 0; x < 10; x++) {

printf ("%d\n", y[x]);
15 }

free (y);
return 0;

}
✝ ✆

On many machines an int is four bytes (32 bits), but you should never assume this.
Always use the sizeof keyword to allocate memory.

22.1.6 String operations

programs probably do more string manipulation than anything else. Here is a pro-
gram that divides a sentence into words:

✞ �
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

5 int main (int argc, char *argv[])

215

22.1. C Fundamentals 22. Trivial Introduction to C

{
int length_of_word;
int i;
int length_of_sentence;

10 char p[256];
char *q;

strcpy (p, "hello there, my name is fred.");

15 length_of_sentence = strlen (p);

length_of_word = 0;

for (i = 0; i <= length_of_sentence; i++) {
20 if (p[i] == ’ ’ || i == length_of_sentence) {

q = malloc (length_of_word + 1);
if (q == 0) {

perror ("malloc failed");
abort ();

25 }
strncpy (q, p + i - length_of_word, length_of_word);
q[length_of_word] = 0;
printf ("word: %s\n", q);
free (q);

30 length_of_word = 0;
} else {

length_of_word = length_of_word + 1;
}

}
35 return 0;

}
✝ ✆

Here we introduce three more standard library functions. strcpy stands for
stringcopy. It copies bytes from one place to another sequentially, until it reaches a
zero byte (i.e., the end of string). Line 13 of this program copies text into the character
array p, which is called the target of the copy.

strlen stands for stringlength. It determines the length of a string, which is
just a count of the number of characters up to the null character.

We need to loop over the length of the sentence. The variable i indicates the
current position in the sentence.

Line 20 says that if we find a character 32 (denoted by ’ ’), we know we have
reached a word boundary. We also know that the end of the sentence is a word bound-
ary even though there may not be a space there. The token || means OR. At this point
we can allocate memory for the current word and copy the word into that memory.
The strncpy function is useful for this. It copies a string, but only up to a limit of
length of word characters (the last argument). Like strcpy, the first argument is
the target, and the second argument is the place to copy from.

To calculate the position of the start of the last word, we use p + i -
length of word. This means that we are adding i to the memory location p and

216

22. Trivial Introduction to C 22.1. C Fundamentals

then going back length of word counts thereby pointing strncpy to the exact po-
sition.

Finally, we null-terminate the string on Line 27. We can then print q, free the
used memory, and begin with the next word.

For a complete list of string operations, see string(3).

22.1.7 File operations

Under most programming languages, file operations involve three steps: opening a file,
reading or writing to the file, and then closing the file. You use the command fopen to
tell the operating system that you are ready to begin working with a file:

The following program opens a file and spits it out on the terminal:
✞ �
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

5 int main (int argc, char *argv[])
{

int c;
FILE *f;

10 f = fopen ("mytest.c", "r");
if (f == 0) {

perror ("fopen");
return 1;

}
15 for (;;) {

c = fgetc (f);
if (c == -1)

break;
printf ("%c", c);

20 }
fclose (f);
return 0;

}
✝ ✆

A new type is presented here: FILE *. It is a file operations variable that must be
initialized with fopen before it can be used. The fopen function takes two arguments:
the first is the name of the file, and the second is a string explaining how we want to
open the file—in this case "r" means reading from the start of the file. Other options
are "w" for writing and several more described in fopen(3).

If the return value of fopen is zero, it means that fopen has failed. The perror
function then prints a textual error message (for example, No such file or di-
rectory). It is essential to check the return value of all library calls in this way. These
checks will constitute about one third of your program.

217

22.1. C Fundamentals 22. Trivial Introduction to C

The command fgetc gets a character from the file. It retrieves consecutive bytes
from the file until it reaches the end of the file, when it returns a -1. The break state-
ment says to immediately terminate the for loop, whereupon execution will continue
from line 21. break statements can appear inside while loops as well.

You will notice that the for statement is empty. This is allowable code and
means to loop forever.

Some other file functions are fread, fwrite, fputc, fprintf, and fseek. See
fwrite(3), fputc(3), fprintf(3), and fseek(3).

22.1.8 Reading command-line arguments inside C programs

Up until now, you are probably wondering what the (int argc, char *argv[])
are for. These are the command-line arguments passed to the program by the shell.
argc is the total number of command-line arguments, and argv is an array of strings
of each argument. Printing them out is easy:

✞ �
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

5 int main (int argc, char *argv[])
{

int i;
for (i = 0; i < argc; i++) {

printf ("argument %d is %s\n", i, argv[i]);
10 }

return 0;
}

✝ ✆

22.1.9 A more complicated example

Here we put this altogether in a program that reads in lots of files and dumps them as
words. Here are some new notations you will encounter: != is the inverse of == and
tests if not-equal-to; realloc reallocates memory—it resizes an old block of memory so
that any bytes of the old block are preserved; \n, \t mean the newline character, 10,
or the tab character, 9, respectively (see ascii(7)).

✞ �
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

5 void word_dump (char *filename)
{

int length_of_word;
int amount_allocated;

218

22. Trivial Introduction to C 22.1. C Fundamentals

char *q;
10 FILE *f;

int c;

c = 0;

15 f = fopen (filename, "r");
if (f == 0) {

perror ("fopen failed");
exit (1);

}
20

length_of_word = 0;

amount_allocated = 256;
q = malloc (amount_allocated);

25 if (q == 0) {
perror ("malloc failed");
abort ();

}

30 while (c != -1) {
if (length_of_word >= amount_allocated) {

amount_allocated = amount_allocated * 2;
q = realloc (q, amount_allocated);
if (q == 0) {

35 perror ("realloc failed");
abort ();

}
}

40 c = fgetc (f);
q[length_of_word] = c;

if (c == -1 || c == ’ ’ || c == ’\n’ || c == ’\t’) {
if (length_of_word > 0) {

45 q[length_of_word] = 0;
printf ("%s\n", q);

}
amount_allocated = 256;
q = realloc (q, amount_allocated);

50 if (q == 0) {
perror ("realloc failed");
abort ();

}
length_of_word = 0;

55 } else {
length_of_word = length_of_word + 1;

}
}

60 fclose (f);
}

int main (int argc, char *argv[])
{

65 int i;

if (argc < 2) {
printf ("Usage:\n\twordsplit <filename> ...\n");
exit (1);

70 }

for (i = 1; i < argc; i++) {
word_dump (argv[i]);

219

22.1. C Fundamentals 22. Trivial Introduction to C

}
75

return 0;
}

✝ ✆

This program is more complicated than you might immediately expect. Read-
ing in a file where we are sure that a word will never exceed 30 characters is simple.
But what if we have a file that contains some words that are 100,000 characters long?
GNU programs are expected to behave correctly under these circumstances.

To cope with normal as well as extreme circumstances, we start off assuming that
a word will never be more than 256 characters. If it appears that the word is growing
over 256 characters, we reallocate the memory space to double its size (lines 32 amd
33). When we start with a new word, we can free up memory again, so we realloc
back to 256 again (lines 48 and 49). In this way we are using the minimum amount of
memory at each point in time.

We have hence created a program that can work efficiently with a 100-gigabyte
file just as easily as with a 100-byte file. This is part of the art of programming.

Experienced programmers may actually scoff at the above listing because it
really isn’t as “minimalistic” as is absolutely possible. In fact, it is a truly excellent
listing for the following reasons:

• The program is easy to understand.

• The program uses an efficient algorithm (albeit not optimal).

• The program contains no arbitrary limits that would cause unexpected behavior
in extreme circumstances.

• The program uses no nonstandard functions or notations that would prohibit
it compiling successfully on other systems. It is therefore portable.

Readability in is your first priority—it is imperative that what you do is obvious to anyone
reading the code.

22.1.10 #include statements and prototypes

At the start of each program will be one or more #include statements. These tell the
compiler to read in another program. Now, “raw” does not have a whole lot in the
way of protecting against errors: for example, the strcpy function could just as well
be used with one, three, or four arguments, and the program would still compile.
It would, however, wreak havoc with the internal memory and cause the program to
crash. These other .h programs are called header files. They contain templates for

220

22. Trivial Introduction to C 22.1. C Fundamentals

how functions are meant to be called. Every function you might like to use is contained
in one or another template file. The templates are called function prototypes. &C++ has
something called “templates.” This is a special C++ term having nothing to do with the discussion here.-

A function prototype is written the same as the function itself, but without the
code. A function prototype for word dump would simply be:

✞ �
void word_dump (char *filename);

✝ ✆

The trailing ; is essential and distinguishes a function prototype from a function.

After a function prototype is defined, any attempt to use the function in a way
other than intended—say, passing it to few arguments or arguments of the wrong
type—will be met with fierce opposition from gcc.

You will notice that the #include <string.h> appeared when we started
using string operations. Recompiling these programs without the #include
<string.h> line gives the warning message

✞ �
mytest.c:21: warning: implicit declaration of function ‘strncpy’

✝ ✆

which is quite to the point.

The function prototypes give a clear definition of how every function is to be
used. Man pages will always first state the function prototype so that you are clear on
what arguments are to be passed and what types they should have.

22.1.11 C comments

A comment is denoted with /* <comment lines> */ and can span multiple
lines. Anything between the /* and */ is ignored. Every function should be com-
mented, and all nonobvious code should be commented. It is a good maxim that a
program that needs lots of comments to explain it is badly written. Also, never com-
ment the obvious, and explain why you do things rather that what you are doing. It is
advisable not to make pretty graphics between each function, so rather:

✞ �
/* returns -1 on error, takes a positive integer */
int sqr (int x)
{

<...>
✝ ✆

than
✞ �
/***************************----SQR----******************************
* x = argument to make the square of *
* return value = *
* -1 (on error) *

5 * square of x (on success) *
**/

221

22.1. C Fundamentals 22. Trivial Introduction to C

int sqr (int x)
{

<...>
✝ ✆

which is liable to cause nausea. In C++, the additional comment // is allowed,
whereby everything between the // and the end of the line is ignored. It is accepted
under gcc, but should not be used unless you really are programming in C++. In addi-
tion, programmers often “comment out” lines by placing a #if 0 . . .#endif around
them, which really does exactly the same thing as a comment (see Section 22.1.12) but
allows you to have comments within comments. For example

✞ �
int x;
x = 10;

#if 0
printf ("debug: x is %d\n", x); /* print debug information */

5 #endif
y = x + 10;
<...>

✝ ✆

comments out Line 4.

22.1.12 #define and #if — C macros

Anything starting with a # is not actually , but a preprocessor directive. A program
is first run through a preprocessor that removes all spurious junk, like comments, #in-
clude statements, and anything else beginning with a #. You can make programs
much more readable by defining macros instead of literal values. For instance,

✞ �
#define START_BUFFER_SIZE 256

✝ ✆

in our example program, #defines the text START BUFFER SIZE to be the text 256.
Thereafter, wherever in the program we have a START BUFFER SIZE, the text 256
will be seen by the compiler, and we can use START BUFFER SIZE instead. This is a
much cleaner way of programming because, if, say, we would like to change the 256 to
some other value, we only need to change it in one place. START BUFFER SIZE is also
more meaningful than a number, making the program more readable.

Whenever you have a literal constant like 256, you should replace it with a macro
defined near the top of your program.

You can also check for the existence of macros with the #ifdef and #ifndef
directive. # directives are really a programming language all on their own:

✞ �
/* Set START_BUFFER_SIZE to fine-tune performance before compiling: */
#define START_BUFFER_SIZE 256
/* #define START_BUFFER_SIZE 128 */
/* #define START_BUFFER_SIZE 1024 */

5 /* #define START_BUFFER_SIZE 16384 */

222

22. Trivial Introduction to C 22.2. Debugging with gdb and strace

#ifndef START_BUFFER_SIZE
#error This code did not define START_BUFFER_SIZE. Please edit
#endif

10

#if START_BUFFER_SIZE <= 0
#error Wooow! START_BUFFER_SIZE must be greater than zero
#endif

15 #if START_BUFFER_SIZE < 16
#warning START_BUFFER_SIZE to small, program may be inefficient
#elif START_BUFFER_SIZE > 65536
#warning START_BUFFER_SIZE to large, program may be inefficient
#else

20 /* START_BUFFER_SIZE is ok, do not report */
#endif

void word_dump (char *filename)
{

25 <...>
amount_allocated = START_BUFFER_SIZE;
q = malloc (amount_allocated);
<...>

✝ ✆

22.2 Debugging with gdb and strace

Programming errors, or bugs, can be found by inspecting program execution. Some de-
velopers claim that the need for such inspection implies a sloppy development process.
Nonetheless it is instructive to learn by actually watching a program work.

22.2.1 gdb

The GNU debugger, gdb, is a replacement for the standard UNIX debugger, db. To
debug a program means to step through its execution line-by-line, in order to find pro-
gramming errors as they happen. Use the command gcc -Wall -g -O0 -o word-
split wordsplit.c to recompile your program above. The -g option enables de-
bugging support in the resulting executable and the -O0 option disables compiler op-
timization (which sometimes causes confusing behavior). For the following example,
create a test file readme.txt with some plain text inside it. You can then run gdb
-q wordsplit. The standard gdb prompt will appear, which indicates the start of a
debugging session:

✞ �
(gdb)

✝ ✆

At the prompt, many one letter commands are available to control program execution.

223

22.2. Debugging with gdb and strace 22. Trivial Introduction to C

The first of these is run which executes the program as though it had been started from
a regular shell:

✞ �
(gdb) r
Starting program: /homes/src/wordsplit/wordsplit
Usage:

wordsplit <filename> ...
5

Program exited with code 01.
✝ ✆

Obviously, we will want to set some trial command-line arguments. This is done with
the special command, set args:

✞ �
(gdb) set args readme.txt readme2.txt

✝ ✆

The break command is used like b [[<file>:]<line>|<function>], and
sets a break point at a function or line number:

✞ �
(gdb) b main
Breakpoint 1 at 0x8048796: file wordsplit.c, line 67.

✝ ✆

A break point will interrupt execution of the program. In this case the program will
stop when it enters the main function (i.e., right at the start). Now we can run the
program again:

✞ �
(gdb) r
Starting program: /home/src/wordsplit/wordsplit readme.txt readme2.txt

Breakpoint 1, main (argc=3, argv=0xbffff804) at wordsplit.c:67
5 67 if (argc < 2) {

(gdb)
✝ ✆

As specified, the program stops at the beginning of the main function at line 67.

If you are interested in viewing the contents of a variable, you can use the print
command:

✞ �
(gdb) p argc
$1 = 3
(gdb) p argv[1]
$2 = 0xbffff988 "readme.txt"

✝ ✆

which tells us the value of argc and argv[1]. The list command displays the lines
about the current line:

✞ �
(gdb) l
63 int main (int argc, char *argv[])
64 {
65 int i;

5 66

224

22. Trivial Introduction to C 22.2. Debugging with gdb and strace

67 if (argc < 2) {
68 printf ("Usage:\n\twordsplit <filename> ...\n");
69 exit (1);
70 }

✝ ✆

The list command can also take an optional file and line number (or even a function
name):

✞ �
(gdb) l wordsplit.c:1
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <string.h>

5 4
5 void word_dump (char *filename)
6 {
7 int length_of_word;
8 int amount_allocated;

✝ ✆

Next, we can try setting a break point at an arbitrary line and then using the
continue command to proceed with program execution:

✞ �
(gdb) b wordsplit.c:48
Breakpoint 2 at 0x804873e: file wordsplit.c, line 48.
(gdb) c
Continuing.

5 Zaphod

Breakpoint 2, word_dump (filename=0xbffff988 "readme.txt") at wordsplit.c:48
48 amount_allocated = 256;

✝ ✆

Execution obediently stops at line 48. At this point it is useful to run a backtrace. This
prints out the current stack which shows the functions that were called to get to the
current line. This output allows you to trace the history of execution.

✞ �
(gdb) bt
#0 word_dump (filename=0xbffff988 "readme.txt") at wordsplit.c:48
#1 0x80487e0 in main (argc=3, argv=0xbffff814) at wordsplit.c:73
#2 0x4003db65 in __libc_start_main (main=0x8048790 <main>, argc=3, ubp_av=0xbf

5 fff814, init=0x8048420 <_init>,
fini=0x804883c <_fini>, rtld_fini=0x4000df24 <_dl_fini>, stack_end=0xbffff8

0c) at ../sysdeps/generic/libc-start.c:111
✝ ✆

The clear command then deletes the break point at the current line:
✞ �
(gdb) clear
Deleted breakpoint 2

✝ ✆

The most important commands for debugging are the next and step commands.
The n command simply executes one line of code:

225

22.2. Debugging with gdb and strace 22. Trivial Introduction to C

✞ �
(gdb) n
49 q = realloc (q, amount_allocated);
(gdb) n
50 if (q == 0) {

5 (gdb) n
54 length_of_word = 0;

✝ ✆

This activity is called stepping through your program. The s command is identical to
n except that it dives into functions instead of running them as single line. To see the
difference, step over line 73 first with n, and then with s, as follows:

✞ �
(gdb) set args readme.txt readme2.txt
(gdb) b main
Breakpoint 1 at 0x8048796: file wordsplit.c, line 67.
(gdb) r

5 Starting program: /home/src/wordsplit/wordsplit readme.txt readme2.txt

Breakpoint 1, main (argc=3, argv=0xbffff814) at wordsplit.c:67
67 if (argc < 2) {
(gdb) n

10 72 for (i = 1; i < argc; i++) {
(gdb) n
73 word_dump (argv[i]);
(gdb) n
Zaphod

15 has
two
heads
72 for (i = 1; i < argc; i++) {
(gdb) s

20 73 word_dump (argv[i]);
(gdb) s
word_dump (filename=0xbffff993 "readme2.txt") at wordsplit.c:13
13 c = 0;
(gdb) s

25 15 f = fopen (filename, "r");
(gdb)

✝ ✆

An interesting feature of gdb is its ability to attach onto running programs. Try
the following sequence of commands:

✞ �
[root@cericon]# lpd
[root@cericon]# ps awx | grep lpd
28157 ? S 0:00 lpd Waiting
28160 pts/6 S 0:00 grep lpd

5 [root@cericon]# gdb -q /usr/sbin/lpd
(no debugging symbols found)...
(gdb) attach 28157
Attaching to program: /usr/sbin/lpd, Pid 28157
0x40178bfe in __select () from /lib/libc.so.6

10 (gdb)
✝ ✆

226

22. Trivial Introduction to C 22.3. C Libraries

The lpd daemon was not compiled with debugging support, but the point is still
made: you can halt and debug any running process on the system. Try running a
bt for fun. Now release the process with

✞ �
(gdb) detach
Detaching from program: /usr/sbin/lpd, Pid 28157

✝ ✆

The debugger provides copious amounts of online help. The help command can
be run to explain further. The gdb info pages also elaborate on an enormous number
of display features and tracing features not covered here.

22.2.2 Examining core files

If your program has a segmentation violation (“segfault”) then a core file will be writ-
ten to the current directory. This is known as a core dump. A core dump is caused by
a bug in the program—its response to a SIGSEGV signal sent to the program because
it tried to access an area of memory outside of its allowed range. These files can be
examined using gdb to (usually) reveal where the problem occurred. Simply run gdb
<executable> ./core and then type bt (or any gdb command) at the gdb prompt.
Typing file ./core will reveal something like

✞ �
/root/core: ELF 32-bit LSB core file of ’<executable>’ (signal 11), Intel 80386, version 1

✝ ✆

22.2.3 strace

The strace command prints every system call performed by a program. A system call
is a function call made by a library function to the LINUX kernel. Try

✞ �
strace ls
strace ./wordsplit

✝ ✆

If a program has not been compiled with debugging support, the only way to
inspect its execution may be with the strace command. In any case, the command
can provide valuable information about where a program is failing and is useful for
diagnosing errors.

22.3 C Libraries

We made reference to the Standard library. The language on its own does almost
nothing; everything useful is an external function. External functions are grouped into

227

22.3. C Libraries 22. Trivial Introduction to C

libraries. The Standard library is the file /lib/libc.so.6. To list all the library
functions, run:

✞ �
nm /lib/libc.so.6
nm /lib/libc.so.6 | grep ’ T ’ | cut -f3 -d’ ’ | grep -v ’ˆ_’ | sort -u | less

✝ ✆

many of these have man pages, but some will have no documentation and require you
to read the comments inside the header files (which are often most explanatory). It is
better not to use functions unless you are sure that they are standard functions in the
sense that they are common to other systems.

To create your own library is simple. Let’s say we have two files that contain
several functions that we would like to compile into a library. The files are sim-
ple math sqrt.c

✞ �
#include <stdlib.h>
#include <stdio.h>

static int abs_error (int a, int b)
5 {

if (a > b)
return a - b;

return b - a;
}

10

int simple_math_isqrt (int x)
{

int result;
if (x < 0) {

15 fprintf (stderr,
"simple_math_sqrt: taking the sqrt of a negative number\n");
abort ();

}
result = 2;

20 while (abs_error (result * result, x) > 1) {
result = (x / result + result) / 2;

}
return result;

}
✝ ✆

and simple math pow.c
✞ �
#include <stdlib.h>
#include <stdio.h>

int simple_math_ipow (int x, int y)
5 {

int result;
if (x == 1 || y == 0)

return 1;
if (x == 0 && y < 0) {

10 fprintf (stderr,
"simple_math_pow: raising zero to a negative power\n");

228

22. Trivial Introduction to C 22.3. C Libraries

abort ();
}
if (y < 0)

15 return 0;
result = 1;
while (y > 0) {

result = result * x;
y = y - 1;

20 }
return result;

}
✝ ✆

We would like to call the library simple math. It is good practice to name all the
functions in the library simple math ??????. The function abs error is not going to
be used outside of the file simple math sqrt.c and so we put the keyword static
in front of it, meaning that it is a local function.

We can compile the code with:
✞ �
gcc -Wall -c simple_math_sqrt.c
gcc -Wall -c simple_math_pow.c

✝ ✆

The -c option means compile only. The code is not turned into an executable. The
generated files are simple math sqrt.o and simple math pow.o. These are called
object files.

We now need to archive these files into a library. We do this with the ar command
(a predecessor of tar):

✞ �
ar libsimple_math.a simple_math_sqrt.o simple_math_pow.o
ranlib libsimple_math.a

✝ ✆

The ranlib command indexes the archive.

The library can now be used. Create a file mytest.c:
✞ �
#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
5 {

printf ("%d\n", simple_math_ipow (4, 3));
printf ("%d\n", simple_math_isqrt (50));
return 0;

}
✝ ✆

and run
✞ �
gcc -Wall -c mytest.c
gcc -o mytest mytest.o -L. -lsimple_math

✝ ✆

229

22.4. C Projects — Makefiles 22. Trivial Introduction to C

The first command compiles the file mytest.c into mytest.o, and the second func-
tion is called linking the program, which assimilates mytest.o and the libraries into a
single executable. The option L.means to look in the current directory for any libraries
(usually only /lib and /usr/lib are searched). The option -lsimple math means
to assimilate the library libsimple math.a (lib and .a are added automatically).
This operation is called static&Nothing to do with the “static” keyword.- linking because
it happens before the program is run and includes all object files into the executable.

As an aside, note that it is often the case that many static libraries are linked into
the same program. Here order is important: the library with the least dependencies
should come last, or you will get so-called symbol referencing errors.

We can also create a header file simple math.h for using the library.
✞ �
/* calculates the integer square root, aborts on error */
int simple_math_isqrt (int x);

/* calculates the integer power, aborts on error */
5 int simple_math_ipow (int x, int y);

✝ ✆

Add the line #include "simple math.h" to the top of mytest.c:
✞ �
#include <stdlib.h>
#include <stdio.h>
#include "simple_math.h"

✝ ✆

This addition gets rid of the implicit declaration of function warning mes-
sages. Usually #include <simple math.h> would be used, but here, this is a
header file in the current directory—our own header file—and this is where we use
"simple math.h" instead of <simple math.h>.

22.4 C Projects — Makefiles

What if you make a small change to one of the files (as you are likely to do very often
when developing)? You could script the process of compiling and linking, but the
script would build everything, and not just the changed file. What we really need is
a utility that only recompiles object files whose sources have changed: make is such a
utility.

make is a program that looks inside a Makefile in the current directory then
does a lot of compiling and linking. Makefiles contain lists of rules and dependencies
describing how to build a program.

Inside a Makefile you need to state a list of what-depends-on-what dependencies
that make can work through, as well as the shell commands needed to achieve each
goal.

230

22. Trivial Introduction to C 22.4. C Projects — Makefiles

22.4.1 Completing our example Makefile

Our first (last?) dependency in the process of completing the compilation is that mytest
depends on both the library, libsimple math.a, and the object file, mytest.o. In
make terms we create a Makefile line that looks like:

✞ �
mytest: libsimple_math.a mytest.o

✝ ✆

meaning simply that the files libsimple math.a mytest.o must exist and be up-
dated before mytest. mytest: is called a make target. Beneath this line, we also need
to state how to build mytest:

✞ �
gcc -Wall -o $@ mytest.o -L. -lsimple_math

✝ ✆

The $@ means the name of the target itself, which is just substituted with mytest. Note
that the space before the gcc is a tab character and not 8 space characters.

The next dependency is that libsimple math.a depends on simple math sqrt.o
simple math pow.o. Once again we have a dependency, along with a shell script to
build the target. The full Makefile rule is:

✞ �
libsimple_math.a: simple_math_sqrt.o simple_math_pow.o

rm -f $@
ar rc $@ simple_math_sqrt.o simple_math_pow.o
ranlib $@

✝ ✆

Note again that the left margin consists of a single tab character and not spaces.

The final dependency is that the files simple math sqrt.o and sim-
ple math pow.o depend on the files simple math sqrt.c and sim-
ple math pow.c. This requires two make target rules, but make has a short way of
stating such a rule in the case of many source files,

✞ �
.c.o:

gcc -Wall -c -o $*.o $<
✝ ✆

which means that any .o files needed can be built from a .c file of a similar name by
means of the command gcc -Wall -c -o $*.o $<, where $*.o means the name
of the object file and $<means the name of the file that $*.o depends on, one at a time.

22.4.2 Putting it all together

Makefiles can, in fact, have their rules put in any order, so it’s best to state the most
obvious rules first for readability.

There is also a rule you should always state at the outset:

231

22.4. C Projects — Makefiles 22. Trivial Introduction to C

✞ �
all: libsimple_math.a mytest

✝ ✆

The all: target is the rule that make tries to satisfy when make is run with no
command-line arguments. This just means that libsimple math.a and mytest are
the last two files to be built, that is, they are the top-level dependencies.

Makefiles also have their own form of environment variables, like shell scripts.
You can see that we have used the text simple math in three of our rules. It makes
sense to define a macro for this so that we can easily change to a different library name.

Our final Makefile is:
✞ �
Comments start with a # (hash) character like shell scripts.
Makefile to build libsimple_math.a and mytest program.
Paul Sheer <psheer@icon.co.za> Sun Mar 19 15:56:08 2000

5 OBJS = simple_math_sqrt.o simple_math_pow.o
LIBNAME = simple_math
CFLAGS = -Wall

all: lib$(LIBNAME).a mytest
10

mytest: lib$(LIBNAME).a mytest.o
gcc $(CFLAGS) -o $@ mytest.o -L. -l${LIBNAME}

lib$(LIBNAME).a: $(OBJS)
15 rm -f $@

ar rc $@ $(OBJS)
ranlib $@

.c.o:
20 gcc $(CFLAGS) -c -o $*.o $<

clean:
rm -f *.o *.a mytest

✝ ✆

We can now easily type
✞ �
make

✝ ✆

in the current directory to cause everything to be built.

You can see we have added an additional disconnected target clean:. Targets
can be run explictly on the command-line like this:

✞ �
make clean

✝ ✆

which removes all built files.

Makefiles have far more uses than just building programs. Anything that
needs to be built from sources can employ a Makefile to make things easier.

232

Chapter 23

Shared Libraries

This chapter follows directly from our construction of static .a libraries in Chapter
22. It discusses creation and installation of Dynamically Linked Libraries (DLLs). Here I
show you both so that you have a good technical overview of how DLLs work on UNIX.
You can then promptly forget everything except ldconfig and LD LIBRARY PATH
discussed below.

The .a library file is good for creating functions that many programs can in-
clude. This practice is called code reuse. But note how the .a file is linked into (included)
in the executable mytest in Chapter 22. mytest is enlarged by the size of libsim-
ple math.a. When hundreds of programs use the same .a file, that code is effectively
duplicated all over the file system. Such inefficiency was deemed unacceptable long
before LINUX , so library files were invented that only link with the program when
it runs—a process known as dynamic linking. Instead of .a files, similar .so (shared
object) files live in /lib/ and /usr/lib/ and are automatically linked to a program
when it runs.

23.1 Creating DLL .so Files

Creating a DLL requires several changes to the Makefile on page 232:
✞ �
OBJS = simple_math_sqrt.o simple_math_pow.o
LIBNAME = simple_math
SONAME = libsimple_math.so.1.0.0
SOVERSION = libsimple_math.so.1.0

5 CFLAGS = -Wall

all: lib$(LIBNAME).so mytest

233

23.2. DLL Versioning 23. Shared Libraries

mytest: lib$(LIBNAME).so mytest.o
10 gcc $(CFLAGS) -o $@ mytest.o -L. -l${LIBNAME}

lib$(LIBNAME).so: $(OBJS)
gcc -shared $(CFLAGS) $(OBJS) -lc -Wl,-soname -Wl,$(SOVERSION) \

-o $(SONAME) && \
15 ln -sf $(SONAME) $(SOVERSION) && \

ln -sf $(SONAME) lib$(LIBNAME).so

.c.o:
gcc -fPIC -DPIC $(CFLAGS) -c -o $*.o $<

20

clean:
rm -f *.o *.a *.so mytest

✝ ✆

The -shared option to gcc builds our shared library. The -W options are linker
options that set the version number of the library that linking programs will load at
runtime. The -fPIC -DPIC means to generate position-independent code, that is, code
suitable for dynamic linking.

After running make we have
✞ �
lrwxrwxrwx 1 root root 23 Sep 17 22:02 libsimple_math.so -> libsimple_math.so.1.0.0
lrwxrwxrwx 1 root root 23 Sep 17 22:02 libsimple_math.so.1.0 -> libsimple_math.so.1.0.0
-rwxr-xr-x 1 root root 6046 Sep 17 22:02 libsimple_math.so.1.0.0
-rwxr-xr-x 1 root root 13677 Sep 17 22:02 mytest

✝ ✆

23.2 DLL Versioning

You may observe that our three .so files are similar to the many files in /lib/ and
/usr/lib/. This complicated system of linking and symlinking is part of the process
of library versioning. Although generating a DLL is out of the scope of most system
admin tasks, library versioning is important to understand.

DLLs have a problem. Consider a DLL that is outdated or buggy: simply over-
writing the DLL file with an updated file will affect all the applications that use it. If
these applications rely on certain behavior of the DLL code, then they will probably
crash with the fresh DLL. UNIX has elegantly solved this problem by allowing mul-
tiple versions of DLLs to be present simultaneously. The programs themselves have
their required version number built into them. Try

✞ �

ldd mytest
✝ ✆

which will show the DLL files that mytest is scheduled to link with:
✞ �

libsimple_math.so.1.0 => ./libsimple_math.so.1.0 (0x40018000)

234

23. Shared Libraries 23.3. Installing DLL .so Files

libc.so.6 => /lib/libc.so.6 (0x40022000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

✝ ✆

At the moment, we are interested in libsimple math.so.1.0. Note how it matches
the SOVERSION variable in the Makefile. Note also how we have chosen our
symlinks. We are effectively allowing mytest to link with any future libsim-
ple math.so.1.0.? (were our simple math library to be upgraded to a new ver-
sion) purely because of the way we have chosen our symlinks. However, it will not
link with any library libsimple math.so.1.1.?, for example. As developers of
libsimple math, we are deciding that libraries of a different minor &For this example
we are considering libraries to be named libname.so.major.minor.patch- version number will be
incompatible, whereas libraries of a different patch level will not be incompatible.

We could also change SOVERSION to libsimple math.so.1. This would ef-
fectively be saying that future libraries of different minor version numbers are compat-
ible; only a change in the major version number would dictate incompatibility.

23.3 Installing DLL .so Files

If you run ./mytest, you will be greeted with an error while loading shared
librariesmessage. The reason is that the dynamic linker does not search the current
directory for .so files. To run your program, you will have to install your library:

✞ �

mkdir -p /usr/local/lib
install -m 0755 libsimple_math.so libsimple_math.so.1.0 \

libsimple_math.so.1.0.0 /usr/local/lib
✝ ✆

Then, edit the /etc/ld.so.conf file and add a line
✞ �

/usr/local/lib
✝ ✆

Then, reconfigure your libraries with
✞ �

ldconfig
✝ ✆

Finally, run your program with
✞ �

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/lib"
./mytest

✝ ✆

ldconfig configures all libraries on the system. It recreates appropriate sym-
links (as we did) and rebuilds a lookup cache. The library directories it considers are
/lib, /usr/lib, and those listed in /etc/ld.so.config. The ldconfig com-
mand should be run automatically when the system boots and manually whenever
libraries are installed or upgraded.

235

23.3. Installing DLL .so Files 23. Shared Libraries

The LD LIBRARY PATH environment variable is relevant to every executable
on the system and similar to the PATH environment variable. LD LIBRARY PATH
dictates what directories should be searched for library files. Here, we appended
/usr/local/lib to the search path in case it was missing. Note that even with
LD LIBRARY PATH unset, /lib and /usr/lib will always be searched.

236

Chapter 24

Source and Binary Packages

In this chapter you will, first and foremost, learn to build packages from source, build-
ing on your knowledge of Makefiles in Chapter 22. Most packages, however, also
come as .rpm (RedHat) or .deb (Debian) files, which are discussed further below.

24.1 Building GNU Source Packages

Almost all packages originally come as sources, tared and available from one of
the many public FTP sites, like metalab.unc.edu. Thoughtful developers would
have made their packages GNU standards compliant. This means that untarring the
package will reveal the following files inside the top-level directory:

INSTALL This is a standard document beginning with the line “These are

generic installation instructions.” Since all GNU packages are
installed in the same way, this file should always be the same.

NEWS News of interest to users.

README Any essential information. This is usually an explanation of what the package
does, promotional material, and anything special that need be done to install the
package.

COPYING The GNU General Public License.

AUTHORS A list of major contributors.

ChangeLog A specially formatted list containing a history of all changes ever done to
the package, by whom, and on what date. Used to track work on the package.

237

24.1. Building GNU Source Packages 24. Source and Binary Packages

Being GNU standards compliant should also mean that the package can be installed
with only the three following commands:

✞ �

./configure
make
make install

✝ ✆

It also usually means that packages will compile on any UNIX system. Hence, this
section should be a good guide to getting LINUX software to work on non-LINUX
machines.

An example will illustrate these steps. Begin by downloading cooledit from
metalab.unc.edu in the directory /pub/Linux/apps/editors/X/cooledit,
using ftp. Make a directory /opt/src in which to build such custom packages. Now
run

✞ �

cd /opt/src
tar -xvzf cooledit-3.17.2.tar.gz
cd cooledit-3.17.2

✝ ✆

You will notice that most sources have the name package-major.minor.patch.tar.gz.
The major version of the package is changed when the developers make a substantial
feature update or when they introduce incompatibilities to previous versions. The
minor version is usually updated when small features are added. The patch number
(also known as the patch level) is updated whenever a new release is made and usually
signifies bug fixes.

At this point you can apply any patches you may have. See Section 20.7.3.

You can now ./configure the package. The ./configure script is generated
by autoconf—a package used by developers to create source that will compile
on any type of UNIX system. The autoconf package also contains the GNU Coding
Standards to which all software should comply. &autoconf is the remarkable work of David
MacKenzie. I often hear the myth that UNIX systems have so diverged that they are no longer compatible.
The fact that sophisticated software like cooledit (and countless others) compiles on almost any UNIX

machine should dispel this nonsense. There is also hype surrounding developers “porting” commercial
software from other UNIX systems to LINUX. If they had written their software in the least bit properly to
begin with, there would be no porting to be done. In short, all LINUX software runs on all UNIXs. The only
exceptions are a few packages that use some custom features of the LINUX kernel.-

✞ �

./configure --prefix=/opt/cooledit
✝ ✆

Here, --prefix indicates the top-level directory under which the package will be
installed. (See Section 17.2.). Always also try

✞ �

./configure --help
✝ ✆

to see package-specific options.

238

24. Source and Binary Packages 24.1. Building GNU Source Packages

Another trick sets compile options:
✞ �
CFLAGS=’-O2 -fomit-frame-pointer -s -pipe’ ./configure --prefix=/opt/cooledit

✝ ✆

-O2 Sets compiler optimizations to be “as fast as possible without making the binary
larger.” (-O3 almost never provides an advantage.)

-fomit-frame-pointer Permits the compiler to use one extra register that would
normally be used for debugging. Use this option only when you are absolutely
sure you have no interest in analyzing any running problems with the package.

-s Strips the object code. This reduces the size of the object code by eliminating any
debugging data.

-pipe Instructs not to use temporary files. Rather, use pipes to feed the code through
the different stages of compilation. This usually speeds compilation.

Compile the package. This can take up to several hours depending on the
amount of code and your CPU power. &cooledit will compile in under 10 minutes on any
entry-level machine at the time of writing.-

✞ �

make
✝ ✆

You can also run
✞ �

make CFLAGS=’-O0 -g’
✝ ✆

if you decide that you would rather compile with debug support after all.

Install the package with
✞ �

make install
✝ ✆

A nice trick to install into a different subdirectory is&Not always supported.-:
✞ �

mkdir /tmp/cooledit
make install prefix=/tmp/cooledit

✝ ✆

You can use these commands to pack up the completed build for untaring onto a
different system. You should, however, never try to run a package from a directory
different from the one it was --prefixed to install into, since most packages compile
in this location and then access installed data from beneath it.

Using a source package is often the best way to install when you want the pack-
age to work the way the developers intended. You will also tend to find more docu-
mentation, when vendors have neglected to include certain files.

239

24.2. RedHat and Debian Binary Packages 24. Source and Binary Packages

24.2 RedHat and Debian Binary Packages

In this section, we place Debian examples inside parentheses, (. . .). Since these are
examples from actual systems, they do not always correspond.

24.2.1 Package versioning

The package numbering for RedHat and Debian packages is often as follows (al-
though this is far from a rule):

✞ �
<package-name>-<source-version>-<package-version>.<hardware-platform>.rpm
(<package-name>_<source-version>-<package-version>.deb)

✝ ✆

For example,
✞ �

bash-1.14.7-22.i386.rpm
(bash_2.03-6.deb)

✝ ✆

is the Bourne Again Shell you are using, major version 1, minor version 14, patch 7,
package version 22, compiled for an Intel 386 processor. Sometimes, the Debian
package will have the architecture appended to the version number, in the above case,
perhaps bash 2.03-6 i386.deb.

The <source-version> is the version on the original .tar file (as above). The
<package-version>, also called the release, refers to the .rpm file itself; in this case,
bash-1.14.7-22.i386.rpm has been packed together for the 8th time, possibly
with minor improvements to the way it installs with each new number. The i386 is
called the architecture and could also be sparc for a SPARC &Type of processor used in
Sun Microsystems workstations-machine, ppc for a PowerPC&Another non-Intel workstation-,
alpha for a DEC Alpha&High-end 64 bit server/workstation-machine, or several others.

24.2.2 Installing, upgrading, and deleting

To install a package, run the following command on the .rpm or .deb file:
✞ �

rpm -i mirrordir-0.10.48-1.i386.rpm
(dpkg -i mirrordir_0.10.48-2.deb)

✝ ✆

Upgrading (Debian automatically chooses an upgrade if the package is already
present) can be done with the following command,

✞ �

rpm -U mirrordir-0.10.49-1.i386.rpm
(dpkg -i mirrordir_0.10.49-1.deb)

✝ ✆

and then completely uninstalling with

240

24. Source and Binary Packages 24.2. RedHat and Debian Binary Packages

✞ �

rpm -e mirrordir
(dpkg --purge mirrordir)

✝ ✆

With Debian , a package removal does not remove configuration files, thus allowing
you to revert to its current setup if you later decide to reinstall:

✞ �

dpkg -r mirrordir
✝ ✆

If you need to reinstall a package (perhaps because of a file being corrupted), use
✞ �

rpm -i --force python-1.6-2.i386.rpm
✝ ✆

Debian reinstalls automatically if the package is present.

24.2.3 Dependencies

Packages often require other packages to already be installed in order to work. The
package database keeps track of these dependencies. Often you will get an error:
failed dependencies: (or dependency problems for Debian) message when
you try to install. This means that other packages must be installed first. The same
might happen when you try to remove packages. If two packages mutually require
each other, you must place them both on the command-line at once when installing.
Sometimes a package requires something that is not essential or is already provided by
an equivalent package. For example, a program may require sendmail to be installed
even though exim is an adequate substitute. In such cases, the option --nodeps skips
dependency checking.

✞ �

rpm -i --nodeps <rpm-file>
(dpkg -i --ignore-depends=<required-package> <deb-file>)

✝ ✆

Note that Debian is far more fastidious about its dependencies; override them only
when you are sure what is going on underneath.

24.2.4 Package queries

.rpm and .deb packages are more than a way of archiving files; otherwise, we could
just use .tar files. Each package has its file list stored in a database that can be queried.
The following are some of the more useful queries that can be done. Note that these
are queries on already installed packages only:

To get a list of all packages (query all, llist),
✞ �

rpm -qa

241

24.2. RedHat and Debian Binary Packages 24. Source and Binary Packages

(dpkg -l ’*’)
✝ ✆

To search for a package name,
✞ �

rpm -qa | grep <regular-expression>
(dpkg -l <glob-expression>)

✝ ✆

Try,
✞ �

rpm -qa | grep util
(dpkg -l ’*util*’)

✝ ✆

To query for the existence of a package, say, textutils (query, list),
✞ �

rpm -q textutils
(dpkg -l textutils)

✝ ✆

gives the name and version
✞ �
textutils-2.0e-7
(ii textutils 2.0-2 The GNU text file processing utilities.)

✝ ✆

To get info on a package (query info, status),
✞ �

rpm -qi <package>
(dpkg -s <package>)

✝ ✆

To list libraries and other packages required by a package,
✞ �

rpm -qR <package>
(dpkg -s <package> | grep Depends)

✝ ✆

To list what other packages require this one (with Debian we can check by attempting
a removal with the --no-act option to merely test),

✞ �

rpm -q --whatrequires <package>
(dpkg --purge --no-act <package>)

✝ ✆

24.2.5 File lists and file queries

To get a file list contained by a package &Once again, not for files but packages already
installed.-,

242

24. Source and Binary Packages 24.2. RedHat and Debian Binary Packages

✞ �

rpm -ql <package>
(dpkg -L <package>)

✝ ✆

Package file lists are especially useful for finding what commands and documentation
a package provides. Users are often frustrated by a package that they “don’t know
what to do with.” Listing files owned by the package is where to start.

To find out what package a file belongs to,
✞ �

rpm -qf <filename>
(dpkg -S <filename>)

✝ ✆

For example, rpm -qf /etc/rc.d/init.d/httpd (or rpm -qf
/etc/init.d/httpd) gives apache-mod ssl-1.3.12.2.6.6-1 on my system,
and rpm -ql fileutils-4.0w-3 | grep bin gives a list of all other commands
from fileutils. A trick to find all the sibling files of a command in your PATH is:

✞ �

rpm -ql ‘rpm -qf \‘which --skip-alias <command> \‘‘
(dpkg -L ‘dpkg -S \‘which <command> \‘ | cut -f1 -d:‘)

✝ ✆

24.2.6 Package verification

You sometimes might want to query whether a package’s files have been modified
since installation (possibly by a hacker or an incompetent system administrator). To
verify all packages is time consuming but provides some very instructive output:

✞ �

rpm -V ‘rpm -qa‘
(debsums -a)

✝ ✆

However, there is not yet a way of saying that the package installed is the real
package (see Section 44.3.2). To check this, you need to get your actual .deb or .rpm
file and verify it with:

✞ �

rpm -Vp openssh-2.1.1p4-1.i386.rpm
(debsums openssh_2.1.1p4-1_i386.deb)

✝ ✆

Finally, even if you have the package file, how can you be absolutely sure that
it is the package that the original packager created, and not some Trojan substitution?
Use the md5sum command to check:

✞ �

md5sum openssh-2.1.1p4-1.i386.rpm

243

24.2. RedHat and Debian Binary Packages 24. Source and Binary Packages

(md5sum openssh_2.1.1p4-1_i386.deb)
✝ ✆

md5sum uses the MD5 mathematical algorithm to calculate a numeric hash value based
on the file contents, in this case, 8e8d8e95db7fde99c09e1398e4dd3468. This is
identical to password hashing described on page 103. There is no feasible computa-
tional method of forging a package to give the same MD5 hash; hence, packagers will
often publish their md5sum results on their web page, and you can check these against
your own as a security measure.

24.2.7 Special queries

To query a package file that has not been installed, use, for example:
✞ �

rpm -qp --qf ’[%{VERSION}\n]’ <rpm-file>
(dpkg -f <deb-file> Version)

✝ ✆

Here, VERSION is a query tag applicable to .rpm files. Here is a list of other tags that
can be queried:

BUILDHOST OBSOLETES RPMTAG PREUN
BUILDTIME OS RPMVERSION
CHANGELOG PACKAGER SERIAL
CHANGELOGTEXT PROVIDES SIZE
CHANGELOGTIME RELEASE SOURCERPM
COPYRIGHT REQUIREFLAGS SUMMARY
DESCRIPTION REQUIRENAME VENDOR
DISTRIBUTION REQUIREVERSION VERIFYSCRIPT
GROUP RPMTAG POSTIN VERSION
LICENSE RPMTAG POSTUN
NAME RPMTAG PREIN

For Debian , Version is a control field. Others are

Conffiles Maintainer Replaces
Conflicts Package Section
Depends Pre-Depends Source
Description Priority Status
Essential Provides Suggests
Installed-Size Recommends Version

It is further possible to extract all scripts, config, and control files from a .deb
file with:

244

24. Source and Binary Packages 24.2. RedHat and Debian Binary Packages

✞ �

dpkg -e <deb-file> <out-directory>
✝ ✆

This command creates a directory <out-directory> and places the files in it. You
can also dump the package as a tar file with:

✞ �

dpkg --fsys-tarfile <deb-file>
✝ ✆

or for an .rpm file,
✞ �

rpm2cpio <rpm-file>
✝ ✆

Finally, package file lists can be queried with
✞ �

rpm -qip <rpm-file>
(dpkg -I <deb-file>)
rpm -qlp <rpm-file>
(dpkg -c <deb-file>)

✝ ✆

which is analogous to similar queries on already installed packages.

24.2.8 dpkg/apt versus rpm

Only a taste of Debian package management was provided above. Debian has two
higher-level tools: APT (Advanced Package Tool—which comprises the commands apt-
cache, apt-cdrom, apt-config, and apt-get); and dselect, which is an inter-
active text-based package selector. When you first install Debian , I suppose the first
thing you are supposed to do is run dselect (there are other graphical front-ends—
search on Fresh Meat http://freshmeat.net/), and then install and configure all the things
you skipped over during installation. Between these you can do some sophisticated
time-saving things like recursively resolving package dependencies through automatic
downloads—that is, just mention the package and APT will find it and what it depends
on, then download and install everything for you. See apt(8), sources.list(5), and
apt.conf(5) for more information.

There are also numerous interactive graphical applications for managing RPM
packages. Most are purely cosmetic.

Experience will clearly demonstrate the superiority of Debian packages over
most others. You will also notice that where RedHat-like distributions have chosen a
selection of packages that they thought you would find useful, Debian has hundreds
of volunteer maintainers selecting what they find useful. Almost every free UNIX pack-
age on the Internet has been included in Debian .

245

24.3. Source Packages 24. Source and Binary Packages

24.3 Source Packages — Building RedHat and Debian
Packages

Both RedHat and Debian binary packages begin life as source files from which their
binary versions are compiled. Source RedHat packages will end in .src.rpm, and
Debian packages will always appear under the source tree in the distribution. The
RPM-HOWTO details the building of RedHat source packages, and Debian ’s dpkg-
dev and packaging-manual packages contain a complete reference to the Debian
package standard and packaging methods (try dpkg -L dpkg-dev and dpkg -
L packaging-manual).

The actual building of RedHat and Debian source packages is not covered in this
edition.

246

Chapter 25

Introduction to IP

IP stands for Internet Protocol. It is the method by which data is transmitted over the
Internet.

25.1 Internet Communication

At a hardware level, network cards are capable of transmitting packets (also called data-
grams) of data between one another. A packet contains a small block of, say, 1 kilobyte
of data (in contrast to serial lines, which transmit continuously). All Internet com-
munication occurs through transmission of packets, which travel intact, even between
machines on opposite sides of the world.

Each packet contains a header of 24 bytes or more which precedes the data.
Hence, slightly more than the said 1 kilobyte of data would be found on the wire.
When a packet is transmitted, the header would obviously contain the destination ma-
chine. Each machine is hence given a unique IP address—a 32-bit number. There are no
machines on the Internet that do not have an IP address.

The header bytes are shown in Table 25.1.

Table 25.1 IP header bytes

Bytes Description
0 bits 0–3: Version, bits 4–7: Internet Header Length (IHL)
1 Type of service (TOS)
2–3 Length
4–5 Identification

continues...

247

25.1. Internet Communication 25. Introduction to IP

Table 25.1 (continued)

6–7 bits 0-3: Flags, bits 4-15: Offset
8 Time to live (TTL)
9 Type
10–11 Checksum
12–15 Source IP address
16–19 Destination IP address
20–IHL*4-1 Options + padding to round up to four bytes

Data begins at IHL*4 and ends at Length-1

Version for the mean time is 4, although IP Next Generation (version 6) is in the
(slow) process of deployment. IHL is the length of the header divided by 4. TOS (Type
of Service) is a somewhat esoteric field for tuning performance and is not explained
here. The Length field is the length in bytes of the entire packet including the header.
The Source and Destination are the IP addresses from and to which the packet is com-
ing/going.

The above description constitutes the view of the Internet that a machine has.
However, physically, the Internet consists of many small high-speed networks (like
those of a company or a university) called Local Area Networks, or LANs. These are
all connected to each other by lower-speed long distance links. On a LAN, the raw
medium of transmission is not a packet but an Ethernet frame. Frames are analogous
to packets (having both a header and a data portion) but are sized to be efficient with
particular hardware. IP packets are encapsulated within frames, where the IP packet
fits within the Data part of the frame. A frame may, however, be too small to hold
an entire IP packet, in which case the IP packet is split into several smaller packets.
This group of smaller IP packets is then given an identifying number, and each smaller
packet will then have the Identification field set with that number and the Offset field
set to indicate its position within the actual packet. On the other side of the connection,
the destination machine will reconstruct a packet from all the smaller subpackets that
have the same Identification field.

The convention for writing an IP address in human readable form is dotted dec-
imal notation like 152.2.254.81, where each number is a byte and is hence in the
range of 0 to 255. Hence the entire address space is in the range of 0.0.0.0 to
255.255.255.255. To further organize the assignment of addresses, each 32-bit ad-
dress is divided into two parts, a network and a host part of the address, as shown in
Figure 25.1.

248

25. Introduction to IP 25.2. Special IP Addresses

Class C: 1 1 0 network part host part

Class B: 1 0 network part host part

Class A: 0 network part host part
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 25.1 IP address classes

The network part of the address designates the LAN, and the host part the par-
ticular machine on the LAN. Now, because it was unknown at the time of specification
whether there would one day be more LANs or more machines per LAN, three differ-
ent classes of address were created.

Class A addresses begin with the first bit of the network part set to 0 (hence, a
Class A address always has the first dotted decimal number less than 128). The next 7
bits give the identity of the LAN, and the remaining 24 bits give the identity of an actual
machine on that LAN. A Class B address begins with a 1 and then a 0 (first decimal
number is 128 through 191). The next 14 bits give the LAN, and the remaining 16
bits give the machine. Most universities, like the address above, are Class B addresses.
Lastly, Class C addresses start with a 1 1 0 (first decimal number is 192 through 223),
and the next 21 bits and then the next 8 bits are the LAN and machine, respectively.
Small companies tend use Class C addresses.

In practice, few organizations require Class A addresses. A university or large
company might use a Class B address but then would have its own further subdivi-
sions, like using the third dotted decimal as a department (bits 16 through 23) and the
last dotted decimal (bits 24 through 31) as the machine within that department. In this
way the LAN becomes a micro-Internet in itself. Here, the LAN is called a network and
the various departments are each called a subnet.

25.2 Special IP Addresses

Some special-purposes IP addresses are never used on the open Internet.
192.168.0.0 through 192.168.255.255 are private addresses perhaps used in-
side a local LAN that does not communicate directly with the Internet. 127.0.0.0
through 127.255.255.255 are used for communication with the localhost—that is,
the machine itself. Usually, 127.0.0.1 is an IP address pointing to the machine itself.
Further, 172.16.0.0 through 172.31.255.255 are additional private addresses for
very large internal networks, and 10.0.0.0 through 10.255.255.255 are for even
larger ones.

249

25.3. Network Masks and Addresses 25. Introduction to IP

25.3 Network Masks and Addresses

Consider again the example of a university with a Class B address. It might
have an IP address range of 137.158.0.0 through 137.158.255.255. Assume
it was decided that the astronomy department should get 512 of its own IP ad-
dresses, 137.158.26.0 through 137.158.27.255. We say that astronomy has a
network address of 137.158.26.0. The machines there all have a network mask of
255.255.254.0. A particular machine in astronomy may have an IP address of
137.158.27.158. This terminology is used later. Figure 25.2 illustrates this example.

Dotted IP Binary
Netmask 255 . 255 . 254 . 0 1111 1111 1111 1111 1111 111

︸ ︷︷ ︸
0 0000 0000

Network address 137 . 158 . 26 . 0
︷ ︸︸ ︷

1000 1001 1001 1110 0001 1010 0000 0000
IP address 137 . 158 . 27 . 158 1000 1001 1001 1110 0001 1011 1001 1110

︸ ︷︷ ︸

Host part 0 . 0 . 1 . 158 0000 0000 0000 0000 0000 000
︷ ︸︸ ︷

1 1001 1110

Figure 25.2 Dividing an address into network and host portions

25.4 Computers on a LAN

In this section we will use the term LAN to indicate a network of computers that are all
more or less connected directly together by Ethernet cables (this is common for small
businesses with up to about 50 machines). Each machine has an Ethernet card which is
referred to as eth0 throughout all command-line operations. If there is more than one
card on a single machine, then these are named eth0, eth1, eth2, etc., and are each
called a network interface (or just interface, or sometimes Ethernet port) of the machine.

LANs work as follows. Network cards transmit a frame to the LAN, and other
network cards read that frame from the LAN. If any one network card transmits a
frame, then all other network cards can see that frame. If a card starts to transmit a
frame while another card is in the process of transmitting a frame, then a clash is said
to have occurred, and the card waits a random amount of time and then tries again.
Each network card has a physical address of 48 bits called the hardware address (which
is inserted at the time of its manufacture and has nothing to do with IP addresses).
Each frame has a destination address in its header that tells what network card it is
destined for, so that network cards ignore frames that are not addressed to them.

Since frame transmission is governed by the network cards, the destination hard-
ware address must be determined from the destination IP address before a packet is
sent to a particular machine. This is done is through the Address Resolution Protocol

250

25. Introduction to IP 25.5. Configuring Interfaces

(ARP). A machine will transmit a special packet that asks “What hardware address
is this IP address?” The guilty machine then responds, and the transmitting machine
stores the result for future reference. Of course, if you suddenly switch network cards,
then other machines on the LAN will have the wrong information, so ARP has time-
outs and re-requests built into the protocol. Try typing the command arp to get a list
of hardware address to IP mappings.

25.5 Configuring Interfaces

Most distributions have a generic way to configure your interfaces. Here, however, we
first look at a complete network configuration using only raw networking commands.

We first create a lo interface. This is called the loopback device (and has nothing to
do with loopback block devices: /dev/loop? files). The loopback device is an imagi-
nary network card that is used to communicate with the machine itself; for instance, if
you are telneting to the local machine, you are actually connecting via the loopback
device. The ifconfig (interface configure) command is used to do anything with
interfaces. First, run

✞ �

/sbin/ifconfig lo down
/sbin/ifconfig eth0 down

✝ ✆

to delete any existing interfaces, then run
✞ �

/sbin/ifconfig lo 127.0.0.1
✝ ✆

which creates the loopback interface.

Create the Ethernet interface with:
✞ �
/sbin/ifconfig eth0 192.168.3.9 broadcast 192.168.3.255 netmask 255.255.255.0

✝ ✆

The broadcast address is a special address that all machines respond to. It is usually
the first or last address of the particular network.

Now run
✞ �

/sbin/ifconfig
✝ ✆

to view the interfaces. The output will be
✞ �
eth0 Link encap:Ethernet HWaddr 00:00:E8:3B:2D:A2

inet addr:192.168.3.9 Bcast:192.168.3.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1359 errors:0 dropped:0 overruns:0 frame:0

5 TX packets:1356 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100

251

25.6. Configuring Routing 25. Introduction to IP

Interrupt:11 Base address:0xe400

lo Link encap:Local Loopback
10 inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:3924 Metric:1
RX packets:53175 errors:0 dropped:0 overruns:0 frame:0
TX packets:53175 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

✝ ✆

which shows various interesting bits, like the 48-bit hardware address of the network
card (hex bytes 00:00:E8:3B:2D:A2).

25.6 Configuring Routing

The interfaces are now active. However, nothing tells the kernel what packets should
go to what interface, even though we might expect such behavior to happen on its own.
With UNIX, you must explicitly tell the kernel to send particular packets to particular
interfaces.

Any packet arriving through any interface is pooled by the kernel. The kernel
then looks at each packet’s destination address and decides, based on the destination,
where it should be sent. It doesn’t matter where the packet came from; once the kernel
has the packet, it’s what its destination address says that matters. It is up to the rest
of the network to ensure that packets do not arrive at the wrong interfaces in the first
place.

We know that any packet having the network address 127.???.???.??? must
go to the loopback device (this is more or less a convention). The command,

✞ �

/sbin/route add -net 127.0.0.0 netmask 255.0.0.0 lo
✝ ✆

adds a route to the network 127.0.0.0, albeit an imaginary one.

The eth0 device can be routed as follows:
✞ �

/sbin/route add -net 192.168.3.0 netmask 255.255.255.0 eth0
✝ ✆

The command to display the current routes is
✞ �

/sbin/route -n
✝ ✆

(-n causes route to not print IP addresses as host names) with the following output:
✞ �
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
192.168.3.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

✝ ✆

252

25. Introduction to IP 25.6. Configuring Routing

This output has the meaning, “packets with destination address
127.0.0.0/255.0.0.0 &The notation network/mask is often used to denote ranges of IP
address.- must be sent to the loopback device,” and “packets with destination
address 192.168.3.0/255.255.255.0 must be sent to eth0.” Gateway is zero,
hence, is not set (see the following commands).

The routing table now routes 127. and 192.168.3. packets. Now we need
a route for the remaining possible IP addresses. UNIX can have a route that says to
send packets with particular destination IP addresses to another machine on the LAN,
from whence they might be forwarded elsewhere. This is sometimes called the gateway
machine. The command is:

✞ �
/sbin/route add -net <network-address> netmask <netmask> gw \

<gateway-ip-address> <interface>
✝ ✆

This is the most general form of the command, but it’s often easier to just type:
✞ �
/sbin/route add default gw <gateway-ip-address> <interface>

✝ ✆

when we want to add a route that applies to all remaining packets. This route is called
the default gateway. default signifies all packets; it is the same as

✞ �
/sbin/route add -net 0.0.0.0 netmask 0.0.0.0 gw <gateway-ip-address> \

<interface>
✝ ✆

but since routes are ordered according to netmask, more specific routes are used in pref-
erence to less specific ones.

Finally, you can set your host name with:
✞ �

hostname cericon.cranzgot.co.za
✝ ✆

A summary of the example commands so far is
✞ �
/sbin/ifconfig lo down
/sbin/ifconfig eth0 down
/sbin/ifconfig lo 127.0.0.1
/sbin/ifconfig eth0 192.168.3.9 broadcast 192.168.3.255 netmask 255.255.255.0

5 /sbin/route add -net 127.0.0.0 netmask 255.0.0.0 lo
/sbin/route add -net 192.168.3.0 netmask 255.255.255.0 eth0
/sbin/route add default gw 192.168.3.254 eth0
hostname cericon.cranzgot.co.za

✝ ✆

Although these 7 commands will get your network working, you should not do such a
manual configuration. The next section explains how to configure your startup scripts.

253

25.7. Configuring Startup Scripts 25. Introduction to IP

25.7 Configuring Startup Scripts

Most distributions will have a modular and extensible system of startup scripts that
initiate networking.

25.7.1 RedHat networking scripts

RedHat systems contain the directory /etc/sysconfig/, which contains configura-
tion files to automatically bring up networking.

The file /etc/sysconfig/network-scripts/ifcfg-eth0 contains:
✞ �

DEVICE=eth0
IPADDR=192.168.3.9
NETMASK=255.255.255.0
NETWORK=192.168.3.0

5 BROADCAST=192.168.3.255
ONBOOT=yes

✝ ✆

The file /etc/sysconfig/network contains:
✞ �

NETWORKING=yes
HOSTNAME=cericon.cranzgot.co.za
GATEWAY=192.168.3.254

✝ ✆

You can see that these two files are equivalent to the example configuration done
above. These two files can take an enormous number of options for the various proto-
cols besides IP, but this is the most common configuration.

The file /etc/sysconfig/network-scripts/ifcfg-lo for the loopback
device will be configured automatically at installation; you should never need to edit
it.

To stop and start networking (i.e., to bring up and down the interfaces and rout-
ing), type (alternative commands in parentheses):

✞ �

/etc/init.d/network stop
(/etc/rc.d/init.d/network stop)
/etc/init.d/network start
(/etc/rc.d/init.d/network start)

✝ ✆

which will indirectly read your /etc/sysconfig/ files.

You can add further files, say, ifcfg-eth1 (under
/etc/sysconfig/network-scripts/) for a secondary Ethernet device. For
example, ifcfg-eth1 could contain

254

25. Introduction to IP 25.7. Configuring Startup Scripts

✞ �

DEVICE=eth1
IPADDR=192.168.4.1
NETMASK=255.255.255.0
NETWORK=192.168.4.0

5 BROADCAST=192.168.4.255
ONBOOT=yes

✝ ✆

and then run echo "1" > /proc/sys/net/ipv4/ip forward to enable packet
forwarding between your two interfaces.

25.7.2 Debian networking scripts

Debian , on the other hand, has a directory /etc/network/ containing a file
/etc/network/interfaces. &As usual, Debian has a neat and clean approach.- (See also
interfaces(5).) For the same configuration as above, this file would contain:

✞ �

iface lo inet loopback
iface eth0 inet static

address 192.168.3.9
netmask 255.255.255.0

5 gateway 192.168.3.254
✝ ✆

The file /etc/network/options contains the same forwarding (and some
other) options:

✞ �

ip_forward=no
spoofprotect=yes
syncookies=no

✝ ✆

To stop and start networking (i.e., bring up and down the interfaces and routing),
type

✞ �

/etc/init.d/networking stop
/etc/init.d/networking start

✝ ✆

which will indirectly read your /etc/network/interfaces file.

Actually, the /etc/init.d/networking script merely runs the ifup and if-
down commands. See ifup(8). You can alternatively run these commands directly for
finer control.

We add further interfaces similar to the RedHat example above by appending to
the /etc/network/interfaces file. The Debian equivalent is,

255

25.8. Complex Routing — a Many-Hop Example 25. Introduction to IP

✞ �

iface lo inet loopback
iface eth0 inet static

address 192.168.3.9
netmask 255.255.255.0

5 gateway 192.168.3.254
iface eth1 inet static

address 192.168.4.1
netmask 255.255.255.0

✝ ✆

and then set ip forward=yes in your /etc/network/options file.

Finally, whereas RedHat sets its host name from the line HOSTNAME=. . .
in /etc/sysconfig/network, Debian sets it from the contents of the file
/etc/hostname, which, in the present case, would contain just

✞ �

cericon.cranzgot.co.za
✝ ✆

25.8 Complex Routing — a Many-Hop Example

Consider two distant LANs that need to communicate. Two dedicated machines, one
on each LAN, are linked by some alternative method (in this case, a permanent serial
line), as shown in Figure 25.3.

This arrangement can be summarized by five machines X, A, B, C, and D. Machines X,
A, and B form LAN 1 on subnet 192.168.1.0/26. Machines C and D form LAN 2
on subnet 192.168.1.128/26. Note how we use the “/26” to indicate that only the
first 26 bits are network address bits, while the remaining 6 bits are host address bits.
This means that we can have at most 26 = 64 IP addresses on each of LAN 1 and 2.
Our dedicated serial link comes between machines B and C.

Machine X has IP address 192.168.1.1. This machine is the gateway to the
Internet. The Ethernet port of machine B is simply configured with an IP address
of 192.168.1.2 with a default gateway of 192.168.1.1. Note that the broadcast
address is 192.168.1.63 (the last 6 bits set to 1).

The Ethernet port of machine C is configured with an IP address of
192.168.1.129. No default gateway should be set until serial line is configured.

We will make the network between B and C subnet 192.168.1.192/26. It is
effectively a LAN on its own, even though only two machines can ever be connected.
Machines B and C will have IP addresses 192.168.1.252 and 192.168.1.253,
respectively, on their facing interfaces.

256

25. Introduction to IP 25.8. Complex Routing — a Many-Hop Example

Figure 25.3 Two remotely connected networks

This is a real-life example with an unreliable serial link. To keep the link up
requires pppd and a shell script to restart the link if it dies. The pppd program is
covered in Chapter 41. The script for Machine B is:

✞ �
#!/bin/sh
while true ; do

pppd lock local mru 296 mtu 296 nodetach nocrtscts nocdtrcts \
192.168.1.252:192.168.1.253 /dev/ttyS0 115200 noauth \

5 lcp-echo-interval 1 lcp-echo-failure 2 lcp-max-terminate 1 lcp-restart 1
done

✝ ✆

Note that if the link were an Ethernet link instead (on a second Ethernet card), and/or
a genuine LAN between machines B and C (with subnet 192.168.1.252/26), then
the same script would be just

✞ �
/sbin/ifconfig eth1 192.168.1.252 broadcast 192.168.1.255 netmask \

255.255.255.192
✝ ✆

in which case all “ppp0” would change to “eth1” in the scripts that follow.

257

25.8. Complex Routing — a Many-Hop Example 25. Introduction to IP

Routing on machine B is achieved with the following script, provided the link is
up. This script must be executed whenever pppd has negotiated the connection and
can therefore be placed in the file /etc/pppd/ip-up, which pppd executes automat-
ically as soon as the ppp0 interface is available:

✞ �
/sbin/route del default
/sbin/route add -net 192.168.1.192 netmask 255.255.255.192 dev ppp0
/sbin/route add -net 192.168.1.128 netmask 255.255.255.192 gw 192.168.1.253
/sbin/route add default gw 192.168.1.1

5

echo 1 > /proc/sys/net/ipv4/ip_forward
✝ ✆

Our full routing table and interface list for machine B then looks like this&RedHat
6 likes to add (redundant) explicit routes to each device. These may not be necessary on your system-:

✞ �
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.1.2 0.0.0.0 255.255.255.255 UH 0 0 0 eth0
192.168.1.253 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0

5 192.168.1.0 0.0.0.0 255.255.255.192 U 0 0 0 eth0
192.168.1.192 0.0.0.0 255.255.255.192 U 0 0 0 ppp0
192.168.1.128 192.168.1.253 255.255.255.192 UG 0 0 0 ppp0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

10

eth0 Link encap:Ethernet HWaddr 00:A0:24:75:3B:69
inet addr:192.168.1.2 Bcast:192.168.1.63 Mask:255.255.255.192

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0

15 ppp0 Link encap:Point-to-Point Protocol
inet addr:192.168.1.252 P-t-P:192.168.1.253 Mask:255.255.255.255

✝ ✆

On machine C we can similarly run the script,
✞ �
#!/bin/sh
while true ; do

pppd lock local mru 296 mtu 296 nodetach nocrtscts nocdtrcts \
192.168.1.253:192.168.1.252 /dev/ttyS0 115200 noauth \

5 lcp-echo-interval 1 lcp-echo-failure 2 lcp-max-terminate 1 lcp-restart 1
done

✝ ✆

and then create routes with
✞ �
/sbin/route del default
/sbin/route add -net 192.168.1.192 netmask 255.255.255.192 dev ppp0
/sbin/route add default gw 192.168.1.252

5 echo 1 > /proc/sys/net/ipv4/ip_forward
✝ ✆

258

25. Introduction to IP 25.9. Interface Aliasing — Many IPs on One Physical Card

Our full routing table for machine C then looks like:
✞ �
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.1.129 0.0.0.0 255.255.255.255 UH 0 0 0 eth0
192.168.1.252 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0

5 192.168.1.192 0.0.0.0 255.255.255.192 U 0 0 0 ppp0
192.168.1.128 0.0.0.0 255.255.255.192 U 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 192.168.1.252 0.0.0.0 UG 0 0 0 ppp0

10 eth0 Link encap:Ethernet HWaddr 00:A0:CC:D5:D8:A7
inet addr:192.168.1.129 Bcast:192.168.1.191 Mask:255.255.255.192

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0

ppp0 Link encap:Point-to-Point Protocol
15 inet addr:192.168.1.253 P-t-P:192.168.1.252 Mask:255.255.255.255

✝ ✆

Machine D can be configured like any ordinary machine on a LAN. It just sets its
default gateway to 192.168.1.129. Machine A, however, has to know to send pack-
ets destined for subnet 192.168.1.128/26 through machine B. Its routing table has
an extra entry for the 192.168.1.128/26 LAN. The full routing table for machine A
is:

✞ �
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.1.0 0.0.0.0 255.255.255.192 U 0 0 0 eth0
192.168.1.128 192.168.1.2 255.255.255.192 UG 0 0 0 eth0

5 127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

✝ ✆

To avoid having to add this extra route on machine A, you can instead add the
same route on machine X. This may seem odd, but all that this means is that packets
originating from A destined for LAN 2 first try to go through X (since A has only one
route), and are then redirected by X to go through B.

The preceding configuration allowed machines to properly send packets between
machines A and D and out through the Internet. One caveat: ping sometimes did not
work even though telnet did. This may be a peculiarity of the kernel version we
were using, **shrug**.

25.9 Interface Aliasing — Many IPs on One Physical
Card

(The file /usr/src/linux/Documentation/networking/alias.txt contains
the kernel documentation on this.)

259

25.10. Diagnostic Utilities 25. Introduction to IP

If you have one network card which you would like to double as several different
IP addresses, you can. Simply name the interface eth0:n where n is from 0 to some
large integer. You can use ifconfig as before as many times as you like on the same
network card—

✞ �
/sbin/ifconfig eth0:0 192.168.4.1 broadcast 192.168.4.255 netmask 255.255.255.0
/sbin/ifconfig eth0:1 192.168.5.1 broadcast 192.168.5.255 netmask 255.255.255.0
/sbin/ifconfig eth0:2 192.168.6.1 broadcast 192.168.6.255 netmask 255.255.255.0

✝ ✆

—in addition to your regular eth0 device. Here, the same interface can communicate
to three LANs having networks 192.168.4.0, 192.168.5.0, and 192.168.6.0.
Don’t forget to add routes to these networks as above.

25.10 Diagnostic Utilities

It is essential to know how to inspect and test your network to resolve problems. The
standard UNIX utilities are explained here.

25.10.1 ping

The ping command is the most common network utility. IP packets come in three
types on the Internet, represented in the Type field of the IP header: UDP, TCP, and
ICMP. (The first two, discussed later, represent the two basic methods of communica-
tion between two programs running on different machines.) ICMP stands for Internet
Control Message Protocol and is a diagnostic packet that is responded to in a special way.
Try:

✞ �
ping metalab.unc.edu

✝ ✆

or specify some other well-known host. You will get output like:
✞ �
PING metalab.unc.edu (152.19.254.81) from 192.168.3.9 : 56(84) bytes of data.
64 bytes from 152.19.254.81: icmp_seq=0 ttl=238 time=1059.1 ms
64 bytes from 152.19.254.81: icmp_seq=1 ttl=238 time=764.9 ms
64 bytes from 152.19.254.81: icmp_seq=2 ttl=238 time=858.8 ms

5 64 bytes from 152.19.254.81: icmp_seq=3 ttl=238 time=1179.9 ms
64 bytes from 152.19.254.81: icmp_seq=4 ttl=238 time=986.6 ms
64 bytes from 152.19.254.81: icmp_seq=5 ttl=238 time=1274.3 ms
64 bytes from 152.19.254.81: icmp_seq=6 ttl=238 time=930.7 ms

✝ ✆

What is happening is that ping is sending ICMP packets to metalab.unc.edu,
which is automatically responding with a return ICMP packet. Being able to ping
a machine is often the acid test of whether you have a correctly configured and work-
ing network interface. Note that some sites explicitly filter out ICMP packets, so, for
example, ping cnn.com won’t work.

260

25. Introduction to IP 25.10. Diagnostic Utilities

ping sends a packet every second and measures the time it takes to receive the
return packet—like a submarine sonar “ping.” Over the Internet, you can get times in
excess of 2 seconds if the place is remote enough. On a local LAN this delay will drop
to under a millisecond.

If ping does not even get to the line PING metalab.unc.edu. . . , it means that
ping cannot resolve the host name. You should then check that your DNS is set up
correctly—see Chapter 27. If ping gets to that line but no further, it means that the
packets are not getting there or are not getting back. In all other cases, ping gives an
error message reporting the absence of either routes or interfaces.

25.10.2 traceroute

traceroute is a rather fascinating utility to identify where a packet has been. It uses
UDP packets or, with the -I option, ICMP packets to detect the routing path. On my
machine,

✞ �
traceroute metalab.unc.edu

✝ ✆

gives
✞ �
traceroute to metalab.unc.edu (152.19.254.81), 30 hops max, 38 byte packets
1 192.168.3.254 (192.168.3.254) 1.197 ms 1.085 ms 1.050 ms
2 192.168.254.5 (192.168.254.5) 45.165 ms 45.314 ms 45.164 ms
3 cranzgate (192.168.2.254) 48.205 ms 48.170 ms 48.074 ms

5 4 cranzposix (160.124.182.254) 46.117 ms 46.064 ms 45.999 ms
5 cismpjhb.posix.co.za (160.124.255.193) 451.886 ms 71.549 ms 173.321 ms
6 cisap1.posix.co.za (160.124.112.1) 274.834 ms 147.251 ms 400.654 ms
7 saix.posix.co.za (160.124.255.6) 187.402 ms 325.030 ms 628.576 ms
8 ndf-core1.gt.saix.net (196.25.253.1) 252.558 ms 186.256 ms 255.805 ms

10 9 ny-core.saix.net (196.25.0.238) 497.273 ms 454.531 ms 639.795 ms
10 bordercore6-serial5-0-0-26.WestOrange.cw.net (166.48.144.105) 595.755 ms 595.174 ms *
11 corerouter1.WestOrange.cw.net (204.70.9.138) 490.845 ms 698.483 ms 1029.369 ms
12 core6.Washington.cw.net (204.70.4.113) 580.971 ms 893.481 ms 730.608 ms
13 204.70.10.182 (204.70.10.182) 644.070 ms 726.363 ms 639.942 ms

15 14 mae-brdr-01.inet.qwest.net (205.171.4.201) 767.783 ms * *
15 * * *
16 * wdc-core-03.inet.qwest.net (205.171.24.69) 779.546 ms 898.371 ms
17 atl-core-02.inet.qwest.net (205.171.5.243) 894.553 ms 689.472 ms *
18 atl-edge-05.inet.qwest.net (205.171.21.54) 735.810 ms 784.461 ms 789.592 ms

20 19 * * *
20 * * unc-gw.ncren.net (128.109.190.2) 889.257 ms
21 unc-gw.ncren.net (128.109.190.2) 646.569 ms 780.000 ms *
22 * helios.oit.unc.edu (152.2.22.3) 600.558 ms 839.135 ms

✝ ✆

You can see that there were twenty machines &This is actually a good argument for why
“enterprise”-level web servers have no use in non-U.S. markets: there isn’t even the network speed to load
such servers, thus making any kind of server speed comparisons superfluous.- (or hops) between
mine and metalab.unc.edu.

25.10.3 tcpdump

tcpdump watches a particular interface for all the traffic that passes it—that is, all the
traffic of all the machines connected to the same hub (also called the segment or network
segment). A network card usually grabs only the frames destined for it, but tcpdump

261

25.10. Diagnostic Utilities 25. Introduction to IP

puts the card into promiscuous mode, meaning that the card is to retrieve all frames
regardless of their destination hardware address. Try

✞ �
tcpdump -n -N -f -i eth0

✝ ✆

tcpdump is also discussed in Section 41.5. Deciphering the output of tcpdump is left
for now as an exercise for the reader. More on the tcp part of tcpdump in Chapter 26.

262

Chapter 26

Transmission Control Protocol
(TCP) and User Datagram
Protocol (UDP)

In the previous chapter we talked about communication between machines in a generic
sense. However, when you have two applications on opposite sides of the Atlantic
Ocean, being able to send a packet that may or may not reach the other side is not
sufficient. What you need is reliable communication.

Ideally, a programmer wants to be able to establish a link to a remote machine
and then feed bytes in one at a time and be sure that the bytes are being read on the
other end, and vice-versa. Such communication is called reliable stream communication.

If your only tools are discrete, unreliable packets, implementing a reliable, con-
tinuous stream is tricky. You can send single packets and then wait for the remote
machine to confirm receipt, but this approach is inefficient (packets can take a long
time to get to and from their destination)—you really want to be able to send as many
packets as possible at once and then have some means of negotiating with the remote
machine when to resend packets that were not received. What TCP (Transmission Con-
trol Protocol) does is to send data packets one way and then acknowledgment packets the
other way, saying how much of the stream has been properly received.

We therefore say that TCP is implemented on top of IP. This is why Internet com-
munication is sometimes called TCP/IP.

TCP communication has three stages: negotiation, transfer, and detachment. &This
is all my own terminology. This is also somewhat of a schematic representation.-

Negotiation The client application (say, a web browser) first initiates the connection
by using a connect() (see connect(2)) function. This causes the kernel to

263

26.1. The TCP Header 26. TCP and UDP

send a SYN (SYNchronization) packet to the remote TCP server (in this case, a
web server). The web server responds with a SYN-ACK packet (ACKnowledge),
and finally the client responds with a final SYN packet. This packet negotiation
is unbeknown to the programmer.

Transfer: The programmer will use the send() (send(2)) and recv() (recv(2))
function calls to send and receive an actual stream of bytes. The stream of bytes
will be broken into packets, and the packets sent individually to the remote ap-
plication. In the case of the web server, the first bytes sent would be the line
GET /index.html HTTP/1.0<CR><NL><CR><NL>. On the remote side, re-
ply packets (also called ACK packets) are sent back as the data arrives, indicating
whether parts of the stream went missing and require retransmission. Commu-
nication is full-duplex—meaning that there are streams in both directions—both
data and acknowledge packets are going both ways simultaneously.

Detachment: The programmer will use the function call shutdown() and
close() (see shutdown() and close(2)) to terminate the connection. A
FIN packet will be sent and TCP communication will cease.

26.1 The TCP Header

TCP packets are obviously encapsulated within IP packets. The TCP packet is inside the
Data begins at. . . part of the IP packet. A TCP packet has a header part and a data
part. The data part may sometimes be empty (such as in the negotiation stage).

Table 26.1 shows the full TCP/IP header.

Table 26.1 Combined TCP and IP header

Bytes (IP) Description
0 Bits 0–3: Version, Bits 4–7: Internet Header Length (IHL)
1 Type of service (TOS)
2–3 Length
4–5 Identification
6–7 Bits 0-3: Flags, bits 4-15: Offset
8 Time to live (TTL)
9 Type
10–11 Checksum
12–15 Source IP address
16–19 Destination IP address
20–IHL*4-1 Options + padding to round up to four bytes
Bytes (TCP) Description

continues...

264

26. TCP and UDP 26.2. A Sample TCP Session

Table 26.1 (continued)

0–1 Source port
2–3 Destination port
4–7 Sequence number
8–11 Acknowledgment number
12 Bits 0–3: number of bytes of additional TCP options / 4
13 Control
14–15 Window
16–17 Checksum
18–19 Urgent pointer
20–(20 + options * 4) Options + padding to round up to four bytes

TCP data begins at IHL * 4 + 20 + options * 4 and ends at Length - 1

The minimum combined TCP/IP header is thus 40 bytes.

With Internet machines, several applications often communicate simultaneously.
The Source port and Destination port fields identify and distinguish individual
streams. In the case of web communication, the destination port (from the clients point
of view) is port 80, and hence all outgoing traffic will have the number 80 filled in
this field. The source port (from the client’s point of view) is chosen randomly to any
unused port number above 1024 before the connection is negotiated; these, too, are
filled into outgoing packets. No two streams have the same combinations of source
and destination port numbers. The kernel uses the port numbers on incoming packets
to determine which application requires those packets, and similarly for the remote
machine.

Sequence number is the offset within the stream that this particular packet of
data belongs to. The Acknowledge number is the point in the stream up to which all
data has been received. Control is various other flag bits. Window is the maximum
amount that the receiver is prepared to accept. Checksum is used to verify data in-
tegrity, and Urgent pointer is for interrupting the stream. Data needed by extensions
to the protocol are appended after the header as options.

26.2 A Sample TCP Session

It is easy to see TCP working by using telnet. You are probably familiar with using
telnet to log in to remote systems, but telnet is actually a generic program to con-
nect to any TCP socket as we did in Chapter 10. Here we will try connect to cnn.com’s
web page.

We first need to get an IP address of cnn.com:

265

26.2. A Sample TCP Session 26. TCP and UDP

✞ �
[root@cericon]# host cnn.com
cnn.com has address 207.25.71.20

✝ ✆

Now, in one window we run
✞ �
[root@cericon]# tcpdump \
’(src 192.168.3.9 and dst 207.25.71.20) or (src 207.25.71.20 and dst 192.168.3.9)’
Kernel filter, protocol ALL, datagram packet socket
tcpdump: listening on all devices

✝ ✆

which says to list all packets having source (src) or destination (dst) addresses of
either us or CNN.

Then we use the HTTP protocol to grab the page. Type in the HTTP command
GET / HTTP/1.0 and then press twice (as required by the HTTP protocol). The
first and last few lines of the sessions are shown below:

✞ �
[root@cericon root]# telnet 207.25.71.20 80
Trying 207.25.71.20...
Connected to 207.25.71.20.
Escape character is ’ˆ]’.

5 GET / HTTP/1.0

HTTP/1.0 200 OK
Server: Netscape-Enterprise/2.01
Date: Tue, 18 Apr 2000 10:55:14 GMT

10 Set-cookie: CNNid=cf19472c-23286-956055314-2; expires=Wednesday, 30-Dec-2037 16:00:00 GMT;
path=/; domain=.cnn.com

Last-modified: Tue, 18 Apr 2000 10:55:14 GMT
Content-type: text/html

15 <HTML>
<HEAD>

<TITLE>CNN.com</TITLE>
<META http-equiv="REFRESH" content="1800">

20 <!--CSSDATA:956055234-->
<SCRIPT src="/virtual/2000/code/main.js" language="javascript"></SCRIPT>
<LINK rel="stylesheet" href="/virtual/2000/style/main.css" type="text/css">
<SCRIPT language="javascript" type="text/javascript">

<!--//
25 if ((navigator.platform==’MacPPC’)&&(navigator.ap

..............

..............

30 </BODY>
</HTML>
Connection closed by foreign host.

✝ ✆

The above commands produce the front page of CNN’s web site in raw HTML.
This is easy to paste into a file and view off-line.

In the other window, tcpdump is showing us what packets are being exchanged.
tcpdump nicely shows us host names instead of IP addresses and the letters www in-
stead of the port number 80. The local “random” port in this case was 4064.

266

26. TCP and UDP 26.2. A Sample TCP Session

✞ �
[root@cericon]# tcpdump \
’(src 192.168.3.9 and dst 207.25.71.20) or (src 207.25.71.20 and dst 192.168.3.9)’
Kernel filter, protocol ALL, datagram packet socket
tcpdump: listening on all devices

5 12:52:35.467121 eth0 > cericon.cranzgot.co.za.4064 > www1.cnn.com.www:
S 2463192134:2463192134(0) win 32120 <mss 1460,sackOK,timestamp 154031689 0,nop,wscale 0

12:52:35.964703 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:
S 4182178234:4182178234(0) ack 2463192135 win 10136 <nop,nop,timestamp 1075172823 154031

12:52:35.964791 eth0 > cericon.cranzgot.co.za.4064 > www1.cnn.com.www:
10 . 1:1(0) ack 1 win 32120 <nop,nop,timestamp 154031739 1075172823> (DF)

12:52:46.413043 eth0 > cericon.cranzgot.co.za.4064 > www1.cnn.com.www:
P 1:17(16) ack 1 win 32120 <nop,nop,timestamp 154032784 1075172823> (DF)

12:52:46.908156 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:
. 1:1(0) ack 17 win 10136 <nop,nop,timestamp 1075173916 154032784>

15 12:52:49.259870 eth0 > cericon.cranzgot.co.za.4064 > www1.cnn.com.www:
P 17:19(2) ack 1 win 32120 <nop,nop,timestamp 154033068 1075173916> (DF)

12:52:49.886846 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:
P 1:278(277) ack 19 win 10136 <nop,nop,timestamp 1075174200 154033068>

12:52:49.887039 eth0 > cericon.cranzgot.co.za.4064 > www1.cnn.com.www:
20 . 19:19(0) ack 278 win 31856 <nop,nop,timestamp 154033131 1075174200> (DF)

12:52:50.053628 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:
. 278:1176(898) ack 19 win 10136 <nop,nop,timestamp 1075174202 154033068>

12:52:50.160740 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:
P 1176:1972(796) ack 19 win 10136 <nop,nop,timestamp 1075174202 154033068>

25 12:52:50.220067 eth0 > cericon.cranzgot.co.za.4064 > www1.cnn.com.www:
. 19:19(0) ack 1972 win 31856 <nop,nop,timestamp 154033165 1075174202> (DF)

12:52:50.824143 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:
. 1972:3420(1448) ack 19 win 10136 <nop,nop,timestamp 1075174262 154033131>

12:52:51.021465 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:
30 . 3420:4868(1448) ack 19 win 10136 <nop,nop,timestamp 1075174295 154033165>

..............

..............

35 12:53:13.856919 eth0 > cericon.cranzgot.co.za.4064 > www1.cnn.com.www:
. 19:19(0) ack 53204 win 30408 <nop,nop,timestamp 154035528 1075176560> (DF)

12:53:14.722584 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:
. 53204:54652(1448) ack 19 win 10136 <nop,nop,timestamp 1075176659 154035528>

12:53:14.722738 eth0 > cericon.cranzgot.co.za.4064 > www1.cnn.com.www:
40 . 19:19(0) ack 54652 win 30408 <nop,nop,timestamp 154035615 1075176659> (DF)

12:53:14.912561 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:
. 54652:56100(1448) ack 19 win 10136 <nop,nop,timestamp 1075176659 154035528>

12:53:14.912706 eth0 > cericon.cranzgot.co.za.4064 > www1.cnn.com.www:
. 19:19(0) ack 58500 win 30408 <nop,nop,timestamp 154035634 1075176659> (DF)

45 12:53:15.706463 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:
. 58500:59948(1448) ack 19 win 10136 <nop,nop,timestamp 1075176765 154035634>

12:53:15.896639 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:
. 59948:61396(1448) ack 19 win 10136 <nop,nop,timestamp 1075176765 154035634>

12:53:15.896791 eth0 > cericon.cranzgot.co.za.4064 > www1.cnn.com.www:
50 . 19:19(0) ack 61396 win 31856 <nop,nop,timestamp 154035732 1075176765> (DF)

12:53:16.678439 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:
. 61396:62844(1448) ack 19 win 10136 <nop,nop,timestamp 1075176864 154035732>

12:53:16.867963 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:
. 62844:64292(1448) ack 19 win 10136 <nop,nop,timestamp 1075176864 154035732>

55 12:53:16.868095 eth0 > cericon.cranzgot.co.za.4064 > www1.cnn.com.www:
. 19:19(0) ack 64292 win 31856 <nop,nop,timestamp 154035829 1075176864> (DF)

12:53:17.521019 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:
FP 64292:65200(908) ack 19 win 10136 <nop,nop,timestamp 1075176960 154035829>

12:53:17.521154 eth0 > cericon.cranzgot.co.za.4064 > www1.cnn.com.www:
60 . 19:19(0) ack 65201 win 31856 <nop,nop,timestamp 154035895 1075176960> (DF)

12:53:17.523243 eth0 > cericon.cranzgot.co.za.4064 > www1.cnn.com.www:
F 19:19(0) ack 65201 win 31856 <nop,nop,timestamp 154035895 1075176960> (DF)

12:53:20.410092 eth0 > cericon.cranzgot.co.za.4064 > www1.cnn.com.www:
F 19:19(0) ack 65201 win 31856 <nop,nop,timestamp 154036184 1075176960> (DF)

65 12:53:20.940833 eth0 < www1.cnn.com.www > cericon.cranzgot.co.za.4064:

267

26.3. User Datagram Protocol (UDP) 26. TCP and UDP

. 65201:65201(0) ack 20 win 10136 <nop,nop,timestamp 1075177315 154035895>

103 packets received by filter
✝ ✆

The preceding output requires some explanation: Line 5, 7, and 9 are the nego-
tiation stage. tcpdump uses the format <Sequence number>:<Sequence number
+ data length>(<data length>) on each line to show the context of the packet
within the stream. Sequence number, however, is chosen randomly at the outset, so
tcpdump prints the relative sequence number after the first two packets to make it
clearer what the actual position is within the stream. Line 11 is where I pressed Enter
the first time, and Line 15 was Enter with an empty line. The “ack 19”s indicates
the point to which CNN’s web server has received incoming data; in this case we only
ever typed in 19 bytes, hence the web server sets this value in every one of its outgoing
packets, while our own outgoing packets are mostly empty of data.

Lines 61 and 63 are the detachment stage.

More information about the tcpdump output can be had from tcpdump(8) under
the section TCP Packets.

26.3 User Datagram Protocol (UDP)

You don’t always need reliable communication.

Sometimes you want to directly control packets for efficiency, or because you
don’t really mind if packets get lost. Two examples are name server communications,
for which single packet transmissions are desired, or voice transmissions for which
reducing lag time is more important than data integrity. Another is NFS (Network File
System), which uses UDP to implement exclusively high bandwidth data transfer.

With UDP the programmer sends and receives individual packets, again encap-
sulated within IP. Ports are used in the same way as with TCP, but these are merely
identifiers and there is no concept of a stream. The full UDP/IP header is listed in
Table 26.2.

Table 26.2 Combined UDP and IP header

Bytes (IP) Description
0 bits 0–3: Version, bits 4–7: Internet Header Length (IHL)
1 Type of service (TOS)
2–3 Length
4–5 Identification
6–7 bits 0-3: Flags, bits 4-15: Offset

continues...

268

26. TCP and UDP 26.4. /etc/services File

Table 26.2 (continued)

8 Time to live (TTL)
9 Type
10–11 Checksum
12–15 Source IP address
16–19 Destination IP address
20–(IHL * 4 - 1) Options + padding to round up to four bytes
Bytes (UDP) Description
0–1 Source port
2–3 Destination port
4–5 Length
6–7 Checksum

UDP data begins at IHL * 4 + 8 and ends at Length - 1

26.4 /etc/services File

Various standard port numbers are used exclusively for particular types of services.
Port 80 is for web as shown earlier. Port numbers 1 through 1023 are reserved for such
standard services and each is given a convenient textual name.

All services are defined for both TCP as well as UDP, even though there is, for
example, no such thing as UDP FTP access.

Port numbers below 1024 are used exclusively for root uid programs such as
mail, DNS, and web services. Programs of ordinary users are not allowed to bind to
ports below 1024. &Port binding is where a program reserves a port for listening for an incoming
connection, as do all network services. Web servers, for example, bind to port 80.- The place where
these ports are defined is in the /etc/services file. These mappings are mostly
for descriptive purposes—programs can look up port names from numbers and visa
versa. The /etc/services file has nothing to do with the availability of a service.

Here is an extract of the /etc/services.
✞ �
tcpmux 1/tcp # TCP port service multiplexer
echo 7/tcp
echo 7/udp
discard 9/tcp sink null

5 discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp

10 qotd 17/tcp quote
msp 18/tcp # message send protocol
msp 18/udp # message send protocol

269

26.5. Encrypting and Forwarding TCP 26. TCP and UDP

ftp-data 20/tcp
ftp 21/tcp

15 fsp 21/udp fspd
ssh 22/tcp # SSH Remote Login Protocol
ssh 22/udp # SSH Remote Login Protocol
telnet 23/tcp
smtp 25/tcp mail

20 time 37/tcp timserver
time 37/udp timserver
rlp 39/udp resource # resource location
nameserver 42/tcp name # IEN 116
whois 43/tcp nicname

25 domain 53/tcp nameserver # name-domain server
domain 53/udp nameserver
mtp 57/tcp # deprecated
bootps 67/tcp # BOOTP server
bootps 67/udp

30 bootpc 68/tcp # BOOTP client
bootpc 68/udp
tftp 69/udp
gopher 70/tcp # Internet Gopher
gopher 70/udp

35 rje 77/tcp netrjs
finger 79/tcp
www 80/tcp http # WorldWideWeb HTTP
www 80/udp # HyperText Transfer Protocol

✝ ✆

26.5 Encrypting and Forwarding TCP

The TCP stream can easily be reconstructed by anyone listening on a wire who happens
to see your network traffic, so TCP is known as an inherently insecure service. We
would like to encrypt our data so that anything captured between the client and server
will appear garbled. Such an encrypted stream should have several properties:

1. It should ensure that the connecting client really is connecting to the server in
question. In other words it should authenticate the server to ensure that the
server is not a Trojan.

2. It should prevent any information being gained by a snooper. This means that
any traffic read should appear cryptographically garbled.

3. It should be impossible for a listener to modify the traffic without detection.

The above is relatively easily accomplished with at least two packages. Take the
example where we would like to use POP3 to retrieve mail from a remote machine.
First, we can verify that POP3 is working by logging in on the POP3 server. Run a
telnet to port 110 (i.e., the POP3 service) as follows:

270

26. TCP and UDP 26.5. Encrypting and Forwarding TCP

✞ �

telnet localhost 110
Connected to localhost.localdomain.
Escape character is ’ˆ]’.
+OK POP3 localhost.localdomain v7.64 server ready

5 QUIT
+OK Sayonara
Connection closed by foreign host.

✝ ✆

For our first example, we use the OpenSSH package. We can initialize and run
the sshd Secure Shell daemon if it has not been initialized before. The following com-
mands would be run on the POP3 server:

✞ �

ssh-keygen -b 1024 -f /etc/ssh/ssh_host_key -q -N ’’
ssh-keygen -d -f /etc/ssh/ssh_host_dsa_key -q -N ’’
sshd

✝ ✆

To create an encrypted channel shown in Figure 26.1, we use the ssh client login
program in a special way. We would like it to listen on a particular TCP port and then
encrypt and forward all traffic to the remote TCP port on the server. This is known as
(encrypted) port forwarding. On the client machine we choose an arbitrary unused port
to listen on, in this case 12345:

✞ �
ssh -C -c arcfour -N -n -2 -L 12345:<pop3-server.doma.in>:110 \

<pop3-server.doma.in> -l <user> -v
✝ ✆

where <user> is the name of a shell account on the POP3 server. Finally, also on the
client machine, we run:

✞ �

telnet localhost 12345
Connected to localhost.localdomain.
Escape character is ’ˆ]’.
+OK POP3 localhost.localdomain v7.64 server ready

5 QUIT
+OK Sayonara
Connection closed by foreign host.

✝ ✆

Here we get results identical to those above, because, as far as the server is concerned,
the POP3 connection comes from a client on the server machine itself, unknowing of
the fact that it has originated from sshd, which in turn is forwarding from a remote
ssh client. In addition, the -C option compresses all data (useful for low-speed connec-
tions). Also note that you should generally never use any encryption besides arcfour
and SSH Protocol 2 (option -2).

The second method is the forward program of the mirrordir package. It has
a unique encryption protocol that does much of what OpenSSH can, although the pro-

271

26.5. Encrypting and Forwarding TCP 26. TCP and UDP

POP3 Server

Client

110

12345

(sshd) 22

(ssh . . . 12345:pop:110 pop)

(telnet locahost 12345)

(ipop3d)

Figure 26.1 Forwarding between two machines

tocol has not been validated by the community at large (and therefore should be used
with caution). On the server machine you can just type secure-mcserv. On the client
run

✞ �
forward <user>@<pop3-server.doma.in> <pop3-server.doma.in>:110 \

12345 --secure -z -K 1024
✝ ✆

and then run telnet 12345 to test as before.

With forwarding enabled you can use any POP3 client as you normally would.
Be sure, though, to set your host and port addresses to localhost and 12345 within
your POP3 client.

This example can, of course, be applied to almost any service. Some services will
not work if they do special things like create reverse TCP connections back to the client
(for example, FTP). Your luck may vary.

272

Chapter 27

DNS and Name Resolution

We know that each computer on the Internet has its own IP address. Although this
address is sufficient to identify a computer for purposes of transmitting packets, it is
not particularly accommodating to people. Also, if a computer were to be relocated,
we would like to still identify it by the same name.

Hence, each computer is given a descriptive textual name. The basic textual name
of a machine is called the unqualified host name&This is my own terminology.- and is usu-
ally less than eight characters and contains only lowercase letters and numbers (and es-
pecially no dots). Groups of computers have a domain name. The full name of machine
is unqualified host name.domain name and is called the fully qualified host name&Standard
terminology.- or the qualified host name. &My terminology.- For example, my computer
is cericon. The domain name of my company is cranzgot.co.za, and hence the
qualified host name of my computer is cericon.cranzgot.co.za, although the IP
address might be 160.123.76.9.

Often the word domain is synonymous with domain name, and the host name on its
own can mean either the qualified or unqualified host name.

This system of naming computers is called the Domain Name System (DNS)

27.1 Top-Level Domains (TLDs)

Domains always end in a standard set of things. Here is a complete list of things that
the last bit of a domain can be.

.com A U.S. or international company proper. In fact, any organization might have a
.com domain.

273

27.2. Resolving DNS Names to IP Addresses 27. DNS and Name Resolution

.gov A U.S. government organization.

.edu A U.S. university.

.mil A U.S. military department.

.int An organization established by international treaties.

.org A U.S. or nonprofit organization. In fact, anyone can have a .org domain.

.net An Internet service provider (ISP). In fact, any bandwidth reseller, IT company,
or any company at all might have a .net domain.

Besides the above, the domain could end in a two-letter country code.

The complete list of country codes is given in Table 27.1. The .us domain is
rarely used, since in the United States .com, .edu, .org, .mil, .gov, .int, or .net
are mostly used.

Within each country, a domain may have things before it for better description.
Each country may implement a different structure. Some examples are:

.co.za A South African company. (za = Zuid Afrika, from Dutch.)

.org.za A South African nonprofit organization.

.ac.za A South African academic university.

.edu.au An australian tertiary educational institution.

.gov.za A South African government organization.

Note that a South African company might choose a .com domain instead of
a .co.za domain. The Internet has become more commercialized than organized,
meaning that anyone can pretty much register any domain that is not already taken.

27.2 Resolving DNS Names to IP Addresses

In practice, a user will type a host name (say, www.cranzgot.co.za) into some ap-
plication like a web browser. The application has to then try find the IP address asso-
ciated with that name, in order to send packets to it. This section describes the query
structure used on the Internet so that everyone can find out anyone else’s IP address.

An obvious lookup infrastructure might involve distributing a long table of host
name vs. IP numbers to every machine on the Internet. But as soon as you have more
than a few thousand machines, this approach becomes impossible.

274

27. DNS and Name Resolution 27.2. Resolving DNS Names to IP Addresses

Table 27.1 ISO country codes
.af Afghanistan .do Eominican Rep. .li Liechtenstein .ws Samoa
.al Albania .tp East Timor .lt Lithuania .sm San Marino
.dz Algeria .ec Ecuador .lu Muxembourg .st Sao Tome and Principe
.as American samoa .eg Egypt .mo Macau .sa Saudi Arabia
.ad Andorra .sv El Salvador .mg Madagascar .sn Senegal
.ao Angola .gq Equatorial Guinea .mw Malawi .sc Seychelles
.ai Anguilla .ee Estonia .my Malaysia .sl Sierra Leone
.aq Antarctica .et Fthiopia .mv Maldives .sg Singapore
.ag Antigua and barbuda .fk Falkland Islands (Malvinas) .ml Mali .sk Slovakia
.ar Argentina .fo Faroe Islands .mt Malta .si Slovenia
.am Armenia .fj Fiji .mh Marshall Islands .sb Solomon Islands
.aw Aruba .fi Finland .mq Martinique .so Somalia
.au Australia .fr France .mr Mauritania .za South Africa
.at Austria .gf French Guiana .mu Mauritius .es Spain
.az Bzerbaijan .pf French Polynesia .mx Mexico .lk Sri Lanka
.bs Bahamas .tf Grench Southern Territories .fm Micronesia .sd Sudan
.bh Bahrain .ga Gabon .md Moldova, Rep. of .sr Suriname
.bd Bangladesh .gm Gambia .mc Monaco .sj Svalbard and Jan Mayen Is.
.bb Barbados .ge Georgia .mn Mongolia .sz Swaziland
.be Belgium .de Germany .ms Montserrat .se Sweden
.bz Belize .gh Ghana .ma Morocco .ch Switzerland
.bj Benin .gi Gibraltar .mz Mozambique .sy Tyrian Arab Rep.
.bm Bermuda .gr Greece .mm Nyanmar .tw Taiwan, Province of China
.bt Bhutan .gl Greenland .na Namibia .tj Tajikistan
.bo Bolivia .gd Grenada .nr Nauru .tz Tanzania, United Rep. of
.ba Bosnia Hercegovina .gp Guadeloupe .np Nepal .th Thailand
.bw Botswana .gu Guam .nl Netherlands .tg Togo
.bv Bouvet Island .gt Guatemala .an Netherlands Antilles .tk Tokelau
.br Brazil .gn Guinea .nt Neutral Zone .to Tonga
.io British Indian Ocean Territory .gw Guinea-Bissau .nc New Caledonia .tt Trinidad and Tobago
.bn Brunei Darussalam .gy Huyana .nz New Zealand .tn Tunisia
.bg Bulgaria .ht Haiti .ni Nicaragua .tr Turkey
.bf Burkina Faso .hm Heard and Mc Donald Islands .ne Niger .tm Turkmenistan
.bi Burundi .hn Honduras .ng Nigeria .tc Turks and Caicos Islands
.by Celarus .hk Hong Kong .nu Niue .tv Uuvalu
.kh Cambodia .hu Iungary .nf Norfolk Island .ug Uganda
.cm Cameroon .is Iceland .mp Northern Mariana Islands .ua Ukraine
.ca Canada .in India .no Oorway .ae United Arab Emirates
.cv Cape Verde .id Indonesia .om Pman .gb United Kingdom
.ky Cayman Islands .ir Iran (Islamic Rep. of) .pk Pakistan .us United States
.cf Central African Rep. .iq Iraq .pw Palau .um US Minor Outlying Islands
.td Chad .ie Ireland .pa Panama .uy Uruguay
.cl Chile .il Israel .pg Papua New Guinea .su USSR
.cn China .it Jtaly .py Paraguay .uz Vzbekistan
.cx Christmas Island .jm Jamaica .pe Peru .vu Vanuatu
.cc Cocos (Keeling) Islands .jp Japan .ph Philippines .va Vatican City State (Holy See)
.co Colombia .jo Kordan .pn Pitcairn .ve Venezuela
.km Comoros .kz Kazakhstan .pl Poland .vn Viet Nam
.cg Congo .ke Kenya .pt Portugal .vg Virgin Islands (British)
.ck Cook Islands .ki Kiribati .pr Querto Rico .vi Wirgin Islands (U.S.)
.cr Costa Rica .kp Korea, Demo. People’s Rep.of .qa Ratar .wf Wallis and Futuna Islands
.ci Cote D’ivoire .kr Korea, Rep. of .re Reunion .eh Yestern Sahara
.hr Croatia .kw Kuwait .ro Romania .ye Yemen, Rep. of
.cu Cuba .kg Lyrgyzstan .ru Russian Federation .yu Zugoslavia
.cy Cyprus .la Lao People’s Demo. Rep. .rw Swanda .zr Zaire
.cz Czech Rep. .lv Latvia .sh St. Helena .zm Zambia
.cs Dzechoslovakia .lb Lebanon .kn Saint Kitts and Nevis .zw Zimbabwe
.dk Denmark .ls Lesotho .lc Saint Lucia
.dj Djibouti .lr Liberia .pm St. Pierre and Miquelon
.dm Dominica .ly Libyan Arab Jamahiriya .vc St. Vincent and the Grenadines

Another imaginary infrastructure might have one huge computer on the Internet
somewhere whose IP address is known by everyone. This computer would be respon-
sible for servicing requests for IP numbers, and the said application running on your
local machine would just query this big machine. Of course, with billions of machines
out there, this approach will obviously create far too much network traffic. &Actually,
some Microsoft LANs kind of work this way—that is, not very well.-

27.2.1 The Internet DNS infrastructure

The DNS structure on the Internet actually works like this.

275

27.2. Resolving DNS Names to IP Addresses 27. DNS and Name Resolution

There are computers that service requests for IP numbers—millions of them.
They are called name servers (or DNS servers), and a request is called a DNS lookup
(or just a lookup). However, each name server only has information about a specific
part of the Internet, and they constantly query each other.

There are 13 root name servers on the Internet. &This list can be gotten from
ftp://ftp.rs.internic.net/domain/named.root.-

✞ �

a.root-servers.net 198.41.0.4
b.root-servers.net 128.9.0.107
c.root-servers.net 192.33.4.12
d.root-servers.net 128.8.10.90

5 e.root-servers.net 192.203.230.10
f.root-servers.net 192.5.5.241
g.root-servers.net 192.112.36.4
h.root-servers.net 128.63.2.53
i.root-servers.net 192.36.148.17

10 j.root-servers.net 198.41.0.10
k.root-servers.net 193.0.14.129
l.root-servers.net 198.32.64.12
m.root-servers.net 202.12.27.33

✝ ✆

Each country also has a name server, and in turn each organization has a name
server. Each name server only has information about machines in its own domain,
as well as information about other name servers. The root name servers only have
information on the IP addresses of the name servers of .com, .edu, .za, etc. The
.za name server only has information on the IP addresses of the name servers of
.org.za, .ac.za, .co.za, etc. The .co.za name server only has information on the
name servers of all South African companies, like .cranzgot.co.za, .icon.co.za,
.mweb.co.za, etc. The .cranzgot.co.za, name server only has info on the ma-
chines at Cranzgot Systems, like www.cranzgot.co.za.

Your own machine will defined in its configuration files a name server that is
geographically close to it. The responsibilities of this name server will be to directly
answer any queries about its own domain that it has information about and to an-
swer any other queries by querying as many other name servers on the Internet as is
necessary.

27.2.2 The name resolution process

Now our application is presented with www.cranzgot.co.za. The following se-
quence of lookups takes place to resolve this name into an IP address. This procedure
is called host name resolution and the algorithm that performs this operation is called
the resolver.

276

27. DNS and Name Resolution 27.3. Configuring Your Local Machine

1. The application checks certain special databases on the local machine. If it can
get an answer directly from them, it proceeds no further.

2. The application looks up a geographically close name server from the local ma-
chine’s configuration file. Let’s say this machine is called ns.

3. The application queries ns with “www.cranzgot.co.za?”.

4. ns determines whether that IP has been recently looked up. If it has, there is no
need to ask further, since the result would be stored in a local cache.

5. ns checks whether the domain is local. That is, whether it is a computer about
which it has direct information. In this case, this would only be true if the ns
were cranzgot.co.za’s very own name server.

6. ns strips out the TLD (top level domain) .za. It queries a root name server,
asking what name server is responsible for .za. The answer will be uc-
thpx.uct.ac.za of IP address 137.158.128.1.

7. ns strips out the next highest domain co.za It queries 137.158.128.1,
asking what name server is responsible for .co.za. The answer will be
secdns1.posix.co.za of IP address 160.124.112.10.

8. ns strips out the next highest domain cranzgot.co.za. It queries
160.124.112.10, asking what name server is responsible for cranz-
got.co.za. The answer will be pizza.cranzgot.co.za of IP address
196.28.123.1.

9. ns queries 196.28.123.1 asking for the IP address of www.cranzgot.co.za.
The answer will be 160.123.176.1.

10. ns returns the result to the application.

11. ns stores each of these results in a local cache with an expiration date, to avoid
having to look them up a second time.

27.3 Configuring Your Local Machine

We referred to “configuration files” above. These are actually the files:
/etc/host.conf, /etc/hosts, and /etc/resolv.conf. These are the three and
only files that specify how all applications are going to look up IP numbers; and
have nothing to do with the configuration files of the name server daemon itself, even
though a name server daemon might be running on the local machine.

When an application needs to look up a host name, it goes through the following
procedure. &What is actually happening is that the application is making a library call to the function

277

27.3. Configuring Your Local Machine 27. DNS and Name Resolution

gethostbyname(), hence all these configuration files really belong to the C library packages glibc or
libc. However, this is a detail you need not be concerned about.- The following are equivalent
to steps 1, 2, and 3 above, with the details of the configuration files filled in. The
configuration files that follow are taken from an actual installation.

1. The application checks the file /etc/host.conf. This file will usually have a
line order hosts,bind in it, specifying that it should first (hosts) check the
local database file /etc/hosts, and then (bind) query the name server speci-
fied in /etc/resolv.conf. The file /etc/hosts contains a plain text list of
IP addresses and names. An example is given below. If the application can get
an answer directly from /etc/hosts, it proceeds no further.

2. The application checks in the file /etc/resolv.conf for a line nameserver
<nameserver>. There can actually be three of these lines so that if one name
server fails, the application can try the next in turn.

3. The application sends to the name server a query with the host name. If the host
name is unqualified, then the application, before trying the query, appends to
the host name a local domain name. A line search <domain1> <domain2>
... <domainN> may appear in the configuration file to facilitate this. A query
is made with each of <domain1>, <domain2> etc. appended in turn until the
query successfully returns an IP. This just saves you having to type in the full
host name for computers within your own organization.

4. The name server proceeds with the hierarchical queries described from step 4
onward.

The /etc/hosts file should look something like this:
✞ �

127.0.0.1 localhost.localdomain localhost
192.168.3.9 cericon.cranzgot.co.za cericon
192.168.3.10 pepper.cranzgot.co.za pepper
192.168.2.1 onion.cranzgot.co.za onion

✝ ✆

The hosts pepper, cericon, and onion are the hosts that this machine has the
most communication with, and hence are listed here. cericon is the local machine
and must be listed. You can list any hosts to which you want fast lookups, or hosts that
might need to be known in spite of name servers being down.

The /etc/host.conf might look like this. All of the lines are optional:
✞ �

order hosts, bind, nis
trim some.domain
spoofalert
nospoof

278

27. DNS and Name Resolution 27.3. Configuring Your Local Machine

5 multi on
reorder

✝ ✆

order The order in which lookups are done. Don’t try fiddling with this value. It
never seems to have any effect. You should leave it as order hosts,bind
(or order hosts,bind,nis if you are using NIS—search for the NIS-
HOWTO on the web.) Once again, bind means to then go and check the
/etc/resolv.conf which holds the name server query options.

trim Strip the domain some.domain from the end of a host name before trying a
lookup. You will probably never require this feature.

spoofalert Try reverse lookups on a host name after looking up the IP (i.e., do a
query to find the name from the IP). If this query does not return the correct
result, it could mean that some machine is trying to make it look like it is someone
it really isn’t. This is a hacker’s trick called spoofing. spoofalert warns you of
such attempts in your log file /var/log/messages.

nospoof Disallow results that fail the spoof test.

multi on Return more than one result if there are aliases. Actually, a host can have
several IP numbers, and an IP number can have several host names. Consider
a computer that might want more than one name (ftp.cranzgot.co.za and
www.cranzgot.co.za are the same machine.) Or a machine that has several
networking cards and an IP address for each. This option should always be
turned on. multi off is the alternative. Most applications use only the first
value returned.

reorder If more than one IP is returned by a lookup, then sort that list according to
the IP that has the most convenient network route.

Despite this array of options, an /etc/host.conf file almost always looks sim-
ply like

✞ �

order hosts, bind
multi on

✝ ✆

The /etc/resolv.conf file could look something like this:
✞ �

nameserver 192.168.2.1
nameserver 160.123.76.1
nameserver 196.41.0.131
search cranzgot.co.za ct.cranzgot.co.za uct.ac.za

5 sortlist 192.168.3.0/255.255.255.0 192.168.2.0/255.255.255.0

279

27.3. Configuring Your Local Machine 27. DNS and Name Resolution

options ndots:1 timeout:30 attempts:2 rotate no-check-names inet6
✝ ✆

nameserver Specifies a name server to query. No more than three may be listed. The
point of having more than one is to safeguard against a name server being down;
the next in the list will then be queried.

search If given a host name with less than ndots dots (i.e., 1 in this case), add each
of the domains in turn to the host name, trying a lookup with each. This option
allows you to type in an unqualified host name and the application work out
what organization it is belongs to from the search list. You can have up to six
domains, but then queries would be time consuming.

domain The line “domain ct.cranzgot.co.za” is the same as “search
ct.cranzgot.co.za cranzgot.co.za co.za”. Always use search ex-
plicitly instead of domain to reduce the number of queries to a minimum.

sortlist If more than one host is returned, sort them according to the following
network/masks.

options Various additional parameters can be specified in this one line:

ndots Explained under search above. The default is 1.
timeout How long to wait before considering a query to have failed. The de-

fault is 30 seconds.
attempts Number of attempts to make before failing. The default is 2. This

means that a down name server will cause your application to wait 1 full
minute before deciding that it can’t resolve the IP.

rotate Try the name servers in round robin fashion. This distributes load
across name servers.

no-check-names Don’t check for invalid characters in host names.
inet6 The man page for resolv.conf (resolver(5)) says:

inet6 sets RES_USE_INET6 in _res.options . This has the ef-
fect of trying a AAAA query before an A query inside
the gethostbyname function, and of mapping IPv4 re-
sponses in IPv6 ‘‘tunnelled form’’ if no AAAA records
are found but an A record set exists.

An AAAA query is a 128-bit “next generation,” or “IPV6” Internet address.

Despite this array of options, an /etc/resolv.conf file almost always looks
simply like:

✞ �

nameserver 192.168.2.254
search cranzgot.co.za

✝ ✆

280

27. DNS and Name Resolution 27.4. Reverse Lookups

27.4 Reverse Lookups

A reverse lookup, mentioned under nospoof, is the determining of the host name from
the IP address. The course of queries is similar to forward lookups using part of the IP
address to find out what machines are responsible for what ranges of IP address.

A forward lookup is an ordinary lookup of the IP address from the host name.

27.5 Authoritative for a Domain

I have emphasized that name servers only hold information for their own domains.
Any other information they may have about another domain is cached, temporary
data that has an expiration date attached to it.

The domain that a name server has information about is said to be the domain
that a name server is authoritative for. Alternatively we say: “a name server is au-
thoritative for the domain.” For instance, the server ns2.cranzgot.co.za is au-
thoritative for the domain cranzgot.co.za. Hence, lookups from anywhere on
the Internet having the domain cranzgot.co.za ultimately are the responsibility
of ns2.cranzgot.co.za, and originate (albeit through a long series of caches) from
the host ns2.cranzgot.co.za.

27.6 The host, ping, and whois Command

The command host looks up a host name or an IP address, by doing a name server
query. Try

✞ �

host www.cnn.com
✝ ✆

for an example of a host with lots of IP address. Keep typing host over and over.
Notice that the order of the hosts keeps changing randomly. This reordering distributes
load among the many cnn.com servers.

Now, pick one of the IP addresses and type
✞ �

host <ip-address>
✝ ✆

This command will return the host name cnn.com.

Note that the host command is not available on all UNIX systems.

The ping command has nothing directly to do with DNS but is a quick way of
getting an IP address and at the same time checking whether a host is responding. It is
often used as the acid test for network and DNS connectivity. See Section 25.10.1.

281

27.7. The nslookup Command 27. DNS and Name Resolution

Now enter:
✞ �

whois cnn.com@rs.internic.net
✝ ✆

(Note that original BSD whois worked like whois -h <host> <user>.) You will
get a response like this:

✞ �
[rs.internic.net]

Whois Server Version 1.1

5 Domain names in the .com, .net, and .org domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

Domain Name: CNN.COM
10 Registrar: NETWORK SOLUTIONS, INC.

Whois Server: whois.networksolutions.com
Referral URL: www.networksolutions.com
Name Server: NS-01A.ANS.NET
Name Server: NS-01B.ANS.NET

15 Name Server: NS-02A.ANS.NET
Name Server: NS-02B.ANS.NET
Updated Date: 22-sep-1999

20 >>> Last update of whois database: Thu, 20 Jan 00 01:39:07 EST <<<

The Registry database contains ONLY .COM, .NET, .ORG, .EDU domains and
Registrars.

✝ ✆

(Internic happens to have this database of .com, .net, .org, and .edu domains.)

27.7 The nslookup Command

nslookup is a program to interactively query a name server. If you run
✞ �

nslookup
✝ ✆

you will get a > prompt at which you can type commands. If you type in a host name,
nslookup will return its IP address(s), and visa versa. Also, typing

✞ �

help
✝ ✆

any time will return a complete list of commands. By default, nslookup uses the first
name server listed in /etc/resolv.conf for all its queries. However, the command

✞ �

server <nameserver>
✝ ✆

282

27. DNS and Name Resolution 27.7. The nslookup Command

will force nslookup to connect to a name server of your choice.

27.7.1 NS, MX, PTR, A and CNAME records

The word record is a piece of DNS information.

Now enter the command:
✞ �

set type=NS
✝ ✆

This tells nslookup to return the second type of information that a DNS can deliver:
the authoritative name server for a domain or the NS record of the domain. You can enter
any domain here. For instance, if you enter

✞ �

set type=NS
cnn.com

✝ ✆

nslookup returns
✞ �

Non-authoritative answer:
cnn.com nameserver = NS-02B.ANS.NET
cnn.com nameserver = NS-02A.ANS.NET
cnn.com nameserver = NS-01B.ANS.NET

5 cnn.com nameserver = NS-01A.ANS.NET

Authoritative answers can be found from:
NS-02B.ANS.NET internet address = 207.24.245.178
NS-02A.ANS.NET internet address = 207.24.245.179

10 NS-01B.ANS.NET internet address = 199.221.47.8
NS-01A.ANS.NET internet address = 199.221.47.7

✝ ✆

This output tells us that four name servers are authoritative for the domain cnn.com
(one plus three backups). It also tells us that it did not get this answer from an au-
thoritative source, but through a cached source. It also tells us what name servers are
authoritative for this very information.

Now, switch to a name server that is authoritative for cnn.com:
✞ �

server NS-02B.ANS.NET
✝ ✆

and run the same query:
✞ �

cnn.com
✝ ✆

The new result is somewhat more emphatic, but no different.

There are only a few other kinds of records that you can get from a name server.
Try

283

27.8. The dig Command 27. DNS and Name Resolution

✞ �

set type=MX
cnn.com

✝ ✆

to get the so-called MX record for that domain. The MX record is the server responsible
for handling mail destined to that domain. MX records also have a priority (usually 10
or 20). This tells any mail server to try the 20 one should the 10 one fail, and so on.
There are usually only one or two MX records. Mail is actually the only Internet service
handled by DNS. (For instance, there is no such thing as a NEWSX record for news, or
a WX record for web pages, whatever kind of information we may like such records to
hold.)

Also try
✞ �

set type=PTR
<ip-address>
set type=A
<hostname>

5 set type=CNAME
<hostname>

✝ ✆

So-called PTR records are reverse lookups, or PoinTeRs to host names. So-called
A records are forward lookups (the default type of lookup when you first invoke
nslookup and the type of lookup the first half of this chapter was most concerned
with), or Address lookups. So-called CNAME records are lookups of Canonical NAMEs.
DNS allows you to alias a computer to many different names, even though each has
one real name (called the canonical name). CNAME lookups returns the machine name
proper.

27.8 The dig Command

dig stands for domain information groper. It sends single requests to a DNS server for
testing or scripting purposes (it is similar to nslookup, but non-interactive).

It is usually used like,
✞ �

dig @<server> <domain> <query-type>
✝ ✆

where <server> is the machine running the DNS daemon to query, <domain> is
the domain of interest and <query-type> is one of A, ANY, MX, NS, SOA, HINFO, or
AXFR—of these, you can read about the non-obvious ones in dig(1). dig can also be
used to test an Internet connection. See Section 20.7.4.

Useful is the AXFR record. For instance
✞ �

dig @dns.dial-up.net icon.co.za AXFR
✝ ✆

lists the entire domain of one of our local ISPs.

284

Chapter 28

Network File System, NFS

This chapter covers NFS, the file-sharing capabilities of UNIX, and describes how to set
up directories shareable to other UNIX machines.

As soon as one thinks of high-speed Ethernet, the logical possibility of sharing a
file system across a network comes to mind. MS-DOS, OS/2, Apple Macintosh, and
Windows have their own file-sharing schemes (IPX, SMB etc.), and NFS is the UNIX
equivalent.

Consider your hard drive with its 10,000 or so files. Ethernet is fast enough that
you should be able to entirely use the hard drive of another machine, transferring
needed data as network packets as required; or you should be able to make a directory
tree visible to several computers. Doing this efficiently is a complex task. NFS is a
standard, a protocol, and (on LINUX) a software suite that accomplishes this task in
an efficient manner. It is really easy to configure as well. Unlike some other sharing
protocols, NFS merely shares files and does not facilitate printing or messaging.

28.1 Software

Depending on your distribution, the following programs may be located in any of the
bin or sbin directories. These are all daemon processes. To get NFS working, they
should be started in the order given here.

portmap (also sometimes called rpc.portmap) This maps service names to ports.
Client and server processes may request a TCP port number based on a service
name, and portmap handles these requests. It is basically a network version of
your /etc/services file.

285

28.2. Configuration Example 28. Network File System, NFS

rpc.mountd (also sometimes called mountd) This handles the initial incoming re-
quest from a client to mount a file system and check that the request is allowable.

rpc.nfsd (also sometimes called nfsd) This is the core—the file-server program it-
self.

rpc.lockd (also sometimes called lockd) This handles shared locks between differ-
ent machines on the same file over the network.

The acronym RPC stands for Remote Procedure Call. RPC was developed along
with NFS by Sun Microsystems. It is an efficient way for a program to call a function
on another machine and can be used by any service that needs to have efficient dis-
tributed processing. These days, its not really used for much except NFS, having been
superseded by technologies like CORBA.&The “Object-Oriented” version of RPC- You can
however, still write distributed applications with LINUX’s RPC implementation.

28.2 Configuration Example

Sharing a directory with a remote machine requires that forward and reverse DNS
lookups be working for the server machine as well as all client machines. DNS is
covered in Chapter 27 and Chapter 40. If you are just testing NFS and you are shar-
ing directories to your local machine (which we do now), you may find NFS to still
work without a proper DNS setup. You should at least have proper entries in your
/etc/hosts file for your local machine (see page 278).

The first step is deciding on the directory you would like to share. A useful trick
is to share your CD-ROM to your whole LAN. This is perfectly safe considering that
CDs are read-only. Create an /etc/exports file with the following in it:

✞ �

/mnt/cdrom 192.168.1.0/24(ro) localhost(ro)
✝ ✆

You can immediately see that the format of the /etc/exports file is simply a line
for each shareable directory. Next to each directory name goes a list of hosts that are
allowed to connect. In this case, those allowed access are all IP addresses having the
upper 24 bits matching 192.168.1, as well as the localhost.

Next, mount your CD-ROM as usual with
✞ �

mkdir -p /mnt/cdrom
mount -t iso9660 -o ro /dev/cdrom /mnt/cdrom

✝ ✆

Now start each of the NFS processes in sequence:

286

28. Network File System, NFS 28.2. Configuration Example

✞ �

portmap
rpc.mountd
rpc.nfsd
rpc.lockd

✝ ✆

Whenever you make changes to your /etc/exports file you should also follow by
running

✞ �

exportfs -r
✝ ✆

which causes a rereading of the /etc/exports file. Entering the exportfs com-
mand with no options should then show

✞ �

/mnt/cdrom 192.168.1.0/24
/mnt/cdrom localhost.localdomain

✝ ✆

which lists directories and hosts allowed to access them.

It is useful to test mounts from your local machine before testing from a remote
machine. Here we perform the NFS mounting operation proper:

✞ �

mkdir /mnt/nfs
mount -t nfs localhost:/mnt/cdrom /mnt/nfs

✝ ✆

You can see that the mount command sees the remote machine’s directory as a “device”
of sorts, although the type is nfs instead of ext2, vfat, or iso9660. The remote host
name is followed by a colon followed by the directory on that remote machine relative
to the root directory. This syntax is unlike that for other kinds of services that name all
files relative to some “top level” directory (eg., FTP and web servers). The acid test
now is to run ls on the /mnt/nfs directory to verify that its contents are indeed the
same as /mnt/cdrom. Supposing our server is called cdromserver, we can run the
same command on all client machines:

✞ �

mkdir /mnt/nfs
mount -t nfs cdromserver:/mnt/cdrom /mnt/nfs

✝ ✆

If anything went wrong, you might like to search your process list for all pro-
cesses with an rpc, mount, nfs, or portmap in them. Completely stopping NFS
means clearing all of these processes (if you really want to start from scratch). It is
useful to also keep

✞ �

tail -f /var/log/messages
tail -f /var/log/syslog

✝ ✆

running in a separate console to watch for any error (or success) messages (actually
true of any configuration you are doing). Note that it is not always obvious that NFS

287

28.3. Access Permissions 28. Network File System, NFS

is failing because of a forward or reverse DNS lookup, so double-check beforehand
that these are working—mount will not usually be more eloquent than the classic NFS
error message: “mount: <xyz> failed, reason given by server: Per-
mission denied.” A faulty DNS is also indicated by whole-minute pauses in oper-
ation.

Most distributions will not require you to manually start and stop the daemon
processes above. Like most services, RedHat’s NFS implementation can be invoked
simply with:

✞ �

/etc/init.d/nfs start
/etc/init.d/nfslock start

✝ ✆

(or /etc/rc.d/init.d/). On Debian , similarly,
✞ �

/etc/init.d/nfs-common start
/etc/init.d/nfs-kernel-server start

✝ ✆

28.3 Access Permissions

Above, we used 192.168.1.0/24(ro) to specify that we want to give read-only
access to a range of IP addresses. You can actually put host names with wildcards also;
for example:

✞ �

/mnt/cdrom *.mynet.mydomain.co.za(ro)
✝ ✆

Then also allow read-write access with, say:
✞ �

/home *.mynet.mydomain.co.za(rw)
✝ ✆

One further option, no root squash, disables NFS’s special treatment of root-
owned files. This option is useful if you are finding certain files strangely inaccessible.
no root squash is really only for systems (like diskless workstations) that need full
root access to a file system. An example is:

✞ �

/ *.very.trusted.net(rw,no_root_squash)
✝ ✆

The man page for /etc/exports, exports(5), contains an exhaustive list of
options.

288

28. Network File System, NFS 28.4. Security

28.4 Security

NFS requires that a number of services be running that have no use anywhere else.
Many naive administrators create directory exports with impunity, thus exposing those
machines to opportunistic hackers. An NFS server should be well hidden behind a
firewall, and any Internet server exposed to the Internet should never run the portmap
or RPC services. Preferably uninstall all of these services if you are not actually running
an NFS server.

28.5 Kernel NFS

There are actually two versions of the NFS implementation for LINUX . Although
this is a technical caveat, it is worth understanding that the NFS server was originally
implemented by an ordinary daemon process before the LINUX kernel itself sup-
ported NFS. Debian supports both implementations in two packages, nfs-server
and nfs-kernel-server, although the configuration should be identical. Depend-
ing on the versions of these implementations and the performance you require, one or
the other may be better. You are advised to at least check the status of the kernel NFS
implementation on the kernel web pages. Of course, NFS as a client must necessarily
be supported by the kernel as a regular file system type in order to be able to mount
anything.

289

28.5. Kernel NFS 28. Network File System, NFS

290

Chapter 29

Services Running Under inetd

There are some hundred odd services that a common LINUX distribution supports.
For all of these to be running simultaneously would be a strain. Hence, a special dae-
mon process watches for incoming TCP connections and then starts the relevant exe-
cutable, saving that executable from having to run all the time. This is used only for
sparsely used services—that is, not web, mail, or DNS.

The daemon that performs this function is traditionally called inetd: the subject
of this chapter.

(Section 36.1 contains an example of writing your own network service in shell
script to run under inetd.)

29.1 The inetd Package

Which package contains inetd depends on the taste of your distribution. Indeed,
under RedHat, version 7.0 switched to xinetd, a move that departs radically from
the traditional UNIX inetd. xinetd is discussed below. The important inetd files
are the configuration file /etc/inetd.conf, the executable /usr/sbin/inetd, the
inetd and inetd.conf man pages, and the startup script /etc/init.d/inet (or
/etc/rc.d/init.d/inetd or /etc/init.d/inetd). Another important file is
/etc/services, discussed in Section 26.4.

29.2 Invoking Services with /etc/inetd.conf

Most services can be started in one of three ways: first as a standalone (resource hun-
gry, as discussed) daemon; second, under inetd; or third as an inetd service which is

291

29.2. Invoking Services with /etc/inetd.conf 29. Services Running Under inetd

“TCP wrapper”-moderated. However, some services will run using only one method.
Here, we will give an example showing all three methods. You will need to have
an ftp package installed for this example (either wuftpd on RedHat or ftpd on
Debian).

29.2.1 Invoking a standalone service

Try the following (alternative commands in parentheses):
✞ �

/usr/sbin/in.ftpd -D
(/usr/sbin/in.wuftpd -s)

✝ ✆

The -D option instructs the service to start in Daemon mode (or standalone mode).
This represents the first way of running an Internet service.

29.2.2 Invoking an inetd service

With this method we can let inetd run the service for us. Edit your
/etc/inetd.conf file and add or edit the line (alternatives in parentheses):

✞ �

ftp stream tcp nowait root /usr/sbin/in.ftpd in.ftpd
(ftp stream tcp nowait root /usr/sbin/in.wuftpd in.wuftpd)

✝ ✆

Then, restart the inetd service with
✞ �

/etc/init.d/inet restart
(killall -1 inetd)
(/etc/rc.d/init.d/inet restart)

✝ ✆

and test with
✞ �

ps awx | grep ftp
ftp localhost

✝ ✆

The fields in the /etc/inetd.conf file have the following meanings:

ftp The name of the service. Looking in the /etc/services file, we can see that
this is TCP port 21.

stream tcp Socket type and protocol. In this case, a TCP stream socket, and hardly
ever anything else.

nowait Do not wait for the process to exit before listening for a further incoming
connection. Compare to wait and respawn in Chapter 32.

292

29. Services Running Under inetd 29.2. Invoking Services with /etc/inetd.conf

root The initial user ID under which the service must run.

/usr/sbin/in.ftpd (/usr/sbin/in.wuftpd) The actual executable.

in.ftpd The command-line. In this case, just the program name and no options.

29.2.3 Invoking an inetd “TCP wrapper” service

With this last method we let inetd run the service for us under the tcpd wrap-
per command. This is almost the same as before, but with a slight change in the
/etc/inetd.conf entry:

✞ �
ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.ftpd
(ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.wuftpd)

✝ ✆

Then, restart the inetd service as before. These alternative lines allow tcpd to in-
voke in.ftpd (or in.wuftpd) on inetd’s behalf. The tcpd command does various
tests on the incoming connection to decide whether it should be trusted. tcpd checks
what host the connection originates from and compares that host against entries in
the file /etc/hosts.allow and /etc/hosts.deny. It can refuse connections from
selected hosts, thus giving you finer access control to services.

Consider the preceding /etc/inetd.conf entry against the following line in
your /etc/hosts.allow file:

✞ �

in.ftpd: LOCAL, .my.domain
(in.wuftpd: LOCAL, .my.domain)

✝ ✆

as well as the following line in the file /etc/hosts.deny:
✞ �

in.ftpd: ALL
(in.wuftpd: ALL)

✝ ✆

This example will deny connections from all machines with host names not ending
in .my.domain but allow connections from the local&The same machine on which inetd is
running-machine. It is useful at this point to try make an ftp connection from different
machines to test access control. A complete explanation of the /etc/hosts.allow
and /etc/hosts.deny file format can be obtained from hosts access(5). Another
example is (/etc/hosts.deny):

✞ �

ALL: .snake.oil.com, 146.168.160.0/255.255.240.0
✝ ✆

which would deny access for ALL services to all machines inside the 146.168.160.0
(first 20 bits) network, as well as all machines under the snake.oil.com domain.

293

29.3. Various Service Explanations 29. Services Running Under inetd

29.2.4 Distribution conventions

Note that the above methods cannot be used simultaneously. If a service is al-
ready running one way, trying to start it another way will fail, possibly with
a “port in use” error message. Your distribution would have already decided
whether to make the service an inetd entry or a standalone daemon. In the for-
mer case, a line in /etc/inetd.conf will be present; in the latter case, a script
/etc/init.d/<service> (or /etc/rc.d/init.d/<service>) will be present to
start or stop the daemon. Typically, there will be no /etc/init.d/ftpd script,
but there will be /etc/init.d/httpd and /etc/init.d/named scripts. Note that
there will always be a /etc/init.d/inet script.

29.3 Various Service Explanations

All these services are potential security holes. Don’t take
chances: disable them all by commenting out all lines in
/etc/inetd.conf.

A typical /etc/inetd.conf file (without the comment lines) looks something like:
✞ �
ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l -a
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd
shell stream tcp nowait root /usr/sbin/tcpd in.rshd
login stream tcp nowait root /usr/sbin/tcpd in.rlogind

5 talk dgram udp wait nobody.tty /usr/sbin/tcpd in.talkd
ntalk dgram udp wait nobody.tty /usr/sbin/tcpd in.ntalkd
pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
imap stream tcp nowait root /usr/sbin/tcpd imapd
uucp stream tcp nowait uucp /usr/sbin/tcpd /usr/sbin/uucico -l

10 tftp dgram udp wait root /usr/sbin/tcpd in.tftpd
bootps dgram udp wait root /usr/sbin/tcpd bootpd
finger stream tcp nowait nobody /usr/sbin/tcpd in.fingerd
auth stream tcp wait root /usr/sbin/in.identd in.identd -e -o

✝ ✆

The above services have the following purposes (port numbers in parentheses):

ftp (21) File Transfer Protocol, as shown above.

telnet (23) Telnet login access.

shell (514) rsh Remote shell script execution service.

login (513) rlogin Remote Login login service.

294

29. Services Running Under inetd 29.4. The xinetd Alternative

talk (517), ntalk User communication gimmick.

pop-3 (110) Post Office Protocol mail retrieval service—how most people get their
mail through their ISP.

imap (143) Internet Mail Access Protocol—a more sophisticated and dangerously in-
secure version of POP.

uucp (540) Unix-to-Unix copy operating over TCP.

tftp (69) Trivial FTP service used, for example, by diskless workstations to retrieve a
kernel image.

bootpd (67) BOOTP IP configuration service for LANs that require automatic IP as-
signment.

finger (79) User lookup service.

auth (113) A service that determines the owner of a particular TCP connection. If you
run a machine with lots of users, administrators of other machines can see which
users are connecting to them from your machine. For tracking purposes, some
IRC and FTP servers require that a connecting client run this service. Disable this
service if your box does not support shell logins for many users.

29.4 The xinetd Alternative

Instead of the usual inetd + tcpd combination, RedHat switched to the xinetd
package as of version 7.0. The xinetd package combines the features of tcpd and
inetd into one neat package. The xinetd package consists of a top-level config file,
/etc/xinetd.conf; an executable /usr/sbin/xinetd; and then a config file for
each service under the directory /etc/xinetd.d/. This arrangement allows a package
like ftpd control over its own configuration through its own separate file.

29.5 Configuration Files

The default top-level config file, /etc/xinetd.conf, looks simply like this:
✞ �

defaults
{

instances = 60
log_type = SYSLOG authpriv

5 log_on_success = HOST PID
log_on_failure = HOST RECORD

}

295

29.5. Configuration Files 29. Services Running Under inetd

includedir /etc/xinetd.d
✝ ✆

The file dictates, respectively, that xinetd does the following: limits the number of si-
multaneous connections of each service to 60; logs to the syslog facility, using sys-
log’s authpriv channel; logs the HOST and Process ID for each successful connec-
tion; and logs the HOST (and also RECORD information about the connection attempt)
for each failed connection. In other words, /etc/xinetd.conf really says nothing
interesting at all.

The last line says to look in /etc/xinetd.d/ for more (service-specific) files.
Our FTP service would have the file /etc/xinetd.d/wu-ftpd containing:

✞ �

service ftp
{

socket_type = stream
server = /usr/sbin/in.ftpd

5 server_args = -l -a
wait = no
user = root
log_on_success += DURATION USERID
log_on_failure += USERID

10 nice = 10
}

✝ ✆

This file is similar to our /etc/inetd.conf line above, albeit more verbose. Re-
spectively, this file dictates these actions: listen with a stream TCP socket; run the
executable /usr/sbin/in.ftpd on a successful incoming connection; pass the ar-
guments -l -a on the command-line to in.ftpd (see ftpd(8)); never wait for
in.ftpd to exit before accepting the next incoming connection; run in.ftpd as user
root; additionally log the DURATION and USERID of successful connections; addi-
tionally log the USERID of failed connections; and be nice to the CPU by running
in.ftpd at a priority of 10.

29.5.1 Limiting access

The security options of xinetd allow much flexibility. Most important is the
only from option to limit the remote hosts allowed to use a service. The most ex-
treme use is to add only from 127.0.0.1 to the top-level config file:

✞ �

defaults
{

only_from = 127.0.0.1 mymachine.local.domain
.

5 .
.

✝ ✆

296

29. Services Running Under inetd 29.6. Security

which allows no remote machines to use any xinetd service at all. Alternatively, you
can add an only from line to any of the files in /etc/xinetd.d/ to restrict access
on a per-service basis.

only from can also take IP address ranges of the form nnn.nnn.nnn.nnn/bits,
as well as domain names. For example,

✞ �
only_from = 127.0.0.1 192.168.128.0/17 .somewhere.friendly.com

✝ ✆

which in the last case allows access from all machines with host names ending in
.somewhere.friendly.com.

Finally there is the no access option that works identically to only from, dic-
tating hosts and IP ranges from which connections are not allowed:

✞ �

no_access = .snake.oil.net
✝ ✆

29.6 Security

It may be thought that using /etc/hosts.deny (or only from =) to deny access
to all remote machines should be enough to secure a system. This is not true: even
a local user being able to access a local service is a potential security hole, since the
service usually has higher privileges than the user. It is best to remove all services that
are not absolutely necessary. For Internet machines, do not hesitate to hash out every
last service or even uninstall inetd (or xinetd) entirely.

See also Chapter 44.

297

29.6. Security 29. Services Running Under inetd

298

Chapter 30

exim and sendmail

This chapter effectively explains how to get LINUX up and running as a mail server. I
have also included discussion on the process of mail delivery right through to retrieval
of mail using POP and IMAP.

30.1 Introduction

exim and sendmail are MTAs (mail transfer agents). An MTA is just a daemon process
that listens on port 25 for incoming mail connections, spools&See page 197 about spooling
in general.- that mail in a queue (for exim, the /var/spool/exim/input/ directory,
for sendmail, the /var/spool/mqueue/ directory), then resends that mail to some
other MTA or delivers it locally to some user’s mailbox. In other words, the MTA is the
very package that handles all mail spooling, routing, and delivery. We saw in Section
10.2 how to manually connect to an MTA with telnet. In that example, sendmail
version 8.9.3 was the MTA running on machine mail.cranzgot.co.za.

sendmail is the original and popular UNIX MTA. It is probably necessary to
learn how to configure it because so many organizations standardize on it. However,
because exim is so easy to configure, it is worthwhile replacing sendmail wherever
you see it—there are at least three MTAs that are preferable to sendmail. I explain
the minimum of what you need to know about sendmail later on and explain exim
in detail.

30.1.1 How mail works

Before we get into MTA configuration, a background in mail delivery and indexiiMX
recordDNSMX record handling is necessary. The sequence of events whereby a mail

299

30.1. Introduction 30. exim and sendmail

message (sent by a typical interactive mail client) ends up on a distant user’s personal
workstation is as follows:

1. A user configures his mail client (Outlook Express, Netscape, etc.) to use a par-
ticular SMTP host (for outgoing mail, also called the SMTP gateway) and POP host
(or IMAP host) for incoming mail.

2. The user composes a message to, say, rrabbit@toonland.net and then clicks
on “Send.”

3. The mail client initiates an outgoing TCP connection to port 25 of the SMTP host.
An MTA running on the SMTP host and listening on port 25 services the re-
quest. The mail client uses the SMTP protocol exactly as in Section 10.2. It fills
in rrabbit@toonland.net as the recipient address and transfers a properly
composed header (hopefully) and message body to the MTA. The mail client
then terminates the connection and reports any errors.

4. The MTA queues the message as a spool file, periodically considering whether to
process the message further according to a retry schedule.

5. Should the retry schedule permit, the MTA considers the recipient address
rrabbit@toonland.net. It strips out the domain part of the email address—
that is, everything after the @. It then performs a DNS MX query (or MX
lookupindexiiMX recordDNS) for the domain toonland.net. DNS resolution
for toonland.net follows the procedure listed in Section 27.2.2. In short,
this means (approximately) that it looks for the name server that is authorita-
tive for the domain toonland.net. It queries that name server for the MX
record of the domain toonland.net. The name server returns a host name, say,
mail.toonland.net with corresponding IP address, say, 197.21.135.82.
&Section 27.7.1 shows you how you can manually lookup the MX record. Chapter 40 shows you
how to set up your name server to return such an MX record.-

6. The MTA makes an SMTP connection to port 25 of 197.21.135.82. Another
MTA running on mail.toonland.net services the request. A recipient ad-
dress, message header, and message body are transferred using the SMTP proto-
col. The MTA then terminates the connection.

7. The MTA running on mail.toonland.net considers the recipient address
rrabbit@toonland.net. It recognizes toonland.net as a domain for which
it hosts mail (that is, a local domain). It recognizes rrabbit as a user name within
its own /etc/passwd file.

8. The MTA running on mail.toonland.net appends the message to
the user’s personal mailbox file, say, /var/spool/mail/rrabbit or
/home/rrabbit/Maildir/. The delivery is now complete. How the email gets from
the mailbox on mail.toonland.net to Mr Rabbit’s personal workstation is not the
responsibility of the MTA and does not happen through SMTP.

300

30. exim and sendmail 30.2. exim Package Contents

9. Mr Rabbit would have configured his mail client (running on his personal work-
station) to use a POP/IMAP host mail.toonland.net for incoming mail.
mail.toonland.net runs a POP or IMAP service on port 110 or 143, respec-
tively.

10. Mr Rabbit’s mail client makes a TCP connection to port 110 (or 143) and commu-
nicates using the POP or IMAP protocol. The POP or IMAP service is responsible
for feeding the message to the mail client and deleting it from the mailbox file.

11. Mr Rabbit’s mail client stores the message on his workstation using its own meth-
ods and displays the message as a “new” message.

30.1.2 Configuring a POP/IMAP server

POP and IMAP are invoked by inetd or xinetd—see Chapter 29. Except for limiting
the range of clients that are allowed to connect (for security reasons), no configuration
is required. Client connections authenticate themselves using the normal UNIX login
name and password. There are specialized POP and IMAP packages for supporting
different mailbox types (like Maildir).

30.1.3 Why exim?

The exim home page http://www.exim.org/ gives you a full rundown. Here I will just say
that exim is the simplest MTA to configure. Moreover, its configuration file works
the same way you imagine mail to work. It’s really easy to customize the exim con-
figuration to do some really weird things. The whole package fits together cleanly,
logically, and intuitively. This is in contrast to sendmail’s sendmail.cf file, which
is widely considered to be extremely cryptic and impractical. exim also seems to have
been written with proper security considerations, although many people argue that
postfix and qmail are the last word in secure mail.

30.2 exim Package Contents

You can get exim as a .rpm or .deb file. After installation, the file
/usr/share/doc/exim-?.??/doc/spec.txt &or /usr/doc/- contains the com-
plete exim documentation; there is also an HTML version on the exim web page,
whereas the man page contains only command-line information. exim is a drop-in re-
placement for sendmail, meaning that for every critical sendmail command, there is
an exim command of the same name that takes the same options, so that needy scripts
won’t know the difference. These are:

301

30.3. exim Configuration File 30. exim and sendmail

✞ �

/etc/aliases
/usr/bin/mailq
/usr/bin/newaliases
/usr/bin/rmail

5 /usr/lib/sendmail
/usr/sbin/sendmail

✝ ✆

Finally, there is the exim binary itself, /usr/sbin/exim, and configuration
file /etc/exim/config, /etc/exim.conf, or /etc/exim/exim.conf, depend-
ing on your LINUX distribution. Then there are the usual start/stop scripts,
/etc/init.d/exim. &or /etc/rc.d/init.d/exim-

30.3 exim Configuration File

As a preliminary example, here we create a simple spooling mail server for a personal
workstation, cericon.cranzgot.co.za.

Client applications (especially non-UNIX ones) are usually configured to connect
to an MTA running on a remote machine, however, using a remote SMTP host can
be irritating if the host or network go down. Running exim on the local workstation
enables all applications to use localhost as their SMTP gateway: that is, exim takes
care of queuing and periodic retries.

Here is the configuration. The difference between this and a full-blown mail
server is actually very slight.

✞ �
#################### MAIN CONFIGURATION SETTINGS #####################
log_subject
errors_address = postmaster
freeze_tell_mailmaster = yes

5 queue_list_requires_admin = false
prod_requires_admin = false
trusted_users = psheer
local_domains = localhost : ${primary_hostname}
never_users = root

10 # relay_domains = my.equivalent.domains : more.equivalent.domains
host_accept_relay = localhost : *.cranzgot.co.za : 192.168.0.0/16
exim_user = mail
exim_group = mail
end

15

###################### TRANSPORTS CONFIGURATION ######################
remote_smtp:

driver = smtp
hosts = 192.168.2.1

20 hosts_override
local_delivery:

driver = appendfile

302

30. exim and sendmail 30.3. exim Configuration File

file = /var/spool/mail/${local_part}
delivery_date_add

25 envelope_to_add
return_path_add
group = mail
mode_fail_narrower =
mode = 0660

30 end

###################### DIRECTORS CONFIGURATION #######################
localuser:

driver = localuser
35 transport = local_delivery

end

###################### ROUTERS CONFIGURATION #########################
lookuphost:

40 driver = lookuphost
transport = remote_smtp

literal:
driver = ipliteral
transport = remote_smtp

45 end

###################### RETRY CONFIGURATION ###########################
* * F,2h,15m; G,16h,1h,1.5; F,4d,8h
end

50

###################### REWRITE CONFIGURATION #########################
*@cericon.cranzgot.co.za psheer@icon.co.za

✝ ✆

30.3.1 Global settings

The exim config file is divided into six logical sections separated by the end keyword.
The top or MAIN section contains global settings. The global settings have the following
meanings:

log subject Tells exim to log the subject in the mail log file. For example, T="I
LOVE YOU" will be added to the log file.

errors address The mail address where errors are to be sent. It doesn’t matter what
you put here, because all mail will get rewritten to psheer@icon.co.za, as we
see later.

freeze tell mailmaster Tells errors address about frozen messages. frozen
messages are messages that could not be delivered for some reason (like a per-
missions problem, or a failed message whose return address is invalid) and are
flagged to sit idly in the mail queue, and not be processed any further. Note that

303

30.3. exim Configuration File 30. exim and sendmail

frozen messages sometimes mean that something is wrong with your system or
mail configuration.

local domains Each mail message received is processed in one of two ways: by
either a local or remote delivery. A local delivery is one to a user on the
local machine, and a remote delivery is one to somewhere else on the In-
ternet. local domains distinguishes between these two. For example, ac-
cording to the config line above, a message destined to psheer@localhost
or psheer@cericon.cranzgot.co.za is local, whereas a message to
psheer@elsewhere.co.za is remote. Note that the list is colon delimited.

never users Never become this user. Just for security.

exim user Specifies the user that exim should run as.

exim group Specifies the group that exim should run as.

It is important to understand the host accept relay and
relay domains options for security.

host accept relay This option specifies machines that are allowed to use ceri-
con.cranzgot.co.za as a relay. A relay is a host that sends mail on another
machine’s behalf: that is, we are acting as a relay when we process a mail mes-
sage that neither originated from our machine nor is destined for a user on our
machine.

We never want to relay from an untrusted host. Why? Because it may, for exam-
ple, allow someone to send 100,000 messages to 100,000 different addresses, each
with us in the message header.

host accept relay specifies a list of trusted hosts that are allowed to send
such arbitrary messages through us. Note again that the list is colon delimited.
In this example, we don’t even need to put in addresses of other machines on our
LAN, except if we are feeling friendly.

relay domains relay domains gives an additional condition for which an arbi-
trary host is allowed to use us as a relay. Consider that we are a backup mail
server for a particular domain; mail to the domain does not originate from us
nor is destined for us yet must be allowed only if the destination address matches the
domains for which we are a backup. We put such domains under relay domains.

30.3.2 Transports

The transport section comes immediately after the main configuration options. It de-
fines various methods of delivering mail. We are going to refer to these methods later in

304

30. exim and sendmail 30.3. exim Configuration File

the configuration file. Our manual telneting to port 25 was transporting a mail mes-
sage by SMTP. Appending a mail message to the end of a mail folder is also a transport
method. These are represented by the remote smtp: and local delivery: labels,
respectively.

remote smtp: This transport has the following suboptions:

driver The actual method of delivery. driver = always specifies the kind of
transport, director, or router.

hosts override and hosts Using these two options together overrides any
list of hosts that may have been looked up by DNS MX queries. By “list of
hosts” we mean machines established from the recipients email address to
which we might like to make an SMTP delivery, but which we are not going
to use. Instead we send all mail to 192.168.2.1, which is this company’s
internal mail server.

local delivery: This transport has the following suboptions:

driver The actual method of delivery. driver = always specifies the kind of
transport, director, or router.

file The file to append the mail message to. ${local part} is replaced with
everything before the @ character of the recipient’s address.

delivery date add, envelope to add, and return path add Various
things to add to the header.

group, mode fail narrower and mode Various permission settings.

(It should be obvious at this stage what these two transports are going to be
used for. As far as MTAs are concerned, the only two things that ever happen to an
email message are that it either (a) gets sent through SMTP to another host or (b) gets
appended to a file.)

30.3.3 Directors

If a message arrives and it is listed in local domains, exim will attempt a local
delivery. This means exim works through the list of directors until it finds one that
does not fail. The only director listed here is the one labeled localuser: with lo-
cal delivery as its transport. So quite simply, email messages having recipient ad-
dresses that are listed under local domains are appended to a user’s mailbox file—
not very complicated.

A director directs mail to a mailbox.

305

30.4. Full-blown Mail server 30. exim and sendmail

30.3.4 Routers

If a message arrives and it is not listed in local domains, exim attempts a remote
delivery. Similarly, this means exim works through the list of routers until it finds one
that does not fail.

Two routers are listed here. The first is for common email addresses. It uses the
lookuphost driver, which does a DNS MX query on the domain part of the email
address (i.e., everything after the @). The MX records found are then passed to the
remote smtp transport (and in our case, then ignored). The lookuphost driver will
fail if the domain part of the email address is a bracketed literal IP address.

The second router uses the ipliteral driver. It sends mail directly to
an IP address in the case of bracketed, literal email addresses. For example,
root@[111.1.1.1].

A router routes mail to another host.

30.4 Full-blown Mail server

An actual mail server config file contains very little extra. This one is the example
config file that comes by default with exim-3.16:

✞ �
#################### MAIN CONFIGURATION SETTINGS #####################
primary_hostname =
qualify_domain =
qualify_recipient =

5 # local_domains =
never_users = root
host_accept_relay = localhost
host_accept_relay = my.friends.host : 131.111.0.0/16
relay_domains = my.equivalent.domains : more.equivalent.domains

10 host_lookup = 0.0.0.0/0
receiver_unqualified_hosts =
sender_unqualified_hosts =
rbl_domains = rbl.maps.vix.com
no_rbl_reject_recipients

15 sender_reject = "*@*.sex*.net:*@sex*.net"
host_reject = "open-relay.spamming-site.com"
rbl_warn_header
rbl_domains = rbl.maps.vix.com:dul.maps.vix.com:relays.orbs.org
percent_hack_domains = *

20 end
###################### TRANSPORTS CONFIGURATION ######################
remote_smtp:
driver = smtp

procmail transport goes here <---
25 local_delivery:

driver = appendfile

306

30. exim and sendmail 30.4. Full-blown Mail server

file = /var/spool/mail/${local_part}
delivery_date_add
envelope_to_add

30 return_path_add
group = mail
mode = 0660

address_pipe:
driver = pipe

35 return_output
address_file:
driver = appendfile
delivery_date_add
envelope_to_add

40 return_path_add
address_reply:
driver = autoreply

end
###################### DIRECTORS CONFIGURATION #######################

45 # routers because of a "self=local" setting (not used in this configuration).
system_aliases:
driver = aliasfile
file = /etc/aliases
search_type = lsearch

50 user = mail
group = mail
file_transport = address_file
pipe_transport = address_pipe

userforward:
55 driver = forwardfile

file = .forward
no_verify
no_expn
check_ancestor

60 # filter
file_transport = address_file
pipe_transport = address_pipe
reply_transport = address_reply

procmail director goes here <---
65 localuser:

driver = localuser
transport = local_delivery

end
###################### ROUTERS CONFIGURATION #########################

70 # widen_domains = "sales.mycompany.com:mycompany.com"
lookuphost:
driver = lookuphost
transport = remote_smtp

widen_domains =
75 literal:

driver = ipliteral
transport = remote_smtp

end
###################### RETRY CONFIGURATION ###########################

80 * * F,2h,15m; G,16h,1h,1.5; F,4d,8h
end

307

30.5. Shell Commands for exim Administration 30. exim and sendmail

##
✝ ✆

For procmail support (see procmail(1), procmailrc(6), and proc-
mailex(5)), simply add

✞ �
procmail:

driver = pipe
command = "/usr/bin/procmail -Y -d ${local_part}"

✝ ✆

after your remote smtp transport, and then also,
✞ �
procmail:
driver = localuser
transport = procmail
require_files = /usr/bin/procmail

✝ ✆

after your user forward director.

30.5 Shell Commands for exim Administration

As with other daemons, you can stop exim, start exim, and cause exim to reread its
configuration file with:

✞ �

/etc/init.d/exim stop
/etc/init.d/exim start
/etc/init.d/exim reload

✝ ✆

You should always do a reload to cause config file changes to take effect. The
startup script actually just runs exim -bd -q30m, which tells exim to start as a
standalone daemon, listening for connections on port 25, and then execute a runq (ex-
plained below) every 30 minutes.

To cause exim &and many other MTAs for that matter- to loop through the queue of
pending messages and consider each one for deliver, run

✞ �

runq
✝ ✆

which is the same as exim -q.

To list mail that is queued for delivery, use
✞ �

mailq
✝ ✆

which is the same as exim -bp.

To forcibly attempt delivery on any mail in the queue, use

308

30. exim and sendmail 30.6. The Queue

✞ �

exim -qf
✝ ✆

and then to forcibly retry even frozen messages in the queue, use
✞ �

exim -qff
✝ ✆

To delete a message from the queue, use
✞ �

exim -Mrm <message-id>
✝ ✆

The man page exim(8) contains exhaustive treatment of command-line options.
Those above are most of what you will use, however.

30.6 The Queue

It is often useful to check the queue directory /var/spool/exim/input/ for mail
messages, just to get an inside look at what’s going on. The simple session—

✞ �
[root@cericon]# mailq
0m 320 14Epss-0008DY-00 <psheer@icon.co.za>

freddy@elmstreet.org

5 0m 304 14Ept8-0008Dg-00 <psheer@icon.co.za>
igor@ghostbusters.com

[root@cericon]# ls -l /var/spool/exim/input/
total 16

10 -rw------- 1 root root 25 Jan 6 11:43 14Epss-0008DY-00-D
-rw------- 1 root root 550 Jan 6 11:43 14Epss-0008DY-00-H
-rw------- 1 root root 25 Jan 6 11:43 14Ept8-0008Dg-00-D
-rw------- 1 root root 530 Jan 6 11:43 14Ept8-0008Dg-00-H

✝ ✆

—clearly shows that two messages are queued for delivery. The files ending in -H are
envelope headers, and those ending in -D are message bodies. The spec.txt document
will show you how to interpret the contents of the header files.

Don’t be afraid to manually rm files from this directory, but always delete them
in pairs (i.e., remove the both the header and the body file), and make sure exim is not
running at the time. In the above example, the commands,

✞ �
[root@cericon]# exim -Mrm 14Epss-0008DY-00 14Ept8-0008Dg-00
Message 14Epss-0008DY-00 has been removed
Message 14Ept8-0008Dg-00 has been removed
[root@cericon]# mailq

309

30.7. /etc/aliases for Equivalent Addresses 30. exim and sendmail

5 [root@cericon]#
✝ ✆

work even better.

30.7 /etc/aliases for Equivalent Addresses

Often, we would like certain local addresses to actually deliver to other addresses. For
instance, we would like all mail destined to user MAILER-DAEMON to actually go to
user postmaster; or perhaps some user has two accounts but would like to read mail
from only one of them.

The /etc/aliases file performs this mapping. This file has become somewhat
of an institution; however you can see that in the case of exim, aliasing is completely
arbitrary: you can specify a lookup on any file under the system aliases: director
provided that file is colon delimited.

A default /etc/aliases file could contain as much as the following; you
should check that the postmaster account does exist on your system, and test
whether you can read, send, and receive mail as user postmaster.

✞ �
This is a combination of what I found in the Debian
and RedHat distributions.

MAILER-DAEMON: postmaster
5 abuse: postmaster

anonymous: postmaster
backup: postmaster
backup-reports: postmaster
bin: postmaster

10 daemon: postmaster
decode: postmaster
dns: postmaster
dns-admin: postmaster
dumper: postmaster

15 fetchmail-daemon: postmaster
games: postmaster
gnats: postmaster
ingres: postmaster
info: postmaster

20 irc: postmaster
list: postmaster
listmaster: postmaster
lp: postmaster
mail: postmaster

25 mailer-daemon: postmaster
majordom: postmaster
man: postmaster
manager: postmaster
msql: postmaster

30 news: postmaster

310

30. exim and sendmail 30.8. Real-Time Blocking List — Combating Spam

nobody: postmaster
operator: postmaster
postgres: postmaster
proxy: postmaster

35 root: postmaster
sync: postmaster
support: postmaster
sys: postmaster
system: postmaster

40 toor: postmaster
uucp: postmaster
warnings: postmaster
web-master: postmaster
www-data: postmaster

45

some users who want their mail redirected
arny: mail@swartzneger.co.us
larry: lking@cnn.com

✝ ✆

You can remove a lot of these aliases, since they assume services to be running
that might not be installed—games, ingres, for example. Aliases can do two things:
firstly, anticipate what mail people are likely to use if they need to contact the admin-
istrator; and secondly, catch any mail sent by system daemons: for example the, email
address of the DNS administrator is dictated by the DNS config files, as explained on
page 445.

Note that an alias in the /etc/aliases file does not have to have an account
on the system—larry and arny need not have entries in the /etc/passwd file.

30.8 Real-Time Blocking List — Combating Spam

30.8.1 What is spam?

Spam refers to unsolicited &Not looked for or requested; unsought- bulk mail sent to users
usually for promotional purposes. That is, mail is sent automatically to many people
with whom the sender has no relationship, and where the recipient did nothing to
prompt the mail: all on the chance that the recipient might be interested in the subject
matter.

Alternatively, spam can be thought of as any mail sent to email addresses, where
those addresses were obtained without their owners consent. More practically, anyone
who has had an email account for very long will have gotten messages like Subject:
Fast way to earn big $$$!, which clutters my mailbox. The longer you have
an email address, the more of these messages you will get, and the more irritated you
will get.

311

30.8. Real-Time Blocking List — Combating Spam 30. exim and sendmail

To send spam is easy. Work your way around the Internet till you find a mail
server that allows relaying. Then send it 10,000 email addresses and a message about
where to get pictures of naked underage girls. Now you are a genuine worthy-of-
being-arrested spammer. Unfortunately for the unsuspecting administrator of that
machine and provided you have even a little clue what you’re doing, he will prob-
ably never be able to track you down. Several other tricks are employed to get the
most out of your $100-for-1,000,000-genuine-email-addresses.

Note that spam is not merely email you are not interested in. People often con-
fuse mail with other types of communication. . . like telephone calls: if you get a tele-
phone call, you have to pick up the phone then and there—the call is an an invasion of
your privacy. The beauty of email is that you never need to have your privacy invaded.
You can simply delete the mail. If you never want to get email from a particular per-
son again, you can simply add a filter that blocks mail from that person’s address (see
procmailex(5)). &If you are irritated by the presumption of the sender, then that’s your problem.
Replying to that person with “Please don’t email me...” not only shows that you are insecure, but also that
you are clueless, don’t get much mail, and are therefore also unpopular.-

The point at which email becomes intrusive is purely a question of volume, much
like airwave advertisements. Because it comes from a different place each time, you cannot
protect yourself against it with a simple mail filter.

Typical spam mail will begin with a spammer subject like Create Wealth
From Home Now!! and then the spammer will audaciously append the footer:

This is not a SPAM. You are receiving this because you are on a list of email ad-
dresses that I have bought. And you have opted to receive information about busi-
ness opportunities. If you did not opt in to receive information on business oppor-
tunities then please accept our apology. To be REMOVED from this list simply reply
with REMOVE as the subject. And you will NEVER receive another email from me.

Need I say that you should be wary of replying with REMOVE, since it clearly tells
the sender that your email is a valid address.

30.8.2 Basic spam prevention

You can start by at least adding the following lines to your MAIN configuration section:
✞ �

headers_check_syntax
headers_sender_verify
sender_verify
receiver_verify

✝ ✆

The option headers check syntax causes exim to check all headers of incoming
mail messages for correct syntax, failing them otherwise. The next three options check

312

30. exim and sendmail 30.8. Real-Time Blocking List — Combating Spam

that one of the Sender:, Reply-To: or From: headers, as well as both the addresses
in the SMTP MAIL and RCPT commands, are genuine email addresses.

The reasoning here is that spammers will often use malformed headers to trick the
MTA into sending things it ordinarily wouldn’t, I am not sure exactly how this applies
in exim’s case, but these are for the good measure of rejecting email messages at the
point where the SMTP exchange is being initiated.

30.8.3 Real-time blocking list

To find out a lot more about spamming, banning hosts, reporting spam and email us-
age in general, see MAPS (Mail Abuse Prevention System LLC) http://www.mail-abuse.org/,
as well as Open Relay Behavior-modification System http://www.orbs.org/. &If this site is not
working, there is also http://www.orbl.org/ and http://www.ordb.org/.- Real-time Blocking Lists or
RBL’s are a not-so-new idea that has been incorporated into exim as a feature. It works
as follows. The spammer has to use a host that allows relays. The IP of that relay host
will be clear to the MTA at the time of connection. The MTA can then check that against
a database of publicly available banned IP addresses of relay hosts. For exim, this means
the list under rbl domains. If the rbl domains friendly has this IP blacklisted, then
exim denies it also. You can enable this capability with&This example comes from exim’s
front web page.-

✞ �

reject messages whose sending host is in MAPS/RBL
add warning to messages whose sending host is in ORBS
rbl_domains = blackholes.mail-abuse.org/reject : \

dialups.mail-abuse.org/reject : \
5 relays.mail-abuse.org/reject : \

relays.orbs.org/warn
check all hosts other than those on internal network
rbl_hosts = !192.168.0.0/16:0.0.0.0/0
but allow mail to postmaster@my.dom.ain even from rejected host

10 recipients_reject_except = postmaster@my.dom.ain
change some logging actions (collect more data)
rbl_log_headers # log headers of accepted RBLed messages
rbl_log_rcpt_count # log recipient info of accepted RBLed messages

✝ ✆

in your MAIN configuration section. Also remember to remove the line
no rbl reject recipients; otherwise, exim will only log a warning message and
not actually refuse email.

30.8.4 Mail administrator and user responsibilities

Mail administrator and email users are expected to be aware of the following:

313

30.9. Sendmail 30. exim and sendmail

• Spam is evil.

• Spam is caused by poorly configured mail servers.

• It is the responsibility of the mail administrator to ensure that proper measures
have been taken to prevent spam.

• Even as a user, you should follow up spam by checking where it came from and
complaining to those administrators.

• Many mail administrators are not aware there is an issue. Remind them.

30.9 Sendmail

sendmail’s configuration file is /etc/sendmail.cf. This file format was inher-
ited from the first UNIX servers and references simpler files under the directory
/etc/mail/. You can do most ordinary things by editing one or another file under
/etc/mail/ without having to deal with the complexities of /etc/sendmail.cf.

Like most stock MTAs shipped with LINUX distributions, the sendmail pack-
age will work by default as a mailer without any configuration. However, as always,
you will have to add a list of relay hosts. This is done in the file /etc/mail/access
for sendmail-8.10 and above. To relay from yourself and, say, the hosts on network
192.168.0.0/16, as well as, say, the domain hosts.trusted.com, you must have at
least:

✞ �

localhost.localdomain RELAY
localhost RELAY
127.0.0.1 RELAY
192.168 RELAY

5 trusted.com RELAY
✝ ✆

which is exactly what the host accept relay option does in the case of exim.

The domains for which you are acting as a backup mail server must be listed in
the file /etc/mail/relay-domains, each on a single line. This is analogous to the
relay domains option of exim.

Then, of course, the domains for which sendmail is going to receive mail must
also be specified. This is analogous to the local domains option of exim. These are
listed in the file /etc/mail/local-host-names, each on a single line.

The same /etc/aliases file is used by exim and sendmail.

Having configured anything under /etc/mail/, you should now run make in
this directory to rebuild lookup tables for these files. You also have to run the command

314

30. exim and sendmail 30.9. Sendmail

newaliases whenever you modify the /etc/aliases file. In both cases, you must
restart sendmail.

sendmail has received a large number of security alerts in its time. It is imper-
ative that you install the latest version. Note that older versions of sendmail have
configurations that allowed relaying by default—another reason to upgrade.

A useful resource to for finding out more tricks with sendmail is The Sendmail
FAQ http://www.sendmail.org/faq/.

315

30.9. Sendmail 30. exim and sendmail

316

Chapter 31

lilo, initrd, and Booting

lilo stands for linux loader. LILO: is the prompt you first see after boot up, from
which you can usually choose the OS you would like to boot and give certain boot
options to the kernel. This chapter explains how to configure lilo and kernel boot
options, and to get otherwise non-booting systems to boot.

The lilo package itself contains the files
✞ �

/boot/boot.b /boot/message /sbin/lilo
/boot/chain.b /boot/os2_d.b /usr/bin/keytab-lilo
/usr/share/doc/lilo-<version>

✝ ✆

which is not that interesting, except to know that the technical and user documentation
is there if hard-core details are needed.

31.1 Usage

When you first start your LINUX system, the LILO: prompt, at which you can enter
boot options, is displayed. Pressing displays a list of things to type. The pur-
pose is to allow the booting of different LINUX installations on the same machine, or
different operating systems stored in different partitions on the same disk. Later, you
can actually view the file /proc/cmdline to see what boot options (including default
boot options) were used.

317

31.2. Theory 31. lilo, initrd, and Booting

31.2 Theory

31.2.1 Kernel boot sequence

A UNIX kernel, to be booted, must be loaded into memory from disk and be executed.
The execution of the kernel causes it to uncompress itself and then run. &The word boot
itself comes from the concept that a computer cannot begin executing without program code, and program
code cannot get into memory without other program code—like trying to lift yourself up by your bootstraps,
and hence the name.- The first thing the kernel does after it runs is initialize various hard-
ware devices. It then mounts the root file system on a specified partition. Once the root
file system is mounted, the kernel executes /sbin/init to begin the UNIX operating
system. This is how all UNIX systems begin life.

31.2.2 Master boot record

PCs begin life with a small program in the ROM BIOS that loads the very first sector
of the disk into memory, called the boot sector of the master boot record or MBR. This
piece of code is up to 512 bytes long and is expected to start the operating system. In
the case of LINUX , the boot sector loads the file /boot/map, which contains a list of
the precise location of the disk sectors that the LINUX kernel image (usually the file
/boot/vmlinuz) spans. It loads each of these sectors, thus reconstructing the kernel
image in memory. Then it jumps to the kernel to execute it.

You may ask how it is possible to load a file from a file system when the file
system is not mounted. Further, the boot partition is a small and simple program and
certainly does not support the many types of file systems and devices that the kernel
image may reside in. Actually, lilo doesn’t have to support a file system to access
a file, as long as it has a list of the sectors that the file spans and is prepared to use
the BIOS interrupts &Nothing to do with “interrupting” or hardware interrupts, but refers to BIOS
functions that are available for use by the operating system. Hardware devices may insert custom BIOS
functions to provided rudimentary support needed for themselves at startup. This support is distinct from
that provided by the hardware device drivers of the booted kernel.- to read those sectors. If the file
is never modified, that sector list will never change; this is how the /boot/map and
/boot/vmlinuz files are loaded.

31.2.3 Booting partitions

In addition to the MBR, each primary partition has a boot sector that can boot the
operating system in that partition. MS-DOS (Windows) partitions have this, and hence
lilo can optionally load and execute these partition boot sectors to start a Windows
installation in another partition.

318

31. lilo, initrd, and Booting 31.3. lilo.conf and the lilo Command

31.2.4 Limitations

BIOSs have inherited several limitations because of lack of foresight of their designers.

First, some BIOSs do not support more than one IDE.&At least according to the lilo
documentation.- I myself have not come across this as a problem.

The second limitation is most important to note. As explained, lilo uses BIOS
functions to access the IDE drive, but the BIOS of a PC is often limited to accessing the
first 1024 cylinders of the disk. Hence, whatever LILO reads must reside within the first
1024 cylinders (the first 500 megabytes of disk space). Here is the list of things whose
sectors are required to be within this space:

1. /boot/vmlinuz

2. Various lilo files /boot/*.b

3. Any non-LINUX partition boot sector you would like to boot

However a LINUX root partition can reside anywhere because the boot sector pro-
gram never reads this partition except for the abovementioned files. A scenario where
the /boot/ directory is a small partition below the 500 megabyte boundary and the /
partition is above the 500 megabyte boundary, is quite common. See page 155.

Note that newer “LBA” BIOS’s support more than the first 512 megabytes—even
up to 8 Gigabytes. I personally do not count on this.

31.3 lilo.conf and the lilo Command

To “do a lilo” means running the lilo command as root, with a correct
/etc/lilo.conf file. The lilo.conf file will doubtless have been set up by your
distribution (check yours). A typical lilo.conf file that allows booting of a Windows
partition and two LINUX partitions is as follows:

✞ �
boot=/dev/hda
prompt
timeout = 50
compact

5 vga = extended
lock
password = jAN]")Wo
restricted
append = "ether=9,0x300,0xd0000,0xd4000,eth0 hisax=1,3,5,0xd8000,0xd80,HiSax"

10 image = /boot/vmlinuz-2.2.17
label = linux
root = /dev/hda5
read-only

319

31.3. lilo.conf and the lilo Command 31. lilo, initrd, and Booting

image = /boot/vmlinuz-2.0.38
15 label = linux-old

root = /dev/hda6
read-only

other = /dev/hda2
label = win

20 table = /dev/hda
✝ ✆

Running lilo will install into the MBR a boot loader that understands where to
get the /boot/map file, which in turn understands where to get the /boot/vmlinuz-
2.2.12-20 file. It gives output like:

✞ �

[root@cericon]# lilo
Added linux *
Added linux-old
Added win

✝ ✆

It also backs up your existing MBR, if this has not previously been done, into a file
/boot/boot.0300 (where 0300 refers to the device’s major and minor number).

Let’s go through the options:

boot Device to boot. It will most always be /dev/hda or /dev/sda.

prompt Display a prompt where the user can enter the OS to boot.

timeout How many tenths of a seconds to display the prompt (after which the first
image is booted).

compact String together adjacent sector reads. This makes the kernel load much faster.

vga We would like 80�50 text mode. Your startup scripts may reset this to 80�25—
search /etc/rc.d recursively for any file containing “textmode”.

lock Always default to boot the last OS booted &A very useful feature which is seldom
used.-.

password Require a password to boot.

restricted Require a password only if someone attempts to enter special options at
the LILO: prompt.

append A kernel boot option. Kernel boot options are central to lilo and kernel mod-
ules and are discussed in Chapter 42.5. They are mostly not needed in simple
installations.

image A LINUX kernel to boot.

label The text to type at the boot prompt to cause this kernel/partition to boot.

320

31. lilo, initrd, and Booting 31.4. Creating Boot Floppy Disks

root The root file system that the kernel must mount.

read-only Flag to specify that the root file system must initially be mounted read-
only.

other Some other operating system to boot: in this case, a Windows partition.

table Partition table info to be passed to the partition boot sector.

Further other = partitions can follow, and many image = kernel images are
allowed.

The preceding lilo.conf file assumed a partition scheme as follows:

/dev/hda1 10-megabyte ext2 partition to be mounted on /boot.

/dev/hda2 Windows 98 partition over 500 megabytes in size.

/dev/hda3 Extended partition.

/dev/hda4 Unused primary partition.

/dev/hda5 ext2 root file system.

/dev/hda6 Second ext2 root file system containing an older distribution.

/dev/hda? LINUX swap, /home, and other partitions.

31.4 Creating Boot Floppy Disks

If LILO is broken or absent, we require an alternative boot method. A floppy disk
capable of booting our system must contain a kernel image, the means to load the
image into memory, and the means to mount /dev/hda5 as the root file system. To
create such a floppy, insert a new floppy disk into a running LINUX system, and
overwrite it with the following commands:

✞ �

dd if=/boot/vmlinuz-2.2.17 of=/dev/fd0
rdev /dev/fd0 /dev/hda5

✝ ✆

Then simply boot the floppy. This procedure requires a second LINUX instal-
lation at least. If you only have an MS-DOS or Windows system at your disposal then
you will have to download the RAWRITE.EXE utility as well as a raw boot disk image.
Many of these are available and will enable you to create a boot floppy from a DOS
prompt. I will not go into detail about this here.

321

31.5. SCSI Installation Complications and initrd 31. lilo, initrd, and Booting

31.5 SCSI Installation Complications and initrd

Some of the following descriptions may be difficult to understand without knowledge
of kernel modules explained in Chapter 42. You may want to come back to it later.

Consider a system with zero IDE disks and one SCSI disk containing a LINUX
installation. There are BIOS interrupts to read the SCSI disk, just as there were for the
IDE, so LILO can happily access a kernel image somewhere inside the SCSI partition.
However, the kernel is going to be lost without a kernel module&See Chapter 42. The kernel
doesn’t support every possible kind of hardware out there all by itself. It is actually divided into a main
part (the kernel image discussed in this chapter) and hundreds of modules (loadable parts that reside in
/lib/modules/) that support the many type of SCSI, network, sound etc., peripheral devices.- that
understands the particular SCSI driver. So although the kernel can load and execute,
it won’t be able to mount its root file system without loading a SCSI module first.
But the module itself resides in the root file system in /lib/modules/. This is a
tricky situation to solve and is done in one of two ways: either (a) using a kernel with
preenabled SCSI support or (b) using what is known as an initrd preliminary root file
system image.

The first method is what I recommend. It’s a straightforward (though time-
consuming) procedure to create a kernel with SCSI support for your SCSI card built-in
(and not in a separate module). Built-in SCSI and network drivers will also autodetect
cards most of the time, allowing immediate access to the device—they will work with-
out being given any options &Discussed in Chapter 42.- and, most importantly, without
your having to read up on how to configure them. This setup is known as compiled-in
support for a hardware driver (as opposed to module support for the driver). The re-
sulting kernel image will be larger by an amount equal to the size of module. Chapter
42 discusses such kernel compiles.

The second method is faster but trickier. LINUX supports what is known as an
initrd image (initial rAM disk image). This is a small, �1.5 megabyte file system
that is loaded by LILO and mounted by the kernel instead of the real file system. The
kernel mounts this file system as a RAM disk, executes the file /linuxrc, and then
only mounts the real file system.

31.6 Creating an initrd Image

Start by creating a small file system. Make a directory ˜/initrd and copy the follow-
ing files into it.

✞ �
drwxr-xr-x 7 root root 1024 Sep 14 20:12 initrd/
drwxr-xr-x 2 root root 1024 Sep 14 20:12 initrd/bin/
-rwxr-xr-x 1 root root 436328 Sep 14 20:12 initrd/bin/insmod
-rwxr-xr-x 1 root root 424680 Sep 14 20:12 initrd/bin/sash

322

31. lilo, initrd, and Booting 31.6. Creating an initrd Image

5 drwxr-xr-x 2 root root 1024 Sep 14 20:12 initrd/dev/
crw-r--r-- 1 root root 5, 1 Sep 14 20:12 initrd/dev/console
crw-r--r-- 1 root root 1, 3 Sep 14 20:12 initrd/dev/null
brw-r--r-- 1 root root 1, 1 Sep 14 20:12 initrd/dev/ram
crw-r--r-- 1 root root 4, 0 Sep 14 20:12 initrd/dev/systty

10 crw-r--r-- 1 root root 4, 1 Sep 14 20:12 initrd/dev/tty1
crw-r--r-- 1 root root 4, 1 Sep 14 20:12 initrd/dev/tty2
crw-r--r-- 1 root root 4, 1 Sep 14 20:12 initrd/dev/tty3
crw-r--r-- 1 root root 4, 1 Sep 14 20:12 initrd/dev/tty4
drwxr-xr-x 2 root root 1024 Sep 14 20:12 initrd/etc/

15 drwxr-xr-x 2 root root 1024 Sep 14 20:12 initrd/lib/
-rwxr-xr-x 1 root root 76 Sep 14 20:12 initrd/linuxrc
drwxr-xr-x 2 root root 1024 Sep 14 20:12 initrd/loopfs/

✝ ✆

On my system, the file initrd/bin/insmod is the statically linked &meaning it
does not require shared libraries.- version copied from /sbin/insmod.static—a mem-
ber of the modutils-2.3.13 package. initrd/bin/sash is a statically linked shell
from the sash-3.4 package. You can recompile insmod from source if you don’t have
a statically linked version. Alternatively, copy the needed DLLs from /lib/ to ini-
trd/lib/. (You can get the list of required DLLs by running ldd /sbin/insmod.
Don’t forget to also copy symlinks and run strip -s <lib> to reduce the size of the
DLLs.)

Now copy into the initrd/lib/ directory the SCSI modules you require.
For example, if we have an Adaptec AIC-7850 SCSI adapter, we would require the
aic7xxx.o module from /lib/modules/<version>/scsi/aic7xxx.o. Then,
place it in the initrd/lib/ directory.

✞ �
-rw-r--r-- 1 root root 129448 Sep 27 1999 initrd/lib/aic7xxx.o

✝ ✆

The file initrd/linuxrc should contain a script to load all the modules needed
for the kernel to access the SCSI partition. In this case, just the aic7xxx module
&insmod can take options such as the IRQ and IO-port for the device. See Chapter 42.-:

✞ �

#!/bin/sash

aliasall

5 echo "Loading aic7xxx module"
insmod /lib/aic7xxx.o

✝ ✆

Now double-check all your permissions and then chroot to the file system for
testing.

✞ �

chroot ˜/initrd /bin/sash

323

31.7. Modifying lilo.conf for initrd 31. lilo, initrd, and Booting

/linuxrc
✝ ✆

Now, create a file system image similar to that in Section 19.9:
✞ �

dd if=/dev/zero of=˜/file-inird count=2500 bs=1024
losetup /dev/loop0 ˜/file-inird
mke2fs /dev/loop0
mkdir ˜/mnt

5 mount /dev/loop0 ˜/mnt
cp -a initrd/* ˜/mnt/
umount ˜/mnt
losetup -d /dev/loop0

✝ ✆

Finally, gzip the file system to an appropriately named file:
✞ �

gzip -c ˜/file-inird > initrd-<kernel-version>
✝ ✆

31.7 Modifying lilo.conf for initrd

Your lilo.conf file can be changed slightly to force use of an initrd file system.
Simply add the initrd option. For example:

✞ �

boot=/dev/sda
prompt
timeout = 50
compact

5 vga = extended
linear
image = /boot/vmlinuz-2.2.17

initrd = /boot/initrd-2.2.17
label = linux

10 root = /dev/sda1
read-only

✝ ✆

Notice the use of the linear option. This is a BIOS trick that you can read about
in lilo(5). It is often necessary but can make SCSI disks nonportable to different
BIOSs (meaning that you will have to rerun lilo if you move the disk to a different
computer).

31.8 Using mkinitrd

Now that you have learned the manual method of creating an initrd image, you
can read the mkinitrd man page. It creates an image in a single command. This is
command is peculiar to RedHat.

324

Chapter 32

init, ?getty, and UNIX Run
Levels

This chapter explains how LINUX (and a UNIX system in general) initializes itself.
It follows on from the kernel boot explained in Section 31.2. We also go into some
advanced uses for mgetty, like receiving of faxes.

32.1 init — the First Process

After the kernel has been unpacked into memory, it begins to execute, initializing hard-
ware. The last thing it does is mount the root file system, which necessarily contains a
program /sbin/init, which the kernel executes. init is one of the only programs
the kernel ever executes explicitly; the onus is then on init to bring the UNIX system
up. init always has the process ID 1.

For the purposes of init, the (rather arbitrary) concept of a UNIX run level was
invented. The run level is the current operation of the machine, numbered run level 0
through run level 9. When the UNIX system is at a particular run level, it means that a
certain selection of services is running. In this way, the machine could be a mail server
or an Window workstation depending on what run level it is in.

The traditionally defined run levels are:

0 Halt.
1 Single-user mode.
2 Multiuser, without network file system (NFS).
3 Full multiuser mode.
4 Unused.

325

32.2. /etc/inittab 32. init, ?getty, and UNIX Run Levels

5 Window System Workstation (usually identical to run level 3).
6 Reboot.
7 Undefined.
8 Undefined.
9 Undefined.

The idea here is that init begins at a particular run level that can then be man-
ually changed to any other by the superuser. init uses a list of scripts for each run
level to start or stop each of the many services pertaining to that run level. These
scripts are /etc/rc?.d/KNNservice or /etc/rc?.d/SNNservice &On some systems
/etc/rc.d/rc?.d/. . . .-, where NN, K, or S is a prefix to force the order of execution
(since the files are executed in alphabetical order).

These scripts all take the options start and stop on the command-line, to begin
or terminate the service.

For example, when init enters, say, run level 5 from run level 3, it executes
the particular scripts from /etc/rc3.d/ and /etc/rc5.d/ to bring up or down the
appropriate services. This may involve, say, executing

✞ �

/etc/rc3.d/S20exim stop
✝ ✆

and similar commands.

32.2 /etc/inittab

init has one config file: /etc/inittab which is scanned once on bootup.

32.2.1 Minimal configuration

A minimal inittab file might consist of the following.
✞ �

id:3:initdefault:

si::sysinit:/etc/rc.d/rc.sysinit

5 l0:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4

10 l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

326

32. init, ?getty, and UNIX Run Levels 32.2. /etc/inittab

ud::once:/sbin/update

15 1:2345:respawn:/sbin/getty 38400 tty1
2:2345:respawn:/sbin/getty 38400 tty2
3:2345:respawn:/sbin/getty 38400 tty3
4:2345:respawn:/sbin/getty 38400 tty4

20 S0:2345:respawn:/sbin/mgetty -n 3 -s 115200 ttyS0 57600

S4:2345:respawn:/sbin/mgetty -r -s 19200 ttyS4 DT19200

x:5:respawn:/usr/bin/X11/xdm -nodaemon
✝ ✆

The lines are colon-separated fields and have the following meaning (lots more
can be gotten from inittab(5)):

id:3:initdefault: This dictates that the default run level is 3. It is the run level
that the system will boot up into. This field usually has a 3 or a 5, which are most
often the only two run levels that the system ever sits in.

si::sysinit:/etc/rc.d/rc.sysinit This says to run a script on bootup to ini-
tialize the system. If you view the file /etc/rc.d/rc.sysinit, you will see a
fairly long script that does the following: mounts the proc file system; initializes
the keyboard maps, console font, NIS domain, host name, and swap partition;
runs isapnp and depmod -a; cleans the utmp file; as well as other things. This
script is only run once on bootup. On Debian this is a script, /etc/init.d/rcS,
that runs everything under /etc/rcS.d/. &As usual, Debian gravitated to the most
clean, elegant and extensible solution.-

l3:3:wait:/etc/rc.d/rc 3 The first field is a descriptive tag and could be any-
thing. The second is a list of run levels under which the particular script (last
field) is to be invoked: in this case, /etc/rc.d/rc 3 is to be run when entering
run level 3. The wait means to pause until /etc/rc.d/rc has finished execu-
tion. If you view the file /etc/rc.d/rc, you will see it merely executes scripts
under /etc/rc?.d/ as appropriate for a run level change.

ud::once:/sbin/update This flushes the disk cache on each run level change.

1:2345:respawn:/sbin/getty 38400 tty1 This says to run the command
/sbin/getty 38400 tty1 when in run level 2 through 5. respawn means
to restart the process if it dies.

x:5:respawn:/usr/bin/X11/xdm -nodaemon This says to run the command
/usr/bin/X11/xdm -nodaemon when in run level 5. This is the Window
System graphical login program.

327

32.3. Useful Run Levels 32. init, ?getty, and UNIX Run Levels

32.2.2 Rereading inittab

If you modify the inittab file, init will probably not notice until you issue it a
SIGHUP. This is the same as typing

✞ �

telinit q
✝ ✆

which causes init to reread /etc/inittab.

32.2.3 The respawning too fast error

You get a respawning too fast error when an inittab line makes no sense
&These errors are common and very irritating when you are doing console work, hence an explicit sec-
tion on it.-: like a getty running on a non-functioning serial port. Simply comment
out or delete the appropriate line and then run

✞ �

telinit q
✝ ✆

32.3 Useful Run Levels

Switching run levels manually is something that is rarely done. The most common
way of shutting down the machine is to use:

✞ �

shutdown -h now
✝ ✆

which effectively goes to run level 0, and
✞ �

shutdown -r now
✝ ✆

which effectively goes to run level 6.

You can also specify the run level at the LILO: prompt. Type
✞ �

linux 1
✝ ✆

or
✞ �

linux single
✝ ✆

to enter single-user mode when booting your machine. You change to single-user
mode on a running system with:

328

32. init, ?getty, and UNIX Run Levels 32.4. getty Invocation

✞ �

telinit S
✝ ✆

You can forcefully enter any run level with
✞ �

telinit <N>
✝ ✆

32.4 getty Invocation

The getty man page begins with:

getty opens a tty port, prompts for a login name and invokes the /bin/login com-
mand. It is normally invoked by init(8).

Note that getty, agetty, fgetty and mingetty are just different implementations
of getty.

The most noticeable effect of init running at all is that it spawns a login to each
of the LINUX virtual consoles. It is the getty (or sometimes mingetty) command
as specified in the inittab line above that displays this login. Once the login name is
entered, getty invokes the /bin/login program, which then prompts the user for a
password.

The login program (discussed in Section 11.7) then executes a shell. When the
shell dies (as a result of the user exiting the session) getty is just respawned.

32.5 Bootup Summary

Together with Chapter 31 you should now have a complete picture of the entire bootup
process:

1. First sector loaded into RAM and executed—LILO: prompt appears.
2. Kernel loaded from sector list.
3. Kernel executed; unpacks.
4. Kernel initializes hardware.
5. Kernel mounts root file system, say /dev/hda1.
6. Kernel executes /sbin/init as PID 1.
7. init executes all scripts for default run level.
8. init spawns getty programs on each terminal.

329

32.6. Incoming Faxes and Modem Logins 32. init, ?getty, and UNIX Run Levels

9. getty prompts for login.
10. getty executes /bin/login to authentic user.
11. login starts shell.

32.6 Incoming Faxes and Modem Logins

32.6.1 mgetty with character terminals

The original purpose of getty was to manage character terminals on mainframe com-
puters. mgetty is a more comprehensive getty that deals with proper serial devices.
A typical inittab entry is

✞ �

S4:2345:respawn:/sbin/mgetty -r -s 19200 ttyS4 DT19200
✝ ✆

which would open a login on a terminal connected to a serial line on /dev/ttyS4.
See page 479 for information on configuring multiport serial cards.

(The LINUX devices /dev/tty1 through /dev/tty12 as used by getty em-
ulate classic terminals in this way.)

32.6.2 mgetty log files

mgetty will log to /var/log/mgetty.log.ttyS?. This log file contains everything
you need for troubleshooting. It is worthwhile running tail -f on these files while
watching a login take place.

32.6.3 mgetty with modems

Running mgetty (see mgetty(8)) is a common and trivial way to get a dial login to a
LINUX machine. Your inittab entry is just

✞ �

S0:2345:respawn:/sbin/mgetty -n 3 -s 115200 ttyS0 57600
✝ ✆

where -n 3 says to answer the phone after the 3rd ring. Nothing more is needed than
to plug your modem into a telephone. You can then use dip -t, as done in Section
41.1.1, to dial this machine from another LINUX machine. Here is an example session:
&This example assumes that an initialization string of AT&F1 is sufficient. See Section 3.5.-

✞ �
[root@cericon]# dip -t
DIP: Dialup IP Protocol Driver version 3.3.7o-uri (8 Feb 96)
Written by Fred N. van Kempen, MicroWalt Corporation.

330

32. init, ?getty, and UNIX Run Levels 32.6. Incoming Faxes and Modem Logins

5 DIP> port ttyS0
DIP> speed 57600
DIP> term
[Entering TERMINAL mode. Use CTRL-] to get back]
AT&F1

10 OK
ATDT5952521
CONNECT 19200/ARQ/V34/LAPM/V42BIS

Red Hat Linux release 6.1 (Cartman)
15 Kernel 2.2.12-20 on an i686

remote.dialup.private login:
✝ ✆

Note that this is purely a login session having nothing to do with PPP dialup.

32.6.4 mgetty receiving faxes

mgetty receives faxes by default, provided your modem supports faxing&If your mo-
dem says it supports faxing, and this still does not work, you will have to spend a lot of time reading through
your modem’s AT command set manual, as well as the mgetty info documentation.- and provided
it has not been explicitly disabled with the -D option. An appropriate inittab line is,

✞ �
S0:2345:respawn:/sbin/mgetty -x 4 -n 3 -s 57600 -I ’27 21 7654321’ ttyS0 57600

✝ ✆

The options mean, respectively, to set the debug level to 4, answer after 3 rings, set the
port speed to 57600, and set the fax ID number to 27 21 7654321. Alternatively,
you can use the line

✞ �

S0:2345:respawn:/sbin/mgetty ttyS0 57600
✝ ✆

and instead put your configuration options in the file mgetty.config under
/etc/mgetty+sendfax/:

✞ �

debug 4
rings 3
speed 57600
fax-id 27 21 7654321

✝ ✆

Faxes end up in /var/spool/fax/incoming/ as useless .g3 format files, but
note how the command

✞ �

strings /sbin/mgetty | grep new_fax
✝ ✆

gives

331

32.6. Incoming Faxes and Modem Logins 32. init, ?getty, and UNIX Run Levels

✞ �

/etc/mgetty+sendfax/new_fax
✝ ✆

which is a script that mgetty secretly runs when new faxes arrive. It can be
used to convert faxes into something (like .gif graphics files &I recommend .png over
.gif any day, however.-) readable by typical office programs. The following example
/etc/mgetty+sendfax/new fax script puts incoming faxes into /home/fax/ as
.gif files that all users can access. &Modified from the mgetty contribs.-Note how it uses
the CPU-intensive convert program from the ImageMagic package.

✞ �
#!/bin/sh

you must have pbm tools and they must be in your PATH
PATH=/usr/bin:/bin:/usr/X11R6/bin:/usr/local/bin

5

HUP="$1"
SENDER="$2"
PAGES="$3"

10 shift 3
P=1

while [$P -le $PAGES] ; do
FAX=$1

15 BASENAME=‘basename $FAX‘
RES=‘echo $BASENAME | sed ’s/.\(.\).*/\1/’‘
if ["$RES" = "n"] ; then

STRETCH="-s"
else

20 STRETCH=""
fi
nice g32pbm $STRETCH $FAX > /tmp/$BASENAME.pbm \

&& rm -f $FAX \
&& nice convert -colorspace gray -colors 16 -geom \

25 ’50%x50%’ /tmp/$BASENAME.pbm /home/fax/$BASENAME.gif \
&& rm -f /tmp/$BASENAME.pbm \
&& chmod 0666 /home/fax/$BASENAME.gif

shift
P=‘expr $P + 1‘

30 done

exit 0
✝ ✆

332

Chapter 33

Sending Faxes

This chapter discusses the sendfax program, with reference to the specific example
of setting up an artificial printer that will automatically use a modem to send its print
jobs to remote fax machines.

33.1 Fax Through Printing

Continuing from Section 21.10. . .

You should go now and read the sendfax section of the info page for mgetty.
The sendfax command is just one program that sends faxes through the modem.
Like mgetty, it reads a config file in /etc/mgetty+sendfax/. This config file is just
sendfax.config and can contain as little as

✞ �

verbose y
debug 5
fax-devices ttyS0
fax-id 27 21 7654321

5 max-tries 3
max-tries-continue y

✝ ✆

Below, fax filter.sh is a script that sends the print job through the fax ma-
chine after requesting the telephone number through gdialog. &gdialog is part of the
gnome-utils package.- An appropriate /etc/printcap entry is:

✞ �

fax:\
:sd=/var/spool/lpd/fax:\
:mx#0:\

333

33.1. Fax Through Printing 33. Sending Faxes

:sh:\
5 :lp=/dev/null:\

:if=/var/spool/lpd/fax/fax_filter.sh:
✝ ✆

The file fax filter.sh itself could contain a script like this&Remember to rotate
the /var/log/fax log file, see page 198.- for a modem on /dev/ttyS0:

✞ �
#!/bin/sh

exec 1>>/var/log/fax
exec 2>>/var/log/fax

5

echo
echo
echo $@

10 echo "Starting fax ‘date‘: I am ‘id‘"

export DISPLAY=localhost:0.0
export HOME=/home/lp

15 function error()
{

gdialog --title "Send Fax" --msgbox "$1" 10 75 || \
echo ’Huh? no gdialog on this machine’

cd /
20 rm -Rf /tmp/$$fax || \

gdialog \
--title "Send Fax" \
--msgbox "rm -Rf /tmp/$$fax failed" \
10 75

25 exit 1
}

mkdir /tmp/$$fax || error "mkdir /tmp/$$fax failed"
cd /tmp/$$fax || error "cd /tmp/$$fax failed"

30

cat > fax.ps

if /usr/bin/gdialog \
--title "Send Fax" \

35 --inputbox "Enter the phone number to fax:" \
10 75 "" 2>TEL ; then

:
else

echo "gdialog failed ‘< TEL‘"
40 rm -Rf /tmp/$$fax

exit 0
fi

TEL=‘< TEL‘
45 test -z "$TEL" && error ’no telephone number given’

334

33. Sending Faxes 33.2. Setgid Wrapper Binary

cat fax.ps | gs -r204x98 -sOutputFile=- -sDEVICE=faxg3 -dBATCH -q - \
1>fax.ps.g3 || error ’gs failed’

50 ls -al /var/lock/
/usr/sbin/sendfax -x 5 -n -l ttyS0 $TEL fax.ps.g3 || \

error "sendfax failed"

rm -Rf /tmp/$$fax
55

exit 0
✝ ✆

33.2 Setgid Wrapper Binary

The above script is not enough however. Above, sendfax requires access to the
/dev/ttyS0 device as well as the /var/lock/ directory (to create a modem lock
file—see Section 34.4). It cannot do that as the lp user (under which the above filter
runs). On RedHat, the command ls -ald /var/lock /dev/ttyS0 reveals that
only uucp is allowed to access modems. We can get around this restriction by creating
a setgid (see Chapter 14) binary that runs as the uucp user. Do this by compiling the
program,

✞ �
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

5

int main (int argc, char **argv)
{

char **a;
int i;

10

/* set the real group ID to that of the effective group ID */
if (setgid (getegid ())) {

perror ("sendfax_wrapper: setgid failed");
exit (1);

15 }

/* copy all arguments */
a = (char **) malloc ((argc + 1) * sizeof (char *));
for (i = 1; i < argc; i++)

20 a[i] = (char *) strdup (argv[i]);
a[argc] = NULL;

/* execute sendfax */
a[0] = "/usr/sbin/sendfax";

25 execvp (a[0], a);

/* exit on failure */
perror ("sendfax_wrapper: failed to exececute /usr/sbin/sendfax");
exit (1);

30 }
✝ ✆

using the commands,

335

33.2. Setgid Wrapper Binary 33. Sending Faxes

✞ �

gcc sendfax_wrapper.c -o /usr/sbin/sendfax_wrapper -Wall
chown lp:uucp /usr/sbin/sendfax_wrapper
chmod g+s,o-rwx /usr/sbin/sendfax_wrapper

✝ ✆

Then, replace sendfax with sendfax wrapper in the filter script. You can see that
sendfax wrapper just executes sendfax after changing the group ID to the effective
group ID (GID) as obtained from the getegid function on line 12. The effective group
ID is uucp because of the setgid group bit (i.e., g+s) in the chmod command, and hence
sendfax runs under the uucp group with full access to the modem device.

On your own system it may be cleaner to try implement this without a wrapper.
Debian , for example, has a dialout group for the purposes of accessing modems.
Also be aware that some distributions may not use the uucp user in the way RedHat
does and you may have to create an alternative user especially for this task.

336

Chapter 34

uucp and uux

uucp is a command to copy a file from one UNIX system to another. uux executes a
command on another UNIX system, even if that command is receiving data through
stdin on the local system. uux is extremely useful for automating many kinds of dis-
tributed functions, like mail and news.

The uucp and uux commands both come as part of the uucp (Unix-to-Unix Copy)
package. uucp may sound ridiculous considering the availability of modern com-
mands like rcp, rsh, or even FTP transfers (which accomplish the same thing), but
uucp has features that these do not, making it an essential, albeit antiquated, utility.
For instance, uucp never executes jobs immediately. It will, for example, queue a file
copy for later processing and then dial the remote machine during the night to com-
plete the operation.

uucp predates the Internet: It was originally used to implement a mail system,
using only modems and telephone lines. It hence has sophisticated protocols for en-
suring that your file/command really does get there, with the maximum possible fault
tolerance and the minimum of retransmission. This is why it should always be used
for automated tasks wherever there are unreliable (i.e., modem) connections. The uucp
version that comes with most LINUX distributions is called Taylor UUCP after its au-
thor.

Especially important is that when a uucp operation is interrupted by a line break,
the connection time is not wasted: uucpwill not have discarded any partially transmit-
ted data. This means that no matter how slow or error prone the connection, progress
is always made. Compare this to an SMTP or POP3/IMAP connection: Any line break
halfway through a large mail message will necessitate that the entire operation to be
restarted from scratch.

337

34.1. Command-Line Operation 34. uucp and uux

34.1 Command-Line Operation

To copy a file from one machine to another, simply enter
✞ �

uucp <filename> <machine>!<path>
✝ ✆

You can also run commands on the remote system, like
✞ �
echo -n ’Hi, this is a short message\n\n-paul’ | \

uux - ’cericon!rmail’ ’john’
✝ ✆

which runs rmail on the remote system cericon, feeding some text to the rmail
program. Note how you should quote the ! character to prevent it from being
interpreted by the shell. (These commands will almost always fail with permission
denied by remote. The error will come in a mail message to the user that ran the
command.)

34.2 Configuration

uucp comes with comprehensive documentation in HTML format (/usr/doc/uucp-
version/uucp.html or /usr/share/. . .) on RedHat, and info format on Debian
and RedHat. Here, I sketch a basic and typical configuration.

The uucp package has a long history of revisions, beginning with the first
modem-based mail networks. The latest GNU editions that come with LINUX
distributions have a configuration file format that will probably differ from that which
old uucp hands are used to.

Dialup networks today typically use uucp in combination with normal PPP di-
alup, probably not using uucp’s dial-in facilities at all. For example, if you are deploy-
ing a number of remote hosts that are using modems, these hosts should always use
uucp to upload and retrieve mail, rather than POP3/IMAP or straight SMTP, because
of the retransmission problem discussed above. In other words, uucp is really working
as an ordinary TCP service, albeit with far more fault tolerance.

To make uucp into a TCP server, place it into /etc/inetd.conf as follows
✞ �
uucp stream tcp nowait uucp /usr/sbin/tcpd /usr/lib/uucp/uucico -l

✝ ✆

being also very careful to limit the hosts that can connect by using the techniques dis-
cussed in Chapter 29. Similarly for xinetd, create a file /etc/xinetd.d/uucp con-
taining,

338

34. uucp and uux 34.2. Configuration

✞ �

service uucp
{

only_from = 127.0.0.1 192.168.0.0/16
socket_type = stream

5 wait = no
user = uucp
server = /usr/lib/uucp/uucico
server_args = -l
disable = no

10 }
✝ ✆

uucp configuration files are stored under /etc/uucp/. Now we con-
figure a client machine, machine1.cranzgot.co.za, to send mail through
server1.cranzgot.co.za, where server1.cranzgot.co.za is running the
uucico service above.

uucp has an antiquated authentication mechanism that uses its own list of users
and passwords completely distinct from those of ordinary UNIX accounts. We must
first add a common “user” and password to both machines for authentication pur-
poses. For machine1.cranzgot.co.za, we can add to the file /etc/uucp/call
the line

✞ �

server1 machine1login pAsSwOrD123
✝ ✆

which tells uucp to use the login machine1login whenever trying to
speak to server1. On server1.cranzgot.co.za we can add to the file
/etc/uucp/passwd the line,

✞ �

machine1login pAsSwOrD123
✝ ✆

Note that the uucp name server1 was chosen for the machine
server1.cranzgot.co.za for convenience. uucp names, however, have noth-
ing to do with domain names.

Next, we need to tell uucp about the intentions of machine1. Any machine that
you might connect to or from must be listed in the /etc/uucp/sys file. Our entry
looks like

✞ �

system machine1
call-login *
call-password *
commands rmail

5 protocol t
✝ ✆

and can have as many entries as we like. The only things server1 has to know about
machine1 are the user and password and the preferred protocol. The *’s mean to look

339

34.2. Configuration 34. uucp and uux

up the user and password in the /etc/uucp/passwd file, and protocol t means
to use a simple non-error, correcting protocol (as appropriate for use over TCP). The
commands option takes a space-separated list of permitted commands—for security
reasons, commands not in this list cannot be executed. (This is why I stated above that
commands will almost always fail with permission denied by remote—they are
usually not listed under commands.)

The /etc/uucp/sys file on machine1 will contain:
✞ �

system server1
call-login *
call-password *
time any

5 port TCP
address 192.168.3.2
protocol t

✝ ✆

Here time any specifies which times of the day uucp may make calls to server1.
The default is time Never. &See the uucp documentation under Time Strings for more info.-

The option port TCP means that we are using a modem named TCP to execute the
dialout. All modems are defined in the file /etc/uucp/port. We can add our modem
entry to /etc/uucp/port as follows,

✞ �

port TCP
type tcp

✝ ✆

which clearly is not really a modem at all.

Finally, we can queue a mail transfer job with
✞ �
echo -e ’Hi Jack\n\nHow are you?\n\n-jill" | \

uux - --nouucico ’server1!rmail’ ’jack@beanstalk.com’
✝ ✆

and copy a file with
✞ �
uucp --nouucico README ’cericon!/var/spool/uucppublic’

✝ ✆

Note that /var/spool/uucppublic/ is the only directory you are allowed access to
by default. You should probably keep it this way for security.

uucico

Although we have queued a job for processing, nothing will transfer until the program
uucico (which stands for Unix-to-Unix copy in copy out) is run. The idea is that both
server1 and machine1 may have queued a number of jobs; then when uucico is
running on both machines and talking to each other, all jobs on both machines are
processed in turn, regardless of which machine initiated the connection.

340

34. uucp and uux 34.3. Modem Dial

Usually uucico is run from a crond script every hour. (Even having run uu-
cico, nothing will transfer if the time of day does not come within the ranges specified
under time) Here we can run tail -f /var/log/uucp/Log while running
uucico manually as follows:

✞ �

uucico --debug 3 --force --system server1
✝ ✆

The higher the debug level, the more verbose output you will see in the Log file. This
will --forceably dial the --system server1 regardless of when it last dialed (usu-
ally there are constraints on calling soon after a failed call: --force overrides this).

If your mail server on server1 is configured correctly, it should now have
queued the message on the remote side.

34.3 Modem Dial

If you are really going to use uucp the old-fashioned way, you can use mgetty to
answer uucp calls on server1 by adding the following to your /etc/inittab file:

✞ �
S0:2345:respawn:/sbin/mgetty -s 57600 ttyS0

✝ ✆

And then add the line
✞ �
machine1login uucp machine1login /usr/sbin/uucico -l -u machine1login

✝ ✆

to the file /etc/mgetty+sendfax/login.config (/etc/mgetty/login.config
for Debian). You will then also have to add a UNIX account machine1login with
password pAsSwOrD123. This approach works is because mgetty and uucico have
the same login prompt and password prompt, but mgetty uses /etc/passwd instead
of /etc/uucp/passwd to authenticate. Also, for a modem connection, protocol t
is error prone: change it to protocol g, which has small packet sizes and error
correction.

Note that the above configuration also supports faxes, logins, voice, and PPP (see
Section 41.4) on the same modem, because mgetty only starts uucico if the user name
is machine1login.

To dial out from machine1, you first need to add a modem device (besides TCP)
to your /etc/uucp/port file:

✞ �

port ACU
type modem
device /dev/ttyS0
dialer mymodem

5 speed 57600
✝ ✆

341

34.4. tty/UUCP Lock Files 34. uucp and uux

ACU is antiquated terminology and stands for Automatic Calling Unit (i.e., a mo-
dem). We have to specify the usual types of things for serial ports, like the de-
vice (/dev/ttyS0 for a modem on COM1) and speed of the serial line. We also
must specify a means to initialize the modem: the dialer mymodem option. A file
/etc/uucp/dial should then contain an entry for our type of modem matching
“mymodem” as follows: &This example assumes that an initialization string of AT&F1 is sufficient.
See Section 3.5.-

✞ �

dialer mymodem
chat "" AT&F1\r\d\c OK\r ATDT\D CONNECT
chat-fail RING
chat-fail NO\sCARRIER

5 chat-fail ERROR
chat-fail NO\sDIALTONE
chat-fail BUSY
chat-fail NO\sANSWER
chat-fail VOICE

10 complete \d\d+++\d\dATH\r\c
abort \d\d+++\d\dATH\r\c

✝ ✆

More about modems and dialing is covered with pppd in Chapter 41.

With the modem properly specified, we can change our entry in the sys file to
✞ �

system server1
call-login *
call-password *
time any

5 port ACU
phone 555-6789
protocol g

✝ ✆

The same uux commands should now work over dialup.

34.4 tty/UUCP Lock Files

I hinted about lock files in Section 33.2. A more detailed explanation follows.

You will have noticed by now that several services use serial devices, and many
of them can use the same device at different times. This creates a possible conflict
should two services wish to use the same device at the same time. For instance, what
if someone wants to send a fax, while another person is dialing in?

The solution is the UUCP lock file. This is a file created by a process in
/var/lock/ of the form LCK..device that indicates the serial port is being used by
that process. For instance, when running sendfax through a modem connected on

342

34. uucp and uux 34.5. Debugging uucp

/dev/ttyS0, a file /var/lock/LCK..ttyS0 suddenly appears. This is because
sendfax, along with all other mgetty programs, obeys the UUCP lock file conven-
tion. The contents of this file actually contain the process ID of the program using the
serial device, so it is easy to check whether the lock file is bogus. A lock file of such a
dead process is called a stale lock file and can be removed manually.

34.5 Debugging uucp

uucp implementations rarely run smoothly the first time. Fortunately, you have
available a variety of verbose debugging options. uucico takes the --debug
option to specify the level of debug output. You should examine the files
/var/log/uucp/Log, /var/log/uucp/Debug, and /var/log/uucp/Stats to
get an idea about what is going on in the background. Also important is the
spool directory /var/spool/uucp/. You can specify the debugging level with -
-debug level where level is in the range of 0 through 11. You can also use --
debug chat to only see modem communication details. A full description of other
options follows&Credits to the uucp documentation.-:

--debug abnormal Output debugging messages for abnormal situations, such as
recoverable errors.

--debug chat Output debugging messages for chat scripts.
--debug handshake Output debugging messages for the initial handshake.
--debug uucp protocol Output debugging messages for the UUCP session protocol.
--debug proto Output debugging messages for the individual link protocols.
--debug port Output debugging messages for actions on the communication port.
--debug config Output debugging messages while reading the configuration files.
--debug spooldir Output debugging messages for actions in the spool directory.
--debug execute Output debugging messages whenever another program is exe-

cuted.
--debug incoming List all incoming data in the debugging file.
--debug outgoing List all outgoing data in the debugging file.
--debug all All of the above.

34.6 Using uux with exim

On machine1 we would like exim to spool all mail through uucp. Using uucp re-
quires a pipe transport (exim transports are discussed in Section 30.3.2). exim merely
sends mail through stdin of the uux command and then forgets about it. uux is then
responsible for executing rmail on server1. The complete exim.conf file is simply
as follows.

343

34.6. Using uux with exim 34. uucp and uux

✞ �
#################### MAIN CONFIGURATION SETTINGS #####################
log_subject
errors_address = admin
local_domains = localhost : ${primary_hostname} : machine1 : \

5 machine1.cranzgot.co.za
host_accept_relay = 127.0.0.1 : localhost : ${primary_hostname} : \

machine1 : machine1.cranzgot.co.za
never_users = root
exim_user = mail

10 exim_group = mail
end
###################### TRANSPORTS CONFIGURATION ######################
uucp:
driver = pipe

15 user = nobody
command = "/usr/bin/uux - --nouucico ${host}!rmail \

${local_part}@${domain}"
return_fail_output = true

local_delivery:
20 driver = appendfile

file = /var/spool/mail/${local_part}
delivery_date_add
envelope_to_add
return_path_add

25 group = mail
mode_fail_narrower =
mode = 0660

end
###################### DIRECTORS CONFIGURATION #######################

30 localuser:
driver = localuser
transport = local_delivery

end
###################### ROUTERS CONFIGURATION #########################

35 touucp:
driver = domainlist
route_list = "* server1"
transport = uucp

end
40 ###################### RETRY CONFIGURATION ###########################

* * F,2m,1m
end

✝ ✆

On machine server1, exim must however be running as a full-blown mail
server to properly route the mail elsewhere. Of course, on server1, rmail is the
sender; hence, it appears to exim that the mail is coming from the local machine. This
means that no extra configuration is required to support mail coming from a uux com-
mand.

Note that you can add further domains to your route list so that your dialouts
occur directly to the recipient’s machine. For instance:

344

34. uucp and uux 34.6. Using uux with exim

✞ �

route_list = "machine2.cranzgot.co.za machine2 ; \
machine2 machine2 ; \
machine3.cranzgot.co.za machine3 ; \
machine3 machine3 ; \

5 * server1"
✝ ✆

You can then add further entries to your /etc/uucp/sys file as follows:
✞ �

system machine2
call-login *
call-password *
time any

5 port ACU
phone 555-6789
protocol g

system machine3
10 call-login *

call-password *
time any
port ACU
phone 554-3210

15 protocol g
✝ ✆

The exim.conf file on server1 must also have a router to get mail back to
machine1. The router will look like this:

✞ �

###################### ROUTERS CONFIGURATION #########################
touucp:

driver = domainlist
route_list = "machine2.cranzgot.co.za machine2 ; \

5 machine2 machine2 ; \
machine3.cranzgot.co.za machine3 ; \
machine3 machine3"

transport = uucp
lookuphost:

10 driver = lookuphost
transport = remote_smtp

end
✝ ✆

This router sends all mail matching our dial-in hosts through the uucp transport while
all other mail (destined for the Internet) falls through to the lookuphost router.

345

34.7. Scheduling Dialouts 34. uucp and uux

34.7 Scheduling Dialouts

Above, we used uucico only manually. uucico does not operate as a daemon pro-
cess on its own and must be invoked by crond. All systems that use uucp have a
/etc/crontab entry or a script under /etc/cron.hourly.

A typical /etc/crontab for machine1 might contain:
✞ �

45 * * * * uucp /usr/lib/uucp/uucico --master
40 8,13,18 * * * root /usr/bin/uux -r server1!

✝ ✆

The option --master tells uucico to loop through all pending jobs and call any ma-
chines for which jobs are queued. It does this every hour. The second line queues a null
command three times daily for the machine server1. This will force uucico to dial
out to server1 at least three times a day on the appearance of real work to be done.
The point of this to pick up any jobs coming the other way. This process is known as
creating a poll file.

Clearly, you can use uucp over a TCP link initiated by pppd. If a dial link is
running in demand mode, a uucp call will trigger a dialout and make a straight TCP
connection through to the remote host. A common situation occurs when a number
of satellite systems are dialing an ISP that has no uucp facility. To service the satellite
machines, a separate uucp server is deployed that has no modems of its own. The
server will have a permanent Internet connection and listen on TCP for uucp transfers.

346

Chapter 35

The LINUX File System Standard

This chapter reproduces the Filesystem Hierarchy Standard, translated into LATEX with
some minor formatting changes and the addition of this book’s chapter number
to all the section headers. An original can be obtained from the FHS home page
http://www.pathname.com/fhs/.

If you have ever asked the questions “Where in my file system does file xxx go?”
or “What is directory yyy for?”, then consult this document. It can be considered to
provide the final word on such matters. Although this is mostly a reference for peo-
ple creating new LINUX distributions, all administrators can benefit from an under-
standing of the rulings and explanations provided here.

Filesystem Hierarchy Standard — Version 2.2 final
Filesystem Hierarchy Standard Group

edited by Rusty Russell and Daniel Quinlan

ABSTRACT

This standard consists of a set of requirements and guidelines for file and direc-
tory placement under UNIX-like operating systems. The guidelines are intended to
support interoperability of applications, system administration tools, development
tools, and scripts as well as greater uniformity of documentation for these systems.

May 23, 2001

347

35. The LINUX File System Standard

All trademarks and copyrights are owned by their owners, unless specifically noted otherwise.
Use of a term in this document should not be regarded as affecting the validity of any trademark
or service mark.

Copyright c© 1994-2000 Daniel Quinlan

Copyright c© 2001 Paul ‘Rusty’ Russell

Permission is granted to make and distribute verbatim copies of this standard provided the
copyright and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this standard under the con-
ditions for verbatim copying, provided also that the title page is labeled as modified including a
reference to the original standard, provided that information on retrieving the original standard
is included, and provided that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this standard into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the copyright holder.

348

35. The LINUX File System Standard 35.1. Introduction

35.1 Introduction

35.1.1 Purpose

This standard enables

• Software to predict the location of installed files and directories, and

• Users to predict the location of installed files and directories.

We do this by

• Specifying guiding principles for each area of the filesystem,

• Specifying the minimum files and directories required,

• Enumerating exceptions to the principles, and

• Enumerating specific cases where there has been historical conflict.

The FHS document is used by

• Independent software suppliers to create applications which are FHS compliant, and work
with distributions which are FHS complaint,

• OS creators to provide systems which are FHS compliant, and

• Users to understand and maintain the FHS compliance of a system.

35.1.2 Conventions

A constant-width font is used for displaying the names of files and directories.
Components of filenames that vary are represented by a description of the contents enclosed in
”<” and ”>” characters, <thus>. Electronic mail addresses are also enclosed in ”<” and ”>”
but are shown in the usual typeface.
Optional components of filenames are enclosed in ”[” and ”]” characters and may be combined
with the ”<” and ”>” convention. For example, if a filename is allowed to occur either with or
without an extension, it might be represented by <filename>[.<extension>].
Variable substrings of directory names and filenames are indicated by ”*”.

35.2 The Filesystem

This standard assumes that the operating system underlying an FHS-compliant file system sup-
ports the same basic security features found in most UNIX filesystems.
It is possible to define two independent categories of files: shareable vs. unshareable and vari-
able vs. static. There should be a simple and easily understandable mapping from directories
to the type of data they contain: directories may be mount points for other filesystems with
different characteristics from the filesystem on which they are mounted.
Shareable data is that which can be shared between several different hosts; unshareable is that
which must be specific to a particular host. For example, user home directories are shareable
data, but device lock files are not.

349

35.2. The Filesystem 35. The LINUX File System Standard

Static data includes binaries, libraries, documentation, and anything that does not change with-
out system administrator intervention; variable data is anything else that does change without
system administrator intervention.

BEGIN RATIONALE
The distinction between shareable and unshareable data is needed for several reasons:

• In a networked environment (i.e., more than one host at a site), there is a good deal
of data that can be shared between different hosts to save space and ease the task of
maintenance.

• In a networked environment, certain files contain information specific to a single host.
Therefore these filesystems cannot be shared (without taking special measures).

• Historical implementations of UNIX-like filesystems interspersed shareable and un-
shareable data in the same hierarchy, making it difficult to share large portions of the
filesystem.

The ”shareable” distinction can be used to support, for example:

• A /usr partition (or components of /usr) mounted (read-only) through the network
(using NFS).

• A /usr partition (or components of /usr) mounted from read-only media. A CD-
ROM is one copy of many identical ones distributed to other users by the postal mail
system and other methods. It can thus be regarded as a read-only filesystem shared
with other FHS-compliant systems by some kind of ”network”.

The ”static” versus ”variable” distinction affects the filesystem in two major ways:

• Since / contains both variable and static data, it needs to be mounted read-write.

• Since the traditional /usr contains both variable and static data, and since we may
want to mount it read-only (see above), it is necessary to provide a method to have
/usr mounted read-only. This is done through the creation of a /var hierarchy that
is mounted read-write (or is a part of another read-write partition, such as /), taking
over much of the /usr partition’s traditional functionality.

Here is a summarizing chart. This chart is only an example for a common FHS-compliant
system, other chart layouts are possible within FHS-compliance.

shareable unshareable
static /usr /etc

/opt /boot
variable /var/mail /var/run

/var/spool/news /var/lock

END RATIONALE

350

35. The LINUX File System Standard 35.3. The Root Filesystem

35.3 The Root Filesystem

35.3.1 Purpose

The contents of the root filesystem must be adequate to boot, restore, recover, and/or repair the
system.

• To boot a system, enough must be present on the root partition to mount other filesystems.
This includes utilities, configuration, boot loader information, and other essential start-
up data. /usr, /opt, and /var are designed such that they may be located on other
partitions or filesystems.

• To enable recovery and/or repair of a system, those utilities needed by an experienced
maintainer to diagnose and reconstruct a damaged system must be present on the root
filesystem.

• To restore a system, those utilities needed to restore from system backups (on floppy, tape,
etc.) must be present on the root filesystem.

BEGIN RATIONALE
The primary concern used to balance these considerations, which favor placing many
things on the root filesystem, is the goal of keeping root as small as reasonably possible.
For several reasons, it is desirable to keep the root filesystem small:

• It is occasionally mounted from very small media.

• The root filesystem contains many system-specific configuration files. Possible exam-
ples include a kernel that is specific to the system, a specific hostname, etc. This means
that the root filesystem isn’t always shareable between networked systems. Keeping
it small on servers in networked systems minimizes the amount of lost space for areas
of unshareable files. It also allows workstations with smaller local hard drives.

• While you may have the root filesystem on a large partition, and may be able to fill
it to your heart’s content, there will be people with smaller partitions. If you have
more files installed, you may find incompatibilities with other systems using root
filesystems on smaller partitions. If you are a developer then you may be turning
your assumption into a problem for a large number of users.

• Disk errors that corrupt data on the root filesystem are a greater problem than errors
on any other partition. A small root filesystem is less prone to corruption as the result
of a system crash.

Software must never create or require special files or subdirectories in the root directory.
Other locations in the FHS hierarchy provide more than enough flexibility for any package.

There are several reasons why introducing a new subdirectory of the root filesystem is
prohibited:

• It demands space on a root partition which the system administrator may want kept
small and simple for either performance or security reasons.

• It evades whatever discipline the system administrator may have set up for distribut-
ing standard file hierarchies across mountable volumes.

END RATIONALE

351

35.3. The Root Filesystem 35. The LINUX File System Standard

35.3.2 Requirements

The following directories, or symbolic links to directories, are required in /.

/ ——— the root directory

bin Essential command binaries

boot Static files of the boot loader

dev Device files

etc Host-specific system configuration

lib Essential shared libraries and kernel modules

mnt Mount point for mounting a filesystem temporarily

opt Add-on application software packages

sbin Essential system binaries

tmp Temporary files

usr Secondary hierarchy

var Variable data

Each directory listed above is specified in detail in separate subsections below. /usr and /var
each have a complete section in this document due to the complexity of those directories.

35.3.3 Specific Options

The following directories, or symbolic links to directories, must be in /, if the corresponding
subsystem is installed:

/ ——— the root directory

home User home directories (optional)

lib<qual> Alternate format essential shared libraries (optional)

root Home directory for the root user (optional)

Each directory listed above is specified in detail in separate subsections below.

352

35. The LINUX File System Standard 35.3. The Root Filesystem

35.3.4 /bin : Essential user command binaries (for use by all users)

35.3.4.1 Purpose

/bin contains commands that may be used by both the system administrator and by users, but
which are required when no other filesystems are mounted (e.g. in single user mode). It may
also contain commands which are used indirectly by scripts.1

35.3.4.2 Requirements

There must be no subdirectories in /bin.

The following commands, or symbolic links to commands, are required in /bin.

cat Utility to concatenate files to standard output
chgrp Utility to change file group ownership
chmod Utility to change file access permissions
chown Utility to change file owner and group
cp Utility to copy files and directories
date Utility to print or set the system data and time
dd Utility to convert and copy a file
df Utility to report filesystem disk space usage
dmesg Utility to print or control the kernel message buffer
echo Utility to display a line of text
false Utility to do nothing, unsuccessfully
hostname Utility to show or set the system’s host name
kill Utility to send signals to processes
ln Utility to make links between files
login Utility to begin a session on the system
ls Utility to list directory contents
mkdir Utility to make directories
mknod Utility to make block or character special files
more Utility to page through text
mount Utility to mount a filesystem
mv Utility to move/rename files
ps Utility to report process status
pwd Utility to print name of current working directory
rm Utility to remove files or directories
rmdir Utility to remove empty directories
sed The ‘sed’ stream editor
sh The Bourne command shell
stty Utility to change and print terminal line settings
su Utility to change user ID
sync Utility to flush filesystem buffers

1Command binaries that are not essential enough to place into /bin must be placed in /usr/bin, in-
stead. Items that are required only by non-root users (the X Window System, chsh, etc.) are generally not
essential enough to be placed into the root partition.

353

35.3. The Root Filesystem 35. The LINUX File System Standard

true Utility to do nothing, successfully
umount Utility to unmount file systems
uname Utility to print system information

If /bin/sh is not a true Bourne shell, it must be a hard or symbolic link to the real shell com-
mand.

The [and test commands must be placed together in either /bin or /usr/bin.

BEGIN RATIONALE
For example bash behaves differently when called as sh or bash. The use of a symbolic
link also allows users to easily see that /bin/sh is not a true Bourne shell.

The requirement for the [and test commands to be included as binaries (even if imple-
mented internally by the shell) is shared with the POSIX.2 standard.
END RATIONALE

35.3.4.3 Specific Options

The following programs, or symbolic links to programs, must be in /bin if the corresponding
subsystem is installed:

csh The C shell (optional)
ed The ‘ed’ editor (optional)
tar The tar archiving utility (optional)
cpio The cpio archiving utility (optional)
gzip The GNU compression utility (optional)
gunzip The GNU uncompression utility (optional)
zcat The GNU uncompression utility (optional)
netstat The network statistics utility (optional)
ping The ICMP network test utility (optional)

If the gunzip and zcat programs exist, they must be symbolic or hard links to gzip. /bin/csh
may be a symbolic link to /bin/tcsh or /usr/bin/tcsh.

BEGIN RATIONALE
The tar, gzip and cpio commands have been added to make restoration of a system possible
(provided that / is intact).
Conversely, if no restoration from the root partition is ever expected, then these binaries
might be omitted (e.g., a ROM chip root, mounting /usr through NFS). If restoration of a
system is planned through the network, then ftp or tftp (along with everything necessary
to get an ftp connection) must be available on the root partition.
END RATIONALE

35.3.5 /boot : Static files of the boot loader

35.3.5.1 Purpose

This directory contains everything required for the boot process except configuration files and
the map installer. Thus /boot stores data that is used before the kernel begins executing user-

354

35. The LINUX File System Standard 35.3. The Root Filesystem

mode programs. This may include saved master boot sectors, sector map files, and other data
that is not directly edited by hand.2

35.3.5.2 Specific Options

The operating system kernel must be located in either / or /boot.3

35.3.6 /dev : Device files

35.3.6.1 Purpose

The /dev directory is the location of special or device files.

35.3.6.2 Specific Options

If it is possible that devices in /dev will need to be manually created, /dev must contain
a command named MAKEDEV, which can create devices as needed. It may also contain a
MAKEDEV.local for any local devices.

If required, MAKEDEV must have provisions for creating any device that may be found on the
system, not just those that a particular implementation installs.

35.3.7 /etc : Host-specific system configuration

35.3.7.1 Purpose

/etc contains configuration files and directories that are specific to the current system.4

35.3.7.2 Requirements

No binaries may be located under /etc.

The following directories, or symbolic links to directories are required in /etc:

/etc ——— Host-specific system configuration

opt Configuration for /opt

2Programs necessary to arrange for the boot loader to be able to boot a file must be placed in /sbin.
Configuration files for boot loaders must be placed in /etc.

3On some i386 machines, it may be necessary for /boot to be located on a separate partition located
completely below cylinder 1024 of the boot device due to hardware constraints.

Certain MIPS systems require a /boot partition that is a mounted MS-DOS filesystem or whatever other
filesystem type is accessible for the firmware. This may result in restrictions with respect to usable filenames
within /boot (only for affected systems).

4The setup of command scripts invoked at boot time may resemble System V, BSD or other models.
Further specification in this area may be added to a future version of this standard.

355

35.3. The Root Filesystem 35. The LINUX File System Standard

35.3.7.3 Specific Options

The following directories, or symbolic links to directories must be in /etc, if the corresponding
subsystem is installed:

/etc ——— Host-specific system configuration

X11 Configuration for the X Window System (optional)

sgml Configuration for SGML and XML (optional)

The following files, or symbolic links to files, must be in /etc if the corresponding subsystem is
installed:5

csh.login Systemwide initialization file for C shell logins (optional)
exports NFS filesystem access control list (optional)
fstab Static information about filesystems (optional)
ftpusers FTP daemon user access control list (optional)
gateways File which lists gateways for routed (optional)
gettydefs Speed and terminal settings used by getty (optional)
group User group file (optional)
host.conf Resolver configuration file (optional)
hosts Static information about host names (optional)
hosts.allow Host access file for TCP wrappers (optional)
hosts.deny Host access file for TCP wrappers (optional)
hosts.equiv List of trusted hosts for rlogin, rsh, rcp (optional)
hosts.lpd List of trusted hosts for lpd (optional)
inetd.conf Configuration file for inetd (optional)
inittab Configuration file for init (optional)
issue Pre-login message and identification file (optional)
ld.so.conf List of extra directories to search for shared libraries (optional)
motd Post-login message of the day file (optional)
mtab Dynamic information about filesystems (optional)
mtools.conf Configuration file for mtools (optional)
networks Static information about network names (optional)
passwd The password file (optional)
printcap The lpd printer capability database (optional)
profile Systemwide initialization file for sh shell logins (optional)
protocols IP protocol listing (optional)
resolv.conf Resolver configuration file (optional)
rpc RPC protocol listing (optional)
securetty TTY access control for root login (optional)
services Port names for network services (optional)
shells Pathnames of valid login shells (optional)
syslog.conf Configuration file for syslogd (optional)

5Systems that use the shadow password suite will have additional configuration files in /etc
(/etc/shadow and others) and programs in /usr/sbin (useradd, usermod, and others).

356

35. The LINUX File System Standard 35.3. The Root Filesystem

mtab does not fit the static nature of /etc: it is excepted for historical reasons.6

35.3.7.4 /etc/opt : Configuration files for /opt

35.3.7.4.1 Purpose
Host-specific configuration files for add-on application software packages must be installed
within the directory /etc/opt/<package>, where <package> is the name of the subtree
in /opt where the static data from that package is stored.

35.3.7.4.2 Requirements
No structure is imposed on the internal arrangement of /etc/opt/<package>.

If a configuration file must reside in a different location in order for the package or system to
function properly, it may be placed in a location other than /etc/opt/<package>.

BEGIN RATIONALE
Refer to the rationale for /opt.
END RATIONALE

35.3.7.5 /etc/X11 : Configuration for the X Window System (optional)

35.3.7.5.1 Purpose
/etc/X11 is the location for all X11 host-specific configuration. This directory is necessary to
allow local control if /usr is mounted read only.

35.3.7.5.2 Specific Options
The following files, or symbolic links to files, must be in /etc/X11 if the corresponding subsys-
tem is installed:

Xconfig The configuration file for early versions of XFree86 (optional)
XF86Config The configuration file for XFree86 versions 3 and 4 (optional)
Xmodmap Global X11 keyboard modification file (optional)

Subdirectories of /etc/X11 may include those for xdm and for any other programs (some win-
dow managers, for example) that need them.7 We recommend that window managers with
only one configuration file which is a default .*wmrc file must name it system.*wmrc (unless
there is a widely-accepted alternative name) and not use a subdirectory. Any window manager
subdirectories must be identically named to the actual window manager binary.

6On some Linux systems, this may be a symbolic link to /proc/mounts, in which case this exception is
not required.

7/etc/X11/xdm holds the configuration files for xdm. These are most of the files previously found in
/usr/lib/X11/xdm. Some local variable data for xdm is stored in /var/lib/xdm.

357

35.3. The Root Filesystem 35. The LINUX File System Standard

35.3.7.6 /etc/sgml : Configuration files for SGML and XML (optional)

35.3.7.6.1 Purpose
Generic configuration files defining high-level parameters of the SGML or XML systems are
installed here. Files with names *.conf indicate generic configuration files. File with names
*.cat are the DTD-specific centralized catalogs, containing references to all other catalogs
needed to use the given DTD. The super catalog file catalog references all the centralized
catalogs.

35.3.8 /home : User home directories (optional)

35.3.8.1 Purpose

/home is a fairly standard concept, but it is clearly a site-specific filesystem.8 The setup will
differ from host to host. Therefore, no program should rely on this location.9

35.3.9 /lib : Essential shared libraries and kernel modules

35.3.9.1 Purpose

The /lib directory contains those shared library images needed to boot the system and run the
commands in the root filesystem, ie. by binaries in /bin and /sbin.10

35.3.9.2 Requirements

At least one of each of the following filename patterns are required (they may be files, or sym-
bolic links):

libc.so.* The dynamically-linked C library (optional)
ld* The execution time linker/loader (optional)

8Different people prefer to place user accounts in a variety of places. This section describes only a sug-
gested placement for user home directories; nevertheless we recommend that all FHS-compliant distribu-
tions use this as the default location for home directories.

On small systems, each user’s directory is typically one of the many subdirectories of /home such
as /home/smith, /home/torvalds, /home/operator, etc. On large systems (especially when the
/home directories are shared amongst many hosts using NFS) it is useful to subdivide user home direc-
tories. Subdivision may be accomplished by using subdirectories such as /home/staff, /home/guests,
/home/students, etc.

9If you want to find out a user’s home directory, you should use the getpwent(3) library function rather
than relying on /etc/passwd because user information may be stored remotely using systems such as NIS.

10Shared libraries that are only necessary for binaries in /usr (such as any X Window binaries) must not
be in /lib. Only the shared libraries required to run binaries in /bin and /sbin may be here. In particular,
the library libm.so.* may also be placed in /usr/lib if it is not required by anything in /bin or /sbin.

358

35. The LINUX File System Standard 35.3. The Root Filesystem

If a C preprocessor is installed, /lib/cpp must be a reference to it, for historical reasons.11

35.3.9.3 Specific Options

The following directories, or symbolic links to directories, must be in /lib, if the corresponding
subsystem is installed:

/lib ——— essential shared libraries and kernel modules

modules Loadable kernel modules (optional)

35.3.10 /lib<qual> : Alternate format essential shared libraries (op-
tional)

35.3.10.1 Purpose

There may be one or more variants of the /lib directory on systems which support more than
one binary format requiring separate libraries.12

35.3.10.2 Requirements

If one or more of these directories exist, the requirements for their contents are the same as the
normal /lib directory, except that /lib<qual>/cpp is not required.13

35.3.11 /mnt : Mount point for a temporarily mounted filesystem

35.3.11.1 Purpose

This directory is provided so that the system administrator may temporarily mount a filesystem
as needed. The content of this directory is a local issue and should not affect the manner in
which any program is run.

This directory must not be used by installation programs: a suitable temporary directory not in
use by the system must be used instead.

11The usual placement of this binary is /usr/lib/gcc-lib/<target>/<version>/cpp.
/lib/cpp can either point at this binary, or at any other reference to this binary which exists in the filesys-
tem. (For example, /usr/bin/cpp is also often used.)

12This is commonly used for 64-bit or 32-bit support on systems which support multiple binary formats,
but require libraries of the same name. In this case, /lib32 and /lib64 might be the library directories,
and /lib a symlink to one of them.

13/lib<qual>/cpp is still permitted: this allows the case where /lib and /lib<qual> are the same
(one is a symbolic link to the other).

359

35.3. The Root Filesystem 35. The LINUX File System Standard

35.3.12 /opt : Add-on application software packages

35.3.12.1 Purpose

/opt is reserved for the installation of add-on application software packages.

A package to be installed in /opt must locate its static files in a separate /opt/<package>
directory tree, where <package> is a name that describes the software package.

35.3.12.2 Requirements

/opt ——— Add-on application software packages

<package> Static package objects

The directories /opt/bin, /opt/doc, /opt/include, /opt/info, /opt/lib, and
/opt/man are reserved for local system administrator use. Packages may provide ”front-end”
files intended to be placed in (by linking or copying) these reserved directories by the local sys-
tem administrator, but must function normally in the absence of these reserved directories.

Programs to be invoked by users must be located in the directory /opt/<package>/bin. If
the package includes UNIX manual pages, they must be located in /opt/<package>/man and
the same substructure as /usr/share/man must be used.

Package files that are variable (change in normal operation) must be installed in /var/opt. See
the section on /var/opt for more information.

Host-specific configuration files must be installed in /etc/opt. See the section on /etc for
more information.

No other package files may exist outside the /opt, /var/opt, and /etc/opt hierarchies ex-
cept for those package files that must reside in specific locations within the filesystem tree in
order to function properly. For example, device lock files must be placed in /var/lock and
devices must be located in /dev.

Distributions may install software in /opt, but must not modify or delete software installed by
the local system administrator without the assent of the local system administrator.

BEGIN RATIONALE
The use of /opt for add-on software is a well-established practice in the UNIX community.
The System V Application Binary Interface [AT&T 1990], based on the System V Interface
Definition (Third Edition), provides for an /opt structure very similar to the one defined
here.

The Intel Binary Compatibility Standard v. 2 (iBCS2) also provides a similar structure for
/opt.

Generally, all data required to support a package on a system must be present within
/opt/<package>, including files intended to be copied into /etc/opt/<package>
and /var/opt/<package> as well as reserved directories in /opt.

The minor restrictions on distributions using /opt are necessary because conflicts are pos-
sible between distribution-installed and locally-installed software, especially in the case of
fixed pathnames found in some binary software.
END RATIONALE

360

35. The LINUX File System Standard 35.3. The Root Filesystem

35.3.13 /root : Home directory for the root user (optional)

35.3.13.1 Purpose

The root account’s home directory may be determined by developer or local preference, but this
is the recommended default location.14

35.3.14 /sbin : System binaries

35.3.14.1 Purpose

Utilities used for system administration (and other root-only commands) are stored in /sbin,
/usr/sbin, and /usr/local/sbin. /sbin contains binaries essential for booting, restor-
ing, recovering, and/or repairing the system in addition to the binaries in /bin.15 Programs
executed after /usr is known to be mounted (when there are no problems) are generally
placed into /usr/sbin. Locally-installed system administration programs should be placed
into /usr/local/sbin.16

35.3.14.2 Requirements

The following commands, or symbolic links to commands, are required in /sbin.

shutdown Command to bring the system down.

35.3.14.3 Specific Options

The following files, or symbolic links to files, must be in /sbin if the corresponding subsystem
is installed:

14If the home directory of the root account is not stored on the root partition it will be necessary to make
certain it will default to / if it can not be located.

We recommend against using the root account for tasks that can be performed as an unprivileged user,
and that it be used solely for system administration. For this reason, we recommend that subdirectories for
mail and other applications not appear in the root account’s home directory, and that mail for administration
roles such as root, postmaster, and webmaster be forwarded to an appropriate user.

15Originally, /sbin binaries were kept in /etc.
16Deciding what things go into "sbin" directories is simple: if a normal (not a system administrator) user

will ever run it directly, then it must be placed in one of the "bin" directories. Ordinary users should not
have to place any of the sbin directories in their path.

For example, files such as chfn which users only occasionally use must still be placed in /usr/bin.
ping, although it is absolutely necessary for root (network recovery and diagnosis) is often used by users
and must live in /bin for that reason.

We recommend that users have read and execute permission for everything in /sbin except, perhaps,
certain setuid and setgid programs. The division between /bin and /sbin was not created for security
reasons or to prevent users from seeing the operating system, but to provide a good partition between
binaries that everyone uses and ones that are primarily used for administration tasks. There is no inherent
security advantage in making /sbin off-limits for users.

361

35.4. The /usr Hierarchy 35. The LINUX File System Standard

fastboot Reboot the system without checking the disks (optional)
fasthalt Stop the system without checking the disks (optional)
fdisk Partition table manipulator (optional)
fsck File system check and repair utility (optional)
fsck.* File system check and repair utility for a specific filesystem (optional)
getty The getty program (optional)
halt Command to stop the system (optional)
ifconfig Configure a network interface (optional)
init Initial process (optional)
mkfs Command to build a filesystem (optional)
mkfs.* Command to build a specific filesystem (optional)
mkswap Command to set up a swap area (optional)
reboot Command to reboot the system (optional)
route IP routing table utility (optional)
swapon Enable paging and swapping (optional)
swapoff Disable paging and swapping (optional)
update Daemon to periodically flush filesystem buffers (optional)

35.3.15 /tmp : Temporary files

35.3.15.1 Purpose

The /tmp directory must be made available for programs that require temporary files.

Programs must not assume that any files or directories in /tmp are preserved between invoca-
tions of the program.

BEGIN RATIONALE
IEEE standard P1003.2 (POSIX, part 2) makes requirements that are similar to the above
section.

Although data stored in /tmp may be deleted in a site-specific manner, it is recommended
that files and directories located in /tmp be deleted whenever the system is booted.

FHS added this recommendation on the basis of historical precedent and common practice,
but did not make it a requirement because system administration is not within the scope of
this standard.
END RATIONALE

35.4 The /usr Hierarchy

35.4.1 Purpose

/usr is the second major section of the filesystem. /usr is shareable, read-only data. That
means that /usr should be shareable between various FHS-compliant hosts and must not be
written to. Any information that is host-specific or varies with time is stored elsewhere.

Large software packages must not use a direct subdirectory under the /usr hierarchy.

362

35. The LINUX File System Standard 35.4. The /usr Hierarchy

35.4.2 Requirements

The following directories, or symbolic links to directories, are required in /usr.

/usr ——— Secondary Hierarchy

bin Most user commands

include Header files included by C programs

lib Libraries

local Local hierarchy (empty after main installation)

sbin Non-vital system binaries

share Architecture-independent data

35.4.3 Specific Options

/usr ——— Secondary Hierarchy

X11R6 X Window System, version 11 release 6 (optional)

games Games and educational binaries (optional)

lib<qual> Alternate Format Libraries (optional)

src Source code (optional)

An exception is made for the X Window System because of considerable precedent and widely-
accepted practice.

The following symbolic links to directories may be present. This possibility is based on the need
to preserve compatibility with older systems until all implementations can be assumed to use
the /var hierarchy.

/usr/spool -> /var/spool
/usr/tmp -> /var/tmp
/usr/spool/locks -> /var/lock

Once a system no longer requires any one of the above symbolic links, the link may be removed,
if desired.

35.4.4 /usr/X11R6 : X Window System, Version 11 Release 6 (optional)

35.4.4.1 Purpose

This hierarchy is reserved for the X Window System, version 11 release 6, and related files.

To simplify matters and make XFree86 more compatible with the X Window System on other
systems, the following symbolic links must be present if /usr/X11R6 exists:

363

35.4. The /usr Hierarchy 35. The LINUX File System Standard

/usr/bin/X11 -> /usr/X11R6/bin
/usr/lib/X11 -> /usr/X11R6/lib/X11
/usr/include/X11 -> /usr/X11R6/include/X11

In general, software must not be installed or managed via the above symbolic links. They are
intended for utilization by users only. The difficulty is related to the release version of the X
Window System — in transitional periods, it is impossible to know what release of X11 is in use.

35.4.4.2 Specific Options

Host-specific data in /usr/X11R6/lib/X11 should be interpreted as a demonstration file. Ap-
plications requiring information about the current host must reference a configuration file in
/etc/X11, which may be linked to a file in /usr/X11R6/lib.17

35.4.5 /usr/bin : Most user commands

35.4.5.1 Purpose

This is the primary directory of executable commands on the system.

35.4.5.2 Specific Options

The following directories, or symbolic links to directories, must be in /usr/bin, if the corre-
sponding subsystem is installed:

/usr/bin ——— Binaries that are not needed in single-user mode

mh Commands for the MH mail handling system (optional)

/usr/bin/X11 must be a symlink to /usr/X11R6/bin if the latter exists.

The following files, or symbolic links to files, must be in /usr/bin, if the corresponding sub-
system is installed:

perl The Practical Extraction and Report Language (optional)
python The Python interpreted language (optional)
tclsh Simple shell containing Tcl interpreter (optional)
wish Simple Tcl/Tk windowing shell (optional)
expect Program for interactive dialog (optional)

BEGIN RATIONALE

Because shell script interpreters (invoked with #!<path> on the first line of a shell script)
cannot rely on a path, it is advantageous to standardize their locations. The Bourne shell
and C-shell interpreters are already fixed in /bin, but Perl, Python, and Tcl are often found

17Examples of such configuration files include Xconfig, XF86Config, or system.twmrc)

364

35. The LINUX File System Standard 35.4. The /usr Hierarchy

in many different places. They may be symlinks to the physical location of the shell inter-
preters.
END RATIONALE

35.4.6 /usr/include : Directory for standard include files.

35.4.6.1 Purpose

This is where all of the system’s general-use include files for the C programming language
should be placed.

35.4.6.2 Specific Options

The following directories, or symbolic links to directories, must be in /usr/include, if the
corresponding subsystem is installed:

/usr/include ——— Include files

bsd BSD compatibility include files (optional)

The symbolic link /usr/include/X11 must link to /usr/X11R6/include/X11 if the latter
exists.

35.4.7 /usr/lib : Libraries for programming and packages

35.4.7.1 Purpose

/usr/lib includes object files, libraries, and internal binaries that are not intended to be exe-
cuted directly by users or shell scripts.18

Applications may use a single subdirectory under /usr/lib. If an application uses a subdirec-
tory, all architecture-dependent data exclusively used by the application must be placed within
that subdirectory.19

35.4.7.2 Specific Options

For historical reasons, /usr/lib/sendmail must be a symbolic link to
/usr/sbin/sendmail if the latter exists.20

18Miscellaneous architecture-independent application-specific static files and subdirectories must be
placed in /usr/share.

19For example, the perl5 subdirectory for Perl 5 modules and libraries.
20Some executable commands such as makewhatis and sendmail have also been traditionally placed in

/usr/lib. makewhatis is an internal binary and must be placed in a binary directory; users access only
catman. Newer sendmail binaries are now placed by default in /usr/sbin. Additionally, systems using
a sendmail-compatible mail transfer agent must provide /usr/sbin/sendmail as a symbolic link to the
appropriate executable.

365

35.4. The /usr Hierarchy 35. The LINUX File System Standard

If /lib/X11 exists, /usr/lib/X11 must be a symbolic link to /lib/X11, or to whatever
/lib/X11 is a symbolic link to.21

35.4.8 /usr/lib<qual> : Alternate format libraries (optional)

35.4.8.1 Purpose

/usr/lib<qual> performs the same role as /usr/lib for an alternate binary format, except
that the symbolic links /usr/lib<qual>/sendmail and /usr/lib<qual>/X11 are not
required.22

35.4.9 /usr/local : Local hierarchy

35.4.9.1 Purpose

The /usr/local hierarchy is for use by the system administrator when installing software
locally. It needs to be safe from being overwritten when the system software is updated. It may
be used for programs and data that are shareable amongst a group of hosts, but not found in
/usr.

Locally installed software must be placed within /usr/local rather than /usr unless it is
being installed to replace or upgrade software in /usr.23

35.4.9.2 Requirements

The following directories, or symbolic links to directories, must be in /usr/local

/usr/local ——— Local hierarchy

bin Local binaries

games Local game binaries

include Local C header files

lib Local libraries

man Local online manuals

sbin Local system binaries

share Local architecture-independent hierarchy

21Host-specific data for the X Window System must not be stored in /usr/lib/X11. Host-specific con-
figuration files such as Xconfig or XF86Config must be stored in /etc/X11. This includes configuration
data such as system.twmrc even if it is only made a symbolic link to a more global configuration file
(probably in /usr/X11R6/lib/X11).

22The case where /usr/lib and /usr/lib<qual> are the same (one is a symbolic link to the other)
these files and the per-application subdirectories will exist.

23Software placed in / or /usr may be overwritten by system upgrades (though we recommend that
distributions do not overwrite data in /etc under these circumstances). For this reason, local software must
not be placed outside of /usr/local without good reason.

366

35. The LINUX File System Standard 35.4. The /usr Hierarchy

src Local source code

No other directories, except those listed below, may be in /usr/local after first installing a
FHS-compliant system.

35.4.9.3 Specific Options

If directories /lib<qual> or /usr/lib<qual> exist, the equivalent directories must also
exist in /usr/local.

35.4.10 /usr/sbin : Non-essential standard system binaries

35.4.10.1 Purpose

This directory contains any non-essential binaries used exclusively by the system administrator.
System administration programs that are required for system repair, system recovery, mounting
/usr, or other essential functions must be placed in /sbin instead.24

35.4.11 /usr/share : Architecture-independent data

35.4.11.1 Purpose

The /usr/share hierarchy is for all read-only architecture independent data files.25

This hierarchy is intended to be shareable among all architecture platforms of a given OS; thus,
for example, a site with i386, Alpha, and PPC platforms might maintain a single /usr/share
directory that is centrally-mounted. Note, however, that /usr/share is generally not intended
to be shared by different OSes or by different releases of the same OS.

Any program or package which contains or requires data that doesn’t need to be modified
should store that data in /usr/share (or /usr/local/share, if installed locally). It is rec-
ommended that a subdirectory be used in /usr/share for this purpose.

Game data stored in /usr/share/games must be purely static data. Any modifiable files, such
as score files, game play logs, and so forth, should be placed in /var/games.

35.4.11.2 Requirements

The following directories, or symbolic links to directories, must be in /usr/share

/usr/share ——— Architecture-independent data

man Online manuals

misc Miscellaneous architecture-independent data

24Locally installed system administration programs should be placed in /usr/local/sbin.
25Much of this data originally lived in /usr (man, doc) or /usr/lib (dict, terminfo, zoneinfo).

367

35.4. The /usr Hierarchy 35. The LINUX File System Standard

35.4.11.3 Specific Options

The following directories, or symbolic links to directories, must be in /usr/share, if the corre-
sponding subsystem is installed:

/usr/share ——— Architecture-independent data

dict Word lists (optional)

doc Miscellaneous documentation (optional)

games Static data files for /usr/games (optional)

info GNU Info system’s primary directory (optional)

locale Locale information (optional)

nls Message catalogs for Native language support (optional)

sgml SGML and XML data (optional)

terminfo Directories for terminfo database (optional)

tmac troff macros not distributed with groff (optional)

zoneinfo Timezone information and configuration (optional)

It is recommended that application-specific, architecture-independent directories be placed here.
Such directories include groff, perl, ghostscript, texmf, and kbd (Linux) or syscons
(BSD). They may, however, be placed in /usr/lib for backwards compatibility, at the dis-
tributor’s discretion. Similarly, a /usr/lib/games hierarchy may be used in addition to the
/usr/share/games hierarchy if the distributor wishes to place some game data there.

35.4.11.4 /usr/share/dict : Word lists (optional)

35.4.11.4.1 Purpose
This directory is the home for word lists on the system; Traditionally this directory contains only
the English words file, which is used by look(1) and various spelling programs. words may
use either American or British spelling.

BEGIN RATIONALE
The reason that only word lists are located here is that they are the only files common to all
spell checkers.
END RATIONALE

35.4.11.4.2 Specific Options
The following files, or symbolic links to files, must be in /usr/share/dict, if the correspond-
ing subsystem is installed:

words List of English words (optional)

368

35. The LINUX File System Standard 35.4. The /usr Hierarchy

Sites that require both American and British spelling may link words to
/usr/share/dict/american-english or /usr/share/dict/british-english.

Word lists for other languages may be added using the English name for that language, e.g.,
/usr/share/dict/french, /usr/share/dict/danish, etc. These should, if possible, use
an ISO 8859 character set which is appropriate for the language in question; if possible the Latin1
(ISO 8859-1) character set should be used (this is often not possible).

Other word lists must be included here, if present.

35.4.11.5 /usr/share/man : Manual pages

35.4.11.5.1 Purpose
This section details the organization for manual pages throughout the system, including
/usr/share/man. Also refer to the section on /var/cache/man.

The primary <mandir> of the system is /usr/share/man. /usr/share/man contains man-
ual information for commands and data under the / and /usr filesystems.26

Manual pages are stored in <mandir>/<locale>/man<section>/<arch>. An explana-
tion of <mandir>, <locale>, <section>, and <arch> is given below.

A description of each section follows:

• man1: User programs
Manual pages that describe publicly accessible commands are contained in this chapter.
Most program documentation that a user will need to use is located here.

• man2: System calls
This section describes all of the system calls (requests for the kernel to perform operations).

• man3: Library functions and subroutines
Section 3 describes program library routines that are not direct calls to kernel services.
This and chapter 2 are only really of interest to programmers.

• man4: Special files
Section 4 describes the special files, related driver functions, and networking support
available in the system. Typically, this includes the device files found in /dev and the
kernel interface to networking protocol support.

• man5: File formats
The formats for many data files are documented in the section 5. This includes various
include files, program output files, and system files.

• man6: Games
This chapter documents games, demos, and generally trivial programs. Different people
have various notions about how essential this is.

• man7: Miscellaneous
Manual pages that are difficult to classify are designated as being section 7. The troff and
other text processing macro packages are found here.

26Obviously, there are no manual pages in / because they are not required at boot time nor are they
required in emergencies.27

27Really.

369

35.4. The /usr Hierarchy 35. The LINUX File System Standard

• man8: System administration
Programs used by system administrators for system operation and maintenance are doc-
umented here. Some of these programs are also occasionally useful for normal users.

35.4.11.5.2 Specific Options
The following directories, or symbolic links to directories, must be in
/usr/share/<mandir>/<locale>, unless they are empty:28

<mandir>/<locale> ——— A manual page hierarchy

man1 User programs (optional)

man2 System calls (optional)

man3 Library calls (optional)

man4 Special files (optional)

man5 File formats (optional)

man6 Games (optional)

man7 Miscellaneous (optional)

man8 System administration (optional)

The component <section> describes the manual section.

Provisions must be made in the structure of /usr/share/man to support manual pages which
are written in different (or multiple) languages. These provisions must take into account the
storage and reference of these manual pages. Relevant factors include language (including
geographical-based differences), and character code set.

This naming of language subdirectories of /usr/share/man is based on Appendix E of the
POSIX 1003.1 standard which describes the locale identification string — the most well-accepted
method to describe a cultural environment. The <locale> string is:

<language>[<territory>][.<character-set>][,<version>]

The <language> field must be taken from ISO 639 (a code for the representation of names of
languages). It must be two characters wide and specified with lowercase letters only.

The <territory> field must be the two-letter code of ISO 3166 (a specification of representa-
tions of countries), if possible. (Most people are familiar with the two-letter codes used for the
country codes in email addresses.29) It must be two characters wide and specified with upper-
case letters only.

The <character-set> field must represent the standard describing the character set. If the
<character-set> field is just a numeric specification, the number represents the number of

28For example, if /usr/local/man has no manual pages in section 4 (Devices), then
/usr/local/man/man4 may be omitted.

29A major exception to this rule is the United Kingdom, which is ‘GB’ in the ISO 3166, but ‘UK’ for most
email addresses.

370

35. The LINUX File System Standard 35.4. The /usr Hierarchy

the international standard describing the character set. It is recommended that this be a nu-
meric representation if possible (ISO standards, especially), not include additional punctuation
symbols, and that any letters be in lowercase.

A parameter specifying a <version> of the profile may be placed after the
<character-set> field, delimited by a comma. This may be used to discriminate be-
tween different cultural needs; for instance, dictionary order versus a more systems-oriented
collating order. This standard recommends not using the <version> field, unless it is
necessary.

Systems which use a unique language and code set for all manual pages may omit the
<locale> substring and store all manual pages in <mandir>. For example, systems
which only have English manual pages coded with ASCII, may store manual pages (the
man<section> directories) directly in /usr/share/man. (That is the traditional circum-
stance and arrangement, in fact.)

Countries for which there is a well-accepted standard character code set may omit the
<character-set> field, but it is strongly recommended that it be included, especially for
countries with several competing standards.

Various examples:

Language Territory Character Set Directory
English — ASCII /usr/share/man/en
English United Kingdom ASCII /usr/share/man/en GB
English United States ASCII /usr/share/man/en US
French Canada ISO 8859-1 /usr/share/man/fr CA
French France ISO 8859-1 /usr/share/man/fr FR
German Germany ISO 646 /usr/share/man/de DE.646
German Germany ISO 6937 /usr/share/man/de DE.6937
German Germany ISO 8859-1 /usr/share/man/de DE.88591
German Switzerland ISO 646 /usr/share/man/de CH.646
Japanese Japan JIS /usr/share/man/ja JP.jis
Japanese Japan SJIS /usr/share/man/ja JP.sjis
Japanese Japan UJIS (or EUC-J) /usr/share/man/ja JP.ujis

Similarly, provision must be made for manual pages which are architecture-dependent,
such as documentation on device-drivers or low-level system administration commands.
These must be placed under an <arch> directory in the appropriate man<section> di-
rectory; for example, a man page for the i386 ctrlaltdel(8) command might be placed in
/usr/share/man/<locale>/man8/i386/ctrlaltdel.8.

Manual pages for commands and data under /usr/local are stored in /usr/local/man.
Manual pages for X11R6 are stored in /usr/X11R6/man. It follows that all manual page hier-
archies in the system must have the same structure as /usr/share/man.

The cat page sections (cat<section>) containing formatted manual page entries are also
found within subdirectories of <mandir>/<locale>, but are not required nor may they be
distributed in lieu of nroff source manual pages.

The numbered sections ”1” through ”8” are traditionally defined. In general, the file name for
manual pages located within a particular section end with .<section>.

371

35.4. The /usr Hierarchy 35. The LINUX File System Standard

In addition, some large sets of application-specific manual pages have an additional suffix ap-
pended to the manual page filename. For example, the MH mail handling system manual pages
must have mh appended to all MH manuals. All X Window System manual pages must have an
x appended to the filename.

The practice of placing various language manual pages in appropriate subdirectories of
/usr/share/man also applies to the other manual page hierarchies, such as /usr/local/man
and /usr/X11R6/man. (This portion of the standard also applies later in the section on the op-
tional /var/cache/man structure.)

35.4.11.6 /usr/share/misc : Miscellaneous architecture-independent data

This directory contains miscellaneous architecture-independent files which don’t require a sep-
arate subdirectory under /usr/share.

35.4.11.6.1 Specific Options
The following files, or symbolic links to files, must be in /usr/share/misc, if the correspond-
ing subsystem is installed:

ascii ASCII character set table (optional)
magic Default list of magic numbers for the file command (optional)
termcap Terminal capability database (optional)
termcap.db Terminal capability database (optional)

Other (application-specific) files may appear here,30 but a distributor may place them in
/usr/lib at their discretion.

35.4.11.7 /usr/share/sgml : SGML and XML data (optional)

35.4.11.7.1 Purpose
/usr/share/sgml contains architecture-independent files used by SGML or XML applica-
tions, such as ordinary catalogs (not the centralized ones, see /etc/sgml), DTDs, entities, or
style sheets.

35.4.11.7.2 Specific Options
The following directories, or symbolic links to directories, must be in /usr/share/sgml, if the
corresponding subsystem is installed:

30Some such files include:

{ airport, birthtoken, eqnchar, getopt, gprof.callg, gprof.flat, inter.phone,
ipfw.samp.filters, ipfw.samp.scripts, keycap.pcvt, mail.help, mail.tildehelp,
man.template, map3270, mdoc.template, more.help, na.phone, nslookup.help, oper-
ator, scsi modes, sendmail.hf, style, units.lib, vgrindefs, vgrindefs.db, zipcodes
}

372

35. The LINUX File System Standard 35.5. The /var Hierarchy

/usr/share/sgml ——— SGML and XML data

docbook docbook DTD (optional)

tei tei DTD (optional)

html html DTD (optional)

mathml mathml DTD (optional)

Other files that are not specific to a given DTD may reside in their own subdirectory.

35.4.12 /usr/src : Source code (optional)

35.4.12.1 Purpose

Any non-local source code should be placed in this subdirectory.

35.5 The /var Hierarchy

35.5.1 Purpose

/var contains variable data files. This includes spool directories and files, administrative and
logging data, and transient and temporary files.

Some portions of /var are not shareable between different systems. For instance,
/var/log, /var/lock, and /var/run. Other portions may be shared, notably /var/mail,
/var/cache/man, /var/cache/fonts, and /var/spool/news.

/var is specified here in order to make it possible to mount /usr read-only. Everything that
once went into /usr that is written to during system operation (as opposed to installation and
software maintenance) must be in /var.

If /var cannot be made a separate partition, it is often preferable to move /var out of the root
partition and into the /usr partition. (This is sometimes done to reduce the size of the root
partition or when space runs low in the root partition.) However, /var must not be linked to
/usr because this makes separation of /usr and /var more difficult and is likely to create a
naming conflict. Instead, link /var to /usr/var.

Applications must generally not add directories to the top level of /var. Such directories should
only be added if they have some system-wide implication, and in consultation with the FHS
mailing list.

35.5.2 Requirements

The following directories, or symbolic links to directories, are required in /var.

/var ——— Variable data

cache Application cache data

lib Variable state information

373

35.5. The /var Hierarchy 35. The LINUX File System Standard

local Variable data for /usr/local

lock Lock files

log Log files and directories

opt Variable data for /opt

run Data relevant to running processes

spool Application spool data

tmp Temporary files preserved between system reboots

Several directories are ‘reserved’ in the sense that they must not be used arbitrarily by some new
application, since they would conflict with historical and/or local practice. They are:

/var/backups
/var/cron
/var/msgs
/var/preserve

35.5.3 Specific Options

The following directories, or symbolic links to directories, must be in /var, if the corresponding
subsystem is installed:

/var ——— Variable data

account Process accounting logs (optional)

crash System crash dumps (optional)

games Variable game data (optional)

mail User mailbox files (optional)

yp Network Information Service (NIS) database files (optional)

35.5.4 /var/account : Process accounting logs (optional)

35.5.4.1 Purpose

This directory holds the current active process accounting log and the composite process usage
data (as used in some UNIX-like systems by lastcomm and sa).

35.5.5 /var/cache : Application cache data

35.5.5.1 Purpose

/var/cache is intended for cached data from applications. Such data is locally generated as
a result of time-consuming I/O or calculation. The application must be able to regenerate or

374

35. The LINUX File System Standard 35.5. The /var Hierarchy

restore the data. Unlike /var/spool, the cached files can be deleted without data loss. The
data must remain valid between invocations of the application and rebooting the system.

Files located under /var/cache may be expired in an application specific manner, by the sys-
tem administrator, or both. The application must always be able to recover from manual deletion
of these files (generally because of a disk space shortage). No other requirements are made on
the data format of the cache directories.

BEGIN RATIONALE
The existence of a separate directory for cached data allows system administrators to set
different disk and backup policies from other directories in /var.
END RATIONALE

35.5.5.2 Specific Options

/var/cache ——— Cache directories

fonts Locally-generated fonts (optional)

man Locally-formatted manual pages (optional)

www WWW proxy or cache data (optional)

<package> Package specific cache data (optional)

35.5.5.3 /var/cache/fonts : Locally-generated fonts (optional)

35.5.5.3.1 Purpose
The directory /var/cache/fonts should be used to store any dynamically-created fonts. In
particular, all of the fonts which are automatically generated by mktexpk must be located in
appropriately-named subdirectories of /var/cache/fonts.31

35.5.5.3.2 Specific Options
Other dynamically created fonts may also be placed in this tree, under appropriately-named
subdirectories of /var/cache/fonts.

35.5.5.4 /var/cache/man : Locally-formatted manual pages (optional)

35.5.5.4.1 Purpose
This directory provides a standard location for sites that provide a read-only /usr partition, but
wish to allow caching of locally-formatted man pages. Sites that mount /usr as writable (e.g.,
single-user installations) may choose not to use /var/cache/man and may write formatted
man pages into the cat<section> directories in /usr/share/man directly. We recommend
that most sites use one of the following options instead:

• Preformat all manual pages alongside the unformatted versions.

31This standard does not currently incorporate the TEX Directory Structure (a document that describes the
layout TEX files and directories), but it may be useful reading. It is located at ftp://ctan.tug.org/tex/.

375

35.5. The /var Hierarchy 35. The LINUX File System Standard

• Allow no caching of formatted man pages, and require formatting to be done each time a
man page is brought up.

• Allow local caching of formatted man pages in /var/cache/man.

The structure of /var/cache/man needs to reflect both the fact of multiple man page hierar-
chies and the possibility of multiple language support.

Given an unformatted manual page that normally appears in
<path>/man/<locale>/man<section>, the directory to place formatted man pages
in is /var/cache/man/<catpath>/<locale>/cat<section>, where <catpath>
is derived from <path> by removing any leading usr and/or trailing share pathname
components.32 (Note that the <locale> component may be missing.)

Man pages written to /var/cache/man may eventually be transferred to the appropriate pre-
formatted directories in the source man hierarchy or expired; likewise formatted man pages in
the source man hierarchy may be expired if they are not accessed for a period of time.

If preformatted manual pages come with a system on read-only media (a CD-ROM, for instance),
they must be installed in the source man hierarchy (e.g. /usr/share/man/cat<section>).
/var/cache/man is reserved as a writable cache for formatted manual pages.

BEGIN RATIONALE

Release 1.2 of the standard specified /var/catman for this hierarchy. The path has been
moved under /var/cache to better reflect the dynamic nature of the formatted man pages.
The directory name has been changed to man to allow for enhancing the hierarchy to in-
clude post-processed formats other than ”cat”, such as PostScript, HTML, or DVI.
END RATIONALE

35.5.6 /var/crash : System crash dumps (optional)

35.5.6.1 Purpose

This directory holds system crash dumps. As of the date of this release of the standard, system
crash dumps were not supported under Linux.

35.5.7 /var/games : Variable game data (optional)

35.5.7.1 Purpose

Any variable data relating to games in /usr should be placed here. /var/games should hold
the variable data previously found in /usr; static data, such as help text, level descriptions, and
so on, must remain elsewhere, such as /usr/share/games.

BEGIN RATIONALE

32For example, /usr/share/man/man1/ls.1 is formatted into /var/cache/man/cat1/ls.1,
and /usr/X11R6/man/<locale>/man3/XtClass.3x into /var/cache/man/X11R6/<locale>/-
cat3/XtClass.3x.

376

35. The LINUX File System Standard 35.5. The /var Hierarchy

/var/games has been given a hierarchy of its own, rather than leaving it merged in with
the old /var/lib as in release 1.2. The separation allows local control of backup strategies,
permissions, and disk usage, as well as allowing inter-host sharing and reducing clutter in
/var/lib. Additionally, /var/games is the path traditionally used by BSD.
END RATIONALE

35.5.8 /var/lib : Variable state information

35.5.8.1 Purpose

This hierarchy holds state information pertaining to an application or the system. State informa-
tion is data that programs modify while they run, and that pertains to one specific host. Users
must never need to modify files in /var/lib to configure a package’s operation.

State information is generally used to preserve the condition of an application (or a group of
inter-related applications) between invocations and between different instances of the same ap-
plication. State information should generally remain valid after a reboot, should not be logging
output, and should not be spooled data.

An application (or a group of inter-related applications) must use a subdirectory of /var/lib
for its data.33 There is one required subdirectory, /var/lib/misc, which is intended for state
files that don’t need a subdirectory; the other subdirectories should only be present if the appli-
cation in question is included in the distribution.

/var/lib/<name> is the location that must be used for all distribution packaging support.
Different distributions may use different names, of course.

35.5.8.2 Requirements

The following directories, or symbolic links to directories, are required in /var/lib:

/var/lib ——— Variable state information

misc Miscellaneous state data

35.5.8.3 Specific Options

The following directories, or symbolic links to directories, must be in /var/lib, if the corre-
sponding subsystem is installed:

/var/lib ——— Variable state information

<editor> Editor backup files and state (optional)

<pkgtool> Packaging support files (optional)

<package> State data for packages and subsystems (optional)

33An important difference between this version of this standard and previous ones is that applications are
now required to use a subdirectory of /var/lib.

377

35.5. The /var Hierarchy 35. The LINUX File System Standard

hwclock State directory for hwclock (optional)

xdm X display manager variable data (optional)

35.5.8.4 /var/lib/<editor> : Editor backup files and state (optional)

35.5.8.4.1 Purpose
These directories contain saved files generated by any unexpected termination of an editor (e.g.,
elvis, jove, nvi).

Other editors may not require a directory for crash-recovery files, but may require a well-
defined place to store other information while the editor is running. This information should
be stored in a subdirectory under /var/lib (for example, GNU Emacs would place lock files
in /var/lib/emacs/lock).

Future editors may require additional state information beyond crash-recovery files and lock
files — this information should also be placed under /var/lib/<editor>.

BEGIN RATIONALE

Previous Linux releases, as well as all commercial vendors, use /var/preserve for vi or
its clones. However, each editor uses its own format for these crash-recovery files, so a
separate directory is needed for each editor.

Editor-specific lock files are usually quite different from the device or resource lock files
that are stored in /var/lock and, hence, are stored under /var/lib.
END RATIONALE

35.5.8.5 /var/lib/hwclock : State directory for hwclock (optional)

35.5.8.5.1 Purpose
This directory contains the file /var/lib/hwclock/adjtime.

BEGIN RATIONALE

In FHS 2.1, this file was /etc/adjtime, but as hwclock updates it, that was obviously
incorrect.
END RATIONALE

35.5.8.6 /var/lib/misc : Miscellaneous variable data

35.5.8.6.1 Purpose
This directory contains variable data not placed in a subdirectory in /var/lib. An attempt
should be made to use relatively unique names in this directory to avoid namespace conflicts.34

34This hierarchy should contain files stored in /var/db in current BSD releases. These include lo-
cate.database and mountdtab, and the kernel symbol database(s).

378

35. The LINUX File System Standard 35.5. The /var Hierarchy

35.5.9 /var/lock : Lock files

35.5.9.1 Purpose

Lock files should be stored within the /var/lock directory structure.

Lock files for devices and other resources shared by multiple applications, such as the serial de-
vice lock files that were originally found in either /usr/spool/locks or /usr/spool/uucp,
must now be stored in /var/lock. The naming convention which must be used is LCK..
followed by the base name of the device file. For example, to lock /dev/ttyS0 the file
LCK..ttyS0 would be created.
35

The format used for the contents of such lock files must be the HDB UUCP lock file format. The
HDB format is to store the process identifier (PID) as a ten byte ASCII decimal number, with
a trailing newline. For example, if process 1230 holds a lock file, it would contain the eleven
characters: space, space, space, space, space, space, one, two, three, zero, and newline.

35.5.10 /var/log : Log files and directories

35.5.10.1 Purpose

This directory contains miscellaneous log files. Most logs must be written to this directory or an
appropriate subdirectory.

35.5.10.2 Specific Options

The following files, or symbolic links to files, must be in /var/log, if the corresponding sub-
system is installed:

lastlog record of last login of each user
messages system messages from syslogd
wtmp record of all logins and logouts

35.5.11 /var/mail : User mailbox files (optional)

35.5.11.1 Purpose

The mail spool must be accessible through /var/mail and the mail spool files must take the
form <username>.36

User mailbox files in this location must be stored in the standard UNIX mailbox format.

BEGIN RATIONALE

35Then, anything wishing to use /dev/ttyS0 can read the lock file and act accordingly (all locks in
/var/lock should be world-readable).

36Note that /var/mail may be a symbolic link to another directory.

379

35.5. The /var Hierarchy 35. The LINUX File System Standard

The logical location for this directory was changed from /var/spool/mail in order to
bring FHS in-line with nearly every UNIX implementation. This change is important for
inter-operability since a single /var/mail is often shared between multiple hosts and mul-
tiple UNIX implementations (despite NFS locking issues).
It is important to note that there is no requirement to physically move the mail spool to this
location. However, programs and header files must be changed to use /var/mail.
END RATIONALE

35.5.12 /var/opt : Variable data for /opt

35.5.12.1 Purpose

Variable data of the packages in /opt must be installed in /var/opt/<package>, where
<package> is the name of the subtree in /opt where the static data from an add-on software
package is stored, except where superseded by another file in /etc. No structure is imposed on
the internal arrangement of /var/opt/<package>.

BEGIN RATIONALE
Refer to the rationale for /opt.
END RATIONALE

35.5.13 /var/run : Run-time variable data

35.5.13.1 Purpose

This directory contains system information data describing the system since it was booted. Files
under this directory must be cleared (removed or truncated as appropriate) at the beginning
of the boot process. Programs may have a subdirectory of /var/run; this is encouraged for
programs that use more than one run-time file.37 Process identifier (PID) files, which were orig-
inally placed in /etc, must be placed in /var/run. The naming convention for PID files is
<program-name>.pid. For example, the crond PID file is named /var/run/crond.pid.

35.5.13.2 Requirements

The internal format of PID files remains unchanged. The file must consist of the process identifier
in ASCII-encoded decimal, followed by a newline character. For example, if crond was process
number 25, /var/run/crond.pid would contain three characters: two, five, and newline.
Programs that read PID files should be somewhat flexible in what they accept; i.e., they should
ignore extra whitespace, leading zeroes, absence of the trailing newline, or additional lines in the
PID file. Programs that create PID files should use the simple specification located in the above
paragraph.
The utmp file, which stores information about who is currently using the system, is located in
this directory.
Programs that maintain transient UNIX-domain sockets must place them in this directory.

37/var/run should be unwritable for unprivileged users (root or users running daemons); it is a major
security problem if any user can write in this directory.

380

35. The LINUX File System Standard 35.5. The /var Hierarchy

35.5.14 /var/spool : Application spool data

35.5.14.1 Purpose

/var/spool contains data which is awaiting some kind of later processing. Data in
/var/spool represents work to be done in the future (by a program, user, or administrator);
often data is deleted after it has been processed.38

35.5.14.2 Specific Options

The following directories, or symbolic links to directories, must be in /var/spool, if the corre-
sponding subsystem is installed:

/var/spool ——— Spool directories

lpd Printer spool directory (optional)

mqueue Outgoing mail queue (optional)

news News spool directory (optional)

rwho Rwhod files (optional)

uucp Spool directory for UUCP (optional)

35.5.14.3 /var/spool/lpd : Line-printer daemon print queues (optional)

35.5.14.3.1 Purpose
The lock file for lpd, lpd.lock, must be placed in /var/spool/lpd. It is suggested that the
lock file for each printer be placed in the spool directory for that specific printer and named
lock.

35.5.14.3.2 Specific Options

/var/spool/lpd ——— Printer spool directory

<printer> Spools for a specific printer (optional)

35.5.14.4 /var/spool/rwho : Rwhod files (optional)

35.5.14.4.1 Purpose
This directory holds the rwhod information for other systems on the local net.

BEGIN RATIONALE

38UUCP lock files must be placed in /var/lock. See the above section on /var/lock.

381

35.6. Operating System Specific Annex 35. The LINUX File System Standard

Some BSD releases use /var/rwho for this data; given its historical location in
/var/spool on other systems and its approximate fit to the definition of ‘spooled’ data,
this location was deemed more appropriate.
END RATIONALE

35.5.15 /var/tmp : Temporary files preserved between system reboots

35.5.15.1 Purpose

The /var/tmp directory is made available for programs that require temporary files or direc-
tories that are preserved between system reboots. Therefore, data stored in /var/tmp is more
persistent than data in /tmp.

Files and directories located in /var/tmp must not be deleted when the system is booted. Al-
though data stored in /var/tmp is typically deleted in a site-specific manner, it is recommended
that deletions occur at a less frequent interval than /tmp.

35.5.16 /var/yp : Network Information Service (NIS) database files
(optional)

35.5.16.1 Purpose

Variable data for the Network Information Service (NIS), formerly known as the Sun Yellow
Pages (YP), must be placed in this directory.

BEGIN RATIONALE
/var/yp is the standard directory for NIS (YP) data and is almost exclusively used in NIS
documentation and systems.39

END RATIONALE

35.6 Operating System Specific Annex

This section is for additional requirements and recommendations that only apply to a specific
operating system. The material in this section should never conflict with the base standard.

35.6.1 Linux

This is the annex for the Linux operating system.

35.6.1.1 / : Root directory

On Linux systems, if the kernel is located in /, we recommend using the names vmlinux or
vmlinuz, which have been used in recent Linux kernel source packages.

39NIS should not be confused with Sun NIS+, which uses a different directory, /var/nis.

382

35. The LINUX File System Standard 35.6. Operating System Specific Annex

35.6.1.2 /bin : Essential user command binaries (for use by all users)

Linux systems which require them place these additional files into /bin.

{ setserial }

35.6.1.3 /dev : Devices and special files

All devices and special files in /dev should adhere to the Linux Allocated Devices docu-
ment, which is available with the Linux kernel source. It is maintained by H. Peter Anvin
<hpa@zytor.com>.

Symbolic links in /dev should not be distributed with Linux systems except as provided in the
Linux Allocated Devices document.

BEGIN RATIONALE

The requirement not to make symlinks promiscuously is made because local setups will
often differ from that on the distributor’s development machine. Also, if a distribution
install script configures the symbolic links at install time, these symlinks will often not get
updated if local changes are made in hardware. When used responsibly at a local level,
however, they can be put to good use.
END RATIONALE

35.6.1.4 /etc : Host-specific system configuration

Linux systems which require them place these additional files into /etc.

{ lilo.conf }

35.6.1.5 /proc : Kernel and process information virtual filesystem

The proc filesystem is the de-facto standard Linux method for handling process and system
information, rather than /dev/kmem and other similar methods. We strongly encourage this for
the storage and retrieval of process information as well as other kernel and memory information.

35.6.1.6 /sbin : Essential system binaries

Linux systems place these additional files into /sbin.

• Second extended filesystem commands (optional):

{ badblocks, dumpe2fs, e2fsck, mke2fs, mklost+found, tune2fs }

• Boot-loader map installer (optional):

{ lilo }

383

35.6. Operating System Specific Annex 35. The LINUX File System Standard

Optional files for /sbin:

• Static binaries:

{ ldconfig, sln, ssync }

Static ln (sln) and static sync (ssync) are useful when things go wrong. The primary use
of sln (to repair incorrect symlinks in /lib after a poorly orchestrated upgrade) is no longer
a major concern now that the ldconfig program (usually located in /usr/sbin) exists and
can act as a guiding hand in upgrading the dynamic libraries. Static sync is useful in some
emergency situations. Note that these need not be statically linked versions of the standard ln
and sync, but may be.
The ldconfig binary is optional for /sbin since a site may choose to run ldconfig at boot
time, rather than only when upgrading the shared libraries. (It’s not clear whether or not it is
advantageous to run ldconfig on each boot.) Even so, some people like ldconfig around for
the following (all too common) situation:

1. I’ve just removed /lib/<file>.

2. I can’t find out the name of the library because ls is dynamically linked, I’m using a shell
that doesn’t have ls built-in, and I don’t know about using ”echo *” as a replacement.

3. I have a static sln, but I don’t know what to call the link.

• Miscellaneous:

{ ctrlaltdel, kbdrate }

So as to cope with the fact that some keyboards come up with such a high repeat rate as to be
unusable, kbdrate may be installed in /sbin on some systems.
Since the default action in the kernel for the Ctrl-Alt-Del key combination is an instant hard
reboot, it is generally advisable to disable the behavior before mounting the root filesystem in
read-write mode. Some init suites are able to disable Ctrl-Alt-Del, but others may require the
ctrlaltdel program, which may be installed in /sbin on those systems.

35.6.1.7 /usr/include : Header files included by C programs

These symbolic links are required if a C or C++ compiler is installed and only for systems not
based on glibc.

/usr/include/asm -> /usr/src/linux/include/asm-<arch>
/usr/include/linux -> /usr/src/linux/include/linux

35.6.1.8 /usr/src : Source code

For systems based on glibc, there are no specific guidelines for this directory. For systems based
on Linux libc revisions prior to glibc, the following guidelines and rationale apply:
The only source code that should be placed in a specific location is the Linux kernel source code.
It is located in /usr/src/linux.
If a C or C++ compiler is installed, but the complete Linux kernel source code is not installed,
then the include files from the kernel source code must be located in these directories:

384

35. The LINUX File System Standard 35.6. Operating System Specific Annex

/usr/src/linux/include/asm-<arch>
/usr/src/linux/include/linux

<arch> is the name of the system architecture.

Note: /usr/src/linux may be a symbolic link to a kernel source code tree.
BEGIN RATIONALE
It is important that the kernel include files be located in /usr/src/linux and not in
/usr/include so there are no problems when system administrators upgrade their kernel
version for the first time.
END RATIONALE

35.6.1.9 /var/spool/cron : cron and at jobs

This directory contains the variable data for the cron and at programs.

385

35.7. Appendix 35. The LINUX File System Standard

35.7 Appendix

35.7.1 The FHS mailing list

The FHS mailing list is located at <fhs-discuss@ucsd.edu>. To subscribe to the list send mail to
<listserv@ucsd.edu> with body ”ADD fhs-discuss”.

Thanks to Network Operations at the University of California at San Diego who allowed us to
use their excellent mailing list server.

As noted in the introduction, please do not send mail to the mailing list without first contacting
the FHS editor or a listed contributor.

35.7.2 Background of the FHS

The process of developing a standard filesystem hierarchy began in August 1993 with an effort
to restructure the file and directory structure of Linux. The FSSTND, a filesystem hierarchy
standard specific to the Linux operating system, was released on February 14, 1994. Subsequent
revisions were released on October 9, 1994 and March 28, 1995.

In early 1995, the goal of developing a more comprehensive version of FSSTND to address not
only Linux, but other UNIX-like systems was adopted with the help of members of the BSD
development community. As a result, a concerted effort was made to focus on issues that were
general to UNIX-like systems. In recognition of this widening of scope, the name of the standard
was changed to Filesystem Hierarchy Standard or FHS for short.

Volunteers who have contributed extensively to this standard are listed at the end of this docu-
ment. This standard represents a consensus view of those and other contributors.

35.7.3 General Guidelines

Here are some of the guidelines that have been used in the development of this standard:

• Solve technical problems while limiting transitional difficulties.

• Make the specification reasonably stable.

• Gain the approval of distributors, developers, and other decision-makers in relevant de-
velopment groups and encourage their participation.

• Provide a standard that is attractive to the implementors of different UNIX-like systems.

35.7.4 Scope

This document specifies a standard filesystem hierarchy for FHS filesystems by specifying the
location of files and directories, and the contents of some system files.

This standard has been designed to be used by system integrators, package developers, and
system administrators in the construction and maintenance of FHS compliant filesystems. It
is primarily intended to be a reference and is not a tutorial on how to manage a conforming
filesystem hierarchy.

386

35. The LINUX File System Standard 35.7. Appendix

The FHS grew out of earlier work on FSSTND, a filesystem organization standard for the Linux
operating system. It builds on FSSTND to address interoperability issues not just in the Linux
community but in a wider arena including 4.4BSD-based operating systems. It incorporates
lessons learned in the BSD world and elsewhere about multi-architecture support and the de-
mands of heterogeneous networking.

Although this standard is more comprehensive than previous attempts at filesystem hierarchy
standardization, periodic updates may become necessary as requirements change in relation to
emerging technology. It is also possible that better solutions to the problems addressed here will
be discovered so that our solutions will no longer be the best possible solutions. Supplementary
drafts may be released in addition to periodic updates to this document. However, a specific
goal is backwards compatibility from one release of this document to the next.

Comments related to this standard are welcome. Any comments or suggestions for changes may
be directed to the FHS editor (Daniel Quinlan <quinlan@pathname.com>) or the FHS mailing
list. Typographical or grammatical comments should be directed to the FHS editor.

Before sending mail to the mailing list it is requested that you first contact the FHS editor in
order to avoid excessive re-discussion of old topics.

Questions about how to interpret items in this document may occasionally arise. If you have
need for a clarification, please contact the FHS editor. Since this standard represents a consensus
of many participants, it is important to make certain that any interpretation also represents their
collective opinion. For this reason it may not be possible to provide an immediate response
unless the inquiry has been the subject of previous discussion.

35.7.5 Acknowledgments

The developers of the FHS wish to thank the developers, system administrators, and users
whose input was essential to this standard. We wish to thank each of the contributors who
helped to write, compile, and compose this standard.

The FHS Group also wishes to thank those Linux developers who supported the FSSTND, the
predecessor to this standard. If they hadn’t demonstrated that the FSSTND was beneficial, the
FHS could never have evolved.

35.7.6 Contributors

Brandon S. Allbery <bsa@kf8nh.wariat.org>
Keith Bostic <bostic@cs.berkeley.edu>
Drew Eckhardt <drew@colorado.edu>
Rik Faith <faith@cs.unc.edu>
Stephen Harris <sweh@spuddy.mew.co.uk>
Ian Jackson <ijackson@cus.cam.ac.uk>
John A. Martin <jmartin@acm.org>
Ian McCloghrie <ian@ucsd.edu>
Chris Metcalf <metcalf@lcs.mit.edu>
Ian Murdock <imurdock@debian.org>
David C. Niemi <niemidc@clark.net>
Daniel Quinlan <quinlan@pathname.com>

387

35.7. Appendix 35. The LINUX File System Standard

Eric S. Raymond <esr@thyrsus.com>
Rusty Russell <rusty@rustcorp.com.au>
Mike Sangrey <mike@sojurn.lns.pa.us>
David H. Silber <dhs@glowworm.firefly.com>
Thomas Sippel-Dau <t.sippel-dau@ic.ac.uk>
Theodore Ts’o <tytso@athena.mit.edu>
Stephen Tweedie <sct@dcs.ed.ac.uk>
Fred N. van Kempen <waltje@infomagic.com>
Bernd Warken <bwarken@mayn.de>

388

Chapter 36

httpd — Apache Web Server

In this chapter, we will show how to set up a web server running virtual domains and
dynamic CGI web pages. HTML is not covered, and you are expected to have some
understanding of what HTML is, or at least where to find documentation about it.

36.1 Web Server Basics

In Section 26.2 we showed a simple HTTP session with the telnet command. A
web server is really nothing more than a program that reads a file from the hard disk
whenever a GET /<filename>.html HTTP/1.0 request comes in on port 80. Here,
we will show a simple web server written in shell script. &Not by me. The author did not
put his name in the source, so if you are out there, please drop me an email.- You will need to add
the line

✞ �

www stream tcp nowait nobody /usr/local/sbin/sh-httpd
✝ ✆

to your /etc/inetd.conf file. If you are running xinetd, then you will need to add
a file containing

✞ �

service www
{

socket_type = stream
wait = no

5 user = nobody
server = /usr/local/sbin/sh-httpd

}
✝ ✆

to your /etc/xinetd.d/ directory. Then, you must stop any already running web
servers and restart inetd (or xinetd).

389

36.1. Web Server Basics 36. httpd — Apache Web Server

You will also have to create a log file (/usr/local/var/log/sh-httpd.log)
and at least one web page (/usr/local/var/sh-www/index.html) for your server
to serve. It can contain, say:

✞ �

<HTML>
<HEAD>
<TITLE>My First Document</TITLE>

</HEAD>
5 <BODY bgcolor=#CCCCCC text="#000000">

This is my first document<P>
Please visit

The Rute Home Page

10
for more info.</P>
</BODY>

</HTML>
✝ ✆

Note that the server runs as nobody, so the log file must be writable by the no-
body user, and the index.html file must be readable. Also note the use of the get-
peername command, which can be changed to PEER="" if you do not have the net-
pipes package installed. &I am not completely sure if other commands used here are unavailable
on other UNIX systems.-.

✞ �
#!/bin/sh
VERSION=0.1
NAME="ShellHTTPD"
DEFCONTENT="text/html"

5 DOCROOT=/usr/local/var/sh-www
DEFINDEX=index.html
LOGFILE=/usr/local/var/log/sh-httpd.log

log() {
10 local REMOTE_HOST=$1

local REFERRER=$2
local CODE=$3
local SIZE=$4

15 echo "$REMOTE_HOST $REFERRER - [$REQ_DATE] \
\"${REQUEST}\" ${CODE} ${SIZE}" >> ${LOGFILE}
}

print_header() {
20 echo -e "HTTP/1.0 200 OK\r"

echo -e "Server: ${NAME}/${VERSION}\r"
echo -e "Date: ‘date‘\r"

}

25 print_error() {
echo -e "HTTP/1.0 $1 $2\r"

390

36. httpd — Apache Web Server 36.1. Web Server Basics

echo -e "Content-type: $DEFCONTENT\r"
echo -e "Connection: close\r"
echo -e "Date: ‘date‘\r"

30 echo -e "\r"
echo -e "$2\r"
exit 1

}

35 guess_content_type() {
local FILE=$1
local CONTENT

case ${FILE##*.} in
40 html) CONTENT=$DEFCONTENT ;;

gz) CONTENT=application/x-gzip ;;
*) CONTENT=application/octet-stream ;;

esac

45 echo -e "Content-type: $CONTENT"
}

do_get() {
local DIR

50 local NURL
local LEN

if [! -d $DOCROOT]; then
log ${PEER} - 404 0

55 print_error 404 "No such file or directory"
fi

if [-z "${URL##*/}"]; then
URL=${URL}${DEFINDEX}

60 fi

DIR="‘dirname $URL‘"
if [! -d ${DOCROOT}/${DIR}]; then

log ${PEER} - 404 0
65 print_error 404 "Directory not found"

else
cd ${DOCROOT}/${DIR}
NURL="‘pwd‘/‘basename ${URL}‘"
URL=${NURL}

70 fi

if [! -f ${URL}]; then
log ${PEER} - 404 0
print_error 404 "Document not found"

75 fi

print_header
guess_content_type ${URL}
LEN="‘ls -l ${URL} | tr -s ’ ’ | cut -d ’ ’ -f 5‘"

80 echo -e "Content-length: $LEN\r\n\r"
log ${PEER} - 200 ${LEN}

391

36.1. Web Server Basics 36. httpd — Apache Web Server

cat ${URL}
sleep 3

}
85

read_request() {
local DIRT
local COMMAND

90 read REQUEST
read DIRT

REQ_DATE="‘date +"%d/%b/%Y:%H:%M:%S %z"‘"
REQUEST="‘echo ${REQUEST} | tr -s [:blank:]‘"

95 COMMAND="‘echo ${REQUEST} | cut -d ’ ’ -f 1‘"
URL="‘echo ${REQUEST} | cut -d ’ ’ -f 2‘"
PROTOCOL="‘echo ${REQUEST} | cut -d ’ ’ -f 3‘"

case $COMMAND in
100 HEAD)

print_error 501 "Not implemented (yet)"
;;

GET)
do_get

105 ;;
*)

print_error 501 "Not Implemented"
;;

esac
110 }

#
It was supposed to be clean - without any non-standard utilities
but I want some logging where the connections come from, so

115 # I use just this one utility to get the peer address
#
This is from the netpipes package
PEER="‘getpeername | cut -d ’ ’ -f 1‘"

120 read_request

exit 0
✝ ✆

Now run telnet localhost 80, as in Section 26.2. If that works and your
log files are being properly appended (use tail -f . . .), you can try to connect to
http://localhost/ with a web browser like Netscape.

Notice also that the command getsockname (which tells you which of your own
IP addresses the remote client connected to) could allow the script to serve pages from
a different directory for each IP address. This is virtual domains in a nutshell. &Groovy,
baby, I’m in a giant nutshell.... how do I get out?-

392

36. httpd — Apache Web Server 36.2. Installing and Configuring Apache

36.2 Installing and Configuring Apache

Because all distributions package Apache in a different way, here I assume Apache
to have been installed from its source tree, rather than from a .deb or .rpm
package. You can refer to Section 24.1 on how to install Apache from its source
.tar.gz file like any other GNU package. (You can even install it under Win-
dows, Windows NT, or OS/2.) The source tree is, of course, available from The
Apache Home Page http://www.apache.org. Here I assume you have installed it in --
prefix=/opt/apache/. In the process, Apache will have dumped a huge reference
manual into /opt/apache/htdocs/manual/.

36.2.1 Sample httpd.conf

Apache has several legacy configuration files: access.conf and srm.conf are two
of them. These files are now deprecated and should be left empty. A single configura-
tion file /opt/apache/conf/httpd.conf may contain at minimum:

✞ �
ServerType standalone
ServerRoot "/opt/apache"
PidFile /opt/apache/logs/httpd.pid
ScoreBoardFile /opt/apache/logs/httpd.scoreboard

5 Port 80
User nobody
Group nobody
HostnameLookups Off
ServerAdmin webmaster@cranzgot.co.za

10 UseCanonicalName On
ServerSignature On
DefaultType text/plain
ErrorLog /opt/apache/logs/error_log
LogLevel warn

15 LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog /opt/apache/logs/access_log common
DocumentRoot "/opt/apache/htdocs"
DirectoryIndex index.html
AccessFileName .htaccess

20 <Directory />
Options FollowSymLinks
AllowOverride None
Order Deny,Allow
Deny from All

25 </Directory>
<Files ˜ "ˆ\.ht">

Order allow,deny
Deny from all

</Files>
30 <Directory "/opt/apache/htdocs">

Options Indexes FollowSymLinks MultiViews
AllowOverride All

393

36.2. Installing and Configuring Apache 36. httpd — Apache Web Server

Order allow,deny
Allow from all

35 </Directory>
<Directory "/opt/apache/htdocs/home/*/www">

Options Indexes MultiViews
AllowOverride None
Order allow,deny

40 Allow from all
</Directory>
UserDir /opt/apache/htdocs/home/*/www

✝ ✆

With the config file ready, you can move the index.html file above to
/opt/apache/htdocs/. You will notice the complete Apache manual and a demo
page already installed there; you can move them to another directory for the time be-
ing. Now run

✞ �

/opt/apache/bin/httpd -X
✝ ✆

and then point your web browser to http://localhost/ as before.

36.2.2 Common directives

Here is a description of the options. Each option is called a directive
in Apache terminology. A complete list of basic directives is in the file
/opt/apache/htdocs/manual/mod/core.html.

ServerType As discussed in Section 29.2, some services can run standalone or from
inetd (or xinetd). This directive can be exactly standalone or inetd. If
you choose inetd, you will need to add an appropriate line into your inetd
configuration, although a web server should almost certainly choose standalone
mode.

ServerRoot This is the directory superstructure&See page 137.- under which Apache
is installed. It will always be the same as the value passed to --prefix=.

PidFile Many system services store the process ID in a file for shutdown and moni-
toring purposes. On most distributions, the file is /var/run/httpd.pid.

ScoreBoardFile This option is used for communication between Apache parent
and child processes on some non-UNIX systems.

Port This is the TCP port for standalone servers to listen on.

User, Group This option is important for security. It forces httpd to user nobody
privileges. If the web server is ever hacked, the attack will not be able to gain
more than the privileges of the nobody user.

394

36. httpd — Apache Web Server 36.2. Installing and Configuring Apache

HostnameLookups To force a reverse DNS lookup on every connecting host, set this
directive to on. To force a forward lookup on every reverse lookup, set this to
double. This option is for logging purposes since access control does a reverse
and forward reverse lookup anyway if required. It should certainly be off if you
want to reduce latency.

ServerAdmin Error messages include this email address.

UseCanonicalName If Apache has to return a URL for any reason, it will normally
return the full name of the server. Setting to off uses the very host name sent by
the client.

ServerSignature Add the server name to HTML error messages.

DefaultType All files returned to the client have a type field specifying how the file
should be displayed. If Apache cannot deduce the type, it assumes the MIME
Type to be text/plain. See Section 12.6.2 for a discussion of MIME types.

ErrorLog Where errors get logged, usually /var/log/httpd/error log

LogLevel How much info to log.

LogFormat Define a new log format. Here we defined a log format and call it com-
mon. Multiple lines are allowed. Lots of interesting information can actually
be logged: See /opt/apache/htdocs/manual/mod/mod log config.html
for a full description.

CustomLog The log file name and its (previously defined) format.

DocumentRoot This directive specifies the top-level directory that client connec-
tions will see. The string /opt/apache/htdocs/ is prepended to any file
lookup, and hence a URL http://localhost/manual/index.html.en will return the file
/opt/apache/htdocs/manual/index.html.en.

DirectoryIndex This directive gives the default file to try serve for URLs that con-
tain only a directory name. If a file index.html does not exist under that direc-
tory, an index of the directory is sent to the client. Other common configurations
use index.htm or default.html.

AccessFileName Before serving a file to a client, Apache reads additional directives
from a file .htaccess in the same directory as the requested file. If a parent
directory contains a .htaccess instead, this one will take priority. The .htac-
cess file contains directives that limit access to the directory, as discussed below.

The above is merely the general configuration of Apache. To actually serve pages,
you need to define directories, each with a particular purpose, containing particular
HTML or graphic files. The Apache configuration file is very much like an HTML
document. Sections are started with <section parameter> and ended with </section>.

395

36.2. Installing and Configuring Apache 36. httpd — Apache Web Server

The most common directive of this sort is <Directory /directory> which does such
directory definition. Before defining any directories, we need to limit access to the root
directory. This control is critical for security.

✞ �

<Directory />
Options FollowSymLinks
Deny from All
Order Deny,Allow

5 AllowOverride None
</Directory>

✝ ✆

This configuration tells Apache about the root directory, giving clients very restrictive
access to it. The directives are&Some of these are extracted from the Apache manual.-:

Options The Options directive controls which server features are available in a par-
ticular directory. There is also the syntax +option or -option to include the options
of the parent directory, for example, Options +FollowSymLinks -Indexes.

FollowSymLinks The server will follow any symbolic links beneath the direc-
tory. Be careful about what symbolic links you have beneath directories with
FollowSymLinks. You can, for example, give everyone access to the root
directory by having a link ../../../ under htdocs—not what you want.

ExecCGI Execution of CGI scripts is permitted.

Includes Server-side includes are permitted (more on this later).

IncludesNOEXEC Server-side includes are permitted, but the #exec command
and #include of CGI scripts are disabled.

Indexes If a client asks for a directory by name and no index.html file (or
whatever DirectoryIndex file you specified) is present, then a pretty list-
ing of the contents of that directory is created and returned. For security
you may want to turn this option off.

MultiViews Content-negotiated MultiViews are allowed (more on this later).

SymLinksIfOwnerMatch The server will only follow symbolic links for which
the target file or directory is owned by the same user ID as the link (more on
this later).

All All options except for MultiViews. This is the default setting.

Deny Hosts that are not allowed to connect. You can specify a host name or IP address,
for example, as:

✞ �

Deny from 10.1.2.3
Deny from 192.168.5.0/24
Deny from cranzgot.co.za

✝ ✆

396

36. httpd — Apache Web Server 36.2. Installing and Configuring Apache

which will deny access to 10.1.2.3, all hosts beginning with 192.168.5., and
all hosts ending in .cranzgot.co.za, including the host cranzgot.co.za.

Allow Hosts that are allowed to connect. This directive uses the same syntax as Deny.

Order If order is Deny,Allow, then the Deny directives are checked first and any
client that does not match a Deny directive or does match an Allow directive
will be allowed access to the server.

If order is Allow,Deny, then the Allow directives are checked first and any
client that does not match an Allow directive or does match a Deny directive
will be denied access to the server.

AllowOverride In addition to the directives specified here, additional directives will
be read from the file specified by AccessFileName, usually called .htac-
cess. This file would usually exist alongside your .html files or otherwise
in a parent directory. If the file exists, its contents are read into the cur-
rent <Directory . . .> directive. AllowOverride says what directives the
.htaccess file is allowed to squash. The complete list can be found in
/opt/apache/htdocs/manual/mod/core.html.

You can see that we give very restrictive Options to the root directory, as well
as very restrictive access. The only server feature we allow is FollowSymLinks, then
we Deny any access, and then we remove the possibility that a .htaccess file could
override our restrictions.

The <Files . . .> directive sets restrictions on all files matching a particular reg-
ular expression. As a security measure, we use it to prevent access to all .htaccess
files as follows:

✞ �

<Files ˜ "ˆ\.ht">
Order allow,deny
Deny from all

</Files>
✝ ✆

We are now finally ready to add actual web page directories. These take a less
restrictive set of access controls:

✞ �

<Directory "/opt/apache/htdocs">
Options Indexes FollowSymLinks MultiViews
AllowOverride All
Order allow,deny

5 Allow from all
</Directory>

✝ ✆

397

36.2. Installing and Configuring Apache 36. httpd — Apache Web Server

36.2.3 User HTML directories

Our users may require that Apache know about their private web page directories
˜/www/. This is easy to support with the special UserDir directive:

✞ �

<Directory "/opt/apache/htdocs/home/*/www">
Options Indexes MultiViews
AllowOverride None
Order allow,deny

5 Allow from all
</Directory>
UserDir /opt/apache/htdocs/home/*/www

✝ ✆

For this feature to work, you must symlink /opt/apache/htdocs/home
to /home, and create a directory www/ under each user’s home direc-
tory. Hitting the URL http://localhost/˜jack/index.html will then retrieve the file
/opt/apache/htdocs/home/jack/www/index.html. You will find that Apache
gives a Forbidden error message when you try to do this. This is probably because
jack’s home directory’s permissions are too restrictive. Your choices vary between
now making jack’s home directory less restricted or increasing the privileges of
Apache. Running Apache under the www group by using Group www, and then
running

✞ �

groupadd -g 65 www
chown jack:www /home/jack /home/jack/www
chmod 0750 /home/jack /home/jack/www

✝ ✆

is a reasonable compromise.

36.2.4 Aliasing

Sometimes, HTML documents will want to refer to a file or graphic by using a simple
prefix, rather than a long directory name. Other times, you want two different refer-
ences to source the same file. The Alias directive creates virtual links between direc-
tories. For example, adding the following line, means that a URL /icons/bomb.gif
will serve the file /opt/apache/icons/bomb.gif:

✞ �

Alias /icons/ "/opt/apache/icons/"
✝ ✆

We do, of course, need to tell Apache about this directory:
✞ �

<Directory "/opt/apache/icons">
Options None
AllowOverride None
Order allow,deny

398

36. httpd — Apache Web Server 36.2. Installing and Configuring Apache

5 Allow from all
</Directory>

✝ ✆

36.2.5 Fancy indexes

You will find the directory lists generated by the preceding configuration rather bland.
The directive

✞ �

IndexOptions FancyIndexing
✝ ✆

causes nice descriptive icons to be printed to the left of the file name. What icons match
what file types is a trick issue. You can start with:

✞ �

AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip
AddIconByType (TXT,/icons/text.gif) text/*
AddIconByType (IMG,/icons/image2.gif) image/*
AddIconByType (SND,/icons/sound2.gif) audio/*

5 AddIconByType (VID,/icons/movie.gif) video/*
AddIcon /icons/compressed.gif .Z .z .tgz .gz .zip
AddIcon /icons/a.gif .ps .eps
AddIcon /icons/layout.gif .html .shtml .htm

✝ ✆

This requires the Alias directive above to be present. The default Apache configura-
tion contains a far more extensive map of file types.

36.2.6 Encoding and language negotiation

You can get Apache to serve gzipped files with this:
✞ �

AddEncoding x-compress Z
AddEncoding x-gzip gz

✝ ✆

Now if a client requests a file index.html, but only a file index.html.gz exists,
Apache decompresses it on-the-fly. Note that you must have the MultiViews options
enabled.

The next options cause Apache to serve index.html.language-code when in-
dex.html is requested, filling in the preferred language code sent by the web browser.
Adding these directives causes your Apache manual to display correctly and will prop-
erly show documents that have non-English translations. Here also, the MultiViews
must be present.

✞ �

AddLanguage en .en

399

36.2. Installing and Configuring Apache 36. httpd — Apache Web Server

AddLanguage da .dk
AddLanguage nl .nl
AddLanguage et .ee

5 AddLanguage fr .fr
AddLanguage de .de
AddLanguage el .el
AddLanguage ja .ja
AddLanguage ru .ru

10 LanguagePriority en da nl et fr de el ja ru
✝ ✆

The LanguagePriority directive indicates the preferred language if the browser did
not specify any.

Some files might contain a .koi8-r extension, indicating a Russian character set
encoding for this file. Many languages have such custom character sets. Russian files
are named webpage.html.ru.koi8-r. Apache must tell the web browser about the
encoding type, based on the extension. Here are directives for Japanese, Russian, and
UTF-8&UTF-8 is a Unicode character set encoding useful for any language.-, as follows:

✞ �

AddCharset ISO-2022-JP .jis
AddCharset KOI8-R .koi8-r
AddCharset UTF-8 .utf8

✝ ✆

Once again, the default Apache configuration contains a far more extensive map
of languages and character sets.

36.2.7 Server-side includes — SSI

Apache actually has a built-in programming language that interprets .shtml files as
scripts. The output of such a script is returned to the client. Most of a typical .shtml
file will be ordinary HTML, which will be served unmodified. However, lines like

✞ �

<!--#echo var="DATE_LOCAL" -->
✝ ✆

will be interpreted, and their output included into the HTML—hence the name server-
side includes. Server-side includes are ideal for HTML pages that contain mostly static
HTML with small bits of dynamic content. To demonstrate, add the following to your
httpd.conf:

✞ �

AddType text/html .shtml
AddHandler server-parsed .shtml
<Directory "/opt/apache/htdocs/ssi">

Options Includes
5 AllowOverride None

Order allow,deny

400

36. httpd — Apache Web Server 36.2. Installing and Configuring Apache

Allow from all
</Directory>

✝ ✆

Create a directory /opt/apache/htdocs/ssi with the index file index.shtml:
✞ �

<HTML>
The date today is <!--#echo var="DATE_LOCAL" -->.<P>
Here is a directory listing:

<PRE>

5 <!--#exec cmd="ls -al" -->
</PRE>

<!--#include virtual="footer.html" -->
</HTML>

✝ ✆

and then a file footer.html containing anything you like. It is obvious how useful
this procedure is for creating many documents with the same banner by means of a
#include statement. If you are wondering what other variables you can print besides
DATE LOCAL, try the following:

✞ �

<HTML>
<PRE>
<!--#printenv -->

</PRE>
5 </HTML>

✝ ✆

You can also goto http://localhost/manual/howto/ssi.html to see some other examples.

36.2.8 CGI — Common Gateway Interface

(I have actually never managed to figure out why CGI is called CGI.) CGI is where
a URL points to a script. What comes up in your browser is the output of the script
(were it to be executed) instead of the contents of the script itself. To try this, create a
file /opt/apache/htdocs/test.cgi:

✞ �

#!/bin/sh

echo ’Content-type: text/html’
echo

5 echo ’<HTML>’
echo ’ <HEAD>’
echo ’ <TITLE>My First CGI</TITLE>’
echo ’ </HEAD>’
echo ’ <BODY bgcolor=#CCCCCC text="#000000">’

10 echo ’This is my first CGI<P>’
echo ’Please visit’

401

36.2. Installing and Configuring Apache 36. httpd — Apache Web Server

echo ’ ’
echo ’ The Rute Home Page’
echo ’ ’

15 echo ’for more info.</P>’
echo ’ </BODY>’
echo ’</HTML>’

✝ ✆

Make this script executable with chmod a+x test.cgi and test the output by
running it on the command-line. Add the line

✞ �

AddHandler cgi-script .cgi
✝ ✆

to your httpd.conf file. Next, modify your Options for the directory
/opt/apache/htdocs to include ExecCGI, like this:

✞ �

<Directory "/opt/apache/htdocs">
Options Indexes FollowSymLinks MultiViews ExecCGI
AllowOverride All
Order allow,deny

5 Allow from all
</Directory>

✝ ✆

After restarting Apache you should be able to visit the URL http://localhost/test.cgi.
If you run into problems, don’t forget to run tail /opt/apache/logs/error log
to get a full report.

To get a full list of environment variables available to your CGI program, try the
following script:

✞ �

#!/bin/sh

echo ’Content-type: text/html’
echo

5 echo ’<HTML>’
echo ’<PRE>’
set
echo ’</PRE>’
echo ’</HTML>’

✝ ✆

The script will show ordinary bash environment variables as well as more interesting
variables like QUERY STRING: Change your script to

✞ �

#!/bin/sh

echo ’Content-type: text/html’
echo

402

36. httpd — Apache Web Server 36.2. Installing and Configuring Apache

5 echo ’<HTML>’
echo ’<PRE>’
echo $QUERY_STRING
echo ’</PRE>’
echo ’</HTML>’

✝ ✆

and then go to the URL http://localhost/test/test.cgi?xxx=2&yyy=3. It is easy to see how
variables can be passed to the shell script.

The preceding example is not very interesting. However, it gets useful when
scripts have complex logic or can access information that Apache can’t access on its
own. In Chapter 38 we see how to deploy an SQL database. When you have covered
SQL, you can come back here and replace your CGI script with,

✞ �

#!/bin/sh

echo ’Content-type: text/html’
echo

5

psql -d template1 -H -c "SELECT * FROM pg_tables;"
✝ ✆

This script will dump the table list of the template1 database if it exists. Apache will
have to run as a user that can access this database, which means changing User no-
body to User postgres. &Note that for security you should really limit who can connect to the
postgres database. See Section 38.4.-

36.2.9 Forms and CGI

To create a functional form, use the HTTP <FORM> tag as follows. A file
/opt/apache/htdocs/test/form.html could contain:

✞ �

<HTML>
<FORM name="myform" action="test.cgi" method="get">
<TABLE>

<TR>
5 <TD colspan="2" align="center">

Please enter your personal details:
</TD>

</TR>
<TR>

10 <TD>Name:</TD><TD><INPUT type="text" name="name"></TD>
</TR>
<TR>

<TD>Email:</TD><TD><INPUT type="text" name="email"></TD>
</TR>

15 <TR>

403

36.2. Installing and Configuring Apache 36. httpd — Apache Web Server

<TD>Tel:</TD><TD><INPUT type="text" name="tel"></TD>
</TR>
<TR>

<TD colspan="2" align="center">
20 <INPUT type="submit" value="Submit">

</TD>
</TR>

</TABLE>
</FORM>

25 </HTML>
✝ ✆

which looks like:

Note how this form calls our existing test.cgi script. Here is a script that adds
the entered data to a postgres SQL table:

✞ �

#!/bin/sh

echo ’Content-type: text/html’
echo

5

opts=‘echo "$QUERY_STRING" | \
sed -e ’s/[ˆA-Za-z0-9 %&+,.\/:=@_˜-]//g’ -e ’s/&/ /g’ -e q‘

for opt in $opts ; do
10 case $opt in

name=*)
name=${opt/name=/}
;;

email=*)
15 email=${opt/email=/}

;;
tel=*)

tel=${opt/tel=/}
;;

20 esac

404

36. httpd — Apache Web Server 36.2. Installing and Configuring Apache

done

if psql -d template1 -H -c "\
INSERT INTO people (name, email, tel) \

25 VALUES (’$name’, ’$email’, ’$tel’)" 2>&1 | grep -q ’ˆINSERT ’ ; then
echo "<HTML>Your details \"$name\", \"$email\" and \"$tel\"
"
echo "have been succesfully recorded.</HTML>"

else
echo "<HTML>Database error, please contact our webmaster.</HTML>"

30 fi

exit 0
✝ ✆

Note how the first lines of script remove all unwanted characters from
QUERY STRING. Such processing is imperative for security because shell scripts can
easily execute commands should characters like $ and ‘ be present in a string.

To use the alternative “POST” method, change your FORM tag to
✞ �

<FORM name="myform" action="test.cgi" method="post">
✝ ✆

The POST method sends the query text through stdin of the CGI script. Hence, you
need to also change your opts= line to

✞ �

opts=‘cat | \
sed -e ’s/[ˆA-Za-z0-9 %&+,.\/:=@_˜-]//g’ -e ’s/&/ /g’ -e q‘

✝ ✆

36.2.10 Setuid CGIs

Running Apache as a privileged user has security implications. Another way to get
this script to execute as user postgres is to create a setuid binary. To do this, create a
file test.cgi by compiling the following program similar to that in Section 33.2.

✞ �

#include <unistd.h>

int main (int argc, char *argv[])
{

5 setreuid (geteuid (), geteuid ());
execl ("/opt/apache/htdocs/test/test.sh", "test.sh", 0);
return 0;

}
✝ ✆

405

36.2. Installing and Configuring Apache 36. httpd — Apache Web Server

Then run chown postgres:www test.cgi and chmod a-w,o-rx,u+s
test.cgi (or chmod 4550 test.cgi). Recreate your shell script as test.sh and
go to the URL again. Apache runs test.cgi, which becomes user postgres, and
then executes the script as the postgres user. Even with Apache as User nobody
your script will still work. Note how your setuid program is insecure: it takes no ar-
guments and performs only a single function, but it takes environment variables (or
input from stdin) that could influence its functionality. If a login user could execute
the script, that user could send data via these variables that could cause the script to
behave in an unforeseen way. An alternative is:

✞ �

#include <unistd.h>

int main (int argc, char *argv[])
{

5 char *envir[] = {0};
setreuid (geteuid (), geteuid ());
execle ("/opt/apache/htdocs/test/test.sh", "test.sh", 0, envir);
return 0;

}
✝ ✆

This script nullifies the environment before starting the CGI, thus forcing you to use
the POST method only. Because the only information that can be passed to the script
is a single line of text (through the -e q option to sed) and because that line of text is
carefully stripped of unwanted characters, we can be much more certain of security.

36.2.11 Apache modules and PHP

CGI execution is extremely slow if Apache has to invoke a shell script for each hit.
Apache has a number of facilities for built-in interpreters that will parse script files
with high efficiency. A well-known programming language developed specifically
for the Web is PHP. PHP can be downloaded as source from The PHP Home Page
http://www.php.net and contains the usual GNU installation instructions.

Apache has the facility for adding functionality at runtime using what it calls
DSO (Dynamic Shared Object) files. This feature is for distribution vendors who want
to ship split installs of Apache that enable users to install only the parts of Apache
they like. This is conceptually the same as what we saw in Section 23.1: To give your
program some extra feature provided by some library, you can either statically link
the library to your program or compile the library as a shared .so file to be linked
at run time. The difference here is that the library files are (usually) called mod name
and are stored in /opt/apache/libexec/. They are also only loaded if a Load-
Module name module appears in httpd.conf. To enable DSO support, rebuild and
reinstall Apache starting with:

✞ �

./configure --prefix=/opt/apache --enable-module=so
✝ ✆

406

36. httpd — Apache Web Server 36.2. Installing and Configuring Apache

Any source package that creates an Apache module can now use the Apache
utility /opt/apache/bin/apxs to tell it about the current Apache installation, so
you should make sure this executable is in your PATH.

You can now follow the instructions for installing PHP, possibly beginning with
./configure --prefix=/opt/php --with-apxs=/opt/apache/bin/apxs
--with-pgsql=/usr. (This assumes that you want to enable support for the
postgres SQL database and have postgres previously installed as a pack-
age under /usr.) Finally, check that a file libphp4.so eventually ends up in
/opt/apache/libexec/.

Your httpd.conf then needs to know about PHP scripts. Add the following
lines

✞ �

LoadModule php4_module /opt/apache/libexec/libphp4.so
AddModule mod_php4.c
AddType application/x-httpd-php .php

✝ ✆

and then create a file /opt/apache/htdocs/hello.php containing
✞ �

<html>
<head>
<title>Example</title>
</head>

5 <body>
<?php echo "Hi, I’m a PHP script!"; ?>
</body>
</html>

✝ ✆

and test by visiting the URL http://localhost/hello.php.

Programming in the PHP language is beyond the scope of this book.

36.2.12 Virtual hosts

Virtual hosting is the use of a single web server to serve the web pages of multiple
domains. Although the web browser seems to be connecting to a web site that is an
isolated entity, that web site may in fact be hosted alongside many others on the same
machine.

Virtual hosting is rather trivial to configure. Let us say that we have three
domains: www.domain1.com, www.domain2.com, and www.domain3.com. We
want domains www.domain1.com and www.domain2.com to share IP address
196.123.45.1, while www.domain3.com has its own IP address of 196.123.45.2.
The sharing of a single IP address is called name-based virtual hosting, and the use of a
different IP address for each domain is called IP-based virtual hosting.

407

36.2. Installing and Configuring Apache 36. httpd — Apache Web Server

If our machine has one IP address, 196.123.45.1, we may need to configure a
separate IP address on the same network card as follows (see Section 25.9):

✞ �

ifconfig eth0:1 196.123.45.2 netmask 255.255.255.0 up
✝ ✆

For each domain /opt/apache/htdocs/www.domain?.com/, we now create a
top-level directory. We need to tell Apache that we intend to use the IP address
196.123.45.1 for several hosts. We do that with the NameVirtualHost directive.
Then for each host, we must specify a top-level directory as follows:

✞ �

NameVirtualHost 196.123.45.1

<VirtualHost 196.123.45.1>
ServerName www.domain1.com

5 DocumentRoot /opt/apache/htdocs/www.domain1.com/
</VirtualHost>

<VirtualHost 196.123.45.1>
ServerName www.domain2.com

10 DocumentRoot /opt/apache/htdocs/www.domain2.com/
</VirtualHost>

<VirtualHost 196.123.45.2>
ServerName www.domain3.com

15 DocumentRoot /opt/apache/htdocs/www.domain3.com/
</VirtualHost>

✝ ✆

All that remains is to configure a correct DNS zone for each domain so that lookups of
www.domain1.com and www.domain2.com return 196.123.45.1 while lookups
of www.domain3.com return 196.123.45.2.

You can then add index.html files to each directory.

408

Chapter 37

crond and atd

crond and atd are two very simple and important services that everyone should be
familiar with. crond does the job of running commands periodically (daily, weekly),
and atd’s main feature is to run a command once at some future time.

These two services are so basic that we are not going to detail their package con-
tents and invocation.

37.1 /etc/crontab Configuration File

The /etc/crontab file dictates a list of periodic jobs to be run—like updating the
locate (see page 43) and whatis (see page 40) databases, rotating logs (see Section
21.4.9), and possibly performing backup tasks. If anything needs to be done period-
ically, you can schedule that job in this file. /etc/crontab is read by crond on
startup. crond will already be running on all but the most broken of UNIX systems.

After modifying /etc/crontab, you should restart crond with
/etc/rc.d/init.d/crond restart (or /etc/init.d/crond restart, or
/etc/init.d/cron restart).

/etc/crontab consists of single line definitions for the time of the
day/week/month at which a particular command should be run. Each line has the
form,

✞ �

<time> <user> <executable>
✝ ✆

where <time> is a time pattern that the current time must match for the command
to be executed, <user> tells under what user the command is to be executed, and
<executable> is the command to be run.

409

37.1. /etc/crontab Configuration File 37. crond and atd

The time pattern gives the minute, hour, day of the month, month, and weekday
that the current time is compared. The comparison is done at the start of every single
minute. If crond gets a match, it will execute the command. A simple time pattern is
as follows.

✞ �

50 13 2 9 6 root /usr/bin/play /etc/theetone.wav
✝ ✆

which will playen WAV Sat Sep 2 13:50:00 every year, and
✞ �

50 13 2 * * root /usr/bin/play /etc/theetone.wav
✝ ✆

will play it at 13:50:00 on the 2nd of every month, and
✞ �

50 13 * * 6 root /usr/bin/play /etc/theetone.wav
✝ ✆

will do the same on every Saturday. Further,
✞ �

50 13,14 * * 5,6,7 root /usr/bin/play /etc/theetone.wav
✝ ✆

will play at 13:50:00 and at 14:50:00 on Friday, Saturday, and Sunday, while
✞ �

*/10 * * * 6 root /usr/bin/play /etc/theetone.wav
✝ ✆

will play every 10 minutes the whole of Saturday. The / is a special notation meaning
“in steps of”.

Note that in the above examples, the play command is executed as root.

The following is an actual /etc/crontab file:
✞ �

Environment variables first
SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root

5 HOME=/

Time specs
30 20 * * * root /etc/cron-alarm.sh
35 19 * * * root /etc/cron-alarm.sh

10 58 18 * * * root /etc/cron-alarm.sh
01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly

✝ ✆

Note that the # character is used for comments as usual. crond also allows you
to specify environment variables under which commands are to be run.

410

37. crond and atd 37.2. The at Command

Your time additions should come like mine have, to remind me of the last three
Metro trains of the day.

The last four entries are vendor supplied. The run-parts command
is a simple script to run all the commands listed under /etc/cron.hourly,
/etc/cron.daily, etc. Hence, if you have a script that needs to be run every day but
not at a specific time, you needn’t edit your crontab file: rather just place the script
with the others in /etc/cron.<interval>.

My own /etc/cron.daily/ directory contains:
✞ �
total 14
drwxr-xr-x 2 root root 1024 Sep 2 13:22 .
drwxr-xr-x 59 root root 6144 Aug 31 13:11 ..
-rwxr-xr-x 1 root root 140 Aug 13 16:16 backup

5 -rwxr-xr-x 1 root root 51 Jun 16 1999 logrotate
-rwxr-xr-x 1 root root 390 Sep 14 1999 makewhatis.cron
-rwxr-xr-x 1 root root 459 Mar 25 1999 radiusd.cron.daily
-rwxr-xr-x 1 root root 99 Jul 23 23:48 slocate.cron
-rwxr-xr-x 1 root root 103 Sep 25 1999 tetex.cron

10 -rwxr-xr-x 1 root root 104 Aug 30 1999 tmpwatch
✝ ✆

It is advisable to go through each of these now to see what your system is doing to
itself behind your back.

37.2 The at Command

at will execute a command at some future time, and only once. I suppose it is essential
to know, although I never used it myself until writing this chapter. at is the front end
to the atd daemon which, like crond will almost definitely be running.

Try our wave file example, remembering to press – to get the <EOT> (End
Of Text):

✞ �

[root@cericon /etc]# at 14:19
at> /usr/bin/play /etc/theetone.wav
at> <EOT>
warning: commands will be executed using /bin/sh

5 job 3 at 2000-09-02 14:19
✝ ✆

You can type atq to get a list of current jobs:
✞ �

3 2000-09-02 14:19 a
✝ ✆

ameans is the queue name, 3 is the job number, and 2000-09-02 14:19 is the sched-
uled time of execution. While play is executing, atq will display:

411

37.3. Other cron Packages 37. crond and atd

✞ �

3 2000-09-02 14:19 =
✝ ✆

The at and atd man pages contain additional information.

Note that atd should generally be disabled for security.

37.3 Other cron Packages

There are many crond implementations. Some have more flexible config files, and
others have functionality cope with job schedules that run when the machine is typ-
ically switched off (like home PCs). Your distribution may have chosen one of these
packages instead.

412

Chapter 38

postgres SQL Server

This chapter will show you how to set up an SQL server for free.

38.1 Structured Query Language

Structured Query Language (SQL) is a programming language developed specifically to
access data arranged in tables of rows and columns—as in a database—as well as do
searching, sorting and cross-referencing of that data.

Typically, the database tables will sit in files managed by an SQL server daemon
process. The SQL server will listen on a TCP socket for incoming requests from client
machines and will service those requests.

SQL has become a de facto industry standard. However, the protocols (over
TCP/IP) by which those SQL requests are sent are different from implementation to
implementation.

SQL requests can usually be typed in manually from a command-line interface.
This is difficult for most users, so a GUI interface will usually hide this process from
the user.

SQL servers and SQL support software is major institution. Management of
database tables is actually a complicated affair. A good SQL server will properly
streamline multiple simultaneous requests that may access and modify rows in the
same table. Doing this efficiently, along with the many types of complex searches and
cross-referencing, while also ensuring data integrity, is a complex task.

413

38.2. postgres 38. postgres SQL Server

38.2 postgres

postgres (PostGreSQL) is a free SQL server written under the BSD license. postgres
supports an extended subset of SQL92. &The definitive SQL standard.- It does a lot of
very nifty things that no other database can (it seems). About the only commercial
equivalent worth buying over postgres is a certain very expensive industry leader.
postgres runs on every flavor of UNIX and also on Windows NT.

The postgres documentation proudly states:

The Object-Relational Database Management System now known as Post-
greSQL (and briefly called Postgres95) is derived from the Postgres pack-
age written at Berkeley. With over a decade of development behind it,
PostgreSQL is the most advanced open-source database available any-
where, offering multi-version concurrency control, supporting almost all
SQL constructs (including subselects, transactions, and user-defined types
and functions), and having a wide range of language bindings available
(including C, C++, Java, Perl, Tcl, and Python).

postgres is also fairly dry. Most people ask why it doesn’t have a graphical
frontend. Considering that it runs on so many different platforms, it makes sense for
it to be purely a back-end engine. A graphical interface is a different kind of software
project that would probably support more than one type of database server at the back
and possibly run under only one kind of graphical interface.

The postgres package consists of the files described in the next two sections:

38.3 postgres Package Content

The postgres packages consists of the user programs
✞ �

createdb dropdb pg_dump psql
createlang droplang pg_dumpall vacuumdb
createuser dropuser pg_id

✝ ✆

and the server programs
✞ �

initdb pg_ctl pg_upgrade postgresql-dump
initlocation pg_encoding pg_version postmaster
ipcclean pg_passwd postgres

✝ ✆

Each of these programs has a man page which you should get an inkling of.

Further man pages provide references to actual SQL commands. Try man l se-
lect (explained further on):

414

38. postgres SQL Server 38.4. Installing and Initializing postgres

✞ �

SELECT(l) SELECT(l)

NAME
SELECT - Retrieve rows from a table or view.

5

SYNOPSIS
SELECT [ALL | DISTINCT [ON (expression [, ...])]]

expression [AS name] [, ...]
[INTO [TEMPORARY | TEMP] [TABLE] new_table]

10 [FROM table [alias] [, ...]]
[WHERE condition]
[GROUP BY column [, ...]]
[HAVING condition [, ...]]
[{ UNION [ALL] | INTERSECT | EXCEPT } select]

15 [ORDER BY column [ASC | DESC | USING operator] [, ...]]
[FOR UPDATE [OF class_name [, ...]]]
LIMIT { count | ALL } [{ OFFSET | , } start]

✝ ✆

Most important is the enormous amount of HTML documentation that comes
with postgres. Point your web browser to /usr/doc/postgresql-?.?.? (or
/usr/share/doc/. . .), then dive into the admin, user, programmer, tutorial,
and postgres directories.

Finally, there are the start and stop scripts in /etc/rc.d/init.d/ (or
/etc/init.d/) and the directory in which the database tables themselves are stored:
/var/lib/pgsql/.

38.4 Installing and Initializing postgres

postgres can be gotten prepackaged for your favorite distribution. Simply install the
package using rpm or dpkg and then follow the instructions given below.

Stop the postgres server if it is running; the init.d script may be called
postgres or postgresql (Debian commands in parentheses):

✞ �

/etc/rc.d/init.d/postgres stop
(/etc/init.d/postgresql stop)

✝ ✆

Edit the init.d script to support TCP requests. There will be a line like the
following to which you can add the -i option. Mine looks like:

✞ �
su -l postgres -c "/usr/bin/pg_ctl -D $PGDATA \

415

38.4. Installing and Initializing postgres 38. postgres SQL Server

-p /usr/bin/postmaster -o ’-i -o -e’ start >/dev/null 2>&1"
✝ ✆

which also (with the -o -e option) forces European date formats (28/4/1984 in-
stead of 4/28/1984). Note that hosts will not be able to connect unless you edit
your /var/lib/pgsql/data/pg hba.conf (/etc/postgresql/pg hba.conf
on Debian) file, and add lines like

✞ �

host mydatabase 192.168.4.7 255.255.255.255 trust
✝ ✆

In either case, you should check this file to ensure that only trusted hosts can connect
to your database, or remove the -i option altogether if you are only connecting from
the local machine. To a limited extent, you can also limit what users can connect within
this file.

It would be nice if the UNIX domain socket that postgres listens on
(i.e., /tmp/.s.PGSQL.5432) had permissions 0770 instead of 0777. That way,
you could limit connections to only those users belonging to the postgres
group. You can add this feature by searching for the chmod command within
src/backend/libpq/pqcomm.c inside the postgres-7.0 sources. Later versions
may have added a feature to set the permissions on this socket.

To run postgres, you need a user of that name. If you do not already have one
then enter

✞ �

/usr/sbin/useradd postgres
✝ ✆

and restart the server with
✞ �

/etc/rc.d/init.d/postgresql restart
✝ ✆

The postgres init.d script initializes a template database on first run, so you may
have to start it twice.

Now you can create your own database. The following example creates a
database finance as well as a postgres user finance. It does these creations while
being user postgres (this is what the -U option is for). You should run these com-
mands as user root or as user postgres without the -U postgres.

✞ �

[root@cericon]# /usr/sbin/useradd finance
[root@cericon]# createuser -U postgres --adduser --createdb finance
CREATE USER
[root@cericon]# createdb -U finance finance

5 CREATE DATABASE
[root@cericon]#

✝ ✆

416

38. postgres SQL Server 38.5. Database Queries with psql

38.5 Database Queries with psql

Now that the database exists, you can begin running SQL queries.
✞ �
[root@cericon]# psql -U finance
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
5 \h for help with SQL commands

\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

10 finance=# select * from pg_tables;
tablename | tableowner | hasindexes | hasrules | hastriggers

----------------+------------+------------+----------+-------------
pg_type | postgres | t | f | f
pg_attribute | postgres | t | f | f

15 pg_proc | postgres | t | f | f
pg_class | postgres | t | f | f
pg_group | postgres | t | f | f
pg_database | postgres | f | f | f
pg_variable | postgres | f | f | f

20 pg_log | postgres | f | f | f
pg_xactlock | postgres | f | f | f
pg_attrdef | postgres | t | f | f
pg_relcheck | postgres | t | f | f
pg_trigger | postgres | t | f | f

25 pg_inherits | postgres | t | f | f
pg_index | postgres | t | f | f
pg_statistic | postgres | t | f | f
pg_operator | postgres | t | f | f
pg_opclass | postgres | t | f | f

30 pg_am | postgres | t | f | f
pg_amop | postgres | t | f | f
pg_amproc | postgres | f | f | f
pg_language | postgres | t | f | f
pg_aggregate | postgres | t | f | f

35 pg_ipl | postgres | f | f | f
pg_inheritproc | postgres | f | f | f
pg_rewrite | postgres | t | f | f
pg_listener | postgres | t | f | f
pg_description | postgres | t | f | f

40 pg_shadow | postgres | f | f | t
(28 rows)

✝ ✆

The preceeding rows are postgres’s internal tables. Some are actual tables, and
some are views of tables. &A selective representation of an actual table.-

To get a list of databases, try:
✞ �
finance=# select * from pg_database;

417

38.6. Introduction to SQL 38. postgres SQL Server

datname | datdba | encoding | datpath
-----------+--------+----------+-----------
template1 | 24 | 0 | template1

5 finance | 26 | 0 | finance
(2 rows)

✝ ✆

38.6 Introduction to SQL

The following are 99% of the commands you are ever going to use. (Note that all SQL
commands require a semicolon at the end—you won’t be the first person to ask why
nothing happens when you press without the semicolon.)

38.6.1 Creating tables

To create a table called people, with three columns:
✞ �

CREATE TABLE people (name text, gender bool, address text);
✝ ✆

The created table will title the columns, name, gender, and address. Columns are
typed. This means that only the kind of data that was specified at the time of creation
can go in that column. In the case of gender, it can only be true or false for the boolean
type, which we will associate to the male and female genders. There is probably no
reason to use the boolean value here: using an integer or text field can often be far more
descriptive and flexible. In the case of name and address, these can hold anything,
since they are of the text type, which is the most encompassing type of all.

Note that in the postgres documentation, a “column” is called an “attribute” for
historical reasons.

You should try to choose types according to the kind of searches you are going to
do and not according to the data it holds. Table 38.1 lists the most of the useful types as
well as their SQL92 equivalents. The types in bold are to be used in preference to other
similar types for greater range or precision:

Table 38.1 Common postgres types

Postgres Type SQL92 or SQL3 Type Description
bool boolean logical boolean (true/false)
box rectangular box in 2D plane
char(n) character(n) fixed-length character string
cidr IP version 4 network or host address

continues...

418

38. postgres SQL Server 38.6. Introduction to SQL

Table 38.1 (continued)

Postgres Type SQL92 or SQL3 Type Description
circle circle in 2D plane
date date calendar date without time of day
decimal decimal(p,s) exact numeric for p ¡= 9, s = 0
float4 float(p), p ¡ 7 floating-point number with precision

p
float8 float(p), 7 ¡= p ¡ 16 floating-point number with precision

p
inet IP version 4 network or host address
int2 smallint signed 2-byte integer
int4 int, integer signed 4-byte integer
int8 signed 8-byte integer
interval interval general-use time span
line infinite line in 2D plane
lseg line segment in 2D plane
money decimal(9,2) U.S.-style currency
numeric numeric(p,s) exact numeric for p == 9, s = 0
path open and closed geometric path in

2D plane
point geometric point in 2D plane
polygon closed geometric path in 2D plane
serial unique ID for indexing and cross-

reference
time time time of day
text arbitrary length text (up to 8k for

postgres 7)
timetz time with time zone time of day, including time zone
timestamp timestamp with time zone accurate high range, high precision

date/time with zone
varchar(n) character varying(n) variable-length character string

38.6.2 Listing a table

The SELECT statement is the most widely used statement in SQL. It returns data from
tables and can do searches:

✞ �

finance=# SELECT * FROM PEOPLE;
name | gender | address

------+--------+---------
(0 rows)

✝ ✆

419

38.6. Introduction to SQL 38. postgres SQL Server

38.6.3 Adding a column

The ALTER statement changes something:
✞ �

finance=# ALTER TABLE people ADD COLUMN phone text;
ALTER
finance=# SELECT * FROM people;
name | gender | address | phone

5 ------+--------+---------+-------
(0 rows)

✝ ✆

38.6.4 Deleting (dropping) a column

You cannot drop columns in postgres; you must create a new table from the old table
without the column. How to do this will become obvious further on.

38.6.5 Deleting (dropping) a table

Use the DROP command to delete most things:
✞ �

DROP TABLE people;
✝ ✆

38.6.6 Inserting rows, “object relational”

Insert a row with (you can continue typing over multiple lines):
✞ �
finance=# INSERT INTO people (name, gender, address, phone)
finance-# VALUES (’Paul Sheer’, true, ’Earth’, ’7617224’);
INSERT 20280 1

✝ ✆

The return value is the oid (Object ID) of the row. postgres is an Object Relational
database. This term gets thrown around a lot, but it really means that every table has
a hidden column called the oid column that stores a unique identity number for each
row. The identity number is unique across the entire database. Because it uniquely
identifies rows across all tables, you could call the rows “objects.” The oid feature is
most useful to programmers.

420

38. postgres SQL Server 38.6. Introduction to SQL

38.6.7 Locating rows

The oid of the above row is 20280. To find it:
✞ �

finance=# SELECT * FROM people WHERE oid = 20280;
name | gender | address | phone

------------+--------+---------+---------
Paul Sheer | true | Earth | 7617224

5 (1 row)
✝ ✆

38.6.8 Listing selected columns, and the oid column

To list selected columns, try:
✞ �

SELECT name, address FROM people;
SELECT oid, name FROM people;
SELECT oid, * FROM people;

✝ ✆

It should be obvious what these do.

38.6.9 Creating tables from other tables

Here we create a new table and fill two of its columns from columns in our original
table:

✞ �
finance=# CREATE TABLE sitings (person text, place text, siting text);
CREATE
finance=# INSERT INTO sitings (person, place) SELECT name, address FROM people;
INSERT 20324 1

✝ ✆

38.6.10 Deleting rows

Delete selected rows, like
✞ �

finance=# DELETE FROM people WHERE name = ’Paul Sheer’;
DELETE 1

✝ ✆

421

38.6. Introduction to SQL 38. postgres SQL Server

38.6.11 Searches

About the simplest search you can do with postgres is
✞ �

SELECT * FROM people WHERE name LIKE ’%Paul%’;
✝ ✆

Or alternatively, case insensitively and across the address field:
✞ �
SELECT * FROM people WHERE lower(name) LIKE ’%paul%’ OR lower(address) LIKE ’%paul%’;

✝ ✆

The first % is a wildcard that matches any length of text before the Paul, and the final
% matches any text after. It is the usual way of searching with a field, instead of trying
to get an exact match.

The possibilities are endless:
✞ �

SELECT * FROM people WHERE gender = true AND phone = ’8765432’;
✝ ✆

38.6.12 Migrating from another database; dumping and restoring ta-
bles as plain text

Migrating from another database;
dumping and restoring tables as plain text

The command
✞ �

COPY people TO ’/tmp/people.txt’;
✝ ✆

dumps the people table to /tmp/people.txt, as tab delimeter, newline terminated
rows.

The command,
✞ �
COPY people WITH OIDS TO ’/tmp/people.txt’ DELIMITERS ’,’ WITH NULL AS ’(null)’;

✝ ✆

dumps the people table to /tmp/people.txt, as comma-delimited, newline-
terminated rows, with (null) whereever there is supposed to be a zero byte.

Similarly, the command
✞ �

COPY people FROM ’/tmp/people.txt’;
✝ ✆

inserts into the table people the rows from /tmp/people.txt. It assumes one line
per row and the tab character between each cell.

Note that unprintable characters are escaped with a backslash \ in both output and
the interpretation of input.

422

38. postgres SQL Server 38.7. Real Database Projects

Hence, it is simple to get data from another database. You just have to work out
how to dump it as text.

38.6.13 Dumping an entire database

The command pg dump <database-name> dumps your entire database as plain
text. If you try this on your database, you will notice that the output contains straight-
forward SQL commands. Your database can be reconstructed from scratch by piping
this output through stdin of the psql command. In other words, pg dump merely
produces the exact sequence of SQL commands necessary to reproduce your database.

Sometimes a new version of postgres will switch to a database file format that
is incompatible with your previous files. In this case it is prudent to do a pg dumpall
(and carefully save the output) before upgrading. The output of pg dumpall can once
again be fed through stdin of the psql command and contains all the commands nec-
essary to reconstruct all your databases as well as all the data they contain.

38.6.14 More advanced searches

When you have some very complicated set of tables in front of you, you are likely to
want to merge, select, search, and cross-reference them in innumerable ways to get the
information you want out of them.

Being able to efficiently query the database in this way is the true power of SQL,
but this is about as far as I am going to go here. The postgres documentation cited
above contains details on everything you can do.

38.7 Real Database Projects

University Computer Science majors learn about subjects like Entity Modeling, Rela-
tional Algebra, and Database Normalization. These are formal academic methods accord-
ing to which good databases are designed. You should not venture into constructing
any complex database without these methods.

Most university book shops will have academic books that teach formal database
theory.

423

38.7. Real Database Projects 38. postgres SQL Server

424

Chapter 39

smbd — Samba NT Server

The following introduction is quoted from the Samba online documentation.

39.1 Samba: An Introduction by Christopher R. Hertel

A lot of emphasis has been placed on peaceful coexistence between UNIX and Windows. Un-
fortunately, the two systems come from very different cultures and they have difficulty getting
along without mediation. . . . and that, of course, is Samba’s job. Samba http://samba.org/ runs on
UNIX platforms, but speaks to Windows clients like a native. It allows a UNIX system to move
into a Windows “Network Neighborhood” without causing a stir. Windows users can happily
access file and print services without knowing or caring that those services are being offered by
a UNIX host.

All of this is managed through a protocol suite which is currently known as the “Common
Internet File System,” or CIFS http://www.cifs.com. This name was introduced by Microsoft, and
provides some insight into their hopes for the future. At the heart of CIFS is the latest incarnation
of the Server Message Block (SMB) protocol, which has a long and tedious history. Samba is an
open source CIFS implementation, and is available for free from the http://samba.org/ mirror
sites.

Samba and Windows are not the only ones to provide CIFS networking. OS/2 supports
SMB file and print sharing, and there are commercial CIFS products for Macintosh and other
platforms (including several others for UNIX). Samba has been ported to a variety of non-UNIX
operating systems, including VMS, AmigaOS, and NetWare. CIFS is also supported on dedi-
cated file server platforms from a variety of vendors. In other words, this stuff is all over the
place.

History — the (hopefully) Untedious Version

It started a long time ago, in the early days of the PC, when IBM and Sytec co-developed a simple
networking system designed for building small LANs. The system included something called

425

39.1. Samba: An Introduction 39. smbd — Samba NT Server

NetBIOS, or Network Basic Input Output System. NetBIOS was a chunk of software that was
loaded into memory to provide an interface between programs and the network hardware. It
included an addressing scheme that used 16-byte names to identify workstations and network-
enabled applications. Next, Microsoft added features to DOS that allowed disk I/O to be redi-
rected to the NetBIOS interface, which made disk space sharable over the LAN. The file-sharing
protocol that they used eventually became known as SMB, and now CIFS.

Lots of other software was also written to use the NetBIOS API (Application Programmer’s
Interface), which meant that it would never, ever, ever go away. Instead, the workings beneath
the API were cleverly gutted and replaced. NetBEUI (NetBIOS Enhanced User Interface), intro-
duced by IBM, provided a mechanism for passing NetBIOS packets over Token Ring and Ether-
net. Others developed NetBIOS LAN emulation over higher-level protocols including DECnet,
IPX/SPX and, of course, TCP/IP.

NetBIOS and TCP/IP made an interesting team. The latter could be routed between in-
terconnected networks (internetworks), but NetBIOS was designed for isolated LANs. The trick
was to map the 16-byte NetBIOS names to IP addresses so that messages could actually find their
way through a routed IP network. A mechanism for doing just that was described in the Inter-
net RFC1001 and RFC1002 documents. As Windows evolved, Microsoft added two additional
pieces to the SMB package. These were service announcement, which is called “browsing,” and
a central authentication and authorization service known as Windows NT Domain Control.

Meanwhile, on the Other Side of the Planet. . .

Andrew Tridgell, who is both tall and Australian, had a bit of a problem. He needed to mount
disk space from a UNIX server on his DOS PC. Actually, this wasn’t the problem at all because
he had an NFS (Network File System) client for DOS and it worked just fine. Unfortunately, he
also had an application that required the NetBIOS interface. Anyone who has ever tried to run
multiple protocols under DOS knows that it can be...er...quirky.

So Andrew chose the obvious solution. He wrote a packet sniffer, reverse engineered the
SMB protocol, and implemented it on the UNIX box. Thus, he made the UNIX system appear
to be a PC file server, which allowed him to mount shared filesystems from the UNIX server
while concurrently running NetBIOS applications. Andrew published his code in early 1992.
There was a quick, but short succession of bug-fix releases, and then he put the project aside.
Occasionally he would get email about it, but he otherwise ignored it. Then one day, almost two
years later, he decided to link his wife’s Windows PC with his own Linux system. Lacking any
better options, he used his own server code. He was actually surprised when it worked.

Through his email contacts, Andrew discovered that NetBIOS and SMB were actually
(though nominally) documented. With this new information at his fingertips he set to work
again, but soon ran into another problem. He was contacted by a company claiming trademark
on the name that he had chosen for his server software. Rather than cause a fuss, Andrew did
a quick scan against a spell-checker dictionary, looking for words containing the letters “smb”.
“Samba” was in the list. Curiously, that same word is not in the dictionary file that he uses today.
(Perhaps they know it’s been taken.)

The Samba project has grown mightily since then. Andrew now has a whole team of pro-
grammers, scattered around the world, to help with Samba development. When a new release

426

39. smbd — Samba NT Server 39.1. Samba: An Introduction

is announced, thousands of copies are downloaded within days. Commercial systems vendors,
including Silicon Graphics, bundle Samba with their products. There are even Samba T-shirts
available. Perhaps one of the best measures of the success of Samba is that it was listed in
the “Halloween Documents”, a pair of internal Microsoft memos that were leaked to the Open
Source community. These memos list Open Source products which Microsoft considers to be
competitive threats. The absolutely best measure of success, though, is that Andrew can still
share the printer with his wife.

What Samba Does

Samba consists of two key programs, plus a bunch of other stuff that we’ll get to later. The two
key programs are smbd and nmbd. Their job is to implement the four basic modern-day CIFS
services, which are:

• File and print services
• Authentication and Authorization
• Name resolution
• Service announcement (browsing)

File and print services are, of course, the cornerstone of the CIFS suite. These are provided
by smbd, the SMB daemon. Smbd also handles “share mode” and “user mode” authentication
and authorization. That is, you can protect shared file and print services by requiring passwords.
In share mode, the simplest and least recommended scheme, a password can be assigned to a
shared directory or printer (simply called a “share”). This single password is then given to
everyone who is allowed to use the share. With user mode authentication, each user has their
own username and password and the System Administrator can grant or deny access on an
individual basis.

The Windows NT Domain system provides a further level of authentication refinement
for CIFS. The basic idea is that a user should only have to log in once to have access to all of the
authorized services on the network. The NT Domain system handles this with an authentication
server, called a Domain Controller. An NT Domain (which should not be confused with a Domain
Name System (DNS) Domain) is basically a group of machines which share the same Domain
Controller.

The NT Domain system deserves special mention because, until the release of Samba ver-
sion 2, only Microsoft owned code to implement the NT Domain authentication protocols. With
version 2, Samba introduced the first non-Microsoft-derived NT Domain authentication code.
The eventual goal, of course, it to completely mimic a Windows NT Domain Controller.

The other two CIFS pieces, name resolution and browsing, are handled by nmbd. These
two services basically involve the management and distribution of lists of NetBIOS names.

Name resolution takes two forms: broadcast and point-to-point. A machine may use ei-
ther or both of these methods, depending upon its configuration. Broadcast resolution is the clos-
est to the original NetBIOS mechanism. Basically, a client looking for a service named Trillian
will call out ‘‘Yo! Trillian! Where are you?’’, and wait for the machine with that
name to answer with an IP address. This can generate a bit of broadcast traffic (a lot of shouting
in the streets), but it is restricted to the local LAN so it doesn’t cause too much trouble.

427

39.1. Samba: An Introduction 39. smbd — Samba NT Server

The other type of name resolution involves the use of an NBNS (NetBIOS Name Service)
server. (Microsoft called their NBNS implementation WINS, for Windows Internet Name Ser-
vice, and that acronym is more commonly used today.) The NBNS works something like the
wall of an old-fashioned telephone booth. (Remember those?) Machines can leave their name
and number (IP address) for others to see.

Hi, I’m node Voomba. Call me for a good time! 192.168.100.101

It works like this: The clients send their NetBIOS names and IP addresses to the NBNS
server, which keeps the information in a simple database. When a client wants to talk to another
client, it sends the other client’s name to the NBNS server. If the name is on the list, the NBNS
hands back an IP address. You’ve got the name, look up the number.

Clients on different subnets can all share the same NBNS server so, unlike broadcast, the
point-to-point mechanism is not limited to the local LAN. In many ways the NBNS is similar to
the DNS, but the NBNS name list is almost completely dynamic and there are few controls to
ensure that only authorized clients can register names. Conflicts can, and do, occur fairly easily.

Finally, there’s browsing. This is a whole ’nother kettle of worms, but Samba’s nmbd
handles it anyway. This is not the web browsing we know and love, but a browsable list of
services (file and print shares) offered by the computers on a network.

On a LAN, the participating computers hold an election to decide which of them will be-
come the Local Master Browser (LMB). The “winner” then identifies itself by claiming a special
NetBIOS name (in addition to any other names it may have). The LMB’s job is to keep a list
of available services, and it is this list that appears when you click on the Windows “Network
Neighborhood” icon.

In addition to LMBs, there are Domain Master Browsers (DMBs). DMBs coordinate browse
lists across NT Domains, even on routed networks. Using the NBNS, an LMB will locate its DMB
to exchange and combine browse lists. Thus, the browse list is propagated to all hosts in the NT
Domain. Unfortunately, the synchronization times are spread apart a bit. It can take more than
an hour for a change on a remote subnet to appear in the Network Neighborhood.

Other Stuff

Samba comes with a variety of utilities. The most commonly used are:

smbclient A simple SMB client, with an interface similar to that of the FTP utility. It can be
used from a UNIX system to connect to a remote SMB share, transfer files, and send files
to remote print shares (printers).

nmblookup A NetBIOS name service client. Nmblookup can be used to find NetBIOS names
on a network, look up their IP addresses, and query a remote machine for the list of names
the machine believes it owns.

swat The Samba Web Administration Tool. Swat allows you to configure Samba remotely, using
a web browser.

There are more, of course, but describing them would require explaining even more bits
and pieces of CIFS, SMB, and Samba. That’s where things really get tedious, so we’ll leave it
alone for now.

428

39. smbd — Samba NT Server 39.1. Samba: An Introduction

SMB Filesystems for Linux

One of the cool things that you can do with a Windows box is use an SMB file share as if it were
a hard disk on your own machine. The N: drive can look, smell, feel, and act like your own disk
space, but it’s really disk space on some other computer somewhere else on the network.

Linux systems can do this too, using the smbfs filesystem. Built from Samba code, smbfs
(which stands for SMB Filesystem) allows Linux to map a remote SMB share into its directory
structure. So, for example, the /mnt/zarquon directory might actually be an SMB share, yet
you can read, write, edit, delete, and copy the files in that directory just as you would local files.

The smbfs is nifty, but it only works with Linux. In fact, it’s not even part of the Samba
suite. It is distributed with Samba as a courtesy and convenience. A more general solution is
the new smbsh (SMB shell, which is still under development at the time of this writing). This
is a cool gadget. It is run like a UNIX shell, but it does some funky fiddling with calls to UNIX
libraries. By intercepting these calls, smbsh can make it look as though SMB shares are mounted.
All of the read, write, etc. operations are available to the smbsh user. Another feature of smbsh
is that it works on a per user, per shell basis, while mounting a filesystem is a system-wide
operation. This allows for much finer-grained access controls.

Setup and Management

Samba is configured using the smb.conf file. This is a simple text file designed to look a lot like
those *.ini files used in Windows. The goal, of course, is to give network administrators familiar
with Windows something comfortable to play with. Over time, though, the number of things
that can be configured in Samba has grown, and the percentage of Network Admins willing to
edit a Windows *.ini file has shrunk. For some people, that makes managing the smb.conf file
a bit daunting.

Still, learning the ins and outs of smb.conf is a worthwhile penance. Each of the
smb.conf variables has a purpose, and a lot of fine-tuning can be accomplished. The file
structure contents are fully documented, so as to give administrators a running head start, and
smb.conf can be manipulated using swat, which at least makes it nicer to look at.

The Present

Samba 2.0 was released in January 1999. One of the most significant and cool features of the 2.0
release was improved speed. Ziff-Davis Publishing used their Netbench software to benchmark
Samba 2.0 on Linux against Windows NT4. They ran all of their tests on the same PC hardware,
and their results showed Samba’s throughput under load to be at least twice that of NT. Samba
is shipped with all major Linux distributions, and Ziff-Davis tested three of those.

Another milestone was reached when Silicon Graphics (SGI) became the first commer-
cial UNIX vendor to support Samba. In their December 1998 press release, they claimed that
their Origin series servers running Samba 2.0 were the most powerful line of file servers for
Windows clients available. SGI now offers commercial support for Samba as do several other
providers, many of which are listed on the Samba web site (see http://samba.org/). Traditional

429

39.1. Samba: An Introduction 39. smbd — Samba NT Server

Internet support is, of course, still available via the comp.protocols.smb newsgroup and the
samba@samba.org mailing list.

The Samba Team continues to work on new goodies. Current interests include NT ACLs
(Access Control Lists), support for LDAP (the Lightweight Directory Access Protocol), NT Do-
main Control, and Microsoft’s DFS (Distributed File System).

The Future

Windows 2000 looms on the horizon like a lazy animal peeking its head over the edge of its
burrow while trying to decide whether or not to come out. No one is exactly sure about the kind
of animal it will be when it does appear, but folks are fairly certain that it will have teeth.

Because of their dominance on the desktop, Microsoft gets to decide how CIFS will grow.
Windows 2000, like previous major operating system releases, will give us a whole new critter
to study. Based on the beta copies and the things that Microsoft has said, here are some things
to watch for:

CIFS Without NetBIOS Microsoft will attempt to decouple CIFS and NetBIOS. NetBIOS won’t
go away, mind you, but it won’t be required for CIFS networking either. Instead, the SMB
protocol will be carried natively over TCP/IP. Name lookups will occur via the DNS.

Dynamic DNS Microsoft will implement Dynamic DNS, a still-evolving system designed by
the IETF (Internet Engineering Task Force). Dynamic DNS allows names to be added to a
DNS server on-the-fly.

Kerberos V Microsoft has plans to use Kerberos V. The Microsoft K5 tickets are supposed to con-
tain a Privilege Attribute Certificate (PAC) http://www.usenix.org/publications/login/1997-
11/embraces.html, which will include user and group ID information from the Active
Directory. Servers will be looking for this PAC when they grant access to the services that
they provide. Thus, Kerberos may be used for both authentication and authorization.

Active Directory The Active Directory appears to be at the heart of Windows 2000 networking.
It is likely that legacy NetBIOS services will register their names in the Active Directory.

Hierarchical NT Domains Instead of isolated Domain Controllers, the NT Domain system will
become hierarchical. The naming system will change to one that is remarkably similar to
that of the DNS.

One certainty is that W2K (as it is often called) is, and will be, under close scrutiny. Win-
dows has already attracted the attention of some of the Internet Wonderland’s more curious in-
habitants, including security analysts, standards groups, crackers dens, and general all-purpose
geeks. The business world, which has finally gotten a taste of the freedom of Open Source Soft-
ware, may be reluctant to return to the world of proprietary, single-vendor solutions. Having
the code in your hands is both reassuring and empowering.

Whatever the next Windows animal looks like, it will be Samba’s job to help it get along
with its peers in the diverse world of the Internet. The Samba Team, a microcosm of the Internet
community, are among those watching W2K to see how it develops. Watching does not go hand-
in-hand with waiting, though, and Samba is an on-going and open effort. Visit the Samba web
site, join the mailing lists, and see what’s going on.

Participate in the future.

430

39. smbd — Samba NT Server 39.2. Configuring Samba

39.2 Configuring Samba

That said, configuring smbd is really easy. A typical LAN will require a UNIX ma-
chine that can share /home/* directories to Windows clients, where each user can
log in as the name of their home directory. It must also act as a print share that redi-
rects print jobs through lpr; and then in PostScript, the way we like it. Consider a
Windows machine divinian.cranzgot.co.za on a local LAN 192.168.3.0/24.
The user of that machine would have a UNIX login psheer on the server ceri-
con.cranzgot.co.za.

The usual place for Samba’s configuration file is /etc/samba/smb.conf on
most distributions. A minimalist configuration file to perform the above functions
might be:

✞ �
[global]

workgroup = MYGROUP
server string = Samba Server
hosts allow = 192.168. 127.

5 printcap name = /etc/printcap
load printers = yes
printing = bsd
log file = /var/log/samba/%m.log
max log size = 0

10 security = user
socket options = TCP_NODELAY SO_RCVBUF=8192 SO_SNDBUF=8192
encrypt passwords = yes
smb passwd file = /etc/samba/smbpasswd

[homes]
15 comment = Home Directories

browseable = no
writable = yes

[printers]
comment = All Printers

20 path = /var/spool/samba
browseable = no
guest ok = no
printable = yes

✝ ✆

The SMB protocol stores passwords differently from UNIX. It therefore needs
its own password file, usually /etc/samba/smbpasswd. There is also a mapping
between UNIX logins and Samba logins in /etc/samba/smbusers, but for simplicity
we will use the same UNIX name as the Samba login name. We can add a new UNIX
user and Samba user and set both their passwords with

✞ �

smbadduser psheer:psheer
useradd psheer
smbpasswd psheer
passwd psheer

✝ ✆

431

39.2. Configuring Samba 39. smbd — Samba NT Server

Note that with SMB there are all sorts of issues with case interpretation—an in-
correctly typed password could still work with Samba but obviously won’t with UNIX.

To start Samba, run the familiar
✞ �

/etc/init.d/smbd start
(/etc/rc.d/init.d/smbd start)
(/etc/init.d/samba start)

✝ ✆

For good measure, there should also be a proper DNS configuration with forward
and reverse lookups for all client machines.

At this point you can test your Samba server from the UNIX side. LINUX has
native support for SMB shares with the smbfs file system. Try mounting a share
served by the local machine:

✞ �
mkdir -p /mnt/smb
mount -t smbfs -o username=psheer,password=12345 //cericon/psheer /mnt/smb

✝ ✆

You can now run tail -f /var/log/samba/cericon.log. It should con-
tain messages like:

✞ �
cericon (192.168.3.2) connect to service psheer as user psheer (uid=500, gid=500) (pid 942)

✝ ✆

where a “service” means either a directory share or a print share.

The useful utility smbclient is a generic tool for running SMB requests, but is
mostly useful for printing. Make sure your printer daemon is running (and working)
and then try

✞ �
echo hello | smbclient //cericon/lp 12345 -U psheer -c ’print -’

✝ ✆

which will create a small entry in the lp print queue. Your log file will be appended
with:

✞ �
cericon (192.168.3.2) connect to service lp as user psheer (uid=500, gid=500) (pid 1014)

✝ ✆

432

39. smbd — Samba NT Server 39.3. Configuring Windows

39.3 Configuring Windows

Configuration from Windows begins with a working TCP/IP configuration:

Next, you need to Log Off from the Start menu and log back in as your Samba user.

Finally, go to Run. . . in the Start menu and enter \\cericon\psheer. You will
be prompted for a password, which you should enter as for the smbpasswd program
above.

433

39.4. Configuring a Windows Printer 39. smbd — Samba NT Server

This should bring up your home directory like you have probably never seen it before.

39.4 Configuring a Windows Printer

Under Settings in your Start menu, you can add new printers. Your UNIX lp print
queue is visible as the \\cericon\lp network printer and should be entered as such
in the configuration wizard. For a printer driver, you should choose “Apple Color
Laserwriter,” since this driver just produces regular PostScript output. In the printer
driver options you should also select to optimize for “portability.”

39.5 Configuring swat

swat is a service, run from inetd, that listens for HTTP connections on port 901. It
allows complete remote management of Samba from a web browser. To configure, add
the service swat 901/tcp to your /etc/services file, and the following to your
/etc/inetd.conf file.

✞ �
swat stream tcp nowait root /usr/sbin/tcpd /usr/sbin/swat

✝ ✆

being very careful who you allow connections from. If you are running xinetd, create a
file /etc/xinetd.d/swat:

✞ �
service swat
{

port = 901
socket_type = stream

5 wait = no
only_from = localhost 192.168.0.0/16
user = root
server = /usr/sbin/swat
server_args = -s /etc/samba/smb.conf

10 log_on_failure += USERID

434

39. smbd — Samba NT Server 39.6. Windows NT Caveats

disable = no
}

✝ ✆

After restarting inetd (or xinetd), you can point your web browser to
http://cericon:901/. Netscape will request a user and password. You should login as
root (swat does not use smbpasswd to authenticate this login). The web page inter-
face is extremely easy to use—

—and, being written by the Samba developers themselves, can be trusted to produce
working configurations. The web page also gives a convenient interface to all the doc-
umentation. Do note that it will completely overwrite your existing configuration file.

39.6 Windows NT Caveats

Windows SMB servers compete to be the name server of their domain by version num-
ber and uptime. By this we again mean the Windows name service and not the DNS
service. How exactly this works I will not cover here, &Probably because I have no idea
what I am talking about.- but do be aware that configuring a Samba server on a network
of many NT machines and getting it to work can be a nightmare. A solution once
attempted was to shut down all machines on the LAN, then pick one as the domain
server, then bring it up first after waiting an hour for all possible timeouts to have
elapsed. After verifying that it was working properly, the rest of the machines were
booted.

Then of course, don’t forget your nmblookup command.

435 436

Chapter 40

named — Domain Name Server

In Chapter 27 we dealt with the “client” side of DNS. In this chapter we configure the
name server that services such requests.

There seems to be a lot of hype that elevates the name server to something mys-
tical and illusive. In fact, setting up a name server is a standard and trivial exercise. A
name server daemon is also no heavyweight service: The named executable is 500 KB
and consumes little CPU.

The package that the name server comes in is called bind. This chapter assumes
a bind of approximately bind-8.2 or later. bind stands for Berkeley Internet Name
Domain.

The difficulty with setting up a name server is that the configuration files are
impossible to construct from the specification without some kind of typing error being
made. The solution is quite simple: Never create a name server config file from scratch.
Always copy one from an existing working name server. Here we give more example
configuration files than explanation. You can copy these examples to create your own
name server.

Please note before running bind that it has security vulnerabilities. Hence, it
may be possible for someone to hack your machine if you are running an old version.
Many people are also skeptical about even the latest versions of bind (9.1 at the time
of writing) even though no security holes had been announced for this version. An
alternative is djbdns, which is purported to be the ultimate DNS server.

Before you even start working on name server configuration, you should start a
new terminal window with the command (Debian alternative in parentheses):

✞ �

tail -f /var/log/messages
(tail -f /var/log/syslog)

✝ ✆

437

40.1. Documentation 40. named — Domain Name Server

Keep this window throughout the entire setup and testing procedure. From now on,
when I refer to messages, I am referring to a message in this window.

40.1 Documentation

The man pages for named are hostname(7), named-xfer(8), named(8), and ndc(8).
These pages reference a document called the “Name Server Operations Guide for
BIND.” What they actually mean is the PostScript file /usr/[share/]doc/bind-
<version>/bog/file.psf (or /usr/share/doc/bind/bog.ps).

The problem with some of this documentation is that it is still based on the old
(now deprecated) named.boot configuration file. There is a script /usr/doc/bind-
<version>/named-bootconf/named-bootconf (or /usr/sbin/named-
bootconf) that reads a named.boot file from stdin and writes a named.conf
file to stdout. I found it useful to echo "old config line" | named-bootconf
to see what a new style equivalent would be.

The directory /usr/[share/]doc/bind[-<version>]/html/ contains the
most important general information. It is a complete reference to bind configuration.
Parallel directories also contain FAQ documents and various theses on security. A file
style.txt contains the recommended layout of the configuration files for consistent
spacing and readability. Finally an rfc/ directory contains the relevant RFCs (see
Section 13.6).

40.2 Configuring bind

There is only one main configuration file for named: /etc/named.conf (or
/etc/bind/named.conf on Debian —here we assume a /etc/named.conf file
for simplicity). The named service once used a file /etc/named.boot, but this has
been scrapped. If there is a named.boot file in your /etc directory, then it is not
being used, except possibly by a very old version of bind.

Here we will show example configurations necessary for typical scenarios of a
name server.

40.2.1 Example configuration

The named.conf file will have in it the line directory "/var/named"; (or di-
rectory "/etc/named"; or directory "/var/cache/bind";). This directory
holds various files containing textual lists of the name to IP address mappings that
bind will serve. The following example is a name server for a company that has been

438

40. named — Domain Name Server 40.2. Configuring bind

given a range of IP addresses 196.28.144.16/29 (i.e., 196.28.144.16–23), as well
as one single IP address (160.123.181.44). This example also must support a range
of internal IP addresses (192.168.2.0–255) The trick is not to think about how ev-
erything works. If you just copy and edit things in a consistent fashion, carefully read-
ing the comments, bind will work fine. I will now list all necessary files.

• Local client configuration: /etc/resolv.conf
✞ �
domain localdomain
nameserver 127.0.0.1

✝ ✆

• Top-level config file: /etc/named.conf
✞ �
/*
* The ‘‘directory’’ line tells named that any further file name’s
* given are under the /var/named/ directory.
*/

5 options {
directory "/var/named";
/*
* If there is a firewall between you and nameservers you want
* to talk to, you might need to uncomment the query-source

10 * directive below. Previous versions of BIND always asked
* questions using port 53, but BIND 8.1 uses an unprivileged
* port by default.
*/
// query-source address * port 53;

15 };

/* The list of root servers: */
zone "." {

type hint;
20 file "named.ca";

};

/* Forward lookups of the localhost: */
zone "localdomain" {

25 type master;
file "named.localdomain";

};

/* Reverse lookups of the localhost: */
30 zone "1.0.0.127.in-addr.arpa" {

type master;
file "named.127.0.0.1";

};

35 /* Forward lookups of hosts in my domain: */
zone "cranzgot.co.za" {

type master;
file "named.cranzgot.co.za";

};
40

/* Reverse lookups of local IP numbers: */
zone "2.168.192.in-addr.arpa" {

439

40.2. Configuring bind 40. named — Domain Name Server

type master;
file "named.192.168.2";

45 };

/* Reverse lookups of 196.28.144.* Internet IP numbers: */
zone "144.28.196.in-addr.arpa" {

type master;
50 file "named.196.28.144";

};

/* Reverse lookup of 160.123.181.44 only: */
zone "44.181.123.160.in-addr.arpa" {

55 type master;
file "named.160.123.181.44";

};
✝ ✆

• Root name server list: /var/named/named.ca
✞ �
; Get the original of this file from ftp://ftp.rs.internic.net/domain/named.root
;
; formerly ns.internic.net
. 3600000 IN NS a.root-servers.net.

5 a.root-servers.net. 3600000 A 198.41.0.4
. 3600000 NS b.root-servers.net.
b.root-servers.net. 3600000 A 128.9.0.107
. 3600000 NS c.root-servers.net.
c.root-servers.net. 3600000 A 192.33.4.12

10 . 3600000 NS d.root-servers.net.
d.root-servers.net. 3600000 A 128.8.10.90
. 3600000 NS e.root-servers.net.
e.root-servers.net. 3600000 A 192.203.230.10
. 3600000 NS f.root-servers.net.

15 f.root-servers.net. 3600000 A 192.5.5.241
. 3600000 NS g.root-servers.net.
g.root-servers.net. 3600000 A 192.112.36.4
. 3600000 NS h.root-servers.net.
h.root-servers.net. 3600000 A 128.63.2.53

20 . 3600000 NS i.root-servers.net.
i.root-servers.net. 3600000 A 192.36.148.17
. 3600000 NS j.root-servers.net.
j.root-servers.net. 3600000 A 198.41.0.10
. 3600000 NS k.root-servers.net.

25 k.root-servers.net. 3600000 A 193.0.14.129
. 3600000 NS l.root-servers.net.
l.root-servers.net. 3600000 A 198.32.64.12
. 3600000 NS m.root-servers.net.
m.root-servers.net. 3600000 A 202.12.27.33

✝ ✆

• Local forward lookups: /var/named/named.localdomain

✞ �
$TTL 259200
@ IN SOA localhost.localdomain. dns-admin.localhost.localdomain. (

2000012101 ; Serial number
10800 ; Refresh every 3 hours

5 3600 ; Retry every hour

440

40. named — Domain Name Server 40.2. Configuring bind

3600000 ; Expire after 42 days
259200) ; Minimum Time to Live (TTL) of 3 days

IN NS localhost.localdomain.
10

localhost IN A 127.0.0.1
✝ ✆

• Local reverse lookups: /var/named/named.127.0.0.1

✞ �
$TTL 259200
@ IN SOA localhost. dns-admin.localhost. (

2000012101 ; Serial number
10800 ; Refresh every 3 hours

5 3600 ; Retry every hour
3600000 ; Expire after 42 days
259200) ; Minimum Time to Live (TTL) of 3 days

IN NS localhost.
10

IN PTR localhost.
✝ ✆

• Authoritative domain file: /var/named/named.cranzgot.co.za

✞ �
$TTL 259200
@ IN SOA ns1.cranzgot.co.za. dns-admin.ns1.cranzgot.co.za. (

2000012101 ; Serial number
10800 ; Refresh every 3 hours

5 3600 ; Retry every hour
3600000 ; Expire after 42 days
259200) ; Minimum Time to Live (TTL) of 3 days

IN NS ns1.cranzgot.co.za.
10 IN NS ns2.cranzgot.co.za.

IN A 160.123.181.44
IN MX 10 mail1.cranzgot.co.za.
IN MX 20 mail2.cranzgot.co.za.

15

; We will use the first IP address for the name server itself:
ns1 IN A 196.28.144.16

; our backup name server is faaar away:
20 ns2 IN A 146.143.21.88

; FTP server:
ftp IN A 196.28.144.17

25 ; Aliases:
www IN CNAME cranzgot.co.za.
mail1 IN CNAME ns1.cranzgot.co.za.
mail2 IN CNAME ns2.cranzgot.co.za.
gopher IN CNAME ftp.cranzgot.co.za.

30 pop IN CNAME mail1.cranzgot.co.za.
proxy IN CNAME ftp.cranzgot.co.za.

441

40.2. Configuring bind 40. named — Domain Name Server

; Reserved for future web servers:
unused18 IN A 196.28.144.18

35 unused19 IN A 196.28.144.19
unused20 IN A 196.28.144.20
unused21 IN A 196.28.144.21
unused22 IN A 196.28.144.22
unused23 IN A 196.28.144.23

40

; local LAN:
pc1 IN A 192.168.2.1
pc2 IN A 192.168.2.2
pc3 IN A 192.168.2.3

45 pc4 IN A 192.168.2.4
; and so on... to 192.168.2.255

✝ ✆

• LAN reverse lookups: /var/named/named.192.168.2

✞ �
$TTL 259200
@ IN SOA ns1.cranzgot.co.za. dns-admin.ns1.cranzgot.co.za. (

2000012101 ; Serial number
10800 ; Refresh every 3 hours

5 3600 ; Retry every hour
3600000 ; Expire after 42 days
259200) ; Minimum Time to Live (TTL) of 3 days

IN NS ns1.cranzgot.co.za.
10

1 IN PTR pc1.cranzgot.co.za.
2 IN PTR pc2.cranzgot.co.za.
3 IN PTR pc3.cranzgot.co.za.
4 IN PTR pc4.cranzgot.co.za.

15 ; and so on... to 255
✝ ✆

• Authoritative reverse lookups (1): /var/named/named.196.28.144

✞ �
$TTL 259200
@ IN SOA ns1.cranzgot.co.za. dns-admin.ns1.cranzgot.co.za. (

2000012101 ; Serial number
10800 ; Refresh every 3 hours

5 3600 ; Retry every hour
3600000 ; Expire after 42 days
259200) ; Minimum Time to Live (TTL) of 3 days

IN NS dns.big-isp.net.
10

0 IN NS dns.big-isp.net.
1 IN NS dns.big-isp.net.
2 IN NS dns.big-isp.net.
3 IN NS dns.big-isp.net.

15 4 IN NS dns.big-isp.net.
5 IN NS dns.big-isp.net.
6 IN NS dns.big-isp.net.
7 IN NS dns.big-isp.net.

442

40. named — Domain Name Server 40.2. Configuring bind

8 IN NS dns.big-isp.net.
20 9 IN NS dns.big-isp.net.

10 IN NS dns.big-isp.net.
11 IN NS dns.big-isp.net.
12 IN NS dns.big-isp.net.
13 IN NS dns.big-isp.net.

25 14 IN NS dns.big-isp.net.
15 IN NS dns.big-isp.net.

16 IN PTR ns1.cranzgot.co.za.
17 IN PTR ftp.cranzgot.co.za.

30 18 IN PTR unused18.cranzgot.co.za.
19 IN PTR unused19.cranzgot.co.za.
20 IN PTR unused20.cranzgot.co.za.
21 IN PTR unused21.cranzgot.co.za.
22 IN PTR unused22.cranzgot.co.za.

35 23 IN PTR unused23.cranzgot.co.za.

24 IN NS dns.big-isp.net.
25 IN NS dns.big-isp.net.
26 IN NS dns.big-isp.net.

40 ; and so on... up to 255
✝ ✆

• Authoritative reverse lookups (2): /var/named/named.160.123.181.44

✞ �
$TTL 259200
@ IN SOA ns1.cranzgot.co.za. dns-admin.ns1.cranzgot.co.za. (

2000012101 ; Serial number
10800 ; Refresh every 3 hours

5 3600 ; Retry every hour
3600000 ; Expire after 42 days
259200) ; Minimum Time to Live (TTL) of 3 days

IN NS ns1.cranzgot.co.za.
10 IN NS ns2.cranzgot.co.za.

IN PTR cranzgot.co.za.
✝ ✆

40.2.2 Starting the name server

If you have created a configuration similar to that above, you can then run the bind
package initialization commands. The actions available are (alternative commands in
parentheses):

✞ �

/etc/rc.d/init.d/named start
(/etc/init.d/named start)
(/etc/init.d/bind start)
/etc/rc.d/init.d/named stop

5 /etc/rc.d/init.d/named restart
/etc/rc.d/init.d/named status

✝ ✆

443

40.2. Configuring bind 40. named — Domain Name Server

You should get messages like:
✞ �
Jul 8 15:45:23 ns1 named[17656]: starting. named 8.2.2-P5 Sat Aug 5 13:21:24 EDT 2000 ˆI
Jul 8 15:45:23 ns1 named[17656]: hint zone "" (IN) loaded (serial 0)
Jul 8 15:45:23 ns1 named[17656]: master zone "localhost" (IN) loaded (serial 2000012101)
Jul 8 15:45:23 ns1 named[17656]: master zone "1.0.0.127.in-addr.arpa" (IN) loaded (serial

5 Jul 8 15:45:23 ns1 named[17656]: master zone "cranzgot.co.za" (IN) loaded (serial 20000121
Jul 8 15:45:23 ns1 named[17656]: master zone "myisp.co.za" (IN) loaded (serial 2000012101)
Jul 8 15:45:23 ns1 named[17656]: master zone "2.168.192.in-addr.arpa" (IN) loaded (serial
Jul 8 15:45:23 ns1 named[17656]: master zone "144.28.196.in-addr.arpa" (IN) loaded (serial
Jul 8 15:45:23 ns1 named[17656]: master zone "44.181.123.160.in-addr.arpa" (IN) loaded (se

10 Jul 8 15:45:23 ns1 named[17656]: listening on [127.0.0.1].53 (lo)
Jul 8 15:45:23 ns1 named[17656]: listening on [196.28.144.16].53 (eth0)
Jul 8 15:45:23 ns1 named[17656]: Forwarding source address is [0.0.0.0].1041
Jul 8 15:45:23 ns1 named: named startup succeeded
Jul 8 15:45:23 ns1 named[17657]: group = 25

15 Jul 8 15:45:23 ns1 named[17657]: user = named
Jul 8 15:45:23 ns1 named[17657]: Ready to answer queries.

✝ ✆

If you have made typing errors, or named files incorrectly, you will get appro-
priate error messages. Novice administrators are wont to edit named configuration files
and restart named without checking /var/log/messages (or /var/log/syslog) for
errors. NEVER do this.

40.2.3 Configuration in detail

If there are no apparent errors in your config files, you can now more closely examine
the contents of the files.

40.2.3.1 Top-level named.conf

The top-level configuration file /etc/named.conf has an obvious style format.
Comments are designated by /* */ or //.

The options section in our case specifies only one parameter: the directory for
locating any files. The file options.html under the bind documentation directories
has a complete list of options. Some of these are esoteric, but a few have common uses.

The lines zone "." {. . . will be present in all name server configurations.
They tell named that the whole Internet is governed by the file named.ca. named.ca
in turn contains the list of root name servers.

The lines zone "localdomain" {. . . are common. They spec-
ify that forward lookups for host.localdomain are contained in the file
/var/named/named.localdomain. This file gives a correct result for any lookup
for localhost. Many applications query the name server for this name and a fastidi-
ous configuration ought to return it correctly. Note that such a lookup works together

444

40. named — Domain Name Server 40.2. Configuring bind

with resolv.conf—it has a line search localdomain so that a query for local-
host gives the same result as a query for localhost.localdomain.

The lines zone "1.0.0.127.in-addr.arpa" {. . . resolve reverse lookups
for the IP address 127.0.0.1 (stored in the file named.127.0.0.1). Note that
1.0.0.127 is 127.0.0.1 written backwards. In fact, reverse lookups are just for-
ward lookups under the domain .in-addr.arpa. Many applications reverse lookup
any received connection to check its authenticity, even from localhost, so you may
want to have these lines present to prevent such applications failing or blocking.

The rest of the file is the configuration specific to our domain.

The lines zone "cranzgot.co.za" {. . . say that information for forward
lookups is located in the file named.cranzgot.co.za.

The lines zone "1.168.192.in-addr.arpa" {. . . say that information for
reverse lookups on the IP address range 192.168.1.0–255 is located in the file
named.192.168.1.

The lines zone "44.182.124.160.in-addr.arpa" {. . . says that infor-
mation for reverse lookups on the IP address 160.124.182.44 is located in the file
named.160.124.182.44.

40.2.3.2 Domain SOA records

Each of the other named. files has a similar format. They begin with $TTL line and
then an @ IN SOA. TTL stands for Time To Live, the default expiration time for all
subsequent entries. This line not only prevents a No default TTL set. . . warning
message, but really tells the rest of the Internet how long to cache an entry. If you plan
on moving your site soon or often, set this to a smaller value. SOA stands for Start of
Authority. The host name on the second line specifies the authority for that domain,
and the adjacent <user>.<hostname> specifies the email address of the responsible
person.

The next few lines contain timeout specifications for cached data and data propa-
gation across the net. These are reasonable defaults, but if you would like to tune these
values, consult the relevant documentation listed on page 438. The values are all in
seconds.

The serial number for the file (i.e., 2000012101) is used to tell when a change
has been made and hence that new data should be propagated to other servers. When
updating the file in any way, you must increment this serial number. The format is
conventionally YYYYMMDDxx—exactly ten digits. xx begins with, say, 01 and is in-
cremented with each change made during a day.

It is absolutely essential that the serial number be updated whenever a file is edited. If
not, the changes will not be reflected through the rest of the Internet.

445

40.2. Configuring bind 40. named — Domain Name Server

40.2.3.3 Dotted and non-dotted host names

If a host name ends in a . then the dot signifies a fully qualified host name. If it does
not end in a . then the absence of a dot signifies that the domain should be appended
to the host name. This feature is purely to make files more elegant.

For instance, the line
✞ �

ftp IN A 196.28.144.17
✝ ✆

could just as well be written
✞ �

ftp.cranzgot.co.za. IN A 196.28.144.17
✝ ✆

Always be careful to properly end qualified host names with a dot, since failing to do so causes
named to append a further domain.

40.2.3.4 Empty host names

If a host name is omitted from the start of the line, then the domain is substituted. The
purpose of this notation is also for elegance. For example,

✞ �

IN NS ns1.cranzgot.co.za.
✝ ✆

is the same as
✞ �

cranzgot.co.za. IN NS ns1.cranzgot.co.za.
✝ ✆

40.2.3.5 NS, MX, PTR, A, and CNAME records

Each DNS record appears on a single line, associating some host name / domain or IP
address with some other host name or IP address. Hence, it is easy to construct a file
that makes the Internet think anything you want it to about your organization.

The most basic types of record are the A and PTR records. They simply associate
a host name with an IP number, or an IP number with a host name, respectively. You
should not have more than one host associated to a particular IP number.

The CNAME record says that a host is just an alias to another host. So have
✞ �

ns1 IN A 196.28.144.1
mail1 IN CNAME ns1.cranzgot.co.za.

✝ ✆

rather than

446

40. named — Domain Name Server 40.2. Configuring bind

✞ �

ns1 IN A 196.28.144.1
mail1 IN A 196.28.144.1

✝ ✆

Finally, NS and MX records
✞ �

<domain> IN NS <nameserver>
<domain> IN MX <mailserver>

✝ ✆

just state that domain <domain> has a name server or mail server <nameserver> or
<mailserver>, respectively. MTAs can now locate your mail server as being respon-
sible for email addresses of the form user@cranzgot.co.za.

40.2.3.6 Reverse lookups configuration

The file /var/named/named.196.28.144 contains reverse lookup data on all 255
IP addresses under 196.28.144.. It is, however, our ISP (called big-isp.net) that
is responsible for this address range, possibly having bought all 65536 addresses under
196.28.. The Internet is going to query big-isp.net when trying to do a reverse
lookup for 196.28.144.?. The problem here is that there are many companies com-
prising the 196.28.144.? range, each with their own name server, so no single name
server can be authoritative for the whole domain 144.28.196.in-addr.arpa. This
is the reason for lines in /var/named/named.196.28.144 like

✞ �

5 IN NS dns.big-isp.net.
✝ ✆

IP address 196.28.144.5 is not our responsibility, and hence we refer any such query
to a more authoritative name server. On the ISP side, the name server dns.big-
isp.net must have a file /var/named/named.196.28.144 that contains some-
thing like:

✞ �
$TTL 259200
@ IN SOA dns.dns.big-isp.net. dns-admin.dns.big-isp.net. (

2000012101 ; Serial number
10800 ; Refresh every 3 hours

5 3600 ; Retry every hour
3600000 ; Expire after 42 days
259200) ; Minimum Time to Live (TTL) of 3 days

IN NS dns.big-isp.net.
10

0 IN NS ns1.dali.co.za.
1 IN NS ns1.dali.co.za.
2 IN NS ns1.dali.co.za.
3 IN NS ns1.dali.co.za.

15 4 IN NS ns1.dali.co.za.
5 IN NS ns1.dali.co.za.
6 IN NS ns1.dali.co.za.
7 IN NS ns1.dali.co.za.

447

40.3. Round-Robin Load-Sharing 40. named — Domain Name Server

20 8 IN NS ns1.picasso.co.za.
9 IN NS ns1.picasso.co.za.
10 IN NS ns1.picasso.co.za.
11 IN NS ns1.picasso.co.za.
12 IN NS ns1.picasso.co.za.

25 13 IN NS ns1.picasso.co.za.
14 IN NS ns1.picasso.co.za.
15 IN NS ns1.picasso.co.za.

16 IN NS ns1.cranzgot.co.za.
30 17 IN NS ns1.cranzgot.co.za.

18 IN NS ns1.cranzgot.co.za.
19 IN NS ns1.cranzgot.co.za.
20 IN NS ns1.cranzgot.co.za.
21 IN NS ns1.cranzgot.co.za.

35 22 IN NS ns1.cranzgot.co.za.
23 IN NS ns1.cranzgot.co.za.

24 IN NS ns1.matisse.co.za.
25 IN NS ns1.matisse.co.za.

40 26 IN NS ns1.matisse.co.za.
27 IN NS ns1.matisse.co.za.
28 IN NS ns1.matisse.co.za.
29 IN NS ns1.matisse.co.za.
30 IN NS ns1.matisse.co.za.

45 31 IN NS ns1.matisse.co.za.
; and so on... up to 255

✝ ✆

Here, Matisse, Dali, and Picasso are other companies that have bought small IP
address blocks from big-isp. Each of these lines will redirect queries to the appro-
priate name server.

40.3 Round-Robin Load-Sharing

If you have more than one A record for a particular machine, then named will return
multiple IP addresses upon a lookup. Load sharing between several web servers is
now possible—the record ordering is randomized with each new lookup and your
web browser will only choose the first listed IP address. For instance, host cnn.com
returns several IP addresses. Their zone file configuration might look like

✞ �

cnn.com. IN A 207.25.71.5
cnn.com. IN A 207.25.71.6
.
.

5 .
cnn.com. IN A 207.25.71.29
cnn.com. IN A 207.25.71.30

✝ ✆

448

40. named — Domain Name Server 40.4. Configuring named for Dialup Use

40.4 Configuring named for Dialup Use

If you have a dialup connection, the name server should be configured as what is called
a caching-only name server. Of course, there is no such thing as a caching-only name
server—the term just means that the name. files have only a few essential records in
them. The point of a caching server is to prevent spurious DNS lookups that may eat
modem bandwidth or cause a dial-on-demand server to initiate a dialout. It also pre-
vents applications blocking, waiting for a DNS lookup. (Typical examples are send-
mail, which blocks for a couple of minutes when a machine is turned on without
the network plugged in; and netscape 4, which tries to look up the IP address of
news.<localdomain>.)

40.4.1 Example caching name server

For a caching name server, the /etc/name.conf file should look as follows. Replace
<nameserver> with the IP address of the name server your ISP has given you. Your
local machine name is assumed to be cericon.priv.ate. (The following listings are
minus superfluous comments and newlines for brevity):

✞ �

options {
forwarders {

<nameserver>;
};

5 directory "/var/named";
};

zone "." { type hint; file "named.ca"; };
zone "localdomain" { type master; file "named.localdomain"; };

10 zone "1.0.0.127.in-addr.arpa" { type master; file "named.127.0.0.1";};
zone "priv.ate" { type master; file "named.priv.ate"; };
zone "168.192.in-addr.arpa" { type master; file "named.192.168"; };

✝ ✆

The /var/named/named.priv.ate file should look like:
✞ �

$TTL 259200
@ IN SOA cericon.priv.ate. root.cericon.priv.ate.

(2000012101 10800 3600 3600000 259200)
IN NS cericon.priv.ate.

5 cericon IN A 192.168.1.1
news IN A 192.168.1.2

✝ ✆

The /var/named/named.192.168 file should look like:

449

40.5. Secondary or Slave DNS Servers 40. named — Domain Name Server

✞ �

$TTL 259200
@ IN SOA localhost. root.localhost.

(2000012101 10800 3600 3600000 259200)
IN NS localhost.

5 1.1 IN PTR cericon.priv.ate.
✝ ✆

The remaining files are the same as before. In addition to the above, your host
name has to be configured as in Chapter 27.

40.4.2 Dynamic IP addresses

The one contingency of dialup machines is that IP addresses are often dynamically
assigned, so your 192.168. addresses aren’t going to apply. Probably one way to get
around this is to dial in a few times to get a feel for what IP addresses you are likely to
get. Assuming you know that your ISP always gives you 196.26.x.x, you can have
a reverse lookup file named.196.26 with nothing in it. This will just cause reverse
lookups to fail instead of blocking.

Such a “hack” is probably unnecessary. It is best to identify the particular ap-
plication that is causing a spurious dialout or causing a block, and then apply your
creativity to the particular case.

40.5 Secondary or Slave DNS Servers

named can operate as a backup server to another server, also called a slave or secondary
server.

Like the caching-only server there, is no such thing as a secondary server. It’s just
the same named running with reduced capacity.

Let’s say we would like ns2.cranzgot.co.za to be a secondary to
ns1.cranzgot.co.za. The named.conf file would look as follows:

✞ �

options {
directory "/var/named";

};

5 zone "." {
type hint;
file "named.ca";

};

10 zone "localdomain" {

450

40. named — Domain Name Server 40.5. Secondary or Slave DNS Servers

type master;
file "named.localdomain";

};

15 zone "1.0.0.127.in-addr.arpa" {
type master;
file "named.127.0.0.1";

};

20 zone "cranzgot.co.za" {
type slave;
file "named.cranzgot.co.za";
masters {

196.28.144.16;
25 };

};

zone "2.168.192.in-addr.arpa" {
type slave;

30 file "named.192.168.2";
masters {

196.28.144.16;
};

};
35

zone "144.28.196.in-addr.arpa" {
type slave;
file "named.196.28.144";
masters {

40 196.28.144.16;
};

};

zone "44.181.123.160.in-addr.arpa" {
45 type slave;

file "named.160.123.181.44";
masters {

196.28.144.16;
};

50 };
✝ ✆

When an entry has a “master” in it, you must supply the appropriate file.
When an entry has a “slave” in it, named will automatically download the file from
196.28.144.16 (i.e., ns1.cranzgot.co.za) the first time a lookup is required
from that domain.

And that’s DNS!

451

40.5. Secondary or Slave DNS Servers 40. named — Domain Name Server

452

Chapter 41

Point-to-Point Protocol — Dialup
Networking

Dialup networking is unreliable and difficult to configure. The reason is simply that
telephones were not designed for data. However, considering that the telephone net-
work is by far the largest electronic network on the globe, it makes sense to make use
of it. This is why modems were created. On the other hand, the advent of ISDN is
slightly more expensive and a better choice for all but home dialup. See Section 41.6
for more information.

41.1 Basic Dialup

For home use, dialup networking is not all that difficult to configure. The PPP HOWTO
contains lots on this (see Section 16). For my machine this boils down to creating the
files /etc/ppp/chap-secrets and /etc/ppp/pap-secrets, both containing the
following line of text:

✞ �

<username> * <password> *
✝ ✆

although only one of the files will be used, then running the following command at a
shell prompt: &This example assumes that an initialization string of AT&F1 is sufficient. See Section
3.5.-

✞ �
pppd connect \

"chat -S -s -v \
’’ ’AT&F1’ \
OK ATDT<tel-number> CONNECT ’’ \

5 name: <username> assword: ’\q<password>’ \

453

41.1. Basic Dialup 41. Point-to-Point Protocol — Dialup Networking

con: ppp" \
/dev/<modem> 57600 debug crtscts modem lock nodetach \
hide-password defaultroute \
user <username> \

10 noauth
✝ ✆

This is a minimalist’s dial-in command and it’s specific to my ISP only. Don’t use
the exact command unless you have an account with the Internet Solution ISP in South
Africa, before January 2000.

The command-line options are explained as follows:

connect <script> Specifies the script that pppd must use to start things up. When
you use a modem manually (as is shown further below), you need to go through
the steps of initializing the modem, causing a dial, connecting, logging in, and
finally telling the remote computer that you would like to set the connection
to “data communication” mode, called the point-to-point protocol, or PPP. The
<script> is the automation of this manual procedure.

chat -S -s -v <expect> <send> <expect> <send> ... The <script>
proper. chat has a man page and uses other than modem communication. -S
means to log messages to the terminal and not to syslog; -s means to log to
stderr; -v means verbose output. After the options comes a list of things the
modem is likely to say, alternated with appropriate responses. This is called an
expect–send sequence. The sequence AT&F1 is the modem initialization string.
&This example assumes that an initialization string of AT&F1 is sufficient. See Section 3.5.- \q
means to not print the password amid the debug output—very important.

/dev/tty?? Specifies the device you are going to use. This will usually be
/dev/ttyS0, /dev/ttyS1, /dev/ttyS2, or /dev/ttyS3.

57600 The speed the modem is to be set to. This is only the speed between the PC and
the modem and has nothing to do with the actual data throughput. It should be
set as high as possible except in the case of very old machines whose serial ports
may possibly only handle 38400. It’s best to choose 115200 unless this doesn’t
work.

debug Output debug information. This option is useful for diagnosing problems.

crtscts Use hardware flow control.

modem Use modem control lines. This is actually the default.

lock Create a UUCP lock file in /var/lock/. As explained in Section 34.4, this is a
file of the form /var/lock/LCK..tty?? that tells other applications that the
serial device is in use. For this reason, you must not call the device /dev/modem
or /dev/cua?.

454

41. Point-to-Point Protocol — Dialup Networking 41.1. Basic Dialup

nodetach Remain always a foreground process. This allows you to watch pppd run
and stop it with ˆC.

defaultroute Create an IP route after PPP comes alive. Henceforth, packets will go
to the right place.

hide-password Hide the password from the logs. This is important for security.

user <username> Specifies the line from the /etc/ppp/chap-secrets and
/etc/ppp/pap-secrets file to use. For a home PC there is usually only one
line.

41.1.1 Determining your chat script

To determine the list of expect–send sequences, you need to do a manual dial-in. The
command

✞ �

dip -t
✝ ✆

stands for dial-IP and talks directly to your modem.

The following session demonstrates a manual dial for user psheer. Using dip
manually like this is a game of trying to get the garbage lines you see below: this is
PPP starting to talk. When you get this junk, you have won and can press ˆC. Then,
copy and paste your session for future reference.

✞ �
[root@cericon]# dip -t
DIP: Dialup IP Protocol Driver version 3.3.7o-uri (8 Feb 96)
Written by Fred N. van Kempen, MicroWalt Corporation.

5 DIP> port ttyS0
DIP> speed 57600
DIP> term
[Entering TERMINAL mode. Use CTRL-] to get back]
AT&F1

10 OK
ATDT4068500
CONNECT 26400/ARQ/V34/LAPM/V42BIS
Checking authorization, please wait...
name:psheer

15 password:

c2-ctn-icon:ppp
Entering PPP mode.
Async interface address is unnumbered (FastEthernet0)

20 Your IP address is 196.34.157.148. MTU is 1500 bytes

˜y}#A!}!e} }3}"}&} }*} } }˜}&4}2Iq}’}"}(}"N$˜˜y}#A!}!r} }4}"}&} }
[Back to LOCAL mode.]
DIP> quit

455

41.1. Basic Dialup 41. Point-to-Point Protocol — Dialup Networking

25 [root@cericon]#
✝ ✆

Now you can modify the above chat script as you need. The kinds of things that
will differ are trivial: like having login: instead of name:. Some systems also require
you to type something instead of ppp, and some require nothing to be typed after your
password. Some further require nothing to be typed at all, thus immediately entering
PPP mode.

Note that dip also creates UUCP lock files as explained in Section 34.4.

41.1.2 CHAP and PAP

You may ask why there are /etc/ppp/chap-secrets and /etc/ppp/pap-
secrets files if a user name and password are already specified inside the the chat
script. CHAP (Challenge Handshake Authentication Protocol) and PAP (Password Au-
thentication Protocol) are authentication mechanisms used after logging in—in other
words, somewhere amid the
˜y}#A!}!e} }3}"}&} }*} } }˜}&4}2Iq}’}"}(}"N$˜˜y}#A!}!r} }4}"}&} }.

41.1.3 Running pppd

If you run the pppd command above, you will get output something like this:
✞ �
send (AT&F1ˆM)
expect (OK)
AT&F1ˆMˆM
OK

5 -- got it

send (ATDT4068500ˆM)
expect (CONNECT)
ˆM

10 ATDT4068500ˆMˆM
CONNECT
-- got it

send (ˆM)
15 expect (name:)

45333/ARQ/V90/LAPM/V42BISˆM
Checking authorization, Please wait...ˆM
username:
-- got it

20

send (psheerˆM)
expect (assword:)
psheerˆM
password:

25 -- got it

send (??????)
expect (con:)

456

41. Point-to-Point Protocol — Dialup Networking 41.1. Basic Dialup

ˆM
30 ˆM

c2-ctn-icon:
-- got it

send (pppˆM)
35 Serial connection established.

Using interface ppp0
Connect: ppp0 <--> /dev/ttyS0
sent [LCP ConfReq id=0x1 <asyncmap 0x0> <magic 0x88c5a54f> <pcomp> <accomp>]
rcvd [LCP ConfReq id=0x3d <asyncmap 0xa0000> <magic 0x3435476c> <pcomp> <accomp>]

40 sent [LCP ConfAck id=0x3d <asyncmap 0xa0000> <magic 0x3435476c> <pcomp> <accomp>]
rcvd [LCP ConfAck id=0x1 <asyncmap 0x0> <magic 0x88c5a54f> <pcomp> <accomp>]
sent [IPCP ConfReq id=0x1 <addr 192.168.3.9> <compress VJ 0f 01>]
sent [CCP ConfReq id=0x1 <deflate 15> <deflate(old#) 15> <bsd v1 15>]
rcvd [IPCP ConfReq id=0x45 <addr 168.209.2.67>]

45 sent [IPCP ConfAck id=0x45 <addr 168.209.2.67>]
rcvd [IPCP ConfRej id=0x1 <compress VJ 0f 01>]
sent [IPCP ConfReq id=0x2 <addr 192.168.3.9>]
rcvd [LCP ProtRej id=0x3e 80 fd 01 01 00 0f 1a 04 78 00 18 04 78 00 15 03 2f]
rcvd [IPCP ConfNak id=0x2 <addr 196.34.157.131>]

50 sent [IPCP ConfReq id=0x3 <addr 196.34.157.131>]
rcvd [IPCP ConfAck id=0x3 <addr 196.34.157.131>]
local IP address 196.34.25.95
remote IP address 168.209.2.67
Script /etc/ppp/ip-up started (pid 671)

55 Script /etc/ppp/ip-up finished (pid 671), status = 0x0
Terminating on signal 2.
Script /etc/ppp/ip-down started (pid 701)
sent [LCP TermReq id=0x2 "User request"]
rcvd [LCP TermAck id=0x2]

✝ ✆

You can see the expect–send sequences working, so it’s easy to correct them if
you made a mistake somewhere.

At this point you might want to type route -n and ifconfig in another ter-
minal:

✞ �
[root@cericon]# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
168.209.2.67 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0

5 127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 168.209.2.69 0.0.0.0 UG 0 0 0 ppp0
[root@cericon]# ifconfig
lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0
10 UP LOOPBACK RUNNING MTU:3924 Metric:1

RX packets:2547933 errors:0 dropped:0 overruns:0 frame:0
TX packets:2547933 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

15 ppp0 Link encap:Point-to-Point Protocol
inet addr:196.34.25.95 P-t-P:168.209.2.67 Mask:255.255.255.255
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:7 errors:0 dropped:0 overruns:0 frame:0
TX packets:7 errors:0 dropped:0 overruns:0 carrier:0

20 collisions:0 txqueuelen:10
✝ ✆

457

41.2. Demand-Dial, Masquerading 41. Point-to-Point Protocol — Dialup Networking

This clearly shows what pppd has done: created a network device and a route to
it.

If your name server is configured, you should now be able to ping meta-
lab.unc.edu or some well-known host.

41.2 Demand-Dial, Masquerading

Dial-on-demand really just involves adding the demand option to the pppd command-
line above. The other way of doing dial-on-demand is to use the diald package, but
here we discuss the pppd implementation. The diald package is, however, a far more
thorough solution.

With the demand option, you will notice that spurious dialouts take place. You
need to add some filtering rules to ensure that only the services you are interested in
cause a dialout. These services should only make outgoing connections when abso-
lutely necessary.

A firewall script might look as follows. This example uses the old ipfwadm
command, possibly called /sbin/ipfwadm-wrapper on your machine. &The newer
ipchains command is now superseded by a completed different packet filtering system in kernel 2.4.-

See the Firewall-HOWTO for more information on building a firewall.
✞ �
Enable ip forwarding and dynamic address changing:
echo 1 > /proc/sys/net/ipv4/ip_forward
echo 1 > /proc/sys/net/ipv4/ip_dynaddr

5 # Clear all firewall rules:
/sbin/ipfwadm -O -f
/sbin/ipfwadm -I -f
/sbin/ipfwadm -F -f

10 /sbin/ipfwadm -O -p deny
/sbin/ipfwadm -I -p deny

Allow all local communications:
/sbin/ipfwadm -O -a accept -D 192.168.0.0/16 -S 0.0.0.0/0

15 /sbin/ipfwadm -O -a accept -D 127.0.0.0/24 -S 127.0.0.0/24
/sbin/ipfwadm -O -a accept -S 192.168.0.0/16 -D 127.0.0.0/24
/sbin/ipfwadm -O -a accept -S 192.168.0.0/16 -D 192.168.0.0/16
/sbin/ipfwadm -I -a accept -S 192.168.0.0/16 -D 0.0.0.0/0
/sbin/ipfwadm -I -a accept -S 127.0.0.0/24 -D 127.0.0.0/24

20 /sbin/ipfwadm -I -a accept -D 192.168.0.0/16 -S 127.0.0.0/24
/sbin/ipfwadm -I -a accept -D 192.168.0.0/16 -S 192.168.0.0/16

Allow ports outgoing:
/sbin/ipfwadm -O -a accept -P tcp -S 0.0.0.0/0 \

25 -D 0.0.0.0/0 20 21 22 25 53 80 110 119 143

458

41. Point-to-Point Protocol — Dialup Networking 41.2. Demand-Dial, Masquerading

/sbin/ipfwadm -O -a accept -P udp -S 0.0.0.0/0 -D 0.0.0.0/0 53

Add this line to allow FTP from masqueraded machines:
/sbin/ipfwadm -O -a accept -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 1024:65535

30

Allow ports incoming:
/sbin/ipfwadm -I -a accept -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 20 113
/sbin/ipfwadm -I -a accept -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 1024:65535
/sbin/ipfwadm -I -a accept -P udp -S 0.0.0.0/0 -D 0.0.0.0/0 1024:65535

✝ ✆

The ports we are using are

20 ftp-data
21 ftp
22 ssh
25 smtp
53 domain
80 www
110 pop3
113 auth
119 nntp
143 imap2

The auth service is not needed but should be kept open so that connecting ser-
vices get a failure instead of waiting for a timeout. You can comment out the auth line
in /etc/inetd.conf for security.

If you have a LAN of machines that needs to share the same dialup link, then
you can give them all 192.168. addresses and masquerade the LAN through the PPP
interface. IP masquerading or NAT (network address translation) can be done with:

✞ �
Masquerading for ftp requires special handling on older kernels:
/sbin/modprobe ip_masq_ftp

Masquerade the domain 192.168.2.0/255.255.128.0
5 /sbin/ipfwadm -F -f

/sbin/ipfwadm -F -p deny
/sbin/ipfwadm -F -a m -S 192.168.0.0/17 -D 0.0.0.0/0

✝ ✆

The pppd script becomes (note that you need pppd-2.3.11 or later for this to
work as I have it here):

✞ �
pppd connect \

"chat -S -s -v \
’’ ’AT&F1’ \
OK ATDT<tel-number> CONNECT ’’ \

5 name: <username> assword: ’\q<password>’ \
con: ppp" \

459

41.3. Dialup DNS 41. Point-to-Point Protocol — Dialup Networking

/dev/ttyS0 57600 debug crtscts modem lock nodetach \
hide-password defaultroute \
user <username> \

10 demand \
:10.112.112.112 \
idle 180 \
holdoff 30

✝ ✆

41.3 Dialup DNS

Your DNS service, to be used on a dialup server, requires some customization. Replace
your options section from the DNS configurations in Chapter 40 with the following:

✞ �

options {
forwarders { 196.7.173.2; /* example only */ };
listen-on { 192.168.2.254; };
directory "/var/cache/bind";

5 dialup yes; notify no; forward only;
};

✝ ✆

The options dialup yes; notify no; forward only; tell bind to use the link
as little as possible; not send notify messages (there are no slave servers on our LAN to
notify) and to forward requests to 192.168.2.254 rather than trying to answer them
itself; respectively. The option listen-on causes the name server to bind to the net-
work interface 192.168.2.254 only. In this example, the interface 192.168.2.254
is our Ethernet card which routes packets from the local LAN. This is important for
security, because it prevents any possible connection from the outside.

There is also a DNS package written specifically for use by dialup servers. It is
called dnrd and is much easier to configure than bind.

41.4 Dial-in Servers

pppd is really just a way to initiate a network device over a serial port, regardless of
whether you initiate or listen for a connection. As long as there is a serial connection
between two machines, pppd will negotiate a link.

To listen for a pppd dial-in, you need just add the following line to your
/etc/inittab file:

✞ �

S0:2345:respawn:/sbin/mgetty -s 115200 ttyS0
✝ ✆

and then the line

460

41. Point-to-Point Protocol — Dialup Networking 41.4. Dial-in Servers

✞ �

/AutoPPP/ - a_ppp /usr/sbin/pppd
✝ ✆

to the file /etc/mgetty+sendfax/login.config (/etc/mgetty/login.config
for Debian). For security, you would probably want to run chmod a-
s /usr/sbin/pppd, since mgetty runs pppd as root anyway. Your
/etc/ppp/options file could contain

✞ �

proxyarp mtu 552 mru 552 require-chap <hostname>:
✝ ✆

Note that we dispense with the serial line options (i.e., speed and flow control) because
mgetty would have already initialized the serial line. <hostname> is just the name
of the local machine. The proxyarp setting adds the remote client to the ARP tables.
This enables your client to connect through to the Internet on the other side of the line
without extra routes. The file /etc/ppp/chap-secrets can be filled with lines like,

✞ �

dialup * <passwd> 192.168.254.123
✝ ✆

to specify the IP address and password of each user.

Next, add a user dialup and perhaps set its password to that in the chap-
secrets file. You can then test your configuration from a remote machine with dip -
t as above. If that works (i.e., mgetty answers, and you get your garbage lines as
on page 456), then a proper pppd dial-in should also work. The /etc/ppp/chap-
secrets file can contain:

✞ �

dialup * <passwd> *
✝ ✆

and you can dial out using a typical pppd command, like this:
✞ �

pppd \
connect "chat -S -s -v ’’ ’AT&F1’ OK ATDT<telephone> CONNECT ’’"
/dev/<modem> 57600 debug crtscts modem lock nodetach
hide-password defaultroute \

5 user dialup \
noauth

✝ ✆

You should be carefully to have a proper DNS configuration for forward and
reverse lookups of your pppd IP addresses. This is so that no services block with
long timeouts and also so that other Internet machines will be friendly to your user’s
connections.

Note that the above also supports faxes, logins, voice, and uucp (see Section
34.3) on the same modem because mgetty only starts pppd if it sees an LCP re-
quest (part of the PPP protocol). If you just want PPP, read the config files in
/etc/mgetty+sendfax/ (Debian /etc/mgetty/) to disable the other services.

461

41.5. Using tcpdump 41. Point-to-Point Protocol — Dialup Networking

41.5 Using tcpdump

If a dialout does occur unexpectedly, you can run tcpdump to dump packets going to
your ppp0 device. This output will probably highlight the error. You can then look at
the TCP port of the service and try to figure out what process the packet might have
come from. The command is:

✞ �

tcpdump -n -N -f -i ppp0
✝ ✆

tcpdump is also discussed in Section 25.10.3.

41.6 ISDN Instead of Modems

For those who are not familiar with ISDN, this paragraph gives you a quick summary.
ISDN stands for Integrated Services Digital Network. ISDN lines are like regular tele-
phone lines, except that an ISDN line comes with two analog and two digital channels.
The analog channels are regular telephone lines in every respect—just plug your phone
in and start making calls. The digital lines each support 64 kilobits/second data trans-
fer; only ISDN communication equipment is meant to plug in to these and the charge
rate is the same as that of a telephone call. To communicate over the digital line, you
need to dial an ISP just as with a regular telephone. PPP runs over ISDN in the same
way as a modem connection. It used to be that only very expensive ISDN routers
could work with ISDN, but ISDN modems and ISDN ISA/PCI cards have become
cheap enough to allow anyone to use ISDN, and most telephone companies will install
an ISDN line as readily as a regular telephone line. So you may ask what’s with the
“Integrated Services.” I suppose it was thought that this service, in allowing both data
and regular telephone, would be the ubiquitous communications service. It remains to
be seen, however, if video conferencing over 64-Kb lines becomes mainstream.

ISDN is not covered in detail here, although ample HOWTOs exists on the sub-
ject. Be wary when setting up ISDN. ISDN dials really fast. It can dial out a thousand
times in a few minutes, which is expensive.

462

Chapter 42

The LINUX Kernel Source,
Modules, and Hardware Support

This chapter explains how to configure, patch, and build a kernel from source. The
configuration of device drivers and modules is also discussed in detail.

42.1 Kernel Constitution

A kernel installation consists of the kernel boot image, the kernel modules, the Sys-
tem.map file, the kernel headers (needed only for development), and various support
daemons (already provided by your distribution). These constitute everything that is
called “Linux” under LINUX , and are built from about 50 megabytes of code of
around 1.5 million lines.

• The LINUX kernel image is a 400 to 600-KB file that sits in /boot/ (see Chapter
31). If you look in this directory, you might see several kernels. The choice of
which to boot is probably available to you at boot time, through lilo.

The kernel in /boot/ is compressed. That is, it is gzip compressed and is actu-
ally about twice the size when unpacked into memory on boot.

• The kernel also has detached parts called modules. These all sit in
/lib/modules/<version>/. They are categorized into the subdirectories be-
low this directory. In kernel 2.2 there were about 400, modules totaling about 9
megabytes.

Modules are actually just shared object files, like the .o files we created in Sec-
tion 23.1. They are not quite the same as Windows device drivers, in that it is

463

42.2. Kernel Version Numbers 42. Kernel

not generally possibly to use a module on a kernel other than the one it was
compiled for—hence the name “module” is used instead of “driver.” Mod-
ules are separated out of the kernel image purely to save RAM. Modules are
sometimes compiled into the kernel in the same way that our test program
was statically linked on page 230. In this case, they would be absent from
/lib/modules/<version>/ and should not really be called modules. In this
chapter I show how to create compiled-in or compiled-out versions of modules
when rebuilding the kernel.

• Next is the System.map file, also in /boot. It is used by klogd to resolve kernel
address references to symbols, so as to write logs about them, and then also by
depmod to work out module dependencies (what modules need what other mod-
ules to be loaded first).

• Finally, the kernel headers /usr/src/linux/include are used when certain
packages are built.

• The “various support daemons” should be running already. Since 2.2, these
have been reduced to klogd only. The other kernel daemons that appear to be
running are generated by the kernel itself.

42.2 Kernel Version Numbers

The kernel is versioned like other packages: linux-major.minor.patch. Development
kernels are given odd minor version numbers; stable kernels are given even minor
version numbers. At the time of writing, the stable kernel was 2.2.17, and 2.4.0
was soon to be released. By the time you read this, 2.4.0 will be available. This
chapter should be entirely applicable to future stable releases of 2.4.

42.3 Modules, insmod Command, and Siblings

A module is usually a device driver pertaining to some device node generated with
the mknod command or already existing in the /dev/ directory. For instance, the SCSI
driver automatically locks onto device major = 8, minor = 0, 1,. . . , when it loads; and
the Sound module onto device major = 14, minor = 3 (/dev/dsp), and others. The
modules people most often play with are SCSI, Ethernet, and Sound modules. There
are also many modules that support extra features instead of hardware.

Modules are loaded with the insmod command, and removed with the rmmod
command. This is somewhat like the operation of linking shown in the Makefile
on page 233. To list currently loaded modules, use lsmod. Try (kernel 2.4 paths are
different and are given in braces)

464

42. Kernel 42.3. Modules, insmod Command, and Siblings

✞ �

insmod /lib/modules/<version>/fs/fat.o
(insmod /lib/modules/<version>/kernel/fs/fat/fat.o)
lsmod
rmmod fat

5 lsmod
✝ ✆

rmmod -a further removes all unused modules.

Modules sometimes need other modules to be present in order to load. If you try
to load a module and it gives <module-name>: unresolved symbol <symbol-
name> error messages, then it requires something else to be loaded first. The mod-
probe command loads a module along with other modules that it depends on. Try

✞ �

insmod /lib/modules/2.2.12-20/fs/vfat.o
(insmod /lib/modules/<version>/kernel/fs/vfat/vfat.o)
modprobe vfat

✝ ✆

modprobe, however, requires a table of module dependencies. This table is the file
/lib/modules/<version>/modules.dep and is generated automatically by your
startup scripts with the command

✞ �

/sbin/depmod -a
✝ ✆

although you can run it manually at any time. The lsmod listing also shows module
dependencies in brackets.

✞ �
Module Size Used by
de4x5 41396 1 (autoclean)
parport_probe 3204 0 (autoclean)
parport_pc 5832 1 (autoclean)

5 lp 4648 0 (autoclean)
parport 7320 1 (autoclean) [parport_probe parport_pc lp]
slip 7932 2 (autoclean)
slhc 4504 1 (autoclean) [slip]
sb 33812 0

10 uart401 6224 0 [sb]
sound 57464 0 [sb uart401]
soundlow 420 0 [sound]
soundcore 2596 6 [sb sound]
loop 7872 2 (autoclean)

15 nls_iso8859-1 2272 1 (autoclean)
nls_cp437 3748 1 (autoclean)
vfat 9372 1 (autoclean)
fat 30656 1 (autoclean) [vfat]

✝ ✆

465

42.4. Interrupts, I/O Ports, and DMA Channels 42. Kernel

42.4 Interrupts, I/O Ports, and DMA Channels

A loaded module that drives hardware will often consume I/O ports, IRQs, and pos-
sibly a DMA channel, as explained in Chapter 3. You can get a full list of occupied
resources from the /proc/ directory:

✞ �

[root@cericon]# cat /proc/ioports

0000-001f : dma1
0020-003f : pic1

5 0040-005f : timer
0060-006f : keyboard
0070-007f : rtc
0080-008f : dma page reg
00a0-00bf : pic2

10 00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : ide1
01f0-01f7 : ide0
0220-022f : soundblaster

15 02f8-02ff : serial(auto)
0330-0333 : MPU-401 UART
0376-0376 : ide1
0378-037a : parport0
0388-038b : OPL3/OPL2

20 03c0-03df : vga+
03f0-03f5 : floppy
03f6-03f6 : ide0
03f7-03f7 : floppy DIR
03f8-03ff : serial(auto)

25 e400-e47f : DC21140 (eth0)
f000-f007 : ide0
f008-f00f : ide1

[root@cericon]# cat /proc/interrupts
30

CPU0
0: 8409034 XT-PIC timer
1: 157231 XT-PIC keyboard
2: 0 XT-PIC cascade

35 3: 104347 XT-PIC serial
5: 2 XT-PIC soundblaster
6: 82 XT-PIC floppy
7: 2 XT-PIC parport0
8: 1 XT-PIC rtc

40 11: 8 XT-PIC DC21140 (eth0)
13: 1 XT-PIC fpu

466

42. Kernel 42.5. Module Options and Device Configuration

14: 237337 XT-PIC ide0
15: 16919 XT-PIC ide1

NMI: 0
45

[root@cericon]# cat /proc/dma

1: SoundBlaster8
2: floppy

50 4: cascade
5: SoundBlaster16

✝ ✆

The above configuration is typical. Note that the second column of the IRQ listing
shows the number of interrupts signals received from the device. Moving my mouse a
little and listing the IRQs again gives me

✞ �

3: 104851 XT-PIC serial
✝ ✆

showing that several hundred interrupts were since received. Another useful entry is
/proc/devices, which shows what major devices numbers were allocated and are
being used. This file is extremely useful for seeing what peripherals are “alive” on
your system.

42.5 Module Options and Device Configuration

Device modules often need information about their hardware configuration. For in-
stance, ISA device drivers need to know the IRQ and I/O port that the ISA card is
physically configured to access. This information is passed to the module as module
options that the module uses to initialize itself. Note that most devices will not need
options at all. PCI cards mostly autodetect; it is mostly ISA cards that require these
options.

42.5.1 Five ways to pass options to a module

1. If a module is compiled into the kernel, then the module will be initialized at
boot time. lilo passes module options to the kernel from the command-line at
the LILO: prompt. For instance, at the LILO: prompt, you can type&See Section
4.4-:

✞ �

linux aha1542=<portbase>[,<buson>,<busoff>[,<dmaspeed>]]
✝ ✆

467

42.5. Module Options and Device Configuration 42. Kernel

to initialize the Adaptec 1542 SCSI driver. What these options are and ex-
actly what goes in them can be learned from the file /usr/src/linux-
<version>/drivers/scsi/aha1542.c. Near the top of the file are com-
ments explaining the meaning of these options.

2. If you are using LOADLIN.EXE or some other DOS or Windows kernel loader,
then it, too, can take similar options. I will not go into these.

3. /etc/lilo.conf can take the append = option, as discussed on page 320.
This options passes options to the kernel as though you had typed them at the
LILO: prompt. The equivalent lilo.conf line is

✞ �

append = aha1542=<portbase>[,<buson>,<busoff>[,<dmaspeed>]]
✝ ✆

This is the most common way of giving kernel boot options.

4. The insmod and modprobe commands can take options that are passed to the
module. These are vastly different from the way you pass options with ap-
pend =. For instance, you can give options to a compiled-in Ethernet module
with the commands

✞ �

append = ether=9,0x300,0xd0000,0xd4000,eth0
append = ether=0,0,eth1

✝ ✆

from within /etc/lilo.conf. But then, using modprobe on the same
“compiled-out” modules, these options have to be specified like this:

✞ �

modprobe wd irq=9 io=0x300 mem=0xd0000 mem_end=0xd4000
modprobe de4x5

✝ ✆

Note that the 0xd0000,0xd4000 are only applicable to a few Ethernet modules
and are usually omitted. Also, the 0’s in ether=0,0,eth1 mean to try autode-
tect. To find out what options a module will take, you can use the modinfo com-
mand which shows that the wd driver is one of the few Ethernet drivers where
you can set their RAM usage. &This has not been discussed, but cards can sometimes use
areas of memory directly.-

✞ �
[root@cericon]# modinfo -p /lib/modules/<version>/net/wd.o
([root@cericon]# modinfo -p /lib/modules/<version>/kernel/drivers/net/wd.o)
io int array (min = 1, max = 4)
irq int array (min = 1, max = 4)

5 mem int array (min = 1, max = 4)
mem_end int array (min = 1, max = 4)

✝ ✆

468

42. Kernel 42.5. Module Options and Device Configuration

5. The file /etc/modules.conf &Also sometimes called /etc/conf.modules, but now
deprecated.- contains default options for modprobe, instead of our giving them
on the modprobe command-line. This is the preferred and most common way of
giving module options. Our Ethernet example becomes:

✞ �

alias eth0 wd
alias eth1 de4x5
options wd irq=9 io=0x300 mem=0xd0000 mem_end=0xd4000

✝ ✆

Having set up an /etc/modules.conf file allows module dynamic loading to
take place. This means that the kernel automatically loads the necessary mod-
ule whenever the device is required (as when ifconfig is first used for Eth-
ernet devices). The kernel merely tries an /sbin/modprobe eth0, and the
alias line hints to modprobe to actually run /sbin/modprobe wd. Fur-
ther, the options line means to run /sbin/modprobe wd irq=9 io=0x300
mem=0xd0000 mem end=0xd4000. In this way, /etc/modules.conf maps
devices to drivers.

42.5.2 Module documentation sources

You might like to see a complete summary of all module options with examples of
each of the five ways of passing options. No such summary exists at this point, sim-
ply because there is no overall consistency and because people are mostly interested
in getting one particular device to work, which will doubtless have peculiarities best
discussed in a specialized document. Further, some specialized modules are mostly
used in compiled-out form, whereas others are mostly used in compiled-in form.

To get an old or esoteric device working, it is best to read the ap-
propriate HOWTO documents: BootPrompt-HOWTO, Ethernet-HOWTO,
and Sound-HOWTO. The device could also be documented in /usr/linux-
<version>/Documentation/ or under one of its subdirectories like sound/ and
networking/. This is documentation written by the driver authors themselves. Of
particular interest is the file /usr/src/linux/Documentation/networking/-
net-modules.txt, which, although outdated, has a fairly comprehensive list of
networking modules and the module options they take. Another source of documen-
tation is the driver code itself, as in the aha1542.c example above. It may explain
the /etc/lilo.conf or /etc/modules.conf options to use but will often be
quite cryptic. A driver is often written with only one of compiled-in or compiled-out
support in mind (even though it really supports both). Choose whether to compile-in
or compiled-out based on what is implied in the documentation or source.

469

42.6. Configuring Various Devices 42. Kernel

42.6 Configuring Various Devices

Further examples on getting common devices to work now follow but only a few de-
vices are discussed. See the documentation sources above for more info. We concen-
trate here on what is normally done.

42.6.1 Sound and pnpdump

Plug-and-Play (PnP) ISA sound cards (like SoundBlaster cards) are possibly the more
popular of any cards that people have gotten to work under LINUX . Here, we use
the sound card example to show how to get a PnP ISA card working in a few minutes.
This is, of course, applicable to cards other than sound.

A utility called isapnp takes one argument, the file /etc/isapnp.conf, and
configures all ISA Plug-and-Play devices to the IRQs and I/O ports specified therein.
/etc/isapnp.conf is a complicated file but can be generated with the pnpdump
utility. pnpdump outputs an example isapnp.conf file to stdout, which contains
IRQ and I/O port values allowed by your devices. You must edit these to unused
values. Alternatively, you can use pnpdump --config to get a /etc/isapnp.conf
file with the correct IRQ, I/O port, and DMA channels automatically guessed from an
examination of the /proc/ entries. This comes down to

✞ �
[root@cericon]# pnpdump --config | grep -v ’ˆ\(#.*\|\)$’ > /etc/isapnp.conf
[root@cericon]# isapnp /etc/isapnp.conf

Board 1 has Identity c9 00 00 ab fa 29 00 8c 0e: CTL0029 Serial No 44026 [checksum c9]
5 CTL0029/44026[0]{Audio }: Ports 0x220 0x330 0x388; IRQ5 DMA1 DMA5 --- Enabled OK

CTL0029/44026[1]{IDE }: Ports 0x168 0x36E; IRQ10 --- Enabled OK
CTL0029/44026[2]{Game }: Port 0x200; --- Enabled OK

✝ ✆

which gets any ISA PnP card configured with just two commands. Note that the
/etc/isapnp.gone file can be used to make pnpdump avoid using certain IRQ and
I/O ports. Mine contains

✞ �

IO 0x378,2
IRQ 7

✝ ✆

to avoid conflicting with my parallel port. isapnp /etc/isapnp.conf must be run
each time at boot and is probably already in your startup scripts.

Now that your ISA card is enabled, you can install the necessary modules. You
can read the /etc/isapnp.conf file and also isapnp’s output above to reference
the I/O ports to the correct module options:

✞ �

alias sound-slot-0 sb
alias sound-service-0-0 sb
alias sound-service-0-1 sb

470

42. Kernel 42.6. Configuring Various Devices

alias sound-service-0-2 sb
5 alias sound-service-0-3 sb

alias sound-service-0-4 sb
alias synth0 sb
post-install sb /sbin/modprobe "-k" "adlib_card"
options sb io=0x220 irq=5 dma=1 dma16=5 mpu_io=0x330

10 options adlib_card io=0x388 # FM synthesizer
✝ ✆

Now run tail -f /var/log/messages /var/log/syslog, and then at
another terminal type:

✞ �

depmod -a
modprobe sb

✝ ✆

If you get no kernel or other errors, then the devices are working.

Now we want to set up dynamic loading of the module. Remove all the sound
and other modules with rmmod -a (or manually), and then try:

✞ �

aumix
✝ ✆

You should get a kernel log like this:
✞ �

Sep 24 00:45:19 cericon kernel: Soundblaster audio driver
Copyright (C) by Hannu Savolainen 1993-1996

Sep 24 00:45:19 cericon kernel: SB 4.13 detected OK (240)
✝ ✆

Then try:
✞ �

playmidi <somefile>.mid
✝ ✆

You should get a kernel log like this one:
✞ �

Sep 24 00:51:34 cericon kernel: Soundblaster audio driver
Copyright (C) by Hannu Savolainen 1993-1996

Sep 24 00:51:34 cericon kernel: SB 4.13 detected OK (240)
Sep 24 00:51:35 cericon kernel: YM3812 and OPL-3 driver

5 Copyright (C) by Hannu Savolainen, Rob Hooft 1993-1996
✝ ✆

If you had to comment out the alias lines, then a kernel message like
modprobe: Can’t locate module sound-slot-0 would result. This in-
dicates that the kernel is attempting a /sbin/modprobe sound-slot-0: a
cue to insert an alias line. Actually, sound-service-0-0,1,2,3,4 are the
/dev/mixer,sequencer,midi,dsp,audio devices, respectively. sound-slot-0

471

42.6. Configuring Various Devices 42. Kernel

means a card that should supply all of these. The post-install option means to
run an additional command after installing the sb module; this takes care of the Adlib
sequencer driver. &I was tempted to try removing the post-install line and adding a alias

sound-service-0-1 adlib card. This works, but not if you run aumix before playmidi, **shrug**.-

42.6.2 Parallel port

The parallel port module is much less trouble:
✞ �

alias parport_lowlevel parport_pc
options parport_lowlevel io=0x378 irq=7

✝ ✆

Merely make sure that your IRQ and I/O port match those in your CMOS (see Section
3.3), and that they do not conflict with any other devices.

42.6.3 NIC — Ethernet, PCI, and old ISA

Here I demonstrate non-PnP ISA cards and PCI cards, using Ethernet devices as an
example. (NIC stands for Network Interface Card, that is, an Ethernet 10 or 100 Mb
card.)

For old ISA cards with jumpers, you will need to check your /proc/ files for
unused IRQ and I/O ports and then physically set the jumpers. Now you can do a
modprobe as usual, for example:

✞ �

modinfo -p ne
modprobe ne io=0x300 irq=9

✝ ✆

Of course, for dynamic loading, your /etc/modules.conf file must have the
lines:

✞ �

alias eth0 ne
options ne io=0x300 irq=9

✝ ✆

On some occasions you will come across a card that has software configurable
jumpers, like PnP, but that can only be configured with a DOS utility. In this case
compiling the module into the kernel will cause it to be autoprobed on startup without
needing any other configuration.

A worst case scenario is a card whose make is unknown, as well its IRQ and I/O ports.
The chip number on the card can sometimes give you a hint (grep the kernel sources
for this number), but not always. To get this card working, compile in support for

472

42. Kernel 42.6. Configuring Various Devices

several modules, one of which the card is likely to be. Experience will help you make
better guesses. If one of your guesses is correct, your card will almost certainly be dis-
covered on reboot. You can find its IRQ and I/O port values in /proc/ or you can run
dmesg to see the autoprobe message line; the message will begin with eth0: . . . and
contain some information about the driver. This information can be used if you decide
later to use modules instead of your custom kernel.

As explained, PCI devices almost never require IRQ or I/O ports to be given as
options. As long as you have the correct module, a simple

✞ �

modprobe <module>
✝ ✆

will always work. Finding the correct module can still be a problem, however, because
suppliers will call a card all sorts of marketable things besides the actual chipset it is
compatible with. The utility scanpci (which is actually part of) checks your PCI
slots for PCI devices. Running scanpci might output something like:

✞ �
.
.
.
pci bus 0x0 cardnum 0x09 function 0x0000: vendor 0x1011 device 0x0009

5 Digital DC21140 10/100 Mb/s Ethernet

pci bus 0x0 cardnum 0x0b function 0x0000: vendor 0x8086 device 0x1229
Intel 82557/8/9 10/100MBit network controller

10 pci bus 0x0 cardnum 0x0c function 0x0000: vendor 0x1274 device 0x1371
Ensoniq es1371

✝ ✆

Another utility is lspci from the pciutils package, which gives comprehensive
information where scanpci sometimes gives none. Then a simple script (kernel 2.4
paths in parentheses again),

✞ �
for i in /lib/modules/<version>/net/* ; do strings $i \

| grep -q -i 21140 && echo $i ; done
(for i in /lib/modules/<version>/kernel/drivers/net/* \

; do strings $i | grep -q -i 21140 && echo $i ; done)
5 for i in /lib/modules/<version>/net/* ; do strings $i \

| grep -q -i 8255 && echo $i ; done
(for i in /lib/modules/<version>/kernel/drivers/net/* \

; do strings $i | grep -q -i 8255 && echo $i ; done)
✝ ✆

faithfully outputs three modules de4x5.o, eepro100.o, and tulip.o, of which two
are correct. On another system lspci gave

✞ �
.
.
.
00:08.0 Ethernet controller: Macronix, Inc. [MXIC] MX987x5 (rev 20)

5 00:0a.0 Ethernet controller: Accton Technology Corporation SMC2-1211TX (rev 10)
✝ ✆

473

42.6. Configuring Various Devices 42. Kernel

and the same for. . .grep. . .Accton gave rtl8139.o and tulip.o (the former of
which was correct), and for. . .grep. . .Macronix (or even 987) gave tulip.o, which
hung the machine. I have yet to get that card working, although Eddie across the room
claims he got a similar card working fine. Cards are cheap—there are enough working
brands so that you don’t have to waist your time on difficult ones.

42.6.4 PCI vendor ID and device ID

PCI supports the useful concept that every vendor and device have unique hex IDs.
For instance, Intel has chosen to represent themselves by the completely random num-
ber 0x8086 as their vendor ID. PCI cards will provide their IDs on request. You will see
numerical values listed in the output of lspci, scanpci, and cat /proc/pci, es-
pecially if the respective utility cannot look up the vendor name from the ID number.
The file /usr/share/pci.ids (/usr/share/misc/pci.ids on Debian) from
the pciutils package contains a complete table of all IDs and their corresponding
names. The kudzu package also has a table /usr/share/kudzu/pcitable con-
taining the information we are really looking for: ID to kernel module mappings. This
enables you to use the intended scientific method for locating the correct PCI module
from the kernel’s /proc/pci data. The file format is easy to understand, and as an
exercise you should try writing a shell script to do the lookup automatically.

42.6.5 PCI and sound

The scanpci output just above also shows the popular Ensoniq sound card, some-
times built into motherboards. Simply adding the line

✞ �

alias sound es1371
✝ ✆

to your modules.conf file will get this card working. It is relatively easy to find the
type of card from the card itself—Ensoniq cards actually have es1371 printed on one of
the chips.

42.6.6 Commercial sound drivers

If your card is not listed in /usr/src/<version>/Documentation/sound/, then
you might be able to get a driver from Open Sound http://www.opensound.com. If you still
can’t find a driver, complain to the manufacturer by email.

There are a lot of sound (and other) cards whose manufacturers refuse to supply the Free software
community with specs. Disclosure of programming information would enable LINUX users to buy their
cards; Free software developers would produce a driver at no cost. Actually, manufacturers’ reasons are
often just pig-headedness.

474

42. Kernel 42.6. Configuring Various Devices

42.6.7 The ALSA sound project

The ALSA (Advanced Linux Sound Architecture http://www.alsa-project.org/) project aims
to provide better kernel sound support. If your card is not supported by the standard
kernel or you are not getting the most out of the standard kernel drivers, then do check
this web site.

42.6.8 Multiple Ethernet cards

If you have more than one Ethernet card, you can easily specify both in your mod-
ules.conf file, as shown in Section 42.5 above. Modules compiled into the kernel
only probe a single card (eth0) by default. Adding the line

✞ �

append = "ether=0,0,eth1 ether=0,0,eth2 ether=0,0,eth3"
✝ ✆

will cause eth1, eth2, and eth3 to be probed as well. Further, replacing the 0’s with
actual values can force certain interfaces to certain physical cards. If all your cards are
PCI, however, you will have to get the order of assignment by experimentation.

If you have two of the same card, your kernel may complain when you try to load
the same module twice. The -o option to insmod specifies a different internal name
for the driver to trick the kernel into thinking that the driver is not really loaded:

✞ �

alias eth0 3c509
alias eth1 3c509
options eth0 -o 3c509-0 io=0x280 irq=5
options eth1 -o 3c509-1 io=0x300 irq=7

✝ ✆

However, with the following two PCI cards that deception was not necessary:
✞ �

alias eth0 rtl8139
alias eth1 rtl8139

✝ ✆

42.6.9 SCSI disks

SCSI (pronounced scuzzy) stands for Small Computer System Interface. SCSI is a ribbon, a
specification, and an electronic protocol for communication between devices and com-
puters. Like your IDE ribbons, SCSI ribbons can connect to their own SCSI hard disks.
SCSI ribbons have gone through some versions to make SCSI faster, the latest “Ultra-
Wide” SCSI ribbons are thin, with a dense array of pins. Unlike your IDE, SCSI can
also connect tape drives, scanners, and many other types of peripherals. SCSI theoret-
ically allows multiple computers to share the same device, although I have not seen

475

42.6. Configuring Various Devices 42. Kernel

this implemented in practice. Because many UNIX hardware platforms only support
SCSI, it has become an integral part of UNIX operating systems.

SCSIs also introduce the concept of LUNs (which stands for Logical Unit Number),
Buses, and ID. These are just numbers given to each device in order of the SCSI cards
you are using (if more than one), the SCSI cables on those cards, and the SCSI devices
on those cables—the SCSI standard was designed to support a great many of these. The
kernel assigns each SCSI drive in sequence as it finds them: /dev/sda, /dev/sdb,
and so on, so these details are usually irrelevant.

An enormous amount should be said on SCSI, but the bare bones is that for 90%
of situations, insmod <pci-scsi-driver> is all you are going to need. You can
then immediately begin accessing the device through /dev/sd? for disks, /dev/st?
for tapes, /dev/scd? for CD-ROMs, or /dev/sg? for scanners. &Scanner user programs
will have docs on what devices they access.- SCSIs often also come with their own BIOS that
you can enter on startup (like your CMOS). This will enable you to set certain things.
In some cases, where your distribution compiles-out certain modules, you may have to
load one of sd mod.o, st.o, sr mod.o, or sg.o, respectively. The core scsi mod.o
module may also need loading, and /dev/ devices may need to be created. A safe bet
is to run

✞ �

cd /dev
./MAKEDEV -v sd
./MAKEDEV -v st0 st1 st2 st3
./MAKEDEV -v scd0 scd1 scd2 scd3

5 ./MAKEDEV -v sg
✝ ✆

to ensure that all necessary device files exist in the first place.

It is recommended that you compile into your kernel support for your SCSI card
(also called the SCSI Host Adapter) that you have, as well as support for tapes, CD-
ROMs, etc. When your system next boots, everything will just autoprobe. An example
system with a SCSI disk and tape gives the following at bootup:

✞ �
(scsi0) <Adaptec AIC-7895 Ultra SCSI host adapter> found at PCI 0/12/0
(scsi0) Wide Channel A, SCSI ID=7, 32/255 SCBs
(scsi0) Cables present (Int-50 YES, Int-68 YES, Ext-68 YES)
(scsi0) Illegal cable configuration!! Only two

5 (scsi0) connectors on the SCSI controller may be in use at a time!
(scsi0) Downloading sequencer code... 384 instructions downloaded
(scsi1) <Adaptec AIC-7895 Ultra SCSI host adapter> found at PCI 0/12/1
(scsi1) Wide Channel B, SCSI ID=7, 32/255 SCBs
(scsi1) Downloading sequencer code... 384 instructions downloaded

10 scsi0 : Adaptec AHA274x/284x/294x (EISA/VLB/PCI-Fast SCSI) 5.1.28/3.2.4
<Adaptec AIC-7895 Ultra SCSI host adapter>

scsi1 : Adaptec AHA274x/284x/294x (EISA/VLB/PCI-Fast SCSI) 5.1.28/3.2.4
<Adaptec AIC-7895 Ultra SCSI host adapter>

scsi : 2 hosts.
15 (scsi0:0:0:0) Synchronous at 40.0 Mbyte/sec, offset 8.

Vendor: FUJITSU Model: MAE3091LP Rev: 0112

476

42. Kernel 42.6. Configuring Various Devices

Type: Direct-Access ANSI SCSI revision: 02
Detected scsi disk sda at scsi0, channel 0, id 0, lun 0
(scsi0:0:3:0) Synchronous at 10.0 Mbyte/sec, offset 15.

20 Vendor: HP Model: C1533A Rev: A708
Type: Sequential-Access ANSI SCSI revision: 02

Detected scsi tape st0 at scsi0, channel 0, id 3, lun 0
scsi : detected 1 SCSI tape 1 SCSI disk total.
SCSI device sda: hdwr sector= 512 bytes. Sectors= 17826240 [8704 MB] [8.7 GB]

25 .
.
.
Partition check:
sda: sda1

30 hda: hda1 hda2 hda3 hda4
hdb: hdb1

✝ ✆

You should also check Section 31.5 to find out how to boot SCSI disks when the
needed module. . . is on a file system. . . inside a SCSI disk. . . that needs the module.

For actually using a tape drive, see page 149.

42.6.10 SCSI termination and cooling

This is the most important section to read regarding SCSI. You may be used to IDE
ribbons that just plug in and work. SCSI ribbons are not of this variety; they need to be
impedance matched and terminated. These are electrical technicians’ terms. Basically,
it means that you must use high-quality SCSI ribbons and terminate your SCSI device.
SCSI ribbons allow many SCSI disks and tapes to be connected to one ribbon. Termi-
nating means setting certain jumpers or switches on the last devices on the ribbon. It
may also mean plugging the last cable connector into something else. Your adapter
documentation and disk documentation should explain what to do. If you terminate
incorrectly, everything may work fine, but you may get disk errors later in the life of
the machine. Also note that some newer SCSI devices have automatic termination.

Cooling is another important consideration. When the documentation for a disk
drive recommends forced air cooling for that drive, it usually means it. SCSI drives get
extremely hot and can burn out in time. Forced air cooling can mean as little as buying
a cheap circuit box fan and tying it in a strategic position. You should also use very
large cases with several inches of space between drives. Anyone who has opened up
an expensive high end server will see the attention paid to air cooling.

42.6.11 CD writers

A system with an ATAPI (IDE CD -Writer and ordinary CD-ROM will display a
message at bootup like,

477

42.6. Configuring Various Devices 42. Kernel

✞ �

hda: FUJITSU MPE3084AE, ATA DISK drive
hdb: CD-ROM 50X L, ATAPI CDROM drive
hdd: Hewlett-Packard CD-Writer Plus 9300, ATAPI CDROM drive

✝ ✆

Note that these devices should give BIOS messages before LILO: starts to indicate that they
are correctly installed.

The /etc/modules.conf lines to get the CD-writer working are:
✞ �
alias scd0 sr_mod # load sr_mod upon access of /dev/scd0
alias scsi_hostadapter ide-scsi # SCSI hostadaptor emulation
options ide-cd ignore="hda hdc hdd" # Our normal IDE CD is on /dev/hdb

✝ ✆

The alias scd0 line must be omitted if sr mod is compiled into the kernel—search
your /lib/modules/<version>/ directory. Note that the kernel does not support
ATAPI CD-Writers directly. The ide-scsi module emulates a SCSI adapter on behalf
of the ATAPI CD-ROM. CD-Writer software expects to speak to /dev/scd?, and the
ide-scsi module makes this device appear like a real SCSI CD writer. &Real SCSI CD
writers are much more expensive.- There is one caveat: your ordinary IDE CD-ROM driver,
ide-cd, will also want to probe your CD writer as if it were a normal CD-ROM. The
ignore option makes the ide-cd module overlook any drives that should not be
probed—on this system, these would be the hard disk, CD writer, and non-existent
secondary master. However, there is no way of giving an ignore option to a compiled-
in ide-cd module (which is how many distributions ship), so read on.

An alternative is to compile in support for ide-scsi and completely leave out
support for ide-cd. Your normal CD-ROM will work perfectly as a read-only CD-
ROM under SCSI emulation. &Even with music CDs.- This means setting the relevant
sections of your kernel configuration menu:

✞ �

<*> Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support
< > Include IDE/ATAPI CDROM support
<*> SCSI emulation support

5 <*> SCSI support
<*> SCSI CD-ROM support
[*] Enable vendor-specific extensions (for SCSI CDROM)
<*> SCSI generic support

✝ ✆

No further configuration is needed, and on bootup, you will find messages like:
✞ �
scsi0 : SCSI host adapter emulation for IDE ATAPI devices
scsi : 1 host.
Vendor: E-IDE Model: CD-ROM 50X L Rev: 12
Type: CD-ROM ANSI SCSI revision: 02

5 Detected scsi CD-ROM sr0 at scsi0, channel 0, id 0, lun 0
Vendor: HP Model: CD-Writer+ 9300 Rev: 1.0b

478

42. Kernel 42.6. Configuring Various Devices

Type: CD-ROM ANSI SCSI revision: 02
Detected scsi CD-ROM sr1 at scsi0, channel 0, id 1, lun 0
scsi : detected 2 SCSI generics 2 SCSI cdroms total.

10 sr0: scsi3-mmc drive: 4x/50x cd/rw xa/form2 cdda tray
Uniform CD-ROM driver Revision: 3.10
sr1: scsi3-mmc drive: 32x/32x writer cd/rw xa/form2 cdda tray

✝ ✆

If you do have a real SCSI writer, compiling in support for your SCSI card will
detect it in a similar fashion. Then, for this example, the device on which to mount
your CD-ROM is /dev/scd0 and your CD-Writer, /dev/scd1.

For actually recording a CD , the cdrecord command-line program is simple
and robust, although there are also many pretty graphical front ends. To locate your
CD ID, run

✞ �

cdrecord -scanbus
✝ ✆

which will give a comma-separated numeric sequence. You can then use this sequence
as the argument to cdrecord’s dev= option. On my machine I type

✞ �

mkisofs -a -A ’Paul Sheer’ -J -L -r -P PaulSheer \
-p www.icon.co.za/˜psheer/ -o my_iso /my/directory

cdrecord dev=0,1,0 -v speed=10 -isosize -eject my_iso
✝ ✆

to create an ISO9660 CD-ROM out of everything below a directory /my/directory.
This is most useful for backups. (The -a option should be omitted in newer versions
of this command.) Beware not to exceed the speed limit of your CD writer.

42.6.12 Serial devices

You don’t need to load any modules to get your mouse and modem to work. Regular
serial devices (COM1 through COM4 under DOS/Windows) will autoprobe on boot
and are available as /dev/ttyS0 through /dev/ttyS3. A message on boot, like

✞ �

Serial driver version 4.27 with MANY_PORTS MULTIPORT SHARE_IRQ enabled
ttyS00 at 0x03f8 (irq = 4) is a 16550A
ttyS01 at 0x02f8 (irq = 3) is a 16550A

✝ ✆

will testify to their correct detection.

On the other hand, multiport serial cards can be difficult to configure. These
devices are in a category all of their own. Most use a chip called the 16550A UART
(Universal Asynchronous Receiver Transmitter), which is similar to that of your built-
in serial port. The kernel’s generic serial code supports them, and you will not need
a separate driver. The UART really is the serial port and comes in the flavors 8250,
16450, 16550, 16550A, 16650, 16650V2, and 16750.

479

42.7. Modem Cards 42. Kernel

To get these cards working requires the use of the setserial command. It is
used to configure the kernel’s built-in serial driver. A typical example is an 8-port non-
PnP ISA card with jumpers set to unused IRQ 5 and ports 0x180–0x1BF. Note that
unlike most devices, many serial devices can share the same IRQ.&The reason is that serial
devices set an I/O port to tell which device is sending the interrupt. The CPU just checks every serial device
whenever an interrupt comes in.- The card is configured with this script:

✞ �
cd /dev/
./MAKEDEV -v ttyS4
./MAKEDEV -v ttyS5
./MAKEDEV -v ttyS6

5 ./MAKEDEV -v ttyS7
./MAKEDEV -v ttyS8
./MAKEDEV -v ttyS9
./MAKEDEV -v ttyS10
./MAKEDEV -v ttyS11

10 /bin/setserial -v /dev/ttyS4 irq 5 port 0x180 uart 16550A skip_test
/bin/setserial -v /dev/ttyS5 irq 5 port 0x188 uart 16550A skip_test
/bin/setserial -v /dev/ttyS6 irq 5 port 0x190 uart 16550A skip_test
/bin/setserial -v /dev/ttyS7 irq 5 port 0x198 uart 16550A skip_test
/bin/setserial -v /dev/ttyS8 irq 5 port 0x1A0 uart 16550A skip_test

15 /bin/setserial -v /dev/ttyS9 irq 5 port 0x1A8 uart 16550A skip_test
/bin/setserial -v /dev/ttyS10 irq 5 port 0x1B0 uart 16550A skip_test
/bin/setserial -v /dev/ttyS11 irq 5 port 0x1B8 uart 16550A skip_test

✝ ✆

You should immediately be able to use these devices as regular ports. Note that
you would expect to see the interrupt in use under /proc/interrupts. For serial
devices this is only true after data actually starts to flow. However, you can check
/proc/tty/driver/serial to get more status information. The setserial man
page contains more about different UARTs and their compatibility problems. It also
explains autoprobing of the UART, IRQ, and I/O ports (although it is better to be sure
of your card and never use autoprobing).

Serial devices give innumerable problems. There is a very long Serial-HOWTO
that will help you solve most of them; It goes into more technical detail. It will also
explain special kernel support for many “nonstandard” cards.

42.7 Modem Cards

Elsewhere in this book I refer only to ordinary external modems that connect to your
machine’s auxiliary serial port. However, internal ISA modem cards are cheaper and
include their own internal serial port. This card can be treated as above, like an ISA
multiport serial card with only one port: just set the I/O port and IRQ jumpers and
then run setserial /dev/ttyS3. . . .

Beware that a new variety of modem has been invented called the “win-modem.”
These cards are actually just sound cards. Your operating system has to generate the

480

42. Kernel 42.8. More on LILO: Options

signals needed to talk the same protocol as a regular modem. Because the CPU has
to be very fast to do this, such modems were probably not viable before 1997 or so.
http://linmodems.technion.ac.il/, http://www.idir.net/˜gromitkc/winmodem.html, and http://www.-
linmodems.org/ are three resources that cover these modems.

42.8 More on LILO: Options

The BootPrompt-HOWTO contains an exhaustive list of things that can be typed at the
boot prompt to do interesting things like NFS root mounts. This document is important
to read if only to get an idea of the features that LINUX supports.

42.9 Building the Kernel

Summary:
✞ �

cd /usr/src/linux/
make mrproper
make menuconfig
make dep

5 make clean
make bzImage
make modules
make modules_install
cp /usr/src/linux/arch/i386/boot/bzImage /boot/vmlinuz-<version>

10 cp /usr/src/linux/System.map /boot/System.map-<version>
✝ ✆

Finally, edit /etc/lilo.conf and run lilo. Details on each of these steps follow.

42.9.1 Unpacking and patching

The LINUX kernel is available from various places as linux-?.?.?.tar.gz, but
primarily from the LINUX kernel’s home ftp://ftp.kernel.org/pub/linux/kernel/.

The kernel can easily be unpacked with
✞ �

cd /usr/src
mv linux linux-OLD
tar -xzf linux-2.4.0-test6.tar.gz
mv linux linux-2.4.0-test6

5 ln -s linux-2.4.0-test6 linux
cd linux

✝ ✆

and possibly patched with (see Section 20.7.3):

481

42.9. Building the Kernel 42. Kernel

✞ �

bzip2 -cd ../patch-2.4.0-test7.bz2 | patch -s -p1
cd ..
mv linux-2.4.0-test6 linux-2.4.0-test7
ln -sf linux-2.4.0-test7 linux

5 cd linux
make mrproper

✝ ✆

Your 2.4.0-test6 kernel source tree is now a 2.4.0-test7 kernel source
tree. You will often want to patch the kernel with features that Linus did not include,
like security patches or commercial hardware drivers.

Important is that the following include directories point to the correct directories
in the kernel source tree:

✞ �
[root@cericon]# ls -al /usr/include/{linux,asm} /usr/src/linux/include/asm
lrwxrwxrwx 1 root root 24 Sep 4 13:45 /usr/include/asm -> ../src/linux/include/asm
lrwxrwxrwx 1 root root 26 Sep 4 13:44 /usr/include/linux -> ../src/linux/include/linux
lrwxrwxrwx 1 root root 8 Sep 4 13:45 /usr/src/linux/include/asm -> asm-i386

✝ ✆

Before continuing, you should read the Changes file (under
/usr/src/linux/Documentation/) to find out what is required to build the
kernel. If you have a kernel source tree supplied by your distribution, everything will
already be up-to-date.

42.9.2 Configuring

(A kernel tree that has suffered from previous builds may need you to run
✞ �

make mrproper
✝ ✆

before anything else. This completely cleans the tree, as though you had just unpacked
it.)

There are three kernel configuration interfaces. The old line-for-line y/n interface
is painful to use. For a better text mode interface, you can type

✞ �

make menuconfig
✝ ✆

otherwise, under enter
✞ �

make xconfig
✝ ✆

to get the graphical configurator. For this discussion, I assume that you are using the
text-mode interface.

482

42. Kernel 42.10. Using Packaged Kernel Source

The configure program enables you to specify an enormous number of fea-
tures. It is advisable to skim through all the sections to get a feel for the differ-
ent things you can do. Most options are about specifying whether you want a
feature [*] compiled into the kernel image, [M] compiled as a module, or []
not compiled at all. You can also turn off module support altogether from Load-

able module support --->. The kernel configuration is one LINUX pro-
gram that offers lots of help—select < Help > on any feature. The raw help file is
/usr/src/linux/Documentation/Configure.help (nearly 700 kilobytes) and
is worth reading.

When you are satisfied with your selection of options, select < Exit > and se-
lect save your new kernel configuration.

The kernel configuration is saved in a file /usr/src/linux/.config. Next
time you run make menuconfig, your configuration will default to these settings.
The file /usr/src/linux/arch/i386/defconfig contains defaults to use in the
absence of a .config file. Note that the command make mrproper removes the
.config file.

42.10 Using Packaged Kernel Source

Your distribution will probably have a kernel source package ready to build.
This package is better to use than downloading the source yourself be-
cause all the default build options will be present; for instance, RedHat 7.0
comes with the file /usr/src/linux-2.2.16/configs/kernel-2.2.16-i586-
smp.config, which can be copied over the /usr/src/linux-2.2.16/.config to
build a kernel optimized for SMP (Symmetric Multiprocessor Support) with all of Red-
Hat’s defaults enabled. It also comes with a custom defconfig file to build kernels
identical to those of RedHat. Finally, RedHat would have applied many patches to add
features that may be time consuming to do yourself. The same goes for Debian .

You should try to enable or “compile-in” features rather than disable anything,
since the default RedHat kernel supports almost every kernel feature, and later it may
be more convenient to have left it that way. On the other hand, a minimal kernel will
compile much faster.

42.11 Building, Installing

Run the following commands to build the kernel; this process may take anything from
a few minutes to several hours, depending on what you have enabled. After each
command completes, check the last few messages for errors (or check the return code,
$?), rather than blindly typing the next commands.

483

42.11. Building, Installing 42. Kernel

✞ �

make dep && \
make clean && \
make bzImage && \
make modules && \

5 make modules_install
✝ ✆

The command make modules install would have installed all modules into
/lib/modules/<version>. &You may like to clear out this directory at some point and rerun
make modules install, since stale modules cause problems with depmod -a.-

The kernel image itself, /usr/src/linux/arch/i386/boot/bzImage, and
/usr/src/linux/System.map are two other files produced by the build. These
must be copied to /boot/, possibly creating neat symlinks:

✞ �

cp /usr/src/linux/arch/i386/boot/bzImage /boot/vmlinuz-<version>
cp /usr/src/linux/System.map /boot/System.map-<version>
ln -sf System.map-<version> /boot/System.map
ln -sf /boot/vmlinuz-<version> vmlinuz

✝ ✆

Finally, your lilo.conf may be edited as described in Chapter 31. Most people
now forget to run lilo and find their system unbootable. Do run lilo, making sure
that you have left your old kernel in as an option, in case you need to return to it. Also
make a boot floppy from your kernel, as shown in Section 31.4.

484

Chapter 43

The X Window System

Before The X Window System (from now on called), UNIX was terminal based and had
no proper graphical environment, sometimes called a GUI.&Graphical User Interface.-

was designed to fulfill that need and to incorporate into graphics all the power of a
networked computer.

was developed in 1985 at the Massachusetts Institute of Technology by the X
Consortium and is now owned by the Open Software Foundation (OSF). It comprises
over 2 million lines of code that run on every variant of UNIX.

You might imagine that allowing an application to put graphics on a screen in-
volves nothing more than creating a user library that can perform various graphical
functions like line drawing, font drawing, and so on. To understand why is more
than merely this, consider the example of character terminal applications: these are
programs that run on a remote machine while displaying to a character terminal and
receiving feedback (keystrokes) from that character terminal. There are two distinct en-
tities at work—the application and the user’s character terminal display; these two are
connected by some kind of serial or network link. Now what if the character terminal
could display windows and other graphics (in addition to text), while giving feedback
to the application with a mouse (as well as a keyboard)? This is what achieves.

43.1 The X Protocol

is a protocol of commands that are sent and received between an application and a
special graphical terminal called an X Server (from now on called the server). &The word
“server” is confusing, because there are lots of servers for each client machine, and the user sits on the
server side. This is in the opposite sense to what we usually mean by a server.-How the server actu-
ally draws graphics on the hardware is irrelevant to the developer; all the application

485

43.1. The X Protocol 43. The X Window System

needs to know is that if it sends a particular sequence of bytes down the TCP/IP link,
the server will interpret them to mean that a line, circle, font, box, or other graphics
entity should be drawn on its screen. In the other direction, the application needs to
know that particular sequences of bytes mean that a keyboard key was pressed or that
a mouse has moved. This TCP communication is called the X protocol.

When you are using , you will probably not be aware that this interaction is
happening. The server and the application might very well be on the same machine.
The real power of is evident when they are not on the same machine. Consider, for
example, that 20 users can be logged in to a single machine and be running different
programs that are displayed on 20 different remote servers. It is as though a single
machine was given multiple screens and keyboards. It is for this reason that is called
a network transparent windowing system.

The developer of a graphical application can then dispense with having to know
anything about the graphics hardware itself (consider DOS applications where each
had to build in support for many different graphics cards), and that developer can also
dispense with having to know what machine the graphics will be displayed on.

The precise program that performs this miracle is /usr/X11/bin/X. A typical
sequence of events to get a graphical program to run is as follows. (This is an illustra-
tion. In practice, numerous utilities perform these functions in a more generalized and
user-friendly way.)

1. The program /usr/X11R6/bin/X is started and run in the back-
ground. will detect through configuration files (/etc/XF86Config or
/etc/X11/XF86Config on LINUX), and possibly through hardware autode-
tection, what graphics hardware (like a graphics add-on card) is available. It
then initializes that hardware into graphics mode.

2. It then opens a socket connection to listen for incoming requests on a specific port
(usually TCP port 6000), being ready to interpret any connection as a stream of
graphics commands.

3. An application is started on the local machine or on a remote machine. All pro-
grams have a configuration option by which you can specify (with an IP address
or host name) where you would like the program to connect, that is, on which
server you would like the resulting output to display.

4. The application opens a socket connection to the specified server over the net-
work. This is the most frequent source of errors. Applications fail to connect
to a server because the server is not running, because the server was specified
incorrectly, or because the server refuses a connection from an untrusted host.

5. The application begins sending protocol requests, waiting for them to be pro-
cessed, and then receiving and processing the resulting protocol responses.
From the user’s point of view, the application now appears to be “running” on
the server’s display.

486

43. The X Window System 43.1. The X Protocol

Communication between the application and the server is somewhat more com-
plex than the mere drawing of lines and rectangles and reporting of mouse and key
events. The server must be able to handle multiple applications connecting from mul-
tiple machines, and these applications may interact with each other (think of cut and
paste operations between applications that are actually running on different machines.)
Some examples of the fundamental X Protocol requests that an application can make to
a server are the following:

“Create Window” A window is a logical rectangle on the screen, owned by particular
application, into which graphics can be drawn.

“List Fonts” To list fonts available to the application.

“Allocate Color” Will define a color of the specified name or RGB value for later use.

“Create Graphics Context” A Graphics Context is a definition of how graphics are
to be drawn within a window—for example, the default background color, line
style, clipping, and font.

“Get Selection Owner” Find which window (possibly belonging to another applica-
tion) owns the selection (i.e., a “cut” of text).

In return, the server replies by sending events back to the application. The applica-
tion is required to constantly poll the server for these events. Besides events detail-
ing the user’s mouse and keyboard input, there are other events, for example, that
indicate that a window has been exposed (a window on top of another window was
moved, thus exposing the window beneath it. The application should then send the
appropriate commands needed to redraw the graphics within the window now on
top). Another example is a notification to request a paste from another application. The
file /usr/include/X11/Xproto.h contains the full list of protocol requests and
events.

The programmer of an application need not be directly concerned with these
requests. A high-level library handles the details of the server interaction. This library
is called the X Library, /usr/X11R6/lib/libX11.so.6.

One of the limitations of such a protocol is that developers are restricted to the
set of commands that have been defined. overcame this problem by making the
protocol extensible&Being able to add extensions and enhancements without complicating or breaking
compatibility.- from the start. These days there are extensions to to allow, for ex-
ample, the display of 3D graphics on the server, the interpretation of PostScript com-
mands, and many other capabilities that improve aesthetic appeal and performance.
Each extension comes with a new group of protocol requests and events, as well as
a programmers’ library interface.

An example of a real program follows. This is about the simplest an program
is ever going to get. The program displays a small XPM image file in a window and

487

43.1. The X Protocol 43. The X Window System

waits for a key press or mouse click before exiting. You can compile it with gcc -
o splash splash.c -lX11 -L/usr/X11R6/lib. (You can see right away why
there are few applications written directly in .) Notice that all library functions are
prefixed by an X.

✞ �
/* splash.c - display an image */

#include <stdlib.h>
#include <stdio.h>

5 #include <string.h>

#include <X11/Xlib.h>

/* XPM */
10 static char *graham_splash[] = {

/* columns rows colors chars-per-pixel */
"28 32 16 1",
" c #34262e", ". c #4c3236", "X c #673a39", "o c #543b44",
"O c #724e4e", "+ c #6a5459", "@ c #6c463c", "# c #92706c",

15 "$ c #92685f", "% c #987e84", "& c #aa857b", "n c #b2938f",
"= c #bca39b", "- c #a89391", "; c #c4a49e", ": c #c4a8a4",
/* pixels */
"--%#%%nnnn#-nnnnnn=====;;=;:", "--------n-nnnnnn=n==;==;=:;:",
"----n--n--n-n-n-nn===:::::::", "-----&------nn-n=n====::::::",

20 "----------------n===;=::::::", "----%&-%--%##%---n===:::::::",
"------%#%+++o+++----=:::::::", "--#-%%#+++oo. oo+#--=:::::::",
"-%%%%++++o.. .++&-==:::::", "---%#+#+++o. oo+&n=::::",
"--%###+$+++Oo. o+#-:=::", "-&%########++Oo @$-==:",
"####$$$+###$++OX .O+&==", "&##$O+OXo+++$#+Oo. ..O&&-",

25 "&##+OX..... .oOO@@... o@+&&", "&###$Oo.o++ ..oX@oo@O$&-",
"n###$$$$O$o ...X.. .XXX@$$$&", "nnn##$$#$OO. .XX+@ .XXX@$$#&",
"nnn&&%####$OX.X$$@. XX$$$$&", "nnnnn&&###$$$OX$$X..XXX@O$&n",
"nnnnnn&&%###$$$$@XXXXX@O$&&n", ";n=;nnnn&&&#$$$$$@@@@@@O$&n;",
";n;=nn;nnnn#&$$$@X@O$@@$$&n;", "=n=;;;n;;nn&&&$$$$OO$$$$$&;;",

30 "n;=n;;=nn&n&&&&&&$$$$$##&&n;", "n;=;;;;;;;;&&&n&&&&&&&&#&n=;",
";n;n;;=n;&;&;&n&&&&&&&#nn;;;", "n;=;;;;;;;;n;&&n&&&n&nnnn;;;",
"n=;;:;;=;;nn;&n;&n&nnnnnnn=;", "nn;;;;;;;;;;;;;;n&nnnnnn===;",
"=nn;;:;n;;;;&&&&n&&nnnnnn;=;", "n====;;;;&&&&&&&nnnnnnnnnn;;"
};

35

int main (int argc, char **argv)
{

int i, j, x, y, width, height, n_colors;
XSetWindowAttributes xswa;

40 XGCValues gcv;
Display *display;
char *display_name = 0;
int depth = 0;
Visual *visual;

45 Window window;
Pixmap pixmap;
XImage *image;
Colormap colormap;
GC gc;

50 int bytes_per_pixel;
unsigned long colors[256];
unsigned char **p, *q;
for (i = 1; i < argc - 1; i++)

if (argv[i])
55 if (!strcmp (argv[i], "-display"))

display_name = argv[i + 1];
display = XOpenDisplay (display_name);
if (!display) {

printf ("splash: cannot open display\n");

488

43. The X Window System 43.1. The X Protocol

60 exit (1);
}
depth = DefaultDepth (display, DefaultScreen (display));
visual = DefaultVisual (display, DefaultScreen (display));
p = (unsigned char **) graham_splash;

65 q = p[0];
width = atoi ((const char *) q);
q = (unsigned char *) strchr (q, ’ ’);
height = atoi ((const char *) ++q);
q = (unsigned char *) strchr (q, ’ ’);

70 n_colors = atoi ((const char *) ++q);

colormap = DefaultColormap (display, DefaultScreen (display));
pixmap =

XCreatePixmap (display, DefaultRootWindow (display), width, height,
75 depth);

gc = XCreateGC (display, pixmap, 0, &gcv);

image =
XCreateImage (display, visual, depth, ZPixmap, 0, 0, width, height,

80 8, 0);
image->data = (char *) malloc (image->bytes_per_line * height + 16);

/* create color palette */
for (p = p + 1, i = 0; i < n_colors; p++, i++) {

85 XColor c, c1;
unsigned char *x;
x = *p + 4;
if (*x == ’#’) {

unsigned char *h = (unsigned char *) "0123456789abcdef";
90 x++;

c.red =
((unsigned long) strchr (h, *x++) -
(unsigned long) h) << 12;

c.red |=
95 ((unsigned long) strchr (h, *x++) -

(unsigned long) h) << 8;
c.green =

((unsigned long) strchr (h, *x++) -
(unsigned long) h) << 12;

100 c.green |=
((unsigned long) strchr (h, *x++) -
(unsigned long) h) << 8;

c.blue =
((unsigned long) strchr (h, *x++) -

105 (unsigned long) h) << 12;
c.blue |=

((unsigned long) strchr (h, *x++) -
(unsigned long) h) << 8;

if (!XAllocColor (display, colormap, &c))
110 printf ("splash: could not allocate color cell\n");

} else {
if (!XAllocNamedColor (display, colormap, (char *) x, &c, &c1))

printf ("splash: could not allocate color cell\n");
}

115 colors[(*p)[0]] = c.pixel;
}

bytes_per_pixel = image->bytes_per_line / width;

120 /* cope with servers having different byte ordering and depths */
for (j = 0; j < height; j++, p++) {

unsigned char *r;
unsigned long c;
q = image->data + image->bytes_per_line * j;

489

43.1. The X Protocol 43. The X Window System

125 r = *p;
if (image->byte_order == MSBFirst) {

switch (bytes_per_pixel) {
case 4:

for (i = 0; i < width; i++) {
130 c = colors[*r++];

*q++ = c >> 24;
*q++ = c >> 16;
*q++ = c >> 8;
*q++ = c;

135 }
break;

case 3:
for (i = 0; i < width; i++) {

c = colors[*r++];
140 *q++ = c >> 16;

*q++ = c >> 8;
*q++ = c;

}
break;

145 case 2:
for (i = 0; i < width; i++) {

c = colors[*r++];
*q++ = c >> 8;
*q++ = c;

150 }
break;

case 1:
for (i = 0; i < width; i++)

*q++ = colors[*r++];
155 break;

}
} else {

switch (bytes_per_pixel) {
case 4:

160 for (i = 0; i < width; i++) {
c = colors[*r++];
*q++ = c;
*q++ = c >> 8;
*q++ = c >> 16;

165 *q++ = c >> 24;
}
break;

case 3:
for (i = 0; i < width; i++) {

170 c = colors[*r++];
*q++ = c;
*q++ = c >> 8;
*q++ = c >> 16;

}
175 break;

case 2:
for (i = 0; i < width; i++) {

c = colors[*r++];
*q++ = c;

180 *q++ = c >> 8;
}
break;

case 1:
for (i = 0; i < width; i++)

185 *q++ = colors[*r++];
break;

}
}

}

490

43. The X Window System 43.2. Widget Libraries and Desktops

190

XPutImage (display, pixmap, gc, image, 0, 0, 0, 0, width, height);

x = (DisplayWidth (display, DefaultScreen (display)) - width) / 2;
y = (DisplayHeight (display, DefaultScreen (display)) - height) / 2;

195

xswa.colormap = colormap;
xswa.background_pixmap = pixmap;

window =
200 XCreateWindow (display, DefaultRootWindow (display), x, y, width,

height, 0, depth, InputOutput, visual,
CWColormap | CWBackPixmap, &xswa);

XSelectInput (display, window, KeyPressMask | ButtonPressMask);

205 XMapRaised (display, window);

while (1) {
XEvent event;
XNextEvent (display, &event);

210 if (event.xany.type == KeyPress || event.xany.type == ButtonPressMask)
break;

}
XUnmapWindow (display, window);
XCloseDisplay (display);

215 return 0;
}

✝ ✆

You can learn to program from the documentation in the Window System
sources—see below. The preceding program is said to be “written directly in X-lib” be-
cause it links only with the lowest-level library, libX11.so. The advantage of de-
veloping this way is that your program will work across every variant of UNIX without
any modifications. Notice also that the program deals with any type of display device
regardless of its resolution (width � height or pixels-per-inch), color capacity, or hard-
ware design.

43.2 Widget Libraries and Desktops

To program in is tedious. Therefore, most developers will use a higher-level widget
library. Most users of GUIs will be familiar with widgets: buttons, menus, text input
boxes, and so on. programmers have to implement these manually. The reason
widgets were not built into the protocol is to allow different user interfaces to be
built on top of . This flexibility makes the enduring technology that it is.

43.2.1 Background

The X Toolkit (libXt.so) is a widget library that has always come free with . It
is crude-looking by today’s standards. It doesn’t feature 3D (shadowed) widgets, al-
though it is comes free with . &The excellent xfig application, an X Toolkit application, was in

491

43.2. Widget Libraries and Desktops 43. The X Window System

fact used to do the diagrams in this book.-Motif (libM.so) is a modern, full-featured widget
library that had become an industry standard. Motif is, however, bloated, slow, and
dependent on the toolkit. It has always been an expensive proprietary library. Tk
(tee-kay, libtk.so) is a library that is primarily used with the Tcl scripting language.
It was probably the first platform-independent library (running on Windows, all UNIX
variants, and the Apple Mac). It is, however, slow and has limited features (this is
progressively changing). Both Tcl and Motif are not very elegant-looking.

Around 1996, we saw a lot of widget libraries popping up with different licenses.
V, xforms, and graphix come to mind. (This was when I started to write coolwidgets—my
own widget library.) There was no efficient, multipurpose, Free, and elegant-looking
widget library for UNIX. This was a situation that sucked and was retarding Free
software development.

43.2.2 Qt

At about that time, a new GUI library was released. It was called Qt and was developed
by Troll Tech. It was not free, but it was an outstanding technical accomplishment in
that it worked efficiently and cleanly on many different platforms. It was shunned by
some factions of the Free software community because it was written in C++,&Which
is not considered to be the standard development language by the Free Software Foundation because it is
not completely portable and possibly for other reasons.- and was only free for noncommercial
applications to link with.

Nevertheless, advocates of Qt went ahead and began producing the outstanding
KDE desktop project—a set of higher-level development libraries, a window manager,
and many core applications that together make up the KDE Desktop. The licensing
issues with Qt have relaxed somewhat, and it is now available under both the GPL
and a proprietary license.

43.2.3 Gtk

At one point, before KDE was substantially complete, Qt antagonists reasoned that
since there were more lines of Qt code than of KDE code, it would be better to develop
a widget library from scratch—but that is an aside. The Gtk widget library was written
especially for gimp (GNU Image Manipulation Program), is GPL’d and written entirely in

in low-level calls (i.e., without the X Toolkit), object oriented, fast, clean, extensible
and having a staggering array of features. It comprises Glib, a library meant to extend
standard , providing higher-level functions usually akin only to scripting languages,
like hash tables and lists; Gdk, a wrapper around raw Library to give GNU naming
conventions to , and to give a slightly higher level interface to ; and the Gtk library
itself.

Using Gtk, the Gnome project began, analogous to KDE, but written entirely in .

492

43. The X Window System 43.3. XFree86

43.2.4 GNUStep

OpenStep (based on NeXTStep) was a GUI specification published in 1994 by Sun
Microsystems and NeXT Computers, meant for building applications. It uses the
Objective-C language, which is an object-oriented extension to , that is arguably more
suited to this kind of development than is C++.

OpenStep requires a PostScript display engine that is analogous to the protocol,
but it is considered superior to because all graphics are independent of the pixel
resolution of the screen. In other words, high-resolution screens would improve the
picture quality without making the graphics smaller.

The GNUStep project has a working PostScript display engine and is meant as a
Free replacement to OpenStep.

43.3 XFree86

was developed by the X Consortium as a standard as well as a reference imple-
mentation of that standard. There are ports to every platform that supports graphics.
The current version of the standard is 11 release 6 (hence the directory /usr/X11R6/).
There will probably never be another version.

XFree86 http://www.xfree86.org/ is a free port of that includes LINUX Intel ma-
chines among its supported hardware. has some peculiarities that are worth noting
if you are a Windows user, and XFree86 has some over those. XFree86 has its own
versioning system beneath the “11R6” as explained below.

43.3.1 Running X and key conventions

(See Section 43.6 for configuring).

At a terminal prompt, you can type:
✞ �

X
✝ ✆

to start (provided is not already running). If you have configured properly
(including putting /usr/X11R6/bin in your PATH), then this command will initiate
the graphics hardware and a black-and-white stippled background will appear with
a single as the mouse cursor. Contrary to intuition, this means that is actually
working properly.

• To kill the server, use the key combination – – .

• To switch to the text console, use – – . . . – – .

493

43.3. XFree86 43. The X Window System

• To switch to the console, use – . The seven common virtual consoles of
LINUX are 1–6 as text terminals, and 7 as an terminal (as explained in Section
2.7).

• To zoom in or out of your session, use – – and – – .

43.3.2 Running X utilities

/usr/X11R6/bin/ contains a large number of utilities that most other operating
systems have based theirs on. Most of these begin with an x. The basic XFree86 pro-
grams are:

SuperProbe iceauth rstartd xcmsdb xhost xmessage
X ico scanpci xconsole xieperf xmodmap
XFree86 lbxproxy sessreg xcutsel xinit xon
Xmark listres setxkbmap xditview xkbbell xprop
Xprt lndir showfont xdm xkbcomp xrdb
Xwrapper makepsres showrgb xdpyinfo xkbevd xrefresh
appres makestrs smproxy xedit xkbprint xset
atobm mergelib startx xev xkbvleds xsetmode
bdftopcf mkcfm twm xeyes xkbwatch xsetpointer
beforelight mkdirhier viewres xf86config xkill xsetroot
bitmap mkfontdir x11perf xfd xload xsm
bmtoa oclock x11perfcomp xfindproxy xlogo xstdcmap
dga pcitweak xauth xfontsel xlsatoms xterm
editres proxymngr xbiff xfs xlsclients xvidtune
fsinfo resize xcalc xfwp xlsfonts xwd
fslsfonts revpath xclipboard xgamma xmag xwininfo
fstobdf rstart xclock xgc xman xwud

To run an program, you need to tell the program what remote server to connect
to. Most programs take the option -display to specify the server. With running
in your seventh virtual console, type into your first virtual console:

✞ �
xterm -display localhost:0.0

✝ ✆

localhost refers to the machine on which the server is running—in this case, our
own. The first 0 means the screen we want to display on (supports multiple physical
screens in its specification). The second 0 refers to the root window we want to display
on. Consider a multiheaded &For example, two adjacent monitors that behave as one continuous
screen.- display: we would like to specify which monitor the application pops up on.

While xterm is running, switching to your session will reveal a character ter-
minal where you can type commands.

A better way to specify the display is to use the DISPLAY environment variable:

494

43. The X Window System 43.3. XFree86

✞ �
DISPLAY=localhost:0.0
export DISPLAY

✝ ✆

causes all subsequent applications to display to localhost:0.0, although a -
display on the command-line takes first priority.

The utilities listed above are pretty ugly and unintuitive. Try, for example,
xclock, xcalc, and xedit. For fun, try xbill. Also run

✞ �
rpm -qa | grep ’ˆx’

✝ ✆

43.3.3 Running two X sessions

You can start up a second server on your machine. The command
✞ �
/usr/X11R6/bin/X :1

✝ ✆

starts up a second session in the virtual console 8. You can switch to it by using
– – or – .

You can also start up a second server within your current display:
✞ �
/usr/X11R6/bin/Xnest :1 &

✝ ✆

A smaller server that uses a subwindow as a display device will be started. You can
easily create a third server within that, ad infinitum.

To get an application to display to this second server, use, as before,
✞ �
DISPLAY=localhost:1.0
export DISPLAY
xterm

✝ ✆

or
✞ �
xterm -display localhost:1.0

✝ ✆

43.3.4 Running a window manager

Manually starting and then running an application is not the way to use . We want
a window manager to run applications properly. The best window manager available
(sic) is icewm, available from icewm.cjb.net http://icewm.cjb.net/. Window managers en-
close each application inside a resizable bounding box and give you the , , and

495

43.3. XFree86 43. The X Window System

buttons, as well as possibly a task bar and a Start button that you may be familiar
with. A window manager is just another application that has the additional task of
managing the positions of basic applications on your desktop. Window managers
executables are usually suffixed by a wm. If you don’t have icewm, the minimalist’s
twm window manager will almost always be installed.

• Clicking on the background is common convention of user interfaces. Different
mouse buttons may bring up a menu or a list of actions. It is often analogous to
a Start button.

An enormous amount of religious attention is given to window managers. There
are about 20 useful choices to date. Remember that any beautiful graphics are going
to irritate you after you sit in front of the computer for a few hundred hours. You also
don’t want a window manager that eats too much memory or uses too much space on
the screen.

43.3.5 X access control and remote display

The way we described an server may leave you wondering if anyone on the Inter-
net can start an application on your display. By default, prohibits access from all
machines except your own. The xhost command enables access from particular ma-
chines. For instance, you can run xhost +192.168.5.7 to allow that host to display
to your machine. The command xhost + completely disables access control. A typi-
cal procedure is the running of an application on a remote machine to a local machine.
A sample session follows:

✞ �
[psheer@divinian]# xhost +192.168.3.2
192.168.3.2 being added to access control list
[psheer@divinian]# ifconfig | grep inet

inet addr:192.168.3.1 Bcast:192.168.3.255 Mask:255.255.255.0
5 inet addr:127.0.0.1 Mask:255.0.0.0

[psheer@divinian]# telnet 192.168.3.2
Trying 192.168.3.2...
Connected to 192.168.3.2.
Escape character is ’ˆ]’.

10 Debian GNU/Linux 2.2 cericon
cericon login: psheer
Password:
Last login: Fri Jul 13 18:46:43 2001 from divinian on pts/1
[psheer@cericon]# export DISPLAY=192.168.3.1:0.0

15 [psheer@cericon]# nohup rxvt &
[1] 32573
nohup: appending output to ’nohup.out’
[psheer@cericon]# exit
Connection closed by foreign host.

✝ ✆

496

43. The X Window System 43.4. The X Distribution

43.3.6 X selections, cutting, and pasting

Start an xterm to demonstrate the following mouse operations.

predates the cut-and-paste conventions of Windows and the Mac. requires a
three-button mouse, although pushing the two outer buttons simultaneously is equiv-
alent to pushing the middle button. &That is, provided X has been configured for this—see the
Emulate3Buttons option in the configuration file example below.- Practice the following:

• Dragging the left mouse button is the common way to select text. This automatically
places the highlighted text into a cut buffer, also sometimes called the clipboard.

• Dragging the right mouse button extends the selection, that is, enlarges or reduces
the selection.

• Clicking the middle mouse button pastes the selection. Note that becomes virtu-
ally unusable without the capability of pasting in this way.

Modern Gtk and Qt applications have tried to retain compatibility with these
mouse conventions.

43.4 The X Distribution

The official distribution comes as an enormous source package available in tgz for-
mat at http://www.xfree86.org/. It is traditionally packed as three tgz files to be unpacked
over each other—the total of the three is about 50 megabytes compressed. This package
has nothing really to do with the version number X11R6—it is a subset of X11R6.

Downloading and installing the distribution is a major undertaking, but you
should do it if you are interested in development.

All UNIX distributions come with a compiled and (mostly) configured instal-
lation; hence, the official distribution should never be needed except by developers.

43.5 X Documentation

The Window System comes with tens of megabytes of documentation.

497

43.5. X Documentation 43. The X Window System

43.5.1 Programming

All the books describing all of the programming APIs are included inside the dis-
tribution. Most of these are of specialized interest and will not be including in your
distribution by default—download the complete distribution if you want them. You
can then look inside xc/doc/specs (especially xc/doc/specs/X11) to begin learn-
ing how to program under .

Debian also comes with the xbooks package, and RedHat with the XFree86-
doc packages.

43.5.2 Configuration documentation

Important to configuring is the directory /usr/X11R6/lib/X11/doc/ or
/usr/share/doc/xserver-common/. It may contain, for example,

AccelCards.gz README.Mach64.gz README.ark.gz README.neo.gz
Devices.gz README.NVIDIA.gz README.ati.gz README.r128.gz
Monitors.gz README.Oak.gz README.chips.gz README.rendition.gz
QuickStart.doc.gz README.P9000.gz README.cirrus.gz README.trident.gz
README.3DLabs.gz README.S3.gz README.clkprog.gz README.tseng.gz
README.Config.gz README.S3V.gz README.cyrix.gz RELNOTES.gz
README.DGA.gz README.SiS.gz README.epson.gz changelog.Debian.gz
README.Debian README.Video7.gz README.fbdev.gz copyright
README.I128.gz README.W32.gz README.gz examples
README.Linux.gz README.WstDig.gz README.i740.gz xinput.gz
README.MGA.gz README.agx.gz README.i810.gz
README.Mach32.gz README.apm.gz README.mouse.gz

As you can see, there is documentation for each type of graphics card. Learning
how to configure is a simple matter of reading the QuickStart guide and then
checking the specifics for your card.

43.5.3 XFree86 web site

Any missing documentation can be found on the XFree86 http://www.xfree86.org/ web
site.

New graphics cards are coming out all the time. XFree86 http://www.xfree86.org/
contains FAQs about cards and the latest binaries, should you not be able to get your
card working from the information below. Please always search the XFree86 web site
for information on your card and for newer releases before reporting a problem.

498

43. The X Window System 43.6. X Configuration

43.6 X Configuration

Configuring involves editing XFree86’s configuration file /etc/X11/XF86Config.
Such a file may have been produced at installation time but will not always be cor-
rect. You will hence frequently find yourself having to make manual changes to get
running in full resolution.

Note that XFree86 has a slightly different configuration file format for the new
version 4. Differences are explained below.

43.6.1 Simple 16-color X server

The documentation discussed above is a lot to read. The simplest possible way
to get working is to determine what mouse you have, and then create a file,
/etc/X11/XF86Config (back up your original) containing the following. Adjust
the "Pointer" section for your correct Device and Protocol. If you are running
version 3.3, you should also comment out the Driver "vga" line. You may also have
to switch the line containing 25.175 to 28.32 for some laptop displays.

✞ �
Section "Files"

RgbPath "/usr/X11R6/lib/X11/rgb"
FontPath "/usr/X11R6/lib/X11/fonts/misc/"

EndSection
5 Section "ServerFlags"

EndSection
Section "Keyboard"

Protocol "Standard"
AutoRepeat 500 5

10 XkbDisable
XkbKeymap "xfree86(us)"

EndSection
Section "Pointer"
Protocol "Busmouse"

15 # Protocol "IntelliMouse"
Protocol "Logitech"

Protocol "Microsoft"
Protocol "MMHitTab"
Protocol "MMSeries"

20 # Protocol "MouseMan"
Protocol "MouseSystems"
Protocol "PS/2"

Device "/dev/ttyS0"
Device "/dev/psaux"

25 Emulate3Buttons
Emulate3Timeout 150

EndSection
Section "Monitor"

Identifier "My Monitor"
30 VendorName "Unknown"

ModelName "Unknown"

499

43.6. X Configuration 43. The X Window System

HorizSync 31.5 - 57.0
VertRefresh 50-90

Modeline "640x480" 28.32 640 664 760 800 480 491 493 525
35 Modeline "640x480" 25.175 640 664 760 800 480 491 493 525

EndSection
Section "Device"

Identifier "Generic VGA"
VendorName "Unknown"

40 BoardName "Unknown"
Chipset "generic"

Driver "vga"
Driver "vga"

EndSection
45 Section "Screen"

Driver "vga16"
Device "Generic VGA"
Monitor "My Monitor"
Subsection "Display"

50 Depth 4
Modes "640x480"
Virtual 640 480

EndSubsection
EndSection

✝ ✆

You can then start . For XFree86 version 3.3, run
✞ �

/usr/X11R6/bin/XF86_VGA16 -cc 0
✝ ✆

or for XFree86 version 4, run
✞ �

/usr/X11R6/bin/XFree86 -cc 0
✝ ✆

Both of these will print out a status line containing clocks: . . . confirming
whether your choice of 25.175 was correct. &This is the speed, in Megahertz, that pixels
can come from your card and is the only variable to configuring a 16-color display.-

You should now have a working gray-level display that is actually almost usable.
It has the advantage that it always works.

43.6.2 Plug-and-Play operation

XFree86 version 4 has “Plug-and-Play” support. Simply run
✞ �

/usr/X11R6/bin/XFree86 -configure
✝ ✆

to produce a working XF86Config file. You can copy this file to
/etc/X11/XF86Config and immediately start running . However, the file
you get may be less than optimal. Read on for detailed configuration.

500

43. The X Window System 43.6. X Configuration

43.6.3 Proper X configuration

A simple and reliable way to get working is given by the following steps (if this fails,
then you will have to read some of the documentation described above). There is also
a tool called Xconfigurator which provides a user-friendly graphical front-end.

1. Back up your /etc/X11/XF86Config to /etc/X11/XF86Config.ORIG.

2. Run SuperProbe at the character console. It will blank your screen and then
spit out what graphics card you have. Leave that information on your screen
and switch to a different virtual terminal. If SuperProbe fails to recognize your
card, it usually means that XFree86 will also fail.

3. Run xf86config. This is the official configuration script. Run through all
the options, being very sure not to guess. You can set your monitor to 31.5,
35.15, 35.5; Super VGA. . . if you have no other information to go on.
Vertical sync can be set to 50–90. Select your card from the card database (check
the SuperProbe output), and check which server the program recommends—
this will be one of XF86 SVGA, XF86 S3, XF86 S3V, etc. Whether you “set the
symbolic link” or not, or “modify the /etc/X11/Xserver file” is irrelevant. Note
that you do not need a “RAM DAC” setting with most modern PCI graphics
cards. The same goes for the “Clockchip setting.”

4. Do not run at this point.

5. The xf86config command should have given you an example
/etc/X11/XF86Config file to work with. You need not run it again. You
will notice that the file is divided into sections, like

✞ �

Section "<section-name>"
<config-line>
<config-line>
<config-line>

5 EndSection
✝ ✆

Search for the "Monitor" section. A little further down you will see lots of lines
like:

✞ �
640x480 @ 60 Hz, 31.5 kHz hsync
Modeline "640x480" 25.175 640 664 760 800 480 491 493 525
800x600 @ 56 Hz, 35.15 kHz hsync
ModeLine "800x600" 36 800 824 896 1024 600 601 603 625

5 # 1024x768 @ 87 Hz interlaced, 35.5 kHz hsync
Modeline "1024x768" 44.9 1024 1048 1208 1264 768 776 784 817 Interlace

✝ ✆

501

43.6. X Configuration 43. The X Window System

These are timing settings for different monitors and screen resolutions. Choosing
one that is too fast could blow an old monitor but will usually give you a lot of
garbled fuzz on your screen. We are going to eliminate all but the three above; we
do that by commenting them out with # or deleting the lines entirely. (You may
want to back up the file first.) You could leave it up to to choose the correct
Modeline to match the capabilities of the monitor, but this doesn’t always work.
I always like to explicitly choose a selection of Modelines.

If you don’t find modelines in your XF86Config you can use this as your mon-
itor section:

✞ �
Section "Monitor"

Identifier "My Monitor"
VendorName "Unknown"
ModelName "Unknown"

5 HorizSync 30-40
VertRefresh 50-90
Modeline "320x200" 12.588 320 336 384 400 200 204 205 225 Doublescan
ModeLine "400x300" 18 400 416 448 512 300 301 302 312 Doublescan
Modeline "512x384" 20.160 512 528 592 640 384 385 388 404 -HSync -VSync

10 Modeline "640x480" 25.175 640 664 760 800 480 491 493 525
ModeLine "800x600" 36 800 824 896 1024 600 601 603 625
Modeline "1024x768" 44.9 1024 1048 1208 1264 768 776 784 817 Interlace

EndSection
✝ ✆

6. Edit your "Device" section. You can make it as follows for XFree86 version 3.3,
and there should be only one "Device" section.

✞ �
Section "Device"

Identifier "My Video Card"
VendorName "Unknown"
BoardName "Unknown"

5 VideoRam 4096
EndSection

✝ ✆

For XFree86 version 4, you must add the device driver module. On my laptop,
this is ati:

✞ �
Section "Device"

Identifier "My Video Card"
Driver "ati"
VendorName "Unknown"

5 BoardName "Unknown"
VideoRam 4096

EndSection
✝ ✆

Several options that can also be added to the "Device" section to tune your
card. Three possible lines are

✞ �
Option "no_accel"
Option "sw_cursor"
Option "no_pixmap_cache"

✝ ✆

502

43. The X Window System 43.6. X Configuration

which disable graphics hardware acceleration, hardware cursor support, and
video memory pixmap caching, respectively. The last refers to the use of the
card’s unused memory for intermediate operations. You should try these options
if there are glitches or artifacts in your display.

7. Your "Screen" section should properly order the modes specified in the "Mon-
itor" section. It should use your single "Device" section and single "Moni-
tor" section, "My Video Card" and "My Monitor", respectively. Note that
XFree86 version 3.3 does not take a DefaultDepth option.

✞ �
Section "Screen"

Identifier "My Screen"
Device "My Video Card"
Monitor "My Monitor"

5

DefaultDepth 16

Subsection "Display"
ViewPort 0 0

10 Virtual 1024 768
Depth 16
Modes "1024x768" "800x600" "640x480" "512x384" "400x300" "320x240"

EndSubsection
Subsection "Display"

15 ViewPort 0 0
Virtual 1024 768
Depth 24
Modes "1024x768" "800x600" "640x480" "512x384" "400x300" "320x240"

EndSubsection
20 Subsection "Display"

ViewPort 0 0
Virtual 1024 768
Depth 8
Modes "1024x768" "800x600" "640x480" "512x384" "400x300" "320x240"

25 EndSubsection
EndSection

✝ ✆

8. At this point you need to run the program itself. For XFree86 version 3.3,
there will be a separate package for each video card, as well as a separate bi-
nary with the appropriate driver code statically compiled into it. These bina-
ries are of the form /usr/X11R6/bin/XF86 cardname. The relevant packages
can be found with the command dpkg -l ’xserver-*’ for Debian , and
rpm -qa | grep XFree86 for RedHat 6 (or RedHat/RPMS/XFree86-* on
your CD-ROM). You can then run

✞ �
/usr/X11R6/bin/XFree86-<card> -bpp 16

✝ ✆

which also sets the display depth to 16, that is, the number of bits per pixel, which
translates to the number of colors.

503

43.7. Visuals 43. The X Window System

For XFree86 version 4, card support is compiled as separate modules named
/usr/X11R6/lib/modules/drivers/cardname drv.o. A single binary ex-
ecutable /usr/X11R6/bin/XFree86 loads the appropriate module based on
the Driver "cardname" line in the "Device" section. Having added this, you
can run

✞ �
/usr/X11R6/bin/XFree86

✝ ✆

where the depth is set from the DefaultDepth 16 line in the "Screen" sec-
tion. You can find what driver to use by greping the modules with the name of
your graphics card. This is similar to what we did with kernel modules on page
473.

9. A good idea is to now create a script, /etc/X11/X.sh, containing your -bpp
option with the server you would like to run. For example,

✞ �
#!/bin/sh
exec /usr/X11R6/bin/<server> -bpp 16

✝ ✆

10. You can then symlink /usr/X11R6/bin/X to this script. It is also worth sym-
linking /etc/X11/X to this script since some configurations look for it there.
There should now be no chance that could be started except in the way you
want. Double-check by running X on the command-line by itself.

43.7 Visuals

introduces the concept of a visual. A visual is the hardware method used to represent
colors on your screen. There are two common and four specialized types:

TrueColor(4) The most obvious way of representing a color is to use a byte for each of
the red, green, and blue values that a pixel is composed of. Your video buffer will
hence have 3 bytes per pixel, or 24 bits. You will need 800 � 600 � 3 = 1440000
bytes to represent a typical 800 by 600 display.

Another way is to use two bytes, with 5 bits for red, 6 for green, and then 5 for
blue. This gives you 32 shades of red and blue, and 64 shades of green (green
should have more levels because it has the most influence over the pixel’s overall
brightness).

Displays that use 4 bytes usually discard the last byte, and are essentially 24-bit
displays. Note also that most displays using a full 8 bits per color discard the
trailing bits, so there is often no appreciable difference between a 16-bit display
and a 32-bit display. If you have limited memory, 16 bits is preferable; it is also
faster.

504

43. The X Window System 43.8. The startx and xinit Commands

PseudoColor(3) If you want to display each pixel with only one byte and still get a
wide range of colors, the best way is to make that pixel index a dynamic table of
24-bit palette values: 256 of them exactly. 8-bit depths work this way. You will
have just as many possible colors, but applications will have to pick what colors
they want to display at once and compete for entries in the color palette.

StaticGray(0) These are gray-level displays usually with 1 byte or 4 bits per pixel, or
monochrome displays with 1 byte per pixel, like the legacy Hercules Graphics
Card (HGC, or MDA—monochrome graphics adapter). Legacy VGA cards can
be set to 640� 480 in 16-color “black and white.” is almost usable in this mode
and has the advantage that it always works, regardless of what hardware you
have.

StaticColor(2) This usually refers to 4-bit displays like the old (and obsolete) CGA and
EGA displays having a small fixed number of colors.

DirectColor(5) This is rarely used and refers to displays that have a separate palette
for each of red, green, and blue.

GrayScale(1) These are like StaticGray, but the gray levels are programmable like
PseudoColor. This is also rarely used.

You can check the visuals that your display supports with the xdpyinfo com-
mand. You will notice more than one visual listed, since can effectively support a
simple StaticColor visual with PseudoColor, or a DirectColor visual with TrueColor.
The default visual is listed first and can be set with the -cc option as we did above
for the 16-color server. The argument to the -cc option is the number code above in
parentheses.

Note that good applications check the list of available visuals and choose an
appropriate one. There are also those that require a particular visual, and some that
take a -visual option on the command-line.

43.8 The startx and xinit Commands

The action of starting an server, then a window manager should obviously be au-
tomated. The classic way to start is to run the xinit command on its own. On
LINUX this has been superseded by

✞ �

startx
✝ ✆

which is a script that runs xinit after setting some environment variables. These
commands indirectly call a number of configuration scripts in /etc/X11/xinit/ and
your home directory, where you can specify your window manager and startup appli-
cations. See xinit(1) and startx(1) for more information.

505

43.10. X Font Naming Conventions 43. The X Window System

43.9 Login Screen

init runs mgetty, which displays a login: prompt on every attached character
terminal. init can also run xdm, which displays a graphical login box on every
server. Usually, there will only be one server: the one on your own machine.

The interesting lines inside your inittab file are
✞ �

id:5:initdefault:
✝ ✆

and
✞ �

x:5:respawn:/usr/X11R6/bin/xdm -nodaemon
✝ ✆

which state that the default run level is 5 and that xdm should be started at run level
5. This should only be attempted if you are sure that works (by running X on the
command-line by itself). If it doesn’t, then xdm will keep trying to start , effectively
disabling the console. On systems besides RedHat and Debian , these may be run
levels 2 versus 3, where run level 5 is reserved for something else. In any event, there
should be comments in your /etc/inittab file to explain your distribution’s con-
vention.

43.10 X Font Naming Conventions

Most applications take a -fn or -font option to specify the font. In this section, I
give a partial guide to font naming.

A font name is a list of words and numbers separated by hyphens. A typical font
name is -adobe-courier-medium-r-normal--12-120-75-75-m-60-iso8859-1. Use
the xlsfonts command to obtain a complete list of fonts.

The font name fields have the following meanings:

adobe The name of the font’s maker. Others are

abisource b&h daewoo gnu macromedia monotype software urw
adobe bitstream dec isas microsoft mutt sony xfree86
arabic cronyx dtp jis misc schumacher sun

courier The font family. This is the real name of the font. Some others are

arial dingbats lucidux serif starbats
arial black fangsong ti marlett starmath
arioso fixed mincho symbol
avantgarde goth new century schoolbook tahoma
bitstream charter gothic newspaper tera special
bookman helmet nil terminal

506

43. The X Window System 43.10. X Font Naming Conventions

century schoolbook helmetcondensed nimbus mono times
charter helvetic nimbus roman times new roman
chevara helvetica nimbus sans timmons
chevaraoutline impact nimbus sans condensed unifont
clean lucida open look cursor utopia
comic sans ms lucida console open look glyph verdana
conga lucidabright palatino webdings
courier lucidatypewriter palladio wingdings
courier new lucidux mono song ti zapf chancery
cursor lucidux sans standard symbols zapf dingbats

medium The font weight: it can also be bold, demibold, or regular.

r Indicate that the font is roman; i is for italic and o is for oblique.

normal Character width and intercharacter spacing. It can also be condensed,
semicondensed, narrow, or double.

12 The pixel size. A zero means a scalable font that can be selected at any pixel size.
The largest fixed sized font is about 40 points.

120 The size in tenths of a printers point. This is usually 10 times the pixel size.

75-75 Horizontal and vertical pixel resolution for which the font was designed. Most
monitors today are 75 pixels per inch. The only other possible values are 72-72
or 100-100.

m The font spacing. Other values are monospaced, proportional, or condensed.

60 The average width of all characters in the font in tenths of a pixel.

iso8859-1 The ISO character set. In this case, the 1 indicates ISO Latin 1, a superset
of the ASCII character set. This last bit is the locale setting, which you would
normally omit to allow to determine it according to your locale settings.

As an example, start cooledit with
✞ �

cooledit -font ’-*-times-medium-r-*--20-*-*-*-p-*-iso8859-1’
cooledit -font ’-*-times-medium-r-*--20-*-*-*-p-*’
cooledit -font ’-*-helvetica-bold-r-*--14-*-*-*-p-*-iso8859-1’
cooledit -font ’-*-helvetica-bold-r-*--14-*-*-*-p-*’

✝ ✆

These invoke a newspaper font and an easy-reading font respectively. A * means that
the server can place default values into those fields. That way, you do not have to
specify a font exactly.

The xfontsel command is the traditional utility for displaying fonts and the
showfont command dumps fonts as ASCII text.

507

43.11. Font Configuration 43. The X Window System

43.11 Font Configuration

Fonts used by are conventionally stored in /usr/X11R6/lib/X11/fonts/. Each
directory contains a fonts.alias file that maps full font names to simpler names,
and a fonts.alias file which lists the fonts contained in that directory. To create
these files, you must cd to each directory and run mkfontdir as follows:

✞ �
mkfontdir -e /usr/X11R6/lib/X11/fonts/encodings -e /usr/X11R6/lib/X11/fonts/encodings/large

✝ ✆

You can rerun this command at any time for good measure.

To tell to use these directories add the following lines to your "Files" section.
A typical configuration will contain

✞ �

Section "Files"
RgbPath "/usr/X11R6/lib/X11/rgb"
FontPath "/usr/X11R6/lib/X11/fonts/misc/:unscaled"
FontPath "/usr/X11R6/lib/X11/fonts/75dpi/:unscaled"

5 FontPath "/usr/X11R6/lib/X11/fonts/Speedo/"
FontPath "/usr/X11R6/lib/X11/fonts/Type1/"
FontPath "/usr/X11R6/lib/X11/fonts/misc/"
FontPath "/usr/X11R6/lib/X11/fonts/75dpi/"

EndSection
✝ ✆

Often you will add a directory without wanting to restart . The command to
add a directory to the font path is:

✞ �

xset +fp /usr/X11R6/lib/X11/fonts/<new-directory>
✝ ✆

and to remove a directory, use
✞ �

xset -fp /usr/X11R6/lib/X11/fonts/<new-directory>
✝ ✆

To set the font path, use
✞ �

xset fp= /usr/X11R6/lib/X11/fonts/misc,/usr/X11R6/lib/X11/fonts/75dpi
✝ ✆

and reset it with
✞ �

xset fp default
✝ ✆

If you change anything in your font directories, you should run
✞ �

xset fp rehash
✝ ✆

to cause to reread the font directories.

508

43. The X Window System 43.12. The Font Server

The command chkfontpath prints out your current font path setting.

Note that XFree86 version 4 has a TrueType engine. TrueType (.ttf) fonts are
common to Windows. They are high-quality, scalable fonts designed for graphical
displays. You can add your TrueType directory alongside your other directories above,
and run

✞ �
ttmkfdir > fonts.scale
mkfontdir -e /usr/X11R6/lib/X11/fonts/encodings -e /usr/X11R6/lib/X11/fonts/encodings/large

✝ ✆

inside each one. Note that the ttmkfdir is needed to catalog TrueType fonts as scal-
able fonts.

43.12 The Font Server

Having all fonts stored on all machines is expensive. Ideally, you would like a large
font database installed on one machine and fonts to be read off this machine, over the
network and on demand. You may also have an that does not support a particular
font type; if it can read the font from the network, built-in support will not be necessary.
The daemon xfs (font server) facilitates all of this.

xfs reads its own simple configuration file from /etc/X11/fs/config or
/etc/X11/xfs/config. It might contain a similar list of directories:

✞ �

client-limit = 10
clone-self = on
catalogue = /usr/X11R6/lib/X11/fonts/misc:unscaled,

/usr/X11R6/lib/X11/fonts/75dpi:unscaled,
5 /usr/X11R6/lib/X11/fonts/ttf,

/usr/X11R6/lib/X11/fonts/Speedo,
/usr/X11R6/lib/X11/fonts/Type1,
/usr/X11R6/lib/X11/fonts/misc,
/usr/X11R6/lib/X11/fonts/75dpi

10 default-point-size = 120
default-resolutions = 75,75,100,100
deferglyphs = 16
use-syslog = on
no-listen = tcp

✝ ✆

You can start the font server by using:
✞ �

/etc/init.d/xfs start
(/etc/rc.d/init.d/xfs start)

✝ ✆

and change your font paths in /etc/X11/XF86Config to include only a minimal set
of fonts:

509

43.12. The Font Server 43. The X Window System

✞ �

Section "Files"
RgbPath "/usr/X11R6/lib/X11/rgb"
FontPath "/usr/X11R6/lib/X11/fonts/misc/:unscaled"
FontPath "unix/:7100"

5 EndSection
✝ ✆

Or otherwise use xset:
✞ �

xset +fp unix/:7100
✝ ✆

Note that no other machines can use your own font server because of the no-
listen = tcp option. Deleting this line (and restarting xfs) allows you to instead
use

✞ �

FontPath "inet/127.0.0.1:7100"
✝ ✆

which implies an open TCP connection to your font server, along with all its security
implications. Remote machines can use the same setting after changing 127.0.0.1 to
your IP address.

Finally, note that for XFree86 version 3.3, which does not have TrueType support,
the font server name xfstt is available on Fresh Meat http://freshmeat.net/.

510

Chapter 44

UNIX Security

This is probably the most important chapter of this book.1

LINUX has been touted as both the most secure and insecure of all operating
systems. The truth is both. Take no heed of advice from the LINUX community, and
your server will be hacked eventually. Follow a few simple precautions, and it will be
safe for years without much maintenance.

The attitude of most novice administrators is “Since the UNIX system is so large
and complex and since there are so many millions of them on the Internet, it is unlikely
that my machine will get hacked.” Of course, it won’t necessarily be a person targeting
your organization that is the problem. It could be a person who has written an auto-
matic scanner that tries to hack every computer in your city. It could also be a person
who is not an expert in hacking at all, but who has merely downloaded a small utility
to do it for him. Many seasoned experts write such utilities for public distribution,
while so-called script kiddies (because the means to execute a script is all the expertise
needed) use these to do real damage. &The word hack means gaining unauthorized access to a
computer. However, programmers sometimes use the term to refer to enthusiastic work of any kind. Here
we refer to the malicious definition.-

In this chapter you will get an idea of the kinds of ways a UNIX system gets
hacked. Then you will know what to be wary of, and how you can minimize risk.

44.1 Common Attacks

I personally divide attacks into two types: attacks that can be attempted by a user
on the system, and network attacks that come from outside of a system. If a server

1Thanks to Ryan Rubin for reviewing this chapter.

511

44.1. Common Attacks 44. UNIX Security

is, say, only used for mail and web, shell logins may not be allowed at all; hence, the
former type of security breach is of less concern. Here are some of the ways security
is compromised, just to give an idea of what UNIX security is about. In some cases, I
indicate when it is of more concern to multiuser systems.

Note also that attacks from users become an issue when a remote attack succeeds
and a hacker gains user privileges to your system (even as a nobody user). This is an
issue even if you do not host logins.

44.1.1 Buffer overflow attacks

Consider the following program. If you don’t understand that well, it doesn’t
matter—it’s the concept that is important. (Before trying this example, you should
unplug your computer from the network.)

✞ �

#include <stdio.h>

void do_echo (void)
{

5 char buf[256];
gets (buf);
printf ("%s", buf);
fflush (stdout);

}
10

int main (int argc, char **argv)
{

for (;;) {
do_echo ();

15 }
}

✝ ✆

You can compile this program with gcc -o /usr/local/sbin/myechod
myechod.c. Then, make a system service out of it as follows: For xinetd, create
file /etc/xinetd.d/myechod containing:

✞ �

service myechod
{

flags = REUSE
socket_type = stream

5 wait = no
user = root
server = /usr/local/sbin/myechod
log_on_failure += USERID

}
✝ ✆

512

44. UNIX Security 44.1. Common Attacks

while for inetd add the following line to your /etc/inetd.conf file:
✞ �

myechod stream tcp nowait root /usr/local/sbin/myechod
✝ ✆

Of course, the service myechod does not exist. Add the following line to your
/etc/services file:

✞ �

myechod 400/tcp # Temporary demo service
✝ ✆

and then restart xinetd (or inetd) as usual.

You can now run netstat -na. You should see a line like this somewhere in
the output:

✞ �

tcp 0 0 0.0.0.0:400 0.0.0.0:* LISTEN
✝ ✆

You can now run telnet localhost 400 and type away happily. As you can
see, the myechod service simply prints lines back to you.

Someone reading the code will realize that typing more than 256 characters will
write into uncharted memory of the program. How can they use this effect to cause
the program to behave outside of its design? The answer is simple. Should they be able to
write processor instructions into an area of memory that may get executed later, they
can cause the program to do anything at all. The process runs with root privileges,
so a few instructions sent to the kernel could, for example, cause the passwd file to
be truncated, or the file system superblock to be erased. A particular technique that
works on a particular program is known as an exploit for a vulnerability. In general, an
attack of this type is known as a buffer overflow attack.

To prevent against such attacks is easy when you are writing new programs. Sim-
ply make sure that any incoming data is treated as being dangerous. In the above case,
the fgets function should preferably be used, since it limits the number of characters
that could be written to the buffer. There are, however, many functions that behave
in such a dangerous way: even the strcpy function writes up to a null character that
may not be present; sprintf writes a format string that could be longer than the
buffer. getwd is another function that also does no bound checking.

However, when programs grow long and complicated, it becomes difficult to
analyze where there may be loopholes that could be exploited indirectly. A program is
a legal contract with an impartial jury.

44.1.2 Setuid programs

A program like su must be setuid (see Chapter 14). Such a program has to run with
root privileges in order to switch UIDs to another user. The onus is, however, on su

513

44.1. Common Attacks 44. UNIX Security

to refuse privileges to anyone who isn’t trusted. Hence, su requests a password and
checks it against the passwd file before doing anything.

Once again, the logic of the program has to hold up to ensure security, as well
as to provide insurance against buffer overflow attacks. Should su have a flaw in the
authentication logic, it would enable someone to change to a UID that they were not
privileged to hold.

Setuid programs should hence be considered with the utmost suspicion. Most
setuid programs try be small and simple, to make it easy to verify the security of their
logic. A vulnerability is more likely to be found in any setuid program that is large and
complex.

(Of slightly more concern in systems hosting many untrusted user logins.)

44.1.3 Network client programs

Consider when your FTP client connects to a remote untrusted site. If the site server
returns a response that the FTP client cannot handle (say, a response that is too long—
a buffer overflow), it could allow malicious code to be executed by the FTP client on
behalf of the server.

Hence, it is quite possible to exploit a security hole in a client program by just
waiting for that program to connect to your site.

(Mostly a concern in systems that host user logins.)

44.1.4 /tmp file vulnerability

If a program creates a temporary file in your /tmp/ directory and it is possible to pre-
dict the name of the file it is going to create, then it may be possible to create that
file in advance or quickly modify it without the program’s knowledge. Programs that
create temporary files in a predictable fashion or those that do not set correct permis-
sions (with exclusive access) to temporary files are liable to be exploited. For instance,
if a program running as superuser truncates a file /tmp/9260517.TMP and it was
possible to predict that file name in advance, then a hacker could create a symlink to
/etc/passwd of the same name, resulting in the superuser program actually truncat-
ing the passwd file.

(Of slightly more concern in systems that host many untrusted user logins.)

44.1.5 Permission problems

It is easy to see that a directory with permissions 660 and ownerships root:admin
cannot be accessed by user jsmith if he is outside of the admin group. Not so easy

514

44. UNIX Security 44.1. Common Attacks

to see is when you have thousands of directories and hundreds of users and groups.
Who can access what, when, and why becomes complicated and often requires scripts
to be written to do permission tests and sets. Even a badly set /dev/tty* device can
cause a user’s terminal connection to become vulnerable.

(Of slightly more a concern in systems that host many untrusted user logins.)

44.1.6 Environment variables

There are lots of ways of creating and reading environment variables to either exploit a
vulnerability or obtain some information that will compromise security. Environment
variables should never hold secret information like passwords.

On the other hand, when handling environment variables, programs should con-
sider the data they contain to be potentially malicious and do proper bounds checking
and verification of their contents.

(Of more concern in systems that host many untrusted user logins.)

44.1.7 Password sniffing

When telnet, ftp, rlogin, or in fact any program at all that authenticates over the
network without encryption is used, the password is transmitted over the network
in plain text, that is, human-readable form. These programs are all common network
utilities that old UNIX hands were accustomed to using. The sad fact is that what is
being transmitted can easily be read off the wire with the most elementary tools (see
tcpdump on page 266). None of these services should be exposed to the Internet. Use
within a local LAN is safe, provided the LAN is firewalled, and your local users are
trusted.

44.1.8 Password cracking

This concept is discussed in Section 11.3.

44.1.9 Denial of service attacks

A denial of service (DoS) attack is one which does not compromise the system but pre-
vents other users from using a service legitimately. It can involve repetitively loading a
service to the point that no one else can use it. In each particular case, logs or TCP traf-
fic dumps might reveal the point of origin. You might then be able to deny access with
a firewall rule. There are many types of DoS attacks that can be difficult or impossible
to protect against.

515

44.2. Other Types of Attack 44. UNIX Security

44.2 Other Types of Attack

The preceding lists are far from exhaustive. It never ceases to amaze me how new
loopholes are discovered in program logic. Not all of these exploits can be classified;
indeed, it is precisely because new and innovative ways of hacking systems are always
being found, that security needs constant attention.

44.3 Counter Measures

Security first involves removing known risks, then removing potential risks, then (pos-
sibly) making life difficult for a hacker, then using custom UNIX security paradigms,
and finally being proactively cunning in thwarting hack attempts.

44.3.1 Removing known risks: outdated packages

It is especially sad to see naive administrators install packages that are well known to be
vulnerable and for which “script kiddy” exploits are readily available on the Internet.

If a security hole is discovered, the package will usually be updated by the distri-
bution vendor or the author. The bugtraq http://www.securityfocus.com/forums/bugtraq/-
intro.html mailing list announces the latest exploits and has many thousands of sub-
scribers worldwide. You should get on this mailing list to be aware of new discoveries.
The Linux Weekly News http://lwn.net/ is a possible source for security announcements if
you only want to read once a week. You can then download and install the binary or
source distribution provided for that package. Watching security announcements is
critical. &I often ask “administrators” if they have upgraded the xxx service and get the response, that
either they are not sure if they need it, do not believe it is vulnerable, do not know if it is running, where
to get a current package, or even how to perform the upgrade; as if their ignorance absolves them of their
responsibility. If the janitor were to duct-tape your safe keys to a window pane, would you fire him?-

This goes equally for new systems that you install: never install outdated pack-
ages. Some vendors ship updates to their older distributions. This means that you can
install from an old distribution and then upgrade all your packages from an “update”
package list. Your packages would be then as secure as the packages of the distribu-
tion that has the highest version number. For instance, you can install RedHat 6.2 from
a 6-month-old CD, then download a list of RedHat 6.2 “update” packages. Alterna-
tively, you can install the latest RedHat version 7.? which has a completely different
set of packages. On the other hand, some other vendors may “no longer support” an
older distribution, meaning that those packages will never be updated. In this case,
you should be sure to install or upgrade with the vendor’s most current distribution
or manually recompile vulnerable packages by yourself.

516

44. UNIX Security 44.3. Counter Measures

Over and above this, remember that vendors are sometimes slow to respond to
security alerts. Hence, trust the free software community’s alerts over anything ven-
dors may fail to tell you.

Alternatively, if you discover that a service is insecure, you may just want to
disable it (or better still, uninstall it) if it’s not really needed.

44.3.2 Removing known risks: compromised packages

Packages that are modified by a hacker can allow him a back door into your system:
so called Trojans. Use the package verification commands discussed in Section 24.2.6 to
check package integrity.

44.3.3 Removing known risks: permissions

It is easy to locate world-writable files. There should be only a few in the /dev and
/tmp directories:

✞ �

find / -perm -2 ! -type l -ls
✝ ✆

Files without any owner are an indication of mismanagement or compromise of
your system. Use the find command with

✞ �

find / -nouser -o -nogroup -ls
✝ ✆

44.3.4 Password management

It is obvious that variety in user passwords is more secure. It is a good idea to rather
not let novice users choose their own passwords. Create a randomizing program to
generate completely arbitrary 8 character passwords for them. You should also use the
pwconv utility from the shadow-utils package to create the shadow password files
(explained in Section 11.3). See pwconv(8) for information.

44.3.5 Disabling inherently insecure services

Services that are inherently insecure are those that allow the password to be sniffed
over the Internet or provide no proper authentication to begin with. Any service that
does not encrypt traffic should not be used for authentication over the Internet. These

517

44.3. Counter Measures 44. UNIX Security

are ftp, telnet, rlogin, uucp, imap, pop3, and any service that does not use en-
cryption and yet authenticates with a password.

Instead, you should use ssh and scp. There are secure versions of POP and
IMAP (SPOP3 and SIMAP), but you may not be able to find good client programs.
If you really have to use a service, you should limit the networks that are allowed to
connect to it, as described on page 293 and 296.

Old UNIX hands are notorious for exporting NFS shares (/etc/exports) that
are readable (and writable) from the Internet. The group of functions to do Sun
Microsystems’ port mapping and NFS—the nfs-utils (rpc.. . .) and portmap
packages—don’t give me a warm, fuzzy feeling. Don’t use these on machines exposed
to the Internet.

44.3.6 Removing potential risks: network

Install libsafe. This is a library that wraps all those vulnerable functions dis-
cussed above, thus testing for a buffer overflow attempt with each call. It is triv-
ial to install, and sends email to the administrator upon hack attempts. Go to
http://www.avayalabs.com/project/libsafe/index.html for more information, or send email to
libsafe@research.avayalabs.com. The libsafe library effectively solves 90%
of the buffer overflow problem. There is a very slight performance penalty, however.

Disable all services that you are not using. Then, try to evaluate whether the
remaining services are really needed. For instance, do you really need IMAP or would
POP3 suffice? IMAP has had a lot more security alerts than POP3 because it is a much
more complex service. Is the risk worth it?

xinetd (or inetd) runs numerous services, of which only a few are needed. You
should trim your /etc/xinetd.d directory (or /etc/inetd.conf file) to a mini-
mum. For xinetd, you can add the line disable = yes to the relevant file. Only
one or two files should be enabled. Alternatively, your /etc/inetd.conf should
have only a few lines in it. A real-life example is:

✞ �

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l -a
pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
imap stream tcp nowait root /usr/sbin/tcpd imapd

✝ ✆

This advice should be taken quite literally. The rule of thumb is that if you don’t
know what a service does, you should disable it. See also Section 29.6.

In the above real-life case, the services were additionally limited to permit only
certain networks to connect (see page 293 and 296).

xinetd (or inetd) is not the only problem. There are many other problematic
services. Entering netstat -nlp gives initial output, like

518

44. UNIX Security 44.3. Counter Measures

✞ �
(Not all processes could be identified, non-owned process info
will not be shown, you would have to be root to see it all.)
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

5 tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 2043/exim
tcp 0 0 0.0.0.0:400 0.0.0.0:* LISTEN 32582/xinetd
tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN 32582/xinetd
tcp 0 0 172.23.80.52:53 0.0.0.0:* LISTEN 30604/named
tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN 30604/named

10 tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN 583/X
tcp 0 0 0.0.0.0:515 0.0.0.0:* LISTEN 446/
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 424/sshd
udp 0 0 0.0.0.0:1045 0.0.0.0:* 30604/named
udp 0 0 172.23.80.52:53 0.0.0.0:* 30604/named

15 udp 0 0 127.0.0.1:53 0.0.0.0:* 30604/named
raw 0 0 0.0.0.0:1 0.0.0.0:* 7 -
raw 0 0 0.0.0.0:6 0.0.0.0:* 7 -

✝ ✆

but doesn’t show that PID 446 is actually lpd. For that information just type ls -
al /proc/446/.

You can see that ten services are actually open: 1, 6, 21, 22, 25, 53, 400, 515,
1045, and 6000. 1 and 6 are kernel ports, and 21 and 400 are FTP and our echo
daemon, respectively. Such a large number of open ports provides ample opportunity
for attack.

At this point, you should go through each of these services and (1), decide
whether you really need them. Then (2), make sure you have the latest version; fi-
nally (3), consult the packages documentation so that you can limit the networks that
are allowed to connect to those services.

It is interesting that people are wont to make assumptions about packages to the
tune of “This service is so popular it can’t possibly be vulnerable.” The exact opposite
is, in fact, true: The more obscure and esoteric a service is, the less likely that someone
has taken the trouble to find a vulnerability. In the case of named (i.e., bind), a number
of most serious vulnerabilities were made public as regards every Bind release prior to
9. Hence, upgrading to the latest version (9.1 at the time of writing) from source was
prudent for all the machines I administered (a most-time consuming process).

44.3.7 Removing potential risks: setuid programs

It is easy to find all the setuid programs on your system:
✞ �

find / -type f -perm +6000 -ls
✝ ✆

Disabling them is just as easy:
✞ �

chmod -s /bin/ping
✝ ✆

There is nothing wrong with the decision that ordinary users are not allowed to use

519

44.3. Counter Measures 44. UNIX Security

even the ping command. If you do allow any shell logins on your system, then you
should remove setuid permissions from all shell commands.

44.3.8 Making life difficult

There is much that you can do that is not “security” per se but that will make life consid-
erably more difficult for a hacker, and certainly impossible for a stock standard attack,
even if your system is vulnerable. A hack attempt often relies on a system being con-
figured a certain way. Making your system different from the standard can go a long
way.

Read-only partitions: It is allowable to mount your /usr partition (and critical top-
level directories like /bin) read-only since these are, by definition, static data. Of
course, anyone with root access can remount it as writable, but a generic attack
script may not know this. Some SCSI disks can be configured as read-only by
using dip switches (or so I hear). The /usr partition can be made from an ISO
9660 partition (CD-ROM file system) which is read-only by design. You can also
mount your CD-ROM as a /usr partition: access will be slow, but completely
unmodifiable. Finally, you can manually modify your kernel code to fail write-
mount attempts on /usr.

Read-only attributes: LINUX has additional file attributes to make a file unmod-
ifiable over and above the usual permissions. These attributes are controlled
by the commands chattr and lsattr. You can make a log file append-only
with chatter +a /var/log/messages /var/log/syslog or make files
immutable with, chatter +i /bin/login: both actions are a good idea. The
command

✞ �

chattr -R +i /bin /boot /lib /sbin /usr
✝ ✆

is a better idea still. Of course, anyone with superuser privileges can switch them
back.

Periodic system monitoring: It is useful to write your own crond scripts to check
whether files have changed. the scripts can check for new setuid programs, per-
missions, or changes to binary files; or you can reset permissions to what you
think is secure. Just remember that cron programs can be modified by anyone
who hacks into the system. A simple command

✞ �

find / -mtime 2 -o -ctime 2
✝ ✆

searches for all files that have been modified in the last two days.

520

44. UNIX Security 44.3. Counter Measures

Nonstandard packages: If you notice many security alerts for a package, switch to a
different one. There are alternatives to bind, wu-ftpd, sendmail (as covered
in Chapter 30), and almost every service you can think of. You can also try in-
stalling an uncommon or security-specialized distribution. Switching entirely to
FreeBSD is also one way of reducing your risk considerably. &This is not a joke.-

Nonstandard messages: Many services provide banners and informational messages
which give away the version of your software. For example, mail servers have
default HELO responses to advertise themselves; and login and FTP banners of-
ten display the operating system you are running. These messages should be
customized to provide less information on which to base an attack. You can be-
gin by editing /etc/motd.

Minimal kernels: Its easy to compile your kernel without module support, with an
absolutely minimal set of features. Loading of Trojan modules has been a source
of insecurity in the past. Such a kernel can only make you safer.

Non-Intel architecture: Hackers need to learn assembly language to exploit many vul-
nerabilities. The most common assembly language is that of Intel 80?86 proces-
sors. Using a non-Intel platform adds that extra bit of obscurity.

Removing fingerprints: Your system identifies itself to

OpenWall project: This has a kernel patch that makes the stack of a process non-
executable (which will thwart most kinds of buffer overflow attempts) and does
some other cute things with the /tmp directory and process I/O.

44.3.9 Custom security paradigms

Hackers have limited resources. Take oneupmanship away and security is about the
cost of hacking a system versus the reward of success. If you feel the machine you
administer is bordering on this category then you need to start billing far more for
your hours and doing things like those described below. It is possible to go to lengths
that will make a LINUX system secure against a large government’s defense budget.

Capabilities: This is a system of security that gives limited kinds of superuser access
to programs that would normally need to be full-blown setuid root executables.
Think: Most processes that run with root (setuid) privileges do so because of the
need to access only a single privileged function. For instance, the ping program
does not need complete superuser privileges (run ls -l /bin/ping and note
the setuid bit). Capabilities are a fine-grained set of privileges that say that a
process can do particular things that an ordinary user can’t, without ever having
full root access. In the case of ping, its capability would be certain networking
access that only root is normally allowed to do.

521

44.3. Counter Measures 44. UNIX Security

Access control lists: These lists extend the simple “user/group/other” permissions
of UNIX files to allow arbitrary lists of users to access particular files. This really
does nothing for network security but is useful if you have many users on the
system and you would like to restrict them in odd ways. (ACL is a little out of
place in this list.)

DTE: Domain and Type Enforcement works like this: When a program is executed, it is
categorized and only allowed to do certain things even if it is running as root.
These limitations are extended to child processes that it may execute. This is real
security; there are kernel patches to do this. The National Security Agency (of
the U.S.) (NSA) actually has a LINUX distribution built around DTE.

medusa: This is a security system that causes the kernel to query a user daemon before
letting any process on the system do anything. It is the most ubiquitous security
system out because it is entirely configurable—you can make the user daemon
restrict anything however you like.

VXE: Virtual eXecuting Environment dictates that a program executes in its own pro-
tected space while VXE executes a Lisp program to check whether a system call
is allowed. This is effectively a lot like medusa.

MAC: Mandatory Access Controls. This is also about virtual environments for pro-
cesses. MAC is a POSIX standard.

RSBAC and RBAC: Rule-Set-Based Access Controls and Role-Based Access Controls.
These look like a combination of some of the above.

LIDS: Linux Intrusion Detection System does some meager preventive measures to re-
strict module loading, file modifications, and process information.

Kernel patches exist to do all of the above. Many of these projects are well out
of the test phase but are not in the mainstream kernel, possibly because developers are
not sure of the most enduring approach to UNIX security. They all have one thing in
common: double-checking what a privileged process does, which can only be a good
thing.

44.3.10 Proactive cunning

Proactive cunning means attack monitoring and reaction, and intrusion monitoring
and reaction. Utilities that do this come under a general class called network intru-
sion detection software. The idea that one might detect and react to a hacker has an
emotional appeal, but it automatically implies that your system is insecure to begin
with—which is probably true, considering the rate at which new vulnerabilities are
being reported. I am weary of so-called intrusion detection systems that administra-
tors implement even before the most elementary of security measures. Really, one

522

44. UNIX Security 44.4. Important Reading

must implement all of the above security measures before thinking about intrusion
monitoring.

To picture the most basic form of monitoring, consider this: To hack a system, one
usually needs to test for open services. To do this, one tries to connect to every port
on the system to see which are open. This is known as a port scan. There are simple
tools to detect a port scan, which will then start a firewall rule that will deny further
access from the offending host although this can work against you if the hacker has
spoofed your own IP address. More importantly, the tools will report the IP address
from which the attack arose. A reverse lookup will give the domain name, and then
a whois query on the appropriate authoritative DNS registration site will reveal the
physical address and telephone number of the domain owner.

Port scan monitoring is the most elementary form of monitoring and reaction.
From there up, you can find innumerable bizarre tools to try and read into all sorts of
network and process activity. I leave this to your own research, although you might
want to start with the Snort traffic scanner http://www.snort.org/, the Tripwire intrusion de-
tection system http://www.tripwiresecurity.com/, and IDSA http://jade.cs.uct.ac.za/idsa/.

A point to such monitoring is also as a deterrent to hackers. A network should
be able to find the origins of an attack and thereby trace the attacker. The threat of
discovery makes hacking a far less attractive pastime, and you should look into the
legal recourse you may have against people who try to compromise your system.

44.4 Important Reading

The preceding is a practical guide. It gets much more interesting than this.
A place to start is the comp.os.linux.security FAQ. This FAQ gives the
most important UNIX security references available on the net. You can down-
load it from http://www.memeticcandiru.com/colsfaq.html, http://www.linuxsecurity.com/docs/-
colsfaq.html or http://www.geocities.com/swan daniel/colsfaq.html. The Linux Security
http://www.linuxsecurity.com/ web page also has a security quick reference card that sum-
marizes most everything you need to know in two pages.

44.5 Security Quick-Quiz

• How many security reports have you read?
• How many packages have you upgraded because of vulnerabilities?
• How many services have you disabled because you were unsure of their security?
• How many access limit rules do you have in your hosts.*/xinetd services?

If your answer to any of these questions is fewer than 5, you are not being con-
scientious about security.

523

44.6. Security Auditing 44. UNIX Security

44.6 Security Auditing

This chapter is mostly concerned with securing your own LINUX server. However, if
you have a large network, security auditing is a more extensive evaluation of your sys-
tems’ vulnerabilities. Security auditing becomes an involved procedure when multiple
administrators maintain many different platforms across a network. There are compa-
nies that specialize in this work: Any network that does not dedicate an enlightened
staff member should budget generously for their services.

Auditing your network might involve the following:

• Doing penetration testing of firewalls.
• Port scanning.
• Installing intrusion detection software.
• Analyzing and reporting on Internet attack paths.
• Evaluating service access within your local LAN.
• Tracking your administrators’ maintenance activities.
• Trying password cracking on all authentication services.
• Monitoring the activity of legitimate user accounts.

Network attacks cost companies billions of dollars
each year in service downtime and repair. Failing
to pay attention to security is a false economy.

524

Appendix A

Lecture Schedule

The following sections describe a 36-hour lecture schedule in 12 lessons, 2 per week,
of 3 hours each. The lectures are interactive, following the text closely, but sometimes
giving straightforward chapters as homework.

A.1 Hardware Requirements

The course requires that students have a LINUX system to use for their homework
assignments. For past courses, most people were willing to repartition their home
machines, buy a new hard drive, or use a machine of their employer.

The classroom itself should have 4 to 10 places. It is imperative that students
have their own machine, since the course is highly interactive. The lecturer need not
have a machine. I myself prefer to write everything on a whiteboard. The machines
should be networked with Ethernet and configured so that machines can telnet to each
other’s IPs. A full LINUX installation is preferred—everything covered by the lec-
tures must be installed. This would include all services, several desktops, and and
kernel development packages.

LINUX CDs should also be available for those who need to set up their home
computers.

Most notably, each student should have his own copy of this text.

A.2 Student Selection

This lecture layout is designed for seasoned administrators of MS-DOS or Windows
systems, those who at least have some kind of programming background, or those

525

A.3. Lecture Style A. Lecture Schedule

who, at the very least, are experienced in assembling hardware and installing operating
systems. At the other end of the scale, “end users” with no knowledge of command-
line interfaces, programming, hardware assembly, or networking, would require a far
less intensive lecture schedule and would certainly not cope with the abstraction of a
shell interface.

Of course, people of high intelligence can cover this material quite quickly, re-
gardless of their IT experience, and it is smoothest when the class is at the same level.
The most controversial method would be to simply place a tape measure around the
cranium (since the latest data puts the correlation between IQ and brain size at about
0.4).

A less intensive lecture schedule would probably cover about half of the material,
with more personalized tuition, and having more in-class assignments.

A.3 Lecture Style

Lessons are three hours each. In my own course, these were in the evenings from
6 to 9, with two 10 minute breaks on the hour. It is important that there are a few
days between each lecture for students to internalize the concepts and practice them
by themselves.

The course is completely interactive, following a “type this now class...” genre.
The text is replete with examples, so these should be followed in sequence. In some
cases, repetitive examples are skipped. Examples are written on the whiteboard, per-
haps with slight changes for variety. Long examples are not written out: “Now class,
type in the example on page...”.

The motto of the lecture style is: keep ’em typing.

Occasional diversions from the lecturer’s own experiences are always fun when
the class gets weary.

The lecturer will also be aware that students get stuck occasionally. I check their
screens from time to time, typing in the odd command for them, to speed the class
along.

Lesson 1

A background to UNIX and LINUX history is explained, crediting the various respon-
sible persons and organizations. The various copyrights are explained, with emphasis
on the GPL.

Chapter 4 then occupies the remainder of the first three hours.

526

A. Lecture Schedule A.3. Lecture Style

Homework: Appendix D and E to be read. Students to install their own LINUX
distributions. Chapter 6 should be covered to learn basic operations with vi.

Lesson 2

Chapter 5 (Regular Expressions) occupies the first hour, then Chapter 7 (Shell Script-
ing) the remaining time. Lecturers should doubly emphasize to the class the impor-
tance of properly understanding regular expressions, as well as their wide use in UNIX.

Homework: Research different desktop configurations and end-user applications. Stu-
dents should become familiar with the different desktops and major applications that
they offer.

Lesson 3

First hour covers Chapter 8. Second hour covers Chapters 9 and 10. Third hour covers
Chapter 11.

Homework: Research LINUX on the Internet. All resources mentioned in Chapters
16 and 13 should be accessed.

Lesson 4

First two hours cover Chapters 12, 13, 14, 15. Third hour covers Chapters 16 and 17.

Homework: Chapters 18 through 21 to be covered. Students will not be able to mod-
ify the house’s partitions, and printers will not be available, so these experiments are
given for homework. Chapter 20 is not considered essential. Students are to attempt
to configure their own printers and report back with any problems.

Lesson 5

First hour covers Chapter 22, second hour covers Chapter 24. For the third hour, stu-
dent read Chapter 25 and Chapter 26, asking questions about any unclear points.

Homework: Optionally, Chapters 23, then rereading of Chapter 25 and 26.

527

A.3. Lecture Style A. Lecture Schedule

Lesson 6

Lectured coverage of Chapter 25 and Chapter 26. Also demonstrate an attempt to sniff
the password of a telnet session with tcpdump. Then the same attempt with ssh.

Homework: Read Chapter 27 through Chapter 29 in preparation for next lesson.

Lesson 7

Chapters 27 through 29 covered in first and second hour. A DNS server should be up
for students to use. Last hour explains how Internet mail works, in theory only, as well
as the structure of the exim configuration file.

Homework: Read through Chapter 30 in preparation for next lesson.

Lesson 8

First and second hours cover Chapter 30. Students to configure their own mail server.
A DNS server should be present to test MX records for their domain. Last hour covers
Chapters 31 and 32, excluding anything about modems.

Homework: Experiment with Chapter 33. Chapter 34 not covered. Chapter 35 to be
studied in detail. Students to set up a web server from Chapter 36 and report back with
problems. Apache itself is not covered in lectures.

Lesson 9

First hour covers Chapter 37. Second and third hours cover Chapter 40. Students to
configure their own name servers with forward and reverse lookups. Note that Samba
is not covered if there are no Windows machines or printers to properly demonstrate
it. An alternative would be to set up printing and file-sharing using smbmount.

Homework: Chapter 41 for homework—students to configure dialup network for
themselves. Read through Chapter 42 in preparation for next lesson.

Lesson 10

First and second hours cover Chapter 42. Students to at least configure their own
network card if no other hardware devices are available. Build a kernel with some

528

A. Lecture Schedule A.3. Lecture Style

customizations. Third hour covers the Window System in theory and use of the
DISPLAY environment variable to display applications to each other’s servers.

Homework: Study Chapter 28.

Lesson 11

First hour covers configuring of NFS, noting the need for a name server with forward
and reverse lookups. Second and third hours cover Chapter 38.

Homework: Download and read the Python tutorial. View the weeks security reports
online. Study Chapter 44.

Lesson 12

First and second hours cover the security chapter and an introduction to the Python
programming language. Last hour comprises the course evaluation. The final lesson
could possibly hold an examination if a certification is offered for this particular course.

529

A.3. Lecture Style A. Lecture Schedule

530

Appendix B

LINUX Professionals Institute
Certification Cross-Reference

These requirements are quoted verbatim from the LPI web page http://www.lpi.org/. For each
objective, the relevant chapter or section from this book is referenced in parentheses: these are
my additions to the text. In some cases, outside references are given. Note that the LPI level 2
exams have not been finalized as of this writing. However, the preliminary draft of the level 2
curricula is mostly covered by this book.

Each objective is assigned a weighting value. The weights range roughly from 1 to 8,
and indicate the relative importance of each objective. Objectives with higher weights
will be covered by more exam questions.

B.1 Exam Details for 101

General LINUX, part I

This is a required exam for certification level I. It covers fundamental system adminis-
tration activities that are common across all flavors of LINUX.

Topic 1.3: GNU and UNIX Commands

Obj 1: Work Effectively on the UNIX command line
Weight of objective: 4

531

B.1. Exam Details for 101 B. LPI Certification Cross-Reference

Interact with shells and commands using the command line (Chapter 4). Includes typing valid
commands and command sequences (Chapter 4), defining, referencing and exporting environ-
ment variables (Chapter 9), using command history and editing facilities (Section 2.6), invoking
commands in the path and outside the path (Section 4.6), using command substitution, and ap-
plying commands recursively through a directory tree (Section 20.7.5).

Obj 2: Process text streams using text processing filters
Weight of objective: 7

Send text files and output streams through text utility filters to modify the output in a useful way
(Chapter 8). Includes the use of standard UNIX commands found in the GNU textutils package
such as sed, sort, cut, expand, fmt, head, join, nl, od, paste, pr, split, tac, tail, tr, and wc (see the
man pages for each of these commands in conjunction with Chapter 8).

Obj 3: Perform basic file management
Weight of objective: 2

Use the basic UNIX commands to copy and move files and directories (Chapter 4). Perform
advanced file management operations such as copying multiple files recursively and moving
files that meet a wildcard pattern (Chapter 4). Use simple and advanced wildcard specifications
to refer to files (Chapter 4.3).

Obj 4: Use UNIX streams, pipes, and redirects
Weight of objective: 3

Connect files to commands and commands to other commands to efficiently process textual data.
Includes redirecting standard input, standard output, and standard error; and piping one com-
mand’s output into another command as input or as arguments (using xargs); sending output to
stdout and a file (using tee) (Chapter 8).

Obj 5: Create, monitor, and kill processes
Weight of objective: 5

Includes running jobs in the foreground and background (Chapter 9), bringing a job from the
background to the foreground and vise versa, monitoring active processes, sending signals to
processes, and killing processes. Includes using commands ps, top, kill, bg, fg, and jobs (Chap-
ter 9).

Obj 6: Modify process execution priorities
Weight of objective: 2

Run a program with higher or lower priority, determine the priority of a process, change the
priority of a running process (Section 9.7). Includes the command nice and its relatives (Section
9.7).

Obj 7: Perform searches of text files making use of regular expressions
Weight of objective: 3

Includes creating simple regular expressions and using related tools such as grep and sed to
perform searches (Chapters 5 and 8).

532

B. LPI Certification Cross-Reference B.1. Exam Details for 101

Topic 2.4: Devices, LINUX File Systems,
Filesystem Hierarchy Standard

Obj 1: Create partitions and filesystems
Weight of objective: 3

Create disk partitions using fdisk, create hard drive and other media filesystems using mkfs
(Chapter 19).

Obj 2: Maintain the integrity of filesystems
Weight of objective: 5

Verify the integrity of filesystems, monitor free space and inodes, fix simple filesystem problems.
Includes commands fsck, du, df (Chapter 19).

Obj 3: Control filesystem mounting and unmounting
Weight of objective: 3

Mount and unmount filesystems manually, configure filesystem mounting on bootup, configure
user-mountable removable file systems. Includes managing file /etc/fstab (Chapter 19).

Obj 4: Set and view disk quota
Weight of objective: 1

Setup disk quota for a filesystem, edit user quota, check user quota, generate reports of user
quota. Includes quota, edquota, repquota, quotaon commands. (Quotas are not covered but are
easily learned form the Quota mini-HOWTO.)

Obj 5: Use file permissions to control access to files
Weight of objective: 3

Set permissions on files, directories, and special files, use special permission modes such as suid
and sticky bit, use the group field to grant file access to workgroups, change default file creation
mode. Includes chmod and umask commands. Requires understanding symbolic and numeric
permissions (Chapter 14).

Obj 6: Manage file ownership
Weight of objective: 2

Change the owner or group for a file, control what group is assigned to new files created in a
directory. Includes chown and chgrp commands (Chapter 11).

Obj 7: Create and change hard and symbolic links
Weight of objective: 2

Create hard and symbolic links, identify the hard links to a file, copy files by following or not
following symbolic links, use hard and symbolic links for efficient system administration (Chap-
ter 15).

Obj 8: Find system files and place files in the correct location
Weight of objective: 2

533

B.1. Exam Details for 101 B. LPI Certification Cross-Reference

Understand the filesystem hierarchy standard, know standard file locations, know the purpose
of various system directories, find commands and files. Involves using the commands: find, lo-
cate, which, updatedb . Involves editing the file: /etc/updatedb.conf (Section 4.14 and Chapters
17 and 35).

Topic 2.6: Boot, Initialization, Shutdown, Run Levels

Obj 1: Boot the system
Weight of objective: 3

Guide the system through the booting process, including giving options to the kernel at
boot time, and check the events in the log files. Involves using the commands: dmesg
(lilo). Involves reviewing the files: /var/log/messages, /etc/lilo.conf, /etc/conf.modules —
/etc/modules.conf (Sections 21.4.8 and 42.5.1 and Chapters 31 and 32).

Obj 2: Change runlevels and shutdown or reboot system
Weight of objective: 3

Securely change the runlevel of the system, specifically to single user mode, halt (shutdown) or
reboot. Make sure to alert users beforehand, and properly terminate processes. Involves using
the commands: shutdown, init (Chapter 32).

Topic 1.8: Documentation

Obj 1: Use and Manage Local System Documentation
Weight of objective: 5

Use and administer the man facility and the material in /usr/doc/. Includes finding relevant
man pages, searching man page sections, finding commands and manpages related to one, con-
figuring access to man sources and the man system, using system documentation stored in
/usr/doc/ and related places, determining what documentation to keep in /usr/doc/ (Section
4.7 and Chapter 16; you should also study the man page of the man command itself).

Obj 2: Find LINUX documentation on the Internet
Weight of objective: 2

Find and use LINUX documentation at sources such as the LINUX Documentation Project, vendor
and third-party websites, newsgroups, newsgroup archives, mailing lists (Chapter 13).

Obj 3: Write System Documentation
Weight of objective: 1

Write documentation and maintain logs for local conventions, procedures, configuration and
configuration changes, file locations, applications, and shell scripts. (You should learn how to
write a man page yourself. There are many man pages to copy as examples. It is difficult to say
what the LPI had in mind for this objective.)

534

B. LPI Certification Cross-Reference B.1. Exam Details for 101

Obj 4: Provide User Support
Weight of objective: 1

Provide technical assistance to users via telephone, email, and personal contact. (This is not
covered. Providing user support can be practiced by answering questions on the newsgroups or
mailing lists.)

Topic 2.11: Administrative Tasks

Obj 1: Manage users and group accounts and related system files
Weight of objective: 7

Add, remove, suspend user accounts, add and remove groups, change user/group info in
passwd/group databases, create special purpose and limited accounts. Includes commands
useradd, userdel, groupadd, gpasswd, passwd, and file passwd, group, shadow, and gshadow.
(Chapter 11. You should also study the useradd and groupadd man pages in detail.)

Obj 2: Tune the user environment and system environment variables
Weight of objective: 4

Modify global and user profiles to set environment variable, maintain skel directories for new
user accounts, place proper commands in path. Involves editing /etc/profile and /etc/skel/
(Chapter 11 and Section 20.8).

Obj 3: Configure and use system log files to meet administrative and security needs
Weight of objective: 3

Configure the type and level of information logged, manually scan log files for notable activ-
ity, arrange for automatic rotation and archiving of logs, track down problems noted in logs.
Involves editing /etc/syslog.conf (Sections 21.4.8 and 21.4.9).

Obj 4: Automate system administration tasks by scheduling jobs to run in the future
Weight of objective: 4

Use cron to run jobs at regular intervals, use at to run jobs at a specific time, manage cron and at
jobs, configure user access to cron and at services (Chapter 37).

Obj 5: Maintain an effective data backup strategy
Weight of objective: 3

Plan a backup strategy, backup filesystems automatically to various media, perform partial and
manual backups, verify the integrity of backup files, partially or fully restore backups (Section
4.17 and Chapter 18).

535

B.2. Exam Details for 102 B. LPI Certification Cross-Reference

B.2 Exam Details for 102

General LINUX, part II

Topic 1.1: Hardware and Architecture

Obj 1: Configure fundamental system hardware
Weight of objective: 3

Demonstrate a proper understanding of important BIOS settings, set the date and time, ensure
IRQs and I/O addresses are correct for all ports including serial and parallel, make a note of IRQs
and I/Os, be aware of the issues associated with drives larger than 1024 cylinders (Chapters 3
and 42).

Obj 2: Setup SCSI and NIC devices
Weight of objective: 4

Manipulate the SCSI BIOS to detect used and available SCSI IDs, set the SCSI ID to the correct
ID number for the boot device and any other devices required, format the SCSI drive—low level
with manufacturer’s installation tools—and properly partition and system format with LINUX

fdisk and mke2fs, set up NIC using manufacturer’s setup tools setting the I/O and the IRQ as
well as the DMA if required. (Sections 42.6.3 and 42.6.9. Each hardware vendor has their own
specific tools. There are few such NICs still left to practice on.)

Obj 3: Configure modem, sound cards
Weight of objective: 3

Ensure devices meet compatibility requirements (particularly that the modem is NOT a win-
modem), verify that both the modem and sound card are using unique and correct IRQs, I/O,
and DMA addresses, if the sound card is PnP install and run sndconfig and isapnp, configure
modem for outbound dialup, configure modem for outbound PPP — SLIP — CSLIP connection,
set serial port for 115.2 Kbps (Sections 42.6.1, 42.6.12, and 42.7 and Chapters 34 and 41).

Topic 2.2: LINUX Installation and Package Management

Obj 1: Design hard-disk layout
Weight of objective: 2

Design a partitioning scheme for a LINUX system, depending on the hardware and system use
(number of disks, partition sizes, mount points, kernel location on disk, swap space). (Chap-
ter 19.)

Obj 2: Install a boot manager
Weight of objective: 3

536

B. LPI Certification Cross-Reference B.2. Exam Details for 102

Select, install and configure a boot loader at an appropriate disk location. Provide alternative
and backup boot options (like a boot floppy disk). Involves using the command: lilo . Involves
editing the file: /etc/lilo.conf (Chapter 31).

Obj 3: Make and install programs from source
Weight of objective: 5

Manage (compressed) archives of files (unpack ”tarballs”), specifically GNU source packages.
Install and configure these on your systems. Do simple manual customization of the Makefile if
necessary (like paths, extra include dirs) and make and install the executable. Involves using the
commands: gunzip, tar, ./configure, make, make install . Involves editing the files: ./Makefile
(Chapter 24).

Obj 4: Manage shared libraries
Weight of objective: 3

Determine the dependencies of executable programs on shared libraries, and install these
when necessary. Involves using the commands: ldd, ldconfig . Involves editing the files:
/etc/ld.so.conf (Chapter 23).

Obj 5: Use Debian package management
Weight of objective: 5

Use the Debian package management system, from the command line (dpkg) and with inter-
active tools (dselect). Be able to find a package containing specific files or software; select and
retrieve them from archives; install, upgrade or uninstall them; obtain status information like
version, content, dependencies, integrity, installation status; and determine which packages are
installed and from which package a specific file has been installed. Be able to install a non-Debian
package on a Debian system (Chapter 24).

Involves using the commands and programs: dpkg, dselect, apt, apt-get, alien . Involves review-
ing or editing the files and directories: /var/lib/dpkg/* .

Obj 6:Use Red Hat Package Manager (rpm)
Weight of objective: 6

Use rpm from the command line. Familiarize yourself with these tasks: Install a package, unin-
stall a package, determine the version of the package and the version of the software it contains,
list the files in a package, list documentation files in a package, list configuration files or instal-
lation or uninstallation scripts in a package, find out for a certain file from which package it was
installed, find out which packages have been installed on the system (all packages, or from a
subset of packages), find out in which package a certain program or file can be found, verify
the integrity of a package, verify the PGP or GPG signature of a package, upgrade a package.
Involves using the commands and programs: rpm, grep (Chapter 24).

Topic 1.5: Kernel

Obj 1: Manage kernel modules at runtime
Weight of objective: 3

537

B.2. Exam Details for 102 B. LPI Certification Cross-Reference

Learn which functionality is available through loadable kernel modules, and manually load and
unload the modules as appropriate. Involves using the commands: lsmod, insmod, rmmod,
modinfo, modprobe. Involves reviewing the files: /etc/modules.conf — /etc/conf.modules
(* depends on distribution *), /lib/modules/{kernel-version}/modules.dep (Chapter 42).

Obj 2: Reconfigure, build, and install a custom kernel and modules
Weight of objective: 4

Obtain and install approved kernel sources and headers (from a repository at your site, CD, ker-
nel.org, or your vendor); customize the kernel configuration (i.e., reconfigure the kernel from
the existing .config file when needed, using oldconfig, menuconfig or xconfig); Make a new
LINUX kernel and modules; Install the new kernel and modules at the proper place; Recon-
figure and run lilo. N.B.: This does not require to upgrade the kernel to a new version (full
source nor patch). Requires the commands: make (dep, clean, menuconfig, bzImage, modules,
modules install), depmod, lilo. Requires reviewing or editing the files: /usr/src/linux/.config
, /usr/src/linux/Makefile, /lib/modules/{kernelversion}/modules.dep, /etc/conf.modules
— /etc/modules.conf, /etc/lilo.conf (Chapter 42).

Topic 1.7: Text Editing, Processing, Printing

Obj 1: Perform basic file editing operations using vi
Weight of objective: 2

Edit text files using vi. Includes vi navigation, basic modes, inserting, editing and deleting text,
finding text, and copying text (Chapter 6).

Obj 2: Manage printers and print queues
Weight of objective: 2

Monitor and manage print queues and user print jobs, troubleshoot general printing problems.
Includes the commands: lpc, lpq, lprm and lpr . Includes reviewing the file: /etc/printcap
(Chapter 21).

Obj 3: Print files
Weight of objective: 1

Submit jobs to print queues, convert text files to postscript for printing. Includes lpr command
(Section 21.6).

Obj 4: Install and configure local and remote printers
Weight of objective: 3

Install a printer daemon, install and configure a print filter (e.g.: apsfilter, magicfilter). Make
local and remote printers accessible for a LINUX system, including postscript, non-postscript,
and Samba printers. Involves the daemon: lpd . Involves editing or reviewing the files and
directories: /etc/printcap , /etc/apsfilterrc , /usr/lib/apsfilter/filter/*/ , /etc/magicfilter/*/ ,
/var/spool/lpd/*/ (why not to use apsfilter is discussed in Section 21.9.2).

538

B. LPI Certification Cross-Reference B.2. Exam Details for 102

Topic 1.9: Shells, Scripting, Programming, Compiling

Obj 1: Customize and use the shell environment
Weight of objective: 4

Customize your shell environment: set environment variables (e.g. PATH) at login or when
spawning a new shell; write bash functions for frequently used sequences of commands. In-
volves editing these files in your home directory: .bash profile — .bash login — .profile ; .bashrc
; .bash logout ; .inputrc (Chapter 20).

Obj 2: Customize or write simple scripts
Weight of objective: 5

Customize existing scripts (like paths in scripts of any language), or write simple new (ba)sh
scripts. Besides use of standard sh syntax (loops, tests), be able to do things like: command
substitution and testing of command return values, test of file status, and conditional mailing
to the superuser. Make sure the correct interpreter is called on the first (#!) line, and consider
location, ownership, and execution- and suid-rights of the script (Chapter 20; setuid is covered
in Sections 33.2 and 36.2.10 from a slightly more utilitarian angle).

Topic 2.10: X

Obj 1: Install and configure XFree86
Weight of objective: 4

Verify that the video card and monitor are supported by an X server, install the correct X server,
configure the X server, install an X font server, install required fonts for X (may require a manual
edit of /etc/X11/XF86Config in the ”Files” section), customize and tune X for videocard and
monitor. Commands: XF86Setup, xf86config. Files: /etc/X11/XF86Config, .xresources (Chap-
ter 43).

Obj 2: Setup XDM
Weight of objective: 1

Turn xdm on and off, change the xdm greeting, change default bitplanes for xdm, set-up xdm
for use by X-stations (see the xdm man page for comprehensive information).

Obj 3: Identify and terminate runaway X applications
Weight of objective: 1

Identify and kill X applications that won’t die after user ends an X-session. Example: netscape,
tkrat, etc.

Obj 4: Install and customize a Window Manager Environment
Weight of objective: 4

Select and customize a system-wide default window manager and/or desktop environment,
demonstrate an understanding of customization procedures for window manager menus, con-
figure menus for the window manager, select and configure the desired x-terminal (xterm, rxvt,

539

B.2. Exam Details for 102 B. LPI Certification Cross-Reference

aterm etc.), verify and resolve library dependency issues for X applications, export an X-display
to a client workstation. Commands: Files: .xinitrc, .Xdefaults, various .rc files. (The xinit,
startx, and xdm man pages provide this information.)

Topic 1.12: Networking Fundamentals

Obj 1: Fundamentals of TCP/IP
Weight of objective: 4

Demonstrate an understanding of network masks and what they mean (i.e. determine a network
address for a host based on its subnet mask), understand basic TCP/IP protocols (TCP, UDP,
ICMP) and also PPP, demonstrate an understanding of the purpose and use of the more common
ports found in /etc/services (20, 21, 23, 25, 53, 80, 110, 119, 139, 143, 161), demonstrate an correct
understanding of the function and application of a default route. Execute basic TCP/IP tasks:
FTP, anonymous FTP, telnet, host, ping, dig, traceroute, whois (Chapters 25 and 26).

Obj 2: (superseded)
Obj 3: TCP/IP troubleshooting and configuration
Weight of objective: 10

Demonstrate an understanding of the techniques required to list, configure and verify
the operational status of network interfaces, change, view or configure the routing ta-
ble, check the existing route table, correct an improperly set default route, manually
add/start/stop/restart/delete/reconfigure network interfaces, and configure LINUX as a DHCP
client and a TCP/IP host and debug associated problems. May involve reviewing or con-
figuring the following files or directories: /etc/HOSTNAME — /etc/hostname, /etc/hosts,
/etc/networks, /etc/host.conf, /etc/resolv.conf, and other network configuration files for your
distribution. May involve the use of the following commands and programs: dhcpd, host, host-
name (domainname, dnsdomainname), ifconfig, netstat, ping, route, traceroute, the network
scripts run during system initialization (Chapters 25 and 27).

Obj 4: Configure and use PPP
Weight of objective: 4

Define the chat sequence to connect (given a login example), setup commands to be run au-
tomatically when a PPP connection is made, initiate or terminate a PPP connection, initiate or
terminate an ISDN connection, set PPP to automatically reconnect if disconnected (Chapter 41).

Topic 1.13: Networking Services

Obj 1: Configure and manage inetd and related services
Weight of objective: 5

Configure which services are available through inetd, use tcpwrappers to allow or deny ser-
vices on a host-by-host basis, manually start, stop, and restart Internet services, configure ba-

540

B. LPI Certification Cross-Reference B.2. Exam Details for 102

sic network services including telnet and ftp. Includes managing inetd.conf, hosts.allow, and
hosts.deny (Chapter 29).

Obj 2: Operate and perform basic configuration of sendmail
Weight of objective: 5

Modify simple parameters in sendmail config files (modify the DS value for the ”Smart Host” if
necessary), create mail aliases, manage the mail queue, start and stop sendmail, configure mail
forwarding (.forward), perform basic troubleshooting of sendmail. Does not include advanced
custom configuration of sendmail. Includes commands mailq, sendmail, and newaliases. In-
cludes aliases and mail/ config files (Chapter 30).

Obj 3: Operate and perform basic configuration of apache
Weight of objective: 3

Modify simple parameters in apache config files, start, stop, and restart httpd, arrange for auto-
matic restarting of httpd upon boot. Does not include advanced custom configuration of apache.
Includes managing httpd conf files (Chapter 36).

Obj 4: Properly manage the NFS, smb, and nmb daemons
Weight of objective: 4

Mount remote filesystems using NFS, configure NFS for exporting local filesystems, start, stop,
and restart the NFS server. Install and configure Samba using the included GUI tools or direct
edit of the /etc/smb.conf file (Note: this deliberately excludes advanced NT domain issues but
includes simple sharing of home directories and printers, as well as correctly setting the nmbd
as a WINS client). (Chapters 28 and 39.)

Obj 5: Setup and configure basic DNS services
Weight of objective: 3

Configure hostname lookups by maintaining the /etc/hosts, /etc/resolv.conf, /etc/host.conf,
and /etc/nsswitch.conf files, troubleshoot problems with local caching-only name server. Re-
quires an understanding of the domain registration and DNS translation process. Requires un-
derstanding key differences in config files for bind 4 and bind 8. Includes commands nslookup,
host. Files: named.boot (v.4) or named.conf (v.8) (Chapters 27 and 40).

Topic 1.14: Security

Obj 1: Perform security admin tasks
Weight of objective: 4

Configure and use TCP wrappers to lock down the system, list all files with SUID bit set, de-
termine if any package (.rpm or .deb) has been corrupted, verify new packages prior to install,
use setgid on dirs to keep group ownership consistent, change a user’s password, set expiration
dates on user’s passwords, obtain, install and configure ssh (Chapter 44).

Obj 2: Setup host security
Weight of objective: 4

541

B.2. Exam Details for 102 B. LPI Certification Cross-Reference

Implement shadowed passwords, turn off unnecessary network services in inetd, set the proper
mailing alias for root and setup syslogd, monitor CERT and BUGTRAQ, update binaries imme-
diately when security problems are found (Chapter 44).

Obj 3: Setup user level security
Weight of objective: 2

Set limits on user logins, processes, and memory usage (Section 11.7.5).

542

Appendix C

RedHat Certified Engineer
Certification Cross-Reference

RedHat has encouraged a larger number of overlapping courses, some of which con-
tain lighter and more accessible material. They concentrate somewhat on RedHat spe-
cific issues that are not always applicable to other distributions. In some areas they
expect more knowledge than the LPI, so it is worth at least reviewing RedHat’s require-
ments for purposes of self-evaluation. The information contained in this appendix was
gathered from discussions with people who had attended the RedHat courses. This is
intended purely for cross-referencing purposes and is possibly outdated. By no means
should it be taken as definitive. Visit http://redhat.com/training/rhce/courses/ for the official
guide.

For each objective, the relevant chapter or section from this book is referenced in parentheses.

C.1 RH020, RH030, RH033, RH120, RH130, and RH133

These courses are beneath the scope of this book: They cover LINUX from a user and desktop
perspective. Although they include administrative tasks, they keep away from technicalities.
They often prefer graphical configuration programs to do administrative tasks. One objective
of one of these courses is configuring Gnome panel applets; another is learning the pico text
editor.

543

C.2. RH300 C. RHCE Certification Cross-Reference

C.2 RH300

This certification seems to be for administrators of non-LINUX systems who want to extend their
knowledge. The requirements below lean toward understanding available LINUX alternatives
and features, rather than expecting the user to actually configure anything complicated. Note
that I abbreviate the RedHat Installation Guide(s) as RHIG. This refers to the install help in the
installation program itself or, for RedHat 6.2 systems, the HTML installation guide on the CD. It
also refers to the more comprehensive online documentation at http://www.redhat.com/support/-
manuals/.

Unit 1: Hardware selection and RedHat installation

- Finding Web docs. Using HOWTOs to locate supported hardware (Chapter 16).
- Knowledge of supported architectures and SMP support (Chapter 42).
- Use of kudzu (I do not cover kudzu and recommend that you uninstall it).
- Hardware concepts—IRQ, PCI, EISA, AGP, and I/O ports (Chapters 3 and 42).
- isapnp, pciscan (Chapter 42).
- Concepts of LINUX support for PCMCIA, PS/2, tapes, scanners, USB (Chapter 42).
- Concepts of serial, parallel, SCSI, IDE, CD-ROM and floppy devices, and their /dev/ listings

(Chapter 18).
- hdparm (hdparm(8)).
- Concepts of IDE geometry, BIOS limitations (Chapter 19).
- Disk sector and partition structure. Use of fdisk, cfdisk, and diskdruid (Chapter 19).
- Creation of a partitioning structure (Chapter 19).
- Management of swap, native, and foreign partitions during installation (RHIG).
- Concept of distribution of directories over different partitions (Chapter 19).
- Configuring lilo on installation (Chapter 31 refers to general use of lilo).
- BIOS configuration (Chapter 3).
- Conceptual understanding of different disk images. Creating and booting disk images from

their boot.img, bootnet.img, or pcmcia.img (RHIG).
- Use of the installer to create RAID devices (RHIG).
- Package selection (RHIG).
- video configuration (Chapter 43 and RHIG).

Unit 2: Configuring and administration

- Using setup, mouseconfig, Xconfigurator, kbdconfig, timeconfig, netconfig,
authconfig, sndconfig. (These are higher level interactive utilities than the ones I
cover in Chapter 42 and elsewhere. Run each of these commands for a demo.)

- Understanding /etc/sysconfig/network-scripts/ifcfg-* (Chapter 25).
- Using netcfg or ifconfig (Chapter 25).
- Using ifup, ifdown, rp3, usernet, and usernetctl (Chapter 25).

544

C. RHCE Certification Cross-Reference C.2. RH300

- Using pnpdump, isapnp and editing /etc/isapnp.conf (Chapter 42).
- Conceptual understanding of /etc/conf.modules, esd, and kaudioserver (Chap-

ter 42; man pages for same).
- Using mount, editing /etc/fstab (Chapter 19).
- Using lpr, lpc, lpq, lprm, printtool and understanding concepts of /etc/printcap

(Chapter 21).
- Virtual consoles concepts: changing in /etc/inittab (Chapter 32).
- Using useradd, userdel, usermod, and passwd (Chapter 11).
- Creating accounts manually and with userconf and with linuxconf. (The use of graph-

ical tools is discouraged by this book.)
- Understanding concepts of the /etc/passwd and /etc/group files and /etc/skel and

contents (Chapter 11).
- Editing bashrc, .bashrc, /etc/profile, /etc/profile.d (Chapter 20).
- General use of linuxconf. (The use of graphical tools is discouraged by this book.)
- Using cron, anacron, editing /var/spool/cron/<username> and /etc/crontab.

tmpwatch, logrotate, and locate cron jobs.
- Using syslogd, klogd, /etc/syslog.conf, swatch, logcheck.
- Understanding and using rpm. Checksums, file listing, forcing, dependencies, query-

ing, verifying querying tags, provides, and requires. FTP and HTTP installs, rpmfind,
gnorpm, and kpackage (Chapter 24).

- Building .src.rpm files. Customizing and rebuilding packages. (See the RPM-HOWTO.)
- /usr/sbin/up2date. (The use of package is discouraged by this book.)
- Finding documentation (Chapter 16).

Unit 3: Alternative installation methods

- Laptops, PCMCIA, cardmanager, and apm. (See the RHIG, PCMCIA-HOWTO and
Laptop-HOWTO.)

- Multiboot systems, boot options, and alternative boot image configuration (Chapter 31).
- Network installations using netboot.img (RHIG).
- Serial console installation (RHIG?).
- Kickstart concepts.

Unit 4: Kernel

- /proc file system concepts and purpose of various subdirectories (see Section 42.4 and
the index entries for /proc/). Tuning parameters with /etc/sysctl.conf (see
sysctl.conf(5)).

- Disk quotas. quota, quotaon, quotaoff, edquota, repquota, quotawarn,
quotastats. (Quotas are not covered but are easily learned form the Quota mini-
HOWTO.)

545

C.2. RH300 C. RHCE Certification Cross-Reference

- System startup scripts’ initialization sequences. inittab, switching run levels. Conceptual
understanding of various /etc/rc.d/ files. SysV scripts, chkconfig, ntsysv, tksysv,
ksysv (Chapter 32).

- Configuring software RAID. Using raidtools to activate and test RAID devices (see the
RAID-HOWTO).

- Modules Management. modprobe, depmod, lsmod, insmod, rmmod commands.
kernelcfg. Editing of /etc/conf.modules, aliasing and optioning modules (Chap-
ter 42).

- Concepts of kernel source, .rpm versions, kernel versioning system. Configuring, compiling
and installing kernels (Chapter 42).

Unit 5: Basic network services

- TCP/IP concepts. inetd. Port concepts and service-port mappings (Chapters 25 and 26).
- apache, config files, virtual hosts (Chapter 36).
- sendmail, config files, mailconf, m4 macro concepts (Chapter 30).
- POP and IMAP concepts (Chapters 29 and 30).
- named configuration (Chapter 40).
- FTP configuration. (I did not cover FTP because of the huge number of FTP services avail-

able. It is recommended that you try the vsftpd package.)
- configuration, /etc/rc.d/init.d/netfs (Chapter 28).
- smbd, file-sharing and print-sharing concepts. Security concepts config file overview. Use

of testparam, smbclient, nmblookup, smbmount, Windows authentication concepts
(Chapter 39).

- dhcpd and BOOTP, config files and concepts. Configuration with netcfg, netconfig or
linuxconf. using pump (see the DHCP mini-HOWTO).

- Understanding squid caching and forwarding concepts. (The squid configuration
file /etc/squid/squid.conf provides ample documentation for actually setting up
squid.)

- Overview of lpd, mars-nwe, time services, and news services (Chapter 21).

Unit 6: X Window System

- X client server architecture (Section 43.1).
- Use of Xconfigurator, xf86config, XF86Setup, and concepts of

/etc/X11/XF86Config (Section 43.6.3).
- Knowledge of various window managers, editing /etc/sysconfig/desktop. Under-

standing of concepts of different user interfaces: Gnome, KDE. Use of switchdesk (Sec-
tion 43.3.4).

- init run level 5 concepts, xdm, kdm, gdm, prefdm alternatives (Section 43.9).
- xinit, xinitrc concepts. User config files .xsession and .Xclients (see xinit(1),

xdm(1), startx(1), and read the scripts under /etc/X11/xinit/ and /etc/X11/xdm).

546

C. RHCE Certification Cross-Reference C.3. RH220 (RH253 Part 1)

- Use of xhost (Section 43.3.5). Security issues. DISPLAY environment variable. Remote
displays (Section 43.3.2).

- xfs concepts (Section 43.12).

Unit 7: Security

- Use of tcp wrappers (Chapter 29). User and host based access restrictions. PAM access.
Port restriction with ipchains (see the Firewall-HOWTO).

- PAM concepts. Editing of /etc/pam.d, /etc/security config files. PAM documentation
(see /usr/share/doc/pam-0.72/txts/pam.txt).

- NIS concepts and config files. ypbind, yppasswd ypserv, yppasswdd, makedbm, yppush
(see the NIS-HOWTO).

- LDAP concepts. OpenLDAP package, slapd, ldapd, slurpd, and config files. PAM inte-
gration.

- inetd concepts. Editing of /etc/inetd.conf, interface to tcp wrappers. Editing of
/etc/hosts.allow and /etc/hosts.deny. portmap, tcpdchk, tcpdmatch, twist
(see the LDAP-HOWTO).

- ssh client server and security concepts (Chapters 12 and 44).

Unit 8: Firewalling, routing and clustering, troubleshooting

- Static and dynamic routing with concepts. /etc/sysconfig/static-routes. Use of
linuxconf and netcfg to edit routes. (Use of graphical tools is discouraged by this
book.)

- Forwarding concepts. Concepts of forwarding other protocols: X.25, frame-relay, ISDN, and
PPP. (By “concepts of” I take it to mean that mere knowledge of these features is sufficient.
See also Chapter 41.)

- ipchains and ruleset concepts. Adding, deleting, listing, flushing rules. Forwarding, mas-
querading. Protocol-specific kernel modules (see the Firewall-HOWTO).

- High availability concepts. Concepts of lvs, pulse, nanny, config files, and web-based
configuration. Piranha, failover concepts. (A conceptual understanding again.)

- High performance clustering concepts. Parallel virtual machine for computational research
(conceptual understanding only).

- Troublshooting: Networking (Chapter 25), X (Chapter 43), booting (Chapter 31), DNS
(Chapters 27 and 40), authentication (Chapter 11), file system corruption (Section 19.5).

- mkbootdisk and rescue floppy concepts. Use of the rescue disk environment and available
commands (see mkbootdisk(8)).

C.3 RH220 (RH253 Part 1)

RH220 is the networking module. It covers services sparsely, possibly intending that the student
learn only the bare bones of what is necessary to configure a service.

547

C.3. RH220 (RH253 Part 1) C. RHCE Certification Cross-Reference

Unit 1: DNS

A treatment of bind, analogous to Topic 1.13, Obj 5 of LPI (page 541). Expects exhaustive
understanding of the Domain Name System, an understanding of SOA, NS, A, CNAME, PTR, MX
and HINFO records, ability to create master domain servers from scratch, caching-only servers,
and round-robin load sharing configuration (Chapter 40).

Unit 2: Samba

Overview of SMB services and concepts. Configuring Samba for file and print sharing. Using
Samba client tools. Using linuxconf and swat. Editing /etc/smb.conf. Understanding
types of shares. Support Wins. Setting authentication method. Using client utilities (Chapter 39).

Unit 3: NIS

Conceptual understanding of NIS. NIS master and slave configure. Use of client utilities. LDAP
concepts. OpenLDAP package, slapd, ldapd, slurpd, and config files (see the NIS-HOWTO).

Unit 4: Sendmail and procmail

Understanding of mail spooling and transfer. Understanding the purpose of all sendmail
config files. Editing config file for simple client (i.e., forwarding) configuration. Editing
/etc/sendmail.mc, /etc/mail/virtusertable, /etc/mail/access. Restricting re-
lays. Viewing log files. Creating simple .procmail folder and email redirectors. (Chap-
ter 30. Also see The Sendmail FAQ http://www.sendmail.org/faq/ as well as procmail(1),
procmailrc(6), and procmailex(5).)

Unit 5: Apache

Configuring virtual hosts. Adding MIME types. Manipulating directory access and directory
aliasing. Allowing restricting of CGI access. Setting up user and password databases. Under-
standing important modules (Chapter 36).

Unit 6: pppd and DHCP

Setting up a basic pppd server. Adding dial-in user accounts. Restricting users. Understand-
ing dhcpd and BOOTP config files and concepts. Configuring with netcfg, netconfig, or
linuxconf. Using pump. Editing /etc/dhcpd.conf. (Chapter 41. See also the DHCP-
HOWTO.)

548

C. RHCE Certification Cross-Reference C.4. RH250 (RH253 Part 2)

C.4 RH250 (RH253 Part 2)

RH250 is the security module. It goes through basic administration from a security perspective.

Unit 1: Introduction

Understanding security requirements. Basic terminology: hacker, cracker, denial of service, virus,
trojan horse, worm. Physical security and security policies (Chapter 44).

Unit 2: Local user security

Understanding user accounts concepts, restricting access based on groups. Editing pam config
files. /etc/nologin; editing /etc/security/ files. Using console group, cug; configuring
and using clobberd and sudo. Checking logins in log files. Using last (Chapters 11 and 44).

Unit 3: Files and file system security

Exhaustive treatment of groups and permissions. chattr and lsattr commands. Use of find
to locate permission problems. Use of tmpwatch. Installation of tripwire. Managment of NFS
exports for access control (Chapters 14, 28, and 44).

Unit 4: Password security and encryption

Encryption terms: Public/Private Key, GPG, one-way hash, MD5. xhost, xauth. ssh concepts
and features. Password-cracking concepts (Section 11.3 and Chapter 12).

Unit 5: Process security and monitoring

Use PAM to set resource limits (Section 11.7.5). Monitor process memory usage and CPU con-
sumption; top, gtop, kpm, xosview, xload, xsysinfo. last, ac, accton, lastcomm (Chap-
ter 9). Monitor logs with swatch (see swatch(5) and swatch(8)).

Unit 6: Building firewalls

ipchains and ruleset concepts. Adding, deleting, listing, flushing rules. Forwarding, many-
to-one and one-to-one masquerading. Kernels options for firewall support. Static and dynamic
routing with concepts (see the Firewall-HOWTO). /etc/sysconfig/static-routes. Use
of linuxconf and netcfg to edit routes. tcp wrappers (Chapter 29).

549

C.4. RH250 (RH253 Part 2) C. RHCE Certification Cross-Reference

Unit 7: Security tools

Concepts of nessus, SAINT, SARA, SATAN. Concepts of identd. Use of sniffit, tcpdump,
traceroute, ping -f, ethereal, iptraf, mk-ftp-stats, lurkftp, mrtg, netwatch,
webalizer, trafshow. (These tools may be researched on the web.)

550

Appendix D

LINUX Advocacy
Frequently-Asked-Questions

The capabilities of LINUX are constantly expanding. Please consult the various Internet
resources listed for up-to-date information.

D.1 LINUX Overview

This section covers questions that pertain to LINUX as a whole.

What is LINUX?

LINUX is the core of a free UNIX operating system for the PC and other hardware platforms. De-
velopement of this operating system started in 1984; it was called the GNU project of the Free
Software Foundation (FSF). The LINUX core (or kernel), named after its author, Linus Torvalds,
began development in 1991—the first usable releases where made in 1993. LINUX is often called
GNU/LINUX because much of the OS (operating system) results from the efforts of the GNU
project.

UNIX systems have been around since the 1960s and are a proven standard in industry.
LINUX is said to be POSIX compliant, meaning that it confirms to a certain definite computing
standard laid down by academia and industry. This means that LINUX is largely compatible with
other UNIX systems (the same program can be easily ported to run on another UNIX system with
few (sometimes no) modifications) and will network seamlessly with other UNIX systems.

Some commercial UNIX systems are IRIX (for Silicon Graphics); Solaris or SunOS for Sun
Microsystem SPARC workstations; HP UNIX for Hewlett Packard servers; SCO for the PC; OSF

551

D.1. LINUX Overview D. LINUX Advocacy FAQ

for the DEC Alpha machine and AIX for the PowerPC/RS6000. Because the UNIX name is a
registered trademark, most systems are not called UNIX.

Some freely available UNIX systems are NetBSD, FreeBSD, and OpenBSD and also enjoy
widespread popularity.

UNIX systems are multitasking and multiuser systems, meaning that multiple concurrent
users running multiple concurrent programs can connect to and use the same machine.

What are UNIX systems used for? What can LINUX do?

UNIX systems are the backbone of the Internet. Heavy industry, mission-critical applications,
and universities have always used UNIX systems. High-end servers and multiuser mainframes
are traditionally UNIX based. Today, UNIX systems are used by large ISPs through to small
businesses as a matter of course. A UNIX system is the standard choice when a hardware ven-
dor comes out with a new computer platform because UNIX is most amenable to being ported.
UNIX systems are used as database, file, and Internet servers. UNIX is used for visualization and
graphics rendering (as for some Hollywood productions). Industry and universities use UNIX
systems for scientific simulations and UNIX clusters for number crunching. The embedded mar-
ket (small computers without operators that exist inside appliances) has recently turned toward
LINUX systems, which are being produced in the millions.

LINUX itself can operate as a web, file, SMB (WinNT), Novell, printer, FTP, mail, SQL,
masquerading, firewall, and POP server to name but a few. It can do anything that any other
network server can do, more efficiently and reliably.

LINUX’s up-and-coming graphical user interfaces (GUI) are the most functional and aes-
thetically pleasing ever to have graced the computer screen. LINUX has now moved into the
world of the desktop.

What other platforms does LINUX run on including the PC?

LINUX runs on

• 386/486/Pentium processors.

• DEC 64-bit Alpha processors.

• Motorola 680x0 processors, including Commodore Amiga, Atari-ST/TT/Falcon and HP
Apollo 68K.

• Sun Microsystems SPARC workstations, including sun4c, sun4m, sun4d, and sun4u ar-
chitectures. Multiprocessor machines are supported as is full 64-bit support on the Ultra-
SPARC.

• Advanced Risc Machine (ARM) processors.

• MIPS R3000/R4000 processors, including Silicon Graphics machines.

• PowerPC machines.

• Intel Architecture 64-bit processors.

552

D. LINUX Advocacy FAQ D.1. LINUX Overview

• IBM 390 mainframe.

• ETRAX-100 processor.

Other projects are in various stages of completion. For example, you may get LINUX up
and running on many other hardware platforms, but it would take some time and expertise to
install, and you might not have graphics capabilities. Every month or so support is announced
for some new esoteric hardware platform. Watch the Linux Weekly News http://lwn.net/ to catch
these.

What is meant by GNU/LINUX as opposed to LINUX?

(See also “What is GNU?” and “What is LINUX?”.)

In 1984 the Free Software Foundation (FSF) set out to create a free UNIX-like system. It
is only because of their efforts that the many critical packages that go into a UNIX distribution
are available. It is also because of them that a freely available, comprehensive, legally definitive,
free-software license is available. Because many of the critical components of a typical LINUX
distribution are really just GNU tools developed long before LINUX, it is unfair to merely call
a distribution “LINUX”. The term GNU/LINUX is more accurate and gives credit to the larger
part of LINUX.

What web pages should I look at?

Hundreds of web pages are devoted to LINUX. Thousands of web pages are devoted to different
free software packages. A net search will reveal the enormous amount of information available.

• Three places for general LINUX information are:

– Alan Cox’s Linux web page http://www.linux.org.uk/

– Linux Online http://www.linux.org/

– Linux International http://www.li.org/

• For kernel information, see

– Linux Headquarters http://www.linuxhq.com/

• A very important site is

– FSF Home Pages http://www.gnu.org/

which is the home page of the Free Software Foundation and explains their purpose and
the philosophy of software that can be freely modified and redistributed.

• Some large indexes of reviewed free and proprietary LINUX software are:

– Fresh Meat http://freshmeat.net/

– Source Forge http://www.sourceforge.net/

– Tu Cows http://linux.tucows.com/

553

D.1. LINUX Overview D. LINUX Advocacy FAQ

– Scientific Applications for Linux (SAL) http://SAL.KachinaTech.COM/index.shtml

• Announcements for new software are mostly made on

– Fresh Meat http://freshmeat.net/

• The Linux Weekly News brings up-to-date info covering a wide range of LINUX issues:

– Linux Weekly News http://lwn.net/

• Three major LINUX desktop projects are:

– Gnome Desktop http://www.gnome.org/

– KDE Desktop http://www.kde.org/

– GNUstep http://gnustep.org/

But don’t stop there—there are hundreds more.

What are Debian, RedHat, Caldera, SuSE? Explain the different
LINUX distributions.

All applications, network server programs, and utilities that go into a full LINUX machine are
free software programs recompiled to run under the LINUX kernel. Most can (and do) actually
work on any other of the UNIX systems mentioned above.

Hence, many efforts have been made to package all of the utilities needed for a UNIX
system into a single collection, usually on a single easily installable CD.

Each of these efforts combines hundreds of packages (e.g., the Apache web server is one
package, the Netscape web browser is another) into a LINUX distribution.

Some of the popular LINUX distributions are:

• Caldera OpenLinux http://www.calderasystems.com/

• Debian GNU/LINUX http://www.debian.org/

• Mandrake http://www.linux-mandrake.com/

• RedHat http://www.redhat.com/

• Slackware http://www.slackware.com/

• SuSE http://www.suse.com/

• TurboLinux http://www.turbolinux.com/

There are now about 200 distributions of LINUX. Some of these are single floppy routers
or rescue disks, and others are modifications of popular existing distributions. Still others have
a specialized purpose, like real time work or high security.

554

D. LINUX Advocacy FAQ D.1. LINUX Overview

Who developed LINUX?

LINUX was largely developed by the Free Software Foundation http://www.gnu.org/.

The Orbiten Free Software Survey http://www.orbiten.org/ came up with the following break-
down of contributors after surveying a wide array of open source packages. The following lists
the top 20 contributors by amount of code written:

Serial Author Bytes Percentage Projects
1 Free Software Foundation, Inc. 125565525 (11.246%) 546
2 Sun Microsystems, Inc. 20663713 (1.85%) 66
3 The Regents of the University of California 15192791 (1.36%) 156
4 Gordon Matzigkeit 13599203 (1.218%) 267
5 Paul Houle 11647591 (1.043%) 1
6 Thomas G. Lane 8746848 (0.783%) 17
7 The Massachusetts Institute of Technology 8513597 (0.762%) 38
8 Ulrich Drepper 6253344 (0.56%) 142
9 Lyle Johnson 5906249 (0.528%) 1
10 Peter Miller 5871392 (0.525%) 3
11 Eric Young 5607745 (0.502%) 48
12 login-belabas 5429114 (0.486%) 2
13 Lucent Technologies, Inc. 4991582 (0.447%) 5
14 Linus Torvalds 4898977 (0.438%) 10
15 (uncredited-gdb) 4806436 (0.43%) 1
16 Aladdin Enterprises 4580332 (0.41%) 27
17 Tim Hudson 4454381 (0.398%) 26
18 Carnegie Mellon University 4272613 (0.382%) 23
19 James E. Wilson, Robert A. Koeneke 4272412 (0.382%) 2
20 ID Software, Inc. 4038969 (0.361%) 1

This listing contains the top 20 contributors by number of projects contributed to:

Serial Author Bytes Percentage Projects
1 Free Software Foundation, Inc. 125565525 (11.246%) 546
2 Gordon Matzigkeit 13599203 (1.218%) 267
3 The Regents of the University of California 15192791 (1.36%) 156
4 Ulrich Drepper 6253344 (0.56%) 142
5 Roland Mcgrath 2644911 (0.236%) 99
6 Sun Microsystems, Inc. 20663713 (1.85%) 66
7 RSA Data Security, Inc. 898817 (0.08%) 59
8 Martijn Pieterse 452661 (0.04%) 50
9 Eric Young 5607745 (0.502%) 48
10 login-vern 3499616 (0.313%) 47
11 jot@cray 691862 (0.061%) 47
12 Alfredo K. Kojima 280990 (0.025%) 40
13 The Massachusetts Institute of Technology 8513597 (0.762%) 38
14 Digital Equipment Corporation 2182333 (0.195%) 37

555

D.2. LINUX, GNU, and Licensing D. LINUX Advocacy FAQ

15 David J. Mackenzie 337388 (0.03%) 37
16 Rich Salz 365595 (0.032%) 35
17 Jean-Loup Gailly 2256335 (0.202%) 31
18 eggert@twinsun 387923 (0.034%) 30
19 Josh Macdonald 1994755 (0.178%) 28
20 Peter Mattis, Spencer Kimball 1981094 (0.177%) 28

The preceding tables are rough approximations. They do, however, give an idea of the
spread of contributions.

Why should I not use LINUX?

If you are a private individual with no UNIX expertise available to help you when you run
into problems and you are not interested in learning about the underlying workings of a UNIX
system, then you shouldn’t install LINUX.

D.2 LINUX, GNU, and Licensing

This section answers questions about the nature of free software and the concepts of GNU.

What is LINUX’s license?

The LINUX kernel is distributed under the GNU General Public License (GPL) which is repro-
duced in Appendix E and is available from the FSF Home Page http://www.gnu.org/.

Most of all other software in a typical LINUX distribution is also under the GPL or the
LGPL (see below).

There are many other types of free software licenses. Each of these is based on particular
commercial or moral outlooks. Their acronyms are as follows (as defined by the LINUX Software
Map database) in no particular order:

PD: Placed in public domain.
Shareware: Copyrighted, no restrictions, contributions solicited.
MIT: MIT X Consortium license (like that of BSDs but with no advertising requirement).
BSD: Berkeley Regents copyright (used on BSD code).
Artistic License: Same terms as Perl Artistic License.
FRS: Copyrighted, freely redistributable, might have some restrictions on redistribution of

modified sources.
GPL: GNU General Public License.
GPL+LGPL: GNU GPL and Library GPL.
restricted: Less free than any of the above.

More information on these licenses can be had from the Metalab license List ftp://metalab.unc.-
edu/pub/Linux/LICENSES

556

D. LINUX Advocacy FAQ D.2. LINUX, GNU, and Licensing

What is GNU?

GNU (pronounced with a hard G) is an acronym for GNUs Not UNIX. A gnu is a large beast and
is the motif of the Free Software Foundation (FSF). GNU is a recursive acronym.

Richard Stallman is the founder of the FSF and the creator of the GNU General Public Li-
cense. One of the purposes of the FSF is to promote and develop free alternatives to proprietary
software. The GNU project is an effort to create a free UNIX-like operating system from scratch;
the project was started in 1984.

GNU represents this software licensed under the GNU General Public License—it is called
Free software. GNU software is software designed to meet a higher set of standards than its
proprietary counterparts.

GNU has also become a movement in the computing world. When the word GNU is
mentioned, it usually evokes feelings of extreme left-wing geniuses who in their spare time
produce free software that is far superior to anything even large corporations can come up with
through years of dedicated development. It also means distributed and open development,
encouraging peer review, consistency, and portability. GNU means doing things once in the best
way possible, providing solutions instead of quick fixes and looking exhaustively at possibilities
instead of going for the most brightly colored or expedient approach.

GNU also means a healthy disrespect for the concept of a deadline and a release schedule.

Why is GNU software better than proprietary software?

Proprietary software is often looked down upon in the free software world for many reasons:

• The development process is closed to external scrutiny.

• Users are unable to add features to the software.

• Users are unable to correct errors (bugs) in the software.

• Users are not allowed to share the software.

The result of these limitations is that proprietary software

• Does not conform to good standards for information technology.

• Is incompatible with other proprietary software.

• Is buggy.

• Cannot be fixed.

• Costs far more than it is worth.

• Can do anything behind your back without your knowing.

• Is insecure.

• Tries to be better than other proprietary software without meeting real technical and prac-
tical needs.

• Wastes a lot of time duplicating the effort of other proprietary software.

557

D.2. LINUX, GNU, and Licensing D. LINUX Advocacy FAQ

• Fails to build on existing software because of licensing issues.

GNU software, on the other hand, is open for anyone to scrutinize. Users can (and do)
freely fix and enhance software for their own needs, and then allow others the benefit of their
extensions. Many developers of different areas of expertise collaborate to find the best way of do-
ing things. Open industry and academic standards are adhered to, to make software consistent
and compatible. Collaborated effort between different developers means that code is shared and
effort is not replicated. Users have close and direct contact with developers, ensuring that bugs
are fixed quickly and that user needs are met. Because source code can be viewed by anyone,
developers write code more carefully and are more inspired and more meticulous.

Possibly the most important reason for the superiority of Free software is peer review.
Sometimes this means that development takes longer as more people quibble over the best way
of doing things. However, most of the time peer review results in a more reliable product.

Another partial reason for this superiority is that GNU software is often written by people
from academic institutions who are in the center of IT research and are most qualified to dictate
software solutions. In other cases, authors write software for their own use out of their own
dissatisfaction for existing proprietary software—a powerful motivation.

Explain the restrictions of LINUX’s “free”GNU
General Public License.

The following is quoted from the GPL itself.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must make sure
that they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

If LINUX is free, where do companies have the right to make money
from selling CDs?

See “Where do I get LINUX?” on page 562.

558

D. LINUX Advocacy FAQ D.2. LINUX, GNU, and Licensing

What if Linus Torvalds decided to change the copyright on the kernel?
Could he sell out to a company?

This situation is not possible. Because of the legal terms of the GPL, for LINUX to be distributed
under a different copyright would require the consent of all 200+ persons that have ever con-
tributed to the LINUX source code. These people come from such a variety of places, that such a
task is logistically infeasible. Even if it did happen, new developers would probably rally in de-
fiance and continue to work on the kernel as it is. This free kernel would amass more followers
and would quickly become the standard, with or without Linus.

What if Linus Torvalds stopped supporting LINUX? What if kernel
development split?

There are many kernel developers who have sufficient knowledge to do the job of Linus. Most
probably, a team of core developers would take over the task if Linus no longer worked on the
kernel. LINUX might even split into different development teams if a disagreement did break out
about some programming issue, and it might rejoin later on. This is a process that many GNU
software packages are continually going through, to no ill effect. It doesn’t really matter much
from the end user’s perspective, since GNU software by its nature always tends to gravitate
towards consistency and improvement, one way or another. It is also doesn’t matter to the end
user because the end user has selected a popular LINUX distribution packaged by someone who
has already dealt with these issues.

What is Open Source vs. Free vs. Shareware?

Open Source is a new catch phrase that is ambiguous in meaning but is often used synony-
mously with Free. It sometimes refers to any proprietary vendor releasing source code to their
package, even though that source code is not free in the sense of users being able to modify it
and redistribute it. Sometimes it means “public domain” software that anyone can modify but
which can be incorporated into commercial packages where later versions will be unavailable in
source form.

Open Source advocates vie for the superiority of the Open Source development model.

GNU supporters don’t like to use the term Open Source. Free software, in the sense of
freedom to modify and redistribute is the preferred term and necessitates a copyright license
along the same vein as the GPL. Unfortunately, it’s not a marketable term because it requires
this very explanation, which tends to bore people who don’t really care about licensing issues.

Free software advocates vie for the ethical responsibility of making source code available
and encouraging others to do the same.

Shareware refers to completely nonfree software that is encouraged to be redistributed at
no charge, but which requests a small fee if it happens to land on your computer. It is not Free
software at all.

559

D.3. LINUX Distributions D. LINUX Advocacy FAQ

D.3 LINUX Distributions

This section covers questions that about how LINUX software is packaged and distributed and
how to obtain LINUX.

If everyone is constantly modifying the source, isn’t this bad for the
consumer? How is the user protected from bogus software?

You as the user are not going to download arbitrary untested software any more than you would
if you were using Windows.

When you get LINUX, it will be inside a standard distribution, probably on a CD. Each of
these packages is selected by the distribution vendors to be a genuine and stable release of that
package. This is the responsibility taken on by those who create LINUX distributions.

Note that no corporate body oversees LINUX. Everyone is on their own mission. But a
package will not find its way into a distribution unless someone feels that it is a useful one. For
people to feel it is useful means that they have to have used it over a period of time; in this way
only good, thoroughly reviewed software gets included.

Maintainers of packages ensure that official releases are downloadable from their home
pages and will upload original versions onto well-established FTP servers.

It is not the case that any person is free to modify original distributions of packages and
thereby hurt the names of the maintainers of that package.

For those who are paranoid that the software they have downloaded is not the genuine
article distributed by the maintainer of that software, digital signatures can verify the packager
of that software. Cases where vandals have managed to substitute a bogus package for a real
one are extremely rare and entirely preventable.

There are so many different LINUX versions — is this not confusion
and incompatibility?

(See also next question.)

The LINUX kernel is now on release version 2.4.3 as of this writing. The only other stable
release of the kernel was the previous 2.2 series which was the standard for more than a year.

The LINUX kernel version does not affect the LINUX user. LINUX programs will work
regardless of the kernel version. Kernel versions speak of features, not compatibility.

Each LINUX distribution has its own versioning system. RedHat has just released version
7.0 of its distribution, Caldera, 2.2, Debian, 2.1, and so forth. Each new incarnation of a distri-
bution will have newer versions of packages contained therein and better installation software.
There may also have been subtle changes in the file system layout.

The LINUX UNIX library implementation is called glibc. When RedHat brought out
version 5.0 of its distribution, it changed to glibc from the older libc5 library. Because all

560

D. LINUX Advocacy FAQ D.3. LINUX Distributions

packages require this library, this was said to introduce incompatibility. It is true, however, that
multiple versions of libraries can coexist on the same system, and hence no serious compatibil-
ity problem was ever introduced in this transition. Other vendors have since followed suit in
making the transition to glibc (also known as libc6).

The LINUX community has also produced a document called the LINUX Filesystem Stan-
dard. Most vendors try to comply with this standard, and hence LINUX systems will look very
similar from one distribution to another.

There are hence no prohibitive compatibility problems between LINUX distributions.

Will a program from one LINUX Distribution run on another?
How compatible are the different distributions?

The different distributions are very similar and share binary compatibility (provided that they
are for the same type of processor of course)—that is, LINUX binaries compiled on one system
will work on another. This is in contrast to the differences between, say, two UNIX operating sys-
tems (compare Sun vs. IRIX). Utilities also exist to convert packages meant for one distribution
to be installed on a different distribution. Some distributions are, however, created for specific
hardware, and thus their packages will only run on that hardware. However, all software specif-
ically written for LINUX will recompile without any modifications on another LINUX platform
in addition to compiling with few modifications on other UNIX systems.

The rule is basically this: If you have three packages that you would need to get working
on a different distribution, then it is trivial to make the adjustments to do this. If you have a
hundred packages that you need to get working, then you have a problem.

What is the best distribution to use?

If you are an absolute beginner and don’t really feel like thinking about what distribution to get,
one of the most popular and easiest to install is Mandrake. RedHat is also supported quite well
in industry.

The attributes of some distributions are:

Mandrake: Mandrake is RedHat with some packages added and updated. It has recently be-
come the most popular and may be worth using in preference to RedHat.

Debian: This is probably the most technically advanced. It is completely free and very well
structured as well as standards conformant. It is slightly less elegant to install. Debian
package management is vastly superior to any other. The distribution has legendary tech-
nical excellence and stability.

RedHat: This is possibly the most popular.

Slackware: This was the first LINUX distribution and is supposed to be the most current (soft-
ware is always the latest). It’s a pain to install and manage, although school kids who
don’t know any better love it.

561

D.3. LINUX Distributions D. LINUX Advocacy FAQ

What’s nice about RPM based distributions (RedHat, Mandrake, and others) is that almost
all developers provide RedHat .rpm files (the file that a RedHat package comes in). Debian
.deb package files are usually provided, but not as often as .rpm. On the other hand, Debian
packages are mostly created by people on the Debian development team, who have rigorous
standards to adhere to.

TurboLinux, SuSE, and some others are also very popular. You can find reviews on the
Internet.

Many other popular distributions are worth installation. Especially worthwhile are distri-
butions developed in your own country that specialize in the support of your local language.

Where do I get LINUX?

Once you have decided on a distribution (see previous question), you need to download that
distribution or buy or borrow it on CD. Commercial distributions may contain proprietary soft-
ware that you may not be allowed to install multiple times. However, Mandrake, RedHat, De-
bian, and Slackware are all committed to freedom and hence will not have any software that is
not redistributable. Hence, if you get one of these on CD, feel free to install it as many times as
you like.

Note that the GPL does not say that GNU software is without cost. You are allowed to
charge for the service of distributing, installing, and maintaining software. It is the nonprohibi-
tion to redistribute and modify GNU software that is meant by the word free.

An international mirror for LINUX distributions is Metalab distributions mirror
ftp://metalab.unc.edu/pub/Linux/distributions/. Also consult the resources in Chapter 13, “What
web pages should I look at?” on page 553, and the Web sites entry in the index.

Downloading from an FTP site is going to take a long time unless you have a really fast
link. Hence, rather ask around who locally sells LINUX on CD. Also make sure you have the
latest version of whatever it is you’re buying or downloading. Under no circumstance install
from a distribution that has been superseded by a newer version.

How do I install LINUX?

It helps to think more laterally when trying to get information about LINUX:

Would-be LINUX users everywhere need to know how to install LINUX. Surely
the Free software community has long since generated documentation to help
them? Where is that documentation?

Most distributions have very comprehensive installation guides, which is the reason I do
not cover installation in this book. Browse around your CD to find it or consult your vendor’s
web site.

Also try see what happens when you do a net search with “linux installation guide.” You
need to read through the install guide in detail. It will explain everything you need to know
about setting up partitions, dual boots, and other installation goodies.

The installation procedure will be completely different for each distribution.

562

D. LINUX Advocacy FAQ D.4. LINUX Support

D.4 LINUX Support

This section explains where to get free and commercial help with LINUX.

Where does a person get LINUX support? My purchased software is
supported; how does LINUX compete?

LINUX is supported by the community that uses LINUX. With commercial systems, users are too
stingy to share their knowledge because they feel that they owe nothing for having spent money
on software.

LINUX users, on the other hand, are very supportive of other LINUX users. People can get
far better support from the Internet community than they would from their commercial software
vendors. Most packages have email lists where the very developers are available for questions.
Most cities have mailing lists where responses to email questions are answered within hours.
New LINUX users discover that help abounds and that they never lack friendly discussions about
any computing problem they may have. Remember that LINUX is your operating system.

Newsgroups provide assistance where LINUX issues are discussed and help is given to
new users; there are many such newsgroups. Using a newsgroup has the benefit of the widest
possible audience.

The web is also an excellent place for support. Because users constantly interact and dis-
cuss LINUX issues, 99% of the problems a user is likely to have would have already been docu-
mented or covered in mailing list archives, often obviating the need to ask anyone at all.

Finally, many professional companies provide assistance at comparable hourly rates.

D.5 LINUX Compared to Other Systems

This section discusses the relative merits of different UNIX systems and NT.

What is the most popular UNIX in the world?

LINUX has several times the installed base of any UNIX system.

How many LINUX systems are there out there?

This is an answer nobody really knows. Various estimates have been put forward based on
statistical considerations. As of early 2001 the figure was about 10–20 million. As LINUX be-
gins to dominate the embedded market, that number will soon surpass the number of all other
operating systems combined.

563

D.5. LINUX Compared to Other Systems D. LINUX Advocacy FAQ

What is clear is that the number of LINUX users is doubling consistently every year. This is
evident from user interest and industry involvement in LINUX; journal subscriptions, web hits,
media attention, support requirements, software ports, and other criteria.

Because it is easy to survey online machines, it is well-established that over 25% of all web
servers run LINUX.

What is the total cost of installing and running LINUX compared to a
proprietary non-UNIX system?

Although LINUX is free, a good knowledge of UNIX is required to install and configure a reliable
server. This tends to cost you in time or support charges.

On the other hand, your Windows or OS/2 server, for example, has to be licensed.

Many arguments put forward regarding server costs fail to take into account the complete
lifetime of the server. This has resulted in contrasting reports that either claim that LINUX costs
nothing or claim that it is impossible to use because of the expense of the expertise required.
Neither of these extreme views is true.

The total cost of a server includes the following:

• Cost of the OS license.

• Cost of dedicated software that provides functions not inherently supported by the oper-
ating system.

• Cost of hardware.

• Availability of used hardware and the OS’s capacity to support it.

• Cost of installation.

• Cost of support.

• Implicit costs of server downtime because of software bugs.

• Implicit costs of server downtime because of security breaches.

• Cost of maintenance.

• Cost of repair.

• Cost of essential upgrades.

• Negative cost of multiple servers: LINUX can run many services (mail, file, Web) from the
same server rather than requiring dedicated servers, and this can be a tremendous saving.

When all these factors are considered, any company should probably make a truly enor-
mous saving by choosing a LINUX server over a commercial operating system.

564

D. LINUX Advocacy FAQ D.5. LINUX Compared to Other Systems

What is the total cost of installing and running a LINUX system com-
pared to a proprietary UNIX system?

(See previous question.)

Proprietary UNIX systems are not as user friendly as LINUX. LINUX is also considered
far easier to maintain than any commercial UNIX system because of its widespread use and
hence easy access to LINUX expertise. LINUX has a far more dedicated and “beginner friendly”
documentation project than any commercial UNIX, and many more user-friendly interfaces and
commands.

The upshot of this is that although your proprietary UNIX system will perform as reliably
as LINUX, it will be more time consuming to maintain.

UNIX systems that run on specialized hardware are almost never worth what you paid for
them in terms of a cost/performance ratio. That is doubly if you are also paying for an operating
system.

How does LINUX compare to other operating systems in performance?

LINUX typically performs 50% to 100% better than other operating systems on the same hard-
ware. There are no commercial exceptions to this rule for a basic PC.

There have been a great many misguided attempts to show that LINUX performs better
or worse than other platforms. I have never read a completely conclusive study. Usually these
studies are done with one or other competing system having better expertise at its disposal and
are, hence, grossly biased. In some supposedly independent tests, LINUX tended to outperform
NT as a web server, file server, and database server by an appreciable margin.

In general, the performance improvement of a LINUX machine is quite visible to users
and administrators. It is especially noticeable how fast the file system access is and how it scales
smoothly when multiple services are being used simultaneously. LINUX also performs well
when loaded by many services simultaneously.

There is also criticism of LINUX’s SMP (multiprocessor) support, and lack of a journalling
file system. These two issues are discussed in the next question.

In our experience (from both discussions and development), LINUX’s critical operations
are always pedantically optimized—far more than would normally be encouraged in a commer-
cial organization. Hence, if your hardware is not performing the absolute best it can, it’s by a
very small margin.

It’s also probably not worthwhile debating these kinds of speed issues when there are so
many other good reasons to prefer LINUX.

What about SMP and a journalling file system? Is LINUX enterprise-
ready?

LINUX is supposed to lack proper SMP support and therefore not be as scalable as other OSs.
This is somewhat true and has been the case until kernel 2.4 was released in January 2001.

565

D.5. LINUX Compared to Other Systems D. LINUX Advocacy FAQ

LINUX has a proper journalling file system called ReiserFS. This means that in the event
of a power failure, there is very little chance that the file system would ever be corrupted, or that
manual intervention would be required to fix the file system.

Does LINUX only support 2 Gigs of memory and 128 Meg of swap?

LINUX supports a full 64 gigabytes of memory, with 1 gigabyte of unshared memory per process.

If you really need this much memory, you should be using a 64-bit system, like a DEC
Alpha, or Sun UltraSPARC machine.

On 64-bit systems, LINUX supports more memory than most first-world governments can
afford to buy.

LINUX supports as much swap space as you like. For technical reasons, however, the swap
space formerly required division into separate partitions of 128 megabytes each.

Isn’t UNIX antiquated? Isn’t its security model outdated?

The principles underlying OS development have not changed since the concept of an OS was
invented some 40+ years ago. It is really academia that develops the theoretical models for
computer science—industry only implements these.

There are a great many theoretical paradigms of operating system that vary in complexity
and practicality. Of the popular server operating systems, UNIX certainly has the most versatile,
flexible, and applicable security model and file system structure.

How does FreeBSD compare to LINUX?

FreeBSD is like a LINUX distribution in that it also relies on a large number of GNU packages.
Most of the packages available in LINUX distributions are also available for FreeBSD.

FreeBSD is not merely a kernel but also a distribution, a development model, an operat-
ing system standard, and a community infrastructure. FreeBSD should rather be compared to
Debian than LINUX.

The arguments comparing the FreeBSD kernel to the LINUX kernel center around the dif-
ferences between how various kernel functions are implemented. Depending on the area you
look at, either LINUX or FreeBSD will have a better implementation. On the whole, FreeBSD is
thought to have a better architecture, although LINUX has had the benefit of having been ported
to many platforms, has a great many more features, and supports far more hardware. It is ques-
tionable whether the performance penalties we are talking about are of real concern in most
practical situations.

Another important consideration is that the FreeBSD maintainers go to far more effort
securing FreeBSD than does any LINUX vendor. This makes FreeBSD a more trustworthy alter-
native.

566

D. LINUX Advocacy FAQ D.6. Migrating to LINUX

GPL advocates take issue with FreeBSD because its licensing allows a commercial organi-
zation to use FreeBSD without disclosing additions to the source code.

None of these arguments offset the fact that either of these systems is preferable to a pro-
prietary one.

D.6 Migrating to LINUX

What are the principal issues when migrating to LINUX from a non-
UNIX system?

Most companies tend to underestimate how entrenched they are in Windows skills. An office
tends to operate organically with individuals learning tricks from each other over long periods
of time. For many people, the concept of a computer is synonymous with the Save As and My
Documents buttons. LINUX departs completely from every habit they might have learned about
their computer. The average secretary will take many frustrating weeks gaining confidence with
a different platform, while the system administrator will battle for much longer.

Whereas Windows does not offer a wide range of options with regards to desktops and
office suites, the look-and-feel of a LINUX machine can be as different between the desktops of
two users as is Windows 98 different from an Apple Macintosh. Companies will have to make
careful decisions about standardizing what people use, and creating customizations peculiar to
their needs.

Note that Word and Excel documents can be read by various LINUX office applications but
complex formatting will not convert cleanly. For instance, document font sizes, page breaking, and
spacing will not be preserved exactly.

LINUX can interoperate seamlessly with Windows shared file systems, so this is one area
where you will have few migration problems.

GUI applications written specifically for Windows are difficult to port to a UNIX system.
The Wine project now allows pure Windows applications to be recompiled under UNIX, and
Borland has developed Kylix (a LINUX version of Delphi). There are more examples of LINUX
versions of Windows languages, however, any application that interfaces with many proprietary
tools and is written in a proprietary language is extremely difficult to port. The developer who
does the porting will need to be an expert in UNIX development and an expert in Windows
development. Such people are rare and expensive to hire.

What are the principal issues when migrating to LINUX from another
UNIX system?

The following is based on my personal experience during the migration of three large companies
to LINUX.

Commercial UNIX third party software that has been ported to LINUX will pose very little
problem at all. You can generally rely on performance improvements and reduced costs. You
should have no hesitation to install these on LINUX.

567

D.6. Migrating to LINUX D. LINUX Advocacy FAQ

Managers will typically request that “LINUX” skills be taught to their employees through
a training course. What is often missed, is that their staff have little basic UNIX experience to
begin with. For instance, it is entirely feasible to run Apache (a web server package) on a SCO,
IRIX, or Sun systems, yet managers will request, for example, that their staff be taught how to
configure a LINUX “web server” in order to avoid web server licensing fees.

It is important to gauge whether your staff have a real understanding of the TCP/IP net-
works and UNIX systems that you are depending on, rather then merely using a trial-and-error
approach to configuring your machines. Fundamentally, LINUX is just a UNIX system, and a
very user-friendly one at that, so any difficulties with LINUX ought not to be greater than those
with your proprietary UNIX system.

Should their basic UNIX knowledge be incomplete, a book like this one will provide a
good reference.

Many companies also develop in-house applications specific to their corporation’s ser-
vices. Being an in-house application, the primary concern of the developers was to “get it work-
ing”, and that might have been accomplished only by a very small margin. Suddenly running
the code on a different platform will unleash havoc, especially if it was badly written. In this
case, it will be essential to hire an experienced developer who is familiar with the GNU compiler
tools.

Well written UNIX applications (even GUI applications) will, however, port very easily to
LINUX and of course to other UNIX systems.

How should a supervisor proceed after making the decision to migrate
to LINUX?

Before installing any LINUX machines, you should identify what each person in your organiza-
tion does with their computer. This undertaking is difficult but very instructive. If you have
any custom applications, you need to identify what they do and create a detailed specification
of their capabilities.

The next step is to encourage practices that lean toward interoperability. You may not be
able to migrate to LINUX immediately, but you can save yourself enormous effort by taking steps
in anticipation of that possibility. For instance, make a policy that all documents must be saved
in a portable format that is not bound to a particular wordprocessor package.

Wean people off tools and network services that do not have UNIX equivalents. SMTP
and POP/IMAP servers are an Internet standard and can be replaced with LINUX servers. SMB
file servers can be replaced by LINUX Samba servers. There are web mail and web groupware
services that run on LINUX servers that can be used from Internet Explorer. There are some
word processors that have both UNIX and Windows versions whose operation is identical on
both OSs.

Force your developers to test their Web pages on Netscape/Mozilla as well as Internet
Explorer. Do not develop using tools that are tied very closely to the operating system and
are therefore unlikely to ever have UNIX versions; there are Free cross platform development
tools that are more effective than popular commercial IDEs: Use these languages instead. If you
are developing using a compiler language, your developers should ensure that code compiles

568

D. LINUX Advocacy FAQ D.7. Technical

cleanly with independent brands of compiler. This will not only improve code quality but will
make the code more portable.

Be aware that people will make any excuse to avoid having to learn something new. Make
the necessary books available to them. Identify common problems and create procedures for
solving them. Learn about the capabilities of LINUX by watching Internet publications: A man-
ager who is not prepared to do this much should not expect their staff to do better.

D.7 Technical

This section covers various specific and technical questions.

Are LINUX CDs readable from Windows?

Yes. You can browse the installation documentation on the CD (if it has any) using Internet Ex-
plorer. LINUX software tends to prefer Windows floppy disk formats, and ISO9660 CD formats,
even though almost everything else uses a different format.

Can I run LINUX and Windows on the same machine?

Yes, LINUX will occupy two or more partitions, while Windows will sit in one of the primary
partitions. At boot time, a boot prompt will ask you to select which operating system you would
like to boot into.

How much space do I need to install LINUX?

A useful distribution of packages that includes the Window System (UNIX’s graphical envi-
ronment) will occupy less than 1 gigabyte. A network server that does not have to run X can get
away with about 100-300 megabytes. LINUX can run on as little as a single stiffy disk—that’s 1.4
megabytes—and still perform various network services.

What are the hardware requirements?

LINUX runs on many different hardware platforms, as explained above. Typical users should
purchase an entry-level PC with at least 16 megabytes of RAM if they are going to run the X
Window System (UNIX’s graphical environment) smoothly.

A good LINUX machine is a PII 300 (or AMD, K6, Cyrix, etc.) with 64 megabytes of RAM
and a 2-megabyte graphics card (i.e., capable of run 1024x768 screen resolution in 15/16 bit
color). One gigabyte of free disk space is necessary.

If you are using scrap hardware, an adequate machine for the Window System should
not have less than an Intel 486 100 MHz processor and 8 megabytes of RAM. Network servers

569

D.7. Technical D. LINUX Advocacy FAQ

can run on a 386 with 4 megabytes of RAM and a 200-megabyte hard drive. Note that scrap
hardware can be very time consuming to configure.

Note that recently some distributions are coming out with Pentium-only compilations.
This means that your old 386 will no longer work. You will then have to compile your own
kernel for the processor you are using and possibly recompile packages.

What hardware is supported? Will my sound/graphics/network card
work?

About 90% of all hardware available for the PC is supported under LINUX. In general, well-
established brand names will always work, but will tend to cost more. New graphics/network
cards are always being released onto the market. If you buy one of these, you might have to wait
many months before support becomes available (if ever).

To check on hardware support, see the Hardware-HOWTO http://users.bart.nl/˜patrickr/-
hardware-howto/Hardware-HOWTO.html

This may not be up-to-date, so it’s best to go to the various references listed in this docu-
ment and get the latest information.

Can I view my Windows, OS/2, and MS-DOS files under LINUX?

LINUX has read and write support for all these file systems. Hence, your other partitions will be
readable from LINUX. In addition, LINUX supports a wide range of other file systems like those
of OS/2, Amiga, and other UNIX systems.

Can I run DOS programs under LINUX?

LINUX contains a highly advanced DOS emulator. It will run almost any 16-bit or 32-bit DOS
application. It runs a great number of 32-bit DOS games as well.

The DOS emulator package for LINUX is called dosemu. It typically runs applications
much faster than does normal DOS because of LINUX’s faster file system access and system
calls.

It can run in an window just like a DOS window under Windows.

Can I recompile Windows programs under LINUX?

Yes. WineLib is a part of the Wine package (see below) and allows Windows applications to
be recompiled to work under LINUX. Apparently this works extremely well, with virtually no
changes to the source code being necessary.

570

D. LINUX Advocacy FAQ D.7. Technical

Can I run Windows programs under LINUX?

Yes and no.

There are commercial emulators that will run a virtual 386 machine under LINUX. This
enables mostly flawless running of Windows under LINUX if you really have to and at a large
performance penalty. You still have to buy Windows though. There are also some Free versions
of these.

There is also a project called Wine (WINdows Emulator) which aims to provide a free
alternative to Windows by allowing LINUX to run Windows 16 or 32 bit binaries with little to no
performance penalty. It has been in development for many years now, and has reached the point
where many simple programs work quite flawlessly under LINUX.

Get a grip on what this means: you can run Minesweep under LINUX and it will come up
on your Window screen next to your other LINUX applications and look exactly like what it
does under Windows—and you don’t have to buy Windows. You will be able to cut and paste
between Windows and LINUX application.

However, many applications (especially large and complex ones) do not display correctly
under LINUX or crash during operation. This has been steadily improving to the point where
Microsoft Office 2000 is said to be actually usable.

Many Windows games do, however, work quite well under LINUX, including those with
accelerated 3D graphics.

See the Wine Headquarters http://www.winehq.com/faq.html for more information.

I have heard that LINUX does not suffer from virus attacks. Is it true
that there is no threat of viruses with UNIX systems?

A virus is a program that replicates itself by modifying the system on which it runs. It may
do other damage. Viruses are small programs that exploit social engineering, logistics, and the
inherent flexibility of a computer system to do undesirable things.

Because a UNIX system does not allow this kind of flexibility in the first place, there is
categorically no such thing as a virus for it. For example, UNIX inherently restricts access to files
outside the user’s privilege space, so a virus would have nothing to infect.

However, although LINUX cannot itself execute a virus, it may be able to pass on a virus
meant for a Windows machine should a LINUX machine act as a mail or file server. To avoid this
problem, numerous virus detection programs for LINUX are now becoming available. It’s what
is meant by virus-software-for-LINUX.

On the other hand, conditions sometimes allow an intelligent hacker to target a machine
and eventually gain access. The hacker may also mechanically try to attack a large number
of machines by using custom programs. The hacker may go one step further to cause those
machines that are compromised to begin executing those same programs. At some point, this
crosses the definition of what is called a ”worm.” A worm is a thwarting of security that exploits
the same security hole recursively through a network. See the question on security below.

571

D.7. Technical D. LINUX Advocacy FAQ

At some point in the future, a large number of users may be using the same proprietary
desktop application that has some security vulnerability in it. If this were to support a virus, it
would only be able to damage the user’s restricted space, but then it would be the application
that is insecure, not LINUX per se.

Remember also that with LINUX, a sufficient understanding of the system makes it pos-
sible to easily detect and repair the corruption, without have to do anything drastic, like rein-
stalling or buying expensive virus detection software.

Is LINUX as secure as other servers?

LINUX is as secure as or more secure than typical UNIX systems.

Various issues make it more and less secure.

Because GNU software is open source, any hacker can easily research the internal work-
ings of critical system services.

On one hand, they may find a flaw in these internals that can be indirectly exploited to
compromise the security of a server. In this way, LINUX is less secure because security holes can
be discovered by arbitrary individuals.

On the other hand, individuals may find a flaw in these internals that they can report
to the authors of that package, who will quickly (sometimes within hours) correct the insecurity
and release a new version on the Internet. This makes LINUX more secure because security holes
are discovered and reported by a wide network of programers.

It is therefore questionable whether free software is more secure or not. I personally prefer
to have access to the source code so that I know what my software is doing.

Another issue is that LINUX servers are often installed by lazy people who do not take
the time to follow the simplest of security guidelines, even though these guidelines are widely
available and easy to follow. Such systems are sitting ducks and are often attacked. (See the
previous question.)

A further issue is that when a security hole is discovered, system administrators fail to
heed the warnings announced to the LINUX community. By not upgrading that service, they
leave open a window to opportunistic hackers.

You can make a LINUX system completely airtight by following a few simple guidelines,
like being careful about what system services you expose, not allowing passwords to be com-
promised, and installing utilities that close possible vulnerabilities.

Because of the community nature of LINUX users, there is openness and honesty with
regard to security issues. It is not found, for instance, that security holes are covered up by
maintainers for commercial reasons. In this way, you can trust LINUX far more than commercial
institutions that think they have a lot to lose by disclosing flaws in their software.

572

Appendix E

The GNU General Public License
Version 2

Most of the important components of a Free UNIX system (like LINUX) were devel-
oped by the Free Software Foundation http://www.gnu.org/ (FSF). Further, most of a typical
LINUX distribution comes under the FSF’s copyright, called the GNU General Public
License. It is therefore important to study this license in full to understand the ethos
of Free&Meaning the freedom to be modified and redistributed.- development, and the culture
under which LINUX continues to evolve.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change free software–to make sure the software is free for all
its users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other Free

573

E. The GNU General Public License Version 2

Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our Gen-
eral Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate to
certain responsibilities for you if you distribute copies of the software, or if you modify
it.

For example, if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify
the software.

Also, for each author’s protection and ours, we want to make certain that ev-
eryone understands that there is no warranty for this free software. If the software is
modified by someone else and passed on, we want its recipients to know that what
they have is not the original, so that any problems introduced by others will not reflect
on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish
to avoid the danger that redistributors of a free program will individually obtain patent
licenses, in effect making the program proprietary. To prevent this, we have made it
clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification fol-
low.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this Gen-
eral Public License. The ”Program”, below, refers to any such program or work,

574

E. The GNU General Public License Version 2

and a ”work based on the Program” means either the Program or any deriva-
tive work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into
another language. (Hereinafter, translation is included without limitation in the
term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is not
restricted, and the output from the Program is covered only if its contents consti-
tute a work based on the Program (independent of having been made by running
the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of war-
ranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus form-
ing a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a) You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or
in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License.

c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropri-
ate copyright notice and a notice that there is no warranty (or else, saying
that you provide a warranty) and that users may redistribute the program
under these conditions, and telling the user how to view a copy of this Li-
cense. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not re-
quired to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sec-
tions of that work are not derived from the Program, and can be reasonably con-
sidered independent and separate works in themselves, then this License, and

575

E. The GNU General Public License Version 2

its terms, do not apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms
of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above pro-
vided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncom-
mercial distribution and only if you received the program in object code or
executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface defi-
nition files, plus the scripts used to control compilation and installation of the ex-
ecutable. However, as a special exception, the source code distributed need not
include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating sys-
tem on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.

576

E. The GNU General Public License Version 2

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense
or distribute the Program is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its
derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all
its terms and conditions for copying, distributing or modifying the Program or
works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, dis-
tribute or modify the Program subject to these terms and conditions. You may not
impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions
of this License, they do not excuse you from the conditions of this License. If
you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly
or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has
the sole purpose of protecting the integrity of the free software distribution sys-
tem, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that
system in reliance on consistent application of that system; it is up to the au-
thor/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

577

E. The GNU General Public License Version 2

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution
limitation excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the Gen-
eral Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or con-
cerns.

Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and ”any later version”, you
have the option of following the terms and conditions either of that version or
of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version
ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the
Free Software Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all derivatives of
our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ”AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PRO-
GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMIT-
TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

578

E. The GNU General Public License Version 2

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use
to the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty; and
each file should have at least the ”copyright” line and a pointer to where the full notice
is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts
in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

579

E. The GNU General Public License Version 2

The hypothetical commands ‘show w’ and ‘show c’ should show the appropri-
ate parts of the General Public License. Of course, the commands you use may be
called something other than ‘show w’ and ‘show c’; they could even be mouse-clicks
or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a ”copyright disclaimer” for the program, if necessary. Here is a sample;
alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vise

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is what
you want to do, use the GNU Library General Public License instead of this License.

580

Index

Symbols
*, 214
*/, 221
+ key, 494
++, 212
- key, 494
-, 201
., 175
. character, 49
/*, 221
:, 175
: key, 54
;, 209, 221
=, 213
==, 213, 218
>|, 178
>, 178
>& notation, 76
? character, 49
? key, 38
[, 179
#, 222
$, 79, 173
$() notation, 71
$*, 172
$-, 172, 173
$0, 172
$1, 172
$?, 172, 209
$#, 172
$$, 172
%, 96
%?, 96
%CPU, 90
%MEM, 90
%d, 209
%e, 210
%f, 210
&&, 171
ˆC, 11, 82, 86
ˆD, 86
ˆZ, 82
(key, 10, 55, 493
)key, 10, 55

*key, 55
+key, 55
!, 161
$@, 172
$!, 172
!=, 218
!, 80
", 209
||, 171, 216
|, 74
{, 211
}, 211
˜+, 173
˜-, 173
˜, 173

Numbers
0.0.0.0, 248
0x8086, 474
.1, 32
1, port, 519
2.2, kernel, 464
2.4, kernel, 464
2>&1 notation, 76
2nd extended file system, 160
.3, 30
3.5-inch, floppy, 144, 162
3.5-inch floppy, 145
3D graphics, 487
6, port, 519
8-bit, ISA slots, 18
8N1 protocol, 22
9-pin, 21
10.0.0.0, 249
11x17, 201
16-color X server, X, 499, 505
20, port, 459
21, port, 294, 459, 519
22, port, 459, 519
23, port, 294
25-pin, 21
25, port, 99, 299, 300, 459, 519
32 bits, 214

581

Index

32-bit, 247
32-bit address, 248
53, port, 459, 519
64 bit server, 240
64-Kb line, 462
64-bit, 552
67, port, 295
69, port, 295
79, port, 295
80?86, 208
80�50, 320
80, port, 265, 389, 459
110, port, 271, 295, 301, 459
113, port, 295, 459
119, port, 459
127.0.0.0, 249, 252
127.0.0.1, 445, 510
128-bit, 280
143, port, 295, 301, 459
172.16.0.0, 249
192.168.0.0, 249
255.255.255.255, 248
386, 552
390 mainframe, 553
400, port, 519
486, 552
513, port, 294
514, port, 294
515, port, 519
517, port, 295
540, port, 295
680x0, 552
901, port, 435
1024 cylinder boundary, 156, 319
1024 cylinders, 536
1024, port, 265
6000, port, 486
8250, UART, 479
16450, UART, 479
16550A, UART, 479
16550, UART, 23, 479
16650V2, UART, 479
16650, UART, 479
16750, UART, 479

A
A record, 548

DNS, 283, 441–443, 446
.a, 29, 230, 233
a.out, 208
a3, 201
a4, 201
a5, 201
A:, 144
A: disk, 44

AAAA query, 280
absolute, path, 34, 128
ac, 549
.ac.za, 276
access, remote, 113
access bits, 123
access control, 293, 296

Apache, 397
printer, 202

Access Control Lists, see ACL
access flags, 123
access permissions, 109

NFS, 288
access rights, 104
access.conf, 393
AccessFileName, 395
accton, 549
ACK, TCP, 264
acknowledgment number, TCP, 265
acknowledgment packet, TCP, 263
ACL, 430

security, 522
Active Directory, 430
ACU, 342
adapter, SCSI, 478
AddEncoding, 399
adding

partition, 157
swap, 162

adding a column, postgres, 420
adding to, PATH, 46
address, IP, 247, 250, 252, 256, 273, 277, 300
address classes, IP, 249
Address Resolution Protocol, 250
address space, 248
addresses, 79

sed, 79
adfs, 163
administration, UNIX, 6
administrator, responsibilities, 313
administrator programs, 196
Advanced Linux Sound Architecture, see ALSA
Advanced Package Tool, 245
Advanced Risc Machine, see ARM
affs, 163
agetty, 329
aggregation of another, GPL, 576
AGP, RHCE, 544
aic7xxx.o, 323
AIX, 552
-al, ls, 25
alerts, security, 202, 517
Alias, 398
.alias, 29
alias, 175

582

Index

aliases, 301
aliasing

Apache, 398
interface, 259

alien, 537
All, 396
allocate memory, 214
Allow, 397
allow null glob expansion, 95
AllowOverride, 397
alpha, 240
ALSA, sound, 475
Alt key, 10, 493–495
Alt-F1, 11
altavista.com, 118
ALTER TABLE, postgres, 420
American Standard Code for Information Inter-

change, see ASCII
Amiga, 570
AmigaOS, 58, 425
anacron, 545
announcements, security, 516
anonymity, 100
anonymous email, 99, 100
anonymous logins, 113
ANY record, DNS, 284
Apache

access control, 397
aliasing, 398
CGI, 401
DNS lookup, 395
DSO, 406
encoding, 399
fancy indexes, 399
forms, 403
indexes, 399
installing, 393
IP-based virtual hosting, 407
language negotiation, 399
log format, 395
name-based virtual hosting, 407
PHP, with, 406
reference, 393
RHCE, 548
Server-side includes, 400
SQL, with, 403
SSI, 400
top-level directory, 395
user directories, 398
virtual hosting, 407

apache, 193, 546
Apache reference, 134
Apache, with

Windows, 393
API, X, 498

append, 320
append-only permissions, security, 520
append =, 468
Apple, 285
Apple Mac, 492
Apple Macintosh, 59, 567
application, 135
application, 115
application or command, stop, 41
applying to new programs, GPL, 579
appres, 494
apsfilter, 204
APT, 245
apt, 537
apt(8), 245
apt-cache, 245
apt-cdrom, 245
apt-config, 245
apt-get, 245, 537
apt.conf(5), 245
apxs, 407
ar, 229
arcfour, 271
architecture, 240
archive, 45, 229

backup, 45
archive indexing, 229
archiving files, 241
argc, 218, 224
arguments, 211
argv, 218, 224
arithmetic expansion, 174
ARM, 552
ARP, 251

re-request, 251
time-out, 251

arp, 251
array, 213
artifacts, X, 503
Artistic License, 556
ASCII, 7, 22, 113, 209, 218, 507
ascii(7), 209, 218
AT, 331
AT commands, 24

modem, 342, 453
at, 411, 535
AT&F1, 454
ATAPI, 18

CD-ROM, 144, 161
kernel, 477

ATAPI disk, 144
AtariMiNT, 58
atd, 409, 411, 412
aterm, 539
atime, 126

583

Index

atobm, 494
atomic, 189
atq, 411
attach, 226
attach onto running programs, 226
attaching files, 115
attacks, security, 511
attempts, 280
attribute, postgres, 418
.au, 29
audio, 41
audio, 115
audio format, 29, 31, 40

mod, 41
auditing, security, 524
aumix, 41
auth, 295
auth service, 459
authenticating, 186
authentication

uucp, 339
login, 330

authentication logic, security, 514
authoritative, 281, 300

DNS, 441
AUTHORS, 32, 237
authpriv, 296
auto resume, 95
autoconf, 238
autodetection, 20, 486
autofs, 163
Automatic Calling Unit, see ACU
automatically, mounting, 166
.avi, 29
.awk, 29
awk, 29, 182, 185
AWK programming language, 182
AXFR record, DNS, 284

B
b command, 224
b3, 201
b4, 201
b5, 201
B:, 144
background, 82

jobs, 108, 176, 532
X, 496

background command, 172
backquote expansion, 174
backspace key, 10, 493
backtrace, 225
backup, 45, 535

postgres, 423
tar, 45

archive, 45
backups, tape, 149
backward, quotes, 71
badblocks, 161
balsa, 99
banned IP addresses, 313
base64, 115
BASH, 92
bash, 82, 91, 171, 186, 539
bash functions, 208, 539
bash(1), 83, 174–176
.bash login, 186, 539
.bash logout, 539
.bash profile, 186, 539
BASH VERSION, 92
.bashrc, 93, 175, 186, 545
bashrc, 545
basic editing operations, vi, 54
baud rate, 24
bc, 36, 183
bdftopcf, 494
beeping

less, 38
shell, 11
Tab, 11

beforelight, 494
BeOS, 58
Berkeley Internet Name Domain, see bind
Berkeley Regents, see BSD
beta, 118
bg, 82, 532
.bib, 29
/bin, 137, 156, 520
bin, 196
/bin/login, 329, 330
/bin/sash, 323
/bin/sh, 107
binary, 113, 183
binary executables, 137
binary file, 208
bind, port, 269
bind, 279, 437, 460, 548
binding signals, 176
BIOS, 476

BIOS, 20, 318
functions, 318
interrupts, 322
limitations, 319
ROM, 318

BIOS configuration, RHCE, 544
BIOS limitations, RHCE, 544
BIOS settings, LPI, 536
bitmap, 494
Bitmap file, 29
bits, 7

584

Index

bits per pixel, see bpp
black and white, X, 505
block devices, 142
.bmp, 29
bmtoa, 494
body, 98
bool, postgres, 418
boot, 20, 317, 318

disk, 147
kernel, 325
partition, 318

/boot, 156
boot, 320
boot device, 536
boot disks, creating, 147
boot floppy, 147, 321

kernel, 484
boot image, kernel, 463
boot loader, 320
boot options, kernel, 317, 320
boot password, 320
boot sector, 318, 321
boot sectors, partition, 318
boot sequence, CMOS, 20
boot up message, partition, 159
boot.img, 147
/boot/, 463
/boot/boot.0300, 320
/boot/map, 318, 320
/boot/vmlinuz, 318, 320
bootable

CD-ROM, 20
partition, 158

booting
partition, 317
Windows 98, 321

booting process, LPI, 534
BOOTP, 295, 546
bootpc, 269
bootpd, 294, 295
bootps, 269
bootstraps, 20, 318
bootup messages, log, 37
bootup process, 329
Bourne shell, 82
-bpp, X, 503, 504
bps, 22, 24
brace expansion, 173
brand names, 3
break, 224
break, 65, 218
break point, 224
Brian, Fox, xxxi
BROADCAST, 254
broadcast, Samba, 427

broadcast, 251
broadcast address, 256
brute force attack, 104
BSD, 556
BSD License, 414
bt command, 225
buffer overflow, security, 518, 521
buffer overflow attack, security, 512, 513
BUGS, 32
bugs, 223
BUGTRAQ, LPI, 541
building

kernel, 481, 483
package, 237

builtin devices, CMOS, 20
bulk mail, 99
bus, SCSI, 476
buttons, 491
byte, 208

encoding, 7
byte sequences, 37
.bz2, 29
bzImage, 484

make, 538
kernel, 484

bzip2, 29, 42

C
C, 414

comment, 221
library, 227
library function, 209, 216
preprocessor, 222
projects, 230
simple program, 208
source, 237, 238
standard C, 209, 216

.C, 29

.c, 30, 231
c command, 225
C header files, 138
C key, 41, 42
C program, 30
C programming language, 26–28, 30, 73, 75, 88,

138, 142, 176, 181, 184, 188, 190, 191,
207–209, 211–218, 220–223, 225, 227,
228, 230–232, 237, 238, 263, 264, 277,
335, 405, 416, 444, 463, 469, 485, 492,
493, 512, 518, 525, 560, 567, 570

C source files, 138
C++, 29, 207, 221, 222, 414, 492, 493
cache, 277
caching, DNS, 281
caching name server, DNS, 449
cal, 36

585

Index

Caldera OpenLinux, 554
canonical name, DNS, 284
capabilities, security, 521
card, SCSI, 476
card database, 501
cards, peripheral, 17, 18
carrier detect, 23
carrier signal, modem, 24
case, 66, 212
case sensitive, UNIX, 25
cat, 12, 36, 42, 73, 147

concatenate, 12
-cc, X, 505
.cc, 29
cc, 208
cd, 34, 175

change directory, 12
CD pin, 23
CD writer, 479

kernel, 477, 478
SCSI, 478

CD-ROM, 18, 146, 168, 194, 286, 479, 520
ATAPI, 144, 161
bootable, 20
IDE, 18, 478
kernel, 477
mounting, 163
RHCE, 544
SCSI, 19, 145, 146

CD-writer, 146
cdable vars, 96
CDPATH, 93
cdplay, 41
cdrecord, 87, 479
cdrecord(1), 87
/cdrom, 163
CERT, LPI, 541
certification

LPI, 2
RHCE, 2

.cf, 29
cfdisk, 544
CGA, X, 505
CGI, 389, 401, 406

Apache, 401
RHCE, 548

.cgi, 29
CGI script, 404
Challenge Handshake Authentication Protocol,

see CHAP
change directory, cd, 12
change ownerships, 101
ChangeLog, 32, 237
CHAP, 456
char, 213, 215

character sets, 507
character terminals, 330, 506
characters

file names, 12
user name, 102

chargen, 269
Charityware, 58
chat, pppd, 454
chat script, pppd, 455
chat script, 342, 453
chattr, 520, 549
checksum

IP, 248, 264
TCP, 265

Chet, Ramey, xxxi
chgrp, 533
child, process, 91
child process, 91, 184
child terminate, 86
chkconfig, 546
chkfontpath, 509
chmod, 123, 336, 533
chown, 101, 533
chroot, 167, 178, 323
CIFS, 425, 427
clash, network, 250
Class A/B/C address, 249
clean, make, 538
clear, 36, 225
clear to send, see CTS
client, 194
client machine, X, 485
client programs, security, 518
client/server, 194
clients, mail, 99
clipboard, X, 497
clobberd, 549
Clockchip setting, X, 501
clocks:, X, 500
close, 264
close(2), 264
closing files, 217
CMOS, 20, 203, 472, 476

boot sequence, 20
builtin devices, 20
configuration, 20
Harddrive auto-detection, 20
hardware clock, 20

CNAME record, 548
DNS, 283

.co.za, 276
coda, 163
code reuse, 233
coherent, 163
column typing, postgres, 418

586

Index

.com, 273
COM port, Windows, 144, 479
COM1, 18, 20, 144, 342, 479
COM2, 18, 20
COM4, 479
combating, spam, 311
COMMAND, 90
command alias, 175
command history, LPI, 531
command list, mtools, 44
command mode, modem, 24
command pseudonym, 175
command summary, grep, 43
command-line, 173, 174, 218

pppd, 454
LPI, 531

command-line arguments, 25, 172, 224
processing, 68

command-line options, 25
command oriented history, 95
commands, 8

UNIX, 10, 25
GNU, 25
modem, 342, 453
periodic, 409
scheduling, 409

comment, C, 221
comment out, 222
commenting code, 221
commercial drivers, kernel, 482
common devices, 143
Common Gateway Interface, see CGI
Common Internet File System, see CIFS
comp.os.linux.announce, 120
compact, 320
comparing files, 179
compatibility

LINUX, 551
UNIX, 561
UART, 480
X, 487

compile, 208, 220, 238
kernel, 481

compile options, 239
compiled-in modules, kernel, 464, 483
compiled-in support, 322
compiled-out modules, kernel, 464
compiler, 207
compiler optimizations, 223, 239
complete list, error codes, 26
completion, 11
compress, 32
compressed, 114
compressing images, 184
compression, 24, 42, 399

file, 41
compromise, security, 512
computer, programming, 3, 61
concatenate, cat, 12
.conf, 29
configuration, 463

exim, 302
uucp, 338
CMOS, 20
kernel, 482
NFS, 286
package, 193

configuration file, 29, 127
X, 486, 499

configuration files, 137, 196, 241
configuration scripts, X, 505
./configure, 238, 406, 537
configure, 30
Configure.help, kernel, 483
configuring

DNS, 438
Samba, 431
X, 498

configuring and administration, RHCE, 544
configuring libraries, 235
configuring printers, Samba, 434
configuring windows, Samba, 433
connect, 263
connect(2), 263
connect mode, modem, 24
connection, TCP, 296, 300
console, 11

LINUX, 11
continue, 225
continue, 65
control, TCP, 265
control field, package, 244
conventions, X, 496
convert, 183, 332
convert to binary, 183
convert to decimal, 183
converting image files, 332
Cooledit, 118
cooledit, 58, 238, 507
cooling, SCSI, 477
Coolwidgets, 492
copy

directories, 532
files, 532
recursive, 112
wildcards, 532

COPYING, 32, 237
copying

recursively, 34
software, 574

587

Index

CORBA, 286
core file, 227
core dump, 227
core.html, 394
costing, LINUX, 564
counter measures, security, 516
country codes, 274
course

notes, 2
training, 2

cp, 34, 112, 175, 324
usage summaries, 33

cp(1), 36
cpio, 46
.cpp, 29
CPU, 17, 81, 141, 207, 208, 239, 437, 480, 481

priority, 87, 296
usage, 87

CPU, 89
CPU consumption, 88, 108
CPU limits, 176
CPU time, 82
cracking, 103
CREATE TABLE, postgres, 418
createdb, 414
createlang, 414
createuser, 414
creating

boot disks, 147
DLL, 233
files, 12

creating tables, postgres, 418
cron, 535, 545
cron packages, 412
cron.daily, 410
cron.hourly, 410
cron.monthly, 410
cron.weekly, 410
crond, 341, 346, 409, 410, 520
cross platform, 568
cryptography, RHCE, 549
.csh, 30
CSLIP, 536
ctime, 126
Ctrl key, 10, 12, 41, 42, 411, 493–495
Ctrl-Alt-Del, 11
Ctrl-PgDn, 11
Ctrl-PgUp, 11
CTS, 22
cu, 142
cug, 549
CustomLog, 395
cut, 182, 532
cut buffer, X, 497
cutting, X, 497

.cxx, 29
cylinder, disk, 153

D
D, 90
D key, 10, 12, 411
daemon, 99, 196, 299
daemon process, 184
data, file, 7
data packet, 263
data rate, serial, 22
data set ready, see DSR
data terminal ready, see DTR
data transmission, 247
database, 413

postgres, 414
database files, 30
database normalization, 423
database of files, 43
database table directory, 415
database theory, 423
datagrams, 247
date, 36
daytime, 269
.db, 30
db, 223
dd, 113, 147, 167, 168, 321, 324
.deb, 30, 135, 237, 241, 244, 301, 562

Debian, 3
Debian, 1, 3, 30, 118, 135, 156, 178, 183, 187, 194,

195, 197, 237, 240–242, 244–246, 255,
256, 288, 289, 292, 327, 336, 338, 341,
415, 416, 437, 438, 461, 474, 483, 498,
503, 506, 561

.deb, 3
Debian package, 30
debsums, 243
debug support, 239
debugger, 223
debugging, uucp, 343
debugging level, uucp, 343
debugging session, 223
DEC Alpha, 240, 552
decimal, 183, 209
DECnet, 426
decompression, 399
default, print queue, 199
default PATH, 107
default gateway, 253, 256
default visual, X, 505
DefaultDepth, X, 503
defaultroute, pppd, 455
DefaultType, 395
defconfig, kernel, 483
definition, spam, 311

588

Index

delete/dropping a column, postgres, 420
delete/dropping a table, postgres, 420
deleting files, 184
deleting interfaces, 251
deleting lines, sed, 79
delivery, mail, 299
delivery date add, 305
demodulation, 24
denial of service, see DoS
density, floppy disk, 144
Deny, 396
deny access, 293
dep, make, 538
dependencies, package, 241, 245
dependency, 230, 231
dependency checking, 241
depmod, 327, 546

make, 538
kernel, 464

depmod -a, kernel, 484
destination address, IP, 248, 253, 264
destination port

TCP, 265
UDP, 269

detachment, TCP, 263, 268
detection software, security, 524
/dev, 141, 156, 517
/dev/audio, 471
/dev/bttv0, 146
/dev/cdrom, 129, 145, 146, 163
/dev/cdwriter, 146
/dev/core, 146
/dev/cua?, 144, 454
/dev/dsp, 141, 142, 464, 471
/dev/fb?, 145
/dev/fd?, 144
/dev/fd0, 113, 147, 148, 321
/dev/fd0D1440, 145
/dev/fd0H1440, 145
/dev/fd0H1920, 144, 145
/dev/ftape, 146
/dev/gpmdata, 146
/dev/hd?, 155
/dev/hda, 141, 143, 320
/dev/hda1, 143, 154, 329
/dev/i2o*, 146
/dev/i2o/*, 146
/dev/log, 146
/dev/loop0, 324
/dev/lp?, 144
/dev/midi, 471
/dev/mixer, 471
/dev/modem, 144, 146, 454
/dev/mouse, 142, 144, 146
/dev/null, 144, 205

/dev/par?, 144
/dev/pcd?, 144
/dev/pd?, 144
/dev/pf?, 144
/dev/printer, 146
/dev/psaux, 144
/dev/radio, 146
/dev/ramdisk, 146
/dev/root, 146
/dev/scanner, 146
/dev/scd0, 479
/dev/scd?, 144, 146
/dev/sd?, 155
/dev/sd??, 144
/dev/sda, 320, 476
/dev/sequencer, 471
/dev/sg*, 146
/dev/sg?, 145
/dev/sr?, 144
/dev/st?, 144
/dev/swap, 146
/dev/tape, 146
/dev/tty?, 145
/dev/tty1, 330
/dev/ttyI?, 145
/dev/ttyS?, 144
/dev/ttyS0, 334, 335, 342, 454, 479
/dev/ttyS4, 330
/dev/urandom, 144, 148
/dev/zero, 144, 147, 148
DEVICE, 201, 254
Device section, X, 502
device, SCSI, 143, 146
device driver module, X, 502
device drivers, 463

Windows, 463
device file, 141
device ID, PCI, 474
device independent file, 30
device names, 143
devices

IDE, 143
serial, 20

devices.txt, 143, 145
devpts, 163, 167
df, 36, 533
DFS, 430
dga, 494
DHCP, RHCE, 548
dhcpd, 540, 546, 548
diagnostic packet, 260
diagnostic utilities, IP, 260
dial-in, pppd, 460
dial-on-demand, pppd, 458
diald, 458

589

Index

dialout, pppd, 454
dialout group, 336
dialup, 536

uucp, 338
DNS, 449, 460
networking, 453
PPP, 338

dialup server, 460
dictionary, 75
dictionary attack, 103
.diff, 30, 179
diff, 179
dig, 180, 284, 540
dig(1), 284
digital signal processing, 40
Digital Signal Processor, 142
dip, 461
dip -t, 330, 455
.dir, 30
dircmp, 37
dircmp(1), 37
DirectColor, X, 505
directive, 394
directories, 12

copy, 532
removing, 34

directors, exim, 305
Directory, <Directory /directory>, 396
directory, 128
directory locking, 190
directory permissions, 123
directory superstructure, 136, 137
directory trees, 179
DirectoryIndex, 395
discard, 269
disk

boot, 147
cylinder, 153
duplication, 148
erasing, 147
floppy, 144
hard drive, 143
heads, 153
identifying, 148
parallel port ATAPI, 144
parallel port CD-ROM, 144
parallel port IDE, 144
paritions, 153
read-write test, 161
SCSI, 144
sector, 153
sides, 153
tracks, 153

disk drive
IDE, 18

SCSI, 19
disk dump, 147
disk partitions, LPI, 533
disk space, 128
diskdruid, 544
diskless workstations, 295
DISPLAY, 529, 547

X, 494
display, X, 486
-display option, X, 494
distinguishing directories, ls, 13
distribute, software, 574
distributed, mail, 337
Distributed File System, see DFS
distribution, X, 497
distributions, LINUX, 54, 117, 291, 302, 347, 522,

554, 560, 573
security, 516

djbdns, DNS, 437
DLL, 137, 233

creating, 233
dynamically linked library, 31
installation, 235
symlink, 235
versioning, 234

DMA, 17, 466, 536
DMB, Samba, 428
dmesg, 37, 473, 534
dnrd, 460
DNS, 269, 273, 291, 427, 430, 437, 528, 541

.in-addr.arpa, 445
/etc/named.conf, 444
/usr/sbin/named-bootconf, 438
ANY record, 284
AXFR record, 284
A record, 283, 441–443, 446
CNAME record, 283
HINFO record, 284
MX record, 284, 441–443, 446
NS record, 283, 441–443, 446
PTR record, 283, 441–443, 446
SOA record, 284, 441–443, 445, 446
djbdns, 437
hostname, 438
named-xfer, 438
named.boot, 438
named, 437, 438
ndc, 438
style.txt, 438
authoritative, 441
caching, 281
caching name server, 449
canonical name, 284
configuring, 438
dialup, 449, 460

590

Index

dynamic IP, 450
example configuration, 438
forward lookups, 281, 286
infrastructure, 275
lookup, 276
master setting, 451
messages, 444
Name Server Operations Guide, 438
record, 283
reverse lookup, 286, 445
reverse lookups, 281, 442, 447
RHCE, 548
secondary server, 450
security, 437
serial number, 445
servers, 276
slave server, 450
slave setting, 451
starting bind, 443
TTL, 445
zone, 444

DNS configuration, 432
DNS lookup, Apache, 395
DNS lookup configuration, 277
DNS query, 180
dnsdomainname, 540
doc/, 137
documentation, 131, 137, 534

UNIX, 35
info, 35
man, 35
postgres, 414, 418
uucp, 338
module, 469
reference, 2
Samba, 435
tutorial, 2
X, 491, 497

documentation files, 195
DocumentRoot, 395
domain, 273, 407
domain, 269, 280
Domain and Type Enforcement, see DTE
domain information groper, 284
Domain Master Browsers, see DMB
domain name, 273
Domain Name System, see DNS
domain part, 300
domain servers, RHCE, 548
domainname, 540
done, 63
DOS, see MS-DOS
DoS, security, 515
dot lock file locking, 188
dots per inch, 201

dotted decimal, 248
double, quotes, 70
double, 210, 215
double density, 145
down arrow key, 55
download packages, 195
dpi, 201
dpkg, 194, 240, 242, 243, 537
dpkg-dev, 246
drive, SCSI, 476, 536
driver, 305
driver support, 117
drivers, 132
DROP TABLE, postgres, 420
dropdb, 414
droplang, 414
dropuser, 414
dselect, 245, 537
DSIZE, 90
DSO, Apache, 406
DTE, security, 522
du, 37, 78, 533
dump, 166
dumping and restoring tables, postgres, 422
duplicating disks, 148
duplication, disk, 148
DVI, 204
.dvi, 30
dynamic CGI, 389
Dynamic DNS, 430
dynamic IP, DNS, 450
dynamic linker, 235
dynamic linking, 233, 234
dynamic loading, kernel, 469
Dynamic Shared Object, see DSO
Dynamically Linked Libraries, see DLL
dynamically linked library, DLL, 31

E
e2fsck, 165
e2fsck(8), 165
echo, 37, 176, 269
ed, 57, 77
editing, sed, 77
editors

UNIX, 57
jed, 58
mcedit, 58
vim, 58
vi, 58
Emacs, 59
graphical, 58
IDE, 58
MS-DOS, 54

editres, 494

591

Index

edquota, 533, 545
.edu, 274
effective GID, 109, 336
effective UID, 109
efs, 163
EGA, X, 505
egrep, 52
EISA, RHCE, 544
.el, 30
electrical noise, 23
Electronic Mail, 97
Emacs

editors, 59
X, 59

email
Internet, 97
message body, 98
message header, 98

email address, 97
email assistance, LPI, 535
embedded, market, 552
Emulate3Buttons, X, 497
emulation, SCSI, 478
encapsulated, 264, 268
encoding

Apache, 399
byte, 7
octet, 7

encrypted password, 102
encrypted stream, 270
encryption

security, 515, 518
TCP, 270

End key, 10
english.hash, 75
enscript, 201, 203, 204
Enter Key, 8, 9, 12, 38, 53, 54, 266, 418
entity modeling, 423
ENV, 93
envelope to add, 305
environment, 90, 186

process, 90
environment variable, 90, 91, 176, 187, 236
environment variables

LPI, 531
security, 515

equality operator, 213
equivalent host, 202
erasing, disk, 147
erasing files, 184
errno.h, 26
error checks, 217
error codes

LINUX, 26
complete list, 26

error correction, 24
error log, 106
error messages, 26, 73, 198
ErrorLog, 395
errors address, 303
Esc key, 11, 53–55
escape sequence, 209
esd, 545
et cetera, 137
/etc, 137, 156, 196
/etc/aliases, 301, 310, 314
/etc/conf.modules, 534, 545, 546

kernel, 469
/etc/cron.daily/, 411
/etc/cron.hourly, 346
/etc/crontab, 346, 409, 410, 545
/etc/dhcpd.conf, 548
/etc/exim.conf, 302
/etc/exim/config, 302
/etc/exim/exim.conf, 302
/etc/exports, 286, 518
/etc/fstab, 166, 533, 545
/etc/group, 104, 545
/etc/host.conf, 277–279, 540, 541
/etc/HOSTNAME, 540
/etc/hostname, 256, 540
/etc/hosts, 277, 278, 286, 540, 541
/etc/hosts.allow, 293, 540, 547
/etc/hosts.deny, 293, 297, 540, 547
/etc/hosts.equiv, 202
/etc/hosts.lpd, 202
/etc/inetd.conf, 291, 338, 389, 434, 459, 513,

518, 540, 547
/etc/init.d/, 196
/etc/init.d/exim, 302, 308
/etc/init.d/ftpd, 294
/etc/init.d/httpd, 294
/etc/init.d/inet, 294
/etc/init.d/inetd, 291
/etc/init.d/named, 294
/etc/init.d/rcS, 327
/etc/init.d/smbd, 432
/etc/inittab, 326, 328, 341, 460, 506, 545
/etc/inputrc, 11
/etc/isapnp.conf, 470, 545
/etc/isapnp.gone, 470
/etc/ld.so.conf, 235, 537
/etc/lilo.conf, 319, 468, 481, 534
/etc/logrotate.conf, 198
/etc/lpd.perms, 202
/etc/mail/, 314
/etc/mail/access, 548
/etc/mail/local-host-names, 314
/etc/mail/relay-domains, 314
/etc/mail/virtusertable, 548

592

Index

/etc/man.config, 187
/etc/mgetty+sendfax/, 333, 461
/etc/mgetty+sendfax/login.config, 341,

461
/etc/mgetty+sendfax/mgetty.config,

331
/etc/mgetty+sendfax/new fax, 331
/etc/mgetty/, 461
/etc/mgetty/login.config, 341, 461
/etc/mime.types, 115
/etc/modules.conf, 472, 534, 537

kernel, 469
/etc/motd, 521
/etc/named.boot, 438, 541
/etc/named.conf, 438, 541

DNS, 444
/etc/network/interfaces, 255
/etc/network/options, 255
/etc/networks, 540
/etc/nologin, 106
/etc/nsswitch.conf, 541
/etc/pam.d, 547
/etc/passwd, 102, 107, 171, 186, 300, 341, 514,

545
file format, 102

/etc/ppp/chap-secrets, 453, 455, 461
/etc/ppp/options, 461
/etc/ppp/pap-secrets, 453, 455
/etc/printcap, 195, 196, 333, 538, 545
/etc/profile, 38, 186, 187, 535
/etc/profile.d, 187, 545
/etc/rc?.d/KNNservice, 326
/etc/rc?.d/SNNservice, 326
/etc/rc.d/, 546
/etc/rc.d/init.d/, 196
/etc/rc.d/rc, 327
/etc/rc.d/rc?, 326
/etc/resolv.conf, 277, 278, 540, 541
/etc/samba/smb.conf, 431
/etc/samba/smbpasswd, 431
/etc/samba/smbusers, 431
/etc/securetty, 107
/etc/security, 547
/etc/security/, 549
/etc/sendmail.cf, 314
/etc/sendmail.mc, 548
/etc/services, 269, 285, 291, 434, 513, 540
/etc/shadow, 102, 103
/etc/skel, 545
/etc/skel/, 535
/etc/smb.conf, 541, 548
/etc/squid/squid.conf, 546
/etc/sysconfig/, 254
/etc/sysconfig/desktop, 546
/etc/sysconfig/network-scripts/, 544

/etc/sysconfig/static-routes, 547, 549
/etc/sysctl.conf, 545
/etc/syslog.conf, 535, 545
/etc/usertty, 106
/etc/uucp/call, 339
/etc/uucp/passwd, 339–341
/etc/uucp/port, 340, 341
/etc/uucp/sys, 339, 340, 342, 345
/etc/X11/fs/config, 509
/etc/X11/XF86Config, 486, 500, 509, 539, 546
/etc/X11/xfs/config, 509
/etc/X11/xinit/, 505
/etc/XF86Config, 486
/etc/xinetd.conf, 295
/etc/xinetd.d, 297, 389, 512, 518
/etc/xinetd.d/swat, 434
/etc/xinetd.d/wu-ftpd, 296
eth0, 250, 252, 475
eth1, 250
ethereal, 550
Ethernet, 426, 464
Ethernet device, 254
ethernet device, 472
Ethernet frame, 248, 250
Ethernet interface, 251
Ethernet port, 250, 256
ETRAX-100, 553
EUID, 92
European date formats, postgres, 416
eval, 175
events, X, 487
evolution, UNIX, 10
exam questions, LPI, 531
example, partitioning, 155
example configuration, DNS, 438
example session, TCP, 265
Excel, 567
exclusive access, 187
exclusive lock, 188
exclusivity, 189
-exec option, find, 43
#exec, 401
exec, 96, 175
ExecCGI, 396, 402
executables, 137, 233
execute permission, 124
executed, 81
executing remote command, 112
execution, 208

kernel, 318
execution time, 81
exim, 241, 299

package, 301
procmail support, 308
route list, 344

593

Index

spec.txt, 309
configuration, 302
directors, 305
full blown mail server, 306
routers, 306
transports, 304, 343
Why?, 301

exim sources, 188
exim(8), 309
exim, with

uucp, 343
exim.conf, 343, 345
exim group, 304
exim user, 304
EXIT, 177
exit, 37, 329
exit code, 176, 179
expand, 532
expansion, 173
expect–send sequence, 454
exploit, security, 513, 515, 516
exponential notation, 210
export display, LPI, 539
exportfs, 287
exporting a file system, 286
exports(5), 288
exposed window, X, 487
exposure, Internet, 515, 518
expr, 37, 71, 78, 183
ext2, 160, 163, 287
ext3fs, file system, 160
extended

partition, 154, 321
regular expressions, 52

extensible, 492
X, 487

extension, file name, 29
extensions, list of common, 29
extra density, 145

F
F key, 38
F1 key, 493
F2 key, 20
F6 key, 493
F7 key, 494
F8 key, 495
F9 key, 10, 20
factory default settings, 24
fancy indexes, Apache, 399
FAQ, 118, 196, 438

security, 523
sendmail, 315
X, 498

FAT, file system, 160

FAT file system, Windows, 160
FAT32, file system, 160
fault tolerance, 337, 338
fax image file, 30
fax filter.sh example, 333
faxes, 341, 461

incoming, 330
receiving, 325, 330, 331

faxing, 333
FCEDIT, 94
fcntl locking, 188
fdformat, 162
FDISK, 147
fdisk, 155, 158, 159, 536, 544
fdutils, 162
fetchmail, 180
fg, 82, 532
fgetc, 218
fgets, 513
fgetty, 329
fgrep, 51
FHS, 347

LPI, 533
FHS home page, 347
FIGNORE, 94
file

compression, 41
data, 7
Samba, 425

file, 37, 227, 305
FILE *, 217
file descriptors, 75
file extension, 181, 183
file format, /etc/passwd, 102
file formats, 37
file length, 126
file lists, package, 243, 245
file locking, 188, 342
file management, LPI, 532
file manager, 40
file name

extension, 29
length, 7
name, 29

file name completion, 11
file name extensions, UNIX, 29
file name, allowable

UNIX, 7
file names

UNIX, 12
characters, 12

file numbers, 75
file operations, 217
file size, 182, 199
file system, 37, 160, 233, 318

594

Index

LINUX, 135
ext3fs, 160
FAT, 160
FAT32, 160
journaling, 160
mounting, 163
MS-DOS, 161
read-only, 168
reiserfs, 160
XFS, 160

file system check, 165
file system image, 324
file system permissions, 123
file system standard, LINUX, 347
file time, 182
File Transfer Protocol, see FTP, 113
file-server, 286
file-sharing, NFS, 285
Files, <Files . . .>, 397
Files section, X, 508
files, 7

copy, 532
creating, 12
hidden, 25
removing, 34

Filesystem Hierarchy Standard, see FHS
filter, 74, 333, 336

LPI, 532
print, 200
program, 201

FIN, TCP, 264
find, 49
find, 42, 180, 517, 533, 549

-exec option, 43
-name option, 43
-type option, 43

find(1), 43
finger, 114, 269, 295
fingerd, 294
firewall, 458

security, 515
firewalling, RHCE, 547, 549
first sector, 143
fixing file systems, 165
float, 210, 215
Floating Point Exception, 86
flock file locking, 188
floppies, MS-DOS, 148
floppy

3.5-inch, 144, 162
disk, 144
formatting, 161
mounting, 164
MS-DOS, 44, 162, 164

floppy devices, RHCE, 544

floppy disk, 113, 144, 321
density, 144

floppy disk boot, LPI, 536
floppy drives, 18
flow control, serial, 22
fmt, 532
-fn, X, 506
FollowSymLinks, 396
-fomit-frame-pointer, 239
font, X Window System, 29
font configuration, X, 508
font database, X, 509
font directory, X, 508
font family, X, 506
font generation, 132
font metric, 31
font name fields, X, 506
font naming, X, 506
font path, X, 508
font pixel resolution, X, 507
font server, X, 509
font size, X, 507
font weight, X, 507
fonts.alias, 508
fopen, 217
fopen(3), 217
for, 63, 211, 218
for files, searching, 42
force overwriting, 178
foreground, 82

jobs, 532
forging a package, 244
forking twice, 184
FORM, 405
format, 144
formatting

floppy, 161
partition, 160

formatting of output, 176
forms, Apache, 403
forward, quotes, 70
.forward, 541
forward, 271
forward lookups, 203, 528

DNS, 281, 286
forwarding

IP, 253, 255
RHCE, 547
TCP, 270

Fox, Brian, xxxi
Fox, Brian, 83, 92, 172
-fPIC -DPIC, 234
fprintf(3), 218
fputc(3), 218
frame, 250

595

Index

frame buffer, 145
frame-relay, 547
free, 37, 214, 217
free memory, 37
Free software, 559
Free Software Foundation, see FSF, 573
free software licenses, 556
Free SQL server, 414
FreeBSD, 552
freedom, 573
Frequently Asked Questions, see FAQ, 118, 196
Fresh Meat, 118, 245
From, 98
FRS, 556
fsck, 165, 533
fsck.ext2, 165
fseek(3), 218
FSF, 551, 553, 556, 557, 573
fsinfo, 494
fslsfonts, 494
fsp, 269
fstobdf, 494
FTP, 113, 272, 294, 514, 562

RHCE, 546
ftp, 269, 294, 515, 518, 540
FTP archives, 117
FTP mirror, 117
FTP service, 296
FTP site, 117, 237
FTP upload, 114
ftp://, see web sites
ftpd, 292, 294
ftpd(8), 296
full blown mail server, exim, 306
full path name, paths, 34
full-duplex, 264
fully qualified host name, 273
function, 176, 177, 224
function, 67
function arguments, 211
function prototype, 221
function prototypes, 221
functions, 210

BIOS, 318
fundamental system administration, LPI, 531
fwrite(3), 218

G
-g, 223
G key, 38
.g3, 331
-g<width>x<height>, 201
GATEWAY, 254
gateway, 253
gateway device, 253

gateway machine, 253
gcc, 208, 222, 231, 234, 488
gdb, 223, 226
gdialog, 333
Gdk, 492
gdm, 546
generic device, SCSI, 145
GET, 264
gethostbyname, 278
getpeername, 390
getsockname, 392
getty, 326, 328–330
getwd, 513
GET /, 266, 389
GhostScript, 184, 200
GhostView, 200
GID, 103, 105–107
GIF, 204
.gif, 30, 332
gimp, 492
Glib, 492
glibc, 278, 561
glob expressions, 32
glob wild cards, 174
glob dot filenames, 95
Gnome, 59

RHCE, 546
gnome-utils, 333
gnorpm, 545
GNU, 2, 553, 557

Licensing, 556
maintaining software, 562
movement, 557
project, 551, 557
software, 557, 558
software cost, 562

GNU General Public License, 237
GNU debugger, 223
GNU standards compliant, 237
GNU Coding Standards, 238
GNU General Public License, 573
GNU Image Manipulation Program, see gimp
GNU source packages, 537

LPI, 537
GNU/LINUX, 1, 551, 553
GNUStep, 493
GNU, commands, 25
GNU C Compiler, 208
google.com, 118
gopher, 269
.gov, 274
government organization, 274
gpasswd, 535
GPF, fatal exception

Windows, 86

596

Index

GPL, 117, 492, 556, 558
aggregation of another, 576
applying to new programs, 579
incorporating parts of programs, 578
lack of warranty, 578
modifying, 575
source code, 576
terms and conditions, 574
version number, 578

gpm mouse, 146
graphic cards, 132
graphical, editors, 58
graphical desktop, LINUX, 9
graphical login box, X, 506
graphical mail readers, 99
graphical mode, 11
Graphical User Interface, see GUI
graphics, X, 486
graphics card, 498

X, 504
graphics context, X, 487
graphics driver, 145
graphics files, 200
graphics hardware, 132

X, 486
graphics hardware acceleration, X, 503
graphix, 492
gray-level display, X, 500, 505
GrayScale, X, 505
grep, 43, 49, 74, 75, 171, 179, 181, 185, 200, 226,

537
command summary, 43

Group, 394
group, 123

LPI, 533
group, 106, 305, 535
group owner, 124
groupadd, 106, 535
groupdel, 106
groupmod, 106
groups, 101, 104
gs, 184, 200, 201, 204
gshadow, 535
Gtk, 59, 492, 497
gtop, 549
GUI, 491–493, 552

X, 485
GUI interface, 413
guideline, partitioning, 155
gunzip, 537
gv, 200, 201
.gz, 30
gzip, 30, 41, 179, 204, 324, 399, 463

H

.h, 30
H key, 36
hack, 450, 511
hacking, 511
halfletter, 201
halt, 325
hang up, 86
hard disk, 143
hard drive, disk, 143
hard links, 129, 533
Harddrive auto-detection, CMOS, 20
hardrive autodetection, 20
hardware address, 250
hardware clock, CMOS, 20
hardware cursor, X, 503
hardware devices, 141, 318
hardware drivers, 132
hardware flow control, 22, 454
hardware mouse, 146
hardware platform, 207
hardware requirements, LINUX, 569
hardware selection, RHCE, 544
hardware support, LINUX, 570
hardware vendor, 552
hash

MD5, 244
password, 103

Hayes command set, 24
hdparm, RHCE, 544
hdparm(8), 544
head, 38, 532
header, 98

IP, 247
mail, 300
malformed, 313
print, 199
rejecting, 313
TCP, 264
verification, 313

header files, 26, 30, 220, 230
headers, kernel, 463
headers check syntax, 312
heads, disk, 153
Heavy industry, 552
--help, 25
help command, 227
Hercules Graphics Card, see HGC
Hertel, Christopher, xxxi
Hewlett Packard, 201, 551
hex, 252
hfs, 163
HGC, X, 505
hidden, files, 25
hidden files, vs. ordinary, 26
Hierarchical NT Domains, 430

597

Index

high availability, RHCE, 547
high density, 145
high performance, RHCE, 547
HINFO record, DNS, 284
HINFO records, 548
histchars, 95
HISTCMD, 92
HISTCONTROL, 95
HISTFILESIZE, 94
history control, 95
HISTSIZE, 94
hole, security, 514
HOME, 93, 103, 107, 173
/home, 156
home computers, 155
home directory, 101, 103, 107
Home key, 10
/home/*, 431
/home/fax/, 332
homework assignments, 525
hops, 256, 261
host, 203, 281, 540, 541
host name, 113, 273

unqualified, 273
Host name for. . . , 203
host part, 248, 250
host accept relay, 304
host access, 293
HOSTFILE, 95
hosting new software, 118
HOSTNAME, 254
hostname, 38, 540

DNS, 438
hostname(7), 438
hostname completion file, 95
HostnameLookups, 395
hosts, 305
hosts.deny, 297
hosts.equiv, 202
hosts access(5), 293
hosts override, 305
HOSTTYPE, 93
HOWTO, 132
HP, 551
hpfs, 163
.htaccess, 395
.htm, 30
HTML, 204, 389
HTML documentation, postgres, 415
HTTP, 264, 389
HTTP protocol, 266
http://, see web sites
httpd, 185, 394, 541
httpd.conf, 402, 407
.hushlogin, 107

I
.i, 30
I key, 54
I/O, 426
I/O port, 20
I/O ports, 17, 18, 20, 466, 470, 480, 536

RHCE, 544
i386, 240
IBM, 425
IBM 390, 553
IBM personal computer, see PC
iceauth, 494
icewm, 495
ICMP, 260, 261

LPI, 540
ICMP messages, 180
ico, 494
ID, SCSI, 476
id, 109
IDE, 58, 322, 568

CD-ROM, 18, 478
devices, 143
disk drive, 18
editors, 58
kernel, 477
master/slave, 19
RHCE, 544
ribbon, 18

IDE devices, 143
IDE drive, 148
IDE drives, removable, 161
IDE geometry, RHCE, 544
IDE labeling, LINUX, 20
identd, 294, 550
identification field, IP, 247, 264
identifying, disk, 148
idle time, 108
IETF, 430
if, 63, 179, 200, 211
#if 0, 222
ifcfg-eth0, 254
ifcfg-eth1, 254
ifcfg-lo, 254
ifconfig, 251, 457, 540, 544
#ifdef, 222
ifdown, 255, 544
#ifndef, 222
IFS, 172
IFS, 93
ifup, 255, 544
ifup(8), 255
IGNOREEOF, 94
IHL, 247, 264
image, 318, 320
image, 115, 320

598

Index

image file, 30, 183
image file conversion, 332
ImageMagic, 332
ImageMagick, 183
IMAP, 295, 299, 301, 337, 338, 546

secure, 518
security, 301

imap, 295, 518
IMAP host, 300
imapd, 294
immutable permissions, security, 520
implicit declarations, 230
improving security, 178
.in, 30
in, 63
.in-addr.arpa, DNS, 445
in.fingerd, 294
in.ftpd, 294, 296
in.identd, 294
in.ntalkd, 294
in.rlogind, 294
in.rshd, 202, 294
in.rshd(8), 113
in.talkd, 294
in.telnetd, 294
in.tftpd, 294
#include, 220, 222, 230
include/, 138
Includes, 396
IncludesNOEXEC, 396
incoming, faxes, 330
/incoming, 114
incoming mail, 300
incorporating parts of programs, GPL, 578
increment, 212
index.html, 390, 394
index.shtml, 401
Indexes, 396
indexes, Apache, 399
indexing, 229
inet6, 280
inetd, 291, 301, 394, 434, 513, 518, 540, 546, 547

security, 297
services, 294
TCP, 291

inetd.conf, 291, 294
.info, 30
info, 36, 227

documentation, 35
INFO pages, 137
info/, 137
infoseek.go.com, 118
infrastructure, DNS, 275
init, 325, 326, 328, 506, 534, 546
init.d, 196

init.d script, postgres, 415
initdb, 414
initialization, 186
initialization files, 196
initialization string, modem, 24, 330, 342, 453, 454
initializing, postgres, 415
initlocation, 414
initrd, 324
initrd image, 322
inittab, 326, 328, 330, 331, 506, 546
inittab(5), 327
innd, 197
INPUTRC, 94
.inputrc, 94, 539
INSERT INTO, postgres, 420
inserting lines, sed, 79
inserting rows, postgres, 420
inside a loopback device, LINUX, 167
insmod, 323, 537, 546

kernel, 464, 468
inspecting program execution, 223
INSTALL, 32, 237
install count, LINUX, 563
installation, 245

DLL, 235
kernel, 463
package, 193

installation floppy, 147
installation instructions, 237
installation methods, RHCE, 545
installation prefix, 137
installation size, LINUX, 569
installing

LINUX, 20
postgres, 415
Apache, 393
kernel, 483
package, 240

instruction, 208
.int, 274
int, 210, 215
integer, 210
Integrated Services Digital Network, see ISDN
Intel, 474, 493
Intel Architecture 64-bit, 552
interactive, 175
interactive shell, 186
intercharacter spacing, X, 507
interface, 250

aliasing, 259
testing, 260

interface configuration, 251
interfaces(5), 255
Interim Mail Access Protocol, see IMAP
internal modems, 480

599

Index

internal tables, postgres, 417
international treaties, 274
Internet, 117, 120, 132, 247, 273–275, 337, 437,

444–447, 461, 516–518, 552
email, 97
exposure, 515, 518
security, 511
servers, 552
spam, 99

Internet communication, 247
Internet connection, 21, 180
Internet Control Message Protocol, 260
Internet Engineering Task Force, see IETF
Internet Explorer, 568, 569
Internet header length, 247, 264
Internet Protocol, see IP, 247
Internet Service Provider, see ISP
Internic, 282
Internic, 276
interoperability, Samba, 425
interpreted languages, 208
interpreter, 207
interrupt, 86
interrupt execution, 224
Interrupt Request lines, IRQ lines, 17
interrupts, 17, 467

BIOS, 322
IO, 536
IO Control, 142
IO-port, 323
ioctl, 142
IP, 180, 247, 254

address, 247, 250, 252, 256, 273, 277, 300
address classes, 249
checksum, 248, 264
destination address, 248, 253, 264
diagnostic utilities, 260
forwarding, 253, 255
header, 247
identification field, 247, 264
length, 247, 264
Next Generation, 248, 280
offset, 248, 264
options, 248, 264
source address, 248, 264
special-purposes addresses, 249
testing, 260
time to live, 248, 264
TOS, 247, 264
TTL, 248, 264
type of service, 247, 264
version 6, 248, 280

IP address, 182, 203, 392, 408, 438, 445
Samba, 428

IP masquerading, 459

IP packet, 248
IP-based virtual hosting, Apache, 407
ip forward, 255
IPADDR, 254
ipcclean, 414
ipchains, 458, 547, 549
ipfwadm, 458
ipliteral, 306
ipop3d, 294
iptraf, 550
IPX, 285
IPX/SPX, 426
IRIX, 551, 561
IRQ, 18, 20, 323, 466, 467, 470, 480, 536

RHCE, 544
IRQ lines, Interrupt Request lines, 17
IRQ port, 536
ISA, 462, 467, 470, 480

slots, 17
ISA cards, 467
ISA device drivers, 467
ISA jumpers, 472
ISA slots, 8-bit, 18
isapnp, 536
isapnp, 327, 470, 545

RHCE, 544
isapnp.conf, 470
ISDN, 462, 547

LPI, 540
PPP, 453, 462

ISDN modems, 145, 462
ISO 9660 partition, security, 520
ISO Latin 1, 507
ISO9660, 479
iso9660, 163, 287
ISP, 24, 180, 274, 462, 552

J
Java, 414
Jazz, 161
JCPU, 108
jed, 58, 59

editors, 58
JFIF, 37
job control, 82
job number, 83
jobs, 82

background, 108, 176, 532
foreground, 532
LPI, 532
scheduling, 409

jobs, 532
joe, 59
join, 532
journaling, file system, 160

600

Index

JPEG, 37, 114, 204
.jpg, 30
jumpers, 17
junk mail, 99

K
kaudioserver, 545
kbdrate, 38
KDE, 59, 492

RHCE, 546
kdm, 546
Kerberos V, 430
kernel, 82, 214, 227, 238, 320

LINUX, 551, 560
/etc/conf.modules, 469
/etc/modules.conf, 469
2.2, 464
2.4, 464
Configure.help, 483
Makefile, 464
System.map, 464, 484
bzImage, 484
defconfig, 483
depmod -a, 484
depmod, 464
insmod, 464, 468
klogd, 464
lsmod, 464, 465
make menuconfig, 483
make targets, 483
modinfo , 468
modprobe, 465, 468
rmmod -a, 465, 471
rmmod, 464
ATAPI, 477
boot, 325
boot floppy, 484
boot image, 463
boot options, 317, 320
building, 481, 483
CD writer, 477, 478
CD-ROM, 477
commercial drivers, 482
compile, 481
compiled-in modules, 464, 483
compiled-out modules, 464
configuration, 482
dynamic loading, 469
execution, 318
headers, 463
IDE, 477
installation, 463
installing, 483
module, 463
multiple Ethernet cards, 475

NFS, 289
Plug-and-Play, 470
RHCE, 545
SCSI, 475, 476
SMP, 483
sound, 469
sound cards, 470
source, 463
source code, 463
support daemons, 463
unpacking, 481
versioning, 464

kernel 2.4, 473
kernel 2.4, 458
kernel image, 295, 318
kernel loader, Windows, 468
kernel module documentation, 469
kernel source, RHCE, 546
kernel source tree, 482
kernel sources, 118
kernelcfg, 546
key conventions, X, 493
key press, X, 488
keyboard repeat rate, 38
keys, less, 38
keys, common bindings

LINUX, 10
kill, 86
kill, 84, 180, 190, 532
kill the X server, X, 493
killall, 85, 292
killing netscape, 185
klogd, 545

kernel, 464
kpackage, 545
kpm, 549
ksysv, 546

L
l command, 224
label, 320
lack of warranty, GPL, 578
LAN, 107, 114, 248–250, 256, 425, 426
language, 207
language negotiation, Apache, 399
LanguagePriority, 400
Large Block Addressing, 154
laserjet printer, 30
last, 549
last sector, 143
lastcomm, 549
latency, 87
LATEX, 57
LATEX, 29, 31, 132
LBA, 154, 319

601

Index

lbxproxy, 494
LCK..device, 342
LD LIBRARY PATH, 187, 233, 236
LDAP, 430, 548
ldapd, 547, 548
ldconfig, 233, 235, 537
ldd, 234, 537
LDP, 133
leak memory, 214
lecture schedule, 525
ledger, 201
left arrow key, 10, 55
legacy, 195, 203
legal, 201
length

file name, 7
IP, 247, 264
UDP, 269

less, 38, 143
beeping, 38
keys, 38
usage, 38

lessons, 525
letter, 201
level I, certification

LPI, 531
LI prompt, 156
LIB, 90
/lib, 156, 230
lib, 137
/lib/, 233
/lib/libc.so.6, 228
/lib/modules/, 322
/lib/modules/<version>/, 463
/lib/modules/<version>/modules.dep,

465
libc, 278
libc6, 561
library, 227, 233

C, 227
static, 29

library calls, 217
library compatibility, 235
library file, 233
library function

C, 209, 216
X, 488

library name, 232
library versioning, 234
libsafe, security, 518
libX11.so, X, 491
libXt.so, X, 491
Licensing, GNU, 556
LIDS, 522
Lightweight Directory Access Protocol, see LDAP

lilo, 317, 318, 463, 467, 481
make, 538

lilo(5), 324
lilo.conf, 319, 321, 324, 468, 484, 536
LILO:, 317, 320, 328

prompt, 329, 467, 478
limitations, BIOS, 319
limits, 176
line break, 337
line continuation, 75
line number, 180
line printer, see printer
linear, 324
LINENO, 92
link count, 190
linked libraries, 234
linking, 230
links, 127, 128, 146
Linus Torvalds, 551
LINUX, costing, 564
LINUX

compatibility, 551
console, 11
distributions, 54, 117, 291, 302, 347, 522, 554,

560, 573
error codes, 26
file system, 135
file system standard, 347
graphical desktop, 9
hardware requirements, 569
hardware support, 570
IDE labeling, 20
inside a loopback device, 167
install count, 563
installation size, 569
installing, 20
kernel, 551, 560
keys, common bindings, 10
migration, 567, 568
native file system, 160
news, 118
number of users, 563
on one floppy, 138
partition, 319
porting, 551
resources, 117, 527
restarting, 11
running Windows programs on, 571
support, 563
users, 117, 118
virtual consoles, 329
Windows in another partition, 143

LINUX Software Map, 556
Linux Documentation Project, 133
Linux Intrusion Detection System, see LIDS

602

Index

Linux Loader, 317
Linux Planet, 118
Linux Software Map, 30
Linux Weekly News, 118
linuxconf, 196, 545–549
/linuxrc, 322
Lisp program source, 30
list, 224

ls, 10
listing a table, postgres, 419
listing databases, postgres, 417
listing domains, 284
listres, 494
listserv, 119
literal constant, 222
.lj, 30
LMB, Samba, 428
ln, 189, 190
lndir, 494
lo, 251
LOADLIN.EXE, 468
LoadModule, 406
local, 137, 175
Local Area Network, see LAN
local domain, 300
local function, 229
Local Master Browser, see LMB
local delivery, 305
local delivery:, 305
local domains, 304, 305
locale settings, 507
localhost, 286, 445, 494
localhost.localdomain, 445
localuser:, 305
locate, 43, 409, 533, 545
locating PCI modules, 474
locating rows, postgres, 421
.lock, 188
lock, 320
lock file, modem, 335
lockd, 286
lockfile, 190
locks, 342
log, bootup messages, 37
.log, 30
log file rotation, 535
log files, 30, 156, 198

rotation, 198
log format, Apache, 395
log program, 106
log subject, 303
logcheck, 545
LogFormat, 395
logging, 296
logging in, 9

logical, partition, 154
login

authentication, 330
name, 9
password, 9
prompt, 9, 330
terminal, 330

login, 106, 107, 186, 294
login limits, LPI, 542
login name, 40, 97
login shell, 184, 186
login: prompt, 506
LogLevel, 395
LOGNAME, 107
logout, 13
logrotate, 198, 545
long, 215
long double, 215
long file name, 44, 162
look-and-feel, 567
lookup, DNS, 276
lookuphost, 306
loop, 212, 216, 218
loopback device, 167, 251
loopback interface, 251
loopholes, 513

security, 516
looping, 62
loops, LPI, 539
losetup, 167, 168, 324
/lost+found, 165
lp, 193, 199
lp print queue, Samba, 432
lpc, 196, 203, 538, 545
lpd, 146, 193, 196–198, 203–205, 227

RHCE, 546
lpf, 196
LPI

BIOS settings, 536
booting process, 534
BUGTRAQ, 541
CERT, 541
certification, 2
command history, 531
command-line, 531
disk partitions, 533
email assistance, 535
environment variables, 531
exam questions, 531
export display, 539
FHS, 533
file management, 532
filter, 532
floppy disk boot, 536
fundamental system administration, 531

603

Index

GNU source packages, 537
group, 533
ICMP, 540
ISDN, 540
jobs, 532
level I, certification, 531
login limits, 542
loops, 539
mail aliases, 541
mail forwarding, 541
mailing lists, 534
monitor, 539
network interfaces, 540
network masks, 540
newsgroups, 534
NT domain, 541
objective weighting value, 531
package corruption, 541
password expiry dates, 541
permissions, 533
PPP, 540
process limits, 542
program priority, 532
quotas, 533
redirecting standard input/output, 532
regular expressions, 532
requirements, 3
SCSI BIOS, 536
security, 541, 542
shadowed passwords, 541
shell commands, 531
simple filesystem problems, 533
streams, 532
SUID bit, 541
suid-rights, 539
TCP, 540
TCP wrappers, 540, 541
telephone assistance, 535
test, 539
UDP, 540
update binaries, 541
video card, 539
web page, 531
web site, 534
wildcards, 532
WINS client, 541
X font server, 539
X server, 539

lpq, 193, 196, 203, 538, 545
lpr, 193–196, 204, 538, 545
lprm, 193, 196, 538, 545
LPRng, 194, 202
lptest, 196
ls

-al, 25

ls -l, 13
distinguishing directories, 13
list, 10
usage summaries, 33

ls -l, ls, 13
LS120, 161
lsattr, 520, 549
.lsm, 30
lsmod, 537, 546

kernel, 464, 465
lspci, 473, 474
LUN, SCSI, 476
lurkftp, 550
lwn.net, 118
Lycos, 119
lynx, 39
LyX, 30
.lyx, 30

M
m4 macro, 546
MAC, security, 522
Macintosh, 425
MacOS, 58
macros, 222
magic filter, 204
magic numbers, 37, 204
magnetic head, 153
MAIL, 93, 107

RCPT, 313
mail, 193, 291, 528

uucp, 343
clients, 99
delivery, 299
distributed, 337
header, 300
new message, 301
queue, 299
queue deletions, 309
queuing, 302
relay, 304
removing messages, 309
retries, 302
retry schedule, 300
routing, 299, 306
testing, 100

mail, 99
Mail Abuse Prevention, 313
mail aliases, LPI, 541
mail box, 97
mail client, 300, 301
mail file, 173
mail folder, 187
mail forwarding, LPI, 541
mail header, 98

604

Index

mail header fields, 98
mail message, 97
mail queue, 180
mail readers, terminal, 99
mail retrieval, 295
mail server, 99, 299, 302
mail spool files, 156
mail spooling, RHCE, 548
Mail Transfer Agent, see MTA, 99
MAIL WARNING, 93
mailbox, 113, 299
mailbox file, 97, 301
mailbox file locking, 188
MAILCHECK, 93
Maildir, 300, 301
mailer daemon, 99
MAILER-DAEMON, 310
mailing list, 119
mailing lists, 117, 196, 534

LPI, 534
Samba, 430

MAILPATH, 93
mailq, 301, 309, 541
main function, 208, 211, 224
mainframes, 552
maintaining software, GNU, 562
major device numbers, 143
major MIME type, 115
major version, 238, 240
majordomo, 119
make, 230, 232, 314, 537

bzImage, 538
clean, 538
depmod, 538
dep, 538
lilo, 538
menuconfig, 538
modules install, 538
modules, 538

make targets, 231
kernel, 483

make directory, mkdir, 12
make install, 537
make menuconfig, kernel, 483
makedbm, 547
MAKEDEV, 476, 480
Makefile, 230, 233, 237, 537

kernel, 464
Makefile rules, 231
Makefile targets, 231
makepsres, 494
makestrs, 494
malformed, header, 313
.man, 30
man, 187, 201, 228

documentation, 35
sections, 35

man page, 32, 134, 137, 196
man pages to, PostScript, 134
man/, 137
Mandatory Access Controls, see MAC
Mandrake, 156, 554, 561

.rpm, 3
map file, 318
MAPS, 313
market, embedded, 552
markup language, 31
mars-nwe, 546
masquerading, PPP, 459
Master Boot Record, see MBR
master IDE, 19
master setting, DNS, 451
master/slave, IDE, 19
MBR, 318, 320
MBX file locking, 188
mc, 40
mcedit, 58

editors, 58
MD5, 244

hash, 244
md5sum, 243
MDA, X, 505
medusa, security, 522
megahertz, 208
Mem, 89
memory, 208, 217
memory allocation, 214
memory consumption, 88
memory leak, 214
memory location, 214
memory reallocation, 218
menuconfig, make, 538
menus, 491
mergelib, 494
message, 115
message body, 300

email, 98
message header, email, 98
messages, DNS, 444
Meta-Font, 30, 132
metalab.unc.edu, 117, 237, 260
.mf, 30
mgetty, 325, 326, 330, 331, 343, 461, 506
mgetty(8), 330
mgetty, with

uucp, 341
mice, 21
Microcomputer Organization, 15
microphone, 40, 141
microseconds, 40

605

Index

Microsoft, 427
Midnight Commander, 40, 58
migrating from, Windows, 567
migrating from another database, postgres,

422
migration, LINUX, 567, 568
mikmod, 41, 87
mikmod(1), 87
.mil, 274
military department, 274
million instructions per second, 208
MIME, 115

RHCE, 548
MIME types, 115, 395
mimencode, 115
miner MIME type, 115
mingetty, 329
Mini HOWTOs, 133
minimal config file, Samba, 431
minimum header, TCP, 265
minix, 163
minor device number, 143
minor version, 238, 240
minus key, 494
MIPS, 208, 552
mirror, 117
mirrordir, 271
mission-critical applications, 552
MIT, 556
mk-ftp-stats, 550
mkbootdisk, 547
mkbootdisk(8), 547
mkcfm, 494
mkdir, 34, 167, 287, 324

make directory, 12
mkdirhier, 494
mke2fs, 161, 167, 324, 536
mkfontdir, 494, 508
mkfs, 160
mkinitrd, 324
mknod, 148, 464
mkswap, 162
mmencode, 115
/mnt, 156
/mnt/cdrom, 163
mod, audio format, 41
mod files, 41
mode, 305
mode fail narrower, 305
Modeline, X, 502
modem, 21–23, 330, 337, 342, 536

AT commands, 342, 453
uucp, 341
carrier signal, 24
command mode, 24

commands, 342, 453
connect mode, 24
initialization string, 24, 330, 342, 453, 454
lock file, 335
speed, 454

modem cards, 480
modem port, 146
modem protocols, 24
modes, vi, 54
modification times, 126
modifying

GPL, 575
software, 574

modinfo, 537
modinfo , kernel, 468
modprobe, 537, 546

kernel, 465, 468
modulation, 24
module, 322, 463

documentation, 469
kernel, 463
options, 467
RHCE, 546
SCSI, 322, 323

module support, 322
modules, make, 538
modules.conf, 474
modules install, make, 538
Monitor section, X, 501–503
monitor, LPI, 539
monochrome displays, 505
monochrome graphics adapter, see MDA
more, 38
motherboard, 15, 18, 208
Motif, 492
Motorola, 552
mount, 163, 166, 167, 286, 287, 324, 533, 545

Samba, 432
mount(8), 163
mount points, 536
mountd, 286
mounting, 163

automatically, 166
CD-ROM, 163
file system, 163
floppy, 164
read only, 166
Windows NT partitions, 164
Windows partition, 164

mounting read-only, 156
mouse, 142
mouse and keyboard input, X, 487
mouse click, X, 488
mouse conventions, X, 497
mouse operations, 497

606

Index

mouse port, 146
mouse protocol, 142
mouseconfig, 544
movement, GNU, 557
Mozilla, 568
mpack, 115
mpage, 204
MPEG, 40
mpg123, 40
mrtg, 550
MS-DOS, 18, 44, 58, 59, 81, 144, 147, 160, 285, 318,

321, 426, 479, 525, 570
editors, 54
file system, 161
floppies, 148
floppy, 44, 162, 164

msdos, 163
msp, 269
mt, 149
mt(1), 149
MTA, 99, 299
mtime, 126
mtools, 44, 164

command list, 44
mtp, 269
multi off, 279
multi on, 279
multiheaded display, X, 494
multimedia commands, 40
multiple Ethernet cards, kernel, 475
multiple IP addresses, 448
multiple network cards, 279
multiport card, 144
multiport serial card, 480
multiport serial cards, 330, 479
multiprocessor machines, 552
Multipurpose Internet Mail Extensions, see

MIME
multitasking, 552
multiuser, 552
multiuser mode, 325
multiuser system, 97
multiuser systems, security, 512
MultiViews, 396
munpack, 115
music, 41
mutt, 99, 190
mutt dotlock, 190
mv, 175
MX record, DNS, 284, 441–443, 446
MX records, 528, 548
mx, 199

N
n command, 225

N: drive, 429
name

file name, 29
login, 9
resolution, 276

-name option, find, 43
name resolution, Samba, 427
name server, 180, 268, 276, 300, 437, 541
Name Server Operations Guide, DNS, 438
name-based virtual hosting, Apache, 407
named, 519, 546

DNS, 437, 438
named(8), 438
named pipes, 146
named-xfer, DNS, 438
named-xfer(8), 438
named.boot, 438

DNS, 438
nameserver, 269, 280
NameVirtualHost, 408
nano, 59
NAT, see masquerading
native execution, 208
native file system, LINUX, 160
native printer code, 200
nausea, 222
navigation, 175
NBNS, Samba, 428
ncpfs, 163
ndc, DNS, 438
ndc(8), 438
ndots, 280
nedit, 59
negotiation, TCP, 263, 268
nessus, 550
.net, 274
NetBEUI, Samba, 426
NetBIOS, Samba, 426, 427, 430
NetBIOS Enhanced User Unterface, see NetBEUI
NetBIOS Name Service, see NBNS
NetBSD, 552
netcfg, 544, 546–549
netconfig, 544, 546, 548
NETMASK, 254
netmask, 253
netpipes, 390
Netscape, 300, 568
netscape, 120, 185, 200, 539
netstat, 269, 513, 518, 540
NetWare, 425
netwatch, 550
NETWORK, 254
network, 249

clash, 250
PPP, 453

607

Index

network address, 250
network address translation, see NAT
network attacks, security, 511
Network Basic Input Output System, see Net-

BIOS
network card, 247, 408
network client programs, security, 514
Network File System, see NFS
network file system, 190
Network Information Services, see NIS
network interface, 250
Network Interface Cards, see NIC
network interfaces, LPI, 540
network intrusion detection, security, 522
network mask, 250
network masks, LPI, 540
Network Neighborhood, 428

Windows, 425
network part, 248, 250
network segment, 261
network services, 178
network transparent, X, 486
network/mask notation, 253
NETWORKING, 254
networking

dialup, 453
RHCE, 546

networking cards, 132
never users, 304
new disk, partition, 155
new message, mail, 301
newaliases, 301, 315, 541
newline, 218
newline character, 209
NEWS, 32, 237
news, 337

LINUX, 118
News Forge, 119
news reader, 120
newsgroups, 117, 120, 534

LPI, 534
next, 225
NeXT Computers, 493
Next Generation, IP, 248, 280
NeXTStep, 493
NFS, 190, 268, 285, 286, 325, 426, 529

access permissions, 288
configuration, 286
file-sharing, 285
kernel, 289
processes, 286
RHCE, 546, 549
root mounts, 481
security, 289, 518

nfs, 163, 287

nfs-utils, 518
nfsd, 286
NI, 89
NIC, 472, 536
nice, 88, 296, 332, 532
nice values, 87
niceness, 87

process, 87
NIS, 279

RHCE, 547, 548
NIS domain, 327
nl, 532
nmb, 541
nmbd, Samba, 427, 428
nmblookup, 546

Samba, 428
no operation, 175
no-check-names, 280
no access, 297
no exit on failed exec, 96
no root squash, 288
nobody user, 390
noclobber, 95
--nodeps, 241
nohup, 39
noise, 23
nolinks, 95
non-booting systems, 317
nonprofit organization, 274
Norton Commander, 40
nospoof, 279
note, 201
notes, course, 2
notify, 94
NS, 440
NS record, 548

DNS, 283, 441–443, 446
nslookup, 282, 284, 541
NT domain, LPI, 541
ntalk (518), 295
ntalkd, 294
ntfs, 163, 164
ntsysv, 546
null-terminated, 213
number of users, LINUX, 563

O
.o, 231
-O0, 223
-O2, 239
-O3, 239
object files, 229
object ID, postgres, 420
object oriented, 492
object relational, postgres, 420

608

Index

object relational database, 420
object-oriented, 286, 493
object-relational, 414
objective weighting value, LPI, 531
Objective-C, 493
oclock, 494
octal, 125
octet, encoding, 7
od, 532
office suites, 567
offset, IP, 248, 264
oid, postgres, 421
OLDPWD, 92
on one floppy, LINUX, 138
one-way hash, 103
only from, 296
Open Relay Behavior-modification System, 313
Open Software Foundation, see OSF
Open Sound project, sound, 474
Open Source, 427
open source, 207
OpenBSD, 552
opening files, 217
OpenSSH, 271
OpenStep, 493
openWall project, 521
Operating System, see OS
opportunity for attack, security, 519
/opt, 187
/opt/src, 238
OPTARG, 93
OPTERR, 94
optimization, 223
OPTIND, 93
Options, 396
options

IP, 248, 264
module, 467
TCP, 265

options, 280
OR, 216
ORBS, 313
Order, 397
order, 279
.org, 274
.org.za, 276
OS, 20, 207, 317, 320, 551, 564, 566
OS/2, 58, 285, 393, 425, 564, 570
OSF, 551

X, 485
OSTYPE, 93
other, 321
outdated packages, security, 516
outgoing mail, 300
Outlook Express, 300

output, 209
overwriting, 178
ownerships, 514

P
p command, 224
PAC, 430
pac, 196
package, 135, 137, 193, 240, 516

postgres, 414
building, 237
configuration, 193
control field, 244
dependencies, 241, 245
file lists, 243, 245
installation, 193
installing, 240
querying, 241
removing, 241
selector, 245
source, 246
status, 242
tag, 244
uninstalling, 240
upgrading, 240
versioning, 238, 240

package, exim, 301
package corruption, LPI, 541
package management, 245
package numbering, 240
package verification, 517
package-specific options, 238
packaging-manual, 246
packet, 247, 261, 263, 266
packet filtering, 458
packet forwarding, 255
page size, 201
palette, X, 505
PAM, RHCE, 547, 549
pan, 120
PAP, 456
PAPERSIZE, 201
Parallel port, 18
parallel port, 472, 536

RHCE, 544
parallel port ATAPI, disk, 144
parallel port ATAPI CD-ROM, 144
parallel port ATAPI disk, 144
parallel port CD-ROM, disk, 144
parallel port IDE, disk, 144
parallel port IDE disk, 144
parallel port kernel module, 203
parameter expansion, 172, 173
parent, process, 91
parent process, 91

609

Index

parent shell, 184
paritions, disk, 153
parity bit, 22
partition, 143

LINUX, 319
adding, 157
boot, 318
boot sectors, 318
boot up message, 159
bootable, 158
booting, 317
extended, 154, 321
formatting, 160
logical, 154
new disk, 155
primary, 154, 156, 318, 321
read-only, 168
swap, 327
type, 158
Windows, 143, 318

partition sizes, 536
partition table, 147, 153, 154, 321
partitioning

example, 155
guideline, 155
RHCE, 544

partitioning session, 155
passwd, 9, 105, 106, 514, 535, 545

usage summaries, 33
password, 9, 104, 320

hash, 103
login, 9
prompt, 329

password, 320
Password Authentication Protocol, see PAP
password cracking, 103

security, 524
password expiry dates, LPI, 541
password file, 102
password sniffing, security, 517
paste, 532

X, 487, 497
.patch, 179
patch, 179, 180
patch file, 179
patch level, 235
patch number, 238, 240
patches, security, 482
PATH, 46, 91, 93, 107, 137, 172, 177, 179, 187, 236,

243, 407, 493
adding to, 46

path
absolute, 34, 128
relative, 128

paths

full path name, 34
relative, 34

pause, 176
.pbm, 30
PC, 15, 38, 214, 318, 412, 425, 426, 429, 454, 455,

551, 565, 570
PC hardware, 15
.pcf, 30
PCI, 18, 462, 467, 473, 475

device ID, 474
RHCE, 544
vendor ID, 474

PCI graphics cards, 501
PCI slots, 18, 473
pci.ids, 474
pciscan, RHCE, 544
pcitable, 474
pcitweak, 494
pciutils, 473, 474
PCL, 200
PCMCIA, 544
PCPU, 108
.pcx, 30
PD, 556, 559
.pdf, 31
penetration testing, security, 524
Pentium, 552
performance, 487
periodic, commands, 409
peripheral, cards, 17, 18
peripherals devices, 15
Perl, 31, 414
permission bits, 125
permission denied by remote, 338, 340
permissions, 123, 126, 514

LPI, 533
perror, 217
personal computer, see PC
personalized tuition, 526
.pfb, 31
pg ctl, 414
pg dump, 414

postgres, 423
pg dumpall, 414

postgres, 423
pg encoding, 414
pg id, 414
pg passwd, 414
pg upgrade, 414
pg version, 414
phone, 330
PHP, 31
.php, 31
PHP scripts, 407
PHP, with

610

Index

Apache, 406
physical disk, 154
physical drive, 153
physical memory, 37
pico, 59
PID, 81, 85, 172, 175, 177, 185, 190, 296, 325, 329,

519
PID, 89
PidFile, 394
pine, 99
ping, 180, 259, 260, 281, 458, 520, 540
-pipe, 239
pipeline, 83
pipes, 73, 86, 146, 181
pkzip, 32
.pl, 31
plain text, 131, 198, 201, 204, 223, 278, 422

security, 515
platform-independent library, 492
play, 40, 410
Plug-and-Play

kernel, 470
PnP, 17

plus key, 494
.png, 332
PnP, 536

Plug-and-Play, 17
pnpdump, 545
point to point protocol, see PPP
point-and-click-install, 1
point-to-point, Samba, 427
Pointer section, X, 499
pointer, 214
poll file, 346
POP, 295, 299, 301, 546

secure, 518
security, 301

POP host, 300
pop-3, 295
POP3, 270, 295, 337, 338
pop3, 518
popd, 175
Port, 394
port

1, 519
6, 519
20, 459
21, 294, 459, 519
22, 459, 519
23, 294
25, 99, 299, 300, 459, 519
53, 459, 519
67, 295
69, 295
79, 295

80, 265, 389, 459
110, 271, 295, 301, 459
113, 295, 459
119, 459
143, 295, 301, 459
400, 519
513, 294
514, 294
515, 519
517, 295
540, 295
901, 435
1024, 265
6000, 486
bind, 269
serial, 142
TCP, 292

port scan, security, 523
port speed, serial, 22
portable, 220
ported, 207
porting, 238

LINUX, 551
UNIX, 552

portmap, 285, 518, 547
ports, serial, 20
position-independent code, 234
positional parameters, 172
POSIX, 551
POST, 405
Post Office Protocol, see POP
postfix, 301
postgres, 404, 405, 414

ALTER TABLE, 420
CREATE TABLE, 418
DROP TABLE, 420
INSERT INTO, 420
SELECT, 414, 417, 419, 421
bool, 418
init.d script, 415
oid, 421
pg dumpall, 423
pg dump, 423
psql, 417
adding a column, 420
attribute, 418
backup, 423
column typing, 418
creating tables, 418
database, 414
delete/dropping a column, 420
delete/dropping a table, 420
documentation, 414, 418
dumping and restoring tables, 422
European date formats, 416

611

Index

HTML documentation, 415
initializing, 415
inserting rows, 420
installing, 415
internal tables, 417
listing a table, 419
listing databases, 417
locating rows, 421
migrating from another database, 422
object ID, 420
object relational, 420
package, 414
searches, 422
searching, 423
server program, 414
SQL commands, 414
start stop scripts, 415
subselects, 414
supported types, 418
template database, 416
transactions, 414
user commands, 414
user-defined types, 414
views, 417

postgres, with
Windows, 414

PostGreSQL, 414
postgresql0dump, 414
postmaster, 310, 414
PostScript, 184, 200

man pages to, 134
X, 487

PostScript display engine, 493
PostScript emulator, 200
PostScript printer, 200
PowerPC, 240, 552
ppc, 240
PPID, 89, 92
PPP, 341, 536, 547

dialup, 338
ISDN, 453, 462
LPI, 540
masquerading, 459
network, 453
protocol, 454
RHCE, 548

PPP protocol, 461
ppp0 device, 462
pppd, 257, 258, 454, 461, 548

chat, 454
chat script, 455
defaultroute, 455
command-line, 454
dial-in, 460
dial-on-demand, 458

dialout, 454
pr, 532
prefdm, 546
--prefix, 238, 239, 393
preprocessor, C, 222
preprocessor directive, 222
present working directory, 176

pwd, 13
prevention, spam, 312
previous working directory, 173
PRI, 89
primary, partition, 154, 156, 318, 321
primary master, 143, 155, 160
primary slave, 143
print, 224

filter, 200
header, 199
Samba, 425

print filter, 200, 203, 204, 333, 336
print preview, 201, 205
print queue, default, 199
print share, Windows, 205
print tray, 193
printcap, 196, 199, 204, 205
#printenv, 401
PRINTER, 199
printer, 527

access control, 202
queue, 193
supported devices, 201

printer cable, 203
printer capabilities, 199
printer configuration, 201
printer control language, 200
printer device, 199
printer drivers, 201
printer management, 193
printer native code, 200
printer spool directory, 198
printers, serial, 21
printf, 176, 209, 211, 214
printf(3), 176, 209
printing, 193
printing troubleshooting, 203
printtool, 196, 204, 545
priority

CPU, 87, 296
process, 87

Privilege Attribute Certificate, see PAC
/proc, 156, 166, 255, 545
/proc file system, 178
proc, 163
proc file system, 167
/proc/, 466
/proc/cmdline, 317

612

Index

/proc/devices, 467
/proc/dma, 466
/proc/interrupts, 480
/proc/ioports, 466
/proc/kcore, 146
/proc/pci, 474
/proc/tty/driver/serial, 480
process, 81

child, 91
environment, 90
niceness, 87
parent, 91
priority, 87
scheduling, 87

process ID, see PID, 394, 519
process limits, LPI, 542
process list, 185
process tree, 185
processes, NFS, 286
processes, 89
processing, command-line arguments, 68
processor, 208
processor instructions, 513
.procmail, 548
procmail, 190

RHCE, 548
procmail support, exim, 308
procmail(1), 308, 548
procmailex(5), 308, 312, 548
procmailrc(6), 308, 548
.profile, 186, 539
program, filter, 201
program priority, LPI, 532
program source code, 29
programing, X, 498
programming

computer, 3, 61
X, 498

programming language, 207
programs, X, 494
project, GNU, 551, 557
projects, C, 230
promiscuous, 262
prompt, 223

LILO:, 329, 467, 478
login, 9, 330
password, 329
shell, 9

prompt, 320
PROMPT COMMAND, 94
proprietary protocols, 200
protocol, 487

PPP, 454
X, 486

protocol g, uucp, 341

protocol responses, X, 486
protocol t, uucp, 340, 341
proxyarp, 461
proxymngr, 494
.ps, 31, 200
ps, 82, 185, 226, 532
ps variations, 185
PS/2, 544
PS/2 mouse, 144
PS1, 94
PS2, 94
PS3, 94
PS4, 94
pseudo-TTY, 145
PseudoColor, X, 505
pseudonym, 175
psql, 414, 423

postgres, 417
psutils, 204
PTR record, DNS, 283, 441–443, 446
PTR records, 548
public domain, see PD
pump, 546, 548
pushd, 175
pwconv(8), 517
PWD, 92, 172
pwd, 34, 176

present working directory, 13
.py, 31
Python, 31, 134, 414

Q
Q key, 38
qft0, 146
qmail, 301
qnx4, 163
qotd, 269
Qt, 59, 492, 497
quad density, 145
qualified host name, 273
QUERY STRING, 402, 405
querying, package, 241
queue

mail, 299
printer, 193

queue deletions, mail, 309
queuing, mail, 302
quick-quiz, security, 523
QuickStart guide, X, 498
quiet mode, 201
Quinlan, Daniel, 347
quit, 86
quota, 533, 545
quotaoff, 545
quotaon, 533, 545

613

Index

quotas
LPI, 533
RHCE, 545

quotastats, 545
quotawarn, 545
quote notation, 70
quotes, 209

backward, 71
double, 70
forward, 70
shell, 70

R
r, 224
R3000, 552
R4000, 552
-r600x600, 201
radio0, 146
RAID, RHCE, 546
RAID devices, RHCE, 544
RAM, 15, 37, 81, 156, 214, 329, 464, 468
RAM DAC, X, 501
RAM device, 167
RAM devices, 168
ram0, 146
Ramey, Chet, xxxi
Ramey, Chet, 83, 92, 172
RANDOM, 92, 172
random access devices, 142
random bytes, 184
random key, 203
ranlib, 229
RAWRITE.EXE, 321
RBAC, security, 522
RBL, spam, 313
rbl domains, 313
rbl reject recipients, 313
rc3.d, 197
rcp, 112, 337
RCPT, 100

MAIL, 313
RD pin, 21
rdev, 321
re-mail-ck, 269
re-request, ARP, 251
read, 62
read lock, 188
read only, mounting, 166
read permission, 124
read-only

file system, 168
partition, 168

read-only, 321
read-only partitions, security, 520
read-write test, disk, 161

readability, 220
reading files, 217
reading resources, security, 523
README, 32, 237
real time OS, 554
real time scheduling, 87
real UID, 109
real-time blocking list, see RBL
realloc, 218
reboot, 11, 326
rec, 40
receive pin, 21
receiving, faxes, 325, 330, 331
recipient, 100
recipient address, 300
recipients reject except, 313
recompiled, 207
record, DNS, 283
recording volume, 141
recursive, 42, 125, 179

copy, 112
recursive call, 181
recursive searches, 180
recursively

copying, 34
removing, 34

recv, 264
recv(2), 264
RedHat, 1, 135, 156, 554, 561
RedHat Package Manager, 135
RedHat-like, 1

.rpm, 3
redirecting, streams, 75
redirecting standard input/output, LPI, 532
redirecting the terminal, 184
redirection operator, 76
reference

Apache, 393
documentation, 2

Regents of the University of California, see BSD
regular expression examples, 50
regular expressions, 49, 75, 185

extended, 52
LPI, 532
subexpressions, 52, 78

reiserfs, file system, 160
rejecting, header, 313
relational algebra, 423
relative

path, 128
paths, 34

relay, 100
mail, 304
untrusted hosts, 304

relay domains, 304, 314

614

Index

release, 240
reliable communication, 263
reliable stream, 263
remote

access, 113
X, 486

remote attack, security, 512
remote copy, see rcp, 112, 337
remote displays, RHCE, 547
remote login, 111
remote machine, 112
remote print queue, 199
Remote Procedure Call, 286
remote shell, see rsh, 112, 294, 337
remote smtp, 305, 306
remote smtp:, 305
remounting, 168
removable, IDE drives, 161
removing

directories, 34
files, 34
package, 241
recursively, 34

removing messages, mail, 309
renice, 87
reorder, 279
repartition, 147
repeat rate, 38
replacing, 49
REPLY, 92
repquota, 533, 545
Request For Comments, 121
request to send, see RTS
requirements

LPI, 3
RHCE, 3

rescue disks, 178, 554
rescue floppy, 147

RHCE, 547
Resident Set Size, 88
resize, 494
resizing PostScript, 204
resolution, 491

name, 276
resolv.conf, 445
resolver, 276, 280
resolver(5), 280
resolving host names, 274
resources, LINUX, 117, 527
respawn, 327, 329
respawning too fast error, 328
responsibilities

administrator, 313
spam, 313

restarting, LINUX, 11

restrict access, 297
restricted, 320
resume, 83
retransmission, 337, 338
retries, mail, 302
retry schedule, mail, 300
return code, 209
Return Key, 9
return value, 217
return path add, 305
reverse lookup, DNS, 286, 445
reverse lookups, 203, 445, 528

DNS, 281, 442, 447
revpath, 494
rewinding, tape, 149
RFC, 121, 438
RGB value, X, 487
RHCE

hdparm, 544
isapnp, 544
lpd, 546
pciscan, 544
procmail, 548
sendmail, 548
squid, 546
AGP, 544
Apache, 548
BIOS configuration, 544
BIOS limitations, 544
CD-ROM, 544
certification, 2
CGI, 548
configuring and administration, 544
cryptography, 549
DHCP, 548
DNS, 548
domain servers, 548
EISA, 544
firewalling, 547, 549
floppy devices, 544
forwarding, 547
FTP, 546
Gnome, 546
hardware selection, 544
high availability, 547
high performance, 547
I/O ports, 544
IDE, 544
IDE geometry, 544
installation methods, 545
IRQ, 544
KDE, 546
kernel, 545
kernel source, 546
mail spooling, 548

615

Index

MIME, 548
module, 546
networking, 546
NFS, 546, 549
NIS, 547, 548
PAM, 547, 549
parallel port, 544
partitioning, 544
PCI, 544
PPP, 548
quotas, 545
RAID, 546
RAID devices, 544
remote displays, 547
requirements, 3
rescue floppy, 547
round-robin load-sharing, 548
routing, 547
run levels, 546
Samba, 546, 548
SCSI, 544
security, 547, 549
security tools, 550
serial port, 544
SMP support, 544
TCP/IP, 546
troubleshooting, 547
USB, 544
X, 546
X client server, 546

RI pin, 23
ribbon

IDE, 18
SCSI, 19, 477

Richard Stallman, 557
right arrow key, 10, 55
ring indicator, 23
RiscOS, 58
risks, security, 511
rje, 269
rlogin, 111, 294, 515, 518
rlogind, 294
rlp, 269
rm, 34, 175, 184, 200
rmail, 301, 338, 343
rmmod, 537, 546

kernel, 464
rmmod -a, kernel, 465, 471
Role-Based Access Controls, see RBAC
ROM, 15

BIOS, 318
romfs, 163
/root, 101
root, 99, 101, 137, 141, 194, 269, 321
root login, 106

root device, 146
root directory, 136, 178
root file system, 329
root mounts, NFS, 481
root name servers, 276
root window, X, 494
rotate, 280
rotation, log files, 198
round-robin load-sharing, 448

RHCE, 548
route, 252, 253, 279
route, 252, 540
route -n, 457
route list, exim, 344
routers, exim, 306
routing, 254

mail, 299, 306
RHCE, 547

routing table, 252, 253, 258, 259
rp, 200
rp3, 544
RPC, 286
rpc.lockd, 286
rpc.mountd, 286
rpc.nfsd, 286
rpc.portmap, 285
RPM, 135, 562
.rpm, 3, 31, 135, 237, 241, 301, 546, 562

Mandrake, 3
RedHat-like, 3

rpm, 194, 240, 242, 243, 537, 545
RPM-HOWTO, 246
rpmfind, 545
RS-232, 23
RS-422, 23
RS-423, 23
RS6000, 208, 552
RSBAC, security, 522
rsh, 112, 294, 337
rsh(8), 113
rshd, 202, 294
RSS, 88, 90
rstart, 494
rstartd, 494
rtin, 120
RTS, 22
RTS/CTS flow control, 22
Rubin, Ryan, 511
Rule-Set-Based Access Controls, see RSBAC
rules, 231
run, 224
run level, 325, 326, 329
run level 0, 328
run level 3, 197
run level 6, 328

616

Index

run levels, RHCE, 546
run-parts, 411
running Windows programs on, LINUX, 571
runq, 308
runtime, 203, 234, 406, 537
Russell, Rusty, 347
rxvt, 184, 539

S
s command, 225
S60lpd, 197
SAINT, 550
Samba, 528

lp print queue, 432
mount, 432
nmbd, 427, 428
nmblookup, 428
smbclient, 428, 432
smbd, 427, 431
swat, 428, 429
broadcast, 427
configuring, 431
configuring printers, 434
configuring windows, 433
DMB, 428
documentation, 435
file, 425
interoperability, 425
IP address, 428
LMB, 428
mailing lists, 430
minimal config file, 431
name resolution, 427
NBNS, 428
NetBEUI, 426
NetBIOS, 426, 427, 430
point-to-point, 427
print, 425
RHCE, 546, 548
share, 427, 432
SMB, 425, 426
web administration, 428, 434
Windows NT/2000, 435

Samba 2.0, 429
SARA, 550
sash, 323
SATAN, 550
/sbin, 156
sbin, 137, 196
/sbin/getty, 326
/sbin/init, 318, 325, 329
/sbin/insmod, 323
/sbin/ipfwadm-wrapper, 458
/sbin/mgetty, 326, 330
/sbin/update, 327

scalable fonts, X, 509
scanner, 146
scanners, 145, 544
scanning, 184
scanpci, 473, 474, 494
scheduling

uucp, 346
commands, 409
jobs, 409
process, 87

scheduling priority, 87
scientific simulations, 552
SCO, 551
scope, 1
scp, 112, 518
Screen section, X, 503, 504
script kiddies, 511

security, 516
scripting, 61
scripting language, Tcl, 492
scripts, 178
SCSI, 18, 322, 464

adapter, 478
bus, 476
card, 476
CD writer, 478
CD-ROM, 19, 145, 146
cooling, 477
device, 143, 146
disk, 144
disk drive, 19
drive, 476, 536
emulation, 478
generic device, 145
ID, 476
kernel, 475, 476
LUN, 476
module, 322, 323
RHCE, 544
ribbon, 19, 477
security, 520
tape, 144, 149
termination, 19, 477

SCSI BIOS, 536
LPI, 536

SCSI CD-ROM, 144
SCSI controllers, 132
SCSI drives, 155, 156
SCSI ID, 536
SCSI partition, 323
sd, 199
-sDEVICE, 201
search, 49
search, 280
search and replace, sed, 77

617

Index

search list, 280
search pattern, 49
search through directories, 181
searches, postgres, 422
searching, 413

postgres, 423
for files, 42
web site, 118
within files, 43

searching and replacing, 49, 181, 183
second X server, X, 495
secondary Ethernet device, 254
secondary master, 143
secondary server, DNS, 450
secondary slave, 143
SECONDS, 92
seconds, 39
sections, man, 35
sector, 143, 318, 320

disk, 153
sector list, 318, 329
sector map, 318
secure

IMAP, 518
POP, 518

secure erasure, 184
secure shell, see ssh, 271
secure-mcserv, 272
security, 9, 26, 46, 81, 111–114, 117, 120, 150, 178,

202, 244, 294, 296, 301, 304, 320, 340,
394, 396, 397, 403, 405, 406, 412, 430,
438, 455, 459–461, 510, 511, 535, 554,
572

/tmp file vulnerability, 514
inetd, 297
libsafe, 518
medusa, 522
sendmail, 315
ACL, 522
alerts, 202, 517
announcements, 516
append-only permissions, 520
attacks, 511
auditing, 524
authentication logic, 514
buffer overflow, 518, 521
buffer overflow attack, 512, 513
capabilities, 521
client programs, 518
compromise, 512
counter measures, 516
detection software, 524
distributions, 516
DNS, 437
DoS, 515

DTE, 522
encryption, 515, 518
environment variables, 515
exploit, 513, 515, 516
FAQ, 523
firewall, 515
hole, 514
IMAP, 301
immutable permissions, 520
Internet, 511
ISO 9660 partition, 520
loopholes, 516
LPI, 541, 542
MAC, 522
multiuser systems, 512
network attacks, 511
network client programs, 514
network intrusion detection, 522
NFS, 289, 518
opportunity for attack, 519
outdated packages, 516
password cracking, 524
password sniffing, 517
patches, 482
penetration testing, 524
plain text, 515
POP, 301
port scan, 523
quick-quiz, 523
RBAC, 522
read-only partitions, 520
reading resources, 523
remote attack, 512
RHCE, 547, 549
risks, 511
RSBAC, 522
script kiddies, 516
SCSI, 520
security hole, 516
setuid, 519
spoof, 523
system monitoring, 520
tripwire, 523
Trojans, 517
untrusted user logins, 514
upgrading, 516
vulnerable packages, 516
VXE, 522
world-writable files, 517

Security Focus web site, 516
security hole, security, 516
security tools, RHCE, 550
sed, 57, 77, 532

addresses, 79
deleting lines, 79

618

Index

editing, 77
inserting lines, 79
search and replace, 77

segfault, 227
segment, 261
segmentation violation, 86, 227
SELECT, postgres, 414, 417, 419, 421
selecting text, X, 497
selections, X, 497
selector, package, 245
send, 264
send(2), 264
sendfax, 333, 336, 342
sendfax.config, 333
sendmail, FAQ, 315
sendmail, 193, 197, 198, 241, 299, 301, 315, 541,

546
RHCE, 548
security, 315

sendmail.cf, 301
sequence number, TCP, 265
serial

data rate, 22
devices, 20
flow control, 22
port, 142
port speed, 22
ports, 20
printers, 21

serial devices, 142, 144, 330
serial line, 247, 256
serial number, DNS, 445
serial port, 18, 142, 328, 342, 480, 536

RHCE, 544
server, 194

X, 485, 506
Server Message Block, see SMB
server program, postgres, 414
Server-side includes, Apache, 400
server-side includes, see SSI
ServerAdmin, 395
ServerRoot, 394
servers

DNS, 276
Internet, 552

ServerSignature, 395
ServerType, 394
service, TCP, 338
service descriptions, TCP, 294
Services list, 197
services, 193, 291

inetd, 294
services, 269
sessreg, 494
set, 172, 176, 177

set args, 224
setgid, 125
setgid binary, 335
setgid group bit, 336
setgid wrapper, 335
setserial, 480
setuid, 124, 125, 513

security, 519
setuid binary, 335
setup, 197, 544
setxkbmap, 494
SGI, 429
.sgml, 31
.sh, 31
sh, 199
shadow, 535
shadow password file, 102, 103
shadowed passwords, LPI, 541
SHARE, 88, 90
share, Samba, 427, 432
share, 131, 134
share/, 138
-shared, 234
shared data, 138
shared libraries, 233
shared locks, 188
shared object files, 233
Shareware, 556
sharing of CPU, 82
SHELL, 107
shell, 103

beeping, 11
prompt, 9
quotes, 70

shell, 294
shell commands, LPI, 531
shell environment, 176
shell initialization, 172, 186
shell script, 30, 108, 176, 201, 208, 257, 389
shell scripting, 61, 171, 211
Shift key, 10, 38, 54
SHLVL, 92
short, 215
showfont, 494, 507
showpage, 200
showrgb, 494
shutdown, 11
shutdown, 264, 328, 534
sides, disk, 153
SIGCHLD, 86
SIGFPE, 86
SIGHUP, 86, 198, 328
SIGINT, 83, 86
SIGKILL, 85, 86
signal, 85, 176

619

Index

signal(7), 86
significant digits, 210
SIGPIPE, 86
SIGQUIT, 86
SIGSEGV, 86, 227
SIGTERM, 85, 86
SIGTTIN, 84
SIGTTOU, 84
SIGUSR1, 86
Silicon Graphics, see SGI, 551, 552
SIMAP, 518
simple filesystem problems, LPI, 533
Simple Mail Transfer Protocol, see SMTP
simple program, C, 208
simultaneous connections, 296
single-user mode, 325, 328
SIZE, 88, 89
size, 182
sizeof, 214, 215
Slackware, 31, 135, 554, 561
slapd, 547, 548
SlashDot, 118, 121
slave IDE, 19
slave server, DNS, 450
slave setting, DNS, 451
sleep, 39
SLIP, 536
slots, ISA, 17
slurpd, 547, 548
Small Computer System Interface, see SCSI
SMB, 285

Samba, 425, 426
smb, 541
SMB vs. NFS, Windows, 285
smb.conf, 429
smbclient, 205, 546

Samba, 428, 432
smbd, 546

Samba, 427, 431
smbfs, 163, 429, 432
smbmount, 546
smbsh, 429
SMP, kernel, 483
SMP support, RHCE, 544
smproxy, 494
SMTP, 99, 302, 337, 338
smtp, 269
SMTP gateway, 300
SMTP host, 300
SMTP protocol, 300
sndconfig, 536
snice, 88
sniffit, 550
.so, 31, 233, 235, 406
SOA record, 548

DNS, 284, 441–443, 445, 446
socket connection, X, 486
sockets, 146
soft link, 127
software

copying, 574
distribute, 574
GNU, 557, 558
modifying, 574

software cost, GNU, 562
software flow control, 22
software package, 135
Solaris, 47, 551
sort, 39, 75, 532
sort(1), 39
sorting, 75, 413

uniquely, 75
sortlist, 280
Sound, 464
sound

ALSA, 475
kernel, 469
Open Sound project, 474

sound card, 40, 141, 536
sound cards, 132, 480

kernel, 470
SoundBlaster, 470
source

C, 237, 238
kernel, 463
package, 246

source, 176
source address, IP, 248, 264
source code, 37

GPL, 576
kernel, 463

source package, 239
source port

TCP, 265
UDP, 269

source tree, 181
SourceForge, 119
sources.list(5), 245
South Africa, 2
space bar, 38
spam

combating, 311
definition, 311
Internet, 99
prevention, 312
RBL, 313
responsibilities, 313

spam mail, 99
-sPAPERSIZE, 201
SPARC, 208, 240, 551, 552

620

Index

sparc, 240
.spd, 31
speakers, 141
spec.txt, exim, 309
special parameters, 172
special-purposes addresses, IP, 249
speed, modem, 454
Speed font, 31
speeding compilation, 239
spell checking, 75
split, 39, 532
spoof, security, 523
spoofalert, 279
spoofing, 279
spool directory, 198
spool files, 197, 199, 203, 300
spooling, 197, 299
spooling mail server, 302
SPOP3, 518
sprintf, 513
SQL, 413
SQL commands, postgres, 414
SQL database, 403
SQL programming language, 413
SQL requests, 413
SQL server, 413
SQL, with

Apache, 403
SQL92 standard, 414
squid, 546

RHCE, 546
sr?, 146
.src.rpm files, 545
src/, 138
srm.conf, 393
ssh, 111, 112, 269, 271, 518, 528, 541, 547, 549
SSH Protocol 2, 271
sshd, 202, 271
SSI, Apache, 400
stable, 118
stack, 225
stale, 190
stale lock file, 343
standalone, 394
standard C, C, 209, 216
standard functions, 228
standards compliant, 238
start bit, 22
Start button, X, 496
start of authority, see SOA
start stop scripts, postgres, 415
starting bind, DNS, 443
startup script, 187
startup scripts, 253, 254, 465
startx, 494, 505

startx(1), 505, 546
STAT, 90
stat, 126, 190
statement, 209
statement blocks, 212
statements, 211
static, library, 29
static, 229
static linking, 230
statically link, 406
StaticColor, X, 505
StaticGray, X, 505
status, package, 242
stderr, 113
stderr pipe, 73
stdin, 113, 201, 337
stdout, 113
stdout pipe, 73
step, 225
sticky bit, 124, 125
stop, application or command, 41
stop bits, 22
strace, 227
strcpy, 216, 220, 513
stream, 73

TCP, 292
streams

LPI, 532
redirecting, 75

string, 209, 213
string(3), 217
string manipulation, 173
string operations, 215, 217
string substition, 173
strings, 39, 75
strip, 323
strlen, 216
strncpy, 216, 217
Structured Query Language, see SQL
students, 525
stuff, 17, 39, 78, 118, 156, 165, 425, 427
style.txt, DNS, 438
su, 107, 415, 513
subdirectory, 137
subexpression, 78
subexpressions, regular expressions, 52, 78
subject, 97
subnet, 249, 256
subscribe, 119
subselects, postgres, 414
substition, 173
sudo, 549
SUID bit, LPI, 541
suid-rights, LPI, 539
Sun Microsystems, 240, 286, 493, 551, 552

621

Index

SunOS, 551
sunsite.unc.edu, 117
superformat, 162
SuperProbe, 494, 501
superstructure, 136, 137
superuser, 101
Superuser binary executables, 137
support, LINUX, 563
support daemons, kernel, 463
supported devices, printer, 201
supported types, postgres, 418
SuSE, 554, 562
suspend, 83
SWAP, 90
Swap, 89
swap, 156

adding, 162
partition, 327

swap device, 146
swap partition, 158
swap space, 37, 536
swapoff, 163
swapon, 162
swat, 434, 548

Samba, 428, 429
swatch, 545, 549
swatch(5), 549
swatch(8), 549
SWIG, 30
switch, 212
switchdesk, 546
symbol referencing, 230
symbolic link, 128, 129, 533
symlink, 137, 144, 145, 197

DLL, 235
SymLinksIfOwnerMatch, 396
Symmetric Multiprocessor Support, see SMPT
SYN, TCP, 264
SYN-ACK, TCP, 264
sync, 169
syntax checking, 178
syntax highlighting, 57

vi, 57
sysctl.conf(5), 545
syslog, 107, 146, 296
syslogd, 545
systat, 269
system administrator, 101
system call, 227
system load average, 108
system log file, 198
system monitoring, security, 520
System Services, 197
system times, 176
System.map, kernel, 464, 484

system aliases:, 310
sysv, 163
Sytec, 425

T
Tab, beeping, 11
tab character, 218, 231
Tab completion, 11
Tab key, 11, 317
table, 321
tac, 532
tag, package, 244
tail, 39, 198, 392, 532
tail -f, 330
talk, 295
talkd, 294
tape

backups, 149
rewinding, 149
SCSI, 144, 149

tape device, 146
tape drives, 18
tapes, 544
.tar, 31, 45, 240
tar, 39, 45, 115, 229, 239, 245, 537

backup, 45
verify, 45
with gzip, 46

tar files, 237
.tar.gz, 393
TARGA, 31
targets, 231
Taylor UUCP, 337
Tcl, 414

scripting language, 492
.tcl, 31
Tcl/Tk, 31
TCP, 260, 263, 519

inetd, 291
ACK, 264
acknowledgment number, 265
acknowledgment packet, 263
checksum, 265
connection, 296, 300
control, 265
destination port, 265
detachment, 263, 268
encryption, 270
example session, 265
FIN, 264
forwarding, 270
header, 264
LPI, 540
minimum header, 265
negotiation, 263, 268

622

Index

options, 265
port, 292
sequence number, 265
service, 338
service descriptions, 294
source port, 265
stream, 292
SYN, 264
SYN-ACK, 264
transfer, 263
urgent pointer, 265
window, 265

TCP connection, 510
TCP wrappers, 293

LPI, 540, 541
TCP/IP, 263, 413, 426

RHCE, 546
X, 486

tcp wrappers, 547, 549
tcpdchk, 547
tcpdmatch, 547
tcpdump, 261, 262, 268, 462, 515, 528, 550
tcpdump(8), 268
tcpmux, 269
TD pin, 21
tee, 532
telephone assistance, LPI, 535
telephone lines, 23, 337
telephone support, 535
telinit, 328
telnet, 99, 111, 251, 259, 265, 269, 272, 294, 299,

389, 392, 513, 515, 518, 528, 540
telnetd, 294
template database, postgres, 416
temporary data, 156
temporary file, 138, 188
TERM, 107
termcap, 199
terminal, 184, 209

login, 330
mail readers, 99

terminal capabilities, 199
terminal device, 145
terminal messages, 198
terminal process group, 83
terminal redirection, 184
terminal-based mail readers, 99
terminals, 21
terminate, 86
terminating commands, 41
termination, SCSI, 19, 477
terms and conditions, GPL, 574
test, LPI, 539
test, 62, 179
test(1), 63

test page, 203
test print, 201
test.cgi, 404
testing

interface, 260
IP, 260
mail, 100

testing the serial port, 142
testparam, 546
TEX, 31, 132
.tex, 31
.texi, 31
.texinfo, 31
Texinfo source, 31
text, 115
text editing, 53
text editor, 185
text input boxes, 491
text/plain, 395
.tfm, 31
TFTP, 295
tftp, 269, 295
tftpd, 294
.tga, 31
.tgz, 31, 135
THANKS, 32
three-button mouse, X, 497
.tiff, 31
tilde expansion, 173
TIME, 90
time, 182
time, 269
time to live, IP, 248, 264
time to tive, see TTL
time-out, ARP, 251
timeconfig, 544
timeout, 320
times, 176
Tk, 492
Tk widgets, Windows, 492
tkrat, 539
tksysv, 546
TLD, 273
TMOUT, 94
/tmp, 137, 138, 156, 188, 203, 517
/tmp file vulnerability, security, 514
tmpwatch, 545, 549
TODO, 32
Token Ring, 426
top, 88, 532, 549
top-level directory, Apache, 395
top-level domains, see TLD
TOS, IP, 247, 264
touch, 125
tr, 75, 532

623

Index

tr(1), 75
trace, 225
traceroute, 261, 540, 550
tracks, disk, 153
trafshow, 550
training, 2

course, 2
transactions, postgres, 414
transfer, TCP, 263
transfer type, 113
transferring files, 111
translate, 75
Transmission Control Protocol, see TCP
transmit pin, 21
transports, exim, 304, 343
trap, 176
trapping signals, 176
trim, 279
tripwire, security, 523
tripwire, 549
trivial FTP, see TFTP
Trojans, security, 517
Troll Tech, 492
troubleshooting, RHCE, 547
troubleshooting guides, 196
TRS, 90
TrueColor, X, 504, 505
TrueType font, 31

X, 509
truncated, 74, 198
TSIZE, 90
.ttf, 31, 509
TTL

DNS, 445
IP, 248, 264

ttmkfdir, X, 509
tty, 106, 108
TTY devices, 145, 146
tty name, 108
TurboLinux, 554, 562
tutorial, documentation, 2
twist, 547
twm, 494
.txt, 31
type, partition, 158
-type option, find, 43
type, 176
type of service, IP, 247, 264
typesetting, 132

U
UART, 480

16450, 479
16550A, 479
16550, 23, 479

16650V2, 479
16650, 479
16750, 479
8250, 479
compatibility, 480

UDP, 260, 261, 268
destination port, 269
length, 269
LPI, 540
source port, 269

ufs, 163
UID, 103, 105–107, 513, 514
UID, 89, 92
ulimit, 176
UltraSPARC, 552
umask, 125, 176, 533
umount, 164, 167
umsdos, 163
unalias, 175
uname, 39
unbootable, 484
unclean umounts, 165
uncompress, 318
uninstall, 297
uninstalling, package, 240
uniq, 39
uniquely, sorting, 75
Universal Asynchronous Receiver-Transmitter,

see UART
Universal Serial Bus, see USB
universities, 274, 552
UNIX

administration, 6
case sensitive, 25
commands, 10, 25
compatibility, 561
documentation, 35
editors, 57
evolution, 10
file name extensions, 29
file name, allowable, 7
file names, 12
porting, 552

UNIX compatible, 238
UNIX, with

Windows, 425
UNIX, 58
UNIX initialization, 325
UNIX, 5
UNIX debugger, 223
UNIX directories, 135
Unix-to-Unix copy, see UUCP
Unix-to-Unix copy in copy out, see uucico
unpack, 135
unpacking, kernel, 481

624

Index

unqualified, host name, 273
unreliable connections, 337
unset, 92, 176
unsolicited, 311
unsolicited email, 99
unsubscribe, 120
until, 63
untrusted hosts, relay, 304
untrusted user logins, security, 514
up arrow key, 55
update binaries, LPI, 541
update-rc.d, 197
updatedb, 43, 533
upgrading

package, 240
security, 516

upload, 114
uptime, 89
urgent pointer, TCP, 265
URL, 39, 406
usage

less, 38
CPU, 87

usage limits, 176
usage summaries

cp, 33
ls, 33
passwd, 33

USB, 18
RHCE, 544

use of C, Windows, 207
UseCanonicalName, 395
USER, 89, 107
User, 394
user, 123
user commands, postgres, 414
User Datagram Protocol, see UDP
user directories, Apache, 398
user name, characters, 102
user programs, 196
user signal, 86
user statistics, 108
user-defined types, postgres, 414
user forward, 308
useradd, 106, 171, 535, 545
userconf, 545
userdel, 535
userdel, 106, 535, 545
UserDir, 398
usermod, 106, 545
usernet, 544
usernetctl, 544
users, LINUX, 117, 118
users, 108
usleep, 40

/usr, 136, 137, 155, 156, 520
/usr/bin/mailq, 301
/usr/bin/newaliases, 301
/usr/bin/rmail, 301
/usr/bin/X11/xdm, 327
/usr/doc/, 534
/usr/include/asm/errno.h, 26
/usr/lib, 230
/usr/lib/, 233
/usr/lib/sendmail, 301
/usr/local, 136
/usr/local/, 137, 156
/usr/local/bin, 179
/usr/local/bin/, 181
/usr/sbin/exim, 302
/usr/sbin/inetd, 291
/usr/sbin/lpd, 194
/usr/sbin/named-bootconf, DNS, 438
/usr/sbin/sendmail, 301
/usr/sbin/up2date, 545
/usr/sbin/uucico, 294
/usr/share/doc, 195
/usr/share/doc/xserver-common/, 498
/usr/share/kudzu/pcitable, 474
/usr/share/pci.ids, 474
/usr/src/linux/arch/i386/defconfig,

483
/usr/src/linux/Documentation/, 143,

482, 483
/usr/src/linux/System.map, 484
/usr/tmp, 137
/usr/X11/bin/X, 486
/usr/X11R6, 137
/usr/X11R6/, 137, 493
/usr/X11R6/lib/libX11.so.6, 487
/usr/X11R6/lib/X11/doc/, 498
/usr/X11R6/lib/X11/fonts/, 508
util-linux, 162
utilities, X, 494
utility scripts, 178
utmp, 327
uucico, 180, 294, 339–341, 346
uucp, 197, 295, 337, 461, 518

exim, with, 343
mgetty, with, 341
protocol g, 341
protocol t, 340, 341
authentication, 339
configuration, 338
debugging, 343
debugging level, 343
dialup, 338
documentation, 338
mail, 343
modem, 341

625

Index

scheduling, 346
uucp user, 335, 336
UUCP lock file, 342, 343, 454
uudecode, 115
uuencode, 114
uux, 337, 342

V
V, 492
V.32, 24
V.34, 24
V.42, 24
V.90, 24
vacuumdb, 414
/var, 137, 155, 156, 190, 203
var/, 137
/var/lock/, 335, 342
/var/lock/LCK..tty??, 454
/var/log, 198
/var/log/, 198
/var/log/fax, 334
/var/log/lastlog, 107
/var/log/maillog, 198
/var/log/messages, 106, 279, 287, 444, 471,

520, 534
/var/log/mgetty.log.ttyS?, 330
/var/log/samba/, 432
/var/log/syslog, 198, 444, 471, 520
/var/log/uucp/Debug, 343
/var/log/uucp/Log, 341, 343
/var/log/uucp/Stats, 343
/var/named, 438
/var/named/named.127.0.0.1, 441
/var/named/named.ca, 440
/var/named/named.localdomain, 440
/var/run/httpd.pid, 394
/var/spool/, 197
/var/spool/exim/input/, 299, 309
/var/spool/fax/incoming/, 331
/var/spool/lpd, 198
/var/spool/mqueue/, 299
/var/spool/uucp/, 343
/var/spool/uucppublic/, 340
variable, 62, 216
variable data, 137, 156
VAT32, 164
vendor ID, PCI, 474
verification, header, 313
verify, tar, 45
VERSION, 32
version 6, IP, 248, 280
version number, 238, 240

GPL, 578
versioning

DLL, 234

kernel, 464
package, 238, 240

Vertical sync, X, 501
VFAT, 162
vfat, 163, 164, 287
vga, 320
vi, 53, 538

basic editing operations, 54
editors, 58
modes, 54
syntax highlighting, 57

vi tutorial, 53
video, 115
video buffer, X, 504
video card, LPI, 539
video conferencing, 462
Video format, 29
video memory pixmap caching, X, 503
video modes, 132
video0, 146
viewres, 494
views, postgres, 417
vim, 53, 58

editors, 58
virtual console, 145, 494, 495
virtual consoles, 11

LINUX, 329
virtual domains, 389, 392
Virtual eXecuting Environment, see VXE
virtual hosting, Apache, 407
virtual memory, 186
virtual terminals, 11
VirtualHost, 408
viruses, 571
-visual, X, 505
visuals, X, 504
VMS, 58, 425
.voc, 31
void, 211
vulnerable packages, security, 516
VXE, security, 522

W
w, 108
W2K, 430
wait, 176
-Wall, 208
warning messages, 208, 230
WAV, 410
.wav, 31
wc, 40, 532
WCHAN, 90
web, 193, 291
web administration, Samba, 428, 434
web browser, 39, 118, 196, 274

626

Index

web cache, 156
web documentation, 133
web page, 30, 195

LPI, 531
web pages, 389
web search, 118
web server, 133, 264, 389
web site

LPI, 534
searching, 118
X, 498

Web sites
ftp://ftp.kernel.org/pub/linux/kernel/,

481
ftp://ftp.rs.internic.net/domain/-

named.root, 276
ftp://metalab.unc.edu/pub/Linux/-

distributions/, 562
ftp://metalab.unc.edu/pub/Linux/-

LICENSES, 556
ftp://metalab.unc.edu/pub/docs/rfc/,

121
http://www.memeticcandiru.com/-

colsfaq.html, 523
http://cericon:901/, 435
http://cooledit.sourceforge.net/, 58
http://download.lycos.com/static/-

advanced search.asp, 119
http://freshmeat.net/, 118, 245, 510, 553,

554
http://gnustep.org/, 554
http://icewm.cjb.net/, 495
http://infoseek.go.com/, 118
http://jade.cs.uct.ac.za/idsa/, 523
http://linmodems.technion.ac.il/, 481
http://linux.tucows.com/, 553
http://localhost/, 392, 394
http://localhost/˜jack/index.html, 398
http://localhost/hello.php, 407
http://localhost/manual/howto/ssi.html,

401
http://localhost/manual/index.html.en,

395
http://localhost/test.cgi, 402
http://localhost/test/test.cgi?xxx=2&yyy=3,

403
http://lwn.net/, 118, 516, 553, 554
http://redhat.com/training/rhce/-

courses/, 543
http://rute.sourceforge.net/morecram-

1.3.tar.gz, 139
http://SAL.KachinaTech.COM/index.-

shtml, 554
http://samba.org/, 425, 429
http://slashdot.org/, 118, 121

http://users.bart.nl/˜patrickr/hardware-
howto/Hardware-HOWTO.html,
570

http://www.altavista.com/, 118
http://www.idir.net/˜gromitkc/-

winmodem.html, 481
http://www.linmodems.org/, 481
http://www.sourceforge.net/, 119
http://www.yahoo.com/, 118
http://www.alsa-project.org/, 475
http://www.apache.org, 393
http://www.astart.com/lprng/-

LPRng.html, 196
http://www.avayalabs.com/project/-

libsafe/index.html, 518
http://www.calderasystems.com/, 554
http://www.cifs.com, 425
http://www.debian.org/, 554
http://www.exim.org/, 301
http://www.geocities.com/swan daniel/-

colsfaq.html, 523
http://www.gnome.org/, 554
http://www.gnu.org/, 553, 555, 556, 573
http://www.google.com/, 118
http://www.google.com/linux, 118
http://www.icon.co.za/˜psheer/rute-

errata.html, 3
http://www.kde.org/, 554
http://www.li.org/, 553
http://www.linux-mandrake.com/, 554
http://www.linux.org.uk/, 553
http://www.linux.org/, 553
http://www.linuxdoc.org/, 132, 133
http://www.linuxhq.com/, 553
http://www.linuxplanet.com/, 119
http://www.linuxsecurity.com/, 523
http://www.linuxsecurity.com/docs/-

colsfaq.html, 523
http://www.lpi.org/, 531
http://www.mail-abuse.org/, 313
http://www.newsforge.net/, 119
http://www.opensound.com, 474
http://www.orbiten.org/, 555
http://www.orbl.org/, 313
http://www.orbs.org/, 313
http://www.ordb.org/, 313
http://www.pathname.com/fhs/, 347
http://www.php.net, 406
http://www.redhat.com/, 554
http://www.redhat.com/support/-

manuals/, 544
http://www.securityfocus.com/forums/-

bugtraq/intro.html, 516
http://www.sendmail.org/faq/, 315, 548
http://www.slackware.com/, 554

627

Index

http://www.snort.org/, 523
http://www.sourceforge.net/, 553
http://www.spy.net/˜dustin/modem/, 24
http://www.suse.com/, 554
http://www.teleport.com/˜curt/-

modems.html, 24
http://www.tripwiresecurity.com/, 523
http://www.turbolinux.com/, 554
http://www.usenix.org/publications/-

login/1997-11/embraces.html, 430
http://www.winehq.com/faq.html, 571
http://www.xfree86.org/, 493, 497, 498

web sites, 534
webalizer, 550
whatis, 409
which, 47, 533
while, 62, 63, 211
whiteboard, 526
whitespace, 78
who, 108
whoami, 40
whois, 269, 281, 523, 540
Why?, exim, 301
widget library, 491

X, 491
wildcards, 29, 49, 66

copy, 532
LPI, 532

win-modem, 536
win-modems, 480
window, TCP, 265
window managers, X, 492, 495, 496, 505
windowing system, X, 486
Windows, 15, 18, 31, 40, 44, 58, 59, 81, 147, 183,

321, 525, 528, 560, 564, 567, 570
UNIX, with, 425
postgres, with, 414
Apache, with, 393
COM port, 144, 479
device drivers, 463
FAT file system, 160
GPF, fatal exception, 86
kernel loader, 468
migrating from, 567
Network Neighborhood, 425
partition, 143, 318
print share, 205
SMB vs. NFS, 285
Tk widgets, 492
use of C, 207
X, vs., 493

Windows 2000, 430
Windows 98, booting, 321
Windows floppies, 44
Windows floppy, see MS-DOS floppy

Windows in another partition, LINUX, 143
Windows Internet Name Service, see WINS
Windows NT, 393, 427
Windows NT partitions, mounting, 164
Windows NT/2000, Samba, 435
Windows partition, 321

mounting, 164
WINS, 428
WINS client, LPI, 541
with gzip, tar, 46
within files, searching, 43
Word, 567
Word processing, 57
World Wide Web, 131
world-writable files, security, 517
wrapper scripts, 175
write lock, 188
write permission, 124
writing files, 217
writing random bytes, 184
wuftpd, 292
www, 266, 269, 389
WYSIWYG, 57

X
X, 59, 132, 137, 185, 325–327, 473, 482, 485–488,

491–509, 529, 544, 569–571
-bpp, 503, 504
-cc, 505
-display option, 494
-fn, 506
-visual, 505
DISPLAY, 494
DefaultDepth, 503
Device section, 502
Emulate3Buttons, 497
Files section, 508
Modeline, 502
Monitor section, 501–503
Pointer section, 499
QuickStart guide, 498
Screen section, 503, 504
clocks:, 500
libX11.so, 491
libXt.so, 491
ttmkfdir, 509
16-color X server, 499, 505
API, 498
artifacts, 503
background, 496
black and white, 505
CGA, 505
client machine, 485
clipboard, 497
Clockchip setting, 501

628

Index

compatibility, 487
configuration file, 486, 499
configuration scripts, 505
configuring, 498
conventions, 496
cut buffer, 497
cutting, 497
default visual, 505
device driver module, 502
DirectColor, 505
display, 486
distribution, 497
documentation, 491, 497
EGA, 505
Emacs, 59
events, 487
exposed window, 487
extensible, 487
FAQ, 498
font configuration, 508
font database, 509
font directory, 508
font family, 506
font name fields, 506
font naming, 506
font path, 508
font pixel resolution, 507
font server, 509
font size, 507
font weight, 507
graphical login box, 506
graphics, 486
graphics card, 504
graphics context, 487
graphics hardware, 486
graphics hardware acceleration, 503
gray-level display, 500, 505
GrayScale, 505
GUI, 485
hardware cursor, 503
HGC, 505
intercharacter spacing, 507
key conventions, 493
key press, 488
kill the X server, 493
library function, 488
MDA, 505
mouse and keyboard input, 487
mouse click, 488
mouse conventions, 497
multiheaded display, 494
network transparent, 486
OSF, 485
palette, 505
paste, 487, 497

PostScript, 487
programing, 498
programming, 498
programs, 494
protocol, 486
protocol responses, 486
PseudoColor, 505
RAM DAC, 501
remote, 486
RGB value, 487
RHCE, 546
root window, 494
scalable fonts, 509
second X server, 495
selecting text, 497
selections, 497
server, 485, 506
socket connection, 486
Start button, 496
StaticColor, 505
StaticGray, 505
TCP/IP, 486
three-button mouse, 497
TrueColor, 504, 505
TrueType font, 509
utilities, 494
Vertical sync, 501
video buffer, 504
video memory pixmap caching, 503
visuals, 504
web site, 498
widget library, 491
window managers, 492, 495, 496, 505
windowing system, 486
zooming, 494

X, 494
X client server, RHCE, 546
X Consortium, 485, 493
X font server, LPI, 539
X server, LPI, 539
X Toolkit, 491, 492
X Toolkit application, 491
X Window System, see X

font, 29
X, vs.

Windows, 493
X.25, 547
x11perf, 494
x11perfcomp, 494
x86 boot sector, 148
xargs, 180, 532
xauth, 494, 549
xbiff, 494
xbill, 495
xbooks, 498

629

Index

xcalc, 494, 495
.Xclients, 546
xclipboard, 494
xclock, 494, 495
xcmsdb, 494
Xconfigurator, 501, 544, 546
xconsole, 494
xcutsel, 494
.Xdefaults, 539
xditview, 494
xdm, 494, 506, 546
xdm(1), 546
xdpyinfo, 494, 505
xedit, 494, 495
xenix, 163
xev, 494
xeyes, 494
XF86 S3, 501
XF86 S3V, 501
XF86 SVGA, 501
XF86Config, 486, 500
xf86config, 494, 501, 539, 546
XF86Setup, 546
xfd, 494
xfig, 491
xfindproxy, 494
xfontsel, 494, 507
xforms, 492
XFree86, 494
XFree86-doc, 498
XFS, file system, 160
xfs, 494, 509, 547
xfstt, 510
xfwp, 494
xgamma, 494
xgc, 494
xhost, 494, 547, 549
xiafs, 163
xieperf, 494
xinetd, 291, 295, 297, 301, 338, 389, 394, 434, 512,

518
xinetd.conf, 295
xinit, 494, 505, 546
xinit(1), 505, 546
.xinitrc, 539
xinitrc, 546
xkbbell, 494
xkbcomp, 494
xkbevd, 494
xkbprint, 494
xkbvleds, 494
xkbwatch, 494
xkill, 494
xload, 494, 549
xlogo, 494

xlsatoms, 494
xlsclients, 494
xlsfonts, 494
xmag, 494
xman, 494
Xmark, 494
xmessage, 494
xmodmap, 494
Xnest, 495
xon, 494
xosview, 549
.xpm, 31
XPM image, 487
xprop, 494
Xprt, 494
xrdb, 494
xrefresh, 494
.xsession, 546
xset, 494, 508, 510
xsetmode, 494
xsetpointer, 494
xsetroot, 494
xsm, 494
xstdcmap, 494
xsysinfo, 549
xterm, 494, 497, 539
xvidtune, 494
xwd, 494
xwininfo, 494
Xwrapper, 494
xwud, 494

Y
.y, 31
yahoo.com, 118
Yellow Pages, see Network Information Services
ypbind, 547
yppasswd, 547
yppasswdd, 547
yppush, 547
ypserv, 547

Z
.Z, 32
.za, 276
zcat, 42
.zip, 32
zless, 42
zone, DNS, 444
zooming, X, 494

630

