

For more Free E-books

Visit
http://ali-almukhtar.blogspot.com

The PIC Microcontroller

H6664-Prelims.qxd 8/13/05 12:32 PM Page i

To Mum & Dad

H6664-Prelims.qxd 8/13/05 12:32 PM Page ii

The PIC Microcontroller:
Your Personal Introductory Course

Third edition

John Morton

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD

PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

H6664-Prelims.qxd 8/13/05 12:32 PM Page iii

Newnes
An imprint of Elsevier
Linacre House, Jordan Hill, Oxford OX2 8DP
30 Corporate Drive, Burlington, MA 01803

First published 1998
Second edition 2001
Third edition 2005

Copyright © 1998, 2001, 2005, John Morton. All rights reserved

The right of John Morton to be identified as the author of this work has been asserted in
accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced in any material form (including photocopying
or storing in any medium by electronic means and whether or not transiently or incidentally
to some other use of this publication) without the written permission of the copyright holder
except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or
under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London, England W1T 4LP. Applications for the copyright holder’s written
permission to reproduce any part of this publication should be addressed to the publisher.

Permissions may be sought directly from Elsevier’s Science and Technology Rights
Department in Oxford, UK; phone: (�44) (0) 1865 843830; fax: (�44) (0) 1865 853333;
e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via the
Elsevier Science homepage (http://www.elsevier.com), by selecting ‘Customer Support’ and
then ‘Obtaining Permissions’.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 0 7506 66641

Typeset by Charon Tec Pvt. Ltd, Chennai, India
www.charontec.com
Printed and bound in Great Britain

For information on all Newnes publications visit our
web site at www.newnespress.com

H6664-Prelims.qxd 8/13/05 12:32 PM Page iv

Contents

Acknowledgements ix
Preface to the third edition xi

1 Introduction 1
Some tips before starting 2

Binary, decimal and hexadecimal 2
An 8-bit system 5

Initial steps 5
Choosing your PIC microcontroller 6
Writing 10
Assembling 10

The file registers 10
A program template 13

2 Exploring the PIC5x series 20
Your first program 20

Configuration bits 22
Testing the program 23

Simulating 23
Emulating 23
Blowing the PIC microcontroller 24

Hardware 24
Using the testing instructions 29
Timing 32
Seven-segment displays 44
The program counter 46
Subroutines and the stack 48
Logic gates 65
The watchdog timer 69
Final instructions 73
The STATUS file register 74
The carry and digit carry flags 75
Pages 76
What caused the reset? 79
Indirect addressing 80
Some useful (but not vital) tricks 82
Final PIC5x program – ‘Bike buddy’ 85

H6664-Prelims.qxd 8/13/05 12:32 PM Page v

3 The PIC12F50x series (8-pin PIC microcontrollers) 90
Differences from the PIC16F54 90

The STATUS register 90
The OSCCAL register 91
Inputs and outputs 92
The OPTION register 92
The TRIS register 93
The general purpose file registers 93
The MCLR 93
Configuration bits 93

Example project: ‘PIC dice’ 94
Random digression 95

4 Intermediate operations using the PIC12F675 100
The inner differences 101

The OPTION and WPU registers 102
The TRISIO register 103
Calibrating the internal oscillator 103
PCLATH: Higher bits of the program counter 104
Remaining differences 105

Interrupts 105
INTCON 106
The interrupt service routine 107
Interrupts during sleep 109
Maintaining the STATUS quo 109
New program template 110
Example project: ‘Quiz game controller’ 112

EEPROM 116
EECON1 116
Reading from the EEPROM 116
Writing to the EEPROM 117
Example project: ‘Telephone card chip’ 118
Further EEPROM examples: Music maker 122
Power monitor 122

Analogue to digital conversion 122
ADCON0 123
ANSEL: Analogue select register 124
A/D conversion interrupt 125
Example project: ‘Bath monitor’ 125

Comparator module 129
Voltage reference 130
Comparator interrupts 130
Comparator example: ‘Sun follower’ 131
Comparator example: Reading many buttons from one pin 132

Final project: Intelligent garden lights 134

vi Contents

H6664-Prelims.qxd 8/13/05 12:32 PM Page vi

5 Advanced operations and the future 138
Extra timers: TMR1 & … 138
Capture/Compare/PWM 139
USART: Serial communication 140
Programming tips 142

6 A PIC development environment 143

7 Sample programs 145
Program A LedOn – Turns an LED on 145
Program B PushButton (1.0) – If a push button is pressed,

turns on an LED 146
Program C PushButton (2.0) – Shorter version of PushButton 1.0 147
Program D Timing – LED states toggled every second, and buzzer

on every five seconds 148
Program E Traffic – Pedestrian traffic lights junction is simulated 150
Program F Counter (1.0) – Counts signals from a push button,

resets after 16 152
Program G Counter (2.0) – Stop reading button twice (otherwise,

as Counter 1.0) 154
Program H Counter (3.0) – Solves button bounce (otherwise, as

Counter 2.0) 156
Program I StopClock – A stop clock displaying tenths of

seconds to minutes 158
Program J LogicGates – Acts as the eight different gates 162
Program K Alarm – An alarm system which can be set or disabled 164
Program L BikeBuddy – A speedometer and mileometer for bikes 165
Program M PIC Dice – A pair of dice are simulated 171
Program N Quiz – Indicates which of three push buttons has been

pressed first 175
Program O Phonecard – To act like a phonecard which decrements

a file register 177
Program P TempSense – Displays whether temperature is too

hot, too cold or OK 181
Program Q 183

Appendix A Specifications of some Flash PIC microcontrollers 189
Appendix B Pin layouts of some Flash PIC microcontrollers 191
Appendix C Instructions glossary 192
Appendix D Number system conversion 195
Appendix E Bit assignments of various file registers 196
Appendix F If all else fails, read this 203
Appendix G Contacts and further reading 204
Appendix H PICKit™ 1 & BFMP Info 205
Appendix I Answers to the exercises 207
Appendix J Some BASIC commands in assembly 222

Index 223

Contents vii

H6664-Prelims.qxd 8/13/05 12:32 PM Page vii

This page intentionally left blank

Acknowledgements

Max Horsey, Head of Electronics at Radley College in Abingdon and a great
driving force for technological advancement, first introduced me to PIC micro-
controllers in 1995. With the help of Philip Clayton I was shown a new concept
in circuit design which opened up the possibility of new and more elaborate
electronic devices.

I would like to take this opportunity to thank all those who have contributed,
directly or indirectly, to make this book possible. First I must thank Richard
Morgan, Warden of Radley College, for persuading me to try and get published,
and my parents for their continual support with it. Chris, my brother, was an
invaluable proof-reader and I must also thank Pear Vardhanabhuti who started
out with no knowledge of programming, and bravely took on the task of learning
all about PIC microcontrollers using just the book. He then went on to design and
build the ‘diamond brooch’ project circuit board. Also helping to build projects
were Ed Brocklebank, James Bentley and Matt Fearn, and Matt Harrison helped
me with the artwork involved. My work was greatly facilitated by Philip Clayton,
an immaculate technical proof-reader and advisor. Finally comes the most
important thanks of all, to Max Horsey – a constant provider of assistance and
advice, and fountain of new ideas; he has helped me immeasurably.

H6664-Prelims.qxd 8/13/05 12:32 PM Page ix

This page intentionally left blank

Preface to the third edition

When I was asked to write a new edition, I carefully read through the book try-
ing to find how the current edition could possibly be improved. It was clearly a
case of where to begin! With the help of several readers and their helpful emails,
I have ironed out most of the, shall we say, elaborate spelling mistakes. My
thanks therefore to Robert Czarnek, Lane Hinkle, Neil Callaghan, John Wrighte
and Jimmy Gwinutt.

Since the first edition was published, I have received a great number of emails
from readers asking for help with their various PIC projects. I am happy to help,
and will try to answer any questions you may have. However, I have also been
sent PIC programs without a single comment on them, and often without any
indication of what task they are actually meant to perform, with a short message
along the lines of: ‘It doesn’t work.’ One of my favourite emails informed me
that an error ‘of type 0034q . 0089’ kept occurring, and could I please fix it.
These types of emails will seldom meet with a favourable response, simply
because I haven’t a clue what to do. So please put comments everywhere in your
programs, and try to isolate exactly what is going wrong.

One of the major changes in this edition is the replacement of older one-time-
programmable PIC microcontrollers with newer Flash versions. These are more
suited to the kind of prototyping and testing that will take place as you go
through the programs in this book, and develop on your own, as each PIC micro-
controller can be programmed many times. These new PIC models can also be
programmed in-circuit, so you don’t even need to remove the PIC microcon-
troller from your board when updating the program. A short section introducing
more advanced techniques, such as serial communication, has also been added
to extend the scope of the book.

This book has been updated to conform to Microchip’s trademark guidelines
regarding the use of the word ‘PIC’. PIC is a registered trademark of Microchip
Technology Inc. in the US and other countries, and as such it should only be
used as an adjective followed by an appropriate noun, such as ‘PIC microcon-
troller’. If I have missed any instances of a lone ‘PIC’ without a suitable noun,
please read it to yourself as ‘PIC microcontroller’!

A final thanks must go to Max Horsey and the Electronics Department at
Radley College who appear unaware that I have left the college, and continue to
offer me use of their excellent facilities.

H6664-Prelims.qxd 8/13/05 12:32 PM Page xi

This page intentionally left blank

It has now become possible to program microchips; gone are the days when cir-
cuits are built around chips, now we can build chips around circuits. This tech-
nology knows no bounds and complex circuits can be made many times smaller
through the use of these microcontrollers, of which the PIC® is an excellent
example. There is, however, little point in using a PIC microcontroller for a sim-
ple circuit that would, in fact, be cheaper and smaller without one. However,
most complicated logic circuits could benefit immensely from the use of PIC
microcontrollers. Furthermore, prototyping can be greatly enhanced as it’s often
much easier to make changes to a PIC program, than it is to start changing circuit
designs and electronic components.

When you buy a PIC microcontroller, you get a useless lump of silicon with
amazing potential. It will do nothing without – but almost anything with – the
program that you write. Under your guidance, almost any number or combina-
tion of normal logic chips can be squeezed into one PIC program and thus in
turn, into one PIC microcontroller. Figure 1.1 shows the steps in developing a
PIC program.

PIC programming is all to do with numbers, whether binary, decimal or hexa-
decimal (base 16; this will be explained later). The trick to programming lies in
making the chip perform the designated task by the simple movement and pro-
cessing of numbers.

What’s more, there is a specific set of tasks you can perform on the numbers –
these are known as instructions. The program uses simple, general instructions,
and also more complicated ones which do more specific jobs. The chip will step
through these instructions one by one, performing millions every second (this
depends on the frequency of the oscillator it is connected to) and in this way
perform its job. The numbers in the PIC microcontroller can be:

1. Received from inputs (using an input ‘port’)
2. Stored in special compartments inside the chip (these are called ‘file

registers’)
3. Processed (e.g. added, subtracted, ANDed, etc.)
4. Sent out through outputs (using an output ‘port’)

That is essentially all there is to PIC programming (‘great’ you may be thinking)
but fortunately there are certain other useful functions that the PIC microcon-
troller provides us with such as an on-board timer (e.g. TMR0) or certain flags
which indicate whether or not something particular has happened, which make
life a lot easier.

1
Introduction

H6664-Ch01.qxd 8/13/05 12:36 PM Page 1

The first chapter of this book will teach you how to use the PIC16F54 and 57.
These are two fairly simple devices and knowledge of how to use them will
serve as a solid foundation to move on from, as there are many other diverse and
exciting PIC microcontrollers around, and indeed new ones coming out all the
time. Subsequent chapters will introduce more advanced techniques, using the
small 8-pin PIC12F508 and the versatile PIC12F675.

Some tips before starting

For those not familiar with programming at all, there may be some ideas which
are quite new, and indeed some aspects of the PIC microcontroller may seem
strange. Some of the fundamental points are now explained.

Binary, decimal and hexadecimal

First there is the business of different numbering systems: binary, decimal and
hexadecimal. A binary number is a base 2 number (i.e. there are only two types
of digit (0 and 1)) as opposed to decimal – base 10 – with 10 different digits

2 Introduction

1

2 3

6 5 4

Figure 1.1 1. The blank PIC microcontroller does nothing; 2. Write a program on a
computer; 3. Pretend to program the PIC microcontroller on a computer; 4. Test the
program on a computer; 5. Program a real PIC microcontroller; 6. Test the PIC
microcontroller in a real circuit.

H6664-Ch01.qxd 8/13/05 12:36 PM Page 2

(0 to 9). Likewise hexadecimal represents base 16 so it has 16 different digits (0,
1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F). Table 1.1 shows how to count using
the different systems.

The binary digit (or bit) furthest to the right is known as the least significant
bit or lsb and also as bit 0 (the reason the numbering starts from 0 and not from
1 will soon become clear). Bit 0 shows the number of 1s in the number. One
equals 20. The bit to its left (bit 1) represents the number of 2s, the next one (bit
2) shows the number of 4s and so on. Notice how 2 � 21 and 4 � 22, so the bit
number corresponds to the power of two which that bit represents, but note that
the numbering goes from right to left (this is very often forgotten!). A sequence
of 8 bits is known as a byte. The highest number bit in a binary word (e.g. bit 7
in the case of a byte) is known as the most significant bit (msb).

So to work out a decimal number in binary you could look for the largest
power of two that is smaller than that number (e.g. 32 which equals 25 or
128 � 27), and work your way down.

Example 1.1 Work out the binary equivalent of the decimal number 75.

Largest power of two less than 75 � 64 � 26. Bit 6 � 1
This leaves 75 � 64 � 11 32 is greater than 11 so bit 5 � 0

16 is greater than 11 so bit 4 � 0
8 is less than 11 so bit 3 � 1

Introduction 3

Table 1.1

Binary (8 digit) Decimal (3 digit) Hexadecimal (2 digit)

00000000 000 00
00000001 001 01
00000010 002 02
00000011 003 03
00000100 004 04
00000101 005 05
00000110 006 06
00000111 007 07
00001000 008 08
00001001 009 09
00001010 010 0A
00001011 011 0B
00001100 012 0C
00001101 013 0D
00001110 014 0E
00001111 015 0F
00010000 016 10
00010001 017 11
etc.

H6664-Ch01.qxd 8/13/05 12:36 PM Page 3

This leaves 11 � 8 � 3 4 is greater than 3 so bit 2 � 0
2 is less than 3 so bit 1 � 1

This leaves 3 � 2 � 1 1 equals 1 so bit 0 � 1

So 1001011 is the binary equivalent.

There is however an alternative (and more subtle) method which you may find
easier. Take the decimal number you want to convert and divide it by two. If
there is a remainder of one (i.e. it was an odd number), write down a one. Then
divide the result and do the same writing the remainder to the left of the previ-
ous value, until you end up dividing one by two, leaving a one.

Example 1.2 Work out the binary equivalent of the decimal number 75.

Divide 75 by two. Leaves 37, remainder 1
Divide 37 by two. Leaves 18, remainder 1
Divide 18 by two. Leaves 9, remainder 0
Divide 9 by two. Leaves 4, remainder 1
Divide 4 by two. Leaves 2, remainder 0
Divide 2 by two. Leaves 1, remainder 0
Divide 1 by two. Leaves 0, remainder 1

So 1001011 is the binary equivalent.

Exercise 1.1 Find the binary equivalent of the decimal number 234.

Exercise 1.2 Find the binary equivalent of the decimal number 157.

Likewise, bit 0 of a hexadecimal is the number of ones (160 � 1) and bit 1 is the
number of 16s (161 � 16), etc. To convert decimal to hexadecimal (it is often
abbreviated to just ‘hex’) look at how many 16s there are in the number, and
how many ones.

Example 1.3 Convert the decimal number 59 into hexadecimal. There are three
16s in 59, leaving 59 � 48 � 11. So bit 1 is 3. 11 is B in hexadecimal, so bit 0
is B. The number is therefore 3B.

Exercise 1.3 Find the hexadecimal equivalent of 234.

Exercise 1.4 Find the hexadecimal equivalent of 157.

One of the useful things about hexadecimal is that it translates easily with
binary. If you break up a binary number into four-bit groups (called nibbles, i.e.

4 Introduction

H6664-Ch01.qxd 8/13/05 12:36 PM Page 4

small bytes), these little groups can individually be translated into one
‘hex’ digit.

Example 1.4 Convert 01101001 into hex. Divide the number into nibbles: 0110
and 1001. It is easy to see 0110 translates as 4 � 2 � 6 and 1001 is 8 � 1 � 9.
So the 8 bit number is 69 in hexadecimal. As you can see, this is much more
straightforward than with decimal, which is why hexadecimal is more com-
monly used.

Exercise 1.5 Convert 11101010 into a hexadecimal number.

An 8-bit system

The PIC microcontroller is an 8-bit system, so it deals with numbers 8 bits long.
The binary number 11111111 is the largest 8-bit number and equals 255 in deci-
mal and FF in hex (work it out!). With PIC programming, different notations
are used to specify different numbering systems (the decimal number 11111111
is very different from the binary number 11111111)! A binary number is shown
like this: b’00101000’, a decimal number like this: d’72’ , or like this: .72 (it looks
like 72 hundredths but it can be a lot quicker to write, if you use decimal num-
bers a lot). The hexadecimal numbering system is default, but for clarity write a
small h after the number (the computer will still understand it and it reminds you
that the number is in hex), e.g. 28h. Alternatively, you can write 0x at the start
of the number (e.g. 0x3D).

When dealing with the inputs and outputs of a PIC microcontroller, binary is
always used, with each input or output pin corresponding to a particular bit. A 1
corresponds to what is known as logic 1, meaning the pin of the PIC microcon-
troller is at the supply voltage (e.g. �5 V). A 0 shows that pin is at logic 0, or
0 V. When used as inputs, the boundary between reading a logic 0 and a logic 1
is half of the supply voltage (e.g. �2.5 V).

Finally, if at any stage you wish to look up what a particular instruction
means, refer to Appendix C which lists all of them with their functions.

Initial steps

The basic process in developing a PIC program consists of five steps:

1. Select a PIC model, and construct a program flowchart.
2. Write program (using Notepad provided with Microsoft Windows, or some

other suitable development software).
3. Assemble program (changes what you’ve written into something a PIC

microcontroller will understand).
4. Simulate or emulate the program to see whether or not it works.

Introduction 5

H6664-Ch01.qxd 8/13/05 12:36 PM Page 5

5. ‘Blow’ or ‘fuse’ the PIC microcontroller. This feeds the program you’ve
written into the actual PIC microcontroller.

Let’s look at some of these in more detail.

Choosing your PIC microcontroller

Before beginning to write the program, it is a very good idea to perform
some preliminary tasks. First you need some sort of project brief – what are
you going to make and what exactly must it do. The next step is to draw a
circuit diagram, looking in particular at the PIC microcontroller’s inputs
and outputs. Each PIC model has a specific number of inputs and outputs,
you should use this as one of the deciding factors on which device to use
and thus you should make a list of all the inputs and outputs required. In
this book, we will abbreviate the full names PIC16F54 and PIC16F57 to
‘PIC54’ and ‘PIC57’, for the sake of brevity. The PIC54 has up to 12 input/
output pins (i.e. it has 12 pins which can be used as inputs or outputs), and the
PIC57 has up to 20.

Example 1.5 The brief is ‘design a device to count the number of times a push
button is pressed and display the value on a single seven-segment display. When
the value reaches nine it resets.’

1. The seven-segment display requires seven outputs.
2. The push button requires one input, creating a total of 8 input/output pins. In

this case a PIC54 would therefore be used (see Figure 1.2).

6 Introduction

U1

R1–R7

R8
100 k

�5 V

0 V

3

16
15

4 18
17

RA0TOCKI
MCLR

OSC1
OSC2/CLK

RA1
RA2
RA3

RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7

2

6
7
8
9

10
11
12
13

PIC16F54

270R

1

Figure 1.2

H6664-Ch01.qxd 8/13/05 12:36 PM Page 6

Make sure you employ strobing where possible. This is particularly useful
when using more than one seven-segment display, or when having to test many
buttons. Example 1.6 demonstrates it best:

Example 1.6 The brief is ‘to design a system to test 16 push buttons and display
the number of the button pressed (e.g. button number 11) on two seven-segment
displays’.

It would first appear that quite a few inputs and outputs are necessary:

1. The two seven-segment displays require seven outputs each, thus a total of 14.
2. The push buttons require one input each. Creating a total of 16.

The overall total is therefore 30 input/output pins, which exceeds the maximum
for PIC57. There are bigger PIC microcontrollers, with more than 30 pins, how-
ever it would be unnecessary to use them as this value can be cut significantly.

By strobing the buttons, they can all be read using only 8 pins, and the two
seven-segment displays controlled by only 9. This creates a total of 17 input/
output (or I/O) pins, which is under 20. Figure 1.3 shows how it is done.

By making the pin labelled RC0 logic 1 (�5 V) and RC1 to RC3 logic 0
(0 V), switches 13 to 16 are enabled. They can then be tested individually by
examining pins RC4 to RC7. Thus by making RC0 to RC3 logic 1 one by one,
all the buttons can be examined individually.

Strobing seven-segment displays basically involves displaying a number on
one display for a short while, and then turning that display off while you display
another number on another display. RB0 to RB6 contain the seven-segment
code for both displays, and by making RA0 or RA1 logic 1, you can turn the
individual displays on. So the displays are in fact flashing on and off at high
speed, giving the impression that they are constantly on. The programming
requirements of such a setup will be examined at a later stage.

Exercise 1.6 Work out which PIC model (PIC54 or PIC57) you would use for a
device which would count the number of times a push button has been pressed
and display the value on four seven-segment displays (i.e. will count up to
9999).

After you have selected a particular PIC model, the next step is to create a pro-
gram flowchart (Example 1.7). This forms the backbone of a program, and it is
much easier to write a program from a flowchart than from scratch.

A flowchart should show the fundamental steps that the PIC microcontroller
must perform, showing a clear program structure. A program can have jumps,
whereby as the PIC microcontroller is stepping through the program line by
line, rather than executing the next instruction, it jumps to another part of the
program. All programs require some sort of jump, as all programs must loop –
they cannot just end.

Introduction 7

H6664-Ch01.qxd 8/13/05 12:36 PM Page 7

8
IntroductionSW4 SW3 SW2 SW1

SW8 SW7 SW6 SW5

SW12 SW11 SW10 SW9

SW16 SW15 SW14 SW13

U1
R1–R7RB7 17

16
15
14
13
12
11
10

9
150R

8
7
6

RB6
RB5
RB4
RB3
RB2
RB1
RB0

RC725
24
23
22
21
20
19
18

26
27

28
1

RC6
RC5
RC4
RC3
RC2
RC1
RC0

OSC2/CLK
OSC1

MCLR
TOCKI

PIC16F57

RA3
RA2
RA1
RA0

R8 Q1
BC184L

Q2
BC184L

0 V

�5 V

R9

2.2 k

2.2 k

Figure 1.3

H
6
6
6
4
-
C
h
0
1
.
q
x
d

8
/
1
3
/
0
5

1
2
:
3
6

P
M

P
a
g
e

8

Example 1.7 The flowchart for a program to simply keep an LED turned on.

Introduction 9

Start of program: setup

Turn LED on

Loop back to the beginning

Figure 1.4

The setup box represents some steps which must be taken as part of the start of
every program, in order to set up various functions – this will be examined later.
Rectangles with rounded corners should be used for start and finish boxes.

Conditional jumps (in diamond shaped boxes) can also be used: if something
happens, then jump somewhere.

Example 1.8 The flowchart for a program to turn an LED on when a button is
being pressed.

Start of program: setup

Turn LED on

Loop back to the beginning

Turn LED off
No

Yes

Is
button pressed

Figure 1.5

Sometimes a flowchart box may represent only one instruction, but sometimes
it may represent a great deal, and such a diagram allows you to visualise the
structure of your program without getting bogged down with all the nitty gritty
instructions. Writing a program from a flowchart merely involves writing the

H6664-Ch01.qxd 8/13/05 12:36 PM Page 9

instructions to perform the tasks dictated by each box, and in this way a poten-
tially large program is broken down into bite-sized chunks.

Exercise 1.7 Draw the flowchart to represent the program required to make an
LED flash on and off every second (i.e. on for a second, then off for a second),
and a buzzer to sound for one second every five seconds.

Writing

Once the flowchart is complete, you should load up a PIC program template on
your computer (soon you will be shown how to create a sample template) and
write your program on it. All this can be done with a simple text program such
as Notepad, which comes with Microsoft Windows (or another suitable develop-
ment package such as PIC PRESS – see Chapter 6).

Assembling

When you have finished writing your program, it is ready to be assembled. This
converts what you’ve written (consisting mostly of words) into a series of numbers
which the computer understands and will be able to use to finally ‘blow’ the PIC
microcontroller. This new program consisting solely of numbers is called the hex
code or hex file – a hex file will have .hex after its name. Basically, the ‘compli-
cated’PIC language that you will soon learn is simply there to make program writ-
ing easier; all a raw program consists of is numbers (some people actually write
programs using just numbers but this is definitely not advisable as it is a nightmare
to fix should problems arise). So the assembler, a piece of software which comes
with the PICSTART or MPLab package – called MPASM (DOS version) or
WinASM (Windows version) – translates your words into numbers. If, however, it
fails to recognise one of your ‘words’ then it will register an error – things which
are definitely wrong. It may register a warning which is something which is prob-
ably wrong (i.e. definitely unusual but not necessarily incorrect). The only other
thing it may give you is a message – something which isn’t wrong, but shows it
has had to ‘think’a little bit more than usual when ‘translating’ that particular line.
Don’t worry if you are still a little confused by assembling, as all this will be
revised as you go through the process of actually assembling your program.

This assembled program will get fused into the program memory, when you
‘blow’ the PIC microcontroller. The PIC microcontrollers used in this book have
a Flash program memory, which can be re-written over and over again. Other
models may be OTP (one-time programmable), or UV-erasable.

You should now be ready to begin writing your first program …

The file registers

The key to the PIC microcontroller are its file registers. If you understand these
you’re half way there. Imagine the PIC microcontroller as a filing cabinet, with

10 Introduction

H6664-Ch01.qxd 8/13/05 12:36 PM Page 10

many drawers, each containing an 8 bit number (a byte). These drawers are the
file registers. As well as these file registers there is the working register. This
register is different because it is not part of the filing cabinet. It is needed because
only one drawer (i.e. file register) may be open at one time. So imagine trans-
ferring a number from one drawer to another. First, you open the first drawer,
take the number out then close it, now … where is the number? The answer is
that it is in the working register, a sort of bridge between the two file registers
(think of it as the poor chap who has to stand in front of the filing cabinet). The
number is temporarily held there until the second drawer is opened, upon which
it is put away.

As you can see from Figure 1.6, each file register is assigned a particular
number. You should call the file registers by their actual name when writing
your program (as it is much easier to follow), and then the assembler will trans-
late your names back to numbers when creating the hex file.

Do not worry about the names or functions of these file registers, they will be
discussed later on. However, to summarise, registers 00 to 06 have specific
functions, and registers 07 to 1F are general purpose file registers, which you
have complete control over. You can use general purpose file registers to store
numbers and can give them whatever name you want. Naturally you will need
to tell the assembler how to translate your own particular names into numbers.
For example, if you were to use file register 0C to store the number of hours
that have passed, you would probably want to call it something like Hours.
However, as the assembler is running through your program, it will not

Introduction 11

00

01

02

03

04

05

06

07

08

09

0A

0B

…

1F

Indirect address

TMR0

PCL

STATUS

FSR

PORT A

PORT B

General

purpose

file

registers

Working register

Figure 1.6 Map of file registers for PIC16F54.

H6664-Ch01.qxd 8/13/05 12:36 PM Page 11

12 Introduction

MCLR/VPP

OSC1/CLKIN

OSC2/CLKOUT

P
IC

16
F

57

P
IC

16
F

54 RC7

RC6

RC5

RC4
RC3

RC2

RC1

RB5

RC0

RB7/ICSPDAT

RB6/ICSPCLK

2

1

3

4

5

6

7

8

9

10

11

12

13

14

27

28

26

25

24

23

22

21

20

19

18

17

16

15

2

1

3

4

5

6

7

8

9

17

18

16

15

14

13

12

11

10

RA1

RA0
OSC1/CLKIN
OSC2/CLKOUT

VDD

RB7/ICSPDAT
RB6/ICSPCLK
RB5RB2

RB1

RB0

VSS

RA2
RA3

T0CKI
MCLR/VPP

RB3 RB4

RA0

N/C

N/C

T0CKI

VDD

VSS

RA1

RA2

RA3

RB0

RB4

RB1

RB2

RB3

Figure 1.7

understand what you meant by ‘Hours’ unless you first declare it. You will be
shown how and where to declare your file registers shortly, when we look at a
program template.

Before this, a brief introduction to registers 05 and 06 is required …
The ports are the connections between the PIC microcontroller and the out-

side world, its inputs and its outputs. The first port, Port A, has only 4 bits, i.e. it
holds a nibble rather than a full byte and is the only register that does so. Each
bit corresponds to a particular I/O (input/output) pin, so bit 0 of Port A corre-
sponds to the pins labelled RA0 (pin 17 on PIC54 and 6 on PIC5 (Figure 1.7)).
So when you write an 8-bit number into Port A, the four most significant bits are
ignored, and likewise when you read an 8 bit number from Port A, the four most
significant bits are read as 0.

For example, let us say that RA0, RA1, RA2 and RA3 are acting as inputs and
there is a push button between each input and �5 V. If these push buttons are all
pressed, the decimal number 15 (binary number 1111) would be in Port A. Con-
versely, if they are acting as outputs and are all connected to LEDs which were
tied down to 0 V (as shown in Figure 1.9), moving the number 15 into Port A
would turn all four LEDs on.

Exercise 1.8 Considering the arrangement just mentioned, in order to create a
chase of the four LEDs (see Figure 1.8), a series of numbers will have to be
moved into Port A one after another. What will these numbers be (answers in
binary, decimal or hexadecimal)?

Port B (and Port C on PIC57) is simply another input/output port, just like Port
A in all respects except that they have 8 bits (i.e. hold a byte). Port C on PIC57
is register 07, so note that the general purpose registers on this device start from
08 onwards.

H6664-Ch01.qxd 8/13/05 12:36 PM Page 12

A program template

In this and subsequent sections you will begin to look at instructions. You may
well find them unfamiliar, but fortunately there are a few general rules you can
use to decipher an unknown instruction. First, wherever you come across the

Introduction 13

1.

LEDs

2.

3.

4.

5.

Figure 1.8

T0CKI
MCLR

OSC1
OSC2/CLK

RA0
17
18

1

2

6

7
8
9

10
11
12

13

U1

�5 V

0 V

R1
270R

R2
270R

R3
270R

R4
270R

RA1
RA2

RA3

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

PIC16F54

3
4

16
15

Figure 1.9

H6664-Ch01.qxd 8/13/05 12:36 PM Page 13

letter f in an instruction, it refers to a file register. A w will nearly always mean
working register, and a b stands for bit in the vast majority of cases. Finally, an
l will usually stand for literal, which effectively means number. An instruction
containing an l will therefore require a number to be specified afterwards. For
example, the instruction used in the next example (bsf) sets a bit in a file regis-
ter (makes it 1).

Example 1.9

(Label) bsf porta, 0 ; turns on LED

There are a few fundamental elements to writing a PIC program, one of these
is line structure. Example 1.9 shows a sample line of programming. Optional
first is a label which is required if you want to jump to this place in the pro-
gram. Then comes the actual instruction: bsf, i.e. what are you doing. Third
comes what are you doing it to (porta, 0), and lastly an explanation in your own
words of what you have just done. It is important to note that you can write
whatever you want in a PIC program as long as it is after a semicolon.
Otherwise the assembler will try and translate what you’ve written (e.g. ‘turns
on LED’) and will naturally fail and give you an ERROR. As the assembler
scans through line by line, it will jump down to the next line once it comes to
a semicolon.

I cannot stress how important it is to explain every line you write. First,
what you’ve written may make sense as you write it, but there is a good
chance that when you come back to it after a while, it will be difficult to under-
stand. Secondly, it allows another person to read through your program with
reasonable ease. It can sometimes be quite difficult to write a good explanation,
as it should be very clear yet not too long. Don’t get into the habit of basi-
cally copying out an instruction definition as your explanation, as shown in
Example 1.10.

Example 1.10

bsf porta, 0 ; sets bit 0 of Port A

The above comment means very little at all (it is easy to see that bit 0 is being
set). It is far better to say why you have written what you have, and what its
implications are (as shown in Example 1.9).

Now let’s look at a program template, bear in mind this is simply an
example and you may want to add or remove headings for your own per-
sonal template. In general, with your whole program, it is a good idea to
space things out, and divide relevant sections up with lines. I suggest creating
these with equal signs (�), of course you need a semicolon at the start of such
a line.

14 Introduction

H6664-Ch01.qxd 8/13/05 12:36 PM Page 14

Program template

;************************************
; written by: *
; date: *
; version: *
; file saved as: *
; for PIC… *
; clock frequency: *
;************************************

; PROGRAM FUNCTION: _______________________________________

;__

list P = 16F5x
include “c:\pic\p16f5x.inc”

;============
; Declarations:

porta equ 05
portb equ 06
(portc equ 07)

org 1FFh
goto Start
org 0

;===========
; Subroutines:

Init clrf porta ; resets input/output ports
clrf portb
(clrf portc)
movlw b’xxxx’ ; sets up which pins are inputs and which
tris porta ; are outputs
movlw b’xxxxxxxx’
tris portb
(movlw b’xxxxxxxx’
tris portc)
retlw 0

;=============
; Program Start:
Start

call Init
Main

(Write your program here)
END

Introduction 15

H6664-Ch01.qxd 8/13/05 12:36 PM Page 15

In the little box made up out of asterisks (purely there to make it look nice),
there are a couple of headings which allow another reader to quickly get an idea
of your program. Where it has: for PIC…, insert a model number such as 16F54
or 16F57, depending on which PIC you are using.

The clock frequency shows the frequency of the oscillator (resistor/capacitor
or crystal) that you have connected. The PIC microcontroller needs a steady sig-
nal to tell it when to move on to the next instruction (in fact it performs an
instruction every four clock cycles), so if, for example, you have connected a
4 MHz oscillator – i.e. four million signals per second – the PIC microcontroller
will execute one million instructions per second. The clock frequency would in
this case be 4 MHz.

Much more important than these headings are the actual preliminary actions that
must be performed. The line: list P = 16F5x is incomplete. Replace the 5x with the
number PIC microcontroller you are using (e.g. 54), so a sample line would be: list
P = 16F54. This tells the assembler which PIC microcontroller you are using.

The line: include “c:\pic\p16f5x.inc” enables the assembler to load what is
known as a look-up file. This is like a translator dictionary for the assembler.
The assembler will understand most of the terms you write, but it may need to
look up the translations of others. All the file registers with specific functions
(00 to 07) are declared in the look-up file. When you install PIC software it will
automatically create these look-up files and put them in a directory (e.g.
“C:/Program Files/Microchip/MPASM Suite/”). I have suggested you copy rel-
evant look-up files (.inc) into a folder called “pic” in your C: drive so that it eas-
ier to remember the correct path, but this is up to you. Regardless, you must
write a valid path to the look-up file.

Next comes the space for you to make your declarations. These are, in a
sense, your additions to the translator dictionary. If you were to declare Hours
as file register 0C, you would write the following:

;============
; Declarations:

Hours equ 0Ch

You may also want to re-declare certain file registers with specific functions.
This is because the assembler may be sensitive to whether something is upper
case or in lower case. For example, the look-up file declares file register 05 as
PORTA. Personally, I prefer writing it as porta, because it is quicker (I under-
stand you may be happy to leave it as PORTA, but this example demonstrates
the principle), so I will re-declare 05 as porta along with my other declarations:

;============
; Declarations:

porta equ 05h
Hours equ 0Ch

This means I can write porta or PORTA and the assembler will understand
both as file register 05. I also suggest declaring in order of increasing file regis-
ter number.

16 Introduction

H6664-Ch01.qxd 8/13/05 12:36 PM Page 16

Below the declarations are three lines which ensure the chip runs the program
starting from the section labelled start. To understand this principle you must
understand that every instruction line (i.e. not just a space or a line with some
comments) has a particular number (or address) assigned to it.

Example 1.11

start

0043 bsf porta, 0 ; turns on LED
; (This is to prove comments aren’t counted)

0044 goto start ; loops back to start

Notice how only the lines with instructions have addresses (start is merely a
label and not an instruction). Now, the allocation of addresses is systematic –
counting up as you go down the program – unless you tell it otherwise. You
can actually label the next line with a particular address, and then the ones
which follow will continue counting up from there. This is done with the
assembler command org, followed by the address number you wish to give the
next line.

Example 1.12

start
0043 bsf porta, 0 ; turns on LED

org 3 ; makes the address number of the next
; instruction 3

0003 bsf porta, 1 ; turns on buzzer
0004 goto start ; loops back to start

Notice how the command org is not given an address. This is because it is not
an instruction which the PIC microcontroller executes, rather it is a note for the
assembler telling it to stick the following instruction at (e.g.) address 0003 in the
PIC microcontroller’s program memory. Example 1.12 however would never
work, because after executing address 0043, the chip would attempt to execute
address 0044, but regardless it demonstrates the principle of the org instruction.

The PIC54 has 512 addresses (200h in hexadecimal) in its program memory,
in other words it can hold programs which are up to 512 instructions in length.
The first instruction to be executed when the PIC microcontroller is switched on
(or reset) is called the reset vector, and points to address 1FFh for the PIC54. We
want the PIC microcontroller to begin at the place in the program which we have
labelled start, so we make sure the instruction at 1FFh is goto start. In the
template, org is used to place instruction goto start at 1FFh, making it the first
to be executed. However, subsequent instructions must start counting from 0, so

Introduction 17

H6664-Ch01.qxd 8/13/05 12:36 PM Page 17

the following command is org 0. Writing the program memory address by the
instructions shows how it works:

org 1FF
01FF goto start

org 0
;===========
; Subroutines:
0000 Init clrf porta ;
0001 clrf portb ;
etc.

The first instruction to be executed (goto start) makes the chip goto (jump)
to the part of the program labelled start, and thus the PIC microcontroller will
begin running the program from where you have written start. Different PIC
models have different reset vectors (it’s 7FFh for the P16F57), so the program
template should be changed accordingly.

The next section of the template holds the subroutines. These are quite com-
plicated and will be investigated at a later stage; all you need know at the
moment is that the section labelled Init is a subroutine, and it is accessed using
the call instruction. The subroutine Init should be used to set up all the particu-
lars of the PIC microcontroller. With the PIC5x series of chips, this mainly
involves selecting which pins of the PIC microcontroller are to act as inputs, and
which as outputs. In other cases with more complex PIC models, more setting
up will be required. Please note that this setting up is put in the Init subroutine
only to get it out of the way of the main body of the program and thus make it
neater and more reader friendly. First we use the instruction:

clrf FileReg ;

This clears (makes zero) the number in a file register. We use it at the start of the
setup subroutine to make sure the ports are reset at the start of the program. This
is because after the PIC microcontroller is reset, the states of the outputs are the
same as they were before the reset. However, in some cases where you want the
states of the ports to be retained from before the reset, these clearing instruc-
tions may need to be removed. If the PIC model that you’re using doesn’t con-
tain a Port C, do not bother clearing it.

The next instruction is:

movlw number ;

It moves the literal (the number which follows the instruction – in the first case
b’xxxx’) into the working register. Then the instruction tris takes the number in
the working register and uses it to select which bits of the port are to act as
inputs and which as outputs. A binary 1 will correspond to an input and a 0 cor-
responds to an output. Pins which you don’t use are best made outputs.

18 Introduction

H6664-Ch01.qxd 8/13/05 12:36 PM Page 18

Example 1.13 Using a PIC54, pins RA0, RA1 and RA3 are connected to push
buttons. Pins RB0 to RB6 are connected to a seven-segment display, and pins
RA2 and RB7 are connected to buzzers. What should you write to correctly
specify the I/O pins?

movlw b’1011’
tris porta
movlw b’00000000’
tris portb
retlw 0

There are two things to notice: first, there is no specification of Port C (naturally
as the PIC54 doesn’t have one), and secondly, a reminder that bit numbering
goes from right to left (it is easy to forget!).

Exercise 1.9 Using a PIC57, pins RA1 and RA2 drive LEDs, pins RA0 and
RA3 are connected to temperature sensors, RB0 to RB6 control a separate chip,
and RB7 is connected to a push button. RC1 to RC5 carry signals to the PIC
microcontroller from a computer, and all other pins are not connected. What
should you write in the Init section of the program?

The instruction retlw is placed at the end of a subroutine, normally with a 0
after it.

Finally the last part of the template holds Start, where the program begins.
Notice that the first thing that is done is setting up the ports’ inputs and outputs.
After the line call Init, there is the heading Main after which you write your
program. At the end of your program, you must write END.

Introduction 19

H6664-Ch01.qxd 8/13/05 12:36 PM Page 19

Your first program

For this chapter (and subsequent ones) it is assumed you are sitting in front of a
computer which has the application Notepad or PIC PRESS (see Chapter 6). Do
not worry if you don’t have any actual PIC software at the moment, as the programs
you write now can be assembled later, when you do actually get some software.

If using Notepad, you should start by copying out a program template; save
the file as template.asm and make sure you select any file as the file type. The
.asm shows that the file is an assembly source, i.e. it is something to be assem-
bled, which makes it recognisable to the assembler. To begin with we’ll be using
the PIC54, so make the necessary alterations on the template (from now on
do not simply Save, but instead Save As, so the file template.asm remains
unchanged). Call this new file ledon.asm.

The first program you will write will be very simple. It simply turns on an
LED (and keeps it on indefinitely). This will simply use two instructions: bsf
and goto.

The instruction bsf sets (i.e. makes 1), a particular bit in a file register. You
therefore need to specify the file register and the bit after the instruction (what
you are doing it to).

Example 2.1 bsf portb, 5 ; turns on buzzer

portb is the file register, and 5 is the number of the bit being set. There is a
comma between the file register and the bit.

You should already be familiar with the instruction goto label (remember goto
start from the template?). It makes the PIC microcontroller jump to the section
of the program you have labelled label. Naturally you can name the place to
which you want it to jump anything you want, but it is a good idea to make it rele-
vant to what is going on in the program in that particular section. Be careful,
however, not to give sections the same name as you give to general purpose file
registers, otherwise the assembler will get confused.

The first step of writing a program is assigning inputs and outputs. For this
device we simply need one output for the LED. This will be connected to RA0
(pin 17) of the PIC microcontroller. The second step is the program flowchart
shown in Figure 2.1.

We can now write the program. You should be able to set up the inputs and
outputs yourself (remember if a pin is not connected, make it an output). You can
also have a go at writing the program yourself (it should consist of two lines).

2
Exploring the PIC5x series

H6664-Ch02.qxd 8/19/05 10:43 AM Page 20

Exploring the PIC5x series 21

The first box (Set up) is performed in the Init subroutine. The second box
involves turning on the LED. This involves making RA0 high (�5 V), and thus
bit 0 of Port A should be 1 (i.e. set). To do this we use the instruction bsf. The
line after . . .

Start call Init ;

. . . should therefore be:

Main bsf porta, 0 ; turn on LED

Remember, a program cannot just end; it must keep looping, so the next box
involves making the program jump back to the beginning. The next line should
therefore be:

goto Main ; loops back to Main

Note that it should not go back to Start, as this will do the setting up all over
again. Depending on how you wrote Port A in the program, you may need to
redefine it in the declarations section. This would be necessary unless you wrote
PORTA (i.e. in upper case).

The program is now ready to be assembled and you may want to check you
have everything correct by looking at the program in its entirety. This (along with
all the other example programs) is shown in the program section in Chapter 7.
This program has been given the name Program A.

We now turn to assembling the program. You can download assemblers from a
variety of sources or use the built-in assembler in PIC Press. I will discuss a popu-
lar development environment from Microchip (the makers of PIC microcon-
troller) called MPLab, which can be downloaded from www.microchip.com. The
discussion refers to MPLab IDE v7.00, but the steps described are unlikely to
change significantly for future versions.

Open MPLab IDE, select File : Open and find your assembly file (e.g.
ledon.asm). This should create a window containing your assembly file, with
basic colour coding. Assembler commands (such as org and equ) appear in blue
plaintext, while PIC instructions (such as clrf and goto) appear in blue bold.

Start of program: setup

Turn LED on

Loop back to the beginning

Figure 2.1

H6664-Ch02.qxd 8/19/05 10:43 AM Page 21

Before assembling your code, you should select the PIC model you’re using in
Configure : Select Device. To assemble your source file, go to Project :
Quickbuild filename.asm (where filename should be the name of your source
file). An Output window will appear summarising any Errors, Warnings or
Messages. If there are any errors (or warnings you wish to change), note the line
number on which they occur. To find the relevant line in the source file use
CTRL � G to jump to a line number (also, the line number of the cursor is
shown at the bottom of the screen). After you have assembled the file with no
errors, a .hex file is loaded into the memory. You can use this file to simulate the
program, and to blow the PIC microcontroller. To save this file, select File :
Export . . . , click OK, and then type the name of your file. You should use the
same name as your source file (e.g. ledon.hex).

It is worth noting that MPLab also comes with the standalone assembler,
MPASMWIN, which you can use to assemble source files without loading
MPLab. If you open this assembler, a window will appear with several param-
eters that need to be set. Click Browse . . . to select the file which you wish to
assemble (the Source file). Leave all parameters at Default, and I would recom-
mend selecting only the ‘List File’ under Generated Files. This list file is useful
when it comes to tracking down the errors that you made in the source file (if
any!). It lists the errors within your program, next to where they occur. You can
open this file, and search for instances of the word ‘error’ to track down your
errors. Alternatively, a really quick way to assemble is to drag the .asm file over
MPASMWIN – this should start the assembly process.

Configuration bits

There are a handful of settings which are hard-wired into the PIC microcon-
troller when it is programmed, called ‘configuration bits’. The number and type
of these bits vary for different models, but for the PIC54 we have the following:

Code Protect: On or Off
Watchdog Timer: On or Off
Oscillator Selection: LP or XT or HS or RC

‘Code protect’ is a feature which prohibits the reading of a program from the
PIC microcontroller. For testing purposes, it is best to turn this feature off. The
watchdog timer is discussed on page 69, but until then we should turn it off.
Finally, the oscillator selection tells the PIC microcontroller what kind of oscil-
lator you plan to connect (these are described in the next section). These features
can be selected using tick boxes at the programming stage, but they can also be
specified in the program using the __config command (note this has two under-
score characters at the start). For example, to disable code protect and the
watchdog timer, and to select the crystal oscillator, we would write:

__config _CP_OFF & _WDT_OFF & _XT_OSC

22 Exploring the PIC5x series

H6664-Ch02.qxd 8/19/05 10:43 AM Page 22

The exact words for each feature (e.g. _WDT_OFF) can be found in the include
file for the relevant PIC model. Separate each feature with an ampersand (&).

Testing the program

In general, there are three steps to testing a program:

1. Simulating
2. Emulating
3. Blowing a PIC microcontroller and putting it in a circuit

Simulating

The first of these, simulating, is entirely software based. You simply see num-
bers changing on the computer screen and need to interpret this as whether or
not the program is working. Select Debugger : Select Tool : MPLab SIM to
activate the simulator. Assuming you have loaded a source file in MPLab and
assembled it, your program should be loaded into the memory ready for use by
the simulator. Press F6 (or Debugger : Reset : Processor Reset) to reset the
program. A green arrow should appear at the line goto Start indicating that
this is the next instruction to be executed. Press F7 (Debugger : Step Into) to
execute an instruction one step at a time. The first time you press F7 the green
arrow should jump to call Init. Continue stepping through your program and
you will see the flow of the program, eventually ending up in the final loop.

In order to faithfully simulate the behaviour of the final PIC microcontroller,
the simulator requires that the configuration bits are correctly defined. This is done
through Configure : Configuration Bits . . . and ticking the appropriate boxes.

We now wish to see how the registers of the PIC microcontroller (and in par-
ticular its outputs) are changing throughout the program. Go to View : Special
Function Registers to load a window showing the states of PIC registers (presented
as binary, decimal and hexadecimal). Reset the program back to goto Start,
but this time look at the special function registers (in particular PORTA and
PORTB) as you step through the program. After passing through the Init sub-
routine, PORTA should be set to 0. Then you can see the line starting bsf . . . turn
on bit 0 of PORTA (in other words, making pin RA0 high). We will return to the
simulator later to see how to set the states of inputs, for programs that respond
to external stimuli.

Emulating

A more visual (but much more expensive) step in testing employs an emulator
(such as PICMASTER from Microchip and ICEPIC from RF Solutions). These
use a probe in the shape of a PIC microcontroller which comes from your PC
and plugs into a circuit board. You can then load and run your program, much
like simulating, with the great advantage that the program responds to the states
of the inputs of the probe, and the pins of the probe change according to the

Exploring the PIC5x series 23

H6664-Ch02.qxd 8/19/05 10:43 AM Page 23

24 Exploring the PIC5x series

program flow. This not only presents a more visual demonstration of the program,
but allows you to test both the program and its implementation in a real circuit.

Blowing the PIC microcontroller

The final step involves actually putting the program into the PIC microcon-
troller. You should only do this once you have tested the program, either through
simulation or in-circuit emulation. In order to do this, you need a PIC program-
mer, and circuit board in which to place your chip after it’s programmed. There
are a great many programmers available, though ones which are compatible
with MPLab allow for a seamless transition from the steps described above, to
the final programming step. Such programmers include PICStart Plus (from
Microchip) and PIC MCP (from Olimex).1 Note that although third-party alter-
natives may appear more inexpensive, the documentation can sometimes leave
a little to be desired, so they may not be appropriate for the true novice.

In-circuit serial programming (ICSP) allows the transfer of a program to a
PIC microcontroller, while it remains in its own circuit board. The Baseline
Flash Microcontroller Programmer (BFMP) is a very handy ICSP tool for the
PIC16F54, PIC12F508 and PIC12F675 which are used in the example projects
of this book, as well as a number of other PIC models. It is a compact module
with a USB interface to your PC, which can plug into your custom circuit-board
to program the PIC microcontroller and provide power.

The PICKit™ 1 Flash Start Kit is a development board which supports simi-
lar devices. It is also a USB device, and interfaces either with MPLab or with a
piece of standalone programming software (called PICkit™ 1). It even comes
with a PIC12F675 ready for you try out the projects in Chapter 4. The board
comes with 8 LEDs, a button, and a variable resistor connected. You can either
use these components as they are on the board (shown in Appendix H), or use a
jumper cable to connect to your own board. You can keep the PIC microcon-
troller on the development board, and use the jumper leads to connect to your
own external components. However, it is also possible to use the jumper leads to
go to a complete external board including the PIC microcontroller and use the
board as an in-circuit serial programmer (but if you do this, make sure you keep
the leads short). In either case, you need to take into account the components
already attached to the pins on the PICKit board, as these may disrupt the
intended behaviour.

Hardware

Figure 1.7 shows the pin arrangements for the PIC54 and PIC57. The pins labelled
RAx, RBx, and RCx are I/O pins. VDD and VSS are the positive and 0 V supply
pins respectively. The positive supply should be between 2.0 and 5.5 V, but note
that the maximum operating frequency depends on the supply voltage. For

1See Appendix G: Contact Information and References for more information.

H6664-Ch02.qxd 8/19/05 10:43 AM Page 24

Exploring the PIC5x series 25

example, for a 2 V supply, the maximum operating frequency is 4 MHz (equivalent
to 1 million instructions per second). Above 4.5 V, the maximum operating fre-
quency is as high as 20 MHz (5 million instructions per second). The pin labelled
T0CKI is the Timer Zero Clock Input – the PIC microcontroller can be set to
automatically count signals on this pin. On older PIC models, this pin might be
labelled RTCC (Real Time Clock Counter). MCLR is the Master Clear pin
(a reset pin). The bar over the top means it is active low, in other words when you
make this pin low (0 V), the PIC microcontroller drops what it’s doing and returns
to goto start (or wherever the reset vector is pointing to). Figure 2.2 shows how
to trigger the MCLR by means of a push button reset. The resistor is there to tie
the MCLR high when the button is not being pressed.

In a real circuit, we require a short delay between the circuit first being
powered up, and the program commencing. This is necessary since many power
supplies take a short time to stabilise, and crystal oscillators also need a ‘warm-up’.
Many PIC microcontrollers (including the PIC54) therefore come with a Device
Reset Timer (DRT), which provides a delay of approximately 18 ms by keeping
the PIC microcontroller in a Reset condition for a short time after power is
supplied. If the supply or oscillator is particularly unstable (requiring a longer
delay), or the PIC model you are using does not have a DRT, you will need to
attach a small circuit to the MCLR, as shown in Figure 2.3. The value of C1 can
be increased to lengthen the power-up delay.

The chip also needs a steady pulse to keep it going (an oscillator). This can
be created using a crystal, or resistor/capacitor arrangement. The most accurate
and reliable is likely to be a crystal oscillator, as it is less affected by external

U1
17
18
1

2

6
7
8

9

10

11

12

13

RA0

RA1

RA2

RA3

RB0
RB1

RB2

RB3

RB4

RB5

RB6

RB7

PIC16F54

T0CKI
MCLR

OSC1
OSC2/CLK

3

4

16
15

R1
10 k

�5 V

0 V

Figure 2.2

H6664-Ch02.qxd 8/19/05 10:43 AM Page 25

26 Exploring the PIC5x series

variables such as temperature. If you use a crystal, and desire high-speed oper-
ation, I recommend a 16 MHz crystal oscillator. For lower-speed operation,
2.4576 MHz is a convenient frequency. Also note that ceramic oscillators pro-
vide a smaller, lower-cost alternative to quartz crystals. Crystal oscillators
should be connected as shown in Figure 2.4 (though 10 pF capacitors should be
used for higher frequencies such as 16 MHz). Alternatively, you may want to
drive the PIC microcontroller from an external clock source, especially if you
want to synchronise two devices. To do this, simply connect the clock source to
the OSC1 pin (CLKIN). The oscillator frequency divided by 4 is available as a

U1
17
18
1
2

6
7
8
9

10
11
12
13

RA0
RA1
RA2
RA3

RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7

PIC16F54

T0CKI
MCLR

OSC1
OSC2/CLK

3
4

16
15

R2
10 k

1 k

R1

C1
1 uF

D1
1N4148

�5 V

0 V

Figure 2.3

U1
17

18

1

2

6

7

8

9

10

11

12

13

RA0

RA1

RA2

RA3

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

PIC16F54

T0CKI

MCLR

OSC1

OSC2/CLK

3

4

16

15

C2
22 pF

C1
22 pF

�5 V

0 V

X1

2.4576 MHz

Figure 2.4

H6664-Ch02.qxd 8/19/05 10:43 AM Page 26

Exploring the PIC5x series 27

clock source for other devices from the OSC2/CLKOUT pin. Finally, while
prospect of running at PIC microcontroller at high speed may appear attrac-
tive, remember that this consumes more power, and so should be avoided where
unnecessary.

Resistor/capacitor oscillators are a good choice when accuracy and stability
are not important. Useful values are shown in Table 2.1, while the appropriate
arrangement is shown in Figure 2.5.

Table 2.1

Cext Rext Average Fosc @ 5 V, 25°C

20 pF 3.3 k 4.973 MHz �27%
5 k 3.82 MHz �21%

10 k 2.22 MHz �21%
100 k 262.15 kHz �31%

100 pF 3.3 k 1.63 MHz �13%
5 k 1.19 MHz �13%

10 k 684.64 kHz �18%
100 k 71.56 kHz �25%

300 pF 3.3 k 660 kHz �10%
5.0 k 484.1 kHz �14%
10 k 267.63 kHz �15%

160 k 29.44 kHz �19%

U1
17

18

1

2

6

7

8
9

10

11

12
13

RA0

RA1

RA2

RA3

RB0

RB1

RB2

RB3
RB4

RB5

RB6

RB7

PIC16F54

T0CKI

MCLR

OSC1

OSC2/CLK

3

4

16
15

�5 V

0 V

R1

C1

Figure 2.5

H6664-Ch02.qxd 8/19/05 10:43 AM Page 27

28 Exploring the PIC5x series

A circuit diagram for the LED ON project is shown in Figure 2.6 (I have chosen
a resistor/capacitor oscillator as accurate timing in not required). The connec-
tions for an ICSP (in-circuit serial programmer) are also shown – these can be
ignored if a separate programmer (such as PICStart Plus) is used.

If you aren’t using ICSP, but are using a standalone programmer like the
PICStart Plus, you can load the .asm file in MPLab, assemble it and make sure
the configuration bits are correctly set. Then select the programmer you’re using
(Programmer : Select Programmer), enable it (Programmer : Enable Pro-
grammer), and then write the program to the PIC microcontroller (Programmer :
Program). You can use the other options in this menu to erase chips (assuming
they are electrically erasable), and read the program off the chip.

If you are using ICSP, the Baseline Flash Microcontroller Programmer
(BFMP) is an ideal choice, and I would recommend including a socket which
interfaces with this programmer (with the arrangement shown in Figure 2.6), on
each of your development boards. Note the three connections to the PIC micro-
controller: the VPP connection goes directly to the MCLR pin, which has a 10 k
tie-up resistor to VDD, and the ICSPDAT/CLK lines go directly to RB7/6. In this
way, you can reprogram your PIC microcontroller without taking it out of the
board. The BFMP uses programming software called PICkit™ 1 which is much
more basic than MPLab – it just takes an assembled .hex file and writes it to the
PIC microcontroller. You can’t set the configuration bits in the software using
tick boxes, but instead have to use the __config command (discussed
previously) in your assembly code so that the configuration bits are part of the
.hex file.

Connect the BFMP to your PC via a USB cable (note that when ordering a
BFMP it is likely not to come with the USB cable), and connect it to your board
through the 5 connector pins. The PICkit™ 1 programming software has two
varieties: ‘Classic’ and ‘Baseline Flash’. For programming the PIC16F54 and
PIC12F508 models, use the ‘Baseline Flash’ software and select the correct PIC

From in-circuit serial programmer

VPP/MCLR

VDD

VSS

ICSPDAT/RB7

ICSPCLK/RB6

N/C

D1
LED

R1
270R

17
18
1
2

6
7
8
9

10
11
12
13

U1

RA0
RA1
RA2
RA3

RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7

PIC16F54

T0CKI
MCLR

OSC1
OSC2/CLK

R2
10 k

R3
5 k

C1
20 pF

3
4

16
15

�5 V

0 V

Figure 2.6

H6664-Ch02.qxd 8/19/05 10:43 AM Page 28

Exploring the PIC5x series 29

type in the drop-down box. In the programmer window, load the program (File :
Import Hex), and then press the Write Device button. A nice feature is that if
the .hex file changes (you make some changes to the program, and re-assemble),
it is automatically reloaded before programming the PIC microcontroller. If you
have any problems writing, try erasing the PIC microcontroller first by pressing
Erase. You can also use this software to read the program off a chip. After pro-
gramming the PIC microcontroller, the LED connected to the RA0 pin should
now be on. All this just to see an LED turn on may seem like a bit of an anticli-
max, but there are greater things to come!

Using the testing instructions

A far more useful program would turn on an LED if a push button is pressed,
and then turn it off when it is released. This will involve testing the state of the
input pin connected to the push button. There are two basic methods of testing
inputs:

1. Testing a particular bit in the port, using the btfss or btfsc instructions.
2. Using the entire number held in the port’s file register to look at all the

inputs as a whole.

In most cases you tend to test particular bits, and as there is only one push but-
ton, only one bit will need to be tested. The push button will be connected to pin
RB0, and again the PIC54 will be used. Two I/O pins will be needed in this new
device, and the flowchart is shown in Figure 2.7. The circuit diagram is shown
in Figure 2.8. However, if you are using ICSP, add a 10 k resistor between the
MCLR pin and VDD, as before.

Again, you should be familiar with the set up part, and be able to write it
yourself. The next box requires the use of the new instruction btfss. This
instruction tests a bit of a file register and will skip the next instruction if the bit

Start of program: setup

Turn LED on

Loop back to the beginning

Turn LED off
No

Yes

Is
button pressed?

Figure 2.7

H6664-Ch02.qxd 8/19/05 10:43 AM Page 29

30 Exploring the PIC5x series

is set (i.e. if it is high or logic 1). Its ‘sister’ instruction is btfsc which again tests
a bit of a file, but this time skips the next instruction if the bit is clear (i.e. if it
is low or logic 0). So to test the push button, the instruction line is:

btfss portb, 0 ; tests the push button

If the button pulls the input pin high when it is pressed, the program will execute
the next instruction if the button is not pressed. In such a case the LED should
be turned off and then the program should loop back to Main. The way to do
this is to make the program jump to a section labelled something like LEDoff.
This requires the instruction:

goto LEDoff ; jumps to the section labelled LEDoff

After this line is the instruction that will be executed if and only if the push but-
ton is pressed. This should therefore make the LED turn on. You should already
know how to do this, as well as the instruction that follows it which makes the
program loop back to Main. This leaves us with the section labelled LEDoff. In
this section the LED should be turned off, and then the program should loop
back to Main. To turn a bit off use the instruction bcf. This clears a bit of a file
register and works just like bsf. The next line is:

LEDoff bcf porta, 0 ; turns off LED

We finally come to the last instruction which again should make the program loop
back to Main. You should be able to do this yourself. The program is now ready to
be assembled, but again you may check that the program is correct by looking at
the whole program (named Program B). Load this program into MPLab, and
assemble it as before. We will now simulate this program, but in order to do this

D1
LED

R1
270R

17
18

1
2

6
7
8
9

10
11
12
13

U1

RA0
RA1
RA2
RA3

RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7

PIC16F54

T0CKI
MCLR

OSC1
OSC2/CLK

R2
100 k

R3
5 k

C1
20 pF

3
4

16
15

�5 V

0 V

Figure 2.8

H6664-Ch02.qxd 8/19/05 10:43 AM Page 30

Exploring the PIC5x series 31

we need to simulate inputs. Activate the simulator, turn off the WDT, and open the
window for the Special Function Registers. As you step through the program, you
will see its behaviour for the case where the push button is not pressed. To tell the
simulator that the button is pressed, open Debugger : Stimulus Controller :
New Scenario. This lists a number of inputs that you can control manually. Click
in one of the boxes marked ‘Pin’, and select RB0 (as the button is attached to
RB0). For ‘Action’ select Toggle. Under ‘Comments’ you can type something like
‘Push button’ to remind you what this input represents. A little arrow should
appear at the beginning of the line, under ‘Fire’. Whenever you click the arrow, the
state of RB0 will toggle. You won’t see the effect immediately in the Special
Function Registers window – you need to step through one instruction in order
for the change to register. Use this to set RB0 high, and go through the program
to check it works when the button is pressed (you should see PortA bit 0 go from
0 to 1).

As well as stepping through a program line by line, the simulator also allows
us to run through the program at high speed. In order to tell it when to stop run-
ning, we need to set a break point. When the simulator reaches this point, it stops
running and you can continue stepping through slowly. Set the push button to the
off state (make sure RB0 is clear), and put your cursor on the line that turns the
LED on. Right-click and select “Set Breakpoint”. If you now tell the simulator to
Run (F9, or Debugger : Run), it should never encounter your breakpoint, and
will continue indefinitely. While it’s running, click on the push button. The simu-
lator hits your breakpoint and stops. Breakpoints are particularly useful when
you wish to quickly go through a part of the program that you are not interested
in (e.g. you already know it works) and go through a later section more slowly.

It turns out that the seven line program we wrote above to make a push but-
ton turn on an LED, is in fact very inefficient (the same task can be accom-
plished with only three lines)! You may be wondering how this can be, as we
went through all the development steps and constructed a logical flow chart, but
somehow there is a much better way.

Sometimes it helps to step back from the problem and look at it in a different
light. Instead of looking at the button and LED as separate bits in the two ports,
let’s look at them with respect to how they affect the entire number in the ports.
When the push button is pressed the number in Port B is b’00000001’, and
in this case we want the LED to turn on (i.e. make the number in Port A
b’00000001’). When the push button isn’t pressed, Port B is b’00000000’ and
thus we want Port A to be b’00000000’. So instead of testing using the individ-
ual bits we are going to use the entire number held in the file register (think back
to the two different testing methods introduced at the start of this section). The
entire program merely involves moving the number that is in Port B into Port A.
As you know this cannot be done directly and involves the moving of the num-
ber in Port B to the working register, and then moving the number from the
working register into Port A. To move (in fact copy) the number from Port B into
the working register we need the following instruction:

movf FileReg, w ;

H6664-Ch02.qxd 8/19/05 10:43 AM Page 31

This moves the number from a file register into the working register. This
instruction is very often abbreviated to:

movfw FileReg ;

This instruction will do exactly the same thing, and is translated to the same
number by the assembler. So the instruction to move the number from Port B
into the working register is:

movfw portb ; moves the number in Port B to the
; working reg.

Then to move the number into Port A, we need the instruction:

movwf FileReg ;

This moves the number from the working register into a file register. To move
the number from the working register into Port A we would write:

movwf porta ; moves the number from the w. reg. into
; Port A

After these two lines we need only loop back to Main so it cycles through these
two lines constantly. Please note this shorter technique can only be used because
the push button and LED are connected to the particular pins described in this
example. Unless you specifically connect them up so that the technique works, it
is unlikely to do so. This shorter program is shown as Program C in Chapter 7.

The circuit diagram for this project is the same as with the previous version,
which is shown in Figure 2.8. The next section will introduce timing which is
where the PIC microcontroller will really begin to get useful.

Timing

The PIC microcontroller comes with an on board timer called TMR0 (in more
advanced chips there is more than one timer, e.g. TMR1, TMR2, etc.). As you
may remember, TMR0 (said timer zero) is file register number 01. It has two
basic modes: counting an internal or external signal. When on the internal count-
ing mode, the number it holds counts up at a constant rate (depending on the
oscillator which you’ve attached). When counting external signals, it counts the
number of signals received by the timer zero clock input (pin 3 on the PIC54 and
1 on the PIC57). When the number passes 255, it resets and continues from 0
again, as with any file register (this is called rolling over). As you can already
see, there are various settings for the TMR0 and these can be controlled by the bits
in the OPTION register. This register will not be familiar as it wasn’t on the dia-
gram showing the file registers (see Figure 1.6). This is because it isn’t a file reg-
ister that you can directly access (at least on the PIC5x series). In order to put a

32 Exploring the PIC5x series

H6664-Ch02.qxd 8/19/05 10:43 AM Page 32

Exploring the PIC5x series 33

number into it, you first load the number into the working register, and then write
the instruction: option. This automatically takes the number from the working
register and moves it into the OPTION file register. The bits in the OPTION
register are allocated as shown below.

This may be hard to follow, but this is basically how all file registers are
explained in the PIC databook, so it is important to be familiar with the format.
In the OPTION register each bit controls a particular setting, except bits 6 and
7. As you can see they have no purpose and are read as 0. Bit 5 (T0CS) is the
TMR0 clock source, and defines whether TMR0 is counting internally (using the
oscillator) or externally (counting signals on the T0CKI pin). Bit 4 (T0SE)
selects the TMR0 source edge, and is fairly irrelevant if counting internally, but
can be important if counting external signals. It selects whether TMR0 counts
up every time a signal drops from logic 1 to logic 0 (i.e. falling edge triggered),
or when the signal rises from logic 0 to logic 1 (i.e. rising edge triggered).

Bit no. 7 6 5 4 3 2 1 0 |TMR0 WDT
– – T0CS T0SE PSA PS2 PS1 PS0 |Rate Rate
0 0 0 0 0 |1:2 1:1

0 0 1 |1:4 1:2
0 1 0 |1:8 1:4
0 1 1 |1:16 1:8
1 0 0 |1:32 1:16
1 0 1 |1:64 1:32
1 1 0 |1:128 1:64
1 1 1 |1:256 1:128

Prescaler assignment
0 – if you want the prescaler to be used by

the TMR0
1 – if you want the prescaler to be used by

the WDT

TMR0 source edge
0 – if you want to count up when the signal rises
1 – if you want to count up when the signal drops

TMR0 clock source
0 – if you want to count an internal signal
1 – if you want to count an external signal (on the T0CKI pin)

Now we come to the prescaler bits (PS2, PS1 and PS0). As you already know,
the PIC microcontroller divides the frequency of the oscillations it receives
from its oscillator (crystal, R/C, etc.) by four, and uses this as its driving fre-
quency. This same value is used by TMR0 when counting internally. Let’s
take a typical oscillator frequency of 2.4576 MHz. This is divided by four

H6664-Ch02.qxd 8/19/05 10:43 AM Page 33

34 Exploring the PIC5x series

leaving 0.6144 MHz, in other words a signal which oscillates 614400 times a
second. When trying to use TMR0 to count seconds, minutes and even days,
it is clear that a file register which counts up so fast is of little use. TMR0 would
have to count up to 614400 for one second to pass, but of course it resets at
255 and would never reach this number. TMR0 has to be therefore prescaled,
i.e. its frequency needs to be reduced. By the use of bits 0 to 2 in the OPTION
register, TMR0 can automatically be prescaled by up to 256 times. When using
TMR0 to count seconds and minutes, etc. it would be necessary to prescale it by
the maximum amount. Prescaling TMR0 by 256 divides the frequency of
614400 Hz by 256, to 2400 Hz (surprisingly the numbers work out nicely!). So
even with maximum prescaling, TMR0 still counts up once every 1/2400th of a
second. We need to slow it down further ourselves, and this will be explained
shortly.

The only bit left unexplained is bit 3 (PSA), the prescaler assignment bit.
This introduces the idea of a WDT or watch dog timer, which is explained in a
later section. This bit selects whether it is the WDT that is being prescaled or the
TMR0 – you can only prescale one of them. Which ever one isn’t being
prescaled can still run, but with no reduction of the timer’s frequency (i.e. a
prescaling factor of 1).

Example 2.2 What number should be moved into the OPTION register in order
to be able to use the TMR0 efficiently to eventually count the number of
seconds which have passed?

Bits 6 and 7 are always 0.
TMR0 is counting internally, so bit 5 (T0CS) is 0.
It’s irrelevant whether TMR0 is rising or falling edge triggered so bit 4 (T0SE)
is 0 or 1 (let’s say 0).
Prescaling for TMR0 is required, so bit 3 (PSA) is 0.
Maximum prescaling of 256 is required, so bits 2 to 0 (PS2-0) are all 1.

Hence the number to be moved into the OPTION register is: 00000111.

Exercise 2.1 What number should be moved into the OPTION register in order
to be able to use the TMR0 to count the number of times a push button is
pressed?

Exercise 2.2 Challenge! What number should be moved into the OPTION
register so that TMR0 can keep track of the number of times a push button is
pressed, such that it resets when the maximum of 1023 presses is reached?

Now that you know what number to move into the OPTION register, you need
to know how to move it. This calls for a familiar instruction: movlw. As you may
remember, this moves the number that follows it into the working register. Then
the instruction option moves the number from the working register into the
OPTION register.

H6664-Ch02.qxd 8/19/05 10:43 AM Page 34

Example 2.3 movlw b’00000111’ ; sets up TMR0 to count
option ; internally, prescaled by 256

Notice how the explanation describes the two lines – rather than doing each one
in turn, it makes sense to look at the instruction pair. As you are unlikely to want
to keep changing the TMR0 settings it is a good idea to place the above instruc-
tion pair in the Init subroutine, to keep it out of the way.

If you want to be timing seconds and minutes, you need to perform some fre-
quency dividing yourself. This is basically the same as prescaling, but as it takes
place after the prescaling of TMR0, we should call it postscaling. This requires
quite a complex instruction group, but let’s try to build it up step by step. First, the
essence of postscaling is counting the number of times a rising file register (like the
TMR0) reaches a certain value. For example, we need to wait until the TMR0
counts up to 2400 times, for one second to pass. This is the same as waiting until the
TMR0 reaches 30, for a total of 80 times, because 30 � 80 � 2400 (think about it).

How do we know when TMR0 has reached 30? We subtract 30 from it, and
see whether or not the result is zero. If TMR0 is 30, then when we subtract 30
from it, the result will be zero. However, by subtracting 30 from the TMR0 we
are changing it quite drastically, so we use the command:

subwf FileReg, w

This subtracts the number in the working register from the number in a file
register. The ,w after the specified file register indicates that the result is to be
placed back in the working register, thus leaving the original file register num-
ber unchanged. In this way we can subtract 30 from TMR0, without actually
changing the number in TMR0, i.e. see what would happen to TMR0 if we were
to subtract 30.

The next problem is finding out whether or not the result of the operation
mentioned above is zero. This is done using one of the PIC flags mentioned in
Chapter 1. The flag we use is the zero flag. A flag is merely one bit in a register
(number 02), which is automatically set or cleared depending on certain condi-
tions. The zero flag is set when the result of an operation is zero, and is cleared
when the result isn’t zero. You already know the instruction for testing a bit in a
file register, in this case the instruction line would be:

btfss STATUS, Z ; tests the zero flag (skip if the result was 0)

Rather than specifying the bit number after the file register, as is normally the
case (e.g. porta, 0) – which in this case would be 2 – it is advisable to write Z,
because it is understood by the assembler (with the help of a lookup file) and it
is easier for you to understand. There are only a few select cases where this kind
of substitution may be used.

So far, we have managed to work out when the TMR0 reaches the number 30.
We need this to happen 80 times for one second to pass; this is best done using
the following instruction line:

decfsz FileReg, f

Exploring the PIC5x series 35

H6664-Ch02.qxd 8/19/05 10:43 AM Page 35

This will decrement (subtract one from) a file register, and skip the next instruc-
tion if the result is zero. This is in effect a shortcut, and the identical operation
could be performed over numerous steps, including the testing of the zero flag.
Thus if the number in the specified file register is initially 80, the program will
pass this line 80 times until it skips. If the next instruction is a looping instruc-
tion (i.e. one which makes the program jump back to the beginning of this tim-
ing section, the program will keep looping until the number in the file register
reaches 0 (i.e. it will loop 80 times), after which it will skip the looping instruc-
tion and proceed onto the next part of the program. For this whole timing con-
cept to work, the program must only execute this decfsz instruction when the
TMR0 has advanced by 30 (e.g. gone from 0 to 30 or from 30 to 60, etc.). If we
are in a looping system, it is all very well to test for TMR0 to reach 30 the first
time round, but it will take another 256 advances of TMR0 to reach 30 for a
second time (the TMR0 will continue counting up past 30, reset at 255, and then
continue from 0). We could therefore reset TMR0 every time it reaches 30, but
other parts of the program may be using it and would be relying on it counting
up steadily and continuously. A better solution is to change the number you are
waiting for TMR0 to reach. The second time round the loop it would be neces-
sary to test for TMR0 to reach 60 (i.e. 30 � 30), and then the next time 90
(60 � 30), etc. The number we are testing for should therefore be held in a file
register (let’s call it Mark30, because it marks when TMR0 has advanced by
30), and every time the TMR0 ‘catches up’ with Mark30, 30 must be added to
it. The instruction pair for this involves a new instruction:

addwf FileReg, f ;

This adds the number in the working register to the number in a file register,
and leaves the result in the file register. So we need to move the number we want
to add to the file register into the working register first. The required instruc-
tion pair to add the decimal number 30 to a file register called Mark30 would
therefore be:

movlw d’30’ ; adds 30 to Mark30
addwf Mark30, f ;

When we need to access this number, it will be necessary to move (in fact copy)
the number from the file register to the working register. As you know this
involves the instruction movfw.

The file register which we are decrementing (which holds the number 80 to
start with) shall be called Post80 (Timer Postscaler by a factor of 80).

The program section which follows is the entire instruction set required
to create a one second delay. The first four lines where numbers are being
moved into Mark30 and Post80 may be placed in the Init subroutine. Read
through the instruction set carefully, we will be using this technique in the
next example program. Please note that GPF stands for general purpose file
register.

36 Exploring the PIC5x series

H6664-Ch02.qxd 8/19/05 10:43 AM Page 36

Exploring the PIC5x series 37

movlw d’30’ ; moves the decimal number 30 into
movwf Mark30 ; the GPF called Mark30, the marker

movlw d’80’ ; moves the decimal number 80 into
movwf Post80 ; the GPF called Post80, the first

; postscaler

TimeLoop
movfw Mark30 ; takes the number out of Mark30
subwf TMR0, w ; subtracts this number from the

; number in TMR0, leaving the result
; in the working register (and leaving
; TMR0 unchanged)

btfss STATUS, Z ; tests the zero flag – skip if set, i.e. if
; the result is zero it will skip the next
; instruction

goto TimeLoop ; if the result isn’t zero, it loops back to
; ‘TimeLoop’

movlw d’30’ ; moves the decimal number 30 into
addwf Mark30, f ; the working register and then

; adds it to Mark30

decfsz Post80, f ; decrements Post80, and skips the next
; instruction if the result is zero

goto TimeLoop ; if the result isn’t zero, it loops back to
; ‘TimeLoop’

; When it reaches this point, 1 second has passed

movlw d’80’ ; resets Post80, moving the number 80
movwf Post80 ; back into it

The next example project will be an LED which turns on and off every second
and a buzzer which sounds for one second every five seconds. This will involve
two outputs, one for the LED and one for the buzzer. The LED will be connected
to RA0, and the buzzer to RB0. The oscillator should be accurate so a crystal
arrangement will be used, running at 2.4576 MHz. The program flowchart for
this project is shown in Figure 2.9, and the circuit diagram in Figure 2.10.

The set up should present no problems, remember to define any general pur-
pose file registers such as Mark30 and Post80 using the equ instruction. You can
make them file register numbers 08 and 09 for example. In the Init subroutine
you may want to specify the number that goes in the OPTION register.

The instruction set for the whole of the box ‘Wait one second’ is the program
section mentioned previously which creates a 1 second time delay. At the end of
the section (the line after the movwf instruction), the state of the LED must be
changed (if it is on, turn it off and vice versa). There are two methods of achieving

H6664-Ch02.qxd 8/19/05 10:43 AM Page 37

38 Exploring the PIC5x series

this. First, the current state of the LED can be tested (using the btfss or btfsc
instructions), after which the program branches off to one of two sections
depending on the LED’s state, which will then either turn it on or off. Far easier
when the rest of the I/O port is empty (there are no other connections to Port A
apart from the LED), is to use the following instruction:

comf FileReg, f ;

This instruction complements (toggles the state of all the bits in) a file register,
and leaves the result in the file register. We can use this because even though it
will affect all the other bits in Port A (RA1, RA2 and RA3), this doesn’t matter

Setup

Wait one second

Turn on buzzer

No

Yes

Change the state of LED
and turn off buzzer

Is this the fifth time
this has happened?

Figure 2.9

D1
LED

BUZ1

BUZZER
R1
270R

17
18
1
2

6
7
8
9

10
11
12
13

U1

RA0
RA1
RA2
RA3

RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7

PIC16F54

T0CKI
MCLR

OSC1
OSC2/CLK

C1
22 pF

C2
22 pF

X1
2.4576 MHz

3
4

16
15

�5 V

0 V

Figure 2.10

H6664-Ch02.qxd 8/19/05 10:43 AM Page 38

Exploring the PIC5x series 39

as they aren’t connected to anything. To toggle the state of the bits in Port A the
instruction would be:

comf porta, f ; toggles the state of the LED

However in most cases it won’t be possible to simply toggle (change the state of)
all the bits in a file register, so selective toggling must be carried out. This is
done using the exclusive OR logic command. A logic command looks at one or
more bits (as its inputs) and depending on their states produces an output bit (the
result of the logic operation). The table showing the effect of the more common
inclusive OR command on two bits (known as a truth table) is shown below.

Inputs Result

0 0 0
0 1 1
1 0 1
1 1 1

The output bit (result) is high if either the first or the second input bit is high.
The exclusive OR is different in that if both inputs are high, the output is low:

Inputs Result

0 0 0
0 1 1
1 0 1
1 1 0

One of the useful effects is that if the second bit is 1, the first bit is toggled, and
if the second bit is 0, the first bit isn’t toggled (see for yourself in the table). In
this way certain bits can selectively be toggled. If we just wanted to toggle bit 0
of a file register, we would exclusive OR the file register with the number
00000001. This is done using one of the following instructions:

xorwf FileReg, f ;

This exclusive ORs the number in the working register with the number in a file
register, and leaves the result in the file register. Each bit is exclusive ORed to
each other according to bit number (bit 0 with bit 0, bit 1 to bit 1, etc.). Alter-
natively it may be more suitable to use:

xorlw number ;

This exclusive ORs the number in the working register with a literal (number).

Exercise 2.3 Two instructions are needed to toggle bits 3, 5, and 7 of Port B,
what are these two lines?

H6664-Ch02.qxd 8/19/05 10:43 AM Page 39

The other task that must be completed is turning off the buzzer. Most of the time
the buzzer won’t have been on anyway, but for the one in five times that it is on,
this will turn it off after one second has passed. This is done using the bcf
instruction.

Finally we need to see if this is the fifth time one second has passed (i.e. have
five seconds passed?). This is done, as before, using the decfsz instruction. Use
another general purpose file register called _5Second (the underscore at the
start of the name is there because a file register name cannot start with a num-
ber). The number 5 should be moved into it to begin with, and then after the
decfsz instruction is reached five times, it will skip the next instruction, which
should therefore be some sort of looping instruction. After the number reaches
0, and therefore five seconds have passed, the number 5 should be moved back
into _5Second, because otherwise it will take another 256 seconds for the value
to reach 0 again (as with the resetting of Post80 in the previous example). When
five seconds have passed, the buzzer should be turned on, and then program
loops back to the beginning.

The whole program is shown in Program D; load it into MPLab and begin
simulation. We would like to monitor the states of our general purpose registers
(GPFs), namely Mark30, Post80, and _5Second. Click View : Watch, to open
a window of watch registers – i.e. registers which you would like to monitor
during simulation. Double click in a box under ‘Symbol Name’ and enter
‘Mark30’. The simulator will recognise this as address 08, and also present its
current value, in whatever format you request. To add new formats (e.g. binary,
or decimal), right-click on one of the column titles, and select the desired for-
mat. Add the other two GPFs, load the Special Function Registers window, and
then begin stepping through the program. During the Init subroutine you should
see values entered into these registers. You then enter a loop where we wait for
the TMR0 to count up. Set a break point immediately after the loop (tip: you can
also do this by double-clicking a line), and press Run. When the simulator
reaches the break, the TMR0 should have reached 30. 30 will then be added to
Mark30, 1 will be subtracted from Post80, and the program will loop back – and
you can watch all this happen in the relevant windows.

So far we have covered quite a few instructions and it is important to keep
track of all of them, so you have them at your fingertips. Even if you can’t
remember the exact instruction name (you can look these up in Appendix C),
you should be familiar with what instructions are available.

Exercise 2.4 What do the following do? bsf, bcf, btfss, btfsc, movlw, movwf,
movfw, decfsz, comf, subwf, addwf, equ, option, goto, tris, iorlw, iorwf,
xorlw and xorwf. (Answers in Appendix C.)

Explain also the significance of ,f or ,w after the specified file register, with
certain instructions, such as subwf, addwf, comf, and decfsz, etc. (Answers in
Appendix I.)

There will also be another example project using most of the ideas we have so
far covered: a traffic lights system. There will be a set of traffic lights for

40 Exploring the PIC5x series

H6664-Ch02.qxd 8/19/05 10:43 AM Page 40

Exploring the PIC5x series 41

motorists (green, amber and red), and a set of lights for pedestrians (red and
green), with a button for them to press when they want to cross. This makes a
total of five outputs and one input, and thus the PIC54 will be used.

The red, amber and green motorists’ lights (LEDs) will be connected to RB0,
RB1 and RB2 respectively. The pedestrian push button shall go to RA0, with the
red and green pedestrian lights to RB4 and RB5 respectively. The flowchart is
shown in Figure 2.11, and the circuit diagram in Figure 2.12.

Start of program: setup

Yes

Is button
pressed?

Turn on amber motorists’ LED
and turn off the green one

No

Turn on green motorists’ LED
and red pedestrians’ LED only

(others off)

Wait 2 seconds

Turn on red motorists’ LED
and turn off the amber one.

Turn on green pedestrians’ LED
and turn off the red one

Wait 8 seconds

Flash green pedestrians’ LED
every half second for 4 seconds.
Also flash amber motorists’ LED

and turn off red one

Figure 2.11

H6664-Ch02.qxd 8/19/05 10:43 AM Page 41

42 Exploring the PIC5x series

To start with, the motorists’ light should be green, with all the others off, until
the push button is pressed. The red pedestrian light should be on, and the green
one off. All this should present no great problem, however rather than setting
and clearing the individual bits, simply move the correct number into Port B.

Exercise 2.5 What two lines will be used to get the LEDs in the correct states?

There then needs to be a loop where the pedestrian’s push button is tested contin-
ually, the program should only jump out of the loop when the button is pressed.

Exercise 2.6 What two lines will this loop consist of ?

As soon as the button is pressed (i.e. after the loop is jumped out of) the amber
motorists’ light should be turned on, and the green one turned off. There should
be no change to the pedestrians’ lights.

Exercise 2.7 What two lines will accomplish these required output changes?

As the flowchart in Figure 2.11 shows, there are quite a few time delays
required, and rather than copy the same thing over and over again for each time
delay, it makes sense to use a time delay subroutine. Subroutines will be fully
discussed in detail in the next section on seven-segment displays, however we
will merely use one in this program as the general concept is simple. All we
need know for the moment (and this should be familiar from studying the pro-
gram template) is that when you access a subroutine, the program jumps to a
certain place, runs through some instructions, and then returns to where it left
of. To access a subroutine, the instruction is call, and to return to the line after

U1
17
18
1
2

6
7
8
9

10
11
12
13

PIC16F54

T0CKI
MCLR

OSC1

C1
22 pF

C2
22 pF

0 V

OSC2/CLK

RB1
RB0

RA3
RA2
RA1
RA0

RB2
RB3
RB4
RB5
RB6
RB7R6

R4

270R

R3

270R

R2

270R

R1

R

R

Y

G

G

270R

R5

270R 100 k

PEDESTRIAN

MOTORIST
�5 V

X1
3
4

16

2.4576 MHz

15

Figure 2.12

H6664-Ch02.qxd 8/19/05 10:43 AM Page 42

the call instruction, you need to write retlw. This instruction must always be fol-
lowed by a number, but in cases where this number is not important you can
simply write 0 (as you may remember from the Init subroutine).

In this program, we will create a subroutine which creates a short delay.
Whenever we want a delay to occur we can simply call the subroutine, and then
know that after the required time has passed the program will return to where it
left off. To be able to use the delay subroutine for all delays, the delay will have
to be programmable from outside the subroutine. This delay subroutine will be
just like the one-second time delay used previously, with the exception that we
wish it to work for delays of 0.5, 2 or 8 seconds. We can therefore use a fixed
marker of 240, and a variable postscaler of 5, 20, or 80 depending on what time
we require. We can use the working register to carry the message to the subrou-
tine, by moving the required postscaler value into the working register before
the call command, and then moving the contents of the working register into a
postscaler register in the first line of the subroutine. For a delay of 2 seconds, all
we need to write in the body of the program is:

movlw d’20’ ; sends message of 2 seconds to sub
call TimeDelay ; creates delay of required time

As long as the subroutine TimeDelay began as follows:

TimeDelay movwf PostX ; sets up variable postscaler
movlw d’240’ ; sets up fixed marker
movwf Mark240 ;

TimeLoop etc. (as previous time delays)

Exercise 2.8 Write the full TimeDelay subroutine. Don’t forget to add the line
retlw 0 at the end of the subroutine.

After the two-second delay, the red motorists’ light must be turned on, and the
amber one off. The red pedestrian light must be turned off, and the green one
turned on.

Exercise 2.9 What two lines will make the required output changes?

Exercise 2.10 Now an eight-second delay is required. What two lines will cre-
ate the required delay?

Exercise 2.11 After the eight-second delay the red motorists’ light should be
replaced for the amber one. What two lines accomplish this?

Now both the green pedestrians’ light and the amber motorists’ light must flash
on and off every half second for four seconds (the output should toggle every
half second, eight times).

Exploring the PIC5x series 43

H6664-Ch02.qxd 8/19/05 10:43 AM Page 43

44 Exploring the PIC5x series

Exercise 2.12 Challenge! What eight lines will flash the lights as described?
HINT: Think of a compact way to run a flashing loop eight times – you will
need to use a general purpose file register.

The traffic lights now return to their original states, and the program can loop
back to Main. You have basically written this whole program yourself; to check
the entire program, look at Program E.

Seven-segment displays

Using a PIC microcontroller to control seven-segment displays allows you to dis-
play whatever you want on them. Obviously all the numbers can be displayed, but
also most letters: A, b, c, C, d, E, F, h, H, i, I, J, l, L, n, o, O, P, r, S, t, u, U, and y.

The pins of the seven-segment display should all be connected to the same
I/O port on the PIC microcontroller, in any order (this may make PCB design
easier). The spare bit may be used for the dot on the display. Make a note of
which segments (a, b, c, etc.) are connected to which bits.

Example 2.4 Port B Bit 7 � d, Bit 6 � a, Bit 5 � c, Bit 4 � g, Bit 3 � b,
Bit 2 � f, and Bit 1 � e.

The number to be moved into Port B when something is to be displayed should
be in the format dacgbfe- (it doesn’t matter what bit 0 is as it isn’t connected to
the display), where each letter corresponds to the required state of the pin going
to that particular segment.

The segments on a seven-segment display are labelled as shown in Figure 2.13.
So if you are using a common cathode display (i.e. make the segments high

for them to turn on – see Figure 2.14), and you want to display (for example) the
letter P, you would turn on segments a, b, e, f, and g.

a

f

e

b

c

d

g

Figure 2.13

H6664-Ch02.qxd 8/19/05 10:43 AM Page 44

Exploring the PIC5x series 45

Given the situation in Example 2.4, where the segments are arranged
dacgbfe- along Port B, the number to be moved into Port B, to display a P would
be 01011110. Bit 0 has been made 0, as it is not connected to the display.

Example 2.5 If the segments of a common cathode display are arranged
dacgbfe- along Port B, what number should be moved into Port B, to display the
letter I, and the letter C?

The letter I requires only segments b and c (or e and f) so the number to be
moved into Port B would be 00101000 or 00000110.

The letter C requires segments a, d, e, and f, so the number to be moved into
Port B would be 11000110.

Exercise 2.13 If the segments are arranged dacgbfe- along Port B, what num-
ber should be moved into Port B to display the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, b, c, d, E, and F?

This conversion process of a number into a seven-segment code can be carried
out in various ways, but by far the simplest involves using a subroutine. To con-
vert the number you want displayed into an actual display code, a decoding sub-
routine should be used. The general idea is that you first load the number to be
displayed into the working register, then call the subroutine, which will then
return to the program with the appropriate code in the working register.

Let’s call the subroutine _7SegDisp, and store the number we want displayed
in a file register called Display. The seven-segment display will be connected to

DOT DOT

G

A

COMMON CATHODE COMMON ANODE

COMMON COMMON

B

C

D

E

F

G

A

B

C

D

E

F

Figure 2.14

H6664-Ch02.qxd 8/19/05 10:43 AM Page 45

46 Exploring the PIC5x series

Port B. The instruction set in the main body of the program that would be
required is:

movfw Display ; takes the number out of Display
call _7SegDisp ; accesses the conversion subroutine
movwf portb ; loads the correct code into Port B

As you can see, nothing clever happens here. Where the actual conversion takes
place is outside the main body of the program, in the subroutine. The subroutine
uses the program counter (file register number 02). On the diagram showing the
layout of file registers, this was given the name PCL – this stands for program
counter latch.

The program counter

The program counter holds the address of the next instruction to be executed.
There are 512 addresses in the program memory of the PIC54, so clearly the
program counter must be able to hold a number as large as 511 (remember, one
of the addresses is numbered 0). The PCL only holds the lower 8 bits of the pro-
gram counter (bits 0 to 7). Higher bits are discussed in a later section.

Take a look at the first line of Example 2.6 (address 0043 in the program mem-
ory). While the PIC processor is executing this line, the contents of the program
counter (PC) would be 0044, as this is the next instruction to be executed. The
fact the PC holds the address of the next instruction allows the processor to load
the next instruction from the program memory at the same time as executing the
current instruction (this is called pipelining). This means the processor can run
through the program faster, but it is necessarily making a guess on what the next

Take number from
file into the working

register

Move working
register into the

output port

Call encoding
subroutine which returns

with the correct 7-seg
code in the working

register

Figure 2.15

H6664-Ch02.qxd 8/19/05 10:43 AM Page 46

instruction will be (it guesses that it will be the next instruction in the program
memory). Whenever there is a skip, a goto, call, or retlw this guess is incorrect,
as the PC is changed. The processor then throws away (flushes) the instruction
it guessed would be next, and loads the correct instruction. This loading takes up
an extra clock cycle, and so while normal instructions take one clock cycle,
skips and gotos, etc. take two cycles. Example 2.6 illustrates this idea – the
actions of the processor during each clock cycle are provided below.

Example 2.6

0043 Start btfss portb, 0 ; tests push button
0044 goto On
0045 goto Off

0046 On bsf porta, 0 ; push button isn’t pressed, so turn on LED
0047 goto Start ; loop back to start

Off

0048 bcf porta, 0 ; push button isn’t pressed, so turn off LED
0049 goto Start ; loop back to start

Clock 1: The instruction at 0043 is being executed, the PC holds the number
0044 (remember, it holds the address of the next instruction to be
executed) and in the background the processor is loading the instruc-
tion at address 0044 (goto On).

Clock 2: Let’s say the bit being tested was clear. There is no skip, and so there
was no change to the PC. The processor therefore begins executing
the loaded instruction (goto On), increments the PC to 0045, and
in the background begins loading the instruction at address 0045
(goto Off). Note that it is loading the wrong instruction!

Clock 3: The instruction goto On, changes the PC to 0046. The processor
notices that the PC has changed, flushes the instruction it had loaded,
and begins loading the instruction at address 0046 (bsf porta, 0).
No instruction is executed during this clock cycle.

Clock 4: The processor begins executing the loaded instruction (bsf porta,
0), etc. . . .

Exercise 2.14 Challenge! Go through the program from Start, this time assum-
ing the bit being tested was set. For each clock cycle, write down the address
of the instruction being executed (if any) and the value of the program counter.
Do this until the program returns to Start. How many clock cycles does one
loop take?

Now that we know what the number in the PC means, we can use this under-
standing to create variable jumps. As we have seen, skipping and goto, etc. are

Exploring the PIC5x series 47

H6664-Ch02.qxd 8/19/05 10:43 AM Page 47

ways to change the PC; we can also change it directly as we would any other
register, by acting on the PCL register (file register number 02). For example if
we add the number 2 to the program counter, it will skip that many instructions:

0043 movlw d’2’ ; adds 2 to the PCL
0044 addwf PCL, f ;
0045 goto earth ; – not executed
0046 goto wind ; – not executed
0047 goto fire ; – this line is executed

While the instruction at 0044 is being performed, the PC holds 0045. This
instruction adds 2 to the PCL, changing the PC to 0047. The processor notices
the PC has changed, flushes, and begins loading the instruction at address 0047.
The code in this example is quite useless, as the skipped instructions will never
be executed because the number added to the PCL is constant. However, if the
number added to the PCL is variable, we can create a look-up table.

As you should already know, to return from a subroutine the instruction is:

retlw number ;

However, this not only returns from a subroutine, but returns with a literal (num-
ber) in the working register. This instruction is key to the look-up table, and thus
to the seven-segment display encoding subroutine we are trying to write:

_7SegDisp
addwf PCL, f ; skips a certain number of instructions
retlw b’11101110’ ; code for 0
retlw b’00101000’ ; code for 1
retlw b’11011010’ ; code for 2
retlw b’11111000’ ; code for 3
retlw b’00111100’ ; code for 4
etc.
retlw b’01010110’ ; code for F

Remember that this subroutine is called with the number to be displayed already
in the working register. This number is then added to PCL, so the processor
skips that many instructions. If the number to be displayed is 0, the processor
skips 0 instructions and thus returns from the subroutine with the code to dis-
play a ‘0’. This applies for all the numbers being displayed (0–F).

Subroutines and the stack

We can now take a more detailed look at how subroutines work, using the pro-
gram counter. When a subroutine is called, the program counter is copied into
a special storage system called the stack. You can think of the stack as a pile
of papers, so when the subroutine is called, the number in the PC is placed

48 Exploring the PIC5x series

H6664-Ch02.qxd 8/19/05 10:43 AM Page 48

Exploring the PIC5x series 49

(pushed) onto the top of the stack. When a returning instruction such as retlw is
reached, the top number on the stack is placed back in the PC (it is popped off
the stack), thus the processor returns to execute the instruction after the original
call instruction. In the example above we have only used one level of the stack
(only one number was placed on the stack, before being taken off again). The
PIC5x series have a stack which is only two levels deep (most other models have
eight). When a subroutine is called within another subroutine, again the number
from the PC is placed on top of the stack pushing the previous number to the
level below. If you then call a third subroutine within the second, the third num-
ber goes on the top of the stack, pushing the second to the bottom level, and
pushing the first number off the bottom of the stack (i.e. it is forgotten)! This
means that it will not be possible to return from the first subroutine – clearly not
a desirable situation. The example in Figure 2.16 illustrates this problem.

0032 Sub1

Sub2

Sub3

Sub3

Sub2

Sub1 PC :

St :

St :

St :

Start call

call

call

retlw

retlw

retlw0033

0034

0035 0

0

0

0038

PC : 0037

PC :

St :

St :

PC :

0036

0035
0033

0033

0035

PC :

St :

PC :

0034

0033

BEFORE AFTER

0033
0038

0038

????

????

????

????

????

????

0036

0037

0038 ...

PC :

St :

St :

St :

0038

PC : 0035

PC :

St :

St :

PC :

0033

0032

0033

0036

PC :

St :

PC : 0034

0033
0035

0038
0033

????
????

????
????

????

????

????

????

Figure 2.16

H6664-Ch02.qxd 8/19/05 10:43 AM Page 49

Begin where it says Start. When the call Sub1 instruction is executed, the
contents of the PC are copied onto the stack. Then in the subroutine Sub1, when
the subroutine (Sub2) is called, the contents of the PC are again copied onto
the stack, pushing the previous value down one level. Finally, in Sub2, when the
third subroutine (Sub3) is called, the PC is copied onto the stack, pushing the
second down one level, and the first out of the stack. At the next instruction
retlw, the number at the top of the stack is placed into the PC, thus returning
from Sub3. Then, with the next retlw, the stack is again popped into the PC.
However, upon the third retlw instruction, the processor moves an unknown
number ???? from the stack into the program counter, which could make the
processor effectively return anywhere (though this is probably the instruction at
address 0000. . . but don’t count on it!). Do not worry if you find all this a bit
too technical – the take-home message is: you can call a subroutine, and you can
call a subroutine within a subroutine, but you cannot call a subroutine within a
subroutine. Of course, this doesn’t stop you calling two subroutines within the
same subroutine, like this:

Sub1 call Sub2 ;
call Sub3 ;
retlw 0 ;

Start call Sub1 ;

One final, important word of warning: whenever you change the PCL yourself
(e.g. add a number to it) or whenever you use a call instruction, bit 8 of the pro-
gram counter is cleared to 0. Let’s think about what this means. The 512 addresses
of program memory (called a page) are addressed with 9 bits (bit 0–8). If bit 8 is
automatically cleared, the addresses are limited to locations 0–255 (referred to as
the first half of the page). The result is that all subroutines must be placed (or at
least start) in the first half of the page, though you can call them from anywhere
in the page. Furthermore, if you want to use the variable jumps described above,
these too need to take place in amongst the first 256 instructions of the program.

Example 2.7

0143 OnSub bsf porta, 0 ; start of a subroutine
0144 retlw 0 ; returns

0145 Start call OnSub ; tries to call sub: ‘OnSub’

While executing the call instruction in the example above, the PC is 0146. The
number 0146 is pushed into the stack; however, the number loaded into the pro-
gram counter is not 0143. Because bit 8 of the program counter is cleared by a call
instruction, the number 0043 is placed into the PC and the processor will actually
jump to address 0043 (and keep going until it reaches a return instruction).

50 Exploring the PIC5x series

H6664-Ch02.qxd 8/19/05 10:43 AM Page 50

Exploring the PIC5x series 51

Our next project will be a counter. It will count the number of times a push
button is pressed, from 0 to F. After 16 counts (when it passes F), the counter
will reset to 0. The seven-segment display will be connected to pins RB1 to RB7
and the push button will go to RB0. Figure 2.17 shows the circuit diagram – pay
particular attention to how the outputs to the seven-segment display are arranged.
You should also note that we are using pins RB6/7 which are used for the in-
circuit serial programming (ICSPCLK and ICSPDAT). If you are using ICSP,
these pins should be connected directly to the ICSP device (such as the BFMP),
as before, with a resistor between the pin and the rest of your circuit. In our case,
we have resistors going between RB6/7 and the LEDs, so that’s not a problem.
Unfortunately, if you are powering your circuit board from the ICSP connection,
you need a way to disconnect the ICSPCLK/DAT lines from your circuit when
you wish to operate it, as these lines will cause some disruption. This can be
achieved through a pair of DIL switches, or jumpers, which you can switch
when you want to program the circuit.

The flowchart will be as shown in Figure 2.18.
The set up is much like in previous projects, but do not forget to reset any

important file registers (such as the one used to hold the number of counts) in
the Init subroutine. It may also be desirable to move the code for a 0 into Port B
at the beginning (rather than simply clearing it). Testing the push button should
present no problems either.

Exercise 2.15 What two lines will firstly test the push button, and then loop
back and test it again if it isn’t pressed?

R8
100 k

TO ICSP

TO ICSP

C1
20 pF

R10
5 k

R9
10 k

0 V

�5 V

13

15
16

3

OSC1
OSC2/CLK

T0CKI
MCLR

4

12
11
10
9
8
7
6

2
1

17
18

PIC16F54

RB7

RB0

RA0

U1

RA1
RA2
RA3

RB1
RB2
RB3
RB4
RB5
RB6

a
b
c
d
e
f
g

270R

R1–R7

Figure 2.17

H6664-Ch02.qxd 8/19/05 10:43 AM Page 51

52 Exploring the PIC5x series

To continue developing this program it is necessary to introduce a new instruction:

incf FileReg, f ;

This increments (adds one to) a file register, leaving the result in the file regis-
ter. When the push button is pressed the program skips out of the loop. In this
case the general purpose file register which you are using to keep track of the
number of times the button has been pressed (let’s call it Counter) should be
incremented.

Exercise 2.16 What one line will accomplish this?

We then need to check to see whether or not more than 15 (F in hexadecimal)
counts have been received, or in other words whether or not the number in
Counter is 16. As you know, the usual way to see whether or not the number in
a file register is a particular value is to subtract that value from the file register
(leaving the result in the working register), and then see if the result is zero. On
this occasion, however, we can simply check bit 4 of Counter – if low we know
it stores a number less than 16 and when it goes high we know Counter has
reached 16 (think about it).

Yes

No

No

Yes

Has it gone past
15?

Start of program: setup

Is
button pressed?

Increment counter

Reset counter

Change display

Figure 2.18

H6664-Ch02.qxd 8/19/05 10:43 AM Page 52

Exercise 2.17 Challenge! What two lines will first test to see whether or not the
number in Counter has reached 16, and if it has will reset Counter to 0 (clear
it). Otherwise the program should continue, leaving Counter unchanged.

Finally we need to change the number in Counter into a seven-segment code
and move it into Port B, before looping back to Main. This is done, as you know,
using the encoding subroutine.

Exercise 2.18 Write the four lines that should follow the previous two, which
take the number from Counter into the working register, call the decoding sub-
routine (name it _7SegDisp) which returns with the correct code in the working
register, and then move it into Port B. Then the program should loop back to
Main.

Exercise 2.19 Finally, write the subroutine called _7SegDisp which contains
the correct codes for the seven-segment display.

The program so far is shown as Program F. It is recommended that you actually
build this project. Try it out and you will spot the major flaw in the project.

You should notice that when you press the button, the number 8 will appear
on the display, and then when you release the button, the counter will stop on a
seemingly random number between 0 and F. This is because the program isn’t
testing for the button to be released. So if you work out roughly how long a cycle
takes in the current program when the button is pressed, you can see how often
the push button is tested. There are about 11 instructions in the cycle, and we are
using a 3.82 MHz oscillator. An instruction is executed once every four signals
from the oscillator (at 0.96 MHz), so the cycle of 11 instructions is executed at
a frequency of about 86800 Hz, that’s 86800 times a second. So with the current
program, if you press the button for one second, counter will count up about
86800 times (hence the 8 on the display – what you get when the display counts
up through all the numbers at high speed). This project, as it is, would make a
good random number generator, but let’s move on.

To solve this problem we need to wait until the button is released before we test
for it again. The improved program flowchart would be as shown in Figure 2.19.

All that needs to be changed is that instead of the final line goto Main, we
need to test the push button again. The program should go back to Main if it
isn’t pressed, and keep looping back if it is pressed.

Exercise 2.20 What three lines will achieve this. (Hint: You need to give this
loop a name.)

Assemble the new program (shown in Program G), and try it out. Alas, we still
have a problem.

You should notice that the counter seems to count up more than once when
the push button is pressed (e.g. upon pressing the button it will go from the

Exploring the PIC5x series 53

H6664-Ch02.qxd 8/19/05 10:43 AM Page 53

54 Exploring the PIC5x series

�5 V

0 V

SW1
PUSH

R1
100 k

Button releasedButton pressed

Figure 2.20

Yes

Yes

No

No

No

Yes

Has it gone past
15?

Setup

Is
button pressed?

Increment counter

Reset counter

Change display

Is button
pressed?

Figure 2.19

number 4 to the number 8). This jump varies in size depending on the quality of
the push button used. Our problem is due to button bounce. The contacts of a
push button actually bounce together when the push button is pressed or
released. Figure 2.20 shows the signal fed to the RB0 pin.

The precise details of the bouncing vary according to button type, and indeed
may be different every time the button is pressed, but button bounce is always

H6664-Ch02.qxd 8/19/05 10:43 AM Page 54

Exploring the PIC5x series 55

there. As you can see from Figure 2.20 the program will count more than one
signal, even though the button has only been pressed once. To avoid this, we
must wait a short while after the button has been released before we test the but-
ton again. This slows down the minimum time possible between counts, but a
compromise must be reached.

Example 2.8 To avoid button bounce we could wait 5 seconds after the button
has been released before we test it again. This would mean that if we pressed the
button 3 seconds after having pressed it before, the signal wouldn’t register. This
would stop any bounce, but means the minimum time between signals is exces-
sively large.

Example 2.9 Alternatively to attempt to stop button bounce we could wait a
hundred thousandth of a second after the button release before testing it again.
The button bounce might well last longer than a hundred thousandth of a second
so this delay would be ineffective.

A suitable comprise could be about a tenth of a second (as button bounce varies
depending on the button you use, this may not be sufficient – so you may have
to experiment a little). I am going to choose the longest time possible without
having to use more than one postscaler. In this case the oscillator is at 3.82 MHz;
divide by four to get 0.96 MHz, and then again by 256 to get the lowest fre-
quency of the TMR0 which equals 3730 Hz. Using my own further postscaler/
marker of 255, I can get a frequency of 14.6 Hz. This total time is therefore 0.07
seconds (�1/14.6) which should be sufficient. The improved program flowchart
is shown in Figure 2.21.

As we need to use the delay twice, we should place it in a subroutine to avoid
repetition. To create a 0.07 s delay, we must wait for the TMR0 to change 255
times. At the start of the subroutine, we want to set up the marker register with
(TMR0 � 255). Then wait for TMR0 to reach the marker, as in the previous
examples. When the required time has passed, the program should return from
the subroutine.

Exercise 2.21 What eight lines make up this delay subroutine?

Add the lines to call the delay subroutine at the appropriate points in the program,
and the project should now work. The final program is shown in Program H.

Our next project will be a stop clock. It will show minutes (up to nine), tens
of seconds, seconds, and tenths of a second, thus requiring four seven-segment
displays. Using strobing, these will only require 4 � 7 � 11 outputs. There will
be a push button to start and stop the device, which will require 1 input. A second
reset button can be connected to the MCLR pin without taking up an I/O pin.
In this way the whole project can be squeezed onto the PIC54. RB1 to RB7
will have the seven-segment code for all four of the displays, RB0 will be the

H6664-Ch02.qxd 8/19/05 10:43 AM Page 55

56 Exploring the PIC5x series

start/stop button, and finally RA0 to RA3 will control the seven-segment
displays. The circuit diagram in Figure 2.22 summarizes the setup. The resistor
values for the display segments are chosen in the following way. The PIC micro-
controller produces a 5 V output, and the segments require 2 V and 10 mA.
Therefore there is a 3 V drop across and 10 mA desired through the resistors.
This would suggest a value of about 3/0.01 � 300 ohms. However, as there are
four displays being strobed, each display is only on for a quarter of the time. So
to create the same brightness as if the displays were permanently on, we have to
allow four times the current through, and thus quarter the resistor values. A
value of 82 ohms was therefore used.

Yes

No

Yes

No

No

Yes

Set-up

Has it gone past
15?

Change display

Is button
pressed?

Increment counter

Reset counter

Wait 0.07 s

Is button
pressed?

Wait 0.07 s

Figure 2.21

H6664-Ch02.qxd 8/19/05 10:43 AM Page 56

E
xploring the P

IC
5x series

57

Minutes Seconds

STOP/START

R1–R7
A
B
C
D
E
F
G

82R

Q4

Q3

Q2

Q1
R8

R9

R10

R11

BC184L

BC184L

BC184L

BC184L

2.2 k

2.2 k

2.2 k

2.2 k

13
12
11
10
9
8
7
6

2
1

18
17

PIC16F54

R12
100 k

U1
RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

RA3
RA2
RA1
RA0

OSC/CLK
OSC1

MCLR
T0CKI

15
16

4
3

R13
10 k

RESET
C1
22 pF

C2
22 pF

0 V

X1
2.4576 MHz

�5 V

Figure 2.22

H
6
6
6
4
-
C
h
0
2
.
q
x
d

8
/
1
9
/
0
5

1
0
:
4
3

A
M

P
a
g
e

5
7

58 Exploring the PIC5x series

The program flowchart must now be constructed (Figure 2.23).
The flowchart is structured around testing the start/stop button, with different

sections for when it has been pressed and released, while also taking care of
button bounce (hence the 0.1 s delays). The box ‘Update timing and displays’
represents a lot of work – advancing the timing registers, keeping the displays
strobing and also counting out the 0.1 s for the de-bounce routine. Tidying these
linear operations into one box allows us to get a feeling for the overall structure
of the program – we will put them all into a subroutine called Update.

Start of program: setup

No

Yes

Is button
pressed?

Change start/
stop state

Have
0.1 second
passed?

Yes

Yes

No

Update time and display

No

Yes

Is button
released?

Have
0.1 second
passed?

No

Update time and display

Figure 2.23

H6664-Ch02.qxd 8/19/05 10:43 AM Page 58

We will handle the de-bouncing as follows. We will commandeer a bit in an
unused GPF to act as a flag to tell us whether the button has just changed state
(pressed to released, or vice versa). When this flag goes low, we should wait
0.1 s before setting it again. While the flag is low, the button will not be tested
further. After the flag is re-set, we can assume the state of the button has stabilised
and will continue testing its state. We will call this bit bounce, and assign it bit
0 of file register 08. We can define the name of this bit, using the following
command:

#define name FileReg, Bit

This assigns a name to a particular bit in a file register. This doesn’t have to be
a general purpose file register either – you can rename a bit in an SFR, such as
Port A. The fundamental difference between this command and equ, is that a
number must always follow equ, whereas anything can follow #define. The
assembler will simply replace any instance of the word you have #defined with
the definition you’ve provided.

Example 2.10

#define LED1 porta, 0
etc.

bsf LED1 ; turns on first LED (connected to RA0)

In the case of a general purpose bit, we naturally need to assign it to a bit in a
GPF (and, of course, one which we aren’t already using). I advise having one
file register set aside to house any general purpose bits (you seldom need more
than 8), and calling this file register General (or a more inspiring name if you
can think of one). To define the bit bounce the following would be written:

#define bounce General, 0

If we were to write this, we would naturally have to define the file register
General:

General equ 08

You may than ask why we don’t simply write:

#define bounce 08, 0

The reason for this is that if I define the file register General as number 08,
along with all the other GPFs, there is less danger of accidentally assigning
address 08 to another file register. Furthermore, people tend to feel more com-
fortable with names rather than numbers, so it is a good idea to use them when
you can. Finally, defining of bits should take place immediately after the file
register definitions in the declaration section of the template.

Exploring the PIC5x series 59

H6664-Ch02.qxd 8/19/05 10:43 AM Page 59

60 Exploring the PIC5x series

Now we have a bit which is set when the button is safe to test (more than 0.1 s
have passed); this button should be set in the Init routine. We also require a bit
to determine whether the stopwatch is in the ‘start’ or ‘stop’ state – call this bit
start and define it as bit 1 of General. When this bit is set, we will be in the
start state and the timer should count up. When clear the timing should stop.

The beginning of the program looks like this:

Start call Init ; sets up initial registers

Released
call Update ; updates timing and display
btfss bounce ; is button safe to test?
goto Released ;
btfss portb, 0 ; is button pressed?
goto Released ; no, so loops

In this initial loop, the program is waiting for the button to be pressed while also
making sure that the timing and display is constantly up-to-date (in the Update
subroutine). During this loop, the PIC microcontroller may be in the start or stop
state, and so when the button is pressed, we need to toggle the state of the bit we
called start. We also need to tell the program that the state of the button has just
changed, so we need to activate the de-bounce routine. We will do this in a sub-
routine called PrimeBounce. The subsequent three lines are therefore:

movlw b’000000010’ ; toggles the state of the start bit
xorwf General, 1 ;
call PrimeBounce ; activates de-bounce routine

We now enter the second loop in which the button is in the pressed state. We
want to check to see if the button is safe to test (is the bit called bounce set?)
and if so, test to see if the button has been released. Within this loop, we also
need to update the timing and displays (by calling the Update subroutine). If the
button has been released, we should activate the de-bounce routine, and then
loop up to the section called Released.

Exercise 2.22 What seven lines make up this section (call it Pressed).

This completes the main body of the program – though clearly a lot more
remains to be done in the subroutines. In the Update subroutine, we first test to
see whether the timing routine should be active or not. Timing will take place in
a subroutine called Timer. If bounce is clear, the program should be counting
0.1 s for the de-bouncing routine, which we will call Debounce. The following
lines begin the Update subroutine:

Update btfsc start ; are we in the start or stop state?
call Timer ; start state, so advances timer
btfss bounce ; is the bounce flag low?
call Debounce ; yes, so calls de-bounce routine

H6664-Ch02.qxd 8/19/05 10:43 AM Page 60

Exploring the PIC5x series 61

Now all that remains in this subroutine is the handling of the seven-segment
displays. This consists of two main tasks: first to choose which display it is
going to turn on (tenths of second, seconds, etc.), and second, work out what to
display on it. As we have a power of two as the number of displays (four is a
power of two), we can use a neat trick with the TMR0 to evenly scroll through
the different displays. This is the essence of strobing – first one display is
turned on for a short period of time with all the others off, then it is turned off
and another is turned on with its number displayed. This happens so quickly
that we don’t even notice it and are given the impression that all are on at the
same time. We can use the two least significant bits (bits 0 and 1) of TMR0 to
decide which display to turn on. If the two bits in question are 00, tenths of
second are displayed, if they are 01, seconds are displayed, if they are 10, tens
of seconds are displayed, and finally, if they are 11, then minutes are displayed.
How do we just look at the two least significant bits? How do we ignore the rest
of the number? The answer is ANDing. The logic command AND takes a cer-
tain number of bits as its inputs (in the case of a PIC program it takes two) and
depending on their states creates an output (i.e. the result of the logic opera-
tion). The table below (known as a truth table) shows the effect of the AND
command on two bits.

Inputs Result

0 0 0
0 1 0
1 0 0
1 1 1

As you can see, the output bit is high if the first and second input bits are also
high. A useful property of this command is that if you AND a bit with a 0 the bit
is ignored, and if you AND a bit with a 1, the bit is retained.

Example 2.11 ANDing the two 8 bit numbers 01100111 and 11110000, pro-
duces the following result:

01100111
11110000

01100000

Notice how by ANDing the top number with 11110000, bits 4 to 7 are retained
(kept the same), whereas bits 3 to 0 have been ignored (replaced with 0). In this
way we can ignore bits 2 to 7 of TMR0, retaining only bits 0 and 1.

Exercise 2.23 What number must TMR0 be ANDed with to ignore all but bits
0 and 1?

H6664-Ch02.qxd 8/19/05 10:43 AM Page 61

The instruction that allows us to AND two numbers together is:

andlw number ;

This ANDs the literal (number) with the number in the working register.
However an alternative instruction more suited to this example is:

andwf FileReg, f ;

This ANDs the number in the working register with the number in a file regis-
ter, leaving the result in the file register. It would be quite disastrous to actually
affect the number in TMR0 as this would mess up the whole of the timing side
of things, so we replace the ,f with a ,w, so that the result is placed in the work-
ing register, leaving the file register unchanged. The instruction pair used to
ignore all but bits 0 and 1 of TMR0, leaving the result in the working register as:

movlw b’00000011’ ; ignores all but bits 0 and 1 of TMR0
andwf TMR0, w ; leaving the result in the working

; register

How do we use this number to select which display we turn on? We simply add
the result (a number between 0 and 3) to the program counter, and have several
jumping (goto) instructions afterwards which are executed depending on the
result:

addwf PCL ; adds the result to the program
; counter

goto Display10th ; displays tenths of a second
goto Display1 ; displays seconds
goto Display10 ; displays tens of seconds
goto DisplayMin ; displays minutes

The program thus branches out to different sections depending on the two least
significant bits of the TMR0. These sections will take the following form:

Display10th movfw TenthSec ; takes the number out of TenthSec
call _7SegDisp ; converts the number into 7-seg

; code
movwf portb ; displays the value through Port B

movlw b’0010’ ; turns on correct display
movwf porta ;

retlw 0 ; returns

You may have noticed that for a brief time, the wrong number is being displayed
on a display; this is of no consequence as it is on the wrong display for about

62 Exploring the PIC5x series

H6664-Ch02.qxd 8/19/05 10:43 AM Page 62

Exploring the PIC5x series 63

300 000th of a second. If you are a perfectionist, or find in other cases that there
is a considerable delay between putting the correct number in Port B, and turn-
ing on the correct display, simply clear Port A before changing the number in
Port B. No display is better than a wrong display (for a short period of time). The
other sections will be like this, except with a different file register used as the
source of the number being displayed, and a different number being moved into
Port A.

Exercise 2.24 Write the other three sections required to finish the display man-
ager and therefore completing the Update subroutine.

The Timer subroutine is not simply a delay as we’ve used before – it should
check whether a certain amount of time has passed, and if it hasn’t, it should
return to allow the program to continue with other tasks. This subroutine will
first have to tell whether or not a tenth of a second has passed, as this is the
smallest unit of time being displayed. The TMR0, when prescaled by the maxi-
mum amount of 256, counts up 2400 times a second, and thus 240 times in a
tenth of a second. We can therefore time this using just one marker, which we
will call Mark240. The first part of the timing subroutine will be reasonably
similar to the delay instruction set, but with return instructions where previously
there were looping instructions:

Timer movfw Mark240 ; test to see if TMR0 has passed
subwf TMR0, w ; 240 cycles (i.e. 1/10th of a second
btfss STATUS, Z ; has passed)
retlw 0 ; hasn’t passed, so returns

movlw d’240’ ; has passed – resets marker
addwf Mark240, f ;

incf TenthSec, f ; increments number of tenths of a
; second

Rather than looping back to Timer if the correct time hasn’t elapsed, the pro-
gram returns from the subroutine, enabling it to go on and perform the other
necessary tasks. Also note that the number 240 must have been moved into
Mark240 to begin with (e.g. in the Init subroutine). As shown above, once a
tenth of a second has passed, the file register TenthSec is incremented (one is
added to it). In this way the file register TenthSec holds the number of tenths of
a second which have passed, and thus can be used easily in the display section.
(If TenthSec counted down from 10 to 0, for example, it wouldn’t hold the
actual number of tenths of second which had passed.) Once a tenth of a second
has passed, we need to check whether a whole second has passed (i.e. if 10
tenths of a second have passed). So we use the technique always when checking
whether a file register has reached a certain number – we subtract that number
from the file register, leaving the result in the working register, and then test to

H6664-Ch02.qxd 8/19/05 10:43 AM Page 63

64 Exploring the PIC5x series

see whether or not the result is zero:

movlw d’10’ ; tests to see whether TenthSec has
subwf TenthSec, w ; reached 10 (i.e. whether or not one

; second has passed)
btfss STATUS, Z ;
retlw 0 ; 1 second hasn’t passed, so returns

clrf TenthSec ; 1 second has passed, so resets
incf Seconds, f ; TenthSec and increments the

; number of seconds

This instruction set is much the same as the one for tenths of a second, except
the number we are testing for will always be 10, and we reset back to 0 when the
correct time has elapsed. Further sections for tens of seconds and minutes will
take much the same form as the one above.

Exercise 2.25 Write the instruction sets to continue the timing subroutine from
the line incf Seconds, f, for tens of seconds, and then for minutes. (Hint: The
last line should be incf Minutes, f.)

The next step is to test to see if Minutes has reached 10. At this point the stop
clock’s maximum is reached, and device should reset – all that is required is
clearing Minutes, as all the other file register will have reset ‘on the way’.

movlw d’10’ ; test to see whether Minutes has
subwf Minutes, w ; reached 10
btfss STATUS, Z ;
retlw 0 ; 10 minutes haven’t passed, so returns

clrf Minutes ; 10 minutes have passed, so resets
retlw 0 ; Minutes and returns

This completes the Timer subroutine. Make sure you set up the timing registers
with appropriate values in the Init routine. This only leaves two subroutines
associated with de-bouncing: PrimeBounce and Debounce. The Debounce
subroutine is run if and only if the bounce flag is cleared. It should determine
whether or not roughly 0.1 second has passed, and if so, it should set the bounce
flag. I’ve used a marker of 250 to count for just over 0.1 second:

Debounce
movfw Mark250 ; if about 0.1 second has
subwf TMR0, w ; passed, sets the bounce
btfss STATUS, Z ; bit
retlw 0 ;
bsf bounce ;
retlw 0

H6664-Ch02.qxd 8/19/05 10:43 AM Page 64

Exploring the PIC5x series 65

Therefore, in PrimeBounce, the bounce flag needs to be cleared to activate the
Debounce routine. The marker Mark250 also needs to be initialised with the
value of TMR0 � 250:

PrimeBounce
bcf bounce ; clears bounce bit to trigger
movlw d’250’ ; and sets up Mark250 so that
addwf TMR0, w ; about 0.1 second will be
movwf Mark250 ; counted
retlw 0 ;

The entire program (it’s quite a large one!) is now complete and is shown in its
entirety in Program I. You will, I hope, find the end result much more satisfying
than previous examples, but will recognise a lot more work went into it. When
constructing a program of that size (or larger) I cannot stress enough the impor-
tance of taking breaks. Even when it is really flowing and you are really getting
into your program, if you step back for ten minutes and relax, you will return
looking at the big picture, and may find you are overlooking something simple.
Good planning with flowcharts and diagrams will help prevent such oversights
significantly. You should also talk to people about decisions you should make
along the way – even if they may not know the answer any more than you do,
simply asking the question and talking it through helps you get it straight, and
the majority of the time you will end up answering your own question.

Logic gates

After a long and complicated project, let’s return to something simpler. You’ve
already seen three logic gates (inclusive OR, exclusive OR, and AND), and
we’ll now look at the other five (NOR, NAND, BUFFER, NOT and XNOR).
The truth tables for the new gates are as follows:

NOR
Inputs Result The result is the opposite of an inclusive

OR gate (i.e. not an inclusive OR gate).
0 0 1
0 1 0
1 0 0
1 1 0

NAND
Inputs Result The result is the opposite of an AND gate

(i.e. not an AND gate).
0 0 1
0 1 1
1 0 1
1 1 0

H6664-Ch02.qxd 8/19/05 10:43 AM Page 65

66 Exploring the PIC5x series

BUFFER
Input Result Only one input is used, the output copies

0 0 the input.

1 1

NOT
Input Result Again only one input, but the output is the

opposite of the input (i.e. not the input).
0 1
1 0

XNOR
Inputs Result The result is the opposite of an exclusive

OR gate (i.e. not an exclusive OR gate).
0 0 1
0 1 0
1 0 0
1 1 1

There aren’t instructions for all these gates, but all can be constructed through a
combination of those which we are given. The project to experiment with the
use of these gates and their instructions will be a multi-gate IC (a chip which
will effectively act as any of these eight gates). There will be two inputs and one
output which are the actual parts of the artificial gate. There will also be three
bits for choosing the type of gate being simulated. Three bits can select a total
of eight variations (000 to 111). There will be one combination for each of the
eight logic gates. These selection bits will be RA1 to RA3, and the inputs of the
gate will be RB0 (main input) and RA0 (secondary input), with the gate output
at RB4. The circuit diagram is shown in Figure 2.24.

The flowchart must now be constructed.

SW1

COM

1
2
4
8

BINARY-SW

INPUT A INPUT B

OUTPUT

R6
270R

R1–R5
100 k LED

17
18
1
2

6
7
8
9

10
11
12
13

U1
RA0
RA1
RA2
RA3

RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7

PIC16F54

T0CKI
MCLR

OSC1
OSC2/CLK

R7
5 k

C1
20 pF

3
4

16
15

�5 V

0 V

Figure 2.24

H6664-Ch02.qxd 8/19/05 10:43 AM Page 66

Exploring the PIC5x series 67

Exercise 2.26 Have a go yourself at constructing the flowchart, before looking
at my version in the answer section (Appendix I). Remember, as long as the gist
of it is the same, it isn’t crucial that the minor details are the same as mine, but
you need not make it more than three boxes in size, as we aren’t yet concerned
with sorting out how to manage the imitating of the individual gate types.

The encoding we will use is shown in Table 2.2.

In this way, RA1 and RA2 determine the principle type of gate, and RA3
determines whether or not the result should be inverted. We wish to use the
branching technique of adding a number to the program counter, which was dis-
cussed earlier. Unfortunately the number we want to add is found in bits 1 and
2 of Port A. We could simply ignore the other bits (using ANDing), but this
would leave us with a number which could go up to 6 (0000 to 0110). What we
really want to do is rotate the number to the right (e.g. making 0110 into 0011).

rrf FileReg, f ;

This rotates the number in a file register to the right, leaving the result in the file
register. Its complementary instruction is:

rlf FileReg, f ;

This rotates the number in a file register to the left, again leaving the result in
the file register. You may wonder where the bit that gets ‘bumped off’ goes, and
where the bit that fills the gap left comes from. There is an intermediate bit
called the carry flag. This is one of the flags (like the zero flag) in the STATUS
register. It has other purposes as well as that shown in Figure 2.25.

Table 2.2

RA3-RA1 Logic Gate

000 Buffer
001 AND
010 IOR
011 XOR
100 NOT
101 NAND
110 NOR
111 XNOR

7 6 5 4 3 2 1 0

C

Figure 2.25

H6664-Ch02.qxd 8/19/05 10:43 AM Page 67

So when rotating right, the state of bit 0 is moved into the carry flag, and the
previous state of the carry flag is moved into bit 7. This is a consequence of the
carry flag’s main property which will be discussed at a later stage. It is impor-
tant to clear the carry flag before any rotation instruction, because otherwise, if
set, it will put a one where a gap was left upon rotation – in most cases this is
undesirable. To thus be able to use the number in Port A to branch to the correct
place, the following is done to it:

Main bcf STATUS, C ; makes sure carry flag is clear
rrf porta, w ; bumps off bit 0, leaving the result in

; the working register

Bits 2 and 3 of the working register should then be masked (leaving a result that
is between 00 and 11) using the andlw instruction. The result is then added to
the PC to branch to the correct section:

andlw b’0011’ ; masks bits 2 and 3
addwf PCL, f ; branches to correct gate section
goto BufferNOT ; handles Buffer and NOT gates
goto ANDNAND ; handles AND and NAND gates
goto IORNOR ; handles IOR and NOR gates

XORXNOR
etc.

We don’t need to add a fourth goto command as the XOR/XNOR section can
simply follow on from the above. In this section, we take the number from Port
A and XOR it with Port B (in doing this, bit 0 of each will be XORed). We then
test RA3 – if it’s set, the PIC microcontroller is emulating the negative equiva-
lent gate (i.e. XNOR, rather than XOR), so this bit should be inverted. Bit 0 of
the result is the output that we wish to move into RB4. This could be done using
testing instructions (btfss) and setting/clearing instructions (bsf and bcf), but a
more cunning method employs the following command:

swapf FileReg, f ;

This swaps the lower nibble (bits 0 to 3) with the upper nibble (bits 4 to 7) of a
file register, and leaves the result in the file register.

Example 2.12

movlw b’00110101’ ; moves a number into ABC
movwf ABC ;
swapf ABC, f ;

The number in the file register ABC is now b’01010011’.

68 Exploring the PIC5x series

H6664-Ch02.qxd 8/19/05 10:43 AM Page 68

Exercise 2.27 What would be the resulting number if the following number was
‘swapped’: b’00000001’?

Thus if we swap the file register holding the result of the XOR operation, the
state of bit 0 will be swapped into bit 4. The code for the XOR/XNOR section is
shown below:

XORXNOR
movfw porta ; reads Input B
xorwf portb, w ; XORs with Input A
movwf STORE ; stores result in STORE
btfsc porta, 3 ; tests RA3
comf STORE ; inverts answer, if necessary
swapf STORE, w ; swaps nibbles (bit 0 : bit 4)
movwf portb ; outputs result
goto Main ; loops back to start

Note that we keep the result of the xorwf operation in the working register, rather
than in Port B. This is because any bits configured as inputs would essentially
ignore the result of the XOR operation, and remain at the value dictated by the
circuit outside the PIC microcontroller. Only bits configured as outputs would
actually change. The result is kept temporarily in a GPF we’ve called STORE,
inverted if RA3 was high, then swapped so that the result bit is held in bit 4.

The AND/NAND section is identical to the XOR/XNOR section above, with
the exception of one line (replace xorwf with andwf). Rather than copy out the
section again and waste program memory space. We can give the line after the
xorwf instruction a label: Common. The AND/NAND section is therefore:

ANDNAND
movfw porta ; reads Input B
andwf portb, w ; ANDs with Input A
goto Common ; rest is same as XOR/XNOR

Exercise 2.28 What three lines make up the IOR/NOR section, and what two
lines make up the Buffer/NOT section.

The program is now complete and the whole lot is shown in Program J.

The watchdog timer

One of the useful properties of the PIC microcontroller is its watchdog timer – an
on board timer which is driven by a resistor/capacitor network which is actually
inside the microcontroller. It is thus completely independent of external compo-
nents. The watchdog timer steadily counts up, and when it reaches its maximum,
the PIC microcontroller will automatically reset. It is thus quite useful in devices
where it is not a great problem to be constantly resetting (for at least most of the

Exploring the PIC5x series 69

H6664-Ch02.qxd 8/19/05 10:43 AM Page 69

70 Exploring the PIC5x series

time), e.g. alarm systems. It is used as a safety feature such that if the program
crashes for some reason, the program will soon reset and resume normal opera-
tion. The time for the watchdog timer to cause a timeout (for it to cause a reset)
varies from 18 milliseconds to 2.3 seconds depending on the amount of prescal-
ing. You can prescale it using the OPTION register (you may remember this
from when we studied the TMR0). If left unprescaled it will cause a timeout
after 18 ms. To prescale it, bit 3 of the option register must be set, thereupon bits
2 to 0 decide how much it is prescaled by (Table 2.3).

The maximum prescaling (128) will cause it to timeout after (0.018 � 128)
seconds � 2.304 seconds. There is, however, no way to simply turn the watchdog
timer off unless you don’t need it at all (in which case you disable it using the con-
figuration bits when writing your program to the PIC microcontroller). If it is
needed for part of the program, how do you stop it from causing resets during the
rest of the program? The answer is constantly resetting it. The instruction for this is:

clrwdt ;

This clears the watchdog timer (i.e. makes it 0), and thus resets it. This must be
done at specific intervals to stop the watchdog timer reaching its maximum and
thus causing the timeout, i.e. if the watchdog timer resets the PIC microcontroller
after 18 ms, then you need the clrwdt instruction to be executed at least once
every 18 ms.

To try out the watchdog timer, the next project will be an alarm system. There
will be a signal coming from a motion sensor at RA0 (it can be simulated by a
push button), and a siren (or buzzer) at RA3 to indicate when the alarm has been
set off. A toggle switch (RA1) will either set, or disable the alarm, a green LED
(RB0) will show the alarm is disabled, and a red LED (RB1) will show it to be
set. To conserve battery life the LEDs will flash rather than stay turned on,
flashing on for one tenth of a second every 2.3 seconds (this number should
sound familiar). Once triggered, the siren will go on indefinitely until the device
is turned off. You may want to make an addition whereby it turns off after 20
minutes, but this is not investigated in this example. The circuit diagram is
shown in Figure 2.26.

Table 2.3

PS2 PS1 PS0 Prescaling rate

0 0 0 1:1
0 0 1 1:2
0 1 0 1:4
0 1 1 1:8
1 0 0 1:16
1 0 1 1:32
1 1 0 1:64
1 1 1 1:128

H6664-Ch02.qxd 8/19/05 10:43 AM Page 70

Exploring the PIC5x series 71

The flowchart for the program is as shown in Figure 2.27.
As in the previous example, you are now expected to write most of the pro-

gram, but naturally you will be guided through each step. To begin with, as we
are using the Watchdog timer in this program, we should change the configura-
tion bits accordingly. The configuration line at the top of the program should
therefore be:

__config _RC_OSC & _WDT_ON & _CP_OFF

Exercise 2.29 Write the three lines used to first test the setting switch, and
thereupon jump to another part of the program called GreenLed if the bit is
high or simply turn on the red LED if the bit is low (as shown in Figure 2.27).

Exercise 2.30 Write the two lines which make up the section called GreenLed,
in which the green LED is turned on, and then the program jumps back to a sec-
tion labelled TenthSecond.

Exercise 2.31 Write the seven lines which will make up the section which tests to
see whether or not a tenth of a second has passed, and turns off all LEDs if such a
time has passed. In either case it then moves on to the rest of the program. Don’t
forget that as you are using the prescaler for the WDT, TMR0 is not prescaled. You
will therefore need to slow it down by 256 (a task which is normally done by the
prescaler) yourself. This is best done by moving TMR0 into the working register,
and then testing the zero flag. If it is set, the TMR0 has reached zero, and you may
continue on to the next postscaler (after incrementing TMR0), otherwise skip
everything by going to the next section labelled Continue. This next postscaler
should be around 240 because 2400/10 � 240, but could vary depending on what
is easiest. Do not forget to reset the postscaler after it has reached 0; however the
correct number should be moved into it to start with in the Init subroutine. Having
said this, if your postscaler is 256, you don’t need to reset it . . . think about it.

SW2
PRIMER

SW1
MOTION

R1
100 k

R2
100 k

BUZZER

Buz1 D1

R3
270R

R4
270R

LED

D2

LED

U1
17
18
1
2

6
7
8
9

10
11
12
13

RA1
RA0

RA2
RA3

RB1
RB0

RB2
RB3
RB4
RB5
RB6
RB7

PIC16F54

T0CKI
MCLR

OSC1
OSC2/CLK

3
4

16
15

R5
5 k

C1
20 pF

�5 V

0 V

Figure 2.26

H6664-Ch02.qxd 8/19/05 10:43 AM Page 71

72 Exploring the PIC5x series

The next step is to test the setting button once more, to see whether or not it
should react to the alarm being triggered. If the alarm is disabled (the bit is
high), the program should return to the TenthSecond section, otherwise it
should continue.

Exercise 2.32 What two lines will achieve this?

If the program continues, the alarm is set, and the trigger bit (RA0) should be
tested. If no signal is received, the program should loop back to TenthSecond,
or otherwise continue.

Yes

Yes

No

No

No

No

Yes

Yes

Has 1/10th of a
second passed?

Start of program: setup

Is alarm set?

Is alarm set?

Turn on red LED

Turn off all LEDs

Clear WatchDog Timer

Turn on green LED

Has alarm
been triggered?

Turn on Siren

Figure 2.27

H6664-Ch02.qxd 8/19/05 10:43 AM Page 72

Exploring the PIC5x series 73

Exercise 2.33 What two lines will achieve this?

If the motion sensor has been set off the siren should be turned on, and the pro-
gram should enter a cycle where the watchdog timer is constantly being reset.

Exercise 2.34 What three lines will finish the program?

Final instructions

There are only four more instructions which you haven’t yet come across. You
should be able to guess the functions of the first two of these – decf and incfsz –
as they are just like their counterparts.

decf FileReg, f ;

This decrements (subtracts one from) the number in a file register, leaving the
result in the file register.

incfsz FileReg, f ;

This increments (adds one to) the number in a file register leaving the result in
the file register. If this result is zero the program will skip the next instruction.

The next instruction may seem absolutely pointless but does actually come in
quite handy every now and then:

nop ;

This stands for no operation, and does nothing.
Finally, if you are tired by now, you’ll be pleased to learn the last instruction

to be learnt is:

sleep ;

As you may have guessed, this sends the PIC microcontroller to sleep (a special
low power mode). The outputs will stay the same when the PIC microcontroller
goes into sleep, and can be woken up by a watchdog timer timeout, or an exter-
nal reset (from the

–
MCLR
——

pin). A useful application combining both the sleep
instruction and the watchdog timer allows devices to appear to automatically
turn on. If, for example, a device were to turn on when moved, the program
should test a vibration switch, go to sleep (until reset by the watchdog timer) if
there is no movement, or alternatively skip out of the loop and constantly reset
the watchdog timer as it carries on through the rest of the program, if there is
movement. In this way the PIC microcontroller would be in a low power con-
suming mode for most of the time (it is effectively off), and would come to life
when movement is detected. Figure 2.28 demonstrates this best.

H6664-Ch02.qxd 8/19/05 10:43 AM Page 73

74 Exploring the PIC5x series

The STATUS file register

Just before we move on to the final program in this chapter, we will examine the
STATUS file register in greater detail.

Bit no. 7 6 5 4 3 2 1 0
Bit name PA2 PA1 PA0 TO PD Z DC C

Carry/borrow flag:
Reacts to carrying or
borrowing with arithmetic
operations, and to the
rrf and rlf instructions.

Digit carry/borrow flag: As
Carry Flag except concerning
the lower nibbles of numbers in
question.

Zero flag:
1: The result was 0
0: The result wasn’t 0

Power Down and TimeOut bits. See Table 2.4.

Only for PIC56 and PIC57
00: Page 0 (000–1FF)
01: Page 1 (200–3FF)
10: Page 2 (400–5FF)
11: Page 3 (600–7FF)
Not for PIC54
Do not use these bits for anything, in order to maintain
upward compatibility.

Not for PIC5x series
Do not use this bit for anything, in order to maintain upward
compatibility.

No

Yes

Set up WDT
(max prescaling �

2.3 secs)

Is the vibration
switch on?

CONTINUE
(keep clearing WDT!) Go to SLEEP

Figure 2.28

H6664-Ch02.qxd 8/19/05 10:43 AM Page 74

Exploring the PIC5x series 75

There are three new concepts introduced: the digit carry flag, the business of
pages of memory, and the two bits which we can test to find the reason behind
the PIC microcontroller resetting.

The carry and digit carry flags

The digit carry flag is affected only by addition and subtraction instructions.
Think of the numbers in question (being added or subtracted) in hexadecimal.

C DC

X X
� X X

X X

The digit carry flag is set if something is carried over when adding the lower
nibbles of two numbers together, and clear if nothing is carried.

Example 2.13 When adding 56h and 3Ah, we first add the lower nibbles: A and
6. These add together to make 16, or in other words, leave 0 and carry a 1.
Because a one is being carried, the digit carry flag is set. We now add 5, 3, and
1 (carried over) making 9. Nothing is carried over so the carry flag remains low.

0 1
5 6

� 3 A
9 0

Example 2.14 When adding 32h and F5h, we first add the lower nibbles: 2 and
5. These add together to make 7, or in others words, leave 7 and carry nothing.
Because nothing is being carried, the digit carry flag is clear. We now add 3 and
F making 18, or in other words 2 and carry a 1. Because a one is being carried,
the carry flag is set.

1 0
3 2

� F 5
2 7

Table 2.4 Power down and timeout bits

TO PD Reset caused by . . .

0 0 WDT wakeup from sleep
0 1 WDT timeout (not during sleep)
1 0 MCLR wakeup from sleep
1 1 Power-up

H6664-Ch02.qxd 8/19/05 10:43 AM Page 75

When subtracting, both act as borrow bits, i.e. if something is borrowed when
subtracting, they are clear and vice versa. (The bar over the name, as with the
MCLR, means that it is active low – triggered by a negative result.) The digit
carry (borrow) flag again concerns the lower nibbles, and the carry (borrow)
flag the upper nibbles.

CX DCX
� X X

X X

Example 2.15 When subtracting 6Bh from 8Dh, we first subtract the lower nib-
bles (B from D). These leave 2, borrowing nothing. Because nothing is bor-
rowed, the digit carry (borrow) flag is set. We now subtract 6 from 8, leaving 2
and borrowing nothing. The carry (borrow) flag is therefore also set.

08 0D
� 6 B

2 2

Example 2.16 When subtracting 7Eh from 42h, we first subtract the lower nib-
bles (E from 2). We need to borrow 1, making the subtraction 12h � E. This
leaves 4, borrowing 1. Because one is borrowed, the digit carry (borrow) flag is
clear. We now subtract 7 from 3 (4 � 1 which was borrowed). We again need to
borrow 1, making the subtraction 13h � 7. This leaves C, borrowing 1. Because
one is borrowed, the carry (borrow) flag is therefore also clear.

1(4 � 1) 12
� 7 E

C 4

This result is effectively a negative number (C4 in this case corresponds to �3C).
To summarise the effect of subtraction on the carry flag: if the result is nega-

tive it is clear, and if it is positive (or zero) it is set. The same applies to the digit
carry flag except that you look at the lower nibbles, rather than the whole num-
ber when performing the subtraction.

Pages

We turn now to this business of pages. You may remember that the PIC54 has
1FFh bytes of program memory (up to 512 instructions). Other members of the
PIC5x series can have more than this: the PIC57 has 7FFh bytes (up to 2048

76 Exploring the PIC5x series

H6664-Ch02.qxd 8/19/05 10:43 AM Page 76

Exploring the PIC5x series 77

instructions, or ‘2k’). From this we can deduce that while the program counter
in the PIC54 is 9 bits long, it is 11 bits long in the PIC57! The program memory
is distributed into pages (blocks of program memory of size 512 instructions),
as shown in Figure 2.29.

As discussed on page 50, bit 8 of the PC chooses the first or second half of
the page. For multi-page PIC models (such as the PIC57), there are two extra
bits (bits 9 and 10) in the program counter which select which page is active.
These bits are mapped in the STATUS register – bits 5 and 6 (called PA0 and
PA1). Let’s look at pages in three situations: ‘sequential operation’ (running
through the program in order), goto, and subroutines.

1. Sequential operation In this mode, you can ignore the PC. It counts up and
crosses page boundaries without you having to worry about it. However, bits
PA0 and PA1 of STATUS will remain unchanged, even if you move into a higher
page – they are simply a way to force the PC to change page. In summary, the
PIC processor will happily step through the instructions in the program shown
below.

Program memory
(Page 0)

000

PIC54

PIC57

0FF

2FF

3FF

4FF

5FF

1FF

100

200

300

400

500

600

6FF

7FF

700

Program memory
(Page 1)

Program memory
(Page 2)

Program memory
(Page 3)

Figure 2.29

H6664-Ch02.qxd 8/19/05 10:43 AM Page 77

00FF bsf porta, 0 ; turns on LED
0100 btfss portb, 0 ; tests button
0101 bcf porta, 0 ; turns off LED
0102 etc.

2. Goto With the goto we have a problem, in that we can only specify bits 0 to
8 of the address we want to jump to. This means we can only jump to addresses
which are in the same page in the program memory, i.e. if we are in Page 0, we
cannot use goto alone to jump to a location in Page 1. What we can do is set bits
PA0 and PA1 according to the page we wish to jump to. The PC will ignore these
bits until it comes to a goto (or call) instruction. When it reaches a goto instruc-
tion, it will jump to the address specified by the goto and PA0/1 bits.

0043 bsf porta, 0 ; turns on LED
0044 goto Wind ; branches to section in Page 1
etc . . .
0254 Wind bsf porta, 1 ; activates windmill

In the above example, when the processor reaches the instruction at address
0044, it won’t jump to the Wind section. Instead, it will jump to address 0054
(i.e. the equivalent of 0254 of Page 0). The correct approach would be:

0043 bsf porta, 0 ; turns on LED
0044 bsf STATUS, PA0 ; selects Page 1
0045 bcf STATUS, PA1 ; selects Page 1
0046 goto Wind ; branches to section in Page 1
etc . . .
0254 Wind bsf porta, 1 ; activates windmill

Note that although I only needed to set PA0 in order to select Page 1 (from Page 0),
I have also cleared PA1 just to make sure.

Exercise 2.35 What three lines are needed to jump from a location in Page 1 of
the program, to a location Page 3 (labelled Earth).

3. Subroutines First, you should remember that bit 8 of the PC is cleared upon
any call instruction, or when the PCL is changed by the user (e.g. a number is
added to it). As discussed earlier, this means that all subroutines have to take
place in the top half of any given page. The stack, which stores the address in the
program memory after the call instruction was made (the address which the
processor should return to after executing the subroutine), is as wide as the PC.
This means the stack will always correctly remember the point in the program
where the subroutine was originally called. However, just like the goto, the call
instruction on its own cannot specify a location outside the current page. To call
a subroutine in another page (remember – it must be in the top half), set the

78 Exploring the PIC5x series

H6664-Ch02.qxd 8/19/05 10:43 AM Page 78

Exploring the PIC5x series 79

STATUS bits (PA0 and PA1) before the call instruction:

0043 Roast btfss portb, 4 ; checks temperature
0044 retlw 0 ; too cold
0045 retlw 1 ; too hot
etc.
04E2 bcf STATUS, PA0 ; selects Page 0
04E3 bcf STATUS, PA1 ; selects Page 0
04E4 call Roast ; calls subroutine in Page 0
04E5 etc.

The subroutine Roast is called, and the number 04E5 is placed onto the stack.
Upon reaching the retlw command, 04E5 is loaded back into the program counter,
and the processor continues where it left off, in Page 2.

What caused the reset?

The PowerDown and TimeOut bits can be read at the beginning of the program
to see what made the PIC microcontroller reset (i.e. why is it at the start of the
program). This could simply be due to the fact that it had just been turned on
(power-up), or alternatively due to WDT timeout. This may be important
because you may not want the program to do the same thing (e.g. setting up, or
perhaps clearing, of file registers) when it first starts up, as when it is reset by
the WDT for example (Table 2.5).

Example 2.17 To make the program call the Init subroutine when the PIC
microcontroller is first powered up, but not when reset for any other reason (i.e.
just skip the call Init line), the following instruction set is used:

Start btfsc STATUS, 3 ; tests PowerDown bit
btfss STATUS, 4 ; PD is 1, test TimeOut bit
goto Main ; PD is 0, or TO is 0, so skips Init
call Init ; PD and TO are 1, so calls Init

Main etc.

Exercise 2.36 Make the program test to see whether there was a WDT timeout,
or see if it’s just powered up. If it has just powered up call a subroutine called
PreInit, otherwise carry on.

Table 2.5

TO(4) PD(3) Reset caused by . . .

0 0 WDT wakeup from sleep
0 1 WDT timeout (not during sleep)
1 0 MCLR wakeup from sleep
1 1 Power-up

H6664-Ch02.qxd 8/19/05 10:43 AM Page 79

Indirect addressing

There remains one more concept – that of indirect addressing. You may have
noticed two file registers (indirect address (00) and FSR (04)) have not been
explained yet, and these are both involved in this concept. This is probably the
hardest idea to fully grasp and so it will be explained twice. First I will introduce
it technically, then give an analogy which should make it easier to understand.

Think of storing a number (N) in a general purpose file register; you would
move the number N into (for example) file register number 09. This is direct
addressing. However, you could also tell the program to move the number N
into file register number X, where the file register called X holds the number 09.
This is called indirect addressing. The file register X is actually called the file
select register (because it is a file register which selects which file register to
move a number into). To use indirect addressing, move the number you wish to
be stored into the indirect address. The indirect address is therefore not a file
register as such, merely a gateway to another file register.

If you are still confused by this stage (I don’t blame you), the following analogy
should set things straight. Think of the indirect address as a envelope, and the
file select register as the address on the envelope. When you use indirect
addressing you put the number in an envelope, and it is sent to the address on the
envelope (just as with our own reliable post service except with a delivery time
of roughly 0.000001 second it is slightly faster!).

Example 2.18 Move the number 00 into file registers numbers 08 to 1F.

Rather than writing:

clrf 08 ; clears file register number 08 (it hasn’t
; been given a name)

clrf 09 ; clears file register number 09
clrf 0A ; clears file register number 0A
etc. . . .
clrf 1F ; clears file register number 1F

. . . we can use indirect addressing to complete the job in fewer lines. The first
address we want to affect is 08, so we should move 08 into the file select regis-
ter (the address on the envelope):

movlw d’08’ ; moves the number 08 into the FSR
movwf FSR ;

We then send the number 00 through the ‘post’ by moving it into the indirect
address (the envelope). The instruction clrf effectively moves the number 00
into the file register (thus clearing it):

clrf INDF ; clears the indirect address

80 Exploring the PIC5x series

H6664-Ch02.qxd 8/19/05 10:43 AM Page 80

Exploring the PIC5x series 81

File register 08 has now been cleared (whatever you now do to the INDF you
actually do to file register number 08). We now want to clear register 09, we thus
increment the FSR (add one to it), so now whatever you do to the INDF you
actually do to file register number 09.

incf FSR ; increments the FSR

The program can now loop back to the line where the INDF is cleared. However
it must first check to see whether or not the FSR has passed the file register 1F,
in which case it should jump out of the loop. To see whether a file register holds
a particular number, you subtract that number from the file register and see
whether or not the result is zero:

movlw 20h ; has the FSR reached the hexadecimal
subwf FSR, w ; number 20?
btfss STATUS, Z ;
goto ClearLoop ; it hasn’t, so keep looping

; it has, so exits loop

The following instruction set is very useful to put in the Init subroutine to sys-
tematically clear a large number of file registers:

movlw d’08’ ; moves the number 08 into the FSR
movwf FSR ;

ClearLoop clrf INDF ; clears the indirect address
incf FSR ; increments the FSR
movlw 20h ; has the FSR reached the
subwf FSR, w ; hexadecimal number 20?
btfss STATUS, Z ;
goto ClearLoop ; it hasn’t, so keep looping

; it has, so exits loop

You can adjust the starting and finishing file registers (at the moment 08 and 1F
respectively).

The FSR has a secondary purpose, as well as indirect addressing. It is used to
select GPFs on larger PIC microcontrollers such as the PIC57. As well as gen-
eral purpose file registers at addresses 08-1Fh, this particular PIC microcon-
troller also has available space at addresses 30-3Fh, 50-5Fh, and 70-7Fh (that’s
48 extra file registers!). However, these extra addresses cannot be accessed in
the same way as the others. Bits 5 and 6 of the FSR are used to select which set
of registers we wish to access (read or write to), as shown in the Table 2.6.

For example, let’s say I have made the following declarations:

Tailor equ 15h
Tinker equ 35h
Soldier equ 55h
Spy equ 75h

H6664-Ch02.qxd 8/19/05 10:43 AM Page 81

82 Exploring the PIC5x series

If I want to write a number to the file register Tinker, I need to do the following:

bsf FSR, 5 ; selects file registers 30-3F
bcf FSR, 6 ; selects file registers 30-3F
movlw d’30’ ; moves number into Tinker
movwf Tinker ;

Note that without the first two lines setting the correct bits in FSR, the above
instructions would move d’30’ into Tailor, and not Tinker.

Exercise 2.37 Given the declarations above, what five lines are needed to move
the number from Soldier to Spy.

Some useful (but not vital) tricks

1. If you are growing tired of the lengthy goto instruction, you may be pleased
to read that it can be abbreviated to b. The b instruction (it stands for branch)
does exactly the same thing as goto.

Example 2.19

b Start ; goes to Start

2. Another useful trick enables you to go to a specific part of the program, and
then skip any number of instructions. This is done by adding �1, for exam-
ple after the label, in a goto instruction.

Example 2.20

goto Start�1 ; goes to Start and skips the next instruction

Start call Init ; sets things up
bsf porta, 0 ; turns on an LED

Table 2.6

FSR File registers selected

Bit 6 Bit 5

0 0 10-1F
0 1 30-3F
1 0 50-5F
1 1 70-7F

Note that file registers 00-0F are independent of the FSR and
can be accessed regardless of the state of these two bits.

H6664-Ch02.qxd 8/19/05 10:43 AM Page 82

Exploring the PIC5x series 83

One warning with this instruction is not to use it too frequently, and avoid large
skips (e.g. �14). In such cases it is probably a good idea to simply add another
label at the place you want to go to. Be wary of going back to your program and
adding lines (corrections or afterthoughts, etc.), because the number of lines
you need to skip may change.

Example 2.21

goto Start�1 ; goes to Start and skips the next instruction

Start call Init ; sets things up
bsf portb, 0 ; turns on buzzer
bsf porta, 0 ; turns on an LED

If we still want the program to skip to the line where the LED is turned on, we
will need to remember to change the �1 to �2. Such changes are easy to forget
if your program is riddled with long skipping gotos.

This final trick was suggested by Richard George, and is a more efficient way
of creating a delay or just ‘killing time’. Rather than involve the TMR0, it relies
on the length of an instruction cycle, so you can use the TMR0 for other tasks. I’ve
left it until now because it requires a bit more thought than the TMR0 version, but
it does take up fewer lines in the program. First you must work out how many
instruction cycles your time delay requires. For example if you are using a 4 MHz
crystal, and wish to wait 1 second, you calculate that an instruction is executed at
(4 MHz/4 �) 1 MHz, and so you will need to ‘kill’ 1 million clock cycles. Now
divide this number by 3, don’t worry if it isn’t a whole number, just round it to a
whole number – the inaccuracy will be a matter of clock cycles, i.e. not even worth
noting. In our example we have 333 333. We convert this number to hexadecimal
(using a calculator of course!) and get 51615h (the ‘h’ at the end reminds me that
it is a hexadecimal number). Now, write the number as an even number of hexa-
decimal digits (i.e. if it has an odd number of digits, stick a 0 in front), we get
051615h. Now count the number of digits this number has (it should be an even
number), and write down a ‘1’ followed by that number of 0’s. In our example the
number has six digits, so we write a 1 and six 0’s – 1000000h. Subtract the previ-
ous number from this one: 1000000h � 051615h � FAE9EBh. Finally we split
this number into groups of two hexadecimal digits, starting from the right. The
result is EBh, E9h, and FAh.

At the start of the delay in the program we put these numbers into file
registers:

movlw h’EB’ ; sets up delay registers
movwf Delay1 ;
movlw h’E9’ ;
movwf Delay2 ;
movlw h’FA’ ;
movwf Delay3 ;

H6664-Ch02.qxd 8/19/05 10:43 AM Page 83

84 Exploring the PIC5x series

The delay itself consists of about three lines per delay register (i.e. in our case
eight lines).

Loop incfsz Delay1, f ; this block creates a fixed delay
goto Loop ;
incf Delay1, f ;
goto Loop ;
incfsz Delay2, f ;
goto Loop ;
incf Delay1, f ;
incfsz Delay3, f ;
goto Loop

When it finally skips out of the last Loop, 1 second will have passed. Obviously
if you are concerned about the six lines which set up the delay register (first, you
are a pedant!), and secondly just subtract six from your original number of
instruction cycles to be wasted.

Now, I apologise for dragging you through a great deal of seemingly random
arithmetic – it will now be explained. The incfsz instruction takes one cycle, and
the goto takes two – so Delay1 register is incremented every three instruction
cycles. This is why we divided the original number of instruction cycles by three.
We convert to hexadecimal to ensure that when we split up the big number into
groups of two digits, each group will hold a number less than 256 (i.e. a number
which the PIC microcontroller can handle). You may be wondering what’s the
point of the lines with incf? These are there to make the clock cycles add up.
When we are stuck in the top loop, Delay1 is incremented once every three clock
cycles. However, on the occasions where it breaks out of this loop it skips (two
cycles), increments Delay1 (one cycle), increments Delay2 (one cycle), and
loops back (two cycles). Thus, with this extra increment of Delay1, we create two
increments over six clock cycles, and still maintain the same rate. If you work
through the case where it jumps out of both loops, you will find Delay1 is incre-
mented three times over nine clock cycles. The final question is: ‘Why do we
invert the number and count up, rather than just leave it alone and count down?’
The reason is saving space in the program. If we were decrementing, instead of
incrementing, the shortcut instruction is decfsz. If we take the hexadecimal num-
ber 104h as an example, if we were decrementing it we would have split it up into
1h and 04h, and we replace the incfsz in the delay routine above with decfsz, we
would get 104h, 103h, 102h, 101h, 100h, after which the decfsz would make the
program skip, making the next number 000h, at which point the second decfsz
would also cause a skip – completely missing out 001–0FF. The point is we don’t
want the program to skip on 00h, but on FFh (i.e. 104h, 103h, 102h, 101h, 100h,
1FFh -� 0FFh, 0FEh, . . .). We effectively do this by counting up instead, but in
order to count the same number of clock cycles as before we need to subtract it
from the 10000 . . . number. Even if you don’t fully understand how this works,
you can simply use the handle turning described above to get the numbers you
need, and take advantage of the saved space, and the liberation of the TMR0.

H6664-Ch02.qxd 8/19/05 10:43 AM Page 84

Finally, this method can also be used with timing subroutines where you
return if the specified time hasn’t passed. If you are using more than one
prescaler (after the marker) then you can use a similar method. For example if
you are timing 1 minute with a 2.4576 MHz crystal, you would normally split
this up into a marker of 30, and postscalers of 80 and 60, or something along
those lines. With this method you still use a marker of 30 (or another appropri-
ate number), and take the remainder (80 � 60 � 4800). This is the number to
convert to hex, invert, etc. (but don’t divide it by three), which in this case gives
40h and EDh. Your timing subroutine could end up looking like this:

Timer movfw Mark30 ; has one minute passed?
subwf TMR0 ;
btfss STATUS, Z ;
retlw 0 ; no, so returns

incfsz Delay1 ; (initially set to 40h)
retlw 0 ; no, so returns

incfsz Delay2 ; (initially set to EDh)
retlw 0 ; no, so returns

You will have had to move the correct numbers (40h and EDh) into Delay1 and
Delay2, respectively, somewhere else in the program (e.g. in the Init subroutine).

Final PIC5x program – ‘Bike buddy’

Our final program in this chapter on the PIC54 will tie together many of the ideas
covered. It will be a mileometer (odometer) and speedometer for bicycles. The
device should consist of three seven-segment displays (up to 999 kilometres
recorded, and an accuracy of 0.1 kph), a toggle switch to change mode (mileage/
speed), and an input from a reed switch activated by a magnet on the wheel. This is
how speed and mileage are detected. With strobing this makes a total of seven out-
puts for the seven-segment code (RB1 to RB7), three outputs to select the correct
seven segment-display (RA0 to RA2), one input for the toggle switch (RB0), and
the input for the reed switch (RA3). This makes a total of 12 I/O, which conve-
niently just fits on the PIC54. This leaves us with one problem. When displaying the
speed, one of the decimal points of the seven-segment display will need to be on,
but as we’ve just worked out there are no spare outputs. However, the decimal point
will only need to be on when the toggle switch is selecting the speedometer mode.
We can therefore directly link the toggle switch to the decimal point as shown in the
circuit diagram in Figure 2.30. The flowcharts are shown in Figures 2.31a–c.

I have made this flowchart slightly more detailed than usual because this time
you are expected to write the program yourself. If you break things up into the
boxes described in the flowchart you should be able to manage everything with lit-
tle difficulty. If you get stuck, the program I wrote is Program L in Chapter 7, but
remember that the way I did something in my program may not necessarily fit in
with your program as the two are likely to have some differences. You may there-
fore need to adapt certain sections from my program if you wish to use them.

Exploring the PIC5x series 85

H6664-Ch02.qxd 8/19/05 10:43 AM Page 85

86
E

xploring the P
IC

5x series

SW1
Model select

Speed/distance

Wheel

R4–R10
100R

R11
270R R12

100 k

R13
17 3

4

16
15

RA0 T0CKI
MCLR

OSC1
OSC2/CLK

X1

�5 V

2.4576 MHz

RA1
RA2
RA3

RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7

PIC16F54

0 V

18
1
2

6
7
8
9

10
11
12
13

BC184L

BC184L
Q3

BC184L

Q2

Q1

A
B
C
D
E
F
G

DP

R1

R14 C1 C2
22 pF

C3
22 pF

2.2 k

2.2 k

2.2 k

R2

R3

U1

Figure 2.30

H
6
6
6
4
-
C
h
0
2
.
q
x
d

8
/
1
9
/
0
5

1
0
:
4
3

A
M

P
a
g
e

8
6

Exploring the PIC5x series 87

Start of program: setup

Is it in
speedometer

mode?

Set up TMR0 to count
internal clock signals

Has a signal from
the wheel been

received?

Go to SPEEDOMETER
section

Go to MILEOMETER
section

No

No

Yes

Yes

Set up TMR0 to count
external signals

Figure 2.31a

H6664-Ch02.qxd 8/19/05 10:43 AM Page 87

88 Exploring the PIC5x series

Is it in
speedometer

mode?

Update displays

Has signal
finished yet?

Has TMR0
reached a certain

value?

Decrements 0.1 s of speed

Has 0.1 s reached
0?

Decrement 1 s of speed and
move 9 into 1 s

Has 1 s reached 10?

Decrement 10 s of speed and
move 9 into 1 s

Has 10 s reached 0?

Clear all speed registers and
go back to the beginning

Go to MILEOMETER
section

Has a new signal
been received?

Adjust speed values which
are to be displayed

Reset (move 9 into) other
speed registers

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

SPEEDOMETER SECTION

Figure 2.31b

H6664-Ch02.qxd 8/19/05 10:43 AM Page 88

Exploring the PIC5x series 89

Is it in
mileometer

mode?

Update displays

Has TMR0
reached a certain

value?

Increment 1 s of kilometres

Has 1 s reached 10?

Increment 10 s of kilometres
and clear 1 s

Has 10 s reached
10 ?

Increment 100 s of kilometres
and clear 10 s

Has 100 s reached
10?

Clear 100 s

Go to SPEEDOMETER
section

Yes

Yes

Yes

Yes

No

No

No

No

No

MILEOMETER SECTION

Figure 2.31c

H6664-Ch02.qxd 8/19/05 10:43 AM Page 89

There is a range of PIC microcontrollers which manages to squeeze a large
number of features into a tiny 8-pin package. The 8-pin device most like the
PIC16F54 we discussed in the previous chapter is the PIC12F508 (the 12 in the
name tells us that this is an 8-pin device). Surprisingly, this little PIC microcon-
troller offers up to 6 I/O pins (the other two are power supply pins). It needs no
external oscillator (e.g. crystal or RC), as it has an in-built 4 MHz oscillator, and
even offers a feature which allows external signals to wake it up from the sleep
state. For any application where a small size is advantageous, and 6 I/O pins is
sufficient, these kinds of PIC microcontroller are invaluable.

The PIC12F50x series consist of two models (the PIC12F508 and PIC12F509)
shown in Figure 3.1, with a third model (the PIC12F510) under development at
the time of publication. The ‘F509 has more memory (more program memory, and
more GPFs) than the ‘F508. The ‘F510 will be similar to the ‘F509 but with the
added feature of built-in analogue-to-digital conversion (this is discussed further
in Chapter 4).

Differences from the PIC16F54

There are a few differences in the way these PIC microcontrollers work, most of
which are illustrated in the file registers. Figure 3.2 shows the file register
arrangement for the PIC12F50x series.

The STATUS register

The first difference is found in the STATUS register. This PIC series offers the
option of waking up from sleep if one of three I/O pins changes state (GP0, GP1

3
The PIC12F50x series

(8-pin PIC microcontrollers)

VSS8

7

6

5

1

2

3

4

GP0/ICSPDAT

P
IC

12F
508/509

GP1/ICSPCLK

GP2/T0CKI

VDD

GP5/OSC1/CLKIN

GP4/OSC2

GP3/MCLR/VPP

Figure 3.1

H6664-Ch03.qxd 8/13/05 12:34 PM Page 90

The PIC12F50x series 91

or GP3). The previously unused bit 7 of the STATUS register can now be used
to see whether the PIC microcontroller was woken up from sleep due to one of
these pins changing state (bit 7 is set), or whether it was some other reason (bit
7 is cleared).

The OSCCAL register

The second difference you will notice is that there is a new file register at
address 05, the OSCCAL file register. This is used for oscillator calibration,
and is really only used at the start of your program (address 0x000). To make the
internal 4 MHz internal oscillator more accurate, a special number should be
moved into the OSCCAL register. As with the PIC16F5x series, the PIC proces-
sor first executes the instruction at the last address of the program memory
(1FFh for ‘F508, and 3FFh for ‘F509). However, when the PIC microcontrollers
are made in the factory, a special instruction is programmed into them at the last
address. This instruction moves a particular number (the calibration value) into
the working register, i.e. it takes the form:

movlw xx ; moves calibration value into w. reg

After executing this instruction, the program loops back and starts at address
0x000 – remember, all this happens automatically. (By the way, if you are eras-
ing a new PIC microcontroller, you should first read the program memory and
make a note of the factory-programmed value, so that you can insert this line

00

01

02

03

04

05

06

07

08

09

0A

0B

…

1F

Indirect address

TMR0

PCL

STATUS

FSR

OSCCAL

GPIO

General

purpose

file

registers

Working register

Figure 3.2 Map of file registers for PIC12F508.

H6664-Ch03.qxd 8/13/05 12:34 PM Page 91

92 The PIC12F50x series

yourself.) If you wish to make the internal oscillator more accurate, the instruc-
tion at address 0x000 should be:

movwf OSCCAL ; uses the pre-programmed value
; to calibrate the internal oscillator

If you are not interested in oscillator accuracy, you can omit this instruction and
simply place goto start at program at address 0x000 using the org command.
The program template used previously should be modified as follows:

; Program Description: ___
; __

list P=12F50x
include “c:\pic\p12f50x.inc”

;============
; Declarations:

porta equ 05
portb equ 06

org 0 ; first instruction to be executed
movwf OSCCAL ; calibrates oscillator
goto Start ;

;============
; Subroutines:

Init clrf GPIO ; resets input/output port
movlw b’xxxxxx’ ; sets up which pins are inputs
tris GPIO ; and which are outputs

movlw b’xxxxxxxx’ ; sets up timer and some pin
option ; settings
retlw 0 ;

;============
; Program Start

Inputs and outputs

The PIC12F50x series has only one I/O port called the GPIO (the general pur-
pose input/output file register). It works in exactly the same way as Port A and
Port B on the PIC54 – certain pins on the PIC microcontroller correspond to bits
in this file register. One important thing to note is that GP3 is in fact only an
INPUT, and cannot be configured as an output.

The OPTION register

As previously mentioned, the PIC microcontroller can be configured to wake up
from sleep when one of GP0, GP1 or GP3 changes state. This is controlled by

H6664-Ch03.qxd 8/13/05 12:34 PM Page 92

bit 7 of the OPTION register – the feature is enabled when bit 7 is clear, and
disabled when bit 7 is set.

Bit 6 of OPTION has also been given a purpose (you may remember that these
two bits were unused in the PIC54 and 57). When set, the PIC microcontroller will
make pins GP0, GP1 and GP3 float high when not connected to anything. These
are known as weak pull-ups. These are useful when the pins are being used as
inputs which are pulled low when something happens (e.g. you’ve attached a push
button between the pin and 0V, pulling the input low when the button is pressed). If
you enable the pull-ups on the PIC microcontroller, you don’t need an external
pull-up resistor. If you don’t want to use this feature then make sure you set this bit.

Note that both of these features require bits to be set in order to disable the
feature – don’t forget to do this! The rest of the OPTION register is as in the
PIC54.

The TRIS register

Nothing much is new in this file register. Just remember that there are now 6 bits
in the I/O file register, and the number you use to select inputs and outputs
should reflect this. Also remember that GP3 cannot be configured as an output.
Finally, note that GP2 is also the T0CKI pin. This means that if the TMR0 is
configured (in OPTION) to count signals from the T0CKI pin, GP2 is auto-
matically set to be an input, overriding the value of the bit in the TRIS register.

The general purpose file registers

The PIC12F508 is identical to the PIC54 in terms of GPFs. The PIC12F509 has
an extra set at addresses 30-3Fh in the data memory. These are accessed in the
same way as described for the PIC57 – by setting bit 5 of the FSR (see page 82).

The MCLR

The PIC12F50x series still has an MCLR pin, but if you don’t need a reset pin,
it can be used as an input pin (GP3). You can enable or disable the MCLR when
programming the PIC microcontroller (it is one of the configuration bits). In
MPLab, select ‘Internal’ to disable the MCLR, or use the __config command.

Configuration bits

There are some new configuration options relating to the ability to disable the
MCLR feature, and the use of the internal oscillator. Use _MCLRE_OFF or
_MCLRE_ON to disable/enable the MCLR feature. The four allowed oscilla-
tor options are _LP_OSC_, _XT_OSC, _IntRC_OSC and _ExtRC_OSC,
where the latter two options refer to the internal RC oscillator and external RC
oscillator, respectively. An example configuration command would be:

__config _MCLRE_OFF & _IntRC_OSC & _CP_OFF & _WDT_OFF

The PIC12F50x series 93

H6664-Ch03.qxd 8/13/05 12:34 PM Page 93

94 The PIC12F50x series

Example project: ‘PIC dice’

Our example project to demonstrate the PIC12F508 will be a pair of dice, with
fourteen LEDs and one button. The LEDs will be arranged as shown in Figure
3.3. When the button is pressed, the LEDs will flash randomly, and when it is
released, the LEDs gradually slow down until they finally display a pair of num-
bers (in the traditional dice format). It will display this number for 5 seconds,
then go to sleep.

The PIC12F508 supports up to five outputs, so controlling fourteen LEDs is
going to be a real challenge! Looking at Figure 3.3, we notice that we don’t need
individual control over each LED die in order to display a number (1–6).
Instead, we can split these into four groups of LEDs which I’ve labelled A, B, C
and D. This cuts the requirement down to 8 outputs (4 per die). Finally, we can
use one output to select which die is on – if the output is 0, the left die is on, and
if the output is 1, the right die is on. This means we can get away with 5 out-
puts (1 controller, and 4 for the LEDs). The button will be connected to GP3,
which will be set to wake the PIC microcontroller up from sleep. The program
flowchart is shown in Figure 3.4, and the circuit diagram in Figure 3.5. As you
can see from Figure 3.1, if you wish to use in-circuit serial programming, the
ICSPDAT line should be connected to GP0, and the ICSPCLK line to GP1, at the
programming stage. However, these pins should be disconnected from the ICSP
lines during circuit operation.

In Init we should set up the inputs and outputs (all outputs, except GP3 which
is the button). We then need to turn off all the LEDs. Looking at Figure 3.3, we
see that one die’s LEDs are on when their corresponding GPIO bits are 1, and the
other die’s LEDs are on when their corresponding GPIO bits are 0 (i.e. one has
common cathode, and one common anode). Therefore to turn the LEDs off, we
move b’100000’ into GPIO. Setting Bit 5 selects the common anode group of
LEDs, and so the other GPIO bits should be cleared to turn off the LEDs. Finally,
set up the OPTION register with TMR0 prescaled by the maximum amount,
weak pull-ups disabled, the wake-up featured enabled on pins GP0, 1 and 3.

There are three main loops in the main section of the program. In the first, we
are waiting for the button to be released, the displays are randomly flashing, and

A

B

B

C

C

DD

Figure 3.3

H6664-Ch03.qxd 8/13/05 12:34 PM Page 94

a random number is being selected. In the second, when the button is released,
the displays slow down until a critical point is reached. Finally, the random num-
ber is displayed, and we wait for 5 seconds before going back to sleep.

Random digression

There are two approaches to generating random numbers: we can use some user
input (e.g. the length of time a button is pressed) or another external component,

The PIC12F50x series 95

Start of program

Create random number

Is GP3
pressed?

Yes

No
Initialise settings

Wait 5 seconds,
then turn off LEDs

Is chase
too slow?

No

Sleep

Did the PIC just
wake up?

Yes

Flash LEDs

Slow down flash

Sleep

Flash LEDs

Yes

No

Figure 3.4

H6664-Ch03.qxd 8/13/05 12:34 PM Page 95

or alternatively we can use an algorithm to generate a pseudo-random number.
For example, if we increment a register continually (and very quickly) during
a loop in which we wait for a button to be released, the register will be over-
flowing constantly and will end up at a random value. If we don’t have the luxury
of an external input, there are methods ranging in complexity for generating
random numbers. A simple algorithm is the Linear Congruential Method
developed by Lehmer in 1948, and has the following form:

In�1 � modm(aIn � c)

This generates the next number in the sequence by multiplying the previous
number by a, adding c, and taking the result modulo m. modm(x) is equal to the
remainder left when you divide x by m. Conveniently, the result of every oper-
ation performed in a PIC program is effectively given modulo 256. For example,
we add 20 to 250. The ‘real’ answer is 270, however, the result given in a PIC
program is 14. 14 is ‘270 modulo 256’ or mod256(270). There are a number of
restrictions on the choice of a and c in the above equation that maximise the ran-
domness of the sequence. For example we could pick a � 3 and c � 63. You
also have to pick a ‘seed’ – the first number in the sequence (I0). You can set up
this model on a spreadsheet and examine its quasirandom properties. First, you
should notice that the randomness of the sequence does not appear to be sensi-
tive to the seed. You should also observe that the sequence repeats itself every
256 numbers – this is an unfortunate consequence of the algorithm, but picking
a larger modulus will increase the period accordingly.

In this example project, we will use the first method (increment quickly while
a button is pressed) to pick the final random number for the dice. However, for

96 The PIC12F50x series

7

6
GP0 GP5/OSC1

GP4/OSC2

GP3/MCLR

GP1

GP2/T0CKI

PIC12F508 R1
150R

R5
10 k

U1
Q1
PNP

�5 V

0 V

1 k

R6

82R

R2–R4

5

2

3

A
LED

B1
LED

B2
LED

C1
LED

C2
LED

D1
LED

D2
LED

A
LED

B1
LED

B2
LED

C1
LED

C2
LED

D1
LED

D2
LED

4

1 k

R7 Q2
NPN

Figure 3.5

H6664-Ch03.qxd 8/13/05 12:34 PM Page 96

The PIC12F50x series 97

the random flashing that occurs prior to the answer being displayed, we will use
the algorithm given above. The program begins:

Start call Init ; initialisation procedure

Pressed btfsc GPIO, 3 ; tests button
goto Released ; branches when released
call RandomScroll ; quickly increments numbers
call Timing ; keeps flashing going
call Display ; keeps displays changing
goto Pressed ;

In this loop we wait for the button to be released. In the RandomScroll subrou-
tine, the dice result (a number between 0 and 35) is incremented. This number
is stored over two file registers called Ran1 and Ran2 which each hold a num-
ber between 0 and 5.

Exercise 3.1 What 13 lines make up the RandomScroll subroutine? Each time the
subroutine is called, Ran1 should be incremented – when it reaches 6 it should be
reset to 0, and Ran2 incremented. When Ran2 reaches 6, it should be reset to 0.

The Timing subroutine creates the delay between the displays changing. When
the button is released, this delay increases so that the dice slow down. The basic
unit of time will be 1/50th of a second (hence for a 4 MHz oscillator and TMR0
prescaled by 256, we use a marker of 78). The postscaler will be set to 4 while
the button is pressed (corresponding to the displays changing at a rate of about
12 times per second). When the button is released, we will set a bit called slow,
which will tell the Timing subroutine to increment the postscaler up to a max-
imum of 31 (i.e. over the course of about 10 seconds it will slow down to a rate
of about 1 per second). You can play with these values to create the type of
behaviour you desire. This subroutine starts as follows:

Timing movfw Mark78 ; base unit = 1/50th second
subwf TMR0, w ;
btfss STATUS, Z ;
retlw 0 ;

movlw d’78’ ; resets marker
addwf Mark78, f ;

decfsz PostX, f ; variable postscaler
retlw 0 ;

PostX is the variable postscaler that is reset with a value given by PostVal. Thus, to
slow down the flashing, we increment PostVal. At the point following the above
code, the variable length delay has elapsed and we need to change the display val-
ues. We have a file register called Random containing a random number between
0 and 255 which is generated using the algorithm given above: Randomn�1 �
mod256(3 Randomn�63). This is generated by calling the subroutine RandomGen.

H6664-Ch03.qxd 8/13/05 12:34 PM Page 97

98 The PIC12F50x series

Exercise 3.2 Challenge: What five lines make up the RandomGen subroutine
which generates a new value for the file register Random based on its old value.

This random number then needs to be changed into a number between 0 and 7
(as well as displaying numbers 1–6, ‘all-on’ and ‘all-off’ will be options during
the random flashing). This is best done as follows:

swapf Random, w ;
andlw b’00000111’ ; converts to 0-7 and moves
movwf Die1num ; into Die1num

The file registers Die1num and Die2num will be used to hold the number to be
displayed on the corresponding set of LEDs. Note that we do not simply take the
3 least significant bits of Random, as this leads to a periodicity of 8 in the ran-
dom flashing, which will be very noticeable. By taking bits 4 to 6 of Random we
get a period of 128, which will be much harder to spot. We use a similar set of
four lines to move a random number into Die2num.

We then test the bit called slow, and call a subroutine named Slowdown if it
is set (remember to clear it in Init).

Exercise 3.3 Write the four lines which make up the Slowdown subroutine
which increment PostVal until it gets to 32, upon which it is reset to 0.

Finally, the variable postscaler PostX is reset with the value in PostVal, and we
return from the subroutine.

In the display subroutine, we handle the strobing of the two sets of LEDs.
Like in the Stopwatch project in the previous chapter, we use TMR0 to control
strobing (in particular, bit 4 of TMR0). We’ll need two look-up tables to take the
number to be displayed (a number between 0 and 7 stored in Die1num and
Die2num) and return the appropriate code for GPIO. ‘0’ will correspond to all
LEDs off, ‘1–6’ correspond to the images shown in Figure 3.3, and ‘7’ corre-
sponds to all LEDs on.

Exercise 3.4 Write the ten lines which make up the Display subroutine. Also
write the two look-up tables for the two dice (nine lines each). HINT: The pin
arrangement for GPIO 5:0 is: Control, A, -, B, C, D, as given in Figure 3.3.

When the button is released, we jump to the Released section. The loop is much
the same, with the exception that the slow bit is set, and we test for PostVal to
reach 0 before skipping out of the loop:

Released bsf slow ; tells Timing to slow down
call Timing ; handles variable delays
call Display ; updates displays
movf PostVal, f ; has PostVal been cleared?
btfss STATUS, Z ;
goto Released+1 ;

H6664-Ch03.qxd 8/13/05 12:34 PM Page 98

The PIC12F50x series 99

At this point, the numbers from Ran1 and Ran2 are incremented and moved
into Die1num and Die2num, respectively. In the final loop we display the result
for 5 seconds (which we create using Mark78 and a postscaler of 250).

Exercise 3.5 Which 14 lines put the appropriate number in PostX, and then
waits 5 seconds while keeping the displays going? Finally, all the LEDs should
be turned off, and the PIC microcontroller should go to sleep.

When GP3 changes again (i.e. the button is pressed), the PIC microcontroller
will wake up, so the sleep command needs to be followed with the line goto
Start.

This completes the dice project, which gives an example of what can be
achieved on the tiny 8-pin PIC microcontrollers. The full program is shown in
Program M, however, note that the display codes used are dependent on how
you wire up the LEDs in your circuit board, and these may not necessarily match
my values. A nice extension of this project would be to change the time at which
the two dice finish ‘rolling’, such that one finishes before the other, to create a
greater air of suspense. You may also need to add some element of de-bouncing,
depending on the type of button you use.

H6664-Ch03.qxd 8/13/05 12:34 PM Page 99

Studying devices such as the ‘baseline’PIC5x series (by which I mean PIC16F5x
and PIC12F50x chips) allows us to learn about the basics behind PIC program-
ming. The simplicity and low cost of these entry-level devices are definite advan-
tages; however, this also means they lack some useful features. These features
include analogue to digital conversion (measuring an analogue voltage), inter-
rupts (which save having to test inputs manually), and an EEPROM (a bank of
data which stays intact even when you remove power). These features are all
found on a rather handy little 8-pin device called the PIC12F675. It is worth not-
ing that this is a more ‘typical’ kind of PIC microcontroller (rather than the sim-
ple PIC5x series) and so if you come across a new PIC microcontroller it is more
likely to behave like this one. If you decide that 6 I/O pins are too few, there is a
14-pin version called the PIC16F676 which is essentially identical to the
PIC12F675 but has 12 I/O pins.

Looking at the pin layout of the PIC12F675 in Figure 4.1, you should notice
similarities and differences between it and the PIC12F508 of the previous chapter.
You will also see that some of the pins are labelled AN0, AN1, AN2 and AN3:
these can be made analogue inputs. VREF (pin 6) can be made the voltage refer-
ence for the other analogue inputs (i.e. the PIC microcontroller compares the
voltage at the other pins with the voltage on the VREF pin). INT (pin 5) can be
set to interrupt normal program flow when it goes high or low. The pins labelled
CIN�, CIN� and COUT are part of a comparator module. A comparator com-
pares the voltage on two inputs, and tells you which one is greater. Finally, this
PIC microcontroller has not one timer but two! The second is called TMR1 (in
addition to the TMR0 we have been using). The pins labelled T1CKI and T1G——

are associated with this second timer.

4
Intermediate operations

using the PIC12F675

VDD

GP5/T1CKI/OSC1/CLKIN

GP4/AN3/T1G/OSC2/CLKOUT

GP3/MCLR/VPP

VSS

GP0/AN0/CIN�/ICSPDAT

GP1/AN1/CIN�/VREF/ICSPCLK

GP2/AN2/T0CKI/INT/COUT

8

7

6

5

1

2

3

4

P
IC

12F
675

Figure 4.1

H6664-Ch04.qxd 8/19/05 10:46 AM Page 100

Intermediate operations using the PIC12F675 101

Due to the compact nature of the PIC12F675, many of these different pin
functions are squeezed onto the same pins and we often have to make a choice
of which particular function we wish to use. On larger models these features are
spread over more pins and we have more choice over which ones can be used at
the same time. Each of the pins described above, and their associated features,
will be covered in detail in this chapter.

The inner differences

Having looked at the external differences, we now need to examine the inside of
this PIC microcontroller. Figure 4.2 shows the arrangement of file registers on

Indirect Address

TMR0
PCL

STATUS
FSR
GPIO

PCLATH
INTCON

PIR1

TMR1L
TMR1H
T1CON

00
01
02
03
04
05
06
09
0A
0B
0C
0D
0E
0F
10
11

BANK 0

CMCON

ADRESH

General
purpose

file
registers

ADCON0

Indirect Address

OPTION_REG
PCL

STATUS
FSR

TRISIO

PCLATH
INTCON

PIE1

PCON

OSCCAL

80
81
82
83
84
85
86
89
8A
8B
8C
8D
8E
8F
90
91

BANK 1

...

WPU
IOC

VRCON
EEDATA
EEADR

EECON1
EECON2
ADRESL

Copies
of addresses

20 – 5F

ANSEL

18
19
1A

1D
1E
1F

20

...

5F
60
7F
...

94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

A0

DF
E0
FF
...

...

...

... ...

... Working register

Figure 4.2

H6664-Ch04.qxd 8/19/05 10:46 AM Page 101

102 Intermediate operations using the PIC12F675

the PIC12F675. The first thing to observe is that all the extra features bring with
them a load of extra special function registers (SFRs). Do not be overwhelmed
by the large quantity of these SFRs – we will go over each one in due course. The
greyed file registers are unused areas of the data memory. If you try reading the
values in these locations, you will get a 0.

The second thing you might notice is that there are two banks. Whereas the
PIC16F54 had only one bank (‘filing cabinet’), the PIC12F675 has two sets of
file registers. You should also take note that some file registers are the same in
Bank 1 as in Bank 0. Think of a bank as a ‘frame of mind’ of the PIC microcon-
troller, where file registers may (or may not) be different depending on the
‘frame of mind’. File register 03 will always be the STATUS register, regardless
of the ‘frame of mind’ the PIC microcontroller is in. However, in Bank 0, file
register 05 will be GPIO, and in Bank 1 file register 05 actually corresponds to
a file register called TRISIO. Even if I actually write ‘GPIO’ in the program, the
PIC microcontroller will still act on TRISIO, if it is the Bank 1 ‘frame of mind’.

To switch from one bank to another we use one of the bits in the STATUS regis-
ter (now you see why STATUS must be the same in both banks – if it didn’t exist in
Bank 1 there would be no way of getting back to Bank 0!). This bit is called RP0
and is bit number 5. To go to Bank 1, we set the bit. To return to Bank 0 we clear it.

Example 4.1 We want to clear the file register called TRISIO, however, the PIC
microcontroller is currently in Bank 0.

bsf STATUS, RP0 ; goes to Bank 1
clrf TRISIO ; clears the TRISIO register
bcf STATUS, RP0 ; goes to Bank 0

Note that the following performs the same task:

bsf STATUS, RP0 ; goes to Bank 1
clrf GPIO ; clears the TRISIO register
bcf STATUS, RP0 ; goes to Bank 0

Naturally writing ‘TRISIO’ makes far more sense – but the point is to highlight
the fact that if you try to do something to GPIO when in Bank 1, you will actu-
ally do it to TRISIO.

In many cases, a Bank 1 file register is in some way related to its Bank 0
counterpart (e.g. the OPTION_REG register is largely a setup register for
TMR0). Because the Bank 1 file registers tend to be involved in setting up, you
may only need to go into Bank 1 during the Init subroutine. Finally, please note
that the PIC microcontroller starts up in Bank 0.

The OPTION and WPU registers

From the top, the first new file register we come across is the OPTION_REG regis-
ter. It isn’t strictly a new file register, because there was an OPTION register on

H6664-Ch04.qxd 8/19/05 10:46 AM Page 102

Intermediate operations using the PIC12F675 103

the PIC5x chips, however we did not have direct access to it. Remember how to
move a number into the OPTION register (e.g. in order to set up TMR0) with the
PIC5x? Below is a reminder:

movlw b’xxxxxxxx’ ; moves the number into w. reg
option ; moves w. reg into OPTION

With most other PIC microcontrollers (including the PIC12F675) there is no
need for this option instruction as we can simply move the number into the
OPTION register as we would with any other:

movlw b’xxxxxxxx’ ; moves the number into w. reg
movwf OPTION_REG ; moves the w. reg into OPTION

First you should note that we use the term OPTION_REG to describe the
OPTION register in the program – this distinguishes it from the (now defunct)
option instruction. Secondly, I should remind you that if you don’t switch into
Bank 1 before you perform the above two lines, you will actually move the num-
ber into TMR0.

Bit 7 of the OPTION register now controls internal pull-ups, which are avail-
able on all the I/O pins (expect GP3). As before, when the bit is set all the pull-
ups are totally disabled, and when this bit is clear, the pull-ups are enabled
(in general). If pull-ups are enabled in general, then they can be individually
enabled or disabled using the WPU register (Weak Pull-up register). Each bit in
the WPU controls the correspond bit in GPIO (e.g. setting bit 0 of WPU enables
the pull-up on bit 0 of GPIO, and clearing bit 4 of WPU disables the pull-up on
bit 4 of GPIO).

Bit 6 of the OPTION register is associated with interrupts and will be dis-
cussed later. The remaining bits of the OPTION register are the same as before.

The TRISIO register

The same new method applies to writing to the TRIS file register. Rather than
using the tris instruction (which doesn’t exist on this PIC microcontroller), we
can move the number directly into TRISIO (again, this has to take place when in
Bank 1):

movlw b’xxxxxx’ ; moves a number into w. reg
movwf TRISIO ; sets up inputs and outputs on GPIO

Calibrating the internal oscillator

Finally, if we wish to use the 4 MHz internal oscillator we need to calibrate it (as
we did with the PIC12F508). There are a few important differences to note:

1. The reset vector of this device is 0x000 (i.e. it starts at the beginning of the
program memory).

H6664-Ch04.qxd 8/19/05 10:46 AM Page 103

104 Intermediate operations using the PIC12F675

2. The program memory is no longer split into pages. We have the freedom to
goto or call to anywhere without worrying about page bits.

3. OSCCAL is now in Bank 1.
4. The following calibration instruction has been placed at address 0x3FF (the

last address of program memory):

retlw XX ; returns with calibration value in w. reg

Therefore, the code to set up the internal oscillator should now be placed in the
Init subroutine and consists of:

bsf STATUS, RP0 ; goes into Bank 1
call 3FFh ; calls calibration address
movwf OSCCAL ; moves w. reg into OSCCAL
bcf STATUS, RP0 ; goes back to Bank 0

After executing the line call 3FFh, the program returns with the factory-
programmed calibration value in the working register, which is then moved into
OSCCAL.

PCLATH: Higher bits of the program counter

While PCL holds the lower eight bits of the program counter (bits 0 to 7), the
higher bits are not directly accessible. With the PIC5x series we had some han-
dle on the higher bits using page bits in the STATUS register. On the PIC12F675
these page bits are largely unnecessary, but are effectively stored in PCLATH.
You don’t need to worry about the upper bits of the program counter during
gotos and calls, however you have to be careful when doing variable jumps (i.e.
adding numbers to the program counter). When you do this, as well as perform-
ing the operation on the PCL, the PIC processor will load the state of PCLATH
into the upper bits of the program counter (PCLATH feeds directly into the upper
byte of the PC). For example, if I have a lookup table which starts at address
0x240, I need to move 2 into PCLATH before adding anything to the PCL. In
the example below, the lookup table starts at address 0x045 so we need to clear
PCLATH first.

Example 4.2

0045 clrf PCLATH ; makes sure PCLATH is 0
0046 movfw Marx ; reads in value from file
0047 addwf PCL, f ; adds to PCL for variable jump
0048 goto Groucho ; branches accordingly
0049 goto Harpo ;
0050 goto Chico ;

H6664-Ch04.qxd 8/19/05 10:46 AM Page 104

Remaining differences

The remaining new SFRs can be divided into a number of categories, which will
be dealt with in turn:

INTCON, PIR1, PIE1, IOC: Interrupts
EEDATA, EEADR, EECON1, EECON2: EEPROM
CMCON, VRCON: Comparator
ADRESH, ADRESL, ADCON0, ANSEL: Analogue to Digital Conversion
TMR1L, TMR1H, T1CON: Timer 1 (a second timer)

The PIC12F675 also boasts a stack which is 8 levels deep (compared with 2
levels deep on the PIC5x series). This means you can call a subroutine within a
subroutine within a subroutine within a subroutine . . . etc., etc.! Having the
third level is particularly useful; the others may not be used that often.

There are two more instructions found on the PIC12F675 and most other PIC
microcontrollers (but not on the PIC5x series):

addlw number ;

(Not for PIC5x series) – adds a literal (number) to the number in the working
register.

sublw number ;

(Not for PIC5x series) – subtracts the number in the working register from a
literal (number), leaving the result in the working register.

Finally, note that the watchdog timer (WDT) timeout behaves slightly differ-
ently when this PIC microcontroller is in sleep mode. Rather than causing a full
reset, as on the PIC5x series, a WDT timeout during sleep causes this PIC micro-
controller to wake up, and continue executing the program from the line after the
sleep command. When not in sleep, a WDT timeout causes a full reset, as usual.

Interrupts

An interrupt tells the PIC microcontroller to drop whatever it’s doing and go to
a predefined place (the interrupt service routine or ISR) when a certain event
occurs. Think of it as a fire alarm which goes off when something is detected, and
makes the PIC microcontroller go to a particular meeting point. This event could
be receiving a signal on the INT (GP2) pin, or perhaps the state of one of the
other I/O pins changing. An interrupt can be set to occur when one of the timers
(TMR0 or TMR1) overflows, and there are interrupts associated with the EEPROM,
analogue to digital converter and the comparator. Each of these interrupts can be
enabled or disabled individually, and many can be active at the same time. As
they all interrupt the program and make the program jump to the same place (the
ISR), you may be wondering how we can tell which event triggered caused the
interrupt. Fortunately, as well as having individual enable bits, each interrupt also
has an associated flag which can be tested to see if that particular interrupt has

Intermediate operations using the PIC12F675 105

H6664-Ch04.qxd 8/19/05 10:46 AM Page 105

occurred. At the start of the ISR you should test the flags of all enabled interrupts
and branch off to difference sections accordingly. Note also that these interrupt
flags must be cleared by you, so somewhere during the ISR you should clear the
flag so it’s ready to trigger next time. Finally, note that interrupt flags will get set
regardless of the state of the interrupt enable – the interrupt enable only dictates
whether or an interrupt flag going high will actually trigger an interrupt.

The majority of the interrupt enable bits and flags are held in the INTCON
(Interrupt Control) register. A few further interrupts, known as ‘peripheral inter-
rupts’ have individual enable bits in the PIE1 (Peripheral Interrupt Enable) regis-
ter, and flags in PIR1 (Peripheral Interrupt Register). Let’s start with INTCON:

INTCON

Bit no. 7 6 5 4 3 2 1 0
Bit name GIE PEIE T0IE INTE GPIE T0IF INTF GPIF

Port Change flag
1: A GPIO change
interrupt occurred
0: It hasn’t
[Note: Must be
cleared by you]

External INT flag
1: An INT (GP2) interrupt
has occurred
0: It hasn’t
[Note: Must be cleared by
you]

TMR0 Overflow Interrupt flag
1: TMR0 has overflowed
0: TMR0 has not overflowed
[Note: Must be cleared by you]

Port Change Interrupt Enable
1: Enables GPIO port change interrupt
0: Disables it

External INT Interrupt Enable
1: Enables the INT (GP2) interrupt
0: Disables it

TMR0 Overflow Interrupt Enable
1: Enables TMR0 overflow interrupt
0: Disables it

Peripheral Interrupt Enable
1: Enables any enabled ‘peripheral interrupts’
0: Disables all ‘peripheral interrupts’

Global Interrupt Enable
1: Enables any enabled interrupts
0: Disables ALL interrupts

106 Intermediate operations using the PIC12F675

H6664-Ch04.qxd 8/19/05 10:46 AM Page 106

Bit 7 (GIE) is the global interrupt enable, which is the master switch for all
interrupts. Turn it off and no interrupts are enabled (regardless of the state of
their individual enable bits). Turn it on and interrupts whose individual enable
bits are set will be enabled.

Bit 6 (PEIE) is a mini-master switch for a group of interrupts which are known
as ‘peripheral interrupts’. These interrupts have their own enable bits in the PIE1
register. Therefore, in order to use these interrupts you have to enable three bits –
the individual enable bit in PIE1, this bit, and the global interrupt enable.

Set bit 5 (T0IE) to use the TMR0 overflow interrupt – this simply triggers an
interrupt whenever TMR0 overflows from 255 to 0. In the interrupt service routine
you can test bit 2 (T0IF) to see if a TMR0 overflow interrupt has occurred (remem-
ber that you need to clear it yourself!).

Bit 4 (INTE) controls the ‘External Interrupt’ which depends on the state of
the pin labelled INT (GP2). The interrupt can be set to trigger on the rising edge
or falling edge of the signal on this pin. This is done using bit 6 of the OPTION
register: if bit 6 of OPTION is clear, the INT interrupt will occur on the falling
edge of the INT pin. If bit 6 of OPTION is set, the INT interrupt will occur on
the rising edge.

Finally, bit 3 (GPIE) of the INTCON register controls the GPIO change inter-
rupt. This interrupt can trigger when any one of the GPIO pins changes. To use
this interrupt you need to set this bit, and also select which GPIO pin should be
able to trigger the interrupt. This is done with the IOC (Interrupt On Change) reg-
ister. Each bit in the IOC corresponds to a bit in GPIO – set the bit to enable
interrupts when that pin changes. For example, to enable an interrupt to occur
whenever pins GP0, GP2 and GP4 change, you should write the following:

bsf STATUS, RP0 ; moves into Bank 1
movlw b’00010101’ ; enables GP0, GP2 and GP4
movwf IOC ; for the GPIO change interrupt
movlw b’10001000’ ; enables GPIO change interrupt,
movwf INTCON ; and enables global interrupts

The interrupt service routine

When an interrupt takes places, the PIC processor will jump to the instruction at
address 0x004. What’s more, it actually calls a subroutine which starts at address
0x004. This is so that after dealing with the interrupt, the processor can return to
where it left off before the interrupt occurred. In our previous programs, address
0x004 has been five lines into our Init subroutine, so we will have to make some
changes to the template. At address 0x004 we want to goto somewhere which we
will call isr. When the processor comes across the return instruction in isr, it will
return to the point in the program which it was at when the interrupt occurred.
Remembering that the reset vector for the PIC12F675 is 0x000, we could write:

org 0
goto Start

Intermediate operations using the PIC12F675 107

H6664-Ch04.qxd 8/19/05 10:46 AM Page 107

org 4
goto isr

Init etc.

The only problem with this is that you are wasting addresses 0x001 to 0x003,
however this is not serious. Alternatively, you could write the following:

org 0
goto Start

Init clrf GPIO ;
movlw b’xxxxxxxx’ ;
goto InitCont ; skips address 0x004
goto isr ; at address 0x004 goes to isr

InitCont etc. ; carries on with rest of Init

Counting down you should see that the line goto isr is still at address 0x004,
and rather than losing three lines (0x001 to 0x003), we really only waste one
line (goto InitCont).

The start of the interrupt service routine should begin by checking which par-
ticular event triggered the interrupt (if more than one input is enabled).

isr btfss INTCON, 0 ; did GPIO change interrupt occur?
goto GPchange ; yes, it was a GPIO change
btfss INTCON, 1 ; did the INT/GP2 occur?
goto External ; yes, it was the INT interrupt
btfss INTCON, 2 ; did the TMR0 overflow?
goto Timer ; yes, it was the TMR0 interrupt
etc.

Fortunately, the processor automatically clears the global interrupt enable bit (GIE)
in the INTCON register when an interrupt occurs. This means that no interrupt can
take place in the ISR – you can imagine the havoc that would take place should this
not be the case! Thus, at the end of the ISR we would have to set the global inter-
rupt enable just before returning, but even if we did this, an interrupt could take
place immediately afterwards, before actually returning from the ISR. We can’t set
the global enable after returning because we don’t know where the processor is
going to return to. Fortunately there is a new instruction which solves this problem:

retfie ;

This returns from a subroutine and sets the global interrupt enable bit at the
same time. In certain cases you may want to return from the ISR (or indeed any
subroutine) without setting the global interrupt enable. On the PIC5x series,
retlw is the only available instruction. On the PIC12F675 we can use:

return ;

This simply returns from a subroutine.

108 Intermediate operations using the PIC12F675

H6664-Ch04.qxd 8/19/05 10:46 AM Page 108

Interrupts during sleep

If an interrupt which has been individually enabled occurs during sleep, the PIC
microcontroller will wake up and do one of two things, depending on the state
of the global interrupt enable (GIE). If the GIE is off, it will just wake up from
sleep and carry on running through the program from the line after the sleep
command. If the GIE is set, the processor will execute the instruction after
sleep, and then call the ISR (address 0x004). Therefore, if you just want to use
an interrupt to wake up the PIC microcontroller, you should clear the GIE before
the sleep instruction. If you want the program to respond in some other way, you
should make sure GIE is set. Note that the TMR0 is off during sleep, so the
TMR0 interrupt cannot be used to cause a wake-up from sleep.

Example 4.3 Make the PIC microcontroller go to sleep until triggered by a
change of state of inputs GP0 or GP1 (assume these two have already been
enabled in the IOC register). It should then carry on with the rest of the program
with the TMR0 and GPIO change interrupts enabled.

movlw b’00001000’ ; only enables GPIO change interrupt
movwf INTCON ; and disables GIE
sleep ; goes to sleep
movlw b’10101000’ ; enables TMR0, GPIO change, and
movwf INTCON ; global interrupts

Exercise 4.1 Write the seven lines to send the PIC microcontroller to sleep, and
be woken by the rising edge of the INT (GP2) pin. Upon waking, the program
should do nothing before calling the ISR. (Hint: Don’t forget to configure the
relevant bit in the OPTION register.)

That’s all there is to interrupts; just remember to make the ISR fairly short,
because you can’t get an interrupt while you’re in it. Think clearly when writing
this part of the program, particularly if you have more than one interrupt enabled.

Maintaining the STATUS quo

Remember that interrupts can occur at any point during the program. We could be
moving something into the working register, and be about to move it into another
file register when WHAM!, an interrupt occurs. When we return from the ISR,
there is likely to be a new number in the working register – what happens now?

Example 4.4 movlw d’15’ ; has MinutesFame reached 15?
subwf MinutesFame, w ;
btfss STATUS, Z ;

Intermediate operations using the PIC12F675 109

H6664-Ch04.qxd 8/19/05 10:46 AM Page 109

In Example 4.4, what happens if an interrupt occurs after the second line? Upon
returning from the ISR, the zero flag may be in a different state. In order to
ensure that interrupts don’t disrupt the functioning of the program, we have to
store the contents of the working register and the STATUS register at the begin-
ning of the ISR. At the end of the ISR we copy these values back and then return.
To store the original values we use:

movwf W_temp ; stores w. reg in temp register
movfw STATUS, w ; stores STATUS in temp
movwf STATUS_temp ; register

And to restore the two registers at the end of the ISR we use:

movfw STATUS_temp ; restores STATUS register to
movwf STATUS ; original value
swapf W_temp, f ; restores working register to
swapf W_temp, w ; original value

This may seem a little puzzling. Why not simply move W_temp directly into the
working register using the movfw command? The reason is that the movfw
instruction affects the zero flag, and so has the potential of altering the original
value of the STATUS register. Fortunately, the swapf instruction does not affect
the zero flag, and so is suitable in this case. Note that swapping twice results in
no net change to the value, and so these two instructions move the value from
W_temp into the working register with no change to STATUS.

New program template

With all these new file registers it is clear that our program template needs to be
updated. A good practice is to clear any control file registers that you are not
using. The only exception to this is the comparator module, which is in a low-
power mode if the CMCON (comparator module control) register is clear, but
is turned completely off if you set bits 0–2, as shown in the template below. Even
if you are going to use interrupts in the program, you should not set the global
interrupt enable until everything else is configured. You can then use the ret-
fie instruction to leave Init and enable global interrupts. If you don’t want to
enable interrupts at this point, end Init with the return instruction. If you are
not using interrupts, you can remove the ISR.

;*************************************
; written by: *
; date: *
; version: *
; file saved as: *
; for PIC . . . *
; clock frequency: *
;*************************************

110 Intermediate operations using the PIC12F675

H6664-Ch04.qxd 8/19/05 10:46 AM Page 110

; Program Description: __
; ___

list P=12F675
include “c:\pic\p12f675.inc”

;============
; Declarations:

W_temp equ 20 h
STATUS_temp equ 21 h

org 0 ; first instruction to be executed
goto Start ;

org 4 ; interrupt service routine
goto isr ;

;============
; Subroutines:

Init bsf STATUS, RP0 ; goes to Bank 1
call 3FFh ; calls calibration address
movwf OSCCAL ; moves w. reg into OSCCAL
movlw b’xxxxxx’ ; sets up which pins are inputs
movwf TRISIO ; and which are outputs
movlw b’xxxxxx’ ; sets up which pins have
movwf WPU ; weak pull-ups enabled

movlw b’xxxxxxxx’ ; sets up timer and some pin
movwf OPTION_REG ; settings
clrf PIE1 ; turns off peripheral ints.
clrf IOC ; disables GPIO change int.
clrf VRCON ; turns off comparator V. ref.
clrf ANSEL ; makes GP0:3 digital I/O pins

bcf STATUS, RP0 ; back to Bank 0
clrf GPIO ; resets input/output port
movlw b’00000111’ ; turns off comparator
movwf CMCON ;
clrf T1CON ; turns off TMR1
clrf ADCON0 ; turns off A to D conv.
movlw b’0xxxxxxx’ ; sets up interrupts
movwf INTCON ;

retfie or return ;

isr movwf W_temp ; stores w. reg in temp register
movfw STATUS ; stores STATUS in temporary
movwf STATUS_temp ; register

Intermediate operations using the PIC12F675 111

H6664-Ch04.qxd 8/19/05 10:46 AM Page 111

(Write the interrupt service routine here)

movfw STATUS_temp ; restores STATUS register to
movwf STATUS ; original value
swapf W_temp, f ; restores working register to
swapf W_temp, w ; original value
retfie or return ; returns, enabling GIE

;=============
; Program Start

Start call Init ; initialisation routine

Main (Write your program here)

END

Example project: ‘Quiz game controller’

The project to practice interrupts will be a quiz game device. There will be three
push buttons (one for each player), three LEDs (one by each button to show which
player pressed first), and a buzzer to show that a button has been pressed which
stays on for 1 second. There will also be a button for the quizmaster to reset the
system (this can be connected to the GP3/—MCLR—— pin). You may wonder why we
are going to the trouble of using interrupts for this project, which looks as if it may
be viable on the PIC16F54. However, without interrupts we would have to test
each button in turn, one after the other. Let us say, for example, that the program
had just finished testing the first button, and then immediately afterwards, the first
button is pressed. The program then tests the second button, after which the third
player responds. The third player’s button is now tested, and as far as the program
is concerned, he responded first. The times we are dealing with are millionths of a
second, but if we want to be really exact we can use interrupts. The three players’
buttons could be connected to pins which have the GPIO change interrupt enabled,
so that this interrupt would trigger the moment any button is pressed. The circuit
diagram for this project is shown in Figure 4.3. Because the PIC12F675 does not
exactly have an abundance of I/O pins, we have to double up the button pins and
LED pins. In order for this to work, we need an extra pin (GP0) to act as a master
switch for the LEDs. With this output set (�5 V), pins GP1, 2 and 4 can be made
outputs to control whether the LEDs are on or off, irrespective of whether a but-
ton is pressed. When this pin is clear, pins GP1, 2 and 4 can be made inputs (with
weak pull-ups enabled) which read the state of the buttons. We could avoid this
complication by moving to a larger device (such as the PIC16F676), but this illus-
trates what can be achieved with a relatively small number of pins. In summary,
the two modes of operation with regards to pin settings are:

1. Waiting for button to be pressed: GP0 is an output, and off (so LEDs are dis-
abled). GP1, 2 and 4 are inputs, with weak pull-ups enabled.

2. Displaying correct LED: GP0 is an output, and on (so LEDs are enabled).
GP1, 2 and 4 are outputs.

112 Intermediate operations using the PIC12F675

H6664-Ch04.qxd 8/19/05 10:46 AM Page 112

The buzzer will be connected to pin GP5. The flowchart is shown in Figure 4.4 –
as you can see, the main body of the program is nothing at all, just a constant
loop. All the clever stuff happens in the interrupt service routine.

Exercise 4.2 With the help of the program template above, write the Init subrou-
tine for this program. We will be using the GPIO change interrupt to determine
when a button is pressed, and the TMR0 interrupt to help with the timing for the
buzzer. However, we don’t enable the TMR0 interrupt just yet – we will do it later.
Also, don’t enable the global interrupt until the last line of the subroutine – retfie.
Set up inputs and outputs to prepare for waiting for a button to be pressed, and
don’t forget to enable weak pull-ups on GP1, GP2 and GP4. Set up the IOC regis-
ter correctly to generate interrupts-on-change for GP1, GP2 and GP4.

The main body of the program is just a loop, waiting for the GPIO change inter-
rupt to occur. The program, from Start, is therefore:

Start call Init ; sets everything up
Main goto Main ; keeps looping

This leaves the isr to complete. In this project, we are using two interrupts, so
we need to check the interrupt flags to determine which interrupt occurred.
Note that in this particular project, it isn’t essential to include the code at the
start and end of the isr which store and recover the contents of the working and
STATUS registers, as nothing is happening while we’re waiting for an interrupt.

Exercise 4.3 What two lines are required at the start of isr to determine which
interrupt occurred? If the GPIO interrupt occurred, continue, otherwise jump to
a section called Timer.

Intermediate operations using the PIC12F675 113

�5 V

0 V

U1

BUZ1

BUZZER

R7
10 k

R8
1 k

R6
1 k

R5
1 k

R3
270R

R2
270R

R2
270R

D1 D2 D3

Q1 R4

BC184L

LEDLEDLED

7
6
5
4
3
2

PIC12F675

GP0/AN0

GP2/T0CKI/INT/AN2
GP3/MCLR

GP5/T1CKI/OSC1
GP4/T1G/OSC2/AN3

GP1/AN1/VREF

1 k

Figure 4.3

H6664-Ch04.qxd 8/19/05 10:46 AM Page 113

Interrupt flags need to be reset in the program, otherwise, upon returning from
the ISR, the same interrupt will trigger again. The GPIO interrupt flag is reset
by clearing bit 0 of INTCON. We now need to record which button was pressed,
and turn on the corresponding LED. The buttons are active low, so the bit goes
to 0 when a button is pressed. To turn this into an active high signal, we invert
the state of GPIO, moving the result into the working register, and then mask all
bits except the ones we’re interested in: GP1, 2 and 4.

bcf INTCON, 0 ; resets GPIO interrupt flag
comf GPIO, w ; inverts state of GPIO
andlw b’010110’ ; masks all except GP1, 2 and 4
movwf temp ; stores result

The number in temp should now be all 0s, with a 1 at the bit corresponding to the
button which was pressed. This number can then be used to turn on the correct
LED. As a safety precaution to guard against problems like button bounce, etc.
we can do a quick check; if the number in temp is 0, this was a false alarm and

114 Intermediate operations using the PIC12F675

Start of program: setup

Keeps looping

Turn on correct LED

Turn on buzzer

Turn off buzzer

Sleep

Wait one second

ISR …

Figure 4.4

H6664-Ch04.qxd 8/19/05 10:46 AM Page 114

Intermediate operations using the PIC12F675 115

we should ignore it. The zero flag would have been triggered by the andlw
instruction, and so we can test it immediately:

btfss STATUS, Z ; is a button actually pressed?
retfie ; no – false alarm, so returns

Now we are sure a button was pressed, and temp holds a number corresponding
to which one it was. We now need to change pins GP1, 2 and 4 to outputs (which
automatically disables weak pull-ups. The contents of temp can then be moved
back into GPIO, which will turn on the LED corresponding to the button that
had been pressed. We also need to enable the LEDs by setting GP0, and turn on
the buzzer by setting GP5. This can be achieved through separate bsf com-
mands, but we do the same by adding the number b’100001’ to temp, before
moving it into GPIO.

Exercise 4.4 What seven lines turn GP1, 2 and 4 to outputs, and then use the
number in temp to turn on the correct LED and the buzzer? Don’t forget to
move in and out of Bank 1.

We should then disable the GPIO change interrupt, and enable the TMR0 inter-
rupt, and return from the isr, enabling global interrupts.

Exercise 4.5 What three lines complete the GPIO change part of the isr?

We will use the TMR0 interrupt to time the 1 second delay period for the buzzer.
If we use the 4 MHz internal oscillator, instructions are executed at a frequency
of 1 MHz, and TMR0 counts up at a frequency of 3.9 kHz. The frequency of the
TMR0 interrupt is therefore 15.3 Hz, so if we want to time an approximate one
second delay, we should use a postscaler of 16. We set up a file register with the
number 16 (do this in Init), and decrement it each time the TMR0 interrupt occurs.
After the 16th interrupt, the buzzer is turned off and the PIC microcontroller
goes to sleep. Upon going to sleep, the states of the outputs stay the same, so the
correct LED stays on. Before going to sleep, the program should set up INTCON
so that all the interrupts are disabled. Therefore, only a reset on the —MCLR—— pin (to
which the quiz-master’s button is connected) will wake up the device.

Exercise 4.6 What six lines make up the section called Timer.

This completes the program, which is given in Program M. So far we have
looked at two interrupts, the GPIO change and TMR0 interrupts. Remaining
interrupts on this PIC microcontroller (external interrupt on the INT pin, A/D
conversion interrupt, EEPROM write interrupt and comparator interrupt) will
be dealt with in subsequent parts of this chapter.

H6664-Ch04.qxd 8/19/05 10:46 AM Page 115

EEPROM

EEPROM (Electrically Erasable Programmable Read-Only Memory) can be
seen as a large collection of general purpose file registers whose contents remain
intact even after power has been removed. We used the analogy of a filing cabi-
net to describe the file registers. When the PIC microcontroller is turned off, the
filing cabinets are left exposed and there is little guarantee that the numbers in
the file registers will be intact when you turn it on again. The EEPROM behaves
like the office safe – a secure place to store data which will not be affected by
removing power.

We can define this in more rigorous terms and say that the 64 file registers in
the data memory are RAM (random access memory). In addition to these, there
are 128 data locations which are ROM (read-only memory) – the EEPROM.
Reading and writing to these secure locations requires a bit more effort than
with the file registers in the RAM.

The file register EEADR holds the address in the EEPROM which you wish
to read or write to, while EEDATA holds the data that you have just read, or which
you wish to write to the EEPROM. EECON1 holds settings for the EEPROM,
and EECON2 is a special register used in the EEPROM writing process. Note
that all these EEPROM file registers are found in Bank 1.

EECON1

bit no. 7, 6, 5, 4 3 2 1 0
bit name unused WRERR WREN WR RD

Read Control Bit
1: Starts an EEPROM read
0: EEPROM read has finished

Write Control Bit
1: Starts an EEPROM write
operation (stays high until write
operation finishes)
0: EEPROM write has finished

EEPROM Write Enable Bit
1: Allows writing to the EEPROM
0: Forbids writing to the EEPROM

EEPROM Write Error Flag
1: An EEPROM write has prematurely terminated
0: The write operation completed without error

Reading from the EEPROM

Let’s pretend for the moment that you have already written something to the
EEPROM and you now wish to read it.

116 Intermediate operations using the PIC12F675

H6664-Ch04.qxd 8/19/05 10:46 AM Page 116

Example 4.5 You wish to read the number stored in address 4Eh of the EEPROM
and move it into the working register.

bsf STATUS, RP0 ; go to Bank 1
movlw 4Eh ; selects EEPROM address
movwf EEADR ;
bsf EECON1, 0 ; starts EEPROM read operation

; storing result in EEDATA
movfw EEDATA ; moves read data into w. reg

After moving into Bank 1, the next two instructions tell the PIC microcontroller
which address in the EEPROM you wish to read. The EEPROM Read bit is set
to initiate a read from the EEPROM, putting the result in EEDATA. This file reg-
ister can be read directly immediately after the read command.

Writing to the EEPROM

Writing to the EEPROM is made slightly more complicated by the fact that it is
a more ‘dangerous’ operation. Reading from the EEPROM is quite harmless –
all you are doing is moving a number into EEDATA (photocopying some docu-
ments that are in the safe). Writing to the EEPROM, on the other hand, involves
actually changing the data in the EEPROM (altering the documents in the safe).
Because of this distinction, steps are taken to minimise the risk of accidentally
writing to the EEPROM. You have to provide a type of ‘combination for the safe’
in the program before you are allowed to write to the EEPROM.

Example 4.6 You wish to write the decimal number 69 into the EEPROM
address space 78h. First ensure the write enable bit (EECON1, bit 2) is set, then
provide the ‘safe combination’ – a series of four instructions which must imme-
diately precede the write operation. As the execution of this procedure must not
be interrupted, the global interrupt enable should be cleared for the duration of
the write operation.

bsf STATUS, RP0 ; goes to Bank 1
movlw d’69’ ; moves the number to be written, into
movwf EEDATA ; EEDATA
movlw 78h ; moves the address to be written to
movwf EEADR ; into EEADR
bsf EECON1, 2 ; enables a write operation
bcf INTCON, 7 ; disables global interrupts

movlw 55h ; now follows the ‘safe combination’
movwf EECON2 ;
movlw AAh ;
movwf EECON2 ;
bsf EECON1, 1 ; starts the write operation
etc.

Intermediate operations using the PIC12F675 117

H6664-Ch04.qxd 8/19/05 10:46 AM Page 117

There is still a little more to the writing operation, because although we have
started the write, it will take quite a few clock cycles to complete. This is in con-
trast to the read operation which takes place immediately. If there is something
in particular we want to do when the write finishes we can wait until the write
completes by testing EECON1, 1 (the write control bit) which gets cleared when
the write operation finishes:

EELoop
btfsc EECON1, 1 ; has write operation finished?
goto EELoop ; no, still high, so keeps looping

If we don’t want to get tied up in some loop, but want to be able to get on with
other things, we can use the EEPROM Write Complete interrupt, which (as you
may have guessed) triggers when the write operation finishes. This interrupt is
a so-called ‘peripheral interrupt’ and can be enabled using bit 7 of the PIE1 regis-
ter. Don’t forget that the peripheral interrupt enable (INTCON, bit 6) as well as
the global interrupt enable need to be set in order for the interrupt to occur.

Exercise 4.7 Write the 16 lines which read address 08h of the EEPROM, add 5 to
this value, and then store the result in EEPROM address 09h. Finally, the program
should loop until the write operation has finished.

A final point to note is that if you are not using interrupts at all (and have there-
fore disabled the global interrupt bit at the beginning of the program) you may
remove the relevant lines in the EEPROM write procedure.

Example project: ‘Telephone card chip’

You may be familiar with the so-called ‘smart cards’ which have found their
way into a variety of applications. These cards have tiny chips embedded inside
them, and either have contacts to communicate with the outside world or have a
loop antenna inside the card. To demonstrate the use of the EEPROM, we will
write the program for a PIC microcontroller which has been embedded within a
‘smart’ telephone card. We shall assume the card has 8 contact pins with which
to communicate with the public telephone box. Two of these will be power pins,
one will indicate that a call is in process and another will be from the card to
alert the phone box when the card runs out of minutes. There will also be a pin
used to reset the number of minutes left on the card to a specified value (this
could be used for top-ups), and three pins will hold the 3-bit ‘top-up’ value,
therefore allowing one of 8 possible values to be written to the card. The time
remaining (in minutes) will be stored in the EEPROM so that the data remains
intact when power is removed (the card is removed from the phone box). For
simplicity’s sake minutes are used as the basic unit of time, but you can adjust
the program to count down in seconds, if you want.

The circuit diagram for this arrangement is shown in Figure 4.5. The interface
with the phone box can be simulated using a number of switches and LED. GP0

118 Intermediate operations using the PIC12F675

H6664-Ch04.qxd 8/19/05 10:46 AM Page 118

is an output and will go high if there are minutes on the card, and low when the
time runs out. GP1 is an input from the phone box which goes high when a call
is in progress. GP2 is an input which will be made high when the card value is
to be reset, and is otherwise low. GP3, 4 and 5 store the 3-bit ‘top-up’ value. The
flowchart is shown in Figure 4.6.

Starting from the program template developed earlier, we have to select val-
ues for INTCON, TRISIO, WPU and OPTION_REG. We will use the INT inter-
rupt on GP2 (rising edge) to trigger the reset of the time remaining, and require
no other interrupts. We will not use the weak pull-ups.

Exercise 4.8 What numbers (in binary) should be moved into INTCON, TRI-
SIO, WPU and OPTION_REG in this project? Implement these changes in the
program template.

From the flowchart, at Main we should first read the EEPROM and see if there
are any minutes left on the card. The number of minutes will be stored in
EEPROM address 00h. If there are minutes left, the program should skip for-
ward to a section called Active, and if not, it should turn off GP0 and go to
sleep. If the card is topped up, the INT interrupt will trigger, the line following
sleep will be executed and then the ISR will be called. After returning from this,
the program should loop back to Main.

Exercise 4.9 Challenge! What 11 lines make up this first section? Don’t forget
to move back into Bank 0 as soon as you are able to. (Hint: The instruction
movfw triggers the zero flag, if zero is moved into the working register.)

In Active, you should set GP0, and then enter a loop where you wait until there
is a call in progress. When the call is active, the program should count time and

Intermediate operations using the PIC12F675 119

�5 V

PHONE BOX

PHONE BOX

SMART CARD

0 V

U1

R1
270R

R2–R6
100 k

SW1

D1

7
6
5
4
3
2

1
2
3
4

8
7
6
5

PIC12F675

LED

GP0/AN0

GP2/T0CKI/INT/AN2
GP3/MCLR

GP5/T1CKI/OSC1
GP4/T1G/OSC2/AN3

GP1/AN1/VREF

Figure 4.5

H6664-Ch04.qxd 8/19/05 10:46 AM Page 119

see if one minute has passed. Because the intermediate timing registers (markers
and postscalers) are not stored in the EEPROM, the card will only count down
complete minutes, and not fractions of minutes. This could easily be rectified by
storing these registers in the EEPROM as well, but this is left as a possible devel-
opment. Using the internal 4 MHz oscillator and TMR0 prescaled by 256, we can
use a marker of 125 and postscalers of 125 and 15 to time one minute.

Exercise 4.10 Write the 15 lines which test to see if a call is in progress, and
continue looping until one minute has passed.

120 Intermediate operations using the PIC12F675

Start of program: setup

No

YesHas time
expired?

Turn on GP0

Is a
call in progress?

Yes

Yes

No

No

Has
1 minute
passed?

Turn off GP0
and go to sleep

Decrement minute
counter in EEPROM

ISR

Use GP3-5 to write
new value to

EEPROM

Figure 4.6

H6664-Ch04.qxd 8/19/05 10:46 AM Page 120

Don’t forget to set up the timing registers in Init. After one minute has passed we
should reset the final postscaler to its correct value, and then decrement the num-
ber of minutes stored in the EEPROM. This involves reading the data in, decre-
menting it, and then writing it back. Finally, the program should loop back to Main.

Exercise 4.11 Write the 18 lines which complete this final section. Don’t forget
to clear the global interrupt enable before initiating the EEPROM write, and
remember to set it again afterwards. The program must wait for the write oper-
ation to finish before looping back to Main.

All that remains is the handling of the INT interrupt, upon which the number of
minutes stored should be reset to the value determined by bits GP3:5. The eight
possible values are 2, 5, 10, 20, 40, 60, 120 and 0 minutes – assigned to (000,
001 . . ., 111) respectively. We should begin by clearing the INT interrupt flag
(INTCON, 1), and then read in the state of GPIO. Don’t forget that the interrupt
may have occurred anywhere in the program, so we need to make sure we switch
into Bank 0 in order to read the GPIO register. The bits of interest in GPIO are
bits 3:5, so we should rotate this three times to the right. This can’t be done
directly to GPIO, so we have to use an intermediate register called temp.
Finally, to turn this into a number between 0 and 8 (b’000’ and b’111’) we
should mask bits 3–5.

Exercise 4.12 What eight lines clear the INT flag and then use bits 3–5 of GPIO
to generate a number between 0 and 8, which is left in the working register?

We can create a lookup table in a subroutine called CardValue which is called
with a number between 0 and 8 in the working register, and which returns with
the appropriate number of minutes.

Exercise 4.13 Write the lookup table CardValue.

After calling CardValue, the number in the working register should be written
into the EEPROM – you should be well practiced at this by now. Finally, you
should wait until the write operation has completed before restoring the original
values of STATUS and the working register. Upon returning, global interrupts
should be enabled, so the retfie instruction should be chosen.

All that remains is a quick check to make sure you have declared all file regis-
ters, and set them up with appropriate values in Init. The entire program is
shown in Program O. When simulating this project in MPLab, you can view the
contents of the EEPROM by going to View l EEPROM. When you program a
PIC microcontroller, the contents of the EEPROM window will be written to the
EEPROM on the chip. Similarly, when you read the program from a chip
(Programmer l Read device), the contents of the chip’s EEPROM will be shown
in the EEPROM window.

Intermediate operations using the PIC12F675 121

H6664-Ch04.qxd 8/19/05 10:46 AM Page 121

Further EEPROM examples: Music maker

For further EEPROM practice, you could make a device on which you can store
musical notes and play back a melody. You can cover 8 octaves which corre-
spond to 96 different notes, so each note is assigned a byte in the EEPROM.
With an EEPROM of 128 bytes, a melody of up to 128 notes can be stored. A
speaker can be connected to one of the outputs, and the different notes are
obtained by producing square waves of different frequencies. The frequencies of
the notes in the scale are shown in Table 4.1.

The notes of the other octaves are produced by multiplying or dividing these
numbers by two. For example, the next C above middle C would be 524 Hz.
Human hearing goes from about 10 Hz to 20 kHz, so rather than storing the fre-
quency of the note in the EEPROM, it would be more sensible to store the note
(e.g. D# or G) and the octave number (i.e. a number between 1 and 8). Each of
these would be stored in a nibble, so for example, the hexadecimal number 56h
in the EEPROM could mean an E in the 6th octave.

Power monitor

A second possible EEPROM project is a device which is powered by the mains
(indirectly of course!) and which counts and displays the time, storing the latest
values in the EEPROM. Then, if the mains cuts out, when the device is next
powered up it will display the time stored in the EEPROM – i.e. the time at
which the power cut began.

Other applications for the EEPROM include devices concerning security
where passwords are involved.

Analogue to digital conversion

Analogue to digital conversion (ADC) is the ability to measure the voltage at an
analogue input and convert this reading into a number between 0 and 1024 (for
10-bit conversion). This translates into a precision of about 5 mV when a 5 V supply
is used. For example, if the result of an A/D conversion was 10, the input voltage
was 0.05 V, and if it was 400, the input was about 1.95 V. This allows much greater
flexibility than digital inputs which can only tell whether an input is high or low
(more than 2.5 V or less than 2.5 V). Some PIC microcontrollers support 8-bit ADC,
which leads to lower precision. The voltage can be measured relative to the supply
voltage (VDD), or relative to the voltage on another pin (the VREF pin – GP1).

A/D conversion can be a fairly lengthy process (compared with the speed at
which most instructions are executed). The time which an A/D conversion takes

122 Intermediate operations using the PIC12F675

Table 4.1

Middle C C# D D# E F F# G G# A A# B

262 Hz 277 294 311 330 349 370 392 415 440 466 494

H6664-Ch04.qxd 8/19/05 10:46 AM Page 122

can be changed by you, though if you make it too short the accuracy of the result
will be affected. This and other aspects of the ADC are controlled in the regis-
ters ADCON0 and ANSEL.

ADCON0

Bit no. 7 6 5 4 3 2 1 0
Bit name ADFM VCFG – – CHS1 CHS0 GO/DONE ADON

A/D on bit
1: ADC is on
0: ADC is off
(consuming
no current)

GO/DONE
1: Starts A/D conversion.
Stays high until finished
0: A/D conversion finished

Channel select bits
00: Channel 00 (AN0)
01: Channel 01 (AN1)
10: Channel 02 (AN2)
11: Channel 03 (AN3)

Voltage reference bit
1: Measures relative to VREF pin
0: Measures relative to VDD (supply voltage)

A/D result formed select
1: Right justified – result stored in ADRESL and ADRESH (bits 0:2)
0: Left justified – result stored in ADRESL (bits 6:7) and ADRESH

Bit 0 of ADCON0 is the on/off switch for the A/D converter. When it is set, the
ADC is on and the PIC microcontroller consumes extra current. Bit 1 is set to
start an A/D conversion, and stays set for the duration of the process, after which
it automatically clears. This bit can therefore be tested to see when the A/D con-
version finishes. Bits 2 and 3 together select which analogue input you want to
measure. For example, to test the voltage on AN2 (GP2) you should set bit 3 and
clear bit 2. The voltage reference (VREF pin or VDD) can be selected using bit 6
of ADCON0. The measured 10-bit answer is held over two registers: ADRESH
and ADRESL (A/D Result, higher and lower bytes). You have a choice in how
the 10-bit number is stored over these two registers. Either it can be shifted to
the right, so that bits 0:7 of the answer are held in ADRESL and bits 8:9 of the
answer stored in bits 0:1 of ADRESH, or it can be shifted to the left, so that bits
0:1 of the answer are held in bits 6:7 of ADRESL, and bits 2:9 of the answer are
held in ADRESH. This is illustrated in Figure 4.7.

Intermediate operations using the PIC12F675 123

H6664-Ch04.qxd 8/19/05 10:46 AM Page 123

ANSEL: Analogue select register

The ANSEL register has two purposes: setting the A/D conversion speed and
selecting whether particular GPIO pins should be acting as analogue inputs, or
standard digital I/O pins. Bits 0:3 refer to pins AN0:AN3 – when they are clear
the relevant pin behaves like a digital I/O pin, however when set, the correspond-
ing pin acts as an analogue input, and cannot be used as a digital input.

Example 4.7 Push buttons are connected to pin GP0 (AN0) and GP2 (AN2),
while a thermometer input (analogue input) is connected to GP1 (AN1) and a
microphone input (analogue input) to GP4 (AN3). The number b’1010’ should
be moved into bits 0:3 of ANSEL.

Bits 4:6 of ANSEL determine the A/D conversion clock, as shown in Table 4.2.
Accurate A/D conversion requires a time of 1.6 �s or greater, however there is
no point in making it much longer than this. The internal oscillator provides a
conversion time of about 4 �s, though this can vary between 2 and 6 �s.

124 Intermediate operations using the PIC12F675

9 8 7 6 5 4 3 2

ADRESH

1 0 - - - - - -

ADRESL

7 0 7 0

- - - - - - 9 8

ADRESH

7 6 5 4 3 2 1 0

ADRESL

7 0 7 0

ADCON0, 7 � 0, left-justified ...

ADCON0, 7 � 1, right-justified ...

Figure 4.7

Table 4.2 Use of the ANSEL bits 2:0 to select the A/D conversion time. Italic
numbers represent conversion times which are too fast, or needlessly slow

ANSEL A/D conversion clock Device frequency
bits 6:4

1.25 MHz 2.46 MHz 4 MHz 20 MHz

000 FOSC/2 1.6 �s 800 ns 500 ns 100 ns
001 FOSC/8 6.4 �s 3.2 �s 2 �s 400 ns
010 FOSC/32 25.6 �s 12.8 �s 8 �s 1.6 �s
011 FRC: Internal oscillator �4 �s �4 �s �4 �s �4 �s
100 FOSC/4 3.2 �s 1.6 �s 1 �s 200 ns
101 FOSC/16 12.8 �s 6.4 �s 4 �s 800 ns
110 FOSC/64 51.2 �s 25.6 �s 16 �s 3.2 �s
111 FRC: Internal oscillator �4 �s �4 �s �4 �s �4 �s

H6664-Ch04.qxd 8/19/05 10:46 AM Page 124

A/D conversion interrupt

To wait for an A/D conversion to complete, we could just keep testing
ADCON0, bit 1 (which we used to start the conversion) and wait for it to clear.
The A/D conversion interrupt frees up the program from this loop, and triggers
upon completion of the conversion. This interrupt is a ‘peripheral interrupt’, and
so it is enabled in the PIE1 register (bit 6) and its interrupt flag is found in the
PIR1 register (bit 6). In order for the interrupt to trigger, both the peripheral
interrupt enable and the global interrupt enable bits in INTCON (bits 6 and 7)
must be set.

Example project: ‘Bath monitor’

To practise A/D conversion, our next project will be a temperature-sensing
device which indicates whether the temperature of your bath is too high, too
low, or just right (i.e. within an acceptable temperature range). There will be
three LEDs to indicate these three possible conditions, connected to GP0, GP1
and GP2. GP4 (AN3) will be the analogue input connected to the temperature
sensor LM35 which varies its output linearly according to temperature. The cir-
cuit diagram is shown in Figure 4.8, and the flowchart in Figure 4.9.

As with the quiz game controller, the main loop of the program is practically
nothing at all. In this case we simply need to keep starting the A/D conversions,
and the response to the measurement will be handled in the ISR. The program
from Start is therefore:

Start call Init ; sets everything up
Main bsf ADCON0, 1 ; start A/D conversion

goto Main ;

Intermediate operations using the PIC12F675 125

�5 V

HOTOKCOLD

TEMP

0 V

U1

R1
270R

R2
270R

R3
270R

7
6
5
4
3
2

2

3
1

PIC12F675

LEDLEDLM35

VOUT

G
N

D
�

V
S

LED

GP0/AN0

GP2/T0CKI/INT/AN2
GP3/MCLR

GP5/T1CKI/OSC1
GP4/T1G/OSC2/AN3

GP1/AN1/VREF

Figure 4.8

H6664-Ch04.qxd 8/19/05 10:46 AM Page 125

Looking at the above code we can see that using an A/D conversion interrupt in
this case isn’t actually necessary. We could simply have written the following:

Start call Init ; sets everything up
Main bsf ADCON0, 1 ; starts A/D conversion
ADLoop btfsc ADCON0, 1 ; has conversion finished?

goto ADLoop ; no, so keeps looping
etc. ; yes, so exits loop

However, in a more advanced version of this program we may want to have a
more complex main loop, and in such a case the A/D conversion interrupt may
be very useful. We will therefore keep using the interrupt method in this project
and write the program as if the interrupt may have occurred during a more com-
plex program (i.e. use the working and STATUS register storage/recovery code
in the isr).

126 Intermediate operations using the PIC12F675

Start of program: setup

Reset A/D interrupt flag

Is water
too cold?

Yes

No

Start A/D conversion

Turn on OK LED

ISR ...

Is water
too hot?

Return from ISR

Yes

No

Turn on hot LED Turn on cold LED

Figure 4.9

H6664-Ch04.qxd 8/19/05 10:46 AM Page 126

Exercise 4.14 Specify the numbers that should be moved into the following regis-
ters during the Init subroutine: INTCON, ADCON0, ANSEL, TRISIO, WPU,
OPTION_REG and PIE1. Assume the internal 4 MHz oscillator will be used,
and set the result of an A/D conversion to be left-justified.

In the ISR, we needn’t test the A/D interrupt flag as it is the only interrupt which
has been enabled, but we do need to reset it (clear it).

Exercise 4.15 What two lines will reset the A/D interrupt flag (make no
assumption about the current bank)?

Following the flowchart, we see that the next step is to see whether the temperature
is too cold (i.e. whether the measured analogue voltage is below a certain thresh-
old). Depending on the required accuracy, we have two choices. We can choose to
discard the two least significant bits of the answer (bits 0 and 1) which are held in
ADRESL, and use only the 8 bits held in ADRESH. We can simply see whether
ADRESH is below the ‘cold’ threshold. This particular temperature sensor gives an
output voltage of 0.01 V per degree Celsius. If we say the minimum bath water
temperature is 36°C, this means the minimum input voltage is 0.36 V (which is
compared with the reference voltage, VDD, which is 5 V). 0.36/5 � 0.072 and
0.072 � 256 � 18. We’ve multiplied by 256 because by using only the number in
ADRESH (the eight most significant bits). We would therefore write:

movlw d’18’ ; is ADRESH less than 18?
subwf ADRESH, w ;
btfss STATUS, C ; carry flag is 0 when result is -ve
goto Cold ; C is 0, therefore ADRESH < 18

If, on the other hand, we want to take advantage of the full 10-bit precision of the
A/D converter, we need to test the full 10-bit number which is spread over
ADRESH and ADRESL. For the sake of the more discerning bather, we will take
this 10-bit approach in this project. The threshold voltage for 36°C is still 0.36 V,
which when divided by 5 V leaves 0.072. We multiply this by 1024 to get the
10-bit value for the cold threshold: d’74’. If you write this number out in binary
as it will appear in registers ADRESH and ADRESL you get: b’00010010
10000000’ (remember – bits 0:1 of the A/D result are stored in ADRESL bits 6:7,
and bits 2:9 of the A/D result are stored in ADRESH). Thus, the upper byte is
(0x12) and the lower byte is (0x80). To test the result of the 10-bit A/D conver-
sion we subtract a number from the result, as we have done before, except this
time the number happens to be split over two file registers. We handle this in the
same we handle normal arithmetic – first subtract the lower bytes, subtracting
one from the higher byte if you need to borrow, then subtract the higher bytes.

bsf STATUS, RP0 ; goes to Bank 1
movlw 0x80 ; subtracts lower byte
subwf ADRESL, w ;

Intermediate operations using the PIC12F675 127

H6664-Ch04.qxd 8/19/05 10:46 AM Page 127

comf STATUS, w ; inverts carry flag (bit 0 of STATUS)
andlw b’00000001’ ; masks all other bits
bcf STATUS, RP0 ; goes to Bank 0
addlw 0x12 ; add this to the number we are
subwf ADRESH, w ; subtracting from the higher byte
btfss STATUS, C ;
goto Cold ; ADRESH:L � 0x1280, → “cold!”
etc . . .

We first subtract the lower byte of the threshold from the lower byte of the
answer (ADRESL), leaving ADRESL unaffected. Note that we don’t care what
the answer is – only whether we had to borrow or not. If we borrow, the carry
flag is clear. We invert all the bits of STATUS (including the carry flag), mov-
ing the result into the working register, then mask all bits other than bit 0 (which
is now the carry flag – inverted). This means the working register is now 0 if
there was no borrow, and 1 if there was a borrow. We can therefore add the
working register (0 or 1) to the number we want to subtract from the higher byte,
then subtract the total from ADRESH. Again, we’re not interested in the answer
itself, only in how the carry flag was affected. If it’s clear, there was a borrow,
meaning that the overall number split over ADRESH and ADRESL was less
than 0x1280, and the bath is therefore cold.

Exercise 4.16 The maximum temperature shall be 42°C. How does this value
translate into the 10-bit number produced by the A/D converter, and how is it
distributed over ADRESH and ADRESL.

Exercise 4.17 Write the 11 lines which use the technique described above to
test to see if the temperature is too hot. If it is too hot, branch to a section called
Hot. If it’s not too hot, we’ve already tested whether it’s too cold, so we know it’s
OK and so branch to a section called OK.

Each section (Cold, OK and Hot) should turn the correct LED on, and then
return while enabling the global interrupt enable. Rather than copying out the
code for restoring the values of the working register and STATUS, you can label
this section prereturn, and jump to prereturn at the end of the three different
sections.

Exercise 4.18 Write the Cold, OK and Hot sections. They should consist of
three lines each.

The entire program is now complete, and shown in Program P. If you are using the
PICKit™ 1 Flash Starter Kit, you can use the components already on the board to
test the program, though you will have to change some of the pin assignments. You
should change the analogue input to GP0, and you can then simulate different

128 Intermediate operations using the PIC12F675

H6664-Ch04.qxd 8/19/05 10:46 AM Page 128

temperatures by turning the potentiometer. The LEDs can be controlled on by
making pins GP1, 2, 4 and 5 inputs, outputs � 0 or outputs � 1, as required. For
example, to turn on LED0, make TRISIO � b’001111’ and GPIO � b’010000’;
to turn on LED1, make TRISIO � b’001111’ and GPIO � b’100000’; and to
turn on LED2, make TRISIO � b’101011’ and GPIO � b’010000’.

Comparator module

On the surface, the comparator module looks like a simplified version of analogue
to digital conversion. A comparator measures two analogue inputs, called VIN�

and VIN�, and produces a digital output VOUT depending on which voltage is
bigger. In the standard configuration, VOUT � 1 if VIN� � VIN� and VOUT � 0
if VIN� � VIN�, however, this behaviour can be inverted when configuring the
comparator.

Within this fairly basic type of operation, the PIC microcontroller offers a
wide range of different possible forms of behaviour which are controlled by bits
2:0 of CMCON (Comparator Module Control register), and summarised in
Table 4.3. On the PIC12F675, comparator inputs can be chosen from GP0/CIN�,
GP1/CIN� or even a programmable internal voltage reference. VOUT can be
directly connected to pin GP2/COUT, or else can be released and used as a stan-
dard digital I/O pin. In the latter case, the comparator output can be read by the
program as bit 6 of CMCON.

If GP0 is not being used by the comparator (e.g. type ‘B’ behaviour), it can
be used as a standard digital I/O pin. In the case where either GP0 or GP1 can
be used as the VIN� input (i.e. type ‘C’), both are set as analogue inputs. Note
that when the PIC microcontroller is powered up or reset, CMCON 2:0 is 000,
and even though the comparator is disabled (VOUT is set to 0), pins GP0 and
GP1 remain analogue inputs and cannot be used as digital inputs. Hence, if you
are not using the comparator, it should be turned off by setting CMCON 2:0 to
111. As is the case for any analogue inputs, the voltage must be within the sup-
ply voltages VSS and VDD.

We’ve already discussed bits 0:2 and bit 6 of CMCON, and we will now
examine the remaining bits. In type ‘C’ behaviour, bit 3 is the Comparator Input

Intermediate operations using the PIC12F675 129

Table 4.3

CMCON 2:0 VIN� VIN� VOUT

000 GP0/CIN� GP1/CIN� Disabled: CMCON, 6 � 0

001 A GP0/CIN� GP1/CIN� GP2/COUT and CMCON, 6
010 GP0/CIN� GP1/CIN� CMCON, 6

011 B Internal ref. GP1/CIN� GP2/COUT and CMCON, 6
100 Internal ref. GP1/CIN� CMCON, 6

101 C Internal ref. GP0 or GP1 GP2/COUT and CMCON, 6
110 Internal ref. GP0 or GP1 CMCON, 6

111 Comparator off and consumes no current (CMCON, 6 � 0)

H6664-Ch04.qxd 8/19/05 10:46 AM Page 129

Switch which selects whether GP0 or GP1 is being measured. Finally, bit 4 is
the Comparator Output Inversion bit – when this is set, any output from the
comparator is inverted.

Voltage reference

As well as comparing the states of external analogue inputs, the comparator can
use an internal programmable voltage reference. In order to use it, we must first
turn on the voltage reference module by setting bit 7 of the VRCON register
(Voltage Reference Control). The voltage reference can take one of 32 distinct
values, as given by bits 5 and 3:0 of VRCON. Bit 5 selects one of two voltage
ranges; when set, the lower range of voltages is selected, and the reference is
equal to VDD * (VRCON 3:0)/24. When bit 5 is clear, the upper range is selected,
and the reference is equal to VDD/4 � VDD * (VRCON 3:0)/32. Table 4.4 above
shows example values for voltage references, for VDD � 5 V.

As with the comparator module, don’t forget to turn off the voltage reference
to save power if you aren’t using it, or when going into sleep mode. On some
PIC microcontrollers (e.g. the PIC16F627), this reference voltage can be output
through an I/O pin.

Comparator interrupts

The comparator interrupt triggers when the state of the comparator output
changes. The corresponding interrupt enable is found in the PIE1 register (bit 3),

130 Intermediate operations using the PIC12F675

Table 4.4

VRCON, 5 � 1 (low range) VRCON, 5 � 0 (high range)

VRCON 3:0 VRef (VDD � 5 V) VRCON 3:0 VRef (VDD � 5 V)

0000 0.00 0000 1.25
0001 0.21 0001 1.41
0010 0.42 0010 1.56
0011 0.63 0011 1.72
0100 0.83 0100 1.88
0101 1.04 0101 2.03
0110 1.25 0110 2.19
0111 1.46 0111 2.34
1000 1.67 1000 2.50
1001 1.88 1001 2.66
1010 2.08 1010 2.81
1011 2.29 1011 2.97
1100 2.50 1100 3.13
1101 2.71 1101 3.28
1110 2.92 1110 3.44
1111 3.13 1111 3.59

H6664-Ch04.qxd 8/19/05 10:46 AM Page 130

and the interrupt flag is stored in the PIR1 register (bit 3) – this must be reset to
0 after the interrupt occurs. As with all peripheral interrupts, both the PIE
Enable and Global Interrupt Enable bits must be set for this interrupt to occur.
If you plan to change the comparator behaviour during the program, you should
disable the comparator interrupt during the change, to avoid the possibility of a
false interrupt.

Comparator example: ‘Sun follower’

As a short example of the comparator feature, we will look at the program for a
solar cell ‘sun follower’. There are two sensors, on either side of the solar cell,
which measure the light level and produce analogue voltages between 0 and 5 V.
As the sun rises and sets during the day, we want the solar cell to point directly
towards the sunlight. The device therefore compares the signal coming from each
sensor, and then drives a motor to make the two equal. The two light sensors are
connected to the GP0/CIN� and GP1/CIN� pins. The motor is connected to pins
GP2 and GP4; if GP2 is high and GP4 is low, the motor is driven forward, if GP4
is high and GP2 is low, the motor is driven backward. Every ten minutes a subrou-
tine will be run to adjust the solar cell position. We begin by turning on the com-
parator module, and making the correct settings. We wish to compare GP0 and
GP1 (i.e. type ‘A’ operation) and do not require the COUT pin, hence CMCON 2:0
should be b‘010’. We aren’t using type ‘C’ operation so bit 3 doesn’t matter, and
we don’t wish to invert the comparator output so bit 4 should be 0:

FollowSun bcf STATUS, RP0 ; Bank 0
movlw b’00000010’ ; turns on comparator, compares
movwf CMCON ; GP0 & GP1, not using COUT pin

The comparator response time can be as long as 10 �s when a new input or volt-
age reference has been chosen, or when just turned on, so we need to insert a
short delay before responding to the comparator output. An easy way to do this
is to create a subroutine, delay, which immediately returns:

delay return ; immediately returns

Calling this subroutine and returning will take four clock cycles (or 4 �s, given
the internal 4 MHz internal oscillator). Depending on the comparator output, the
motor is driven forward or in reverse:

call delay ; kills four clock cycles (4 �s)
call delay ; kills four clock cycles (4 �s)
call delay ; kills four clock cycles (4 �s)
bcf PIR1, 3 ; resets comparator interrupt flag
btfss CMCON, 6 ; reads comparator output
goto Forward ; drives motor forward

Reverse bsf GPIO, 4 ; drives motor in reverse

Intermediate operations using the PIC12F675 131

H6664-Ch04.qxd 8/19/05 10:46 AM Page 131

goto Continue ;
Forward bsf GPIO, 2 ; drives motor forward
Continue . . .

We then wait for a comparator interrupt (we don’t actually need to use an inter-
rupt – it’s easier to simply test the comparator interrupt flag, which will get set
even if the relevant interrupt enable bits are disabled). The comparator interrupt
will take place when the comparator output changes – i.e. just when the values
from the light sensors are approximately equal. At this point we can stop the
motors, and then return from the subroutine. This assumes the motors are suffi-
ciently slow that overshoot isn’t a problem.

Continue btfss PIR1, 3 ; waits for comparator to change
; output

goto Continue ;
bcf GPIO, 2 ; turns off motor
bcf GPIO, 4 ;
return ; returns from ‘FollowSun’

; subroutine

As well as showing how the comparator may be used, the above example illus-
trates how an interrupt flag may be used without actually involving a jump to the
interrupt service routine.

Comparator example: Reading many buttons from one pin

We can also use the comparator to read a large number of buttons from only one
input. If we connect the buttons as shown in Figure 4.10, there is a different
resistance between the GP1/CIN� pin and VDD, depending on which button is
pressed. We also place a capacitor between GP1 and ground, so that when a but-
ton is pressed there is a slow rise time which is dictated by the values of resist-
ance and capacitance. Therefore, the rise time is different for each button. By
using the comparator, we can set a particular threshold voltage for the GP1 input.
We discharge the capacitor by making GP1 an output and setting it to 0, then we
make it an input and set a timer going. By measuring the time at which the com-
parator output changes, we can identify which button was pressed (if any).

With the values given in Figure 4.10, the discharge is very fast. The value of
R � C for each button is: 8 �s, 23 �s, 38 �s or 53 �s, and is 68 �s if there is no
button pressed. If we set up the comparator to trigger at about (1 � 1/e) �
VDD � 3.16 V, the trigger times should be equal to the RC products given above.
The code below could therefore be used to read the buttons:

Setup bsf STATUS, RP0 ; Bank 1
movlw b’10001000’ ; TMR0 not prescaled (counts up
movwf OPTION_REG ; once every 1 �s for 4 MHz clock)
movlw b’10001100’ ; programs an internal voltage

132 Intermediate operations using the PIC12F675

H6664-Ch04.qxd 8/19/05 10:46 AM Page 132

movwf VRCON ; reference of 3.13 V
bcf STATUS, RP0 ; Bank 0
movlw b’00000100’ ; turns on comparator, to compare
movwf CMCON ; GP1 with internal VREF

ButtonTest bsf STATUS, RP0 ; Bank 1
bcf TRISIO, 1 ; make GP1 output
bcf STATUS, RP0 ; Bank 0
bcf GPIO, 1 ; discharge capacitor
clrf TMR0 ; resets TMR0
bsf STATUS, RP0 ; Bank 1
bsf TRISIO, 1 ; make GP1 input ← TMR0 = 0
bcf STATUS, RP0 ; Bank 0

Loop btfsc CMCON, 6 ; waits until VIN� > VREF
goto Loop ;
swapf TMR0, w ; takes current value of TMR0
andlw b’00000111’ ; takes only bits 4:6 of TMR0
addwf PCL, f ; skips between 0 and 4
goto Button1 ; instructions, depending on
goto Button2 ; which button, if any, was
goto Button3 ; pressed
goto Button4 ;
goto NoButton ; no button was pressed

Intermediate operations using the PIC12F675 133

�5 V

0 V

U1

220R

7
6
5
4
3
2

PIC12F675

GP0/AN0

GP2/T0CKI/INT/AN2

GP5/T1CKI/OSC1

GP1/AN1/VREF

GP3/MCLR
GP4/T1G/OSC2/AN3

R6

R5
82 k

R4
150 k

C1
100 pF

R3
150 k

R2
150 k

R1
150 k

Figure 4.10

H6664-Ch04.qxd 8/19/05 10:46 AM Page 133

In the setup section we choose no prescaler for TMR0 (so, given a 4 MHz
clock, it counts up every 1 �s). We choose an internal voltage reference of
3.13 V, and turn on the comparator, selecting GP1/CIN� and VREF as the com-
parator inputs, and using only CMCON, 6 as the comparator output. During the
button test we first discharge the capacitor, then reset TMR0. Note that when
you write to TMR0 (e.g. clear it), the change takes two cycles to take effect.
Therefore TMR0 isn’t actually cleared until the line in which GP1 is made an
input, which is just what we want. We then enter a loop which waits until the
comparator input goes high (the voltage has risen above the threshold). We then
take the number from TMR0 and use it to jump to the appropriate section.

You will now notice that the resistor values were not chosen at random – if
Button1 was pressed, the expected rise time is 8 �s. TMR0 counts up once every
1 �s, so the expected value of TMR0 is 8. Even if there is a small error, we can
be pretty certain the number in TMR0 is b’0000????’, i.e. the value of TMR0
bits 4:6 should be 000. If Button2 was pressed, the expected rise time is 32 �s,
which means TMR0 bits 4:6 are expected to be 001 (work it out!). So, our
choice of resistor values means that even with some small timing errors, the val-
ues of TMR0 bits 4:6 will be: 000, 001, 010, 011 or 100 depending on which
button (if any) has been pressed. Therefore, when the threshold voltage is
reached, we swap the nibbles in TMR0 (making the bits of interest bits 0:2),
leaving the result in the working register, and then mask the answer using the
AND operation. This provides a number between 0 and 4 which can be added to
the PC to branch to the different sections. The whole read operation therefore
takes less than 100 �s, though an important drawback of this method is the
inability to detect when more than one button is pressed. Finally, in practice, you
should check carefully the real values of the resistors and capacitor you are
using, and be prepared to play with the voltage reference value to achieve the
desired behaviour.

Final project: Intelligent garden lights1

We will bring together some of the ideas covered in this chapter in a final project:
an intelligent garden lights unit (thanks to Max Horsey for the idea and original
design). This device detects the ambient light level, and according to user pro-
gramming, turns on the garden lights when it gets dark. The lights are automat-
ically turned off around midnight. The user-programmed settings will be stored in
the EEPROM, in case of loss of power. There will be an override button which
allows the lights to be manually turned on and off, and a switch which is used to
tell the device whether we are currently on ‘daylight savings time’. The key
behind this project is the rule-of-thumb that midnight roughly coincides, within

134 Intermediate operations using the PIC12F675

1 In previous editions of this book, the final project was a Lottery Number generator with ‘vibe’
detection, giving personalised numbers and special messages. Due to the popularity of this
project, it is described on the supporting website: www.to-pic.com.

H6664-Ch04.qxd 8/19/05 10:46 AM Page 134

Intermediate operations using the PIC12F675 135

20 minutes or so, with the ‘solar midnight’ – the halfway point between sunrise
and sunset. In other words, the midpoint between the time for a particular light
level in the evening and time for the same light level in the early morning is
approximately midnight. For example, if it gets dark around 7 p.m., the light level
should be approximately the same at 5 a.m. (so that the midpoint between these
times is 12 a.m.). This means the device can calculate midnight without the need
for the user to input a time (and the clumsy interface this may entail).

The override button will trigger an external INT interrupt and so will be con-
nected to the GP2/INT pin. The garden lights will be controlled through GP5
(using a relay in the real device, or simply an LED in the test version). GP4 will
control whether the ‘day’ or ‘night’ LED is on – which tells the user whether the
device thinks it is currently day or night. The light sensor will be attached to
GP0/AN0, and the summer/winter switch to GP1. Finally, when the PIC micro-
controller is reset (using the GP3/—MCLR—— pin) it will measure the current light
level and use this as the threshold light level at which to turn on the garden
lights. A button attached to this pin is therefore pressed to program the light
level at which garden lights should be turned on. The flowchart for this project
is shown in Figure 4.11, and the circuit diagram in Figure 4.12.

We’ll go through the key steps of the flowchart and the program, but the
actual writing of the program is left as an exercise. The program I wrote is
shown in Program Q, but yours may differ in parts. First, the POR—— bit in the
PCON (Power Control) register is used to determine whether the device has
just powered up, or been reset by the —MCLR—— pin. If the device has just been pow-
ered up, the POR—— bit will be 0 (and needs to be reset to 1), and the last-saved val-
ues can be read out from the EEPROM. The ‘day’ LED is turned on and the
program waits for the light to fall below the threshold (i.e. wait for dusk).
However, if a reset occurred, the light level is measured and stored as the new
threshold. The value for midnight is also reset. In this application, 10-bit accu-
racy is not required from the A/D converter, so the 8-bits in ADRESH can be
used (given a left-justified A/D result).

Once the garden lights come on, a timer is started both to determine when to
turn off the lights and also to measure when tomorrow’s midnight will be. You
can time in units of five minutes (using a marker of 125, and postscalers of 125
and 75). Five minute accuracy is sufficient, and it allows you to time a whole night
using one file register (it times a maximum of 5 mins � 256 � over 21 hours,
which should be enough for most places, except perhaps a winter in Lapland!).
Given that light levels may fluctuate slightly, we won’t do anything at all for the
first hour. After this point, we wait until midnight, in other words, we wait until
time elapsed equals the previously estimated value for the time between dusk
and midnight. We then turn off the garden lights (leaving the ‘night’ LED on).

Finally, we test the light levels to wait for dawn (whilst keeping the timing
going). When the light levels exceed the threshold, we store the elapsed time
(the time from dusk until dawn) and divide it by two. This gives our estimate for
the time between dusk and midnight. If we are in summer time (the clocks have
gone forward one hour), our guess is out by two hours and so we should subtract
two hours from the estimate. This value should then be stored in the EEPROM,

H6664-Ch04.qxd 8/19/05 10:46 AM Page 135

136 Intermediate operations using the PIC12F675

Start of program: setup

Power-up

ResetPower-up
or reset?

Read light threshold
and midnight time

from EEPROM

Is light
below threshold?

Yes

No

Has
1 hour

passed?

Reset timing registers.
Turn on garden

lights and ‘night’ LED

ISR

Toggle state of garden
lights

Store current light
level as threshold and

store in EEPROM

Is it past
midnight?

No

No

Turn off garden lights

Is light
above threshold?

No

Store total time and
divide by two. Subtract two

hours if in summer time.
Store result in EEPROM

Wait 1 hour.

Turn on ‘day’ LED

Figure 4.11

H6664-Ch04.qxd 8/19/05 10:46 AM Page 136

and the program should loop back. We should wait one hour before testing for
dusk again, to minimise the risk of errors. The override button will trigger the
INT interrupt, which simply has to toggle the state of GP5 to turn the garden
lights on and off. This will not affect the normal operation of the device.

This program has combined the use of interrupts, A/D conversion and the
EEPROM, and provided you with the opportunity to tackle a program on your
own, with only basic guidance. You should now have the confidence and the
tools with which to design and build your own PIC projects.

Intermediate operations using the PIC12F675 137

�5 V

SUMMER TOGGLE RESET NIGHT

DAY

GARDEN LIGHTS

0 V

U1

R1
10 k

RV1

LDR
10 k

R2
100 k

R3
100 k

R4
270R

R5
270R

R6
270R

7
6
5
4
3
2

PIC12F675

LEDLED

LED

GP0/AN0

GP2/T0CKI/INT/AN2
GP3/MCLR

GP5/T1CKI/OSC1
GP4/T1G/OSC2/AN3

GP1/AN1/VREF

RES-VAR

Figure 4.12

H6664-Ch04.qxd 8/19/05 10:46 AM Page 137

The market of programmable microcontrollers is doubtless one of the fastest
growing areas in electronic design, and there are new PIC devices coming out
all the time. Other microcontrollers (in addition to Microchip’s PIC) are flooding
the market, each with their own competitive edge, and all fighting for a piece
of the action. The challenge from the user’s point of view is keeping up with all
these newcomers. As far as new PIC models are concerned, they will maintain
the same basic structure, but with new features added here and there. For example,
there may be a new special function with accompanying file registers, extra I/O
pins, more timers, etc. The key to keeping up with these is recognising what you
want, and learning how to interpret the accompanying datasheets. At first sight,
these enormous manuals may seem undecipherable, but there are certain pages
to look out for when trying to find out about a new feature. Such pages include
the ones showing the banks of PIC file registers, which will allow you to spot any
new ones. You can then use the index to find the relevant pages and learn more
about the new features.

To aid in this endeavour, we will now briefly examine the kinds of advanced
functions available on more complex PIC microcontrollers. Their detailed oper-
ations are beyond the scope of this book, but it is useful to know what may be
available.

Extra timers: TMR1 & . . .

On some PIC models you may find a second timer called TMR1, which gives
you the freedom to use one timer for counting signals, and one for timing, for
example. TMR1 is a 16-bit timer, so its value is spread over two registers, TMR1H
and TMR1L, which contain the higher and lower bytes respectively. Like the
TMR0, it has an associated interrupt which triggers when the timer overflows
(in this 16-bit case, going from FFFFh to 0000h). TMR1 is controlled by the
T1CON register, which gives you the choice of counting from the internal oscil-
lator, or an external signal on the T1CKI pin. The TMR1 can also be set to count
only while the T1G pin is low. You will have to take care when reading the
16-bit number, because a byte of TMR1 might overflow over the course of your
measurement.

5
Advanced operations

and the future

H6664-Ch05.qxd 8/13/05 12:35 PM Page 138

Advanced operations and the future 139

Example 5.1 We wish to read the number in TMR1, which happens to be 28FFh.

TMR1Read
movfw TMR1H ; stores the number in the higher byte
movwf TempH ; in the register TempH
movfw TMR1L ; stores the number in the lower byte
movwf TempL ; in the register TempL

Let’s say that halfway through the above code, TMR1 counts up to 2900h. The
upper byte may have been read as 28h, and then the lower byte as 00h – leading to
a substantial error in the read operation! To make a safe read, the above code should
be followed by:

movfw TMR1H ; takes the current higher byte and
subwf TempH, w ; compares it with stored value
btfss STATUS, Z ; are they different?
goto TMR1Read ; yes, so repeat measurement

; no – so no overflow: read is safe!

When writing to the TMR1, a similar problem may be encountered, but this can be
avoided by simply stopping the TMR1 (using T1CON), writing the number, and
then starting it again. There may also be further timers TMR2, etc. available.

Capture/Compare/PWM

On the PIC16F627, for example, there is a Capture/Compare/PWM module which
can perform three distinct tasks. However, all tasks share the Capture/Compare/
PWM Registers: CCPR1H and CCPRIL, and are controlled by CCP1CON.
The Capture and Compare features integrate closely with the 16-bit TMR1, and
the PWM feature uses a third timer, the 8-bit TMR2.

Let’s say, for example, that we wish to measure the time until an event occurs on
a certain pin. We could just test the pin, and then read the timer value, but in order
to simplify the program and free up the processor on the chip, we can use the handy
capture feature. Capture immediately stores the value in TMR1 (both the higher
and lower bytes) when a certain event occurs. The value is automatically stored
in registers CCPR1H and CCPR1L, which can be read in the standard way. Trigger
events are limited to a particular pin (e.g. RB3/CCP1), but can take place on:

● Every falling edge
● Every rising edge
● Every 4th rising edge
● Every 16th rising edge.

The RB3/CCP1 pin must be configured as an input for this to work. A capture
event can also trigger an interrupt.

In almost any application of timers/counters, you are testing to see if the timer
has reached a certain value. Compare does this for you, in that it constantly

H6664-Ch05.qxd 8/13/05 12:35 PM Page 139

140 Advanced operations and the future

compares the number stored in CCPR1L/H with the number in TMR1. To wait
until TMR1 reaches a particular value, you put the desired value into CCPR1L/H,
enable compare mode, and then just wait. When there is a match, the RB3/CCP1
pin can be set to go high or low, or left alone, and an interrupt may be triggered.

PWM stands for Pulse Width Modulation, and refers to the ability to change
the mark-space ratio in a square wave output (as shown in Figure 5.1). The mark-
space ratio is the duration of the ‘logic 1’ part of the wave, divided by the duration
of the ‘logic 0’ part. By controlling this ratio, we can control the output voltage,
which is effectively an average of the square wave output (though you may need
to add a resistor/capacitor arrangement depending on the application).

PWM can be used on the RB3/CCP1 pin (assuming it has been configured as
an output) and has up to 10-bit resolution. Both the period of the square wave
output, and the mark-space ratio can be controlled, and timing is performed by
a separate timer called TMR2.

USART: Serial communication

USART stands for Universal Synchronous/Asynchronous Receiver/Transmitter,
and allows the PIC microcontroller to communicate with a wide range of other
devices from separate memory chips and LCD displays, to personal computers!
This involves sending or receiving 8- or 9-bit packets of data (e.g. a byte, or a
byte plus a parity bit). A parity bit is an extra bit sent along with the data that
helps with the error checking. If there are an odd number of 1s in the data byte
(e.g. b’00110100’), the parity bit will be 1, and if there are an even number (e.g.
b’00110011’), the parity bit will be 0. In this way, if an error (e.g. a bit flip) occurs
somewhere between sending the byte and receiving it, the parity bit will no longer
match the data byte. The receiver will know that something has gone wrong, and
it can ask for the byte to be resent. If two bit errors occur in one transmission, the
parity bit will appear correct, however the probably of two errors occurring is sub-
stantially smaller, and so this is often overlooked.

The USART module has two principle modes: asynchronous and synchronous
operation. In asynchronous operation, the transmitter pin (TX) from one device
is connected to the receiver pin (RX) of another, and data is swapped (known as
full-duplex). In synchronous operation, clock (CK) and data (DT) lines are shared

V

4 V

m/s � 4

2.5 V

m/s � 1

1 V

m/s � 0.25

Figure 5.1

H6664-Ch05.qxd 8/13/05 12:35 PM Page 140

Advanced operations and the future 141

between a number of devices (one master, and one or more slaves). The master is
responsible for producing the clock. In both cases, the rate at which data is sent
by the transmitter (and at which it is expected by the receiver) is known as the
baud rate.

There are two registers for controlling the receiving and transmission of data:
RCSTA and TXSTA, respectively. Data that’s successfully read is stored in
RCREG, and data that’s to be transmitted should be placed in TXREG. The baud
rate is set using the SPBRG register (there are extensive tables in the datasheets
showing how to select baud rates given certain oscillator frequencies, etc.).

In asynchronous mode, the USART takes the 8- or 9-bit character to be sent,
and adds a start bit (a zero) to the front, and a stop bit (a one) to the end to create
a 10- or 11-bit sequence. This is then moved onto a shift register which rotates the
bits onto the transmission pin (TX), as shown in Figure 5.2.

The receiver module will constantly check the state of the RX pin, which will
normally be high. If it detects the RX pin goes low (a potential start bit), it then
makes three more samples in the middle of the bit (allowing for slow rise and
fall times) and takes the majority value of the three. If the majority value is 0,
it’s convinced this is really a start bit, and carries on sampling subsequent bits
with three samples in the middle of each bit. The timing of this sampling is dictated
by the baud rate. When it reaches what should be the stop bit, it must read a one,
otherwise it will declare the received character badly framed and register an error.
Remember that with the appropriate settings in TXSTA and RCSTA, all this is
done for you by the USART module.

You can use asynchronous mode to communicate with an RS232 serial port
on your PC. A simple way to send bytes through your PC’s serial port is through
a program that comes with Microsoft® Windows® called HyperTerminal (Start
Menu → Programs → Accessories → Communications). You can create a
connection with your serial port (e.g. COM1), choose a baud rate, number of bits,
parity setting, etc. When HyperTerminal connects to the serial port, whatever

 b’00101101’

1001011010 TX pin

byte to be sent

Shift register

V
ol

ta
ge

 o
n

T
X

Start bit Stop bit

Time 1 0 1 1 0 1 0 0

Figure 5.2

H6664-Ch05.qxd 8/13/05 12:35 PM Page 141

character you type is sent (as ASCII) through the serial port. Characters which
are received are displayed on screen.

Both asynchronous and synchronous modes support a feature known as address
detect which allow a number of devices to be connected. When transmitting data,
an address byte must first be sent out to identify the intended recipient.

Programming tips

It is important that you don’t jump into the deep end with program writing, and
keep things simple to begin with. Furthermore don’t sit down and try and write the
whole thing all at once. Split the program up into key elements, and aim to get
certain bits working as you go along. Simple things like periodic breaks and
clear comments are important, and if you ever get stuck remember to ask someone,
even if they’ve never seen a PIC microcontroller before.

The key to becoming a better programmer is very simple indeed – practice.
All that it takes to be able to write programs efficiently and effectively is a bit of
experience. Now that you have the knowledge to start writing your own programs
you will find that you learn more and more. For example, as I was writing one of
my first programs I came across something I had never realised before. I wanted to
test to see whether or not TMR0 held the number zero, so I wrote the following:

movf TMR0 ; is the number in TMR0 zero?
btfss STATUS, Z ;

I found while simulating the program, that TMR0 just wouldn’t count up. As I
saw it, the PIC program was taking the number out of TMR0, and then putting
it back in again. However, it then occurred to me that there needs to be some-
thing keeping track of exactly what the number in TMR0 is (e.g. 56 and three
quarters). Although the integer part of the number (56) is held in TMR0, the
fraction is held somewhere else. It became clear that whenever you move a number
into TMR0, that fraction part gets cleared to zero. This explained why TMR0 was
never getting anywhere, so I added that all important w:

movfw TMR0 ; is the number in TMR0, zero?
etc.

As you can see, you never stop learning – and don’t stop experimenting. The
great thing about PIC microcontrollers is that you can try things out easily, and
then forget it if it didn’t work. Be sure to visit my PIC website at www.to-pic.com,
where your PIC questions will be answered, and you will find helpful hints and
the example programs in .txt format. So with this last piece of advice I leave you,
good luck, and happy ‘PICing’.

142 Advanced operations and the future

H6664-Ch05.qxd 8/13/05 12:35 PM Page 142

Some of you may feel daunted by loading a blank page in Notepad, or MPLab,
and trying to begin writing your own program. There is a development environ-
ment dedicated to PIC programming for beginners, called ‘PIC Press’.

First and foremost the software assembles each line of program as you write it,
so you are instantly alerted if you have done anything wrong, and specific error
messages are given, helping you spot the error quickly. The colour coding as you
type instructions, labels, numbers, comments, and errors, make the program
much easier to look at and interpret. Labels (i.e. things which you go to or call)
come out in blue, however they are purple if broken – e.g. if you write goto Main
and you haven’t started the Main section, ‘Main’ will be purple to remind you it
hasn’t been started. Comments are made green, errors red, and instructions are
made bold. A diagram of your file registers is provided showing you how your
general purpose file registers are arranged, as well as reminding you how the spe-
cial function registers occur for the particular PIC model you happen to be using.

When you first start up the software and begin a new program, you are asked
questions regarding which PIC microcontroller you intend to use (offering help
in selecting one), which clock frequency, which type of oscillator, what the name
of the project is, etc. and then it automatically creates the header for the program,
as well as making a note of the PIC model for use in other aspects of the software.

The software then asks you about the inputs and outputs of the PIC micro-
controller, so that it can automatically fill in the tris aspect of the program, and
then asks you how you would like to set up the special function registers for the
PIC model you are using. Rather than having to look up the bit arrangements for
each register for the particular PIC model you are using, all this is provided by
the software in such a way that you can simply tick or clear boxes depending on
whether you want that particular function turned on or off.

The software then creates the Init subroutine and fills in all the lines of code
relating to the information which you have just provided. Now, rather than being
faced with a blank screen, you are starting with the bones of your program in
place, and left with filling in the flesh.

To help you further with writing the main body of the program, a selection of
‘macros’ are available with the program. For example there is one which auto-
matically creates a time delay. You simply choose the length of time you wish to
wait, and the software uses the clock frequency which you have already entered
at the beginning, to create the code required. Other macros include ‘EEPROM
write’, ‘A/D conversion’, and many others.

6
A PIC development

environment

H6664-Ch06.qxd 8/13/05 12:35 PM Page 143

For the beginner, there is an extensive help system with pages dedicated to all
the PIC instructions, and all the different aspects of using PIC microcontrollers
(e.g. subroutines, interrupts, EEPROM, etc.). The help system also helps the user
with what to do with the program once it is finished.

For more up-to-date information on PIC Press, please consult this book’s
website: www.to-pic.com.

144 A PIC development environment

Figure 6.1 A sample configuration window.

H6664-Ch06.qxd 8/13/05 12:35 PM Page 144

Program A

;************************************
; written by: John Morton *
; date: 21/07/97 *
; version: 1.0 *
; file saved as: LedOn *
; for PIC16F54 *
; clock frequency: 3.82 MHz *
;************************************

; PROGRAM FUNCTION: To turn on an LED.

list P=16F54
include “c:\pic\p16f5x.inc”

__config _RC_OSC & _WDT_OFF & _CP_OFF

;============
; Declarations:

porta equ 05

org 1FF
goto Start
org 0

;============
; Subroutines:

Init clrf porta ; resets Port A
movlw b’0000’ ; RA0: LED, RA1-3: not connected
tris porta
retlw 0

;============
; Program Start:

Start call Init ; sets up inputs and outputs
Main bsf porta, 0 ; turns on LED

7
Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 145

goto Main ; loops back to Main

END

Program B

;************************************
; written by: John Morton *
; date: 21/07/97 *
; version: 1.0 *
; file saved as: PushButtonA *
; for PIC16F54 *
; clock frequency: 3.82 MHz *
;************************************

; PROGRAM FUNCTION: If a push button is pressed an LED is turned on.

list P=16F54
include “c:\pic\p16f5x.inc”

__config _RC_OSC & _WDT_OFF & _CP_OFF

;============
; Declarations:

porta equ 05
portb equ 06

org 1FF
goto Start
org 0

;============
; Subroutines:

Init clrf porta ; resets inputs and outputs
clrf portb ;
movlw b’0000’ ; RA0: LED, RA1-3: not connected
tris porta
movlw b’00000001’ ; RB0: push button, RB1-7: N/C
tris portb
retlw 0

;============
; Program Start:

Start call Init

Main btfss portb, 0 ; tests push button, skip if pressed
goto LEDOff ; push button isn’t pressed so turns

146 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 146

; LED off
bsf porta, 0 ; push button is pressed so turns

; LED on
goto Main ; loops back to Main

LEDOff bcf porta, 0 ; turns LED off
goto Main ; loops back to Main

END

Program C

;************************************
; written by: John Morton *
; date: 21/07/97 *
; version: 2.0 *
; file saved as: PushButtonB *
; for PIC16F54 *
; clock frequency: 3.82 MHz *
;************************************

; PROGRAM FUNCTION: If a push button is pressed an LED is turned on.

list P=16F54
include “c:\pic\p16f5x.inc”

__config _RC_OSC & _WDT_OFF & _CP_OFF

;============
; Declarations:

porta equ 05
portb equ 06

org 1FF
goto Start
org 0

;============
; Subroutines:

Init clrf porta ; resets inputs and outputs
clrf portb ;
movlw b’0000’ ; RA0: LED, RA1-3: not connected
tris porta
movlw b’00000001’ ; RB0: push button, RB1-7: N/C
tris portb
retlw 0

Sample programs 147

H6664-Ch07.qxd 8/13/05 12:34 PM Page 147

;============
; Program Start:

Start call Init

Main movfw portb ; copies the number from Port B into
movwf porta ; the working register and then back

; into Port A
goto Main ; loops back to Main

END

Program D

;************************************
; written by: John Morton *
; date: 26/07/97 *
; version: 1.0 *
; file saved as: Timing *
; for PIC16F54 *
; clock frequency: 2.4576 MHz *
;************************************

; PROGRAM FUNCTION:The state of an LED is toggled every second and a
; buzzer sounds for one second every five seconds.

list P=16F54
include “c:\pic\p16c5x.inc”

__config _XT_OSC & _WDT_OFF & _CP_OFF

;============
; Declarations:

porta equ 05
portb equ 06

Mark30 equ 08
Post80 equ 09
_5Second equ 0A

org 1FF
goto Start
org 0

;============
; Subroutines:

Init clrf porta ; resets inputs and outputs
clrf portb ;

148 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 148

movlw b’0000’ ; RA0: LED, RA1-3: not connected
tris porta
movlw b’00000000’ ; RB0: buzzer, RB1-7: not connected
tris portb

movlw b’00000111’ ; sets up timing register
option

movlw d’30’ ; sets up marker
movwf Mark30 ;

movlw d’80’ ; sets up first postscaler
movwf Post80 ;

movlw d’5’ ; sets up 5 seconds counter
movwf _5Second ;

retlw 0

;============
; Program Start:

Start call Init

Main movfw Mark30 ; takes the number out of Mark30
subwf TMR0, w ; subtracts this number from the

; number in TMR0, leaving the
; result in the working register
; (and leaving TMR0 unchanged)

btfss STATUS, Z ; tests the Zero Flag - skip if set,
; i.e. if the result is zero it will
; skip the next instruction

goto Main ; if the result isn’t zero, it loops back to
; ‘Loop’

movlw d’30’ ; moves the decimal number 30 into
addwf Mark30, f ; the w. reg. and then adds it to

; ‘Mark30’

decfsz Post80, f ; decrements ‘Post80’, and skips the
; next instruction if the result is zero

goto Main ; if the result isn’t zero, it loops back to
; ‘Loop’

; one second has now passed

movlw d’80’ ; resets postscaler
movwf Post80 ;

Sample programs 149

H6664-Ch07.qxd 8/13/05 12:34 PM Page 149

comf porta, f ; toggles LED state
bcf portb, 0 ; turns off buzzer

decfsz _5Second, f ; has five seconds passed?
goto Main ; no, loop back

bsf portb, 0 ; turns on buzzer

movlw d’5’ ; resets 5 seconds counter
movwf _5Second ;

goto Main ; loops back to start

END

Program E

;************************************
; written by: John Morton *
; date: 26/07/97 *
; version: 1.0 *
; file saved as: Traffic *
; for PIC16F54 *
; clock frequency: 2.4576 MHz *
;************************************

; PROGRAM FUNCTION:A pedestrian traffic lights junction is simulated.

list P=16F54
include “c:\pic\p16f5x.inc”

__config _XT_OSC & _WDT_OFF & _CP_OFF

;============
; Declarations:

porta equ 05
portb equ 06
Mark240 equ 08
PostX equ 09
Counter8 equ 0A

org 1FFh
goto Start
org 0

150 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 150

;============
; Subroutines:

Init clrf porta ; resets inputs and outputs
clrf portb ;
movlw b’0001’ ; RA0: push button, RA1-3: N/C
tris porta ;
movlw 0 ; RB0-2: Motor. red, amber, green
tris portb ; RB4, 5: Pedes. red, green

movlw b’00000111’ ; sets up timing register
option ;

retlw 0 ;

TimeDelay movwf PostX ; sets up variable postscaler
movlw d’240’ ; sets up fixed marker
movwf Mark240 ;

TimeLoop movfw Mark240 ; waits for TMR0 to count up
subwf TMR0, w ; 240 times
btfss STATUS, Z ;
goto TimeLoop ; hasn’t, so keeps looping

movlw d’240’ ; resets Mark240
addwf Mark240, f ;

decfsz PostX, f ; does this X times
goto TimeLoop ;

retlw ; returns after required time

;============
; Program Start:

Start call Init ;
Main movlw b’00010100’ ; motorists: green on, others off

movwf portb ; pedestrians: red on, others off

ButtonLoop btfss porta, 0 ; is the pedestrians’ button pressed?
goto ButtonLoop ; no, so loops back

bsf portb, 1 ; motorists: amber on . . .
bcf portb, 2 ; . . . and green off

movlw d’20’ ; sends message of 2 seconds to sub
call TimeDelay ; creates delay of required time

movlw b’00100001’ ; motorists: red on, amber off
movwf portb ; pedestrians: green on, red off

Sample programs 151

H6664-Ch07.qxd 8/13/05 12:34 PM Page 151

movlw d’80’ ; sends message of 8 seconds to sub
call TimeDelay ; creates delay of required time

bsf portb, 1 ; motorists: amber on . . .
bcf portb, 0 ; . . . and red off

movlw d’8’ ; sets up Counter8 with an initial
movwf Counter8 ; value of 8

FlashLoop movlw d’5’ ; sends message of 0.5 second to sub
call TimeDelay ; creates delay of required time
movlw b’00100010’ ; toggles the states of the lights
xorwf portb, f ;
decfsz Counter8, f ; runs through this loop 8 times
goto FlashLoop ;
goto Main ; loops back to start

END

Program F

;************************************
; written by: John Morton *
; date: 17/08/97 *
; version: 1.0 *
; file saved as: Counter *
; for PIC16F54 *
; clock frequency: 3.82 MHz *
;************************************

; PROGRAM FUNCTION: To count the number of times a push button is
; pressed, resetting after the sixteenth signal.

list P=16F54
include “c:\pic\p16f5x.inc”

__config _RC_OSC & _WDT_OFF & _CP_OFF

;============
; Declarations :

porta equ 05
portb equ 06
Counter equ 08

152 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 152

org 1FF
goto Start
org 0

;============
; Subroutines:

Init clrf porta ; resets I/O ports
movlw b’11111100’ ; moves the code for a 0 into Port B
movwf portb ;

movlw b’0001’ ; RA0-3: not connected
tris porta

movlw b’00000000’ ; RB0: push button, RB1-7: 7-seg
tris portb ; code

clrf Counter ; resets counter
retlw 0

_7SegDisp addwf PCL ; skips a certain number of
; instructions

retlw b’11111110’ ; code for 0
retlw b’01100000’ ; code for 1
retlw b’11011010’ ; code for 2
retlw b’11110010’ ; code for 3
retlw b’01100110’ ; code for 4
retlw b’10110110’ ; code for 5
retlw b’10111110 ; code for 6
retlw b’11100000’ ; code for 7
retlw b’11111110’ ; code for 8
retlw b’11110110’ ; code for 9
retlw b’11101110’ ; code for A
retlw b’00111110’ ; code for b
retlw b’10011100’ ; code for C
retlw b’01111010’ ; code for d
retlw b’10011110’ ; code for E
retlw b’10001110’ ; code for F

;============
; Program Start:

Start call Init ; sets up inputs and outputs

Main btfss portb, 0 ; tests push button
goto Main ; if not pressed, loops back

incf Counter ;
btfsc Counter, 4 ; has Counter reached 16?
clrf Counter ; if yes, resets Counter

Sample programs 153

H6664-Ch07.qxd 8/13/05 12:34 PM Page 153

movfw Counter ; moves Counter into the working reg.
call _7SegDisp ; converts into 7-seg code
movwf portb ; displays value
goto Main ; loops back to Main

END

Program G

;************************************
; written by: John Morton *
; date: 17/08/97 *
; version: 2.0 *
; file saved as: Counter *
; for PIC16F54 *
; clock frequency: 3.82 MHz *
;************************************

; PROGRAM FUNCTION: To count the number of times a push button is
; pressed, resetting after the sixteenth signal.

list P=16F54
include “c:\pic\p16f5x.inc”

__config _RC_OSC & _WDT_OFF & _CP_OFF

;============
; Declarations:

porta equ 05
portb equ 06
Counter equ 08

org 1FF
goto Start
org 0

;============
; Subroutines:

Init clrf porta ; resets I/O ports
movlw b’11111100’ ; moves the code for a 0 into Port B
movwf portb ;

154 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 154

movlw b’0001’ ; RA0-3: not connected
tris porta
movlw b’00000000’ ; RB0: push button, RB1-7: 7-seg
tris portb ; code

clrf Counter ; resets counter
retlw 0

_7SegDisp addwf PCL ; skips a certain number of
; instructions

retlw b’11111110’ ; code for 0
retlw b’01100000’ ; code for 1
retlw b’11011010’ ; code for 2
retlw b’11110010’ ; code for 3
retlw b’01100110’ ; code for 4
retlw b’10110110’ ; code for 5
retlw b’10111110 ; code for 6
retlw b’11100000’ ; code for 7
retlw b’11111110’ ; code for 8
retlw b’11110110’ ; code for 9
retlw b’11101110’ ; code for A
retlw b’00111110’ ; code for b
retlw b’10011100’ ; code for C
retlw b’01111010’ ; code for d
retlw b’10011110’ ; code for E
retlw b’10001110’ ; code for F

;============
; Program Start:

Start call Init ; sets up inputs and outputs

Main btfss portb, 0 ; tests push button
goto Main ; if not pressed, loops back

incf Counter ;
btfsc Counter, 4 ; has Counter reached 16?
clrf Counter ; if yes, resets Counter

movfw Counter ; moves Counter into the working
; reg.

call _7SegDisp ; converts into 7-seg code
movwf portb ; displays value

TestLoop btfss portb, 0 ; tests push button
goto Main ; released, so loops back to Main
goto TestLoop ; still pressed, so keeps looping

END

Sample programs 155

H6664-Ch07.qxd 8/13/05 12:34 PM Page 155

Program H

;************************************
; written by: John Morton *
; date: 17/08/97 *
; version: 3.0 *
; file saved as: Counter *
; for PIC16F54 *
; clock frequency: 3.82 MHz *
;************************************

; PROGRAM FUNCTION: To count the number of times a push button is
; pressed, resetting after the sixteenth signal.

list P=16F54
include “c:\pic\p16f5x.inc”

__config _RC_OSC & _WDT_OFF & _CP_OFF

;============
; Declarations:

porta equ 05
portb equ 06
Counter equ 08

org 1FF
goto Start
org 0

;============
; Subroutines:

Init clrf porta ; resets I/O ports
movlw b’11111100’ ; moves the code for a 0 into Port B
movwf portb ;

movlw b’0001’ ; RA0-3: not connected
tris porta
movlw b’00000000’ ; RB0: push button, RB1-7: 7-seg
tris portb ; code

movlw b’00000111’ ; TMR0 prescaled by 256
option ;
clrf Counter ; resets counter

retlw 0

156 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 156

_7SegDisp addwf PCL ; skips a certain number of
; instructions

retlw b’11111110’ ; code for 0
retlw b’01100000’ ; code for 1
retlw b’11011010’ ; code for 2
retlw b’11110010’ ; code for 3
retlw b’01100110’ ; code for 4
retlw b’10110110’ ; code for 5
retlw b’10111110 ; code for 6
retlw b’11100000’ ; code for 7
retlw b’11111110’ ; code for 8
retlw b’11110110’ ; code for 9
retlw b’11101110’ ; code for A
retlw b’00111110’ ; code for b
retlw b’10011100’ ; code for C
retlw b’01111010’ ; code for d
retlw b’10011110’ ; code for E
retlw b’10001110’ ; code for F

;============
; Program Start:

Start call Init ; sets up inputs and outputs

Main btfss portb, 0 ; tests push button
goto Main ; if not pressed, loops back

incf Counter ;
btfsc Counter, 4 ; has Counter reached 16?
clrf Counter ; if yes, resets Counter

movfw Counter ; moves Counter into the working
; reg.

call _7SegDisp ; converts into 7-seg code
movwf portb ; displays value

TestLoop btfsc portb, 0 ; tests push button
goto TestLoop ; still pressed, so keeps looping

clrf TMR0 ; resets TMR0
TimeLoop movlw d’255’ ; has TMR0 reached 255?

subwf TMR0, w ;
btfss STATUS, Z ;
goto TimeLoop ; if not, keeps looping
goto Main ; 0.07 second has passed, so goes to

; Main

END

Sample programs 157

H6664-Ch07.qxd 8/13/05 12:34 PM Page 157

Program I

;************************************
; written by: John Morton *
; date: 10/01/05 *
; version 1.0 *
; file saved as StopClock *
; for PIC16F54 *
; clock frequency 2.4576 MHz *
;************************************

; PROGRAM FUNCTION: A stop clock displaying the time in tenths of
; second, seconds, tens of seconds and minutes.

list P=16F54
include “c:\pic\p16f5x.inc”

__config _XT_OSC & _WDT_OFF & _CP_OFF

;============
; Declarations:

porta equ 05
portb equ 06
General equ 08
Mark240 equ 09
Mark250 equ 0A
TenthSec equ 0B
Seconds equ 0C
TenSecond equ 0D
Minutes equ 0E

#define bounce General, 1
#define start General, 0

org 1FFh
goto Start
org 0

;============
; Subroutines:

Init clrf porta ; resets input/output ports
clrf portb ;
movlw b’0000’ ; bits 0-3: 7-seg display
tris porta ; control
movlw b’00000001’ ; bits 1-7: 7-seg display code
tris portb ; bit 0: start/stop button

158 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 158

movlw b’00000111’ ; TMR0 prescaled by 256
option

clrf TenthSec ; resets timing registers
clrf Seconds ;
clrf TenSecond ;
clrf Minutes ;

bcf start ; initially, stop state
bsf bounce ; bounce initially set

movlw d’240’ ; sets up marker register
movwf Mark240 ;
retlw 0 ;

;=================================
Debounce

movfw Mark250 ; if about 0.1 second has
subwf TMR0, w ; passed, sets the bounce
btfss STATUS, Z ; bit
retlw 0 ;
bsf bounce ;
retlw 0

PrimeBounce
bcf bounce ; clears bounce bit to trigger
movlw d’250’ ; and sets up Mark250 so that
addwf TMR0, w ; about 0.1 second will be
movwf Mark250 ; counted
retlw 0 ;

;=================================
Update btfsc start ; checks start/stop state

call Timing ; if start, updates timers

btfss bounce ; checks whether or not to test
call Debounce ; whether 0.1 second has passed?

movlw b’00000011’ ; ignores all but bits 0 and 1
andwf TMR0, w ; of TMR0, leaving result in w
addwf PCL, f ; adds result to PC, in order to
goto Display10th ; select a display
goto Display1 ;
goto Display10 ;
goto DisplayMin ;

Display10th
movfw TenthSec ; takes the number from TenthSec
call _7SegDisp ; converts number into 7-seg code

Sample programs 159

H6664-Ch07.qxd 8/13/05 12:34 PM Page 159

movwf portb ; displays value through Port B
movlw b’0010’ ; turns on correct display
movwf porta ;
retlw 0 ; returns

Display1
movfw Seconds ; takes the number from Seconds
call _7SegDisp ; converts number into 7-seg code
movwf portb ; displays value through Port B
movlw b’0001’ ; turns on correct display
movwf porta ;
retlw 0 ; returns

Display10
movfw TenSecond ; takes the number from TenSeconds
call _7SegDisp ; converts number into 7-seg code
movwf portb ; displays value through Port B
movlw b’1000’ ; turns on correct display
movwf porta ;
retlw 0 ; returns

DisplayMin
movfw Minutes ; takes the number from Minutes
call _7SegDisp ; converts number into 7-seg code
movwf portb ; displays value through Port B
movlw b’0100’ ; turns on correct display
movwf porta ;
retlw 0 ; returns

;=================================
_7SegDisp

addwf PCL, f ; returns with correct 7-seg code
retlw b’11111100’ ; code for 0
retlw b’01100000’ ; code for 1
retlw b’11011010’ ; code for 2
retlw b’11110010’ ; code for 3
retlw b’01100110’ ; code for 4
retlw b’10110110’ ; code for 5
retlw b’10111110’ ; code for 6
retlw b’11100000’ ; code for 7
retlw b’11111110’ ; code for 8
retlw b’11110110’ ; code for 9

;=================================
Timing movfw Mark240 ; tests to see if 0.1 second has

subwf TMR0, w ; passed

160 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 160

btfss STATUS, Z ;
retlw 0 ; 0.1 second hasn’t passed - returns

movlw d’240’ ; updates Mark240
addwf Mark240,f ;

incf TenthSec, f ; adds 1 to number of 0.1 second

movlw d’10’ ; tests to see whether TenthSec has
subwf TenthSec, w ; reached 10 (has one second passed?)
btfss STATUS, Z ;
retlw 0 ; 1 second hasn’t passed, so returns

clrf TenthSec ; 1 second has passed, so resets
incf Seconds, f ; TenthSec and adds 1 to Seconds

movlw d’10’ ; tests to see whether Seconds has
subwf Seconds, w ; reached 10 (whether ten seconds
btfss STATUS, Z ; has passed)
retlw 0 ;

clrf Seconds ; 10 seconds have passed, so resets
incf TenSecond,f ; Seconds and adds 1 to TenSecond

movlw d’6’ ; tests to see whether TenSecond has
subwf TenSecond, w ; reached 6 (whether one minute
btfss STATUS, Z ; has passed)
retlw 0 ;

clrf TenSecond ; 60 seconds have passed, so resets
incf Minutes, f ; TenSecond and adds 1 to Minutes

movlw d’10’ ; tests to see whether Minutes has
subwf Minutes, w ; reached 10 (whether ten minutes
btfss STATUS, Z ; has passed)
retlw 0 ;

clrf Minutes ; 10 minutes have passed, so resets
retlw 0 ;

;=================================
Start call Init ; runs initialisation routine

Released call Update ; keeps timing and display updated
btfss bounce ; waits 0.1 s to confirm button is
goto Released ; released
btfss portb, 0 ; has button now been pressed?
goto Released ; no, so keeps looping

movlw b’00000001’ ; toggles state of start/stop bit
xorwf General, f ;
call PrimeBounce ; primes de-bounce routine

Sample programs 161

H6664-Ch07.qxd 8/13/05 12:34 PM Page 161

Pressed call Update ; keeps timing and display updated
btfss bounce ; waits 0.1 s to confirm button is
goto Pressed ; pressed
btfsc portb, 0 ; has button now been released?
goto Pressed ; no, so keeps looping

call PrimeBounce ; primes de-bounce routine
goto Released ;

END

Program J

;************************************
; written by: John Morton *
; date: 21/07/97 *
; version: 1.0 *
; file saved as: LogicGates *
; for PIC16F54 *
; clock frequency: 3.82 MHz *
;************************************

; PROGRAM FUNCTION: To act as the eight different gates.

list P=16F54
include “c:\pic\p16f5x.inc”

__config _RC_OSC & _WDT_OFF & _CP_OFF

;============
; Declarations:

porta equ 05
portb equ 06
STORE equ 08

org 1FF
goto Start
org 0

;============
; Subroutines:

Init movlw b’1111’ ; RA0: secondary input, RA1-3: gate

162 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 162

tris porta ; select bits
movlw b’00000001’ ; RB0: primary input, RB4:

; output,
tris portb ; RB1-3 and RB5-7: not

; connected
retlw 0

;============
; Program Start:

Start call Init ; sets up inputs and outputs

Main bcf STATUS, C ; makes sure carry flag is clear
rrf porta, w ; bumps off bit 0, leaving result

; in w
andlw b’0011’ ; masks all but bits 0 and 1
addwf PCL, f ; branches accordingly
goto BufferNOT ; handles Buffers and NOTs
goto ANDNAND ; handles ANDs and NANDs
goto IORNOR ; handles IORs and NORs

XORXNOR movfw porta ; takes Input B
xorwf portb,w ; and XORs with Input A

Common movwf STORE ; stores result
btfsc porta, 3 ; tests inversion bit
comf STORE, f ; inverts output if necessary
swapf STORE, w ; moves result into bit 4
movwf portb ; outputs result
goto Main ;

BUFFERNOT
movfw portb ; takes Input A unchanged
goto Common ; rest is as in XOR/XNOR section

ANDNAND
movfw porta ; takes Input B
andwf portb,w ; and ANDs with Input A
goto Common ; rest is as in XOR/XNOR section

IORNOR movfw porta ; takes Input B
iorwf portb,w ; and IORs with Input A
goto Common ; rest is as in XOR/XNOR section

END

Sample programs 163

H6664-Ch07.qxd 8/13/05 12:34 PM Page 163

Program K

;************************************
; written by: John Morton *
; date: 07/08/97 *
; version: 1.0 *
; file saved as: Alarm *
; for PIC16F54 *
; clock frequency: 3.82 MHz *
;************************************

; PROGRAM FUNCTION: An alarm system which can be set or disabled.

list P=16F54
include “c:\pic\p16f5x.inc”

__config _RC_OSC & _WDT_ON & _CP_OFF

;============
; Declarations:

porta equ 05
portb equ 06
Post50 equ 08
Counter equ 09

org 1FF
goto Start
org 0

;============
; Subroutines:

Init clrf porta ; resets inputs and outputs
clrf portb ;
movlw b’0011’ ; RA0: Sensor, RA1: Settings

; switch
tris porta ; RA2: not connected, RA3:

; siren
movlw b’00000000’ ; RB0: green LED, RB1: red LED
tris portb ; RB2-7: not connected

movlw b’00001111’ ; WDT prescaled by 128 (TMR0
option ; not prescaled)

164 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 164

clrf Counter ; resets clock cycle counter
movlw d’50’ ; sets up postscaler
retlw 0

;============
; Program Start:

Start call Init

Main btfsc porta, 1 ; tests setting switch
goto GreenLed ; switch is high, so turn on green

; LED
bsf portb, 1 ; switch is low, so turn on red LED

TenthSecond
decfsz Counter ; has 1/10th second passed?
goto Continue ;
decfsz Post50 ;
goto Continue ;
clrf portb ; it has, so turns off all LEDs

Continue btfsc porta, 1 ; tests setting switch
goto Waste2Cycle ; disabled, so doesn’t test trigger

; input
btfss porta, 0 ; has motion sensor been set?
goto TenthSecond ; not triggered, so loops back

bsf porta, 3 ; turns on siren
EndLoop clrwdt ; resets watchdog timer

goto EndLoop ; constantly loops

GreenLed bsf portb, 0 ; turns on green LED
goto TenthSecond ; loops back to main body of

; program

Waste2Cycle goto TenthSecond ; wastes two clock cycles

END

Program L

;************************************
; written by: John Morton *
; date: 24/08/97 *
; version: 1.0 *
; file saved as: Bike *
; for PIC16F54 *
; clock frequency: 2.4576 MHz *
;************************************

Sample programs 165

H6664-Ch07.qxd 8/13/05 12:34 PM Page 165

; PROGRAM FUNCTION: A bicycle speedometer and mileometer.

list P=16F54
include “c:\pic\p16f5x.inc”

__config _RC_OSC & _WDT_OFF & _CP_OFF

;============
; Declarations:

porta equ 05
portb equ 06

Dist1 equ 09
Dist10 equ 0B
Dist100 equ 08

SP10th equ 0D
SP1 equ 0F
SP10 equ 0C

Speed10th equ 10
Speed1 equ 11
Speed10 equ 12

General equ 13
Mark89 equ 14
tempa equ 15
_10 equ 16

#define mode portb, 0
#define counter porta, 3
#define debouncer General, 0

org 1FFh
goto Start
org 0

;===========
; Subroutines:

Init movlw b’0001’ ; yes, so resets Port A
movwf porta ;
clrf portb ;
movlw b’1000’ ; RA0-2: controllers for 7-seg
tris porta ; display, RA3 - counter

166 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 166

movlw b’00000001’ ; RB0: select switch, RB1-7 7-
tris portb ; seg code

movlw d’9’ ; resets speed regs.
movwf Speed10th ;
movwf Speed1 ;
movwf Speed10 ;

clrf Dist1
clrf Dist10
clrf Dist100
clrf TMR0 ;
clrf SP1
clrf SP10th
clrf SP10
retlw 0

Display movwf FSR ; speed, or distance
decfsz _10 ; changes display every ten times
retlw 0 ; it gets here
movlw d’10’ ;
movwf _10 ;

movlw b’0111’
andwf porta, w
movwf tempa
bcf STATUS, C
rrf tempa ; selects next display
btfss STATUS, C
goto CodeSelect
movlw b’0100’ ; yes, so resets Port A
movwf tempa ;

CodeSelect movlw b’0111’ ; ignores button
andwf porta,w ; uses Port A to select correct
addwf FSR, f ; file register
movfw INDF ; takes out the correct code
call _7SegDisp ; converts code
movwf portb ; displays number
movfw tempa
movwf porta
retlw 0 ; returns

_7SegDisp addwf PCL ; returns with correct code
retlw b’01111110’ ; 0

Sample programs 167

H6664-Ch07.qxd 8/13/05 12:34 PM Page 167

retlw b’00001100’ ; 1
retlw b’10110110’ ; 2
retlw b’10011110’ ; 3
retlw b’11001100’ ; 4
retlw b’11011010’ ; 5
retlw b’11111010’ ; 6
retlw b’00001110’ ; 7
retlw b’11111110’ ; 8
retlw b’11011110’ ; 9
retlw b’01110000’ ; L

Debounce btfsc debouncer ; has signal finished?
goto NextTest ; yes, so tests button

btfss counter ; has signal finished?
bsf debouncer ; yes, so sets bit
retlw 0 ; no, so returns

NextTest btfss counter ; second signal?
retlw 0 ; no, so returns

movfw Speed10th ; transfers file regs. so that
movwf SP10th ; values are displayed
movfw Speed1 ;
movwf SP1 ;
movfw Speed10 ;
movwf SP10 ;

movlw d’9’ ; resets speed regs.
movwf Speed10th ;
movwf Speed1 ;
movwf Speed10 ;
bcf debouncer
retlw 0

;=============
; Program Start:

Start call Init

Main btfsc mode ; which mode is it in?
goto Speed ; Speed mode

;========
Distance movlw b’00110100’ ; TMR0 counts external signals

option ; prescaled by 32

168 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 168

DistLoop btfsc mode ; checks mode
goto Speed ; Speed mode

movlw 07h
call Display ;

movlw d’21’ ; has TMR0 reached 21?
subwf TMR0, w ;

btfss STATUS, Z ;
goto DistLoop ; no, so loops back

incf Dist1 ; increments 1 kms
clrf TMR0

movlw d’10’ ; has Dist1 reached 10?
subwf Dist1, w ;
btfss STATUS, Z ;
goto DistLoop ; no, so loops back

incf Dist10 ; increments 10 kms
clrf Dist1

movlw d’10’ ; has Dist10 reached 10?
subwf Dist10, w ;
btfss STATUS, Z ;
goto DistLoop ; no, so loops back

incf Dist100 ; increments 100 kms
clrf Dist10

movlw d’10’ ; has Dist100 reached 10?
subwf Dist100, w ;
btfss STATUS, Z ;
goto DistLoop ; no, so loops back
clrf Dist100 ; has passed limit, so resets and
goto Main ; loops back

;=======
Speed movlw b’00000110’ ; TMR0: internal, prescaled

option ; at 128

btfss counter ; waits for first signal
goto Speed+2 ; keeps looping

BasicTimeLoop
btfss mode ; checks mode
goto Distance ; Speed mode

Sample programs 169

H6664-Ch07.qxd 8/13/05 12:34 PM Page 169

movlw 0Bh ;
call Display ;

call Debounce ;

movfw Mark89 ; has 0.0185 second passed?
subwf TMR0, w ;
btfss STATUS, Z ;
goto BasicTimeLoop ; no, so loops back

movlw d’89’ ; (adds 89 to marker)
addwf Mark89 ;

decf Speed10th, f ; yes, so decrements speed by
; one tenth of a km per hour

movlw d’255’ ; has it passed 0?
subwf Speed10th, w ;
btfss STATUS, Z ;
goto BasicTimeLoop ; no, so loops back

movlw d’9’ ; resets 10th unit
movwf Speed10th ;
decf Speed1, f ;
movlw d’255’ ; has it passed 0?
subwf Speed1, w ;
btfss STATUS, Z ;
goto BasicTimeLoop ;

movlw d’9’ ; resets 1 unit
movwf Speed1 ;
decf Speed10, f ;
movlw d’255’ ; has it passed 0?
subwf Speed10, w ;
btfss STATUS, Z ;
goto BasicTimeLoop ;

TooSlow clrf SP10th ; displays “SLO” on the displays
movlw d’10’
movwf SP1
movlw d’5’
movwf SP10
movlw 0Bh ;
call Display ;
btfss counter ; tests for button
goto TooSlow ; no, so keeps looping

movlw d’9’ ; resets speed regs.
movwf Speed10 ;

170 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 170

goto BasicTimeLoop ;

END

Program M

;******************************
; written by: John Morton *
; date: 10/01/05 *
; version: 1.0 *
; file saved as: dice.asm *
; for P12F508 *
; clock frequency: Int. 4 MHz *
;******************************

; PROGRAM FUNCTION: A pair of dice.

list P=12F508
include “c:\pic\p12f508.inc”

__config _MCLRE_OFF & _CP_OFF & _WDT_OFF &
_IntRC_OSC

;==============
; Declarations:

Die1num equ 10h
Die2num equ 11h
Mark60 equ 12h
PostX equ 13h
PostVal equ 14h
Ran1 equ 15h
Ran2 equ 16h
General equ 17h
Random equ 18h

#define slow General, 0

org 0 ; first instruction to be executed
movwf OSCCAL ; calibrates internal oscillator
goto Start ;

;===
; Subroutines:

Init movlw b’100000’ ; turns off all LEDs
movwf GPIO ;

Sample programs 171

H6664-Ch07.qxd 8/13/05 12:34 PM Page 171

movlw b’001000’ ; sets up which pins are inputs
tris GPIO ; and which are outputs

movlw b’01000111’ ; enable wake-on-change, disable weak
option ; pull-ups, TMR0 prescaled by 256

movlw d’4’ ; sets up postscalers
movwf PostX ;
movwf PostVal ;

clrf Die1num ; clears display registers
clrf Die2num ;
clrf Ran1 ; clears random number registers
clrf Ran2 ;
bcf slow ; clears ‘slow-down’ flag
retlw 0 ;

;===================================
Display btfss TMR0, 4 ; uses bit 4 of TMR0 to choose die

goto Die2 ;

movfw Die1num ; gets number to display
call Code1 ; converts to code
movwf GPIO ; outputs
retlw 0 ;

Die2 movfw Die2num ; gets number to display
call Code2 ; converts to code
movwf GPIO ; outputs
retlw 0 ;

; arrangement for dice 1 is : CTLR, D, -, A, C, B

Code1 addwf PCL, f ;
retlw b’100000’ ; all off
retlw b’100100’ ; 1
retlw b’100001’ ; 2
retlw b’100101’ ; 3
retlw b’100011’ ; 4
retlw b’100111’ ; 5
retlw b’110011’ ; 6
retlw b’110111’ ; all on

; arrangement for dice 2 is : CTLR, C, -, B, A, D

Code2 addwf PCL, f ;
retlw b’010111’ ; all off
retlw b’010101’ ; 1
retlw b’010011’ ; 2

172 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 172

retlw b’010001’ ; 3
retlw b’000011’ ; 4
retlw b’000001’ ; 5
retlw b’000010’ ; 6
retlw b’000000’ ; all on

;===================================
Timing movfw Mark60 ; 1/40th second delay

subwf TMR0, w ;
btfss STATUS, Z ;
retlw 0 ;

movlw d’60’ ; resets marker
addwf Mark60, f ;

decfsz PostX, f ; variable further delay
retlw 0 ;

call RandomGen ; generate new pseudo-random
swapf Random, w ; number
andlw b’00000111’ ; converts to 0-7 and moves
movwf Die1num ; into Die1num

call RandomGen ; generate new pseudo-random
swapf Random, w ; number
andlw b’00000111’ ; converts to 0-7 and moves
movwf Die2num ; into Die2num

btfsc slow ; should this slow down?
call Slowdown ; yes

movfw PostVal ; updates variable delay length
movwf PostX ;
retlw 0

Slowdown incf PostVal, f ; increases delay length
btfsc PostVal, 5 ; has PostVal reached 32?
clrf PostVal ; resets, telling ‘Released’ section
retlw 0 ; that the dice have stopped rolling

RandomGen
movlw d’63’ ; newRandom =
addwf Random, w ; 63 + oldRandom x 3
addwf Random, w ;
addwf Random, f ;
retlw 0 ;

Sample programs 173

H6664-Ch07.qxd 8/13/05 12:34 PM Page 173

;===================================
RandomScroll

incf Ran1, f ; v. quickly scrolls through
movlw d’6’ ; has Ran1 reached 6?
subwf Ran1, w ;
btfss STATUS, Z ;
retlw 0 ; no, so returns

clrf Ran1 ;
incf Ran2, f ;
movlw d’6’ ; has Ran1 reached 6?
subwf Ran2, w ;
btfss STATUS, Z ;
retlw 0 ; no, so returns
clrf Ran2 ;
retlw 0 ;

;===================================
; PROGRAM START

Start call Init ; initial settings

Pressed btfsc GPIO, 3 ; tests button
goto Released ; branches when released
call RandomScroll ; quickly scrolls through no.s
call Timing ; keeps flashing going
call Display ; keeps displays changing
goto Pressed ;

Released bsf slow ; tells Timing to slow down
call Timing ; keeps flashing going
call Display ; keeps displays going
movf PostVal, f ; have dice stopped rolling?
btfss STATUS, Z ;
goto Released+1 ; no, so keeps looping

incf Ran1, w ; moves 1+ the random number
movwf Die1num ; into the display regs.
incf Ran2, w ;
movwf Die2num ;

movlw d’240’ ; 240 x 1/40th second = 6 second
movwf PostX ; delay

EndLoop call Display ; 6 second delay, after which all
movfw Mark60 ; LEDs are turned off
subwf TMR0, w ;

174 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 174

btfss STATUS, Z ;
goto EndLoop ;

movlw d’60’ ;
addwf Mark60, f ;

decfsz PostX, f ;
goto EndLoop ;

movlw b’100000’ ; turns off all LEDs
movwf GPIO ;
sleep ; goes to low power mode

END

Program N

;***************************************
; written by: John Morton *
; date: 14/03/05 *
; version: 1.0 *
; file saved as: quiz.asm *
; for PIC12F675 *
; clock frequency: Int. 4 MHz *
; ***************************************

; Program Description: Quiz controller for 3 players, including reset
; button for the quiz master.

list P=12F675
include “c:\pic\p12f675.inc”

;==============
; Declarations:

temp equ 20h
Post16 equ 21h

org 0 ; first instruction to be executed
goto Start ;

org 4 ; interrupt service routine
goto isr ;

;==============
; Subroutines:

Init bsf STATUS, RP0 ; goes to Bank 1
call 3FFh ; calls calibration address

Sample programs 175

H6664-Ch07.qxd 8/13/05 12:34 PM Page 175

movwf OSCCAL ; moves w. reg into OSCCAL

movlw b’011110’ ; GP5: Buzzer, GP3: Reset button
movwf TRISIO ; GP1,2,4: LEDs/Buttons (inputs

; to start with), GP0: LED enable
movlw b’010110’ ; GP1,2,4 have weak pull-ups
movwf WPU ; enabled

movlw b’00000111’ ; pull-ups enabled, TMR0 presc.
movwf OPTION_REG ; by maximum amount (256)
clrf PIE1 ; turns off peripheral interrupts
movlw b’010110’ ; enables GPIO change interrupt
movwf IOC ; on GP1, GP2 and GP4 only
clrf VRCON ; turns off comparator V. ref.
clrf ANSEL ; makes GP0:3 digital I/O pins
bcf STATUS, RP0 ; back to Bank 0
clrf GPIO ; resets input/output port
movlw b’00001000’ ; enables GPIO change interrupt
movwf INTCON ; only
movlw b’00000111’ ; turns off comparator
movwf CMCON ;
clrf T1CON ; turns off TMR1
clrf ADCON0 ; turns off A to D converter

movlw d’16’ ; sets up postscaler
movwf Post16 ;
retfie ; returns, enabling interrupts

;=====================
; Interrupt Service Routine
isr btfss INTCON, 0 ; checks GPIO change int. flag

goto Timer ; TMR0 interrupt occurred . . .
; GPIO interrupt occurred . . .

bcf INTCON, 0 ; resets interrupt flag

comf GPIO, w ; stores state of GPIO
andlw b’010110’ ; masks all except buttons
movwf temp ;
btfsc STATUS, Z ; are any buttons actually pressed?
retfie ; false alarm

bsf STATUS, RP0 ; moves to Bank 1
movlw b’001000’ ; makes GP1,2,4 outputs
movwf TRISIO ;
bcf STATUS, RP0 ; moves to Bank 0

176 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 176

movfw temp ; moves temp back into GPIO,
addlw b’100001’ ; sets GP5 and GP0 (turns on
movwf GPIO ; buzzer and enables LEDs)

movlw b’00100000’ ; enables TMR0 interrupt, disables
movwf INTCON ; the GPIO change interrupt
retfie ; returns, enabling GIE

Timer bcf INTCON, 2 ; resets TMR0 interrupt flag
decfsz Post16, f ; is this the 16th TMR0 interrupt
retfie ;

bcf GPIO, 5 ; turn off buzzer
clrf INTCON ; turns off all interrupts
sleep ; goes into low power mode

;============
; Program Start

Start call Init ; initialisation routine

Main goto Main ; keeps looping

END

Program O

;************************************ ***
; written by: John Morton *
; date: 10/01/05 *
; version 1.0 *
; file saved as phonecard.asm *
; for P12F675 *
; clock frequency: internal 4 MHz *
; ***************************************

; Program Description: A smart card for a phone box.

list P=12F675
include “c:\pic\p12f675.inc”

;=====================
; Declarations:

W_temp equ 20h
STATUS_temp equ 21h
temp equ 22h

Sample programs 177

H6664-Ch07.qxd 8/13/05 12:34 PM Page 177

Mark125 equ 23h
Post125 equ 24h
Post15 equ 25h

org 0 ; first instruction to be executed
goto Start ;
org 4 ; interrupt service routine
goto isr ;

;===========
; Subroutines:

Init bsf STATUS, RP0 ; goes to Bank 1
call 3FFh ; calls calibration address
movwf OSCCAL ; moves w. reg into OSCCAL
movlw b’111110’ ; all inputs except GP0
movwf TRISIO ;
clrf WPU ; weak pull-ups disabled
movlw b’11000111’ ; sets up timer and some pin
movwf OPTION_REG ; settings
clrf PIE1 ; turns off peripheral ints.
clrf IOC ; disables GPIO change int.
clrf VRCON ; turns off comparator V. ref.
clrf ANSEL ; makes GP0:3 digital I/O pins

bcf STATUS, RP0 ; back to Bank 0
clrf GPIO ; resets input/output port
movlw b’00010000’ ; sets up interrupts
movwf INTCON ;
movlw b’00000111’ ; turns off comparator
movwf CMCON ;
clrf T1CON ; turns off TMR1
clrf ADCON0 ; turns off A to D conv.

movlw d’125’ ; sets up postscalers
movwf Post125 ;
movlw d’15’ ;
movwf Post15 ;
retfie ; returns from Init

isr movwf W_temp ; stores w. reg in temp register
movfw STATUS ; stores STATUS in temp
movwf STATUS_temp ; register

bcf INTCON, 1 ; resets INT interrupt flag
bcf STATUS, RP0 ; makes sure we’re in Bank 0

178 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 178

movfw GPIO ; reads value of GPIO
movwf temp ;
rrf temp, f ; rotates right three times . . .
rrf temp, f ;
rrf temp, w ; . . . leaving result in w. reg
andlw b’000111’ ; masks bits 3-5
call CardValue ; converts code into minutes

bsf STATUS, RP0 ; goes to Bank 1
movwf EEDATA ; stores minutes in EEDATA
clrf EEADR ; selects EEPROM address 00h
bsf EECON1, 2 ; enables a write operation
movlw 0x55 ; now follows the ‘safe
movwf EECON2 ; combination’
movlw 0xAA ;
movwf EECON2 ;
bsf EECON1, 1 ; starts the write operation

EELoop btfsc EECON1, 1 ; has write operation finished?
goto EELoop ; no, still high, so keeps looping

movfw STATUS_temp ; restores STATUS register to
movwf STATUS ; original value
swapf W_temp, f ; restores working register to
swapf W_temp, w ; original value
retfie ; returns, enabling GIE

CardValue addwf PCL, f ; returns with new number of
retlw d’2’ ; minutes for the card
retlw d’5’ ;
retlw d’10’ ;
retlw d’20’ ;
retlw d’40’ ;
retlw d’60’ ; one hour
retlw d’120’ ; two hours
retlw 0 ; (erases card)

;===========
; Program Start

Start call Init ; initialisation routine

Main bsf STATUS, RP0 ; selects Bank 1
clrf EEADR ; selects EEPROM address 00h
bsf EECON1, 0 ; initiates an EEPROM read
movfw EEDATA ; reads EEDATA
bcf STATUS, RP0 ; selects Bank 0

Sample programs 179

H6664-Ch07.qxd 8/13/05 12:34 PM Page 179

btfss STATUS, Z ; is it 0?
goto Active ; no, so goes to Active
bcf GPIO, 0 ; turns off GP0
sleep ; goes to sleep
nop ;
goto Main ; loops back to Main

Active bsf GPIO, 0 ; turns on GP0
btfss GPIO, 1 ; is a call in progress?
goto Active ; no, so keeps waiting
movfw Mark125 ; has one minute passed?
subwf TMR0, w ;
btfss STATUS, Z ;
goto Active ; no, so keeps looping

movlw d’125’ ;
addwf Mark125 ;
decfsz Post125 ;
goto Active ;

movlw d’125’ ;
movwf Post125 ;
decfsz Post15 ;
goto Active ;

movlw d’15’ ; one minute has passed, so
movwf Post15 ; resets final postscaler
bsf STATUS, RP0 ; goes to Bank 1
clrf EEADR ; selects EEPROM address 00h
bsf EECON1, 0 ; reads EEPROM address 00h
decf EEDATA ; subtracts 1 minute from card
bsf EECON1, 2 ; enables a write operation
bcf INTCON, 7 ; disables global interrupts
movlw 0x55 ; now follows the ‘safe
movwf EECON2 ; combination’
movlw 0xAA ;
movwf EECON2 ;
bsf EECON1, 1 ; starts the write operation

EELoop btfsc EECON1, 1 ; has write operation finished?
goto EELoop ; no, still high, so keeps looping

bcf STATUS, RP0 ; back to Bank 0
bsf INTCON, 7 ; enables global interrupts
goto Main ; loops back to start

END

180 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 180

Program P

;***************************************
; written by: John Morton *
; date: 14/03/05 *
; version: 1.0 *
; file saved as: tempsense.asm *
; for PIC12F675 *
; clock frequency: Int. 4 MHz *
; ***************************************

; Program Description: Bath temperature measuring device.

list P=12F675
include “c:\pic\p12f675.inc”

;============
; Declarations:

W_temp equ 20h
STATUS_temp

equ 21h

org 0 ; first instruction to be executed
goto Start ;

org 4 ; interrupt service routine
goto isr ;

;============
; Subroutines:

Init bsf STATUS, RP0 ; goes to Bank 1
call 3FFh ; calls calibration address
movwf OSCCAL ; moves w. reg into OSCCAL
movlw b’010000’ ; GP0-2 are LEDs, GP4 analogue
movwf TRISIO ; input
clrf WPU ; weak pull-ups disabled

movlw b’10000000’ ; weak pull-ups disabled, no timer
movwf OPTION_REG ; used
movlw b’01000000’ ; enables A/D interrupt
movwf PIE1 ;
clrf IOC ; disables GPIO change int.
clrf VRCON ; turns off comparator V. ref.
movlw b’00011000’ ; A/D clock: Fosc/8 = 2 µs;

; AN3/GP4
movwf ANSEL ; is anal. input, others are digital

Sample programs 181

H6664-Ch07.qxd 8/13/05 12:34 PM Page 181

bcf STATUS, RP0 ; back to Bank 0
clrf GPIO ; resets input/output port
movlw b’01000000’ ; enables peripheral interrupts
movwf INTCON ;
movlw b’00000111’ ; turns off comparator
movwf CMCON ;
clrf T1CON ; turns off TMR1
movlw b’00001101’ ; turns on ADC, selects AN3,
movwf ADCON0 ; relative to VDD, left-justified

retfie ;

isr movwf W_temp ; stores w. reg in temp register
movfw STATUS ; stores STATUS in temporary
movwf STATUS_temp ; register

bcf STATUS, RP0 ; goes to Bank 0
bcf PIR1, 6 ; clears A/D interrupt flag

bsf STATUS, RP0 ; goes to Bank 1
movlw 0x80 ; subtracts lower byte
subwf ADRESL, w ;
comf STATUS, w ; inverts carry flag (bit 0 of STATUS)
andlw b’00000001’ ; masks all other bits
bcf STATUS, RP0 ; goes to Bank 0
addlw 0x12 ; add this to the number we are
subwf ADRESH, w ; subtracting from the higher byte
btfss STATUS, C ;
goto Cold ; ADRESH:L < 0x1280, so “cold!”

bsf STATUS, RP0 ; goes to Bank 1
movlw 0x80 ; subtracts lower byte
subwf ADRESL, w ;
comf STATUS, w ; inverts carry flag (bit 0 of STATUS)
andlw b’00000001’ ; masks all other bits
bcf STATUS, RP0 ; goes to Bank 0
addlw 0x15 ; add this to the number we are
subwf ADRESH, w ; subtracting from the higher byte
btfss STATUS, C ;
goto OK ; ADRESH:L < 0x1580, so OK
goto Hot ; ADRESH:L = 0x1580,

; so Hot!

Cold movlw b’000001’ ; turns on ‘cold’ LED
movwf GPIO ;
goto prereturn ;

182 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 182

OK movlw b’000010’ ; turns on ‘OK’ LED
movwf GPIO ;
goto prereturn ;

Hot movlw b’000100’ ; turns on ‘Hot’ LED
movwf GPIO ;
goto prereturn ;

prereturn movfw STATUS_temp ; restores STATUS register to
movwf STATUS ; original value
swapf W_temp, f ; restores working register to
swapf W_temp, w ; original value
retfie ; returns, enabling GIE

;============
; Program Start

Start call Init ; sets everything up
Main bsf ADCON0, 1 ; start A/D conversion

goto Main ;

END

Program Q

;***************************************
; written by: John Morton *
; date: 14/03/05 *
; version: 1.0 *
; file saved as: gardenlights.asm *
; for PIC12F675 *
; clock frequency: Int. 4 MHz *
; ***************************************

; Program Description: Intelligent garden lights controller.

list P=12F675
include “c:\pic\P12F675.inc”

__config _INTRC_OSC_NOCLKOUT & _WDT_OFF &
_PWRTE_ON & _MCLRE_ON & _BODEN_ON
& _CP_OFF & _CPD_OFF

Midnight equ 20
Threshold equ 21
Mark125 equ 22
Post125 equ 23

Sample programs 183

H6664-Ch07.qxd 8/13/05 12:34 PM Page 183

Post75 equ 24
FiveMins equ 25
W_temp equ 26
STATUS_temp equ 27

#define summer GPIO, 1

;============
; Declarations:

org 0 ; first instruction to be
; executed

goto Start ;

org 4 ; interrupt service routine
goto isr ;

;============
; Subroutines:

Init bsf STATUS, RP0 ; goes to Bank 1
movlw b’001111’ ; GP5: lights, GP4: day/night

; LED
movwf TRISIO ; GP3: button, GP2: summer

; switch
; GP0: analogue input

clrf WPU ; no weak pull-ups
movlw b’10000111’ ; pull-ups disabled, TMR0

; prescaled
movwf OPTION_REG ; by maximum amount (256)

clrf PIE1 ; turns off peripheral
; interrupts

clrf IOC ; turns off interrupt on
; change int.

clrf VRCON ; turns off comparator V. ref.
movlw b’00110001’ ; AN0 is only analogue input
movwf ANSEL ; and analogue clock = RC
call 3FFh ; calls calibration address
movwf OSCCAL ; moves w. reg into OSCCAL

bcf STATUS, RP0 ; back to Bank 0
movlw b’00000111’ ; turns off comparator
movwf CMCON ;
clrf T1CON ; turns off TMR1
movlw b’00000001’ ; turns on ADC, input: AN0
movwf ADCON0 ; left justified

184 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 184

clrf GPIO ; lights off, ‘day’ LED on
movlw b’00010000’ ; enables INT interrupt only
movwf INTCON ;

retfie ; returns, enabling interrupts

;==
isr movwf W_temp ; stores w. reg in temp register

movfw STATUS ; stores STATUS in temporary
movwf STATUS_temp ; register

bcf INTCON, 1 ; resets interrupt flag
movfw GPIO ;
xorlw b’100000’ ; toggles state of lights
movwf GPIO ;

movfw STATUS_temp ; restores STATUS register to
movwf STATUS ; original value
swapf W_temp, f ; restores working register to
swapf W_temp, w ; original value

retfie ;

;==
ADconv bsf ADCON0, 1 ; starts AD conversion

btfsc ADCON0, 1 ; has it finished?
goto ADconv+1 ; no
return ;

;==
Delay5min movfw TMR0 ; resets timing registers

addlw d’125’ ;
movwf Mark125 ;
movlw d’125’ ; sets up timing registers
movwf Post125 ;
movlw d’75’ ;
movwf Post75 ;

TimeLoop movfw Mark125 ; creates a five minute delay
subwf TMR0, w ;
btfss STATUS, Z ;
goto TimeLoop ;
movlw d’125’ ;
addwf Mark125, f ;
decfsz Post125, f ;
goto TimeLoop ;
movlw d’125’ ;

Sample programs 185

H6664-Ch07.qxd 8/13/05 12:34 PM Page 185

movwf Post125 ;
decfsz Post75, f ;
goto TimeLoop ;

return ; 5 minutes have passed

;==
; Program Start

Start call Init ; initialisation routine

bsf STATUS, RP0 ; Bank 1
btfsc PCON, 1 ; Power-Up or MCLR reset?
goto SetThreshold ; MCLR reset
bsf PCON, 1 ; Power-up; resets POR bit

clrf EEADR ;
bsf EECON1, 0 ; reads EEPROM address 0
movfw EEDATA ; moves read data into w. reg
movwf Midnight ;
incf EEADR ;
bsf EECON1, 0 ; reads EEPROM address 1
movfw EEDATA ;
bcf STATUS, RP0 ; Bank 0
movwf Threshold ;
goto Main ;

SetThreshold
bcf STATUS, RP0 ; Bank 0
call ADconv ; perform A/D conversion
movfw ADRESH ; takes 8 most significant bits
movwf Threshold ;

bsf STATUS, RP0 ; Bank 1
movwf EEDATA ; stores Threshold in EEPROM
movlw 1 ; selects EEPROM address 1
movwf EEADR ;
bsf EECON1, 2 ; enables a write operation
bcf INTCON, 7 ; disables global interrupts

movlw 0x55 ; now follows the ‘safe
movwf EECON2 ; combination’
movlw 0xAA ;
movwf EECON2 ;
bsf EECON1, 1 ; starts the write operation

EELoop btfsc EECON1, 1 ; has write operation finished?
goto EELoop ; no, so keeps looping

186 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 186

bcf STATUS, RP0 ; Bank 0
bsf INTCON, 7 ; re-enables global interrupts

clrf Midnight ; resets Midnight register
goto Dusk ;

;===
Main call ADconv ; this is the standard loop

movfw Threshold ; is it Dusk?
subwf ADRESH, w ;
btfsc STATUS, C ;
goto Main ; no

;====
Dusk clrf FiveMins ; resets timing register

movlw b’110000’ ; turns on garden lights and
movwf GPIO ; ‘night’ LED

Night call Delay5min ; inserts 5 minute delay
incf FiveMins ; counts up no. of 5 minutes

movlw d’12’ ; has 1 hour passed?
subwf FiveMins, w ;
btfss STATUS, C ;
goto Night ; no

movfw Midnight ; is it past midnight?
subwf FiveMins, w ;
btfss STATUS, C ;
goto Night ; no

LightsOff movlw b’010000’ ; turns off garden lights and
movwf GPIO ; keeps ‘night’ LED on
call ADconv ; performs A/D conversion
movfw Threshold ; is it Dawn?
subwf ADRESH, w ;
btfss STATUS, C ;
goto Night ; no

;====
Dawn bsf day ; turns on ‘day’ LED

; determines new midnight
bcf STATUS, C ;
rrf FiveMins, w ; divides time by 2
btfss summer ; are we in summer time?
sublw d’24’ ; yes, subtracts 2 hours
movwf Midnight ;

Sample programs 187

H6664-Ch07.qxd 8/13/05 12:34 PM Page 187

bsf STATUS, RP0 ; Bank 1
movwf EEDATA ; stores Midnight in EEDATA
clrf EEADR ; selects EEPROM address 00
bsf EECON1, 2 ; enables a write operation
bcf INTCON, 7 ; disables global interrupts

movlw 0x55 ; now follows the ‘safe
movwf EECON2 ; combination’
movlw 0xAA ;
movwf EECON2 ;
bsf EECON1, 1 ; starts the write operation

EELoop2 btfsc EECON1, 1 ; has write operation finished?
goto EELoop2 ; no, so keeps looping
bcf STATUS, RP0 ; Bank 0
bsf INTCON, 7 ; re-enables global interrupts
clrf FiveMins ;

DawnLoop call Delay5min ; one hour delay before looping back
incf FiveMins ;
movlw d’12’ ; has one hour passed?
subwf FiveMins, w ;
btfss STATUS, C ;
goto DawnLoop ; no
goto Main ;

END

188 Sample programs

H6664-Ch07.qxd 8/13/05 12:34 PM Page 188

Device Pins I/O Program RAM EEPROM ADC Other features
memory

PIC10F200 6/8* 4 256 16 No No Internal 4 MHz
oscillator, weak
pull-ups, wake-
up on change,
2-level stack

PIC10F202 6 4 512 24 No No As PIC10F202

PIC10F206 6 4 512 24 No No As PIC10F202,
with comparator

PIC10F222 6 4 512 24 No Yes As PIC10F202

PIC12F508 8 6 512 25 No No As PIC10F202

PIC12F509 8 6 1024 41 No No As PIC12F508

PIC12F510 8 6 1024 38 No Yes As PIC12F508

PIC16F54 18 12 512 25 No No 2-level stack

PIC16F57 28 20 2048 72 No No As PIC16F54

PIC16F59 40 32 2024 134 No No As PIC16F54

PIC16F84A 18 13 1024 64 64 bytes No 8-level stack,
interrupts

PIC12F675 8 6 1024 64 128 bytes Yes As PIC12F508,
16-bit TMR1,
Comparator,
8-level stack,
Interrupts

PIC16F676 14 12 1024 64 128 bytes Yes As PIC12F675

Appendix A
Specifications of some Flash

PIC microcontrollers

(Appendix A contd.)

H6664-Appendix.qxd 8/13/05 12:32 PM Page 189

190 Appendix A: Specifications of some Flash PIC microcontrollers

Device Pins I/O Program RAM EEPROM ADC Other features
memory

PIC16F627 8 16 1024 224 128 bytes No TMR1 (16-bit),
TMR2 (8-bit),
Comparator,
8-level stack,
Interrupts,
Capture/
Compare/PWM

Common features: All the PIC microcontrollers listed here have an 8-bit TMR0, a WDT
(Watchdog timer), a DRT (device reset timer), POR (power-on reset), a lower power sleep mode,
and support ICSP (In-circuit serial programming).

* The P10F2xx series have 6 pins in the surface mount package, but 8 pins in the larger
packages (the two extra pins are N/C).

(Appendix A contd.)

H6664-Appendix.qxd 8/13/05 12:32 PM Page 190

Appendix B
Pin layouts of some Flash

PIC microcontrollers

1N/C

VDD

GP2/T0CKI/FOSC4
GP1/ICSPCLK

N/C

VSS

GP3/MCLR/VPP

GP0/ICSPDAT

2

3
4

8P
IC

10F
200/202

7

6
5

P
IC

16
F

54
P

IC
16

F
59

1N/C

VDD

GP2/T0CKI/COUT/FOSC4
GP1/ICSPCLK/CIN-

N/C

VSS

GP3/MCLR/VPP

GP0/CIN�

2

3
4

8

P
IC

10F
204/206

7

6
5

1

2

3

4

8P
IC

12F
675

7

6

5

1

•1

RC5RC4 20 21

RC6RC3 19 22

RC7RC2 18 23

RD0 RB0/INT

RB3/CCP1

RB2/TX/CK

RB1/RX/DT
RC1 17 24

GNDRC0 16 25

VDD

VDD

RC5

RC4
RC3/AN7

VSS

RD115 26

RD2MCLR/VPP 14 27

RD3B7/ICSPDAT 13 28

RD4B6/ICSPCLK 12 29

RD5RB5 11 30

RD6RB4 10 31

RD7RB3 9 32

OSC2/CLKOUTRB2 8 33

OSC1/CLKINRB1 7 34

VDDRB0 6 35

RE4GND 5 36

RE5RA3 4 37

RE6RA2 3 38

RA1 RE72 39

T0CKIRA0 •1 40

2
3
4
5
6
7
8
9

18
17
16
15
14
13
12
11
10

P
IC

16
F

57

•1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

VDD

RA2 RA1
RA0
OSC1/CLKIN
OSC2/CLKOUT

RB0
RB1
RB2
RB3

RA3
T0CKI

GP5/OSC1/CLKIN

GP4/OSC2

VSS

VSS VDD

RB7/ICSPDAT
RB6/ICSPCLK
RB5
RB4

GP0/ICSPDAT

GP2/T0CKI

GP1/ICSPCLK

2

3

4

8

P
IC

12F
508/509

7

6

5GP3/MCLR/VPP

RA3/MCLR/VPP

MCLR/VPP

P
IC

16F
62X

•1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA1/AN1

RA0/AN0

RA7/OSC1/CLKIN

RA6/OSC2/CLKOUT

RA0/AN0/CIN�/ICSPDAT
RA1/AN1/CIN�/VREF/ICSPCLK
RA2/AN2/COUT/T0CKI/INT
RC0/AN4
RC1/AN5
RC2/AN6

VDD

VSS

RB7/T1OSI/PGD

RB6/T1OSO/T1CKI/PGC

RB5

RB4/PGM

VDD

VDD

VSS

N/C

N/C

RA0

RA1

RA2

RA3

RB0

RB1

RB2

RB3

RB4

RA2/AN2/VREF

RA5/MCLR/VPP

RA3/AN3/CMP1

RA4/T0CKI/CMP2

RA5/T1CKI/OSC1/CLKIN
RA4/T1G/OSC2/AN3/CLKOUT

P
IC

16F
676

1
2
3
4
5
6
7

14
13
12
11
10
9
8

T0CKI

GP5/T1CKI/OSC1/CLKIN

VSS

GP0/AN0/CIN�/ICSPDAT

GP2/AN2/T0CKI/INT/COUT

GP1/AN1/CIN�/VREF/ICSPCLK

GP3/MCLR/VPP

MCLR/VPP

OSC1/CLKIN

OSC2/CLKOUT

RC7

RC6

RC5

RC4

RC3

RC2

RC1

RC0

RB6/ICSPCLK

RB5

RB7/ICSPDAT

GP4/AN3/T1G/OSC2/CLKOUT

H6664-Appendix.qxd 8/13/05 12:32 PM Page 191

Appendix C
Instructions glossary

addlw number
– (Not for PIC5x series) – adds a number with the number in the working
register.

addwf FileReg, f
– adds the number in the working register to the number in a file register and
puts the result in the file register.

addwf FileReg, w
– adds the number in the working register to the number in a file register
and puts the result back into the working register, leaving the file register
unchanged.

andlw number
– ANDs a number with the number in the working register, leaving the result in
the working register.

andwf FileReg, f
– ANDs the number in the working register with the number in a file register
and puts the result in the file register.

bcf FileReg, bit
– clears a bit in a file register (i.e. makes the bit 0).

bsf FileReg, bit
– sets a bit in a file register (i.e. makes the bit 1).

btfsc FileReg, bit
– tests a bit in a file register and skips the next instruction if the result is clear
(i.e. if that bit is 0).

btfss FileReg, bit
– tests a bit in a file register and skips the next instruction if the result is set (i.e.
if that bit is 1).

call AnySub
– makes the chip call a subroutine, after which it will return to where it left off.

clrf FileReg
– clears (makes 0) the number in a file register.

clrw
– clears the number in the working register.

H6664-Appendix.qxd 8/13/05 12:32 PM Page 192

clrwdt
– clears the number in the watchdog timer.

comf FileReg, f
– complements (inverts, ones become zeroes, zeroes become ones) the number
in a file register, leaving the result in the file register.

decf FileReg, f
– decrements (subtracts one from) a file register and puts the result in the file
register.

decfsz FileReg, f
– decrements a file register and if the result is zero it skips the next instruction.
The result is put in the file register.

goto Anywhere
– makes the chip go to somewhere in the program which YOU have labelled
‘Anywhere’.

incf FileReg, f
– increments (adds one to) a file register and puts the result in the file register.

incfsz FileReg, f
– increments a file register and if the result is zero it skips the next instruction.
The result is put in the file register.

iorlw number
– inclusive ORs a number with the number in the working register.

iorwf FileReg, f
– inclusive ORs the number in the working register with the number in a file
register and puts the result in the file register.

movfw FileReg
or movf FileReg, w
– moves (copies) the number in a file register in to the working register.

movlw number
– moves (copies) a number into the working register.

movwf FileReg
– moves (copies) the number in the working register into a file register.

nop
– this stands for: no operation, in other words – do nothing (it seems useless, but
it’s actually quite useful!).

option
– (Not to be used except in PIC5x series) – takes the number in the working
register and moves it into the option register.

retfie
– (Not for PIC5x series) – returns from a subroutine and enables the Global
Interrupt Enable bit.

Appendix C: Instructions glossary 193

H6664-Appendix.qxd 8/13/05 12:32 PM Page 193

retlw number
– returns from a subroutine with a particular number (literal) in the working
register.

return
– (Not for PIC5x series) – returns from a subroutine.

rlf FileReg, f
– rotates the bits in a file register to the left, putting the result in the file register.

rrf FileReg, f
– rotates the bits in a file register to the right, putting the result in the file register.

sleep
– sends the PIC to sleep, a lower power consumption mode.

sublw number
– (Not for PIC5x series) – subtracts the number in the working register from a
number.

subwf FileReg, f
– subtracts the number in the working register from the number in a file register
and puts the result in the file register.

swapf FileReg, f
– swaps the two halves of the 8 bit binary number in a file register, leaving the
result in the file register.

tris PORTX
– (Not to be used except in PIC16C5x series) – uses the number in the working
register to specify which bits of a port are inputs (correspond to a binary 1) and
which are outputs (correspond to 0).

xorlw number
– exclusive ORs a number with the number in the working register.

xorwf FileReg, f
– exclusive ORs the number in the working register with the number in a file
register and puts the result in the file register.

194 Appendix C: Instructions glossary

H6664-Appendix.qxd 8/13/05 12:32 PM Page 194

Appendix D
Number system conversion

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

H6664-Appendix.qxd 8/13/05 12:33 PM Page 195

Appendix E
Bit assignments of various

file registers

OPTION_REG

Bit no. 7 6 5 4 3 2 1 0
Bit name T0CS T0SE PSA PS2 PS1 PS0

Prescaler value... TMR0 WDT
0 0 0 1:2 1:1
0 0 1 1:4 1:2
0 1 0 1:8 1:4
0 1 1 1:16 1:8
1 0 0 1:32 1:16
1 0 1 1:64 1:32
1 1 0 1:128 1:64
1 1 1 1:256 1:128

Prescaler Assignment
0: Prescaler assigned to TMR0
1: Prescaler assigned to WDT

TMR0 Source Edge Select
0: TMR0 counts on falling edge
1: TMR0 counts on rising edge

TMR0 Clock Source Select
0: TMR0 counts signal from oscillator
1: TMR0 counts signals on T0CKI pin

(PIC16F5X) Unassigned

(PIC12F5xx) Weak Pull-ups Enable
0: Enabled
1: Disabled

(PIC12F675 / PIC16F676 / F627) Ext. Interrupt Edge Select
0: Interrupt on falling edge of INT pin
1: Interrupt on rising edge of INT pin

(PIC16F5X) Unassigned

(PIC12F5xx) Wake-up on Change Enable
0: Enabled
1: Disabled

(PIC12F675 / PIC16F676 / PIC16F627) Port B Pull-up Enable
0: Weak pull-ups enabled on GPIO/Port B, if selected in WPU
1: Weak pull-ups disabled

H6664-Appendix.qxd 8/13/05 12:33 PM Page 196

Appendix E: Bit assignments of various file registers 197

STATUS

Bit no. 7 6 5 4 3 2 1 0
Bit name … … … TO PD Z DC C

Carry Flag
See page 75

Digit Carry Flag
See page 75

Zero Flag
See page 35

Power down and TimeOut bits
00: WDT wakeup from sleep
01: WDT timeout (not during sleep)
10: MCLR wakeup from sleep
11: Power-up

(PIC16F54) Unassigned

(PIC12F5xx) RP0: Program Page Select
0: Page 0–000h to 1FFh
1: Page 1–200h to 3FFh

(PIC12F675 / PIC16F676) RP0: Bank select
0: Bank 0
1: Bank 1

(PIC16F57/59) PA1, PA0: Program Page Select bits
00: Page 0–000h to 1FFh
01: Page 1–200h to 3FFh
10: Page 2–400h to 5FFh
11: Page 3–600h to 7FFh

(PIC16F627) RP1, RP0: Bank Select bits
00: Bank 0–000h to 07Fh
01: Bank 1–080h to 0FFh
10: Bank 2–100h to 17Fh
11: Bank 3–180h to 1FFh

(PIC16F627) IRP: Indirect Addressing Bank Select
0: Select Banks 0 and 1 for indirect addressing – 000h to 0FFh
1: Select Banks 2 and 3 for indirect addressing – 100h to 1FFh

H6664-Appendix.qxd 8/13/05 12:33 PM Page 197

198 Appendix E: Bit assignments of various file registers

INTCON

Bit no. 7 6 5 4 3 2 1 0
Bit name GIE PEIE T0IE INTE GPIE T0IF INTF GPIF

Port Change flag
0: It hasn’t
[Note: Must be
cleared by you]
1: GPIO/Port B
change int. occurred

External INT flag
0: It hasn’t
[Note: Must be cleared by
you]
1: An interrupt has occurred
on the INT pin

TMR0 Overflow Interrupt flag
0: TMR0 has not overflowed
[Note: Must be cleared by you]
1: TMR0 has overflowed

Port Change Interrupt Enable
0: Disables GPIO/Port B change interrupt
1: Enables it

External INT Interrupt Enable
0: Disables the INT pin interrupt
1: Enables it

TMR0 Overflow Interrupt Enable
0: Disables TMR0 overflow interrupt
1: Enables it

Peripheral Interrupt Enable
0: Disables any enabled ‘peripheral interrupts’
1: Enables all ‘peripheral interrupts’

Global Interrupt Enable
0: Disables ALL interrupts
1: Enables any enabled interrupts

H6664-Appendix.qxd 8/13/05 12:33 PM Page 198

Appendix E: Bit assignments of various file registers 199

PIE1/PIR1

The bit assignments in the peripheral interrupt registers PIE1 and PIR1 are identical. In PIE1 they
refer to interrupt enable bits, and in PIR1 they refer to interrupt flags. The interrupt flags must be
cleared by you in the interrupt service routine.

Bit no. 7 6 5 4 3 2 1 0
Bit name EEIE … RC TX … CCP1 TMR2 TMR1

TMR1 Overflow Int.

TMR2 Overflow Interrupt

Capture/Compare/PWM Interrupt

(PIC12F675 / PIC16F676)
Comparator Interrupt

USART Transmission Interrupt

USART Receive Interrupt

(PIC12F675 / PIC16F676)
A/D Conversion Interrupt

(PIC16F627)
Comparator Interrupt

EEPROM Write Complete Interrupt

PCON

Bit no. 7 6 5 4 3 2 1 0
Bit name – – – – OSCF – POR BOD

Brown-out Detect
0: A brown-out reset occurred*

1: It didn’t

Power-on Reset
0: A power-on reset occurred*
1: It didn’t

(PIC16F627) INTRC/ER Oscillator Frequency
0: 37 kHz typical
1: 4 MHz typical

*Both these bits must be set in software, when cleared by the relevant reset.

H6664-Appendix.qxd 8/13/05 12:33 PM Page 199

200 Appendix E: Bit assignments of various file registers

EECON1

Bit no. 7, 6, 5, 4 3 2 1 0
Bit name unused WRERR WREN WR RD

Read Control Bit
1: Starts an EEPROM
read (gets cleared
when read finishes)

Write Control Bit
1: Starts an EEPROM write
operation (gets cleared when
write finishes)

EEPROM Write Enable Bit
0: Forbids writing to the EEPROM
1: Permits writing to the EEPROM

EEPROM Write Error Flag
0: The write operation completed without error
1: An EEPROM write has prematurely terminated

VRCON

Bit 7: Comparator Voltage Reference Enable bit
0: Voltage reference module off (consuming no current)
1: Voltage reference module on

VRCON, 5 � 1 (low range) VRCON, 5 � 0 (high range)

VRCON 3:0 VRef (VDD � 5V) VRCON 3:0 VRef (VDD � 5V)

0000 0.00 0000 1.25

0001 0.21 0001 1.41

0010 0.42 0010 1.56

0011 0.63 0011 1.72

0100 0.83 0100 1.88

0101 1.04 0101 2.03

0110 1.25 0110 2.19

0111 1.46 0111 2.34

1000 1.67 1000 2.50

1001 1.88 1001 2.66

1010 2.08 1010 2.81

1011 2.29 1011 2.97

1100 2.50 1100 3.13

1101 2.71 1101 3.28

1110 2.92 1110 3.44

1111 3.13 1111 3.59

H6664-Appendix.qxd 8/13/05 12:33 PM Page 200

Appendix E: Bit assignments of various file registers 201

CMCON

Bit no. 7 6 5 4 3 2:0
Bit name – COUT – CINV CIS CM

Comparator Model bits
See table below

Comparator Input Select
(In type ‘C’ mode)
0: VIN� connects to GP1/CIN�

1: VIN� connects to GP0/CIN�

Comparator Output Inversion bit
0: Doesn’t invert comparator output
1: Inverts comparator output

Comparator Output
If CINV � 0…
0: VIN� � VIN�

1: VIN� � VIN�

(inverted if CINV � 1)

CMCON 2:0 VIN� VIN� VOUT

000 GP0/CIN� GP1/CIN� Disabled: CMCON, 6 � 0

001 GP0/CIN� GP1/CIN� GP2/COUT and CMCON, 6

010 GP0/CIN� GP1/CIN� CMCON, 6

011 Internal ref. GP1/CIN� GP2/COUT and CMCON, 6

100 Internal ref. GP1/CIN� CMCON, 6

101 Internal ref. GP0 or GP1 GP2/COUT and CMCON, 6

110 Internal ref. GP0 or GP1 CMCON, 6

111 Comparator off and consumes no current (CMCON, 6 � 0)

B

A

C

H6664-Appendix.qxd 8/13/05 12:33 PM Page 201

202 Appendix E: Bit assignments of various file registers

ADCON0

Bit no. 7 6 5 4 3 2 1 0
Bit name ADFM VCFG – – CHS1 CHS0 GO/DONE ADON

A/D on bit
1: ADC is on
0: ADC is off

GO/DONE
1: Starts A/D conversion. Stays
high until finished
0: A/D conversion finished

Channel select bits
00: Channel 00 (AN0)
01: Channel 01 (AN1)
10: Channel 02 (AN2)
11: Channel 03 (AN3)

Voltage reference bit
1: Measures relative to VREF pin
0: Measures relative to VDD (supply voltage)

A/D result formed select
1: Right justified – result stored in ADRESL and ADRESH (bits 0:2)
0: Left justified – result stored in ADRESL (bits 6:7) and ADRESH

ANSEL

ANSEL A/D conversion clock
Device frequency

bits 6:4 1.25 MHz 2.46 MHz 4 MHz 20 MHz

000 FOSC/2 1.6 �s 800 ns 500 ns 100 ns

001 FOSC/8 6.4 �s 3.2 �s 2 �s 400 ns

010 FOSC/32 25.6 �s 12.8 �s 8 �s 1.6 �s

011 FRC: Internal oscillator �4 �s �4 �s �4 �s �4 �s

100 FOSC/4 3.2 �s 1.6 �s 1 �s 200 ns

101 FOSC/16 12.8 �s 6.4 �s 4 �s 800 ns

110 FOSC/64 51.2 �s 25.6 �s 16 �s 3.2 �s

111 FRC: Internal oscillator �4 �s �4 �s �4 �s �4 �s

ANSEL Bits 3:0 correspond to the four A/D input channels AN3:0.
0: Makes the pin a digital I/O pin
1: Makes the pin an analogue input, disabling weak pull-ups, interrupt-on-change, etc.

H6664-Appendix.qxd 8/13/05 12:33 PM Page 202

Appendix F
If all else fails, read this

You should find that there are certain mistakes which you make time and time
again (I do!). I’ve listed the popular ones here:

1. Look for: subwf FileReg … are you sure you don’t mean …

subwf FileReg, w

2. Have you remembered the correct addresses for general purpose file regis-
ters for your particular PIC model? (e.g. on the PIC12F675 they don’t start
until address 20h).

3. You are using a PIC microcontroller which has weak pull-ups – have you
remembered to set up bit 7 of the OPTION register correctly?

4. Are your subroutines in the correct page or half of page?
5. Are you adding something to the program counter in the wrong place on a

page or on the wrong page?
6. Are you remembering to reset a file register you are using to keep track of

how many times something has happened (e.g. a postscaler)?
7. You think you are doing something to a file register but it isn’t happening …

are you in the correct bank?
8. If you are having a total nightmare and NOTHING is working … have you

specified the correct PIC microcontroller at the top of the program?
9. Have you set the configuration bits correctly when programming/simulating?

H6664-Appendix.qxd 8/13/05 12:33 PM Page 203

Appendix G
Contacts and further

reading

John Morton: help@to-pic.com
www.to-pic.com

Microchip: www.microchip.com
Microchip Technology Inc.
2355 W. Chandler Blvd.
Chandler, AZ 85224-6199
USA

Microchip UK Sales: Phone: +44-118-921-5869
Fax: +44-118-921-5820

PIC Press: www.to-pic.com

Third-party products: Olimex www.olimex.com
Spark Fun Electronics www.sparkfun.com
Taylec Ltd. www.taylec.co.uk

Books and magazines

Electronic Systems by M. W. Brimicombe. Nelson (1985).
(A great text for general electronics)

Everyday and Practical Electronics
(A monthly magazine which normally has a PIC project or two)

PIC-robotics by John Iovine. Tab Books (2004)
PIC Microcontroller Project Book by John Iovine. Tab Books (2004)
(Two popular books on PIC robotics and PIC Basic)

H6664-Appendix.qxd 8/13/05 12:33 PM Page 204

Appendix H
PICKit™ 1 & BFMP Info

Programming a PIC microcontroller using the PICkit™ 1 Flash
Starter Kit

To program a PIC microcontroller in MPLab, first load the .asm file and assem-
ble it. Select the PICKit 1 programmer under Programmer → Select Programmer.
To program the PIC microcontroller, go to Programmer → Program Device, or
use the shortcut button. Set the configuration bits either using the __config com-
mand, or using the menu option in MPLab. Alternatively, generate a .hex file
using your preferred method, and then use the custom PICKit 1 programming
software (discussed in Chapter 2).

GND

�5 V

ICSPDAT

ICSPCLK

VPP/MCLR

�

J2

�5 V

0 V

U1
R1–R4

R5 1 k

R7
10 k

D7
LED

D6
LED

D5
LED

D4
LED

D1
LED

D3

D0
LED

C1
1nF

RV1
RES-VAR

LED

D2

LED

R6

1 k

150R

7
6
5
4
3
2

PIC12F675

GP0/AN0

GP2/T0CKI/INT/AN2
GP3/MCLR

GP5/T1CKI/OSC1
GP4/T1G/OSC2/AN3

GP1/AN1/VREF

Figure H.1 Pin assignment of the Baseline Flash Microcontroller Programmer.

Figure H.2 Components attached to the Evaluation Socket of the PICKitTM 1
Flash Start Kit.

H6664-Appendix.qxd 8/13/05 12:33 PM Page 205

206 Appendix H: PICKit™ 1 & BFMP Info

GND

�5 V

GP5

GP4

GP3

GP0

GP1

GP2

�

�

�

�

�

�

J3

Figure H.3 Pin assignment of the jumper cable in the PICKitTM 1 Flash Start Kit
for the PIC12F675.

H6664-Appendix.qxd 8/13/05 12:33 PM Page 206

Appendix I
Answers to the exercises

Chapter 1: Introduction

1.1 (a) Largest power of two less than 234 � 128 � 27. Bit 7 � 1
This leaves 234 � 128 � 106. 64 is less than 106 so bit 6 � 1
This leaves 106 � 64 � 42. 32 is less than 42 so bit 5 � 1
This leaves 42 � 32 � 10. 16 is greater than 10 so bit 4 � 0

8 is less than 10 so bit 3 � 1
This leaves 10 � 8 � 2 4 is greater than 2 so bit 2 � 0

2 equals 2 so bit 1 � 1

Nothing left so bit 0 � 0

The resulting binary number is 11101010.

(b) OR …
Divide 234 by two. Leaves 117, remainder 0
Divide 117 by two. Leaves 58, remainder 1
Divide 58 by two. Leaves 29, remainder 0
Divide 29 by two. Leaves 14, remainder 1
Divide 14 by two. Leaves 7, remainder 0
Divide 7 by two. Leaves 3, remainder 1
Divide 3 by two. Leaves 1, remainder 1
Divide 1 by two. Leaves 0, remainder 1

So 11101010 is the binary equivalent.

1.2 (a) Largest power of two less than 157 � 128 � 27. Bit 7 � 1
This leaves 157 � 128 � 29. 64 is greater than 29 so bit 6 � 0

32 is greater than 29 so bit 5 � 0
16 is less than 29 so bit 4 � 1

This leaves 29 � 16 � 13. 8 is less than 13 so bit 3 � 1
This leaves 13 � 8 � 5. 4 is less than 5 so bit 2 � 1
This leaves 5 � 4 � 1. 2 is greater than 1 so bit 1 � 0

1 equals 1 so bit 0 � 1

The resulting binary number is 10011101.

(b) OR…
Divide 157 by two. Leaves 78, remainder 1
Divide 78 by two. Leaves 39, remainder 0
Divide 39 by two. Leaves 19, remainder 1
Divide 19 by two. Leaves 9, remainder 1

H6664-Appendix.qxd 8/13/05 12:33 PM Page 207

208 Appendix I: Answers to the exercises

Divide 9 by two. Leaves 4, remainder 1
Divide 4 by two. Leaves 2, remainder 0
Divide 2 by two. Leaves 1, remainder 0
Divide 1 by two. Leaves 0, remainder 1

So 10011101 is the binary equivalent.

1.3 There are 14 16s in 234, leaving 234 � 224 � 10. So bit 1 � 14 � E,
and bit 0 � 10 � A. The number is therefore EA.

1.4 There are 9 16s in 157, leaving 157 � 144 � 13. So bit 1 � 9, and bit
0 � 13 � D. The number is therefore 9D.

1.5 1110 � 14 � E. 1010 � 10 � A. The number is therefore EA.

1.6 1. One push button requires one input.
2. Four seven-segment displays require 4 � 7 � 11 outputs, creating a
total of 12 I/O pins which will just fit onto a PIC54.

1.7

Setup

Wait one second

Turn on buzzer

No

Yes

Change the state of LED
and turn off buzzer

Is this the fifth time
this has happened?

1.8 b’0001’ d’1’ 1 h
b’0010’ d’2’ 2 h
b’0100’ d’4’ 4 h
b’1000’ d’8’ 8 h
b’0001’ …and so on.

H6664-Appendix.qxd 8/13/05 12:33 PM Page 208

Appendix I: Answers to the exercises 209

1.9
Init clrf porta

clrf portb
clrf portc
movlw b’1001’
tris porta
movlw b’10000000’
tris portb
movlw b’00111110’
tris portc
retlw 0

Chapter 2: Exploring the PIC16F5x series

2.1 Bits 6 and 7 are always 0.
The TMR0 is counting externally, so bit 5 is 1.
It’s irrelevant whether the TMR0 is rising or falling edge triggered so bit
4 is 0 or 1 (let’s say 0).
No prescaling for the TMR0 is required, so bit 3 is 1.
WDT is not be used, so WDT prescaling is irrelevant.

The number to be moved into the option register is 00101000.

2.2 Bits 6 and 7 are always 0.
The TMR0 is counting externally, so bit 5 is 1.
It’s irrelevant whether the TMR0 is rising or falling edge triggered so bit
4 is 0 or 1 (let’s say 0).
Prescaling for the TMR0 is required, so bit 3 is 0.
256 � 4 � 1024, so prescaling of 4 is required, so bit 2 is 0, bit 1 is 0,
and bit 0 is 1.

The number to be moved into the option register is 00100001.

2.3 movlw b’10101000’ ; moves the correct number into the
; working reg.

xorwf portb, f ; toggles the correct bits in Port B

2.4 The ,f or ,w after the specified file register (e.g. comf porta, f) selects
the destination of the instruction result. ,f leaves the result in the file
register and ,w puts the result in the working register, leaving the file
register unchanged.

2.5

movlw b’00010100’ ; motorists: green on, others off
movwf portb ; pedestrians: red on, others off

H6664-Appendix.qxd 8/13/05 12:33 PM Page 209

210 Appendix I: Answers to the exercises

2.6
ButtonLoop btfss porta, 0 ; is the pedestrians’ button

; pressed?
goto ButtonLoop ; no, so loops back

2.7
bsf portb, 1 ; turns motorists’ amber light on
bcf portb, 2 ; turns motorists’ green light off

OR movlw b’00010010’ ; motorists: amber on, others off
movwf portb ; pedestrians: red on, green off

2.8
TimeDelay movwf PostX ; sets up variable postscaler

movlw d’240’ ; sets up fixed marker
movwf Mark240 ;

TimeLoop movfw Mark240 ; waits for TMR0 to count up
subwf TMR0, w ; 240 times
btfss STATUS, Z ;
goto TimeLoop ; hasn’t, so keeps looping

movlw d’240’ ; resets Mark240
addwf Mark240, f ;

decfsz PostX, f ; does this X times
goto TimeLoop ;

retlw ; returns after required time

2.9 movlw b’00100001’ ; motorists: red on, amber off
movwf portb ; pedestrians: green on, red off

2.10 movlw d’80’ ; sends message of 8 seconds to sub
call TimeDelay ; creates delay of required time

2.11 bsf portb, 1 ; turns on motorists’ amber light
bcf portb, 0 ; turns off motorists’ red light

OR movlw b’00100010’ ; motorists: red off, amber on
movwf portb ; pedestrians: green remains on

2.12 movlw d’8’ ; sets up Counter8 with an initial
movwf Counter8 ; value of 8

FlashLoop movlw d’5’ ; sends message of 0.5 second
; to sub

call TimeDelay ; creates delay of required time
movlw b’00100010’ ; toggles the states of the lights
xorwf portb, f ;

H6664-Appendix.qxd 8/13/05 12:33 PM Page 210

Appendix I: Answers to the exercises 211

decfsz Counter8, f ; runs through this loop 8 times
goto FlashLoop ;

2.13 dacgbfe

0 11101110
1 00101000 or 00000110
2 11011010
3 11111000
4 00111100
5 11110100
6 11110110
7 01101000
8 11111110
9 11111100
A 01111110
b 10110110
c 10010010
d 10111010
E 11010110
F 01010110

2.14 Clock cycle Instruction executed PC

1 0043 0044
2 – 0045
3 0045 0046
4 – 0048
5 0048 0049
6 0049 0050
7 – 0043
8 0043 0044 …

The cycle therefore repeats every 7 clock cycles.

2.15
Main btfss portb, 0 ; tests push button

goto Main ; if not pressed, loops back

2.16
incf Counter, f ;

2.17
btfsc Counter, 4 ; has Counter reached 16?
clrf Counter ; if yes, resets Counter

2.18
movfw Counter ; moves Counter into the

; working reg.

H6664-Appendix.qxd 8/13/05 12:33 PM Page 211

212 Appendix I: Answers to the exercises

call _7SegDisp ; converts into 7-seg. code
movwf portb ; displays value
goto Main ; loops back to Main

2.19
_7SegDisp

addwf PCL ; skips a certain number of
; instructions

retlw b’11111110’ ; code for 0
retlw b’01100000’ ; code for 1
retlw b’11011010’ ; code for 2
retlw b’11110010’ ; code for 3
retlw b’01100110’ ; code for 4
retlw b’10110110’ ; code for 5
retlw b’10111110 ; code for 6
retlw b’11100000’ ; code for 7
retlw b’11111110’ ; code for 8
retlw b’11110110’ ; code for 9
retlw b’11101110’ ; code for A
retlw b’00111110’ ; code for b
retlw b’10011100’ ; code for C
retlw b’01111010’ ; code for d
retlw b’10011110’ ; code for E
retlw b’10001110’ ; code for F

2.20
TestLoop btfsc portb, 0 ; tests push button

goto TestLoop ; still pressed, so keeps looping
goto Main ; released, so returns

2.21
Delay movlw FFh ; adds 255 to TMR0, leaving result in

addwf TMR0, w ; the working register. Then moves
movwf Mark255 ; the result into a marker register

TimeLoop movfw Mark255 ; waits for the TMR0 to advance 255
subwf TMR0, w ;
btfss STATUS, Z ;
goto TimeLoop ; keeps looping
retlw 0 ; returns from sub after 0.07 second

2.22
Pressed

call Update ; updates timing and display
btfss bounce ; is button safe to test?
goto Pressed ;
btfsc portb, 0 ; is button still pressed?

H6664-Appendix.qxd 8/13/05 12:33 PM Page 212

goto Pressed ; yes, so loops
call Primebounce ; activates de-bouncing routine
goto Released ; loops back to ‘Released’ section

2.23 The number required would be 00000011.

2.24
Display1 movfw Seconds ; takes the number out of

; Seconds
call _7SegDisp ; converts the number into 7-

; seg. code
movwf portb ; displays the value through

; Port B

movlw b’0001’ ; turns on correct display
movwf porta ;

retlw 0 ; returns

Display10 movfw TenSecond ; takes the number out of
; TenSecond

call _7SegDisp ; converts the number into 7-
; seg. code

movwf portb ; displays the value through
; Port B

movlw b’1000’ ; turns on correct display
movwf porta ;

retlw 0 ; returns

DisplayMin movfw Minutes ; takes the number out of
; Minutes

call _7SegDisp ; converts the number into 7-
; seg. code

movwf portb ; displays the value through
; Port B

movlw b’0100’ ; turns on correct display
movwf porta ;
retlw 0 ; returns

2.25
movlw d’10’ ; tests to see whether Seconds
subwf Seconds, w ; has reached 10 (i.e. whether

; or not ten seconds have
btfss STATUS, Z ; passed)
retlw 0 ; 10 seconds haven’t passed, so

; returns

Appendix I: Answers to the exercises 213

H6664-Appendix.qxd 8/13/05 12:33 PM Page 213

214 Appendix I: Answers to the exercises

clrf Seconds ; 10 seconds have passed, so
incf TenSecond, f ; resets Seconds and

; increments the number of
; tens of seconds

movlw d’6’ ; tests to see whether
subwf TenSecond, w ; TenSecond has reached 6

; (i.e. whether or not one
btfss STATUS, Z ; minute has passed)
retlw 0 ; 1 minute hasn’t passed, so

; returns

clrf TenSecond ; 1 minute has passed, so resets
incf Minutes, f ; TenSecond and increments

; the number of minutes

2.26

Start of program: setup

Acts like that type
of gate

Reads Port A, and
finds which gate it is

meant to be

2.27 The resulting number would be 00010000.

2.28
IORNOR movfw porta ; takes Input B

iorwf portb,w ; IORs with Input A
goto Common ; rest is as XOR/XNOR section

BUFFERNOT
movfw portb ; takes Input A unchanged
goto Common ; rest is as XOR/XNOR section

2.29
Main btfsc porta, 1 ; tests setting switch

goto GreenLed ; switch is high, so turn on
; green LED

bsf portb, 1 ; switch is low, so turn on red
; LED

2.30
GreenLed bsf portb, 0 ; turns on green LED

H6664-Appendix.qxd 8/13/05 12:33 PM Page 214

Appendix I: Answers to the exercises 215

goto TenthSecond ; loops back to main body of
; program

2.31
TenthSecond movfw TMR0 ; is TMR0 at 0?

btfss STATUS, Z ;
goto Continue ;

incf TMR0 ;
decfsz Post256 ;
goto Continue ;
clrf portb ; it has, so turns off all LEDs

Continue etc …

2.32
btfsc porta, 1 ; tests setting switch
goto TenthSecond ; disabled, so doesn’t test

; trigger input

2.33
btfss porta, 0 ; tests to see whether motion

; sensor has been set
goto TenthSecond ; not triggered, so loops back

2.34
bsf porta, 3 ; turns on siren

EndLoop clrwdt ; resets watchdog timer
goto EndLoop ; constantly loops

2.35 bsf STATUS, PA0 ; selects Page 3
bsf STATUS, PA1 ; selects Page 3
goto Earth ; now able to jump to Earth

2.36
Start btfsc STATUS, 4 ; we need only test the

; TimeOut bit
call PreInit ; set, so calls subroutine
etc. ; clear, so skips subroutine

2.37 bcf FSR, 5 ; selects GPFs 50-5F
bsf FSR, 6 ; selects GPFs 50-5F
movfw Soldier ; copies number from Soldier
bsf FSR, 5 ; selects GPFs 70-7F
movwf Spy ; copies number into Spy

Chapter 3: The PIC12F50x series

3.1
RandomScroll

incf Ran1, f ; quickly increments Ran1
; & 2

H6664-Appendix.qxd 8/13/05 12:33 PM Page 215

216 Appendix I: Answers to the exercises

movlw d’6’ ; has Ran1 reached 6?
subwf Ran1, w ;
btfss STATUS, Z ;
retlw 0 ; no, so returns
clrf Ran1 ; yes, so resets Ran1
incf Ran2, f ;
movlw d’6’ ; has Ran2 reached 6?
subwf Ran2, w ;
btfss STATUS, Z ;
retlw 0 ; no, so returns
clrf Ran2 ; yes, so resets Ran2
retlw 0 ;

3.2
RandomGen

movlw d’63’ ; new Random �
addwf Random, w ; 63 + old Random x 3
addwf Random, w ;
addwf Random, f ;
retlw 0 ;

3.3
Slowdown incf PostVal, f ; increments PostVal until

btfsc PostVal, 5 ; it reaches 32, upon which
clrf PostVal ; it is reset to 0
retlw 0 ;

3.4
Display btfss TMR0, 4 ; uses bit 4 of TMR0 to choose

goto Die2 ; which die
movfw Die1num ; gets number to display
call Code1 ; converts to code
movwf GPIO ; outputs
retlw 0 ;

Die2 movfw Die2num ; gets number to display
call Code2 ; converts to code
movwf GPIO ; outputs
retlw 0 ;

; pin arrangement is: CTLR, A, -, B, C, D for GPIO 5:0

Code1 addwf PCL, f ;
retlw b’100000’ ; all off
retlw b’110000’ ; 1
retlw b’100100’ ; 2
retlw b’110100’ ; 3
retlw b’100110’ ; 4
retlw b’110110’ ; 5

H6664-Appendix.qxd 8/13/05 12:33 PM Page 216

Appendix I: Answers to the exercises 217

retlw b’100111’ ; 6
retlw b’110111’ ; all on

Code2 addwf PCL, f ;
retlw b’010111’ ; all off
retlw b’000111’ ; 1
retlw b’010011’ ; 2
retlw b’000011’ ; 3
retlw b’010001’ ; 4
retlw b’000001’ ; 5
retlw b’010000’ ; 6
retlw b’000000’ ; all on

Chapter 4: Intermediate operations using the PIC12F675

4.1 bsf STATUS, RP0 ; goes to Bank 1
bsf OPTION_REG, 6 ; selects rising edge INT trigger
bcf STATUS, RP0 ; back to Bank 0
movlw b’10010000’ ; enables INT and global interrupts
movwf INTCON ;
sleep ; goes to sleep
nop ; this line is executed upon wake-up,

; but it does nothing

4.2
Init bsf STATUS, RP0 ; goes to Bank 1

call 3FFh ; calls calibration address
movwf OSCCAL ; moves w. reg into OSCCAL

movlw b’011110’ ; GP5: Buzzer, GP3: Reset button
movwf TRISIO ; GP1,2,4: LEDs/Buttons (inputs to

; start with), GP0: LED enable
movlw b’010110’ ; GP1,2,4 have weak pull-ups
movwf WPU ; enabled

movlw b’00000111’ ; pull-ups enabled,TMR0 prescaled
movwf OPTION_REG ; by maximum amount (256)
clrf PIE1 ; turns off peripheral interrupts
movlw b’010110’ ; enables GPIO change interrupt on
movwf IOC ; GP1, GP2 and GP4 only
clrf VRCON ; turns off comparator V. ref.
clrf ANSEL ; makes GP0:3 digital I/O pins

bcf STATUS, RP0 ; back to Bank 0
clrf GPIO ; resets input/output port
movlw b’00001000’ ; enables GPIO change interrupt

; only
movwf INTCON ;
movlw b’00000111’ ; turns off comparator

H6664-Appendix.qxd 8/13/05 12:33 PM Page 217

218 Appendix I: Answers to the exercises

movwf CMCON ;
clrf T1CON ; turns off TMR1
clrf ADCON0 ; turns off A to D converter

retfie ; returns, enabling interrupts

4.3 btfss INTCON, 0 ; checks GPIO interrupt flag
goto Timer ; TMR0 interrupt occurred…

; GPIO interrupt occurred…

4.4 bsf STATUS, RP0 ; moves to Bank 1
movlw b’001000’ ; makes GP1,2,4 outputs
movwf TRISIO ;
bcf STATUS, RP0 ; moves to Bank 0

movfw temp ; moves temp back into GPIO,
addlw b’100001’ ; sets GP5 and GP0 (turns on
movwf GPIO ; buzzer and enables LEDs)

4.5 movlw b’00100000’ ; enables TMR0 interrupt, disables
movwf INTCON ; the GPIO change interrupt
retfie ; returns, enabling GIE

4.6
Timer bcf INTCON, 2 ; resets TMR0 interrupt flag

decfsz Post16, f ; is this the 16th TMR0 interrupt
retfie ;

bcf GPIO, 5 ; turn off buzzer
clrf INTCON ; turns off all interrupts
sleep ; goes into low power mode

4.7 bsf STATUS, RP0 ; goes to Bank 1
movlw 08h ; moves the address to be read (08h)
movwf EEADR ; into EEADR
bsf EECON1, 0 ; reads EEPROM
movlw d’5’ ; adds 5 to the value which
addwf EEDATA, f ; was read

incf EEADR ; address to be written to is 09h
bsf EECON1, 2 ; enables a write operation
bcf INTCON, 7 ; disables global interrupts
movlw 55h ; now follows the ‘safe combination’
movwf EECON2 ;
movlw AAh ;
movwf EECON2 ;
bsf EECON1, 1 ; starts the write operation

EELoop
btfsc EECON1, 1 ; has write operation finished?
goto EELoop ; no, still high, so keeps looping

H6664-Appendix.qxd 8/13/05 12:33 PM Page 218

Appendix I: Answers to the exercises 219

4.8 INTCON: b’00010000’
(only the INT interrupt is enabled – don’t enable global yet)

TRISIO: b’00011110’
(GP0 is the only output)

WPU: b’00000000’
(not used)

OPTION_REG: b’11000111’
(for counting minutes, prescale TMR0 by maximum)

4.9
Main bsf STATUS, RP0 ; selects Bank 1

clrf EEADR ; selects EEPROM address 00h
bsf EECON1, 0 ; initiates an EEPROM read
movfw EEDATA ; reads EEDATA
bcf STATUS, RP0 ; selects Bank 0
btfss STATUS, Z ; is it 0?
goto Active ; no, so goes to Active

bcf GPIO, 0 ; turns off GP0
sleep ; goes to sleep
nop ;
goto Main ; loops back to Main

4.10
Active bsf GPIO, 0 ; card has minutes

btfss GPIO, 1 ; is a call in progress?
goto Active+1 ; no, so keeps waiting

movfw Mark125 ; has one minute passed?
subwf TMR0, w ;
btfss STATUS, Z ;
goto Active+1 ; no, so keeps looping

movlw d’125’ ;
addwf Mark125 ;
decfsz Post125 ;
goto Active+1 ; no, so keeps looping

movlw d’125’ ;
movwf Post125 ;
decfsz Post15 ;
goto Active ; no, so keeps looping

4.11 movlw d’15’ ; resets final postscaler
movwf Post15 ;

bsf STATUS, RP0 ; goes to Bank 1
clrf EEADR ; selects EEPROM address 00h
bsf EECON1, 0 ; reads EEPROM address 00h

H6664-Appendix.qxd 8/13/05 12:33 PM Page 219

220 Appendix I: Answers to the exercises

decf EEDATA ; subtracts 1 minute from card

bsf EECON1, 2 ; enables a write operation
bcf INTCON, 7 ; disables global interrupts

movlw 55h ; now follows the ‘safe
movwf EECON2 ; combination’
movlw AAh ;
movwf EECON2 ;
bsf EECON1, 1 ; starts the write operation
bsf INTCON, 7 ; enables global interrupts

EELoop btfsc EECON1, 1 ; has write operation finished?
goto EELoop ; no, still high, so keeps looping
bcf STATUS, RP0 ; back to Bank 0
goto Main ; loops back to start

4.12 bcf INTCON, 1 ; resets INT interrupt flag
bcf STATUS, RP0 ; makes sure we’re in Bank 0
movfw GPIO ; reads value of GPIO
movwf temp ;
rrf temp, f ; rotates right three times…
rrf temp, f ;
rrf temp, w ; ...leaving result in w. reg
andlw b’000111’ ; masks bits 3–5

4.13
CardValue addwf PCL, f ; returns with new number of

retlw d’2’ ; minutes for the card
retlw d’5’ ;
retlw d’10’ ;
retlw d’20’ ;
retlw d’40’ ;
retlw d’60’ ; one hour
retlw d’120’ ; two hours
retlw 0 ; (erases card)

4.14 INTCON: b’01000000’
(peripheral interrupts enabled – don’t enable global yet)

PIE1: b’01000000’
(enables A/D conversion interrupt)

TRISIO: b’010000’
(GP0:2 are LEDs, GP4 is an analogue input, GP3 and 5
are unused)

WPU: 0 (weak pull-ups are off)

H6664-Appendix.qxd 8/13/05 12:33 PM Page 220

OPTION_REG: b’10000000’
(Weak pull-ups disabled. No timing functions are used)

ADCON0: b’00001101’
(Turns on ADC. Selects channel AN3, relative to VDD. Left-justified
answer)

ANSEL: b’00011000’
(A/D clock: Fosc/8 � 2 �s; AN3 (GP4) is analogue input, others are
digital)

4.15 bcf STATUS, RP0 ; selects Bank 0
bcf PIR1, 6 ; clears A/D interrupt flag

4.16 42°C � 0.42 V
0.42 V / 5 V � 0.084
0.084 � 1024 � 86

d’86’ � b’00010101 1000000’ � 0x1580

This translates to 0x15 in ADRESH and 0x80 in ADRESL

4.17 bsf STATUS, RP0 ; goes to Bank 1
movlw 0x80 ; subtracts lower byte
subwf ADRESL, w ;
comf STATUS, w ; inverts carry flag (bit

0 of STATUS)
andlw b’00000001’ ; masks all other bits
bcf STATUS, RP0 ; (goes to Bank 0)
addlw 0x15 ; add this to the number we are
subwf ADRESH, w ; subtracting from the higher

byte
btfss STATUS, C ;
goto OK ; ADRESH:L � 0x1580,

; →OK
goto Hot ; ADRESH:L � 0x1580,

; →Hot!

4.18
Cold movlw b’000001’ ; turns on ‘cold’ LED

movwf GPIO ;
goto prereturn ;

OK movlw b’000010’ ; turn on ‘OK’ LED
movwf GPIO ;
goto prereturn ;

Hot movlw b’000100’ ; turn on ‘Hot’ LED
movwf GPIO ;
goto prereturn ;

Appendix I: Answers to the exercises 221

H6664-Appendix.qxd 8/13/05 12:33 PM Page 221

Some users will be familiar with BASIC programming, indeed there are several
PIC microcontroller development kits in which programs are written in BASIC,
and then converted into assembly language. This conversion process can be very
inefficient, and so naturally I would recommend writing PIC programs directly
in assembly. To assist those with a background in BASIC programming, I have
provided a table showing how to write some BASIC operations in assembly.

Appendix J
Some BASIC commands

in assembly

BASIC Assembly language

GOTO MAIN goto MAIN

GOSUB INIT call Init

RETURN retlw 0

LET X � 9 movlw d’9’
movwf X

LET X � X � 1 incf X, f

LET X � X � 10 movlw d’10
addwf X, f

LET X � Y movfw Y
movwf X

IF X � 10 THEN movlw d’10’
GOTO ARM subwf X, w

ELSE btfsc STATUS, Z
GOTO DISARM goto ARM

END IF goto DISARM

FOR X � 1 TO 30 movlw d’1’
. . . ‘ add stuff here movwf X

NEXT X Loop . . . ; add stuff here
incf X, f
movlw d’31’
subwf X, w
btfss STATUS, Z
goto Loop

DO Loop . . . ; add stuff here
. . . ‘ add stuff here movlw d’10’

WHILE (X � 10) subwf X, w
btfss STATUS, C
goto Loop

H6664-Appendix.qxd 8/13/05 12:33 PM Page 222

7 seg display, 6–7, 44–45, 48, 55–56
#define, 59
__config, 22, 28, 71, 93

active low, 25, 76
A/D conversion, 100, 105, 122–8
ADCON0/1, 123–4, 201
addition, 36, 75
addlw, 105
address, 17
addwf, 36
ADRESL/H, 123–4
analogue inputs, 100
AND, 61–62
andlw, 62
andwf, 62
ANSEL, 123–4, 201
.asm, 20–22
assembling, 5, 10–11, 15–17, 21–22

b, 82
banks, 101–2
base 2, see binary
base 10, see decimal
base 16, see hexadecimal
baud rate, 141
bcf, 30
BFMP, 24, 28
binary, 2–5, 12, 18
bit, 3–5
blowing the PIC, 6, 10, 23–24, 28–29
bounce, see button bounce
bsf, 14, 20–21
btfsc/btfss, 29–30
buffer, 66
button bounce, 53–54, 58–59
byte, 3–5

call, 18, 42, 47, 78
capture, 139
carry/borrow flag, 67, 74–76
ceramic oscillators, 26

clock cycle, 16, 47, 53, 83–84
clock frequency, 16, 24–26, 34, 53
clrf, 18
clrwdt, 70
CMCON, 110, 129–30, 200
code protection, 22
comf, 38–39
comments, 14, 35
common anode/cathode, 44–45
comparator, 100, 105, 110, 129–30
compare, 139–40
complement, 38
conditional jump see jump
configuration bits, 22, 23, 28,

71, 93
crystal, 16, 22, 25, 26, 37

decf, 73
decfsz, 35–36, 40
decimal, 2–5, 144
declaring, 16, 10, 59
decrement, 35
device reset timer, 25
digit carry/borrow flag, 74–76
DRT, see device reset timer

EEADR, 116
EECON0/1, 116, 191
EEDATA, 116
EEPROM, 100, 105, 116–18, 121
emulating, 5, 23
END, 19
equ, 16, 37, 59
erase, 29
error, 10, 14, 22
exclusive NOR, 66
exclusive OR, 39

file register, 10, 11, 32
flags, 35, 59, 74, 105–6
Flash, 10
flowchart, 5, 7, 9–10

Index

H6664-Index.qxd 8/19/05 10:50 AM Page 223

FSR, 80–82
full-duplex, 140

general purpose file register, 11–12,
36–37, 40, 59, 81–82, 93

goto, 17–18, 20–21, 30, 47, 78, 82
GPIO, 92

hex code, 10
hex file, 10, 22, 28–29
hexadecimal, 2–5, 83, 194

ICEPIC, 23
ICSP, see in-circuit serial programming
if/then, 9, 29–30
ignoring bits, see masking
in-circuit serial programming, 24, 28,

94, 205–6
incf, 52
incfsz, 73
include, 16
include file, 16, 23
inclusive NOR, 65
inclusive OR, 39
increment, 52
INDF, 80–81
indirect addressing, 80–81
Init, 18–19, 21
inputs, 5, 6, 12, 18–20
instruction, 1, 13–14, 17
INTCON, 106, 197
interrupt, 100, 105–9

A/D Conversion, 125
EEWrite, 118
external, 107
global, 107, 109
GPIO change, 113–15
peripheral, 106–7, 118, 125, 130–1
TMR0, 107, 115

interrupt flag, 105–6, 108
interrupt service routine, 105, 107–8
IOC, 107
I/O pin, 5–7, 12, 18–20, 24, 30, 56, 69,

90, 92
IOR, see inclusive OR
isr, see interrupt service routine

jump, 7–8, 30, 78
conditional, 9
variable, 47–48, 50, 62, 104

label, 17, 20
list, 16
listing file, 22
literal, 14, 18
logic command, 39, 61, 65–66
logic level, 5, 12
lookup file, 15
lookup table, 47–48
lsb, 3

mark-space, 140
masking, 61–62
MCLR, 25, 28, 55, 73, 75, 79, 93, 135
memory, 10, 11

program, see program memory
random access, see RAM
read only, see ROM

message, 10
microcontroller, 1
movf/movfw, 31–32
movlw, 18, 34
movwf, 32
MPASM, 10
MPLab, 10, 21, 22, 31, 40, 121
MPLab SIM, 23, 121
msb, 3, 12
music, 122

NAND, 65
nibble, 4, 12, 75–76
nop, 73
NOR, see inclusive NOR
NOT, 66
number conversion, 2–5, 194

one-time programmable, 10
OPTION, 32–34, 37, 70, 92–93, 102–3,

107, 195
org, 17–18, 107–8
OSCCAL, 91–92, 103–4
OSC1, 26
OSC2, 27
oscillator, 16, 22, 25–26, 33, 37, 91, 103
OTP, see one-time programmable
outputs, 5, 6, 12, 18–20

pages, 50, 74, 76–78, 104
parity bit, 140
PCL, see program counter
PCLATH, 104

224 Index

H6664-Index.qxd 8/19/05 10:50 AM Page 224

PCON, 135, 198
PIC16F5x, 12, 17–18, 24, 32, 49, 76,

189, 191
PIC12F508, 90–93, 189, 191
PIC12F675, 100–105, 189, 191
PIC16F627, 139, 190–1
PICKit1 Flash Starter Kit, 24, 28,

128–9
PIC Master, 23
PIC MCP, 24
PIC Press, 10, 20, 143–4
PIC Start, 10, 24, 28
PIE1, 106, 198
PIR1, 106, 198
pipelining, 46–47
pop, 49
Port A, see ports
Port B, see ports
Port C, see ports
ports, 12, 18–19, 21, 31
power supply, see supply voltage
power-up, 59, 75, 135

timer, 25
postscaling, 35–36, 43
prescaling, 33–34, 70
program counter, 46–50, 62, 76–77,

104
program memory, 10, 17, 46–47, 76–78
programming steps, 2, 5, 10, 23
project flowcharts, 21, 29, 38, 41, 52, 54,

56, 58, 72, 87–89, 95, 114, 120,
126, 136

project circuit diagrams, 28, 30, 38, 42,
51, 57, 66, 71, 86, 96, 113, 119,
125, 137

pull-ups, 93, 103
pulse width modulation, 139–40
push, 49
PWM, see pulse width modulation

quickbuild, 22

RAM, 116
random numbers, 95–96
RC, see resistor/capacitor
reset, 17–18, 25, 69–70, 79
reset vector, 17–18, 25, 103, 107
retfie, 108
retlw, 19, 43, 47–48, 79
return, 108

rising/falling edge, 33
rlf, 67
rolling over, 32
ROM, 116
rotating bits, 67
rrf, 67
RTCC, 25

semicolon, 14
serial communication, 140–1
SFR, see special function register
simulating, 5, 23, 30, 40
sleep, 73, 90–92, 105, 109
source file, see assembly source
special function register, 11, 101–2
stack, 48–50, 78–79, 105
STATUS, 35, 67, 74, 77, 90–91,

109–10, 196
stimulus, 39
strobing, 7, 55–56, 61
sublw, 105
subtraction, 35–36, 76
subroutine, 18, 42–43, 45, 48–50, 78,

107–8
subwf, 35
supply voltage, 24–25
swapf, 68, 110

T1CON, 138
template, 13, 20, 92, 110–2
testing, 29–30, 35, 52
threshold, 127, 132, 135
time delay, 36–37, 43, 83–85, 131
timing, 32, 34–37, 43, 63, 83–85
T0CKI, 25, 32–33, 93
TMR0, 32–36, 61, 63, 107
TMR1, 100, 105, 138–9
toggling, 38–39, 60
tris, 18–19, 93, 103
TRISIO, 103
truth table, 39, 61, 65–66

USART, 140–1
USB, 24, 28
UV erasable, 10

voltage reference, 100, 122,
129–30, 199

VPP, 28
VRCON, 130, 199

Index 225

H6664-Index.qxd 8/19/05 10:50 AM Page 225

watchdog timer, 22, 33–34, 69–70, 73,
75, 79, 105

warning, 10
WDT, see watchdog timer
working register, 11, 35, 36, 43, 45, 48,

109–10
WPU, 102–3

XNOR, see exclusive NOR
XOR, see exclusive OR
xorlw, 39
xorwf, 39

zero flag, 35, 74

226 Index

H6664-Index.qxd 8/19/05 10:50 AM Page 226

	Front cover
	Title page
	Copyright page
	Table of contents
	Acknowledgements
	Preface to the third edition
	1 Introduction
	Some tips before starting
	Binary, decimal and hexadecimal
	An 8-bit system

	Initial steps
	Choosing your PIC microcontroller
	Writing
	Assembling

	The file registers
	A program template

	2 Exploring the PIC5x series
	Your first program
	Configuration bits

	Testing the program
	Simulating
	Emulating
	Blowing the PIC microcontroller

	Hardware
	Using the testing instructions
	Timing
	Seven-segment displays
	The program counter
	Subroutines and the stack
	Logic gates
	The watchdog timer
	Final instructions
	The STATUS file register
	The carry and digit carry flags
	Pages
	What caused the reset?
	Indirect addressing
	Some useful (but not vital) tricks
	Final PIC5x program – 'Bike buddy'

	3 The PIC12F50x series (8-pin PIC microcontrollers)
	Differences from the PIC16F54
	The STATUS register
	The OSCCAL register
	Inputs and outputs
	The OPTION register
	The TRIS register
	The general purpose file registers
	The MCLR
	Configuration bits

	Example project: 'PIC dice'
	Random digression

	4 Intermediate operations using the PIC12F675
	The inner differences
	The OPTION and WPU registers
	The TRISIO register
	Calibrating the internal oscillator
	PCLATH: Higher bits of the program counter
	Remaining differences

	Interrupts
	INTCON
	The interrupt service routine
	Interrupts during sleep
	Maintaining the STATUS quo
	New program template
	Example project: 'Quiz game controller'

	EEPROM
	EECON1
	Reading from the EEPROM
	Writing to the EEPROM
	Example project: 'Telephone card chip'
	Further EEPROM examples: Music maker
	Power monitor

	Analogue to digital conversion
	ADCON0
	ANSEL: Analogue select register
	A/D conversion interrupt
	Example project: 'Bath monitor'

	Comparator module
	Voltage reference
	Comparator interrupts
	Comparator example: 'Sun follower'
	Comparator example: Reading many buttons from one pin

	Final project: Intelligent garden lights

	5 Advanced operations and the future
	Extra timers: TMR1 & …
	Capture/Compare/PWM
	USART: Serial communication
	Programming tips

	6 A PIC development environment
	7 Sample programs
	Program A: LedOn – Turns an LED on
	Program B: PushButton (1.0) – If a push button is pressed, turns on an LED
	Program C: PushButton (2.0) – Shorter version of PushButton 1.0
	Program D: Timing – LED states toggled every second, and buzzer on every five seconds
	Program E: Traffic – Pedestrian traffic lights junction is simulated
	Program F: Counter (1.0) – Counts signals from a push button, resets after 16
	Program G: Counter (2.0) – Stop reading button twice (otherwise, as Counter 1.0)
	Program H: Counter (3.0) – Solves button bounce (otherwise, as Counter 2.0)
	Program I: StopClock – A stop clock displaying tenths of seconds to minutes
	Program J: LogicGates – Acts as the eight different gates
	Program K: Alarm – An alarm system which can be set or disabled
	Program L: BikeBuddy – A speedometer and mileometer for bikes
	Program M: PIC Dice – A pair of dice are simulated
	Program N: Quiz – Indicates which of three push buttons has been pressed first
	Program O: Phonecard – To act like a phonecard which decrements a file register
	Program P: TempSense – Displays whether temperature is too hot, too cold or OK
	Program Q

	Appendix A: Specifications of some Flash PIC microcontrollers
	Appendix B: Pin layouts of some Flash PIC microcontrollers
	Appendix C: Instructions glossary
	Appendix D: Number system conversion
	Appendix E: Bit assignments of various file registers
	Appendix F: If all else fails, read this
	Appendix G: Contacts and further reading
	Appendix H: PICKit™ 1 & BFMP Info
	Appendix I: Answers to the exercises
	Appendix J: Some BASIC commands in assembly
	Index

