This E-Book and More

From

http://ali-almukhtar.blogspot.com

This E-Book and More

From

http://ali-almukhtar.blogspot.com

Data Acquisition
Techniques Using PCs

Second Edition

This Page Intentionally Left Blank

Data Acquisition

Techniques Using PCs
Second Edition

Howard Austerlitz
Parker Hannifin Corporation
Parker Aerospace

Electronic Systems Division
Smithtown, New York

ACADEMIC
PRESS

An imprint of Elsevier Science
Amsterdam Boston London New York Oxford Paris San Diego
San Francisco Singapore Sydney Tokyo

This book is printed on acid-free paper.
Copyright 2003, 1991, Elsevier Science (USA).

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and
retrieval system, without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should be mailed to:
Permissions Department, Harcourt, Inc., 6277 Sea Harbor Drive, Orlando, Florida
32887-6777.

Academic Press

An imprint of Elsevier Science

525 B Street, Suite 1900, San Diego, California 92101-4495, USA
http://www.academicpress.com

Academic Press
An imprint of Elsevier Science
84 Theobald’s Road, London WC1X 8RR, UK

http://www.academicpress.com

Library of Congress Control Number: 2002107710
International Standard Book Number: 0-12-068377-6

PRINTED IN THE UNITED STATES OF AMERICA

02 03 04 05 06 9 8 7 6 5 4 3 2 1

This book is dedicated to my wife, Kiel,
whose guidance and understanding
continue to make it all possible

This Page Intentionally Left Blank

Contents

Preface to the Second Edition xi

Introduction to Data Acquisition

CHAPTER 1

Analog Signal Transducers

CHAPTER 2

2.1 Temperature Sensors 7

2.2 Optical Sensors 8

2.3 Force and Pressure Transducers 13
2.4 Magnetic Field Sensors 16

2.5 Ionizing Radiation Sensors 18

2.6 Position (Displacement) Sensors 19
2.7 Humidity Sensors 22

2.8 Fluid Flow Sensors 23

2.9 Fiber Optic Sensors 24

2.10 Other New Sensor Technologies 26

CHAPTER 3

Analog Signal Conditioning

3.1 Signal Conditioning Techniques 29
3.2 Analog Circuit Components 30
3.3 Analog Conditioning Circuits 37

vii

viii

Analog/Digital Conversions

4.1
4.2
43

The PC

5.1
52
53
54
55
5.6

Interfacing Hardware to a PC Bus

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Interfacing Software to the PC

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Contents

CHAPTER 4

Digital Quantities 51
Data Conversion and DACs 55
ADCs 62

CHAPTER 5

IBM PC/XT/AT and Compatible Computers 80
The IBM PC/XT 81

The IBM PC/AT 89

BIOS 93

PCI and Other Local Buses 95

PC Peripherals 102

CHAPTER 6

I/0 Data Transfers 108

Memory Data Transfers 110

A Simple, 8-Bit I/O Port Design 111

DMA 115

Wait State Generation 115

Analog Input Card Design 117

16-Bit Data Transfers on ISA Computers 118
Plug and Play 120

Interfacing to the PCI Bus 121

CHAPTER 7

DOS-Based PC Software Layers 123
Software Interrupts 125

Polled versus Interrupt-Driven Software 128
Special DOS Programs 132

DOS 133

Overcoming DOS Memory Limitations 135
Protected-Mode Operating Systems 137

Standard Hardware Interfaces

Contents ix

CHAPTER 8

8.1 Parallel versus Serial Digital Interfaces 142
8.2 Parallel Interfaces 144

8.3 Standard Serial Interfaces 163

8.4 PC Networks 184

CHAPTER 9

Data Storage and Compression Techniques

9.1 DOS Disk Structure and Files 191

9.2 Common DOS File Types 195

9.3 Windows File Systems 199

9.4 Data Compression Techniques 202

9.5 Commercial Data Compression Software 221

Data Processing and Analysis

CHAPTER 1 0

10.1 Numerical Representation 222
10.2 Data Analysis Techniques 229

Commercial Data Acquisition Products

CHAPTER 1 1

11.1 Commercial Data Acquisition Hardware Products

11.2 Commercial Data Acquisition Software Products

11.3 How to Choose Commercial Data Acquisition
Products 302

Other PC Configurations and Hardware

252
271

CHAPTER 1 2

for Data Acquisition

12.1 Alternative PC Architectures and Processors 304

12.2 Notebook PCs and PCMCIA Cards 312
12.3 Industrial and Embedded PCs 314
124 Image Capture Products 322

X Contents

CHAPTER 1 3

Computer Programming Languages

13.1 Popular Programming Languages 330
13.2 Programming for Microsoft Windows 352
13.3 Considerations for Writing Computer Programs 357

CHAPTER 1 4

PC-Based Data Acquisition Applications

14.1 Ultrasonic Measurement System 362

14.2 Electrocardiogram Measurement System 369

14.3 Commercial Equipment Using Embedded PCs 374
14.4 Future Trends in PC-Based Data Acquisition 383

APPENDIX
Data Acquisition and Related

PC Product Manufacturers 385

Bibliography 401
Index 405

Preface to the
Second Edition

Many things have changed in the decade since the first edition of Data
Acquisition Techniques Using PCs was published. PCs based on Intel micro-
processors and Microsoft Windows (the ubiquitous “Wintel” platform) have
become the dominant standard in small computers. They have also become
the most common computers in labs, offices, and industrial settings for data
acquisition and general-purpose applications. The world of PCs has continued
to evolve at a frenetic pace and the data acquisition market has changed along
with it, albeit more gradually (for example, ISA data acquisition cards are
still readily available).

Some of the changes in this edition include minimizing the amount of
material covering now-obsolete PCs (such as IBM’s Micro Channel PS/2 line
and Apple’s NuBus-based Macintosh line) while adding information about
more current standards (such as the PCI bus, the USB interface, and the Java
programming language). Most importantly, I have completely updated infor-
mation about commercially available data acquisition products (both hard-
ware and software) in Chapter 11. The listing of hardware and software data
acquisition product manufacturers in the Appendix is now twice the size it
was in the original edition.

This book is intended as a tutorial and reference for engineers, scientists,
students, and technicians interested in using a PC for data acquisition, anal-
ysis, and control applications. It is assumed that the reader knows the basic
workings of PCs and electronic hardware, although these aspects will be
briefly reviewed here. Several sources listed in the bibliography are good
introductions to many of these topics (both hardware and software).

This book stresses “real” applications and includes specific examples.
It is intended to provide all the information you need to use a PC as a data
acquisition system. In addition, it serves as a useful reference on PC technol-
ogy. Since the area of software is at least as important as hardware, if not
more so, software topics (such as programming languages, interfacing to a
PC’s software environment, and data analysis techniques) are covered in detail.

xi

xii Preface

I wish to acknowledge the help I received in writing this new edition.
My thanks to Academic Press for patiently seeing this project through. I am
grateful for the assistance I received from many manufacturers in the data
acquisition field, including Keithley Instruments, Laboratory Technologies,
and The Math Works. Finally, I want to acknowledge Orndorff, the laptop
editor, who kept me company during all those late nights at my PC.

Howard Austerlitz

CHAPTER

Introduction to
Data Acquisition

Data acquisition, in the general sense, is the process of collecting information
from the real world. For most engineers and scientists these data are mostly
numerical and are usually collected, stored, and analyzed with a computer.
The use of a computer automates the data acquisition process, enabling the
collection of more data in less time with fewer errors. This book deals solely
with automated data acquisition and control using personal computers (PCs).
We will primarily concern ourselves with IBM-style PCs based on Intel
microprocessors (80x86 and Pentium families) running Microsoft operating
systems (MS-DOS and Windows). In general, the information in this book
is applicable to desktop, laptop, and embedded PCs. However, many plug-in
PCI data acquisition cards will also work in newer Apple Macintosh comput-
ers, with appropriate software drivers. In addition, USB, IEEE-1394 (FireWire)
and PCMCIA-based data acquisition hardware will work with any style of
computer which supports that interface, as long as software drivers are avail-
able for that platform.

An illustrative example of the utility of automated data acquisition is
measuring the temperature of a heated object versus time. Human observers are
limited in how fast they can record readings (say, every second, at best) and
how much data can be recorded before errors due to fatigue occur (perhaps after
5 minutes or 300 readings). An automated data acquisition system can easily
record readings for very small time intervals (i.e., much less than a millisecond),
continuing for arbitrarily long time periods (limited mainly by the amount of
storage media available). In fact, it is easy to acquire foo much data, which can
complicate the subsequent analysis. Once the data are stored in a computer,
they can be displayed graphically, analyzed, or otherwise manipulated.

2 CHAPTER 1 Introduction to Data Acquisition

Most real-world data are not in a form that can be directly recorded by
a computer. These quantities typically include temperature, pressure, distance,
velocity, mass, and energy output (such as optical, acoustic, and electrical
energy). Very often these quantities are measured versus time or position. A
physical quantity must first be converted to an electrical quantity (voltage,
current, or resistance) using a sensor or transducer. This enables it to be
conditioned by electronic instrumentation, which operates on analog signals
or waveforms (a signal or waveform is an electrical parameter, most often a
voltage, which varies with time). This analog signal is continuous and mono-
tonic, that is, its values can vary over a specified range (for example, some-
where between —5.0 volts and +3.2 volts) and they can change an arbitrarily
small amount within an arbitrarily small time interval.

To be recorded (and understood) by a computer, data must be in a digital
form. Digital waveforms have discrete values (only certain values are allowed)
and have a specified (usually constant) time interval between values. This
gives them a “stepped” (noncontinuous) appearance, as shown by the digitized
sawtooth in Figure 1-1. When this time interval becomes small enough, the
digital waveform becomes a good approximation to the analog waveform (for
example, music recorded digitally on a CD). If the transfer function of the
transducer and the analog instrumentation is known, the digital waveform can
be an accurate representation of the time-varying-quantity to be measured.

The process of converting an analog signal to a digital one is called
analog-to-digital conversion, and the device that does this is an analog-to-
digital converter (ADC). The resulting digital signal is usually an array of
digital values of known range (scale factor) separated by a fixed time interval
(or sampling interval). If the values are sampled at irregular time intervals,
the acquired data will contain both value and time information.

The reverse process of converting digital data to an analog signal is
called digital-to-analog conversion, and the device that does this is called a

(a) Analog Waveform (b) Digitized Waveform

Figure 1-1 Comparison of analog and digitized waveforms: (a} sawtooth analog
waveform with (b) a coarse digitized representation.

Introduction to Data Acquisition 3

(Keyboard] [Display] [Slt\g?:;e J

L T T

COMPUTER

T I I

Digital Digital
{ Inputs J[ADC [DAC J[Outputsj

[T L

Multiplexer Multiplexer
Analog Inputs | | Analog Outputs

inputs from Sensors Outputs to Controls

Figure 1-2 Simplified block diagram of a data acquisition system.

digital-to-analog converter (DAC). Some common applications for DACs
include control systems, waveform generation, and speech synthesis.

A general-purpose laboratory data acquisition system typically consists
of ADCs, DACs, and digital inputs and outputs. Figure 1-2 is a simplified
block diagram of such a system. Note that additional channels are often added
to an ADC via a multiplexer (or mux), used to select which one of the several
analog input signals to convert at any given time. This is an economical
approach when all the analog signals do not need to be simultaneously
monitored.

Economics is a major rationale behind using PCs for data acquisition
systems. The typical data acquisition system of 20-25 years ago, based on a
minicomputer, cost about 20 times as much as today’s systems, based on PCs,
and ran at lower performance levels. This is largely due to the continuing
decrease in electronic component costs along with increased functionality
{(more logic elements in the same package) and more sophisticated software.
The PC has become ubiquitous throughout our society, both in and out of
laboratories. Continuous improvements in hardware and software technologies
drive PCs and their peripheral devices to lower costs and higher performance.

4 CHAPTER 1 Introduction to Data Acquisition

Since PCs are commonplace in most labs and offices, the cost of imple-
menting a data acquisition system is often just the price of an add-in board
(or module) and support software, which is usually just a moderate expense.
For very simple applications, standard PC hardware (such as a sound card)
may be all you need for data acquisition.

There may be applications where a data acquisition system based on a
PC is not appropriate and a more expensive, dedicated system should be used.
The important system parameters for making such a decision include sam-
pling speed, accuracy, resolution, amount of data, multitasking capabilities,
and the required data processing and display. Of course, dedicated data
acquisition systems may be PC-based themselves, with an embedded PC (see
Chapter 12 for information on embedded PCs).

PC-based systems have fewer limitations in these areas than ever before,
even regarding sampling speed and handling large amounts of data. Newer,
high-performance PCs can even outperform some dedicated data acquisition
systems. The evolution of PCs based on the Intel 80x86 microprocessor (or
CPU), which includes the original IBM PC/XT/AT/PS2 computers, is dem-
onstrated in Table 1-1, showing processor speed, bus width, and the amount
of available memory space.

Apple’s Macintosh computer line has also been used as a platform for
data acquisition. These machines, originally based on the Motorola 68000
family of microprocessors, had certain advantages over the older Intel-based
PCs, including a graphical, consistent operating environment and a linear
memory addressing space (the segmented addressing space of the Intel 80x86
family will be discussed in Chapter 5). Newer Macintosh computers use the
same PCI interface for add-in cards as contemporary Intel-based PCs (see
Chapter 5 for a discussion of the PCI bus).

TABLE 1-1
Intel 80x86 CPU Family Bus Size Characteristics

DATA BUS ADDRESS BUS MEMORY SPACE
cPU WIDTH (bits) WIDTH (bits) (Mbytes)
8086 16 20 1
8088 8 20 1
80286 16 24 16
80386 32 32 4096
80486 32 32 4096
Pentium 32 32 4096

*Internal Bus = 64 bits wide.

Introduction to Data Acquisition 5

Software is as important to data acquisition systems as hardware capa-
bilities. Inefficient software can waste the usefulness of the most able data
acquisition hardware system. Conversely, well-written software can squeeze
the maximum performance out of mediocre hardware. Software selection is
at least as important as hardware selection and often more complex.

Data acquisition software controls not only the collection of data, but
also its analysis and eventual display. Ease of data analysis and presentation
are the major reasons behind using computers for data acquisition in the first
place. With the appropriate software, computers can process the acquired data
and produce outputs in the form of tables or plots. Without these capabilities,
you are not doing much more than using a sophisticated (and expensive) data
recorder.

An additional area of software use is that of control. Computer outputs
may control some aspects of the system that is being measured, as in auto-
mated industrial process controls. The software must be able to measure
system parameters, make decisions based on those measurements, and vary
the computer outputs accordingly. For example, in a temperature regulation
system, the input would be a temperature sensor and the output would control
a heater. In control applications, software reliability and response time are
paramount. Slow or erroneous software responses could cause physical dam-
age. Control applications are especially important for embedded PCs, which
package full PC functionality into a small form factor, such as PC-104 (see
Chapter 12).

A recent, important software capability is Internet access. Many new
products allow you to perform remote data acquisition using the Internet (and
its TCP/IP protocol). It is now fairly simple to monitor and control a data
acquisition system located nearly anywhere in the world as well as share the
data with a large group of colleagues.

There is a plethora of PC-based software packages commercially avail-
able, which can collect, analyze, and display data graphically, using little or
no programming (see Chapter 11). They allow users to concentrate on their
applications, instead of worrying about the mechanics of getting data from
point A to point B, or how to plot a set of Cartesian coordinates. Many
commercial software packages contain all three capabilities of data acquisi-
tion, analysis, and display (the so-called “integrated” packages), whereas
others are optimized for only one or two of these areas.

The important point is that you do not have to be a computer expert or
even a programmer to implement an entire PC-based data acquisition system.
Best of all, you do not have to be rich, either.

The next chapter examines the world of analog signals and their trans-
ducers, the “front end” of any data acquisition system.

CHAPTER

Analog Signal
Transducers

Most real-world events and their measurements are analog. That is, the mea-
surements can take on a wide, nearly continuous range of values. The physical
quantities of interest can be as diverse as heat, pressure, light, force, velocity,
or position. To be measured using an electronic data acquisition system, these
quantities must first be converted to electrical quantities such as voltage,
current, or impedance.

A transducer converts one physical quantity into another. For the pur-
poses of this book, all the transducers mentioned convert physical quantities
into electrical ones, for use with electronic instrumentation. The mathematical
description of what a transducer does is its transfer function, often designated
H. So the operation of a transducer can be described as

Output Quantity = H X Input Quantity

Since the transducer is the “front end” of the data acquisition system,
its properties are critical to the overall system performance. Some of these
properties are sensitivity (the efficiency of the energy conversion), stability
(output drift with a constant input), noise, dynamic range, and linearity. Very
often the transfer function is dependent on the input quantity. It may be a
linear function for one range of input values and then become nonlinear for
another range (such as a square-law curve). Looking at sensitivity and noise,
if the transducer’s sensitivity is too low, or its noise level too high, signal
conditioning may not produce an adequate signal-to-noise ratio.

Often the transducer is the last consideration in a data acquisition
system, since it is seen as mundane. Yet, it should be the primary consideration.

2.1 Temperature Sensors 7

The characteristics of the transducer, in large part, determine the limits of a
system’s performance.
Now we will look at some common transducers in detail.

2.1 Temperature Sensors

Temperature sensors have electrical parameters that vary with temperature,
following well-characterized transfer functions. In fact, nearly all electronic
components have properties which vary with temperature. Many of them
could potentially be temperature transducers if their transfer functions were
well behaved and insensitive to other variables.

2.1.1 Thermocouples

The thermocouple converts temperature to a small DC voltage or current. It
consists of two dissimilar metal wires in intimate contact in two or more
junctions. The output voltage varies linearly with the temperature difference
between the junctions—the higher the temperature difference, the higher the
voltage output. This linearity is a chief advantage of using a thermocouple, as
well as its ruggedness as a sensor. In addition, thermocouples operate over very
large temperature ranges and at very high temperatures (some, over 1000°C).

Disadvantages include low output voltage (especially at lower tempera-
tures), low sensitivity (typical output voltages vary only about S mV for a 100°C
temperature change), susceptibility to noise (both externally induced and inter-
nally caused by wire imperfections and impurities), and the need for a reference
junction (at a known temperature) for calibration. Most data acquisition hard-
ware designed for temperature measurements contain an electronic reference
junction. You must enter the thermocouple material type you are using, so it is
properly calibrated. Common thermocouple materials include copper/constan-
tan (Type T), iron/constantan (Type J), and chromel/alumel (Type K).

When several thermocouples, made of the same materials are combined
in series, they are called a thermopile. The output voltage of a thermopile consists
of the sum of all the individual thermocouple outputs, resulting in increased
sensitivity. All the reference junctions are kept at the same temperature.

2.1.2 Thermistors

A thermistor is a temperature-sensitive resistor with a large, nonlinear, negative
temperature coefficient. That is, its resistance decreases nonlinearly as temper-
ature increases. It is usually composed of a mixture of semiconductor materials.

8 CHAPTER 2 Analog Signal Transducers

It is a very sensitive device, but has to be properly calibrated for the desired
temperature ranges, since it is a nonlinear detector. Repeatability from device
to device is not very good. Over relatively small temperature ranges it can
approximate a linear response. It is prone to self-heating errors due to the
power dissipated in it (P = FR). This effect is minimized by keeping the
current passing through the thermistor to a minimum.

2.1.3 Resistance Temperature Detectors

Resistance temperature detectors (RTDs) rely on the temperature dependence
of a material’s electrical resistance. They are usually made of a pure metal
having a small but accurate positive temperature coefficient. The most accu-
rate RTDs are made of platinum wire and are well characterized and linear
from 14°K to higher than 600°C.

2.1.4 Monolithic Temperature Transducers

The monolithic temperature transducer is a semiconductor temperature sensor
combined with all the required signal conditioning circuitry and located in
one integrated circuit. This device typically produces an output voltage pro-
portional to the absolute temperature, with very good accuracy and sensitivity
(a typical device produces an output of 10 mV per degree Kelvin over a
temperature range of 0-100 degrees Celsius). The output of this device can
usually go directly into an ADC with very little signal conditioning.

2.2 Optical Sensors

Optical sensors are used for detecting light intensity. Typically, they respond
only to particular wavelengths or spectral bands. One sensor may respond
only to visible light in the blue-green region, while another sensor may have
a peak sensitivity to near-infrared radiation.

2.2.1 Vacuum Tube Photosensors

This class of transducers consists of special-purpose vacuum tubes used as
optical detectors. They are all relatively large, require a high-voltage power
supply to operate, and are used only in very specialized applications (as is
true with vacuum tubes in general). These sensors exploit the photoelectric
effect, when photons of light striking a suitable surface produce free electrons.

2.2 Optical Sensors 9

Anode

—

¢ Electrons
R L

Photocathode | ,

Incident
Photons

Figure 2-1 Vacuum photodiode.

The vacuum photodiode consists of a photocathode and anode in a
glass or quartz tube. The photocathode emits electrons when struck by
photons of light. These electrons are accelerated to the anode by the high (+)
voltage and produce a current pulse in the external load resistor R; (see Figure
2-1). These tubes have relatively low sensitivity, but they can detect high-
frequency light variations or modulation (as high as 100 MHz to 1 GHz), for
an extremely fast response.

The gas photodiode is similar to a vacuum photodiode, except the tube
contains a neutral gas. A single photoelectron (emitted by the photocathode)
can collide with several gas atoms, ionizing them and producing several extra
electrons. So, more than one electron reaches the anode for every photon.
This gas amplification factor is usually 3-5 (larger values cause instabilities).
These tubes have a limited frequency response of less than 10 kHz, resulting
in a much slower response time.

The photomultiplier tube (PMT) is the most popular vacuum tube device
in this category. It is similar to a vacuum photodiode with several extra
electrodes between the photocathode and anode, called dynodes. Each dynode
is held at a more positive voltage than the previous dynode (and the cathode)
via a resistor voltage-divider network (see Figure 2-2). Photoelectrons emitted
by the photocathode strike the first dynode, which emits several secondary
electrons for each photoelectron, amplifying the photoelectric effect. These
secondary electrons strike the next dynode and release more electrons. This
process continues until the electrons reach the end of the dynode amplifier
chain. There, the anode collects all the electrons produced by a single photon,
resulting in a relatively large current pulse in the external circuit.

10 CHAPTER 2 Analog Signal Transducers

Incident
Anode Cathode Photon

(a) Cross section of typical PMT (b) Wiring diagram for typical PMT

Figure 2-2 Photomultiplier tube (PMT).

The PMT exhibits very high gain, in the range of 10°-10’ electrons
emitted per incident photon. This is determined by the number of dynodes,
the photocathode sensitivity, power supply voltage, and tube design factors.
Some PMTs can detect individual photons!

A PMT’s output pulses can be measured as a time-averaged current
(good for detecting relatively high light levels) or in an individual pulse-
counting mode (good for very low light levels) measuring the number of
pulses per second. Then, a threshold level is used to filter out unwanted pulses
(noise) below a selected amplitude.

Some of the noise produced in a PMT is spontaneous emission from
the electrodes, which occurs even in the absence of light. This is called the
dark count, which determines the PMT’s sensitivity threshold. So, the number
of photons striking the PMT per unit time must be greater than the dark count
for the photons to be detected. In addition, most PMTs have a fairly low
quantum efficiency, a measure of how many photons are required to produce
a measurable output (expressed as a percentage, where 100% means that

2.2 Optical Sensors 11

every photon striking the sensor will produce an output). Also, PMTs have
a limited usable life, as the photocathode wears out with time.

2.2.2 Photoconductive Gells

A photoconductive cell consists of a thin layer of material, such as cadmium
sulfide (CdS) or cadmium selenide (CdSe) sandwiched between two elec-
trodes, with a transparent window. The resistance of a cell decreases as the
incident light intensity increases. These cells can be used with any resistance-
measuring apparatus, such as a bridge. They are commonly used in photo-
graphic light meters. A photoconductive cell is usually classified by maximum
(dark) resistance, minimum (light) resistance, spectral response, maximum
power dissipation, and response time (or frequency).

These devices are usually nonlinear and have aging and repeatability
problems. They exhibit hysteresis in their response to light. For example, the
same cell exposed to the same light source may have a different resistance,
depending on the light levels it was previously exposed to.

2.2.3 Photovoltaic (Solar) Cells

These sensors are similar in construction to photoconductive cells. They are
made of a semiconductor material, usually silicon (Si) or gallium arsenide
(GaAs), that produces a voltage when exposed to light (of suitable wavelength).
They require no external power supply and very large cells can be used as DC
power sources. They have a relatively slow response time to light variations
but are fairly sensitive. Since the material used must be grown as a single
crystal, large photovoltaic cells are very expensive.

A large amount of research has been conducted in recent years in an
attempt to produce less expensive photovoltaic cells made from either amor-
phous, polycrystalline, or thin-film semiconductors. If these low-cost devices
can attain light conversion efficiency similar to that of monocrystalline cells
(in the range of 15-20%), they can become a practical source of electric energy.

224 Semiconductor Light Sensors

The members of this class of transducers are all based on a semiconductor
device, such as a diode or transistor, whose output current is a function of
the light (of suitable wavelength) incident upon it.

The photodiode is a PN junction diode with a transparent window that
produces charge carriers (holes and electrons) at a rate proportional to the
incident light intensity. So the photodiode acts as a photoconductive device,
varying the current in its external circuit (but, being a semiconductor, it does
not obey Ohm’s law). A photodiode is a versatile device with a high frequency

12 CHAPTER 2 Analog Signal Transducers

response and a linear output, but low sensitivity, and it usually requires large
amounts of amplification. It typically uses a transconductance amplifier,
which converts the photodiode output current to a voltage. A common pho-
todiode sensor is the PIN diode, which has an insulating region between the
p and n materials. This device usually requires a reverse DC bias voltage for
optimum performance (speed and sensitivity). Conventional silicon photo-
diodes have usable sensitivity to light wavelengths in the range of 450-1050
nanometers (from the visible spectrum into the near infrared). For longer
wavelengths, other semiconductors, such as indium gallium arsenide
(InGaAs) are used.

The phototransistor is similar to a photodiode, except that the transistor
can provide amplification of the PN junction’s light-dependent current. The
transistor’s emitter-base junction is the light-sensitive element. A photodar-
lington is a special phototransistor, composed of two transistors in a high-gain
circuit. The phototransistor offers much higher sensitivity than the photodiode
at the expense of a much lower bandwidth (response time) and poorer linearity.

The avalanche photodiode (APD) is a special photodiode which has
internal gain and is a semiconductor analog to the PMT. This gain is normally
in the range of 10 to a few hundred (typically around 100 for a silicon device).
The APD employs a high reverse bias (from several hundred volts up to a
few thousand volts) to produce a strong internal electrical field that accelerates
the electrons generated by the incident photons and results in secondary
electrons from impact ionization. This is the electron avalanche, resulting in
gain. Advantages of the APD are small size, solid-state reliability (as long as
the breakdown voltage is not exceeded), high quantum efficiency, and a large
dynamic range. Compared to PMTs, APDs have much lower gain, smaller
light-collecting areas, and a high temperature sensitivity. APD bias must be
temperature compensated to keep gain constant.

The charge-coupled device (CCD) is a special optical sensor consisting
of an array (one- or two-dimensional) of light-sensitive elements. When photons
strike a photosensitive area, electron/hole pairs are created in the semiconductor
crystal. The holes move into the substrate and the electrons remain in the
elements, producing a net electrical charge. The amount of charge is propor-
tional to the amplitude of incident light and the exposure time. The charge at
each photosensitive element is then read out serially, via support electronics.
CCDs are commonly used in many imaging systems, including video cameras.

2.25 Thermoelectric Optical Sensors

This class of transducers convert incident light to heat and produce a tem-
perature output dependent on light intensity, by absorbing all the incident
radiation in a “black box.” They generally respond to a very broad light

2.3 Force and Pressure Transducers 13

spectrum and are relatively insensitive to wavelength, unlike vacuum tube
and solid-state sensors. However, they have very slow response times and
low sensitivities and are best suited for measuring static or slowly changing
light levels, such as calibrating the output of a light source.

The bolometer varies its resistance with thermal energy produced by
incident radiation. The most common detector element used in a bolometer
is a thermistor. They are also commonly used for measuring microwave power
levels.

The thermopile, as discussed under temperature sensors, is more com-
monly used than individual thermocouples in light-detecting applications
because of its higher sensitivity. It is often used in infrared detectors.

2.3 Force and Pressure Transducers

A wide range of sensors are used for measuring force and pressure. Most
pressure transducers rely on the movement of a diaphragm mounted across
a pressure differential. The transducer measures this minute movement.
Capacitive and inductive pressure sensors operate the same way as capacitive
and inductive displacement sensors, which are described later on.

2.3.1 Strain Gages

Strain gages are transducers used for directly measuring forces and their
resulting strain on an object. Stress on an object produces a mechanical
deformation—strain—defined as

Strain = length change/length

Strain gages are conductors (often metallic) whose resistance varies with strain.
For example, as a wire is stretched, its resistance increases. Strain gages are
bonded to the object under stress and are subject to the same forces. They are
very sensitive to strain in one direction only (the axis of the conductor).

A simple unbonded strain gage consists of free wires on supports
bonded to the stressed surface. These are not usually used (outside of labo-
ratory demonstrations) because of their large size and mechanical clumsiness.

The bonded strain gage overcomes these problems by putting a zigzag
pattern of the conductor on an insulating surface, as shown in Figure 2-3.
These are relatively small, have good sensitivity, and are easily bonded to the
surface under test. The conductor in a bonded strain gage is a metallic wire,
foil, or thin film.

14 CHAPTER 2 Analog Signal Transducers

<:l_—'>

SENSITIVE AXIS

Figure 2-3 Simple, one-dimensional strain gage.

Strain gage materials must have certain, well-controlled properties. The
most important is sensitivity or gage factor (GF), which is the change in
resistance per change in length. Most metallic strain gages have a GF in the
range of 2 to 6. The material must also have a low temperature coefficient of
resistance as well as stable elastic properties and high tensile strength. Often,
strain gages are subject to very large stresses as well as wide temperature swings.

Semiconductor strain gages, usually made of silicon, have a much
higher GF than metals (typically in the range of 50 to 200). However, they
also have much higher temperature coefficients, which have to be compen-
sated for. They are commonly used in monolithic pressure sensors.

Because of their relatively low sensitivities (resistance changes nomi-
nally 0.1 to 1.0%), strain gages require bridge circuits to produce useful
outputs. (We will discuss bridge circuits in Chapter 3.) If a second, identical
strain gage, not under stress, is put into the bridge circuit, it acts as a
temperature compensator.

2.3.2 Piezoelectric Transducers

Piezoelectric transducers are used for, among other things, measuring time-
varying forces and pressures. They do not work for static measurement, since
they produce no output from a constant force or pressure.

Certain crystalline materials (including quartz, barium titanate, and
lithium niobate) generate an electromotive force (emf) when mechanically
stressed. Conversely, when a voltage is applied to the crystal, it will become
mechanically distorted. This is the piezoelectric effect.

If electrodes are placed on suitable (usually opposite) faces of the crystal,
the direction of the deforming force can be controlled. If an AC voltage is
applied to the electrodes, the crystal can produce periodic motion, resulting

2.3 Force and Pressure Transducers 15

Crystal Uitrasonic
Waves
Electrodes / Electrodes ﬂ Crystal
Ultrasonic Ultrasonic
Waves Waves

!

Ultrasonic
Waves

(a) Longitudinal Mode (b) Transverse Mode

Figure 2-4 Oscillation modes of piezoelectric crystals.

in an acoustic wave, which can be transmitted through other material. When
an acoustic wave strikes a piezoelectric crystal, it produces an AC voltage.

When a piezoelectric crystal oscillates in the thickness or longitudinal
mode, an acoustic wave is produced, where the direction of displacement is
the direction of wave propagation, as shown in Figure 2-4a. When the crystal’s
thickness equals a half-wavelength of the longitudinal wave’s frequency (or
an odd multiple half-wavelength) it is resonant at that frequency. At resonance
its mechanical motion is maximum along with the acoustic wave output. And
when it is detecting acoustic energy, the output voltage is maximum for the
resonant frequency.

This characteristic is applied to quartz crystal oscillators, used as highly
accurate electronic frequency references in a broad range of equipment, from
computers to digital watches.

Typically, piezoelectric crystals are used as ultrasonic transducers for
frequencies above 20 kHz, up to about 100 MHz. The limitation on frequency
range is due to the impracticalities of producing crystals thin enough for very
high frequencies, or the unnecessary expense of producing very thick crystals
for low frequencies (where electromagnetic transducers work better).

16 CHAPTER 2 Analog Signal Transducers

Other crystal deformation modes are transverse, where the direction of
motion is at right angles to the direction of wave propagation (as shown in
Figure 2-4b), and shear, which is a mix of longitudinal and transverse modes.
These modes all have different resonant frequencies.

Piezoelectric transducers have a wide range of applications, besides
dynamic pressure and force sensing, including the following:

1. Acoustic microscopy for medical and industrial applications, such
as “seeing” through materials that are optically opaque. An example
is the sonogram.

2. Distance measurements including sonar and range finders.

3. Sound and noise detection such as microphones and loudspeakers
for audio and ultrasonic acoustic frequencies.

2.4 Magnetic Field Sensors

This group of transducers is used to measure either varying or fixed magnetic
fields.

2.4.1 Varying Magnetic Field Sensors

These transducers are simple inductors (coils) that can measure time-varying
magnetic fields such as those produced from an AC current source. The
magnetic flux through the coil changes with time, so an AC voltage is induced
that is proportional to the magnetic field strength.

These devices are often used to measure an alternating current (which
is proportional to the AC magnetic field). For standard 60-Hz loads, trans-
formers are used that clamp around a conductor (no direct electrical contact).
These are usually low-sensitivity devices, good for 60 Hz currents greater
than 0.1 ampere.

2.4.2 Fixed Magnetic Field Sensors

Several types of transducers are commonly used to measure static and slowly
varying magnetic fields, such as those produced by a permanent magnet or
a DC electromagnet.

Hall Effect Sensors When a current-carrying conductor strip is placed with
its plane perpendicular to an applied magnetic field (B) and a control current
(I¢) is passing through it, a voltage (Vy) is developed across the strip at right

2.4 Magnetic Field Sensors 17

Magnetic Field

Current
Source

Icl

Figure 2-5 Hall effect magnetic field sensor.

angles to I and B, as shown in Figure 2-5. Vy is known as the Hall voltage
and this is the Hall effect:

VH = chB/ d
where:

B = magnetic field (in gauss),
d = thickness of strip,
K = Hall coefficient.

The value of K is very small for most metals, but relatively large for certain
n-type semiconductors, including germanium, silicon, and indium arsenide.
Typical outputs are still just a few millivolts/kilogauss at rated I. Although
a larger I or a smaller d should increase V, these would cause excessive self-
heating of the device (by increasing its resistance) and would change its
characteristics as well as lower its sensitivity. The resistance of typical Hall
devices varies from a few ohms to hundreds of ohms.

SQUIDs SQUID stands for superconducting quantum interference device, a
superconducting transducer based on the Josephson junction. A SQUID is a
thin-film device operating at liquid helium temperature (~4°K), usually made
from lead or niobium. The advent of higher temperature superconductors that

18 CHAPTER 2 Analog Signal Transducers

can operate in the liquid nitrogen region (~78°K) may produce more practical
and inexpensive SQUIDs.

A SQUID element is a Josephson junction that is based on quantum
mechanical tunneling between two superconductors. Normally, the device is
superconducting, with zero resistance, until an applied magnetic field switches
it into a normal conducting state, with some resistance. If an external current
is applied to the device (and it must be low enough to prevent the current
from switching it to a normal conductive state—another Josephson junction
property), the voltage across the SQUID element switches between zero and
a small value. The resistance and measured voltage go up by steps (or quanta)
as the applied magnetic field increases. It measures very small, discrete
(quantum) changes in magnetic field strength.

Practical SQUIDs are composed of arrays of these individual junctions
and are extremely sensitive magnetometers. For example, they are used to
measure small variations in the earth’s magnetic field, or even magnetic fields
generated inside a living brain.

2.5 lonizing Radiation Sensors

Ionizing radiation can be particles produced by radioactive decay, such as
alpha or beta radiation, or high-energy electromagnetic radiation, including
gamma and X-rays. In many of these detectors, a radiation particle (a photon)
collides with an active surface material and produces charged particles, ions,
and electrons, which are then collected and counted as pulses (or events) per
second or measured as an average current.

25.1 Geiger Gounters

When the electric field strength (or voltage) is high enough in a gas-filled
tube, electrons produced by primary ionization gain enough energy between
collisions to produce secondary ionization and act as charge multipliers. In
a Geiger—Muller tube the probability of this secondary ionization approaches
unity, producing an avalanche effect. So, a very large current pulse is caused
by one or very few ionizing particles. The Geiger-Muller tube is made of
metal and filled with low-pressure gas (at about 0.1 atm) with a fine, electri-
cally isolated wire running through its center, as shown in Figure 2-6.

A Geiger counter requires a recovery time (dead time) of ~200 micro-
seconds before it can produce another discharge (to allow the ionized particles
to neutralize). This limits its counting rate to less than a few kilohertz.

2.6 Position (Displacement) Sensors 19

Fine Wire

High-Voltage

\
Glass Seal ’_~[—| Power Supply

Brass Tube

T Gas Pressure ~ 0.1 Atm

L

Glass Seal

Figure 2-6 Typical Geiger—Muller tube.

2.5.2 Semiconductor Radiation Detectors

Some p—n junction devices (typically diodes), when properly biased, can act
as solid-state analogs of an ion chamber, where a high DC voltage across a
gas-filled chamber produces a current proportional to the number of ionizing
particles striking it per unit time, due to primary ionization. When struck by
radiation the devices produce charge carriers (electrons and holes) as opposed
to ionized particles. The more sensitive (and useful) devices must be cooled
to low temperatures (usually 78°K, by liquid nitrogen).

25.3 Scintillation Counters

This device consists of a fluorescent material that emits light when struck by a
charged particle or radiation, similar to the action of a photocathode in a pho-
todiode. The emitted light is then detected by an optical sensor, such as a PMT.

2.6 Position (Displacement) Sensors

|
A wide variety of transducers are used to measure mechanical displacement
or the position of an object. Some require actual contact with the measured
object; others do not.

20 CHAPTER 2 Analog Signal Transducers

2.6.1 Potentiometers

The potentiometer (variable resistor) is often mechanically coupled for dis-
placement measurements. It can be driven by either AC or DC signals and
does not usually require an amplifier. It is inexpensive but cannot usually be
used in high-speed applications. It has limited accuracy, repeatability, and
lifetime, due to mechanical wear of the active resistive material. These devices
can either be conventional rotary potentiometers or have a linear configuration
with a slide mechanism. Often, the resistive element is polymer-based to
increase its usable life.

2.6.2 Capacitive and Inductive Sensors

Simple capacitive and inductive sensors produce a change in reactance
(capacitance or inductance) with varying distance between the sensor and the
measured object. They require AC signals and conditioning circuitry and have
limited dynamic range and linearity. They are typically used over short dis-
tances as a proximity sensor, to determine if an object is present or not. They
do not require contact with the measured object.

26.3 LVDTs

The LVDT (linear voltage differential transformer) is a versatile device used
to measure displacement. It is an inductor consisting of three coils wound
around a movable core, connected to a shaft, as shown in Figure 2-7. The
center coil is the transformer’s primary winding. The two outer coils are
connected in series to produce the secondary winding. The primary is driven
by an AC voltage, typically between 60 Hz and several kilohertz. At the null
point (zero displacement), the core is exactly centered under the coils and
the secondary output voltage is zero. If the shaft moves, and the core along
with it, the output voltage increases linearly with displacement, as the induc-
tive coupling to the secondary coils becomes unbalanced. A movement to
one side of the null produces a 0° phase shift between output and input signal.
A movement to the other side of null produces a 180° phase shift.

If the displacement is kept within a specified range, the output voltage
varies linearly with displacement. The main disadvantages to using an LVDT
are its size, its complex control circuitry, and its relatively high cost.

2.6.4 Optical Encoders

The optical encoder is a transducer commonly used for measuring rotational
motion. It consists of a shaft connected to a circular disc, containing one or
more tracks of alternating transparent and opaque areas. A light source and

2.6 Position (Displacement) Sensors 21

Secondary Coil 1 Primary Coil Secondary Coil 2

£ % 4
r..‘.nu_ S — T S

|

|

. : _ i [— Core
L . +
- T = |

Shaft | | |

(a) Cross-Section View

Signal Output

Secondary Coil 1

Secondary Coil 2

Core < >

Primary Coil

AC Input
(b) Schematic Diagram

Figure 2-7 Linear variable differential transformer (LVDT).

an optical sensor are mounted on opposite sides of each track. As the shaft
rotates, the light sensor emits a series of pulses as the light source is inter-
rupted by the pattern on the disc. This output signal can be directly compatible
with digital circuitry. The number of output pulses per rotation of the disc is
a known quantity, so the number of output pulses per second can be directly
converted to the rotational speed (or rotations per second) of the shaft. Encod-
ers are commonly used in motor speed control applications. Figure 2-8 shows
a simple, one-track encoder wheel.

An incremental optical encoder has two tracks, 90° out of phase with
each other, producing two outputs. The relative phase between the two chan-
nels indicates whether the encoder is rotating clockwise or counterclockwise.
Often there is a third track that produces a single index pulse, to indicate an
absolute position reference. Otherwise, an incremental encoder produces only
relative position information. The interface circuitry or computer must keep
track of the absolute position.

22 CHAPTER 2 Analog Signal Transducers

Figure 2-8 Simple one-track optical encoder wheel (24 lines = 15° resolution).

An absolute optical encoder has several tracks, with different patterns on
each, to produce a binary code output that is unique for each encoded position.
There is a track for each output bit, so an 8-bit absolute encoder has 8 tracks,
8 outputs and 256 output combinations, for a resolution of 360/256 = 1.4°. The
encoding is not always a simple binary counting pattern, since this would
result in adjacent counts where many bits change at once, increasing the
likelihood of noise and reading errors. A Gray code is often used, because
it produces a pattern where each adjacent count results in only one bit
change. An absolute encoder is usually much more expensive than a compa-
rable incremental encoder. Its main advantage is the ability to retain absolute
position information, even when system power is removed.

2.6.5 Ultrasonic Range Finder

In Chapter 14, an ultrasonic range finder is discussed, as a noncontact dis-
placement measurement technique. The time it takes an ultrasonic pulse to
reflect from an object is measured and the distance to the object calculated
from that time delay, using a known ultrasonic velocity.

2.7 Humidity Sensors

O
Relative humidity is the moisture content of the air compared to air completely
saturated with moisture and is expressed as a percentage.

2.7.1 Resistive Hygrometer Sensors

There are resistive hygrometer elements whose resistance varies with the
vapor pressure of water in the surrounding atmosphere. They usually contain
a hygroscopic (water-absorbing) salt film, such as lithium chloride, which
ionizes in water and is conductive with a measurable resistance. These devices

2.8 Fluid Flow Sensors 23

are usable over a limited humidity range and have to be periodically cali-
brated, as their resistance may vary with time, because of temperature and
humidity cycling, as well as exposure to contaminating agents.

2.7.2 Capacitive Hygrometer Sensors

There are also capacitive hygrometer elements that contain a hygroscopic
film whose dielectric constant varies with humidity, producing a change
in the device’s capacitance. Some of these can be more stable than the
resistive elements. The capacitance is usually measured using an AC bridge
circuit.

2.8 Fluid Flow Sensors

Many industrial processes use fluids and need to measure and control their flow
in a system. A wide range of transducers and techniques are commonly used
to measure fluid flow rates (expressed as volume per unit time passing a point).

2.8.1 Head Meters

A head meter is a common device, where a restriction is placed in the flow
tube producing a pressure differential across it. This differential is measured
by a pair of pressure sensors and converted to a flow measurement. The
pressure transducers can be any type, such as those previously discussed. The
restriction devices include the orifice plate, the venturi tube, and the flow nozzle.

2.8.2 Rotational Flowmeters

Rotational flowmeters use a rotating element (such as a turbine) which is
turned by the fluid flow. Its rotational rate varies with fluid flow rate. The
turbine blades are usually made of a magnetized material so that an external
magnetic pickup coil can produce an output voltage pulse each time a blade
passes under it.

2.8.3 Ultrasonic Flowmeters

Ultrasonic flowmeters commonly use a pair of piezoelectric transducers
mounted diagonally across the fluid flow path. The transducers act as a
transmitter and a receiver (a multiplexed arrangement), measuring the velocity
of ultrasonic pulses traveling through the moving fluid. The difference in the
ultrasonic frequency between the “upstream” and “downstream” measure-
ments is a function of the flow rate, due to the Doppler effect. Alternately,

24 CHAPTER 2 Analog Signal Transducers

small time delay differences between the “upstream” and “downstream” mea-
surements can be used to determine flow rate.

2.9 Fiber Optic Sensors

A new class of sensors, based on optical fibers, is emerging from laboratories
throughout the world. These fiber optic sensors are used to measure a wide
range of quantities, including temperature, pressure, strain, displacement,
vibration, and magnetic field, as well as sensing chemical and biomedical
materials. They are immune from electromagnetic interference (EMI), can
operate in extremely harsh environments, can be very small, and are fairly
sensitive. They are even embedded into large structures (such as bridges and
buildings) to monitor mechanical integrity.

Inherently, fiber optic sensors measure optical amplitude, phase, or
polarization properties. In a practical sensor, one or more of these parameters
varies with the physical quantity of interest (pressure, temperature, etc.). The
simplest fiber optic sensors are based on optical amplitude variations. These
sensors require a reference channel to minimize errors due to long-term drift
and light source variations. Sensors that measure optical phase or frequency
employ an interferometer. These interferometric sensors offer much better
sensitivity, resolution, and stability than simpler amplitude-based sensors. In
addition, they are insensitive to fiber length. That is why they are the most
commonly used type of fiber optic sensor.

2.9.1 Fiber Optic Microbend Sensor

This type of fiber optic sensor is commonly used to measure pressure, dis-
placement, and vibration. An optical fiber is sandwiched between two rigid
plates with a wavy profile, as shown in Figure 2-9. This produces microbends

‘ Plate l

Optical Fiber M

| Plate |

Figure 2-9 Fiber optic microbend sensor.

2.9 Fiber Optic Sensors 25

in the fiber, which cause light loss and decreased amplitude. A change in
distance between the plates varies the magnitude of these bends and thus
modulates the light intensity.

29.2 Fiber Optic Fabry-Perot Interferometric Sensor

The Fabry—Perot etalon is the most common interferometer structure used as
a fiber optic sensor, since only one fiber is required to connect the sensor to
the detector section. A classic Fabry—Perot interferometer is formed by two
closely spaced, partially reflecting mirrors which form a resonant optical
cavity with maximum optical transmission at wavelengths that are multiples
of the mirror spacing, at small incident light angles (see Figure 2-10).

In a fiber sensor, a Fabry—Perot etalon can be formed using one end of
the fiber itself (with a reflective coating deposited on it) and a separate,
movable mirror. Alternatively, two mirrored surfaces can be used, and the
fiber simply transmits the light. When the position of a moveable mirror in

—w

Light Out

VA

—_
v B

Light In] o
Partially Silvered Glass Plates

Maximum Light Transmission when:
ni =2 w cos(o)

n = an integer
A = wavelength of light

Figure 2-10 Fabry—Perot interferometer.

26 CHAPTER 2 Analog Signal Transducers

@ @
Incident { Reflected

Fabry-Perot Optical Fiper | bont Light
Sensor

‘T/:
Optical Coupler White Light
Source

Optical
CCD Array Cross-Correlator Lense

¥

CCD Controls
and Readout

Spectrometer

Figure 2-11 Fabry—Perot fiber sensor and detector.

the etalon changes, the intensity of light reflected back up the fiber changes,
for a fixed wavelength, narrow-band light source. With a broad-band light
source (i.e., white light), the peak wavelength shifts with mirror position and
can be measured using a spectrometer detector. A simplified system diagram
of a Fabry—Perot fiber sensor, commercially used for pressure and strain
measurements, is shown in Figure 2-11.

2.10 Other New Sensor Technologies

Besides fiber optics, other new technologies are gaining importance in com-
mercial sensors. These include microelectromechanical systems (MEMS) and
smart sensors.

210.1 MEMS

MEMS are small electromechanical devices fabricated using semiconductor
integrated-circuit processing techniques. By building a “micromachine” on a
silicon wafer, the device can connect to signal processing electronics on that
same wafer. Many of the sensors we have previously discussed have MEMS-
based versions available. Sophisticated demonstrations of MEMS have
included devices such as micromotors and gas chromatographs. Practical

2.10 Other New Sensor Technologies 27

MEMS pressure sensors and accelerometers have been commercially avail-
able for several years.

For example, Analog Devices’ ADXL series of MEMS accelerometers
are based on a structure suspended on the surface of a silicon wafer via
polysilicon springs, which provide resistance to acceleration. Under acceler-
ation, the structure deflects and this is measured via an arrangement of
capacitors, fabricated using both fixed plates and plates attached to the moving
structure. Signal generating and conditioning circuitry on the chip decodes
this capacitance change to produce an output pulse with a duty cycle propor-
tional to the measured acceleration.

2.10.2 Smart Sensors and the IEEE 1451 Standards

The category of smart sensors is quite broad and not clearly defined. A smart
sensor can range from a traditional transducer that simply contains its own
signal conditioning circuitry to a device that can calibrate itself, acquire data,
analyze it, and transmit the results over a network to a remote computer.
There are many commercial devices that can be called smart sensors, such
as temperature sensor ICs that incorporate high and low temperature set points
(to control heating or cooling devices). Many sensors, including pressure
sensors, are now available with an RS-232C interface (see Chapter 8) to
receive configuration commands and transmit measurements back to a host
computer.

An emerging class of smart sensors is defined by the family of IEEE
1451 standards, which are designed to simplify the task of establishing com-
munications between transducers and networks.

IEEE 1451.2 is an adopted standard in this group that defines transducer-
to-microcontroller and microcontroller-to-network protocols. This standard
defines a Smart Transducer Interface Module (STIM), which is a remote,
networked, intelligent transducer node, supporting from 1 to 255 sensor and
actuator channels. This STIM contains a Transducer Electronic Datasheet
(TEDS), which is a section of memory that describes the STIM and its
transducer channels. The STIM communicates with a microcontroller in a
Network Capable Application Processor (NCAP) via the Transducer Inde-
pendent Interface (TII), which is a 10-wire serial bus. Figure 2-12 shows how
these parts of the IEEE 1451.2 standard fit together in a typical application.

The TEDS is a key element of the IEEE 1451.2 standard. It describes
the transducer type for each channel, timing requirements, data format,
measurement limits, and whether calibration information is present in the
STIM. This information is read by the microcontroller in the NCAP, through
the TII connection. Among other functions, the NCAP can write correction

28 CHAPTER 2 Analog Signal Transducers

Transducer > ADC [+

Channel 1
Transducer — DAC Address | 1q P Micro- | | 1o nsceiver | [e—

Logic controller
Channel 2 :
Transd Network Capable
Digital I;Ia:;r:r?; r Application Processor

j—> P A
Transducer /o Data Sheet (NCAP)

Channel 3 (TEDS)

pa Transducer
- Independent Network
Transducer e—» ? —j Interface
(Thy)
Channel n

Smart Transducer Interface Module
(STIM)

Figure 2-12 |IEEE 1451.2 smart transducer interface standard.

coefficients into the TEDS and read sensor data from the STIM. The read
data is then sent to a remote computer on the network, via the NCAP. The
NCAP definition is network independent. There are already commercial
NCAPs available that work with RS-485 and Ethernet networks.

Some other early commercial IEEE 1451.2 products are STIMs and
STIM-ready ICs. An example of the later is Analog Devices’ ADuC812
MicroConverter. It is a special-purpose microcontroller containing an ADC,
two DACS, both program and data flash EEPROM, and data RAM. It contains
the logic to implement a TII, memory for TEDS storage, a multiplexer for
up to eight transducer channels, and the circuitry to convert data from those
analog channels.

This survey of common transducers and sensors suitable for a data
acquisition system is hardly exhaustive. It should give you a feel for the types
of devices and techniques applied to various applications and help you deter-
mine the proper transducer to use for your own system.

CHAPTER

Analog Signal
Conditioning

Nearly all transducer signals must be conditioned by analog circuitry before
they can be digitized and used by a computer. This conditioning often includes
amplification and filtering, although more complex operations can also be
performed on the waveforms.

3.1 Signal Conditioning Techniques
L]

Amplification (or occasionally attenuation) is necessary for the signal’s ampli-
tude to fit within a reasonable portion of the ADC’s dynamic range. For
example, let us assume an ADC has an input range of 0-5 V and an 8-bit
output of 2% =256 steps. Each output step represents 5/256 = 19.5 mV. If a
sensor produces a waveform of 60 mV peak-to-peak (p—p), when directly
digitized (by this ADC) it will use only 3 of the 256 available output steps
and be severely distorted. If the sensor signal is first amplified by a factor of
83 (producing a 5 V p—p waveform), it will use the ADC’s full dynamic range
and a minimum of information is lost. Of course, if it is amplified too much,
some of the signal will be clipped and severely distorted, now in a different way.
Filtering must usually be performed on analog signals for several rea-
sons. Sometimes noise or unwanted signal artifacts can be eliminated by
filtering out certain portions of the signal’s spectra. For example, a system
with high gain levels may need a 60 Hz notch filter to remove noise produced
by AC power lines. A low-frequency drift on a signal without useful DC
information can be removed using a high-pass filter. Most often, low-pass
filters are employed to limit the high end of a waveform’s frequency response

30 CHAPTER 3 Analog Signal Conditioning

just prior to digitization, to prevent aliasing problems (which will be discussed
in Chapter 4).

Additional analog signal processing functions include modulation,
demodulation, and other nonlinear operations.

3.2 Analog Circuit Components

The simplest analog circuit elements are passive components: resistors, capac-
itors, and inductors. They can be used as attenuators and filters. For example,
a simple RC circuit can be used as a high-pass or low-pass filter, as shown
in Figure 3-1.

Discrete semiconductor devices, such as diodes and transistors, are
commonly used in analog signal-conditioning circuits. Diodes are useful,
among other things, as rectifiers/detectors, switches, clamps, and mixers.
Transistors are often used as amplifiers, switches, oscillators, phase shifters,
filters, and many other applications.

3.2.1 The Operational Amplifier

The most common analog circuit semiconductor component is the operational
amplifier, called the op amp. This circuit element is usually a monolithic device
(an integrated circuit), although hybrid modules, based on discrete transistors,
are still used in special applications. The op amp is used in both linear and
nonlinear applications involving amplification and signal conditioning.

The “classic” op amp, which we will discuss in detail here, is based on
a voltage-feedback architecture. There is a newer class of amplifiers, based

Input Output Input Output
(a) Low-Pass Fiiter (b) High-Pass Filter

Figure 3-1 Simple RC filters.

3.2 Analog Circuit Components 31

V+

NONINVERTING
INPUTS
INVERTING

OUTPUT

V-

Figure 3-2 The operational amplifier (op amp).

on a current-feedback architecture, which we will cover later in this chapter
while discussing high-frequency circuits.

An op amp, shown in Figure 3-2, consists of a differential voltage
amplifier that can operate at frequencies from zero up to several megahertz.
However, there are special high-frequency amplifiers, usable up to several
hundred megahertz. The op amp has two inputs, called noninverting (+) and
inverting (—), and responds to the voltage difference between them. The part
of the output derived from the (+) source is in phase with the input, while
the part from the (=) source is 180° out of phase. If a signal is equally applied
to both inputs, the output will be zero.

This property is called common-mode rejection. Since an op amp can
have very high gain at low frequencies (100,000 is typical), a high common-
mode rejection ratio (CMRR) prevents amplification of unwanted noise, such
as the ubiquitous 60-Hz power-line frequency. Typical op amps have a CMRR
in the range of 80-100 decibels (dB).

Most op amps are powered by dual, symmetrical supply voltages, +V and
—V relative to ground, where V is typically in the range of 3 to 15 volts. Some
units are designed to work from single-ended supplies (+V only). There are low-
voltage, very low power op amps designed for use in battery-operated equipment.
Op amps have very high input impedance at the + input (typically 1 million
ohms or more) and low output impedance (in the range of 1 to 100 ohms).
A voltage-feedback op amp’s gain decreases with signal frequency, as shown
in Figure 3-3. The point on the gain-versus-frequency curve where its gain
reaches 1 is called its unity-gain frequency, which is equal to its gain—bandwidth
product, a constant above low frequencies.

The op amp is more than a differential amplifier, however. Its real beauty
lies in how readily its functionality can be changed by modifying the com-
ponents in its external circuit. By changing the elements in the feedback loop

32 CHAPTER 3 Analog Signal Conditioning

Voltage Gain
(dB)

120 —

80 —

40 —

| I | ‘ Frequency (Hz)
10 100 10K 100K 1M

Figure 3-3 Typical op amp gain-versus-frequency curve.

(connected between the output and one or both inputs), the entire character-
istics of the circuit are changed both quantitatively and qualitatively. The op
amp acts like a servo loop, always trying to adjust its output so that the
difference between its two inputs is zero.

We will examine some common op amp applications here. The reader
should refer to the bibliography for other books that treat op amp theory and
practice in greater depth.

The simplest op amp circuit is the voltage follower shown in Figure 3-4.
It is characterized by full feedback from the output to the inverting () input,
where the output is in phase with the noninverting (+) input. It is a buffer
with very high input impedance and low output impedance. If the op amp

Vout

Vin—— 1+

Figure 3-4 Op amp voltage fotlower.

3.2 Analog Circuit Components 33

Vin

Vout

Rs

Figure 3-5 Op amp inverting amplifier.

has JFET (junction ﬁeld effect transistor) inputs, its input impedance is
extremely high (up to 10" ohms).

The inverting amplifier shown in Figure 3-5 uses feedback resistor R,
with input resistor R, to produce a voltage gain of R,/R; with the output signal
being the inverse of the input. Resistor R, used for DC balance, should be
approximately equal to the parallel resistance combination of R and R,. Here,
the input impedance is primarily determined by the value of R;, since the op
amp’s (—) input acts as a virtual ground.

The noninverting amplifier shown in Figure 3-6 uses feedback resistor
R, with grounded resistor R, to produce a voltage gain of (R, + R,)/R, with
the output following the shape of the input (hence, noninverting). Unlike the
inverting amplifier, which can have an arbitrarily small gain well below 1,
the noninverting amplifier has a minimum gain of 1 (When R, = 0) In this
case, the input impedance is very high (typically from 10" to 10° ohms), as
determined by the op amp’s specification.

The difference amplifier shown in Figure 3-7 produces an output pro-
portional to the difference between the two input signals. If R, = R, and R, =
Ry, then the output voltage is (Vi, — Vi) X (R3/Ry).

Vout

Figure 3-6 Op amp noninverting amplifier.

34 CHAPTER 3 Analog Signal Conditioning

Ry Rs
vin1

R2 Vout
Vinz +

Rs

Figure 3-7 Op amp difference amplifier.

In the simple integrator shown in Figure 3-8, the feedback element is
a capacitor (C), producing a nonlinear response. Resistor R, and capacitor C
have a time constant R;C. The change in output voltage with time (dV,,/df) =
—Vin/(R,C). Put another way, the output voltage is the integral of -V, /(R,C)d.
So, this circuit integrates the input waveform. For example, a square-wave
input will produce a triangle-wave output, as long as the integrator’s time
constant is close to the period of the input waveform.

Similarly, Figure 3-9 shows a simple differentiator, where the positions
of the resistor and capacitor are reversed from those in the integrator circuit.
Here, the output voltage is R,C(dV, /dt).

More complex op amp circuits include oscillators (both fixed-frequency
and voltage-controlled oscillators or VCOs), analog multipliers and dividers
(used in analog computers and modulation circuits), active filters, precision
diodes, peak detectors, and log generators.

When choosing an op amp for a particular application, there are many
factors to consider, such as frequency response, required gain, power supply
voltage, and output current. Some other important specifications include input
offset voltage and input bias current.

C

Ry
Vi, ’7

Vout

Figure 3-8 Op amp integrator.

3.2 Analog Circuit Components 35

—f
=

Figure 3-9 Op amp differentiator.

VOUQ

An amplifier’s input offset voltage is the apparent voltage at an input
even if zero volts is applied. This DC error voltage gets multiplied by the op
amp circuit’s gain to produce an output error voltage. For example, consider
a typical op amp with an input offset voltage of 5 mV, used in a circuit with
a gain of 20. This would produce an output offset error of 100 mV. Depending
upon the application, this error may not be acceptable (especially if you are
amplifying a sensor signal whose output is comparable to the input offset
voltage). In that case, a precision op amp, with a very low input offset voltage
(<1 mV) should be used, or the offset voltage must be zeroed out using
additional components connected to the IC’s null adjust pin.

Input bias current is a DC current that flows from an op amp’s input
into the components connected to that input. If the device at the op amp’s
input has a very high impedance (or is a current-output device with a very
small output), this error can be significant. Consider a resistive sensor with
an impedance of 100,000 ohms connected to an op amp voltage follower
(Figure 3-4). If the op amp has an input bias current of 1 pA, it produces a
DC error voltage of V. = I, X R;, = 1 pA X 100,000 ohm = 0.1 V. In a case
like this, a high input impedance op amp with a low input bias current (1 nA
or less) would be more appropriate.

Many other analog integrated circuits besides op amps are used as
common building blocks in signal-conditioning systems. These ICs include
voltage comparators, phase-locked loops, and function generators.

3.2.2 The Voltage Comparator

A voltage comparator, as shown in Figure 3-10, is very similar to an op amp
used in its highest gain, open-loop configuration (no feedback). Here, if the —
input (V;,) is greater than the + input (V) by at least a few millivolts, the
output voltage swings to one extreme (—V); if the + input is greater than the
— input, the output swings to the other extreme (+V). By setting the + or —
input to a known reference voltage, an unknown voltage (at the other input)

36 CHAPTER 3 Analog Signal Conditioning

Vout

Figure 3-10 Voltage comparator.

can be evaluated. The comparator can be used to determine if analog voltages
are within a certain range. It can also be used as a 1-bit ADC. There are even
comparators available with response times as fast as a few nanoseconds.

3.2.3 The Phase-Locked Loop

The phase-locked loop (PLL) is an interesting device. As shown in Figure 3-11,
it consists of a phase detector, VCO, and low-pass filter. This comprises a
servo loop, where the VCO is phase-locked to the input signal and oscillates
at the same frequency. If there is a phase or frequency difference between
the two sources, the phase detector produces an output that is used to correct
the VCO. The low-pass filter is used to remove unwanted high-frequency
components from the phase detector’s output. One application for this device
is to demodulate an FM (frequency modulated) signal.

3.2.4 The Tone Decoder

The tone decoder is similar to the phase-locked loop (see Figure 3-12) except
that the filtered phase-detector output goes to a comparator instead of feeding
back to the VCO. The VCO frequency is constant, so the comparator is
activated only when the input signal is within the pass band centered on the
VCO frequency. This device is commonly used for frequency detection, as
in telephone touch-tone equipment.

INPUT —> ppyasE LOW PASS
DETECTOR| | FILTER
PHASE-LOCKED veo CONTROL
OUTPUT VOLTAGE

Figure 3-11 Phase-locked loop.

3.3 Analog Conditioning Circuits 37

INPUT—> ppase LOW PASS N
DETECTOR FILTER DC
Voo ol + OUTPUT
COMPARATOR
VCO FREQ SET

Figure 3-12 Tone decoder.

3.25 The Function Generator

Function generator ICs are special-purpose oscillators used to produce sine,
square, and triangle waveforms. The signal frequencies are varied either by
external resistors and capacitors or by a control voltage, as with a VCO. The
output can be frequency modulated by a signal on the VCO input. Some
devices also provide for amplitude modulation. These devices can typically
produce outputs within the range of 0.01 Hz to 1 MHz. They are often used
in test equipment.

Other common analog ICs include a wide range of amplifiers, signal
generators, timers, and filters, some of which we will cover later in this
chapter.

3.3 Analog Conditioning Circuits

Analog signal-conditioning circuitry can range from a simple RC filter, using
two passive components, to a complex system using hundreds of ICs and
discrete devices.

3.3.1 Filters

Filtering is undoubtedly the most commonly used analog signal-conditioning
function. Usually only a portion of a signal’s frequency spectrum contains
valid data and the rest is noise. A common example is 60-Hz AC power-line
noise, present in most lab and industrial environments. A high-gain amplifier
will easily amplify this low-frequency noise, unless it is rejected using a band-
reject filter or high-pass filter. The standard types of filter responses are low-
pass, high-pass, band-pass, and band-reject (or notch filter). The low-pass

38 CHAPTER 3 Analog Signal Conditioning

Amplitude Amplitude
h

1.0 1.0 J‘

0.5 — 0.5 —
0 > 0 >
fe Frequency fe Frequency
(a) Low Pass Filter (b) High Pass Filter
Amplitude Amplitude
3 3
1.0
1.0 ‘4 o
0.5 — 0.5 —
0 > 0 —»
fo 4 Frequency fo f4 Frequency
(c) Band Pass Filter (d) Band Reject (Notch) Filter

Figure 3-13 Ideal filter responses.

filter attenuates signals above its cutoff frequency, whereas the high-pass filter
attenuates signals below its cutoff frequency. The band-pass filter attenuates
frequencies outside of its pass-band range (both above and below), and the
band-reject filter attenuates those frequencies within its pass-band range. See
Figure 3-13 for amplitude-versus-frequency curves of ideal filters.

The study of filters is an entire discipline unto itself. We will only touch
on some simple examples here. The reader is referred to the bibliography for
more details on the design and use of filters. Two general classes of filters
are active and passive, depending on the components used. A passive filter,
using only resistors, capacitors, and inductors, has a maximum gain (or
transfer function value) of 1; an active filter, which uses passive components
along with active components (often op amps), can have a much higher gain,
as well as a sharper frequency response curve.

3.3 Analog Conditioning Circuits 39

Passive Filters The simplest filters use a single resistor and capacitor, so they
are called RC filters. They rely on the frequency-dependent reactance of
capacitors for filtering effects. RC circuits are usually used as simple low-
pass and high-pass filters. The reactance of an ideal capacitor is —j/@C (where
® = 2xf, C is capacitance, and j = ./~1).

The RC low-pass filter is shown in Figure 3-1a. V,; is the input AC
voltage and V,, is the output AC voltage. The transfer function that describes
the response of the circuit is H(f) = V,,/Vi, Since the two components are
in series, the current through them is the same: Iy = I.. Z is the AC impedance.
Since V=I1Ix2Z,

H(f) = I X Z)U X (Zg + Z¢))
=ZMNZg + Z)
Since Zz = R and Z.= —jlwC,
H(f) =1/ + joRC)

Note that as frequency (or @ = 27f) approaches zero, the magnitude of
the transfer function |H(f)| approaches 1, or no attenuation. Also, the phase
angle of H(f) (the phase shift between output and input) approaches 0°. As
fincreases, |[H(f)| decreases and the phase angle becomes more negative. The
cutoff frequency f. is where the magnitude of the real and imaginary imped-
ance components are equal (when @RC = 1), and |[H(f)| = 1/42 =0.707. This
is the —3 dB point [20 X 1log(0.707) = -3 dB]. The phase angle at f, is —45°.
Well above f, (ie., f > 10 x f.) |[H(f)| falls off at —20 dB per decade of
frequency (for every frequency increase of 10X the voltage output drops 10x).
This is the same as dropping 6 dB per octave (whenever the frequency
doubles). At these higher frequencies, the phase shift approaches —-90°. Now
the low-pass filter acts as an integrator. It is important to remember that this
integration is only accurate at high frequencies (well above cutoff).

The RC high-pass filter, shown in Figure 3-1b, is similar to the low-
pass filter just discussed. Here, the output voltage is across the resistor, instead
of the capacitor. The transfer function for this circuit is H(f) = 1/[1 — j/(wR(C)].
Now, as the frequency gets higher, |H(f)| approaches 1. As the frequency
approaches zero, |[H(f)| becomes very small.

Again, the 3-dB cutoff frequency, f., is where ®RC = 1. The phase angle
at f, is now +45°. At higher frequencies, the phase angle decreases toward 0.
At lower frequencies (f < f./10), the phase angle approaches +90° and |H(f)|
increases at the rate of 20 dB per decade. In this low-frequency, high-
attenuation region, the RC high-pass filter performs as a differentiator. Similar
to the RC integrator, this differentiation is only accurate at relatively low
frequencies.

40 CHAPTER 3 Analog Signal Conditioning

INPUT OUTPUT

Figure 3-14 Series RLC filter.

Another important point about passive RC integrators and differentiators
is that their operational frequency range is in a high-attenuation region. So,
their output signals will be very low amplitude, possibly limiting their use-
fulness because of excessive noise.

RL circuits can also be used as low-pass and high-pass filters, yet they
are much less common. A series RLC circuit, as shown in Figure 3-14, is
used as a band-reject or notch filter. Here, the minimum value of |H(f)| occurs
at fy = 1/(2n./LC), where the phase angle is +90°. This is the filter’s resonant
frequency. Below f;, |H(f)| increases while the phase angle increases toward
0° (as f approaches zero). Above f;, |H(f)| again increases, while the phase
angle decreases to 0°. Well above or below f,, [H(f)| approaches 1.

A parallel RLC circuit, as shown in Figure 3-15, acts as a band-pass
filter, with a maximum |H(f)| = 1 at resonance (f;). At f;, the phase angle is
0°. This arrangement is sometimes referred to as a tank circuit because, at
the resonant frequency, it effectively stores most of the electrical energy
available (except for losses through the resistor). Below fq, |H(f)| decreases
while the phase angle increases toward +90°. Above f;, |H(f)| again decreases,
while the phase angle approaches —90°. Well above or below f;, |H(f)) falls
off at —20 dB per decade. However, close to f;, this fall off may be much
steeper, depending on the value of Q, a measure of the filter’s resistive losses:

L C
INPUT —— OUTPUT

Figure 3-15 Parallel RLC filter.

3.3 Analog Conditioning Circuits a1

Q = 2nf, X L/R. The smaller the value of R is, the larger Q becomes and the
steeper the [H(f)| curve becomes, around f;.

Using passive components, if a broader pass-band response or a
steeper attenuation curve for out-of-band frequencies is desired, usually
several simple filter stages are concatenated. This can produce the desired
frequency response, at the expense of higher attenuation within the pass-
band, referred to as the insertion loss. One way around this problem is to
use an active filter.

Active Filters Active filters are typically op amp circuits using resistors and
capacitors to produce the required frequency response, usually with a gain
equal to or greater than 1 (no inductors are needed). They have been limited
to relatively low frequencies (i.e., <1 MHz) because of the limited frequency
response of standard op amps. In the audio and ultrasonic regions these filters
are indispensable. The availability of high-frequency amplifier ICs (with
usable gains well above 100 MHz) has greatly extended the usefulness of
active filters. Figure 3-16 shows simple active low-pass and high-pass filters,
using a 2-pole Salen-Key topology.

A newer type of active filter is the switched capacitor filter. This device
is very attractive because external components are not needed (as they are
with op amp active filters, where value selection is critical). In addition, this
filter can be tuned by varying the frequency of the applied clock signal
(usually a digital waveform). This is a good choice when a computer-controlled
filter is required. There are a wide range of switched capacitor filter devices
available from analog IC manufacturers.

A switched capacitor filter is a sampled-data device, where an internal
capacitor is switched between the input signal and an integrating amplifier
(where the integrator simulates a resistor), as shown in Figure 3-17. Initially,
capacitor C; charges to the input voltage at that moment, when switch S,
is at position (a). Then S, switches to position (b) and C, dumps its charge
into C,, the integrating capacitor, via the op amp. This process repeats over
many switching cycles, where C, averages the input signal voltage. The
filter’s time constant depends upon the switching frequency, which essen-
tially determines the cutoff frequency. Since this is a sampled device, it
will have aliasing problems (see Chapter 4 for a discussion of aliasing) as
the signal frequency approaches the switch rate. Typically, the switching
(clock) frequency is 50 to 100 times the cutoff frequency. To prevent
problems with high-frequency signals or switching clock feed-through, a
simple passive low-pass filter is often used in conjunction with a switched
capacitor filter.

42 CHAPTER 3 Analog Signal Conditioning

T
1
Ry Ro —V,
out
Vin
Gz
(a) Low Pass Filter
Ry
Gy
LV
Vi, % |l out
(b) High Pass Filter
Figure 3-16 Active filters based on op amps.
c2 | '
a b
O; -
S1 —
Input + Output
(03

Figure 3-17 Switched capacitor filter.

3.3 Analog Conditioning Circuits 43

Standard Filter Functions There are several commonly used filter functions,
each with its own special properties. These functions are often used as low-
pass, high-pass, or band-pass filters. The Butterworth or maximally flat filter
is characterized by a nearly flat pass-band with no ripples. The roll-off is
smooth and monotonic (again without ripples) with a roll-off rate for high-
pass or low-pass filters of 20 dB/decade, for each pole. Multiple poles can
be concatenated for steeper roll-off. This filter is often used as a good com-
promise between attenuation and phase response.

The Chebyshev or equal-ripple filter does have pass-band ripple,
although the amount of ripple is specified by the design. It has a faster roll-
off near the cutoff frequency than a Butterworth filter but it has a poorer
transient response (in the time domain).

A Bessel or Thompson filter has a linear phase response in the pass-
band, which does not distort a nonsinusoidal waveform (such as a square
wave) the way a Butterworth or Chebyshev filter would. However, this filter
has a much slower roll-off and often requires using higher-order designs (with
multiple stages).

The elliptic or Cauer filter has a much steeper roll-off than the other
filter types, at the expense of both ripple in the pass-band and stop-band along
with a very nonlinear phase response.

3.3.2 Wheatstone Bridge

Many other types of analog circuits are used for conditioning transducer signals.
For resistive sensors, such as strain gages and thermistors, the classic Wheat-
stone bridge is still used. A DC Wheatstone bridge is shown in Figure 3-18. If
the resistance values are set so that there is no voltage across the meter (and
no current through it) the bridge is said to be balanced. At balance, it can be
shown that R\/R; = R,/R,. Typically a resistive sensor is placed in a bridge
circuit to produce a voltage signal output. Usually, one of the resistors in the
bridge is the variable sensor element, and initially the bridge is not balanced.
Let us assume for the moment that R, is the variable resistive transducer and
that for simplicity R; = R,. When R, = R, the bridge is balanced and the
output is zero. As R, increases or decreases slightly, the output voltage will
swing positive or negative. A calibrated variable resistor in the bridge circuit
(for example, R,) is adjusted until the bridge is again balanced. Then we
know that R, equals the new value of R,.

Bridges are also used with AC excitation and reactive elements. This is
how a capacitive sensor can produce an accurate voltage signal. In the case
of an AC bridge, usually one leg is left as purely resistive, making it easier
to balance the unknown reactive element in the other leg.

4 CHAPTER 3 Analog Signal Conditioning

Figure 3-18 Wheatstone bridge.

3.3.3 The Sample-and-Hold Amplifier

Another special analog circuit, extremely useful in data acquisition applica-
tions, is the sample-and-hold amplifier as shown in Figure 3-19. This is used
to get a stable sample of a changing analog signal, prior to using an ADC.
The field-effect transistor (FET) acts as a switch, charging the capacitor to
the analog signal’s present voltage level when the sample line is asserted.
When the transistor is switched off, the capacitor “remembers” the voltage,
which is buffered by the op amp. The very high input impedance of the op
amp, along with a low-leakage capacitor, prevents the voltage from dropping
off too quickly.

A sample-and-hold amplifier is used as the front end of an ADC because
if the analog waveform is rapidly changing during the ADC cycle, the value

FET R L_
Y

out

Sample

Figure 3-19 Sample-and-hold amplifier.

3.3 Analog Conditioning Circuits 45

out

Figure 3-20 Peak detector.

produced can have a large error. This way, there is an accurate “snapshot” of
the waveform during the brief sample interval. The sample interval is typically
much shorter than the time between successive analog conversions. Sample-
and-hold amplifiers are available as monolithic devices, some with sampling
intervals as short as a few nanoseconds. In addition, many high-speed ADCs
incorporate a sample-and-hold amplifier in the IC.

3.3.4 Peak Detector

Another useful circuit is the peak detector, as shown in Figure 3-20, which
again is op amp based. It is similar to the sample-and-hold circuit, with a
diode used as a switch, for charging the capacitor, C,. The second (output)
op amp is simply a buffer, allowing the circuit to drive a low-impedance load
without draining the capacitor. Whenever the input voltage is greater than the
output voltage, the diode is forward biased and the capacitor is charged up
to that voltage. Usually a switch (such as a FET) may be placed across the
capacitor to implement a discharge or reset function. Also, a second diode
may be used to compensate for the switching diode’s voltage drop (~0.6 V
for a silicon signal diode).

3.3.5 Log and Antilog Amplifiers

There are many important nonlinear amplifier circuits, including the log
amplifier and the antilog amplifier. A log amplifier is commonly used to
compress a signal’s large-amplitude dynamic range into something more
manageable by other circuits (such as ADCs). The simple logarithmic ampli-
fier uses a junction diode as a nonlinear element. In a forward-biased diode,

46 CHAPTER 3 Analog Signal Conditioning

TR,

VOUl

I

Figure 3-21 Simple logarithmic amplifier.

the voltage drop across the diode varies proportionally to the log of the current
through it. When a diode is connected in the feedback loop of an inverting
amplifier, the output voltage is a logarithmic function of the input voltage. If
a diode is used in a noninverting amplifier, the result is an antilog amplifier.

There are some problems using diodes in log amplifiers. They are very
temperature sensitive, since the forward voltage drop across a diode is a
function of temperature. In fact, this property is often exploited in diode
temperature sensors. Also, the signal range over which the diode has a log-
arithmic response is somewhat limited. Often a bipolar transistor is used in
place of a diode, since its emitter-base voltage varies with the log of its
collector current over a very wide range. A log amp using a transistor is
shown in Figure 3-21. There are monolithic log amplifier ICs available, which
have good temperature compensation and fairly wide operating ranges, often
usable over 60 dB or more of input voltage variation.

3.3.6 Other Common Amplifiers

There are several other types of analog amplifier circuits besides the op amp,
commonly used for data acquisition purposes. Theses include instrumentation
amplifiers, programmable gain amplifiers, and isolation amplifiers.

Instrumentation Amplifiers An instrumentation amplifier (IA) is used to pro-
vide a large amount of gain for very low-level signals, often in the presence
of high noise levels. The major properties of IAs are high gain, large common-
mode rejection ratio (CMRR), and very high input impedance. They are often
used to directly amplify signals from passive sensors, such as strain gages
(see Chapter 2). An IA is a device which only amplifies the difference between

3.3 Analog Conditioning Circuits 47

R2 R4

%

il

Figure 3-22 Instrumentation amplifier.

Output

the two input lines while ignoring any common-mode noise they both carry.
It is usually used for low-frequency signals (<1 MHz).

A typical instrumentation amplifier configuration consists of three op
amps, as shown in Figure 3-22. The resistors used should be high-precision
(0.1% tolerance or better) to achieve the highest CMRR possible. The overall
gain of this IA circuit is R/R,[1 + (2R/R5)].

Monolithic IA ICs are readily available and are often preferable to
building one out of individual op amps, since the internal components will
be well matched. These IAs can have a CMRR over 100 dB and a voltage
gain up to 10,000x.

Programmable-Gain Amplifiers Programmable-gain amplifiers (PGAs) are a
special class of instrumentation amplifiers that have selectable gain, either
through external component selection or, more commonly, through digital
control lines. They are used in data acquisition systems to enable software
control of analog gain, tailoring the amount of amplification to the current
task. Typical PGAs have either decade (1%, 10x, 100x, 1000x) or binary (1x,
2%, 4%, 8X) gain settings, using just a few digital control lines.

These control signals are usually used to select different, internal feed-
back resistor values, to change the gain. Some PGAs have multiple amplifiers
configured for different gain values and the digital controls select which
amplifier output is used.

48 CHAPTER 3 Analog Signal Conditioning

Isolation Amplifiers Isolation amplifiers are used to boost low-level analog
signals when electrical isolation between input and output is needed. This
may be when there are high common-mode voltages present, such as a sensor
biased by a high DC voltage. Another use is when medical monitoring equipment
is connected to a patient and current flowing from the instrumentation to the
patient connections (such as ECG electrodes) can be dangerous.

Most commercial isolation amplifiers use transformers, capacitors, or
optical couplers to separate input from output. The important characteristics
are isolation voltage (commonly up to 5000 V), leakage current (typically
less than 1 pA), gain error, and bandwidth.

3.3.7 Other Common Analog ICs

There are many other analog ICs commonly used in data acquisition equip-
ment, besides those we have previously covered in this chapter. Some of these
are analog switches, multiplexers, and voltage references.

Analog Switches and Multiplexers An analog switch is a digitally controlled
device that is used to pass or interrupt an analog signal, analogous to a
mechanical switch or relay. These devices usually use FETs as the main
switching elements. Unlike mechanical switches, analog switches have an
extremely limited signal voltage range (usually less than the switch’s power
supply voltage) and a relatively high “on” resistance (typically ranging from
a few tenths of an ohm to over 100 ohms). However, these devices are much
smaller and faster than mechanical relays, many exhibiting switching speeds
under 1 psec.

Multiple analog switches can be arranged in a single IC to produce a
multiplexer (mux) with multiple inputs and a single output. The device’s
digital control lines determine which input is steered to the output. A data
acquisition card containing a single ADC may have an eight-channel multi-
plexer at its input, allowing eight analog signals to be simultaneously con-
nected to it. However, only one channel at a time can be digitized by the ADC.

Voltage References The absolute accuracy of an ADC is determined, among
other factors, by its analog reference. A voltage reference is an IC that either
contains or behaves as if it is a precision Zener diode, with a well-characterized
breakdown voltage. This voltage is also fairly insensitive to temperature
changes and aging. Some voltage references contain internal buffer amplifiers
that allow them to drive low-impedance loads. A high-quality voltage refer-
ence also allows a data acquisition board to perform an accuracy self-test and
even autocalibration on its analog input channels.

3.3 Analog Conditioning Circuits 49

INPUT 1—| L9
Amp
Summing Amp Anti-Log Amp OUTPUT=
INPUT 1 X INPUT 2
INPUT 2—{ Log
Amp

Figure 3-23 Analog multipiier.

3.3.8 Modulation

An important nonlinear function is modulation. Frequency modulation was
discussed with the VCO. Amplitude modulation is easily achieved using an
analog multiplier. A simple means of producing an analog multiplier is shown
in Figure 3-23. The two inputs each pass through a log amplifier and then
are added together; finally they pass through an antilog amplifier. The output
voltage is equal to the product of the input voltages times a scaling factor.
Analog multipliers are also commonly available as single-chip devices. Many
of these monolithic multipliers can perform division and square functions.

3.3.9 High-Frequency Analog Circuits

As ADCs operate at higher speeds (up to 1 gigasample/second), analog
circuitry bandwidth must also increase or these fast sampling speeds are
wasted. To maintain high bandwidths, special attention must be paid to factors
such as transmission line impedance, stray capacitance, shielding, and con-
nector quality.

When working with analog signal frequencies well above 1 MHz, coax-
ial cables and connectors should be used. This will help minimize signal
attenuation and distortion due to impedance mismatches, as well as reduce
external noise pickup. The most common coaxial connectors used are BNC
and SMA types.

When designing a high-frequency amplifier circuit, component place-
ment on the board is critical. A high-speed op amp with a bandwidth of
several hundred MHz, up to 1 GHz, can easily become an oscillator because
of circuit instabilities caused by stray capacitance of the board itself. RF
design techniques must be used.

Conventional, voltage-feedback op amps operate at high frequencies in
much the same way as their low-frequency counterparts. Their bandwidth

50 CHAPTER 3 Analog Signal Conditioning

varies inversely with circuit gain, since gain—bandwidth product is constant.
Newer, current-feedback amplifiers are commonly used at high frequencies
(usually 100 MHz or above). Their gain—bandwidth product is not constant.
The circuit’s bandwidth is mostly determined by the value of the feedback
resistor used, not simply the gain settings. When a current-feedback amplifier
is used as a voltage follower (gain of 1x), a resistor should be connected from
the output to the — input, as per the manufacturer’s recommendation.

When working with high-speed and high-frequency circuits, grounding
and shielding also become critical. Analog and digital devices should have
appropriate (often separate) ground paths on the circuit board, usually with
a single common connection point. This helps to minimize digital noise
appearing in analog circuits. Shielding of circuit cards may be necessary, both
to minimize susceptibility to received high-frequency noise and to limit the
amount of RF noise the card itself generates. If external power supplies are
used, the cables should be properly filtered, using ferrite beads and bypass
capacitors.

These are just some basic guidelines for working with high-speed
devices. In general, high-frequency analog circuits are much less forgiving
than their low-frequency equivalents.

There are other standard analog signal conditioning devices and circuits
besides the ones shown in this chapter. The information here should give you
a feel for what is commonly available and help you locate more detailed
information, as you require it.

CHAPTER

Analog/Digital
Conversions

As previously noted, we live in an analog world. Nearly all “real-world”
measured quantities are analog, at least at the macroscopic level we typically
deal with. Analog waveforms are usually defined as smooth, continuous func-
tions that have derivatives existing nearly everywhere. Most transducers have
analog outputs, usually voltage or current, which represent the physical quan-
tities being measured, such as temperature or pressure (notable exceptions
include optical encoders and smart sensors with digital outputs). Whenever
an analog quantity is discussed here, it refers to a voltage or current suitable
for use with common electronic equipment. This is typically in the frequency
range of 0 to 1 MHz, with a voltage range of around 1 microvolt (LV) to 100 V
or a current range of about 1 microampere (LA) to 10 amps.

4.1 Digital Quantities

Digital quantities have discrete levels that vary by steps instead of continu-
ously (as shown in Figure 1-1 of Chapter 1). Most digital electronic equipment
uses binary values, which have two possible states, called true (on or 1) and
false (off or 0). Most often the 0/1 notation is used to describe the binary
level of a single line or wire, represented as a binary digit or bit. For the
standard family of TTL (transistor transistor logic) digital ICs, which operate
from a +5 V power supply, a high level (>2.4 V) is a logical 1 and a low
level (<0.8 V) is a logical 0. These logic levels also apply to new low-voltage
logic families (such as LVTTL) that operate from +3.3 V power supplies.

51

52 CHAPTER 4 Analog/Digital Conversions

Logic families that operate from even lower supply voltages (+2.5V or +1.8 V)
use different threshold values for 1 and 0.

Binary values are a base-2 numbering system, as opposed to our every-
day base-10 decimal system. It takes many bits grouped together to represent
a useful quantity. In general, a collection of n bits can represent 2" dlscrete
levels. For example, a group of 8 bits is referred to as a byte, where 2
256 levels, for a representation of values in the range of 0 to 255 (or - 128
to +127). A group of 16 bits is refelred to as a short word, having 2'% = 65,536
steps. A long word of 32 bits has 2% =4,294,967,296 steps. In digital electronic
equipment, these groups of bits are usually parallel lines or wires, where each
bit is present at the same time. One wire typically carries the value for one bit.
This means that increasing the number of levels a digital circuit can represent
increases the number of wires (or interconnections) in that circuit. This increase
also allows the digital representation to more closely approximate the analog
signal, within a given dynamic range.

The concept of dynamic range is very important for data acquisition
systems; it will be addressed at greater length in Chapter 10. By definition,
the dynamic range of a data acquisition system is the ratio of the maximum
value that can be measured to the smallest value that can be resolved. This
number is often represented in decibels (dB) as

Dynamic range (dB) = 20 X log;, (max/min)
If both positive and negative values are measured,
Maximum value = maximum positive value — minimum negative value

For example, a data acquisition system with a 1-mV resolution and a
value range of 0 to +10 V (or -5 to +5 V) has a dynamic range of 10,000:1,
or 80 dB This dynamic range requires a minimum of 14 blts to represent it,
since 2 = = 16,384, which is greater than 10,000, whereas 2" (8192) is less
than 10,000.

4.1.1 Binary Codes

For n binary lines to represent 2" levels, each line must have a different value
or weight. For a natural binary code, having any value from 0 to 2" — 1, integers
are represented by a series of weighting bits having the value 2" (where m
varies from 0 to n — 1). The bit number m is zero for the least significant bit
(LSB) on the far right and increases to n — 1 for the most significant bit (MSB)
on the far left. The values of integer bit weights for the first 16 bits are given
in Table 4-1. The value of a collection of parallel bits is the sum of the weighted
values of all nonzero bits (or the value of a bit, either 0 or 1, times its weight).

4.1 Digital Quantities 53

TABLE 4-1
Positive Integer Bit Weights for
Natural Binary Code

BIT # (m) | BIT WEIGHT (2™)
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024
11 2048
12 4096
13 8192
14 16384
15 32768

For example, we will evaluate the 8-bit binary integer 01011101. Starting
with the LSB, working from right to left:

Sum=1x2°+0x2"+1x2°+1x2°+1x2'+0x2°+1x2°+0x 2’
=1+04+4+8+16+0+64+0
=93

Sometimes it is necessary to represent both positive and negative integer
values, as when dealing with a bipolar voltage. The most common binary
code for this is called twos complement, which can represent values from
—2"" 10 +2"" — 1. In this notation, positive values are encoded the same way
as the positive-only, natural binary code above (this includes zero). To encode
a negative value, write down the code for the corresponding positive value
(including all leading zeros), invert the number by changing all ones to zeros
and all zeros to ones (which is called the ones complement), and then add 1
to the result. Table 4-2 contains twos complement codes for 5-bit numbers

54 CHAPTER 4 Analog/Digital Conversions

TABLE 4-2
Twos-Complement Coding for Five-Bit Bipolar Values

VALUE TWOS COMPLEMENT CODE
+15 01111
+14 01110
+13 01101
+12 01100
+11 01011
+10 01010

+9 01001
+8 01000
+7 00111
+6 00110
+5 00101
+4 00100
+3 00011
+2 00010
+1 00001
0 00000
-1 11111
-2 11110
-3 11101
—4 11100
-5 11011
-6 11010
-7 11001
-8 11000
-9 10111
-10 10110
-1 10101
-12 10100
-13 10011
—14 10010
-15 10001
-16 10000

4.2 Data Conversion and DACs 55

representing values +15 to —16. For example, to get the twos complement
representation of the value —12 using 5 bits:

1. 412 =01100

2. Ones complement = 10011

3. Twos complement = 10011 + 1
4, —12 = 10100

One additional coding system we will mention here is fractional binary.
This is useful when digital readings must be normalized to an arbitrary full-
scale value, as when a converter’s reference voltage is variable. The n bits of
the code represent values between 0 and 1 — 27". The weight of each bit is a
fractional value, equal to its natural binary integer value (of 2™) divided by 2".
This means the MSB has a weight of 1/2 (since 2""'/2" = 27"), the next bit to
the right has a weight of 1/4, and so on, down to the LSB with a weight of
1/2" (or 27"). When all bit values are 1, the total value = 1 — 27", Again, 2"
levels are represented by this code. Table 4-3 lists fractional binary codes for
5-bit values. Note that sometimes fractional binary values are written with a
binary point and sometimes not. So, the fractional binary for 1/32 can be
written as either 0.00001 or 00001, even though they both mean the same thing.

4.2 Data Conversion and DACs

Data conversion is at the heart of data acquisition systems. Real-world analog
signals must be converted to binary representations via an analog-to-digital
converter (or ADC). Similarly, if output to the analog world is required, as
in control systems, digital values are transformed using a digital-to-analog
converter (or DAC). We will look at DACs first, because they are usually
simpler devices than ADCs. In addition, many ADCs contain DACs as part
of their circuitry.

DAC:s use either current or voltage switching techniques to produce an
output analog value equal to the sum of several discrete analog values. Because
it is easier to sum currents (rather than voltages) using analog circuitry, most
commonly available DACs are current-mode devices. They produce the sum
of internal current sources and use either an internal or external op amp as
an output current-to-voltage converter.

421 Fully Decoded DAC

One type of DAC is shown in Figure 4-1. This is a fully decoded current-
mode 3-bit DAC. A fully decoded DAC, for » input bits, contains 2" — 1
switches and identical current sources. Basically, the input bits are decoded

56 CHAPTER 4 Analog/Digital Conversions

TABLE 4-3

Five-Bit Fractional Binary Codes

CODE FRACTION OF FULL SCALE
0.00000 0

0.00001 1/32 (LSB)
0.00010 2/32 = 1/16
0.00011 3/32

0.00100 4/32 = 1/8
0.00101 5/32

0.00110 6/32 = 3/16
0.00111 7/32

0.01000 8/32 = 1/4
0.01001 9/32

0.01010 10/32 = 5/16
0.01011 11/32
0.01100 12/32 = 1/8
0.01101 13/32
0.01110 14/32 = 7/16
0.01111 15/32
0.10000 16/32 = 1/2 (MSB)
0.10001 17/32
0.10010 18/32 = 9/16
0.10011 19/32
0.10100 20/32 = 5/8
0.10101 21/32
0.10110 22/32 = 11/16
0.10111 23/32
0.11000 24/32 = 3/4
0.11001 25/32
0.11010 26/32 = 13/16
0.11011 27/32
0.11100 28/32 = 7/8
0.11101 29/32
0.11110 30/32 = 15/16
0.11111 31/32

4.2 Data Conversion and DACs 57

CURRENT SOURCES
Jcls
|50
INPUT BITS C1 &
BITO —» Cc2 v
[s2
BIT1 —» c3 y
DECODE s3]
BIT2 — LOGIC C4 !
54
C5 r
S5
C6 3
> S6
C7 v
r y y y > I
out

SWITCH MATRIX

Figure 4-1 Fully decoded 3-bit current mode DAC.

and control switches to the current sources of equal magnitude. A digital
value of 001 connects one current source to the output, a value of 010 connects
two sources to the output, 011 connects three sources to the output, and so
on up to seven sources for 111. These current sources are summed at the
output, producing a current proportional to the digital value.

The main advantage to this type of fully decoded DAC is that with
proper switching the output current is guaranteed to be monotonic. That is,
as the digital code continues to increase the analog output will also increase,
step by step. This is not always true of all DACs. The disadvantage of this
type of DAC is that 2" — 1 current sources and switches are required. This
becomes prohibitive for reasonably large numbers of bits, such as 4095
current sources for a 12-bit DAC.

4.2.2 Weighted Resistor DAC

A simpler DAC can be produced using a voltage reference with a set of
weighted precision resistors and switches, as shown in the 3-bit DAC example
in Figure 4-2. The resistor values are in a binary bit-weight ratio (1:2:4:8:16

58 CHAPTER 4 Analog/Digital Conversions

Bit2 (MSB) Bit 1 Bit 0 (LSB)
? ? ?

Vout

Figure 4-2 Weighted resistor, 3-bit current mode DAC.

and so on). Again, this converter is a current-mode device, with the sum of
all resistor currents resulting in an analog current.

In this example, as in nearly all practical current-mode DACs, the output
current is passed through an op amp. This acts as a current-to-voltage con-
verter as well as isolating the DAC from output circuit loading. Here, since
the op amp is inverting (because the virtual ground of the inverting input is
needed) the output is a negative voltage proportional to the input binary word
and the voltage reference.

When all input bits are zero, no current flows into the op amp, and the
output voltage is zero. If the MSB (bit 2) is 1, the current flowing into the
op amp is V,/2K, producing an output voltage of —V /2, since the feedback
resistor (R;) is 1K ohm and the op amp’s gain is —R/R;,. Similarly, if bit 1 is
1, it generates a current of V/4K, producing an output voltage of —V,.:/4;
and if the LSB (bit 0) is 1, it generates a current of V,/8K, producing an
output voltage of —V,¢/8. If more than a single bit is 1, their currents sum at
the op amp’s input and produce the appropriate output voltage. If all bits are
1, the output voltage is —7/8 V.. This is the full-scale output.

This DAC can produce eight discrete analog output levels, spaced 1/8
V.t apart. Note, that if we treat these values as normalized to V., we are
dealing with fractional binary values. If we set V,; = 10.00 V, the full-scale
output is —8.75 V, with steps of 1.25 V. If we increased the number of bits
in this DAC to n, the resistor values for the most significant bits would stay

4.2 Data Conversion and DACs 59

the same and larger resistors would be added for the least significant bits.
The LSB will have a value of 2" x 1K ohm.

The advantage of the DAC in Figure 4-2 is that only one switch and
resistor are needed per bit. The main drawbacks are that as the number of
converter bits increases, the number of different precision resistor values
needed, as well as the overall range of resistor values, increases. If we
increased the resolution of the DAC in Figure 4-2 from 3 bits to 8 bits, the
resistance values would increase up to 256K ohms. This makes it very difficult
to maintain monotonicity, linearity, and overall accuracy, because of the wide
range of resistance values required.

4.2.3 Resistor Quad

Other techniques are used to overcome these drawbacks. One of these is the
binary resistance quad, used in an 8-bit DAC in Figure 4-3. Here, the resistor
network uses the same four values for more than 4 bits resolution. The resistors
and switches constitute a voltage-divider network. The most significant 4 bits
(bits 4-7) are in the usual scaled binary ratio of 2:4:8:16. The least significant
4 bits (bits 0-3) are these same values, repeated. However, these values are
attenuated 16:1, via the additional (16K ohm) resistor. Each section of four
resistors is called a quad.

424 R-2R Ladder

A very common DAC uses the R—2R resistance ladder, where only two different
resistor values are needed, as shown in Figure 4-4. When only the MSB
(bit 7) is 1, the output voltage is —V,;/2, since V. is switched through 2R from

(LSB) Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 (MSB)
9 9 9o 9 ¢ o o 9

Tg) 515 J7 TéTéTélE

1K

16K S 8KS 4KS 2K 16K S8KS4K S 2K
EAAA be 2
16K Vout

Figure 4-3 8-bit DAC using resistor quads.

60 CHAPTER 4 Analog/Digital Conversions

Vout

0 o 0 6) o) 6

(MSB)Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 (LSB)

Figure 4-4 8-bit DAC using R-2R resistor ladder.

bit 7 and the op amp’s feedback resistor is R. When moving down the ladder
(toward less significant bits), each 2R resistor sees one-half the voltage of the
one above it (when it is the only 1 bit). This is due to the constant resistance
of the attenuator network to ground. So, bit 6 contributes —V, /4 to the output
voltage, bit 5 contributes —V¢/8, and so on down to bit O contributing —V,/256.

425 Multiplying DAC

When a DAC can operate with a variable analog reference voltage, instead
of the usual fixed value, it is called a multiplying DAC. The output of this
DAC is proportional to both the analog reference input and the digital input.
If it can respond to bipolar inputs (both analog and digital) and produce a
bipolar output, it is a four-quadrant multiplying DAC. This refers to a Car-
tesian plot of the transfer function. A multiplying DAC is commonly used as
a digitally controlled attenuator or amplifier of an analog signal.

4.2.6 DAC Characteristics

Some important criteria must be considered when choosing a DAC. The first
parameter to determine is the number of bits of resolution. This is selected
by knowing the desired dynamic range of the output signal. Eight-, 12-, and
14-bit DACs are commonly available as monolithic devices or integrated
circuits (ICs). Even 16-bit DACs are produced commercially.

Another major parameter is settling time, which determines the speed
of conversion, as shown graphically in Figure 4-5a. This is the amount of time
required for a DAC to move to and stay within its new output value (usually
to £1/2 LSB), when the digital input changes. For common, current output

4.2 Data Conversion and DACs 61

Analog Output

Digital Output New Digital Value

t Time
(a) Setting Time

Actual

Analog Output .
-

Digital Input
(b) Linearity

Figure 4-5 Important DAC parameters.

DAC:s, settling time is reasonably fast, typically a few hundred nanoseconds.
If a fast-settling op amp is used as an output current-to-voltage converter,
output waveforms at frequencies well over 1 MHz can be produced.

Linearity is another major DAC parameter. It is the maximum deviation
of the DAC’s transfer curve from an ideal straight line, usually expressed as
a fraction of the full-scale reading, as illustrated in Figure 4-5b.

One final DAC parameter to note is monotonicity. If the output of a
DAC always increases for increasing digital input, the DAC is considered
monotonic. Monotonicity is specified over a certain number of input bits,
typically the full number of bits of resolution. A nonmonotonic DAC would
have a dip in its transfer curve.

62 CHAPTER 4 Analog/Digital Conversions

4.2.7 High-Speed DACs

There are monolithic DACs available with update rates in the range of 100-300
million samples per second (MSPS). These DACs can go up to 16-bit resolu-
tion (although 12- and 14-bit devices are more common at these high speeds).
High-speed DACs typically employ a mixed architecture to achieve good
performance at these speeds. Most use a segmented current source along with
an R-2R ladder. The important specifications for these high-speed converters
are update rate (in MSPS), settling time (in nsec) and slew rate (in V/usec).

Some of these fast DACs require emitter-coupled logic (ECL) digital
control signals. As opposed to TTL digital signal levels (see Section 4.1),
ECL signals are negative (relative to ground) and have a smaller difference
between logic 0 and 1 levels. ECL logic devices are one of the fastest families
of digital ICs commonly available. Some high-speed DACs use external TTL
controls and translate them internally into ECL signals. ECL devices are
powered by a —5.2 V supply (compared to +5 V or lower for TTL ICs). There
are several different ECL families, with typical logic levels of —1.75 V
representing 0 and —-0.9 V representing 1.

4.3 ADCs

Now we will turn our attention to ADCs. A multitude of techniques are used
to produce an analog-to-digital converter. We will look at some of the more
common ones here.

4.3.1 Ramp ADC

One of the simpler approaches in implementing an ADC is the ramp converter
shown in Figure 4-6. It consists of a digital counter, a DAC, an analog
comparator, and control logic with timing generation. Basically, when an
analog conversion is requested, the digital counter starts counting up from
zero. As it counts, the analog output of the DAC increases, or ramps up. When
the DAC’s output is equal to or exceeds the analog input, the comparator’s
output switches and the control logic stops the counting. An end of conversion
is indicated, with the digital counter output now containing the converted
value. This conversion sequence is illustrated in Figure 4-7.

The problem with this technique is its relatively long conversion time,
or slow speed, which becomes worse with increasing number of output bits.
Everything else being equal, the maximum conversion time for the ramp
converter increases as 2", where n is the number of bits of resolution. The

43 ADCs 63

ANALOG INPUT >
Comparator

el

DAC CLOCK

DIGITAL OUTPUT 424

DIGITAL COUNTER
END OF
CONVERSION
CONTROL LOGIC
START OF |
CONVERSION

Figure 4-6 Simple ramp analog-to-digital converter (ADC).

DAC
OUTPUT 4

Full Scale
FS

3/4FS —

12 FS —

1/4 FS —

>

T

CONVERSION TIME (CLOCK CYCLES)

Figure 4-7 Ramp ADC, typical conversion sequence.

conversion time is inversely proportional to the frequency of the clock used
in counting.

For example, if the converter’s DAC had a 200-nsec settling time and
we used a 5-MHz clock for a 12 bit ADC, maximum conversion time would be

samples per second Of course, this is a worst-case value. If the analog input
is less than the maximum allowable value, conversion time will be shorter.

64 CHAPTER 4 Analog/Digital Conversions

Even using a fast DAC with a 10-nsec settling time and a 100-MHz clock,
the minimum conversion rate is just 24,400 samples per second.

One minor variant on this technique is the servo ADC. Its digital counter
can count both up and down. When the DAC output is below the analog input,
it counts up. When the DAC output is above the analog input, it counts down.
It tends to track the analog input continuously, analogous to a servo control
loop. It will respond to small input changes rapidly, but it is as slow as the
standard ramp converter when a large input change has occurred.

4.3.2 Successive-Approximation ADC

A major improvement on the ramp converter is the successive-approximation
converter, probably the most popular class of general-purpose ADCs com-
mercially available at present. The overall block diagram of this system is
very similar to that of the ramp converter, as shown in Figure 4-8, except that
the digital counter is replaced by more sophisticated control logic that includes
a shift register. Instead of simply counting up until the analog value is exceeded,
the successive-approximation ADC tests one bit at a time (starting with the
most significant) until the internal DAC value is as close as possible to the
analog input without exceeding it.

First, the most significant bit (MSB), equal to 1/2 full scale (FS) value,
is turned on; if the DAC’s output is less than the analog input, it is left on
(otherwise it is turned off). Then the next bit down (1/4 FS) is turned on and

ANALOG INPUT +

Comparator

J‘LrL

DAC

DIGITAL OQUTPUT <n7’—

DIGITAL COUNTER CLOCK
END OF
CONVERSION «— TIMING
STATOF | ConTROL LOGIC
CONVERSION

Figure 4-8 Simple successive approximation ADC.

4.3 ADCs 65

DAC
OUTPUT 4

Full Scale

FS

3/4FS —

1/2FS —

1/4FS —‘

o

CONVERSION TIME (CLOCK CYCLES)

Figure 4-9 Successive approximation ADC, typical conversion sequence.

left on only if the DAC’s output is still less than the analog input. This process
continues until all # bits have been tested. Figure 4-9 shows a typical con-
version sequence. The entire conversion requires many fewer than 2" clock cycles
(usually between n and 21 cycles). Furthermore, the conversion time is relatively
constant and insensitive to the input analog value, as opposed to ramp converters.

It is not unusual to find successive approximation ADCs with conversion
rates well over one million samples/second and resolution as high as 16 bits.
Lower-speed and lower-resolution successive approximation ADCs are common
commercial ICs, available at very low prices. For example, there are 8-bit
devices with conversion times of 5 pusec or under (i.e., 200 kHz sampling
rates) available for only a few dollars.

4.3.3 Dual-Slope ADC

Another common ADC is the dual-slope converter, which relies on integra-
tion. As shown in Figures 4-10a and 4-10b, the voltage to be measured (V)
is input to an integrator, charging the capacitor for a fixed time interval #;,
which corresponds to a certain number of clock cycles. At the end of this
interval, a known reference voltage (V,) of opposite polarity is applied to the
integrator, discharging the capacitor. The time (and number of clock cycles)
required to bring the integrator output back to zero, (¢, — t,), is measured.
The charge on the capacitor at time £, is proportional to the average
value of V, times ¢,. This is equal to the charge lost by the capacitor during
time ¢, — ¢;, while being discharged by the reference voltage, proportional to
V, times (t, — t;). Hence (¢, — #,)/¢, is proportional to V,/V,. The output binary

66 CHAPTER 4 Analog/Digital Conversions

v
+INPUT — 20,
~-REF — 0

Comparator
+
\V4 CLOCK
n
DIGITAL OUTPUT CONTROL LOGIC
START OF CONVERSION & COUNTER
END OF CONVERSION «
(a) Block Diagram
Integrator
Output (V)
° [
0 Y t Time

(b) Typical Conversion Sequence

Figure 4-10 Dual-slope ADC.

count for the time interval (¢, — ¢,) is thus proportional to V,, the input voltage.
With appropriate circuitry, bipolar voltages can also be measured.

The dual-slope ADC has many advantages. Noise present on the input
voltage is reduced by averaging. The value of the capacitor and conversion
clock do not affect conversion accuracy, since they act equivalently on the up-
slope and down-slope. Linearity is very good and extremely high-resolution
measurements can be obtained. Its main disadvantage is a slow conversion
rate, often in the range of 10 samples/second. In applications where this is
not a problem, such as in measuring temperature transducers, a dual-slope
ADC is a good choice. They are commonly used in digital voltmeters (DVMs)

43 ADCs 67

where their resolution is measured in display digits (4-1/2 digits = £19999
counts or approximately 15 bits).

4.3.4 Voltage-to-Frequency Converter

Another slow ADC is the voltage-to-frequency converter, or VEC. It changes
an analog signal into a digital pulse train with a frequency proportional to
the signal voltage. This pulse train can be converted into a usable digital
output of n parallel bits by clocking a counter for a fixed time interval.

The VFC is an integrating device with good noise rejection and mono-
tonicity, similar to the dual-slope converter. It can also be used as an inexpen-
sive, high-resolution ADC, with slow conversion rates. Its drawbacks include
nonlinearity, a limited input-voltage dynamic range, and output offset. As the
input voltage approaches zero, the output frequency is still offset from zero.

4.3.5 Flash ADC

The fastest type of ADC is the flash converter. An n-bit flash ADC applies
the input voltage to an array of 2" — 1 comparators, via a ladder of 2" resistors.
The threshold for the comparators are spaced 1 LSB apart.

Figure 4-11 shows a simple 3-bit flash ADC. When V,, is zero, all
comparators are off. As the input voltage increases to V,/8, the lowest
comparator (a) goes on. As V;, keeps increasing by steps of V,/8, each
successive comparator (b, ¢, d, . . .) switches on. All comparators are on when
the input voltage reaches or exceeds 7/8 x V. The digital logic decodes the
comparator outputs into a 3-bit word. The digital output can either be normal
binary code (000 = minimum value, 111 = maximum value) or a Gray code.
In a Gray code, only one output bit changes for each one-step input change,
to minimize noise and “glitches” when many digital switches change at once
at high speed.

The conversion speed of a flash ADC is limited only by the speed of
its comparators and digital logic circuitry. It has a conversion rate measured
in speeds ranging from millions of samples per second (MSPS) to over a
billion samples per second (GSPS). A common application for this device is
digitizing video signals at rates well above 10 MSPS. Flash ADCs are fairly
expensive devices when high digital resolution is required, since their com-
plexity grows geometrically with the number of bits (2" — 1 comparators for
n bits). So, even an 8-bit flash converter requires 255 comparators and a
moderately complex digital decoder. See Section 4.3.8 for more information
on high-speed flash ADCs.

68 CHAPTER 4 Analog/Digital Conversions

Vin

COMPARATORS
Vref

DECODE
LOGIC

3 /_ DIGITAL
OUTPUT

Figure 4-11 3-bit flash ADC.

4.3.6 Sigma-Delta Converter

A fairly new commercial converter is the sigma-delta ADC (sometimes
referred to as a delta-sigma converter). This device is a low-cost, high-
resolution ADC, suitable for low conversion rates. Sigma-delta ADCs typi-
cally have 16 to 24-bit resolution, with a usable input signal frequency range
of a few Hz to a few kHz. There are some 16-bit sigma-delta ADCs with
conversion rates up to 1 MSPS.

A block diagram of a 16-bit sigma-delta converter appears in Figure 4-12.
It consists of an analog modulator loop followed by a digital filter. The modulator

4.3 ADCs 69

v
Vsig UM, INTEGRATOR

COMPARATOR

DAC N

CLOCK AND CONTROL LOGIC

DIGITAL OUTPUT <—167; DIGITAL FILTER

Figure 4-12 Sigma-delta ADC.

operates at a very high clock frequency, effectively oversampling the input signal.
It produces a serial data stream, which the digital filter averages to produce a
16-bit output word.

For example, assume the analog signal range (V;,) is —1.0 V to +1.0 V,
as well as the DAC output, and the input signal voltage is constant at +0.4 V.
The comparator’s output will be high and the DAC’s output will be +1.0 V if
the output of the integrator (V,,,) is positive. The comparator’s output will be
low and the DAC’s output will be —1.0 V if V,;, is negative.

Let us follow the voltages at V,, (where the DAC output is summed
with the input signal), Vi, (the integrator output, where V,, is averaged), and
the DAC output, as we step through the first few clock cycles, as shown in
Table 4-4. Note that the DAC is a single-bit device, with an output of either
+1.0Vor-1.0V.

Initially, at clock cycle 0, we assume that the DAC output is turned off,
Viig = Voum = Vine (+0.4 V), and the comparator output is 1, producing a DAC

70 CHAPTER 4 Analog/Digital Conversions

TABLE 4-4
Sigma-Delta Converter, Internal Cycles

CLOCK DAC
CYCLE Veum Vi« | COMPARATOR | oOuT
AU Nsatcud Wacsu s NSRS s
1 -0.6 -0.2 0 -1.0
2 +1.4 +1.2 1 +1.0
3 -0.6 +0.6 1 +1.0
4 -0.6 0 1 +1.0 Full
5 -0.6 -0.6 0 -1.0 |Conversion
6 +14 | +08 1 a0 |9
7 -0.6 +0.2 1 +1.0
8 -0.6 -0.4 0 -1.0
9 +1.4 +1.0 1 +1.0
10 -0.6 +0.4 1 +1.0
11 | os] 02 o 0 |

output of +1.0 'V, to be subtracted from V,,, on the next clock cycle. At clock
cycle 1, the first full clock cycle, Vi = Vi, — Vpac =+04V - 1.0V =-0.6 V.
Vint is simply the previous value of Vi, plus the new value of V, or +0.4 V
+ (=0.6 V) = -0.2 V. This process continues until the values at clock cycle 1
occur again and the process is repeated. In this example, the conversion
process starts repeating at clock cycle 11. Hence, 10 clock cycles are required
to complete the conversion. If the analog voltage of the DAC output is averaged
over those 10 cycles, we get a value of +4.0/10 = +0.4 V, the value of V.
Since the digital filter sees the same numbers as the DAC, its output will also
be +0.4 V, but as a digital representation.

Note that the number of clock cycles required for conversion varies
with the value of V;,. If we used a V;, value of +0.2 V, only five clock cycles
would be required. So, if high resolution at low sampling rates is adequate,
the sigma-delta ADC is a good selection and a strong competitor to dual-
slope ADCs.

4.3.7 Other ADC Variants

Many current ADC ICs use variations on the techniques we have previously
examined, along with additional features such as input multiplexers, sample-
and-hold amplifiers, and programmable gain amplifiers. Some sigma-delta

43 ADGCs n

ADCs have programmable filters for signal conditioning. There are ADCs
with multiple channels and programmable characteristics that are called data
acquisition systems by their manufacturers.

One important variant is the serial ADC. For the ADCs previously
discussed, the output digital data was presented in a parallel format, with all
bits available simultaneously. This parallel approach forces the number of
pins on a monolithic ADC package to increase as the resolution (number of bits)
increases, along with the overall package size.

For medium-speed ADCs (up to about 1 MSPS) many IC manufacturers
produce devices with serial outputs. For these converters, there is a single
data line that is time-multiplexed: each bit of the output digital word is present
in sequential order, for a fixed amount of time, usually one clock cycle (see
Chapter 8 for a discussion of serial signals). These serial interfaces usually
require only two or three wires: a data line, a clock line, and sometimes a
control or synchronization line. This enables manufacturers to produce high-
resolution (12 to 16-bit) ADCs in 8-pin surface-mount IC packages as small
as 3 mm X 5 mm.

There are also ADCs designed for low-power applications, such as bat-
tery-powered accessories. These ICs can operate from low power supply volt-
ages. They usually have a “sleep” mode that drastically reduces power
dissipation when not actively converting data. This low-power mode can be
initiated via an external command or automatically after a predefined idle time.

4.3.8 High-Speed ADCs

In recent years, both the speed and resolution of ADCs have increased.
Commercial ADC ICs are available up to 1000 MSPS (for eight-bit resolu-
tion)—this speed is one sample every nanosecond. Even at higher resolutions,
ADC speeds have increased significantly. Currently, there are 10-bit ADC
ICs as fast as 100 MSPS, 12-bit ADCs over 50 MSPS, 14-bit devices up to
10 MSPS, and 16-bit converters up to 5 MSPS.

Very High Speed Flash ADCs For resolution up to eight bits, flash ADCs are
still the fastest converters available, currently with speeds up to 1000 MSPS or
higher. As with high-speed analog circuits, these very high speed ADCs require
great care in their implementation. At very high speeds (typically above 100
MSPS) these ADCs no longer use standard TTL digital signal levels. Instead,
ECL levels are used, as with high-speed DACs (see Section 4.2.7).

Even with ECL signal levels, many of the fastest ADCs (at 500 MSPS
or above) employ a 1:2 demultiplexer at their data output, producing two

72 CHAPTER 4 Analog/Digital Conversions

digital output words. Each output changes at half of the sampling rate, giving
the external circuit a chance to capture the ADC data. For example, the fastest
ECL clock frequency is around 500 MHz, so a single ECL latch needs 2 nsec
to store its data.

Pipelined ADCs At high resolution, such as 12 and 14-bits, a technique called
pipelining is used to enable high-speed conversions. A pipeline converter
consists of multiple ADC stages of low resolution. The analog signal is
captured by a sample-and-hold amplifier, to keep the input constant during
the conversion process. Each ADC stage performs a conversion and passes
its amplified quantization error (or residue) to the next stage for continued
conversion. This residue is generated by passing the local stage’s ADC output
through a DAC and subtracting the result from the buffered input analog
signal. After all stages have completed their conversions, logic circuitry com-
bines the result into an output word, usually employing digital error-correction
techniques.

The multiple ADC stages run in parallel, performing a local conversion
for each clock cycle. This means that the output data conversion rate is equal
to the clock rate, producing a high-speed ADC that is not slowed down by
more bits of resolution. However, there is a delay between the time the analog
signal is sampled and when the digital output word for that sample is available.
This latency is the pipe delay, measured in clock cycles. It is determined by
the number of internal stages the ADC employs. Pipe delays of 7-14 clock
cycles are common. Figure 4-13 shows the timing for a pipelined ADC with
a 7-clock latency.

A pipelined ADC is useful for continuously sampling a signal (under
normal circumstances the clock must be constantly running). The conversion

Analog n+t1 n+2
Input ~ N n+3

n+4 n+5 n+6 n+7

Clock

el B IS L R LD B &

Figure 4-13 Pipelined ADC with 7-clock latency.

43 ADCs 73

time required is much slower for the first sample, only. So, intermittently sam-
pling with a pipelined ADC is about as fast as using a successive-approximation
ADC.

Other High-Speed ADC Considerations Many high-resolution (12-bit and above),
high-speed ADCs employ differential analog inputs. A differential input con-
sists of two signals, each 180° out of phase with the other. This greatly reduces
the reception of common-mode noise. It does add the extra complexity of
converting a single-ended (ground-referenced) analog signal to a differential
one, but it is worth the improvement in data quality. There are now single
ICs available that translate single-ended to differential signals.

Many high-speed ADCs are available as multiple converters in a single
IC package—some contain three converters and are used for digitizing high-
resolution analog video waveforms (R, G, and B signals). These devices may
contain programmable gain amplifiers for input scaling and digital data stor-
age for output buffering, often in the form of a first-in-first-out (FIFO) memory.
A FIFO buffer allows a relatively slow device to read the ADC output without
losing data, even at high conversion rates. In a FIFO, data is independently
stored and retrieved at different rates.

4.3.9 ADC Characteristics

After exploring some of the common ADC techniques, a discussion of their
major characteristics is in order. The most important ADC parameters are
resolution and sampling rate.

ADC Resolution An ADC'’s resolution is the smallest change it can detect in
a measurement. This value is actually a percentage of the full-scale reading,
but it is commonly specified as the number of output bits. An n-bit ADC has
2" possible output values and a resolution of one part in 2". For example, a
10-bit ADC has a resolution of approximately 0.1% (1/1024). High resolution
(more bits) is usually desirable in an ADC. Note that an ADC’s accuracy can
be no better than its resolution, for an individual reading.

ADC Sampling Rate Sampling or conversion rate is the ADC specification
most often examined. It is the number of readings completed every second.
This parameter is extremely important when rapidly changing signals are
measured. It is obvious that if a signal frequency is higher than the sampling
rate, rapid signal variations can be missed when they occur between consec-
utive ADC samples. This is true whether the ADC takes an instantaneous

74 CHAPTER 4 Analog/Digital Conversions

analog measurement, using a sample-and-hold amplifier to keep the value
constant for the conversion cycle, or whether the signal value is averaged (with
an integrator) during the conversion cycle. In fact, a successive-approximation
ADC can produce highly erroneous results if the input signal varies signifi-
cantly during a conversion cycle.

The Nyquist Theorem For an analog signal to be accurately digitized by an
ADC, it must be sampled at a rate at least two times the highest frequency
component in that signal. To put it another way, only signals whose highest
frequency components are no more than one-half the sampling frequency can
be accurately digitized. This maximum signal frequency is called the Nyquist
frequency and this rule is called the Nyquist theorem.

Aliasing When a signal is sampled too slowly (it contains frequency com-
ponents above the Nyquist frequency), the digitized waveform is distorted.
This distortion is called aliasing. It is the result of mixing or beating between
the signal frequencies and the sampling frequency. Low-frequency harmonics
composed of the differences between the signal and sampling frequencies are
recorded instead of the signal itself.

Figure 4-14 shows a simplified example of aliasing, using a single-
frequency signal. Figure 4-14a shows a sine wave of fixed frequency, f;. If
that signal was digitized at a rate of 2f;, the samples taken would produce
a waveform with a frequency of f,, as shown in Figure 4-14b. The only
distortion here is that the digitized waveform appears to be a triangle wave
instead of a sine wave. If a sampling rate much higher than 2f; was used,
the digitized waveform would “fill in” more, and it would better approxi-
mate a sine wave. If the signal was digitized at a rate of only (4/3)f,, the
samples would produce a waveform of frequency (1/3)f;, as shown in Figure
4-14c. This result of aliasing is the difference frequency between the sam-
pling rate and signal frequency, which is (4/3 — 1) x f,. If the sampling rate
was equal to the signal frequency, the digitized waveform would be a constant
value.

In practice, an ADC’s sampling rate should be much higher than twice
the maximum signal frequency. A value of five times is a good choice. In
most data acquisition systems, the analog input is filtered to eliminate any
signal components above the Nyquist frequency. This is often referred to as
an anti-aliasing filter. For such a low-pass filter to produce adequate attenu-
ation at the Nyquist frequency, it should have a cutoff frequency well below
that point, requiring a sampling rate many times higher than the maximum
frequency of interest.

43 ADCs 75

O = sampled at 2 f,

X =sampled at 4/3 f,

BoA A A
UUY

(a) Sine Wave of Frequency fy Sampled at 2 fy and 4/3 f,

R AAA
(VARVARVARY

(b) Waveform Reconstructed from 2 f, Samples

RN
N7

(c) Waveform Reconstructed from 4/3 f, Samples

Figure 4-14 Examples of aliasing.

ADC Accuracy Another important ADC characteristic is its absolute accuracy,
which is the measure of all error sources. This is sometime referred to as the
total unadjusted error. It is the difference between the ideal input voltage and
the actual input voltage (range) to produce a given output code, usually
expressed as a percentage of full scale (i.e., £1 LSB). It is possible for a
converter’s absolute accuracy to be better than its resolution, for multiple read-
ings. By definition, a converter’s resolution is 1 LSB. It is not uncommon to
find a commercial ADC with an ideal absolute accuracy of 0.5 LSB. The
sources contributing to the total unadjusted error include offset and linearity
errors.

An error-free 3-bit ADC transfer curve is displayed in Figure 4-15a,
showing digital output code versus analog input voltage, as a fraction of full-
scale input. As the resolution of the ADC increases, the “coarseness” of this

76 CHAPTER 4 Analog/Digital Conversions

111 Infinite Resolution Line -
DIGITAL]
0

outpur 10—
101 —

100 —
011 —
010 —
001 —

O T T T T T anaos ineur
0/8 1/8 2/8 3/8 4/8 58 6/8 7/8 (traction of full scale)

(a) No Errors

11 —| Infinite Resolution Line -

110 —
101 —
100 —
011 —
010 —
001 —

DIGITAL
OUTPUT

T T T T T T T anaoseur
0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 (fraction of full scale)

(b) Offset Error

111 —
8'&.';0%_ 110 — Infinite Resolution Line -

101 —
100 —
011 —
010 —
001 —
000

T T T
ANALOG INPUT
/8 1/8 28 3B 4/8 58 6/8 /8 (qaciion of full scale)

() Linearity (Gain) Error

Figure 4-15 3-bit ADC transfer curves illustrating errors.

curve decreases and it approaches a straight line, shown as the infinite reso-
lution line in the figure.

An offset error would move the entire curve to the left or right, unchanged.
This type of error can be corrected by adjusting the analog reference voltage.
Figure 4-15b shows an offset error of 1 LSB.

A linearity or gain error would be equivalent to having the slope of the
infinite resolution line vary, producing a larger error for larger input values.
This would be more difficult to correct for, especially if it was temperature

43 ADCs 7

dependent. Figure 4-15¢ shows a linearity error of less than 1 (the gain drops
at larger inputs).

Special-Purpose ADC Approaches The ADC techniques discussed in this chap-
ter have been standard, general-purpose approaches, in common use. Some-
times, a data acquisition system can be tailored to a special application for
increased performance (one hopes, without a significant cost penalty). One
class of special applications particularly amenable to unique ADC systems
is the realm of repetitive signals. These are identical waveforms that can be
produced multiple times, without any significant change. Basically, these are
static measurements under complete experimental control.

This type of repetitive system allows us to use a high effective sampling
rate based on a relatively slow ADC. Let us assume that the waveforms of
interest have measurable energy up to 10 MHz. We need to sample at 20 MHz,
which at high resolution (such as 16 bits) would require a very expensive
ADC or multiple ADCs. We can get by with a high-resolution, slow (i.e.,
10 kHz sample rate) ADC by adding a sample-and-hold (S&H) amplifier and
a timing controller (or use the S&H amplifier within an ADC).

The idea here is to take one narrow sample of the waveform for each
repetition of the waveform. The S&H amp must be able to capture an analog
voltage with a 50-nsec window (equivalent to a 20-MHz sample rate). The
timing circuit must be able to step through the waveform in 50-nsec incre-
ments. For each repetition of the waveform, the next 50-nsec aperture is
captured and digitized. The ADC’s maximum conversion rate of 10 kHz
determines the maximum waveform repetition rate. If the width of the wave-
form is 100 psec, it would take 2000 repetitions or 200 msec to sample it at
effectively 20 MHz. See Chapter 14 for an example of this technique, some-
times called equivalent time sampling.

This survey of DACs and ADCs should help you decide which com-
mercial hardware solutions are best suited to your own data acquisition
problems, or whether to build your own special-purpose system, as well as
what performance to expect from a commercial product.

CHAPTER

The PC

A computer is the heart of any contemporary data acquisition system. In the
early 1980s minicomputers were the workhorses of most science and engi-
neering labs. Hardware was expensive, most software had to be written in-
house, and performance was barely adequate for all but the most expensive
systems. Two decades later, PCs (personal computers) are commonplace
throughout the scientific and engineering communities. The low cost and
high performance of PCs made them the ideal platform for most data acqui-
sition tasks. In addition, a plethora of high-quality commercial software is
available for all imaginable PC applications, including data acquisition and
analysis.

The typical high-end engineering desktop computer is the workstation.
This is usually a system with several hundred megabytes (Mbytes) of volatile
memory, a large-screen, high-resolution video display, and a large amount of
fast on-line storage (typically a hard disk drive of well over 10 gigabytes).
In addition, it would have a network connection and a fast microprocessor
(possibly a RISC CPU, or reduced instruction set computer) or several micro-
processors in parallel. A workstation will often run the UNIX operating system
or a version of Windows NT. This is usually the platform of choice for a very
high performance data acquisition system, at a relatively high price.

Even though workstations are more powerful than standard PCs, the
distinction blurs when looking at high-end PCs. In fact, the major differences
between a high-end PC and a low-end workstation are price, CPU, operating
system, and software availability. Now that a variation of the UNIX operating
system, called Linux, is running on many PCs, workstation—PC distinctions
are reduced further.

There are several popular classes of computers useful as platforms for
data acquisition systems. The ones we will examine in this book are based

78

The PC 79

on the original IBM PC/XT/AT bus (now called the ISA bus) and the newer
PCI bus. The IBM Micro Channel bus and the Apple NuBus (which were
covered in the first edition of this book) are now obsolete. The IBM and
compatible machines are based on Intel’s 80x86 and Pentium microprocessor
(or CPU, central processing unit) families.

There are many members in Intel’s 80x86 and Pentium families. The
original device was the 8086, a “true” 16-bit CPU. It had a 16-bit wide data
bus and a 20-bit address bus, producing a 1-Mbyte address range. The original
IBM PC and PC/XT used Intel’s 8088 CPU, which was effectively an 8086
with only an 8-bit external data bus and a 20-bit address bus, for a 1-Mbyte
address range, while keeping the same 16-bit registers internally for 8086
software compatibility. When the IBM PC was released, in 1981, this hybrid
approach of 16 bits internal and 8 bits external was common.

The IBM PC/AT used Intel’s 80286 CPU, which employed a true 16-bit
architecture, a 16-bit external data bus, and a 24-bit address bus, for a 16-Mbyte
address range. It was software-compatible with the 8088 while providing faster
processing speed and additional features. The expansion bus of the IBM
PC/AT computer, a superset of the PC/XT expansion bus, eventually became
an explicit standard: ISA (industry standard architecture).

The next Intel processor was the 80386, which used a 32-bit architecture
both internally and externally. It had a 32-bit external data bus and a 32-bit
address bus, for a 4-gigabyte (Gbyte) address range. IBM switched to its
newer PS/2 line of PCs with the Micro Channel bus to use the 80386 and
later CPUs. Many other manufacturers stayed with the original AT (ISA) bus,
with modifications for 32-bit wide memory to accommodate 80386 machines.
The ISA bus has been replaced in mainstream desktop PCs by the PCI bus.
However, the ISA bus is still very popular in embedded PCs, including PC-
104 systems (see Chapter 12).

The next Intel processor in this family was the 80486. It was another
32-bit device with the same bus widths and features as the 80386 plus
additional integrated functions, such as a floating-point processor. IBM used
this processor in its higher end PS/2 systems while other manufacturers put
it into ISA computers.

After the 80486, Intel introduced the Pentium family of microproces-
sors (and abandoned the 80x86 naming convention, which could not be
trademarked). Pentium processors had a 32-bit internal architecture (regis-
ters) with a 64-bit internal data bus. The external address and data buses
were each 32 bits wide. Pentiums were based on superscalar architecture,
which used two pipelines for parallel processing. They also had better cache
memory than 80486 processors. Pentium processors had CPU speeds ranging
from 60 MHz to 200 MHz, although their maximum external bus speed was
about 60 MHz.

80 CHAPTER5 The PC

Intel kept the trademarked Pentium name for its later families of CPUs,
even as their technology evolved. The next generation of Intel processors
began with the Pentium Pro, which increased addressing to 36 bits (for a 64-
Gbyte range). More significantly, the Pentium Pro had a RISC-based core,
more parallel processing hardware, and a secondary memory cache. However,
its improved performance was significant only when running fully 32-bit
software and operating systems, such as Microsoft Windows NT.

The Pentium II followed, using essentially the same core logic as the
Pentium Pro. It had some performance enhancements, including MMX
instructions for improved multimedia support, and had speeds up to 400 MHz.
The Celeron, was a lower-cost, lower-performance variant of the Pentium II.

The Pentium III was Intel’s next generation of microprocessors. It used
the same core logic as the Pentium II series but had enhanced performance
for certain types of data processing. This was done with single instruction
multiple data (SIMD) instructions, which operated on entire blocks of data
in parallel. The Pentium III had internal processor speeds over 1 GHz.

As of this writing, the newest Intel processor is the Pentium 4, with
speeds up to 2 GHz. It is optimized for digital video and Internet technologies,
using Intel’s NetBurst microarchitecture. This encompasses a 20-stage pipe-
line, a double-speed arithmetic logic unit (ALU), a 400 MHz memory bus,
and additional SIMD and MMX instructions.

Manufacturers other than Intel produce microprocessors for IBM-type
PCs, most notably Advanced Micro Devices (AMD) and Cyrix Corporation.
Their products are software compatible with Pentiums and are often of com-
parable performance.

5.1 IBM PC/XT/AT and Compatible Computers

L]
We will now look in depth at the IBM PC/XT/AT class of PCs and their
compatibles (sometimes called clones). First we will examine the IBM PC/XT
computer, which is based on the Intel 8088 CPU. It has an external data bus
8 bits wide and an address bus 20 bits wide, for an address range of 1 Mbyte.
Even though 8088-based PCs have long been obsolete as desktop computers,
they are still produced in small form factors (such as PC-104) for embedded
PC applications (see Chapter 12).

5.1.1 Memory Segmentation

One idiosyncrasy of the 16-bit processors in this Intel CPU family is the
way 20-bit physical addresses are generated from 16-bit registers. Intel uses
an approach called segmentation. A special segment register specifies which

5.2 The IBM PC/XT 81

64-Kbyte section of the 1-Mbyte address space is being accessed by another
16-bit register. A segment register changes the memory address accessed by 16
bits at a time, because its value is shifted left by 4 bits (or multiplied by 16)
to cover the entire 20-bit address space. The segment register value is added
to the addressing register’s 16-bit value to produce the actual 20-bit memory
address. Four segment registers and five addressing registers are available in
an 8088, all 16 bits wide.

For example, when the stack is accessed, the 16-bit value in the Stack
Segment (SS) register is shifted left by four bits (to produce a 20-bit value)
and added to the 16-bit Stack Pointer (SP) register to get the full 20-bit physical
address of the stack. The value added to the segment is referred to as the offset.
The usual notation is segment:offset. So, if the code segment (CS) contained
BO021h and the instruction pointer (IP) contained 12C4h, the segmented nota-
tion is B021:12C4 and the physical location addressed would be B14D4h.

Note that throughout this book, most addresses will be presented in
hexadecimal (base 16) notation (with digits 0-9, A-F) using a trailing h. For
example, 100h = 256 (decimal).

5.1.2 Motherboards

The heart of any PC is a single printed circuit board (PCB) referred to as the
system board or the motherboard. It contains the CPU and the system’s
memory, timing, and control functions, as well as external interface capabil-
ities (input/output or 1/O). This external /O is usually available through
special connectors on the motherboard, often referred to as expansion slots.
Various cards are plugged into these slots, including display adapters (video
controllers), disk drive controllers, and parallel and serial interfaces, as well
as boards for data acquisition.

Newer PCs have many of these common functions (video control, disk
drive control, etc.) integrated into the motherboard with appropriate connec-
tors. USB ports (see Chapter 8) are also built into new PC motherboards,
simplifying connections to external peripherals such as scanners, printers,
mice, and even data acquisition hardware.

5.2 The IBM PC/XT

A simplified block diagram of a PC/XT motherboard is shown in Figure 5-1.
This motherboard contains: the CPU, an optional coprocessor (Intel 8087)
for floating-point math, eight hardware interrupts, four direct memory access
(DMA) channels, three timer/counter channels, read/write memory (usually

82 CHAPTER5 The PC

CONTROL BUS
INTERRUPT BUS
CONTROLLER | [CONTROLLER
4
ADDRESS BUS 20/
INTERFACE 7/
CLOCK [8088 CPU [LOGIC DATA BUS 8/
7
8087 SOCKET —
1/0 CARD
SLOTS
DMA CONTROLLER
TIMER/COUNTER

SPEAKER

CONTROL

PARALLEL I/O
KEYBOARD
CONTROL
ROM (BIOS)
RAM
Figure 5-1 PC/XT motherboard block diagram.

referred to as random access memory, or RAM), read-only memory (ROM)
and all the required control logic and interfaces for the external I/0 slots. The
20-bit address bus, 8-bit data bus, and various control lines go to the 1/0 slots

to support numerous

peripherals.

Even though the 8088 can address 1 Mbyte of memory, only 640 Kbytes
of RAM is usable on the PC/XT, in the address range 0 to 9FFFFh. The upper
360 Kbytes are reserved for system ROM and memory on expansion cards,

5.2 The IBM PC/XT 83

TABLE 5-1
PC/XT Memory Map

ADDRESS | MEMORYAREA | MEMORYTYPE
f T
FFFFFh
SYSTEM BIOS
F0000h
ROM EXPANSION
CCo00h
HARD DRIVE BIOS - ROM
€8000h
ROM EXPANSION
C0000h
VIDEO ADAPTER AREA | ™.
(DISPLAY BUFFERS) |~ APAPTER RAM
A000Oh
TRANSIENT
PROGRAM
AREA
COMMAND.COM
RESIDENT PORTION ;- SYSTEM RAM
BUFFERS, DRIVERS '
DOS KERNEL
USED BY BIOS ,
00400h
INTERRUPT VECTORS |/
00000h

which plug into the I/O expansion slots on the motherboard. A simplified
PC/XT memory map is shown in Table 5-1.

5.2.1 1/0 Addressing, Interrupts, DMA, and Timers

For communicating with peripheral, nonmemory (I/O) devices, the 8088 CPU
supports both I/O mapped and memory mapped I/O. I/O mapping separates
I/0O addressing from memory addressing, so I/O ports can be directly and
easily accessed, even if they have the same addresses as memory locations,
by using separate control signals. In memory mapping, /O ports look like
memory addresses and use up part of the memory addressing space. In the
PC/XT design, I/O mapping is used. Although the 8088 will support 16 bits

84 CHAPTER5 The PC

TABLE 5-2
PC/XT 1/0 Address Map

VO ADDRESS USE LOCATION
000-00Fh DMA CONTROLLER
020-021h INTERRUPT CONTROLLER
040-043h TIMER ON
060-063h PPI (8255) MOTHERBOARD
080-083h DMA PAGE REGISTERS
0AOh NMI MASK REGISTER

200-20Fh | GAME ADAPTER

210-217h | EXPANSION UNIT

2F8—2FFh | ASYNC ADAPTER (COM2)
30031Fh | PROTOTYPE CARD
320-32Fh | HARD DISK DRIVE ADAPTER
378-37Fh | PRINTER ADAPTER

380-38Ch | SDLC COMM ADAPTER D &NTER
300-393h | CLUSTER ADAPTER CARDS
3A0-3A9h | BISYNC ADAPTER

3B0-3BFh MONO DISPLAY/PRINTER
ADAPTER

3D0-3DFh | CGA ADAPTER
3F0-3F7h DISKETTE DRIVE ADAPTER
3F8-3FFh ASYNC ADAPTER (COM?1)

of I/O addressing, only 10 bits are used here (for a total of 1024 I/O addresses).
This I/O space is divided into two regions of 512 locations each. The lower
512 addresses (0 to 1FFh) are used exclusively on the motherboard. The upper
512 addresses (200h to 3FFh) are decoded by interface cards connected to
the I/O slots. An /O address map for the PC/XT is shown in Table 5-2.
The PC/XT has nine interrupt lines or levels, with unique priorities.
The highest priority interrupt is the NMI (nonmaskable interrupt), used for
trapping serious system problems, such as memory (RAM) parity errors. The
next two interrupts, IRQO and IRQ1, are also used only by the motherboard
(IRQ1 interrupts the processor whenever the keyboard is hit). The other six
interrupts, IRQ2-IRQ7, are available for use by cards in the external /O
slots. The lowest priority interrupt, IRQ7, is allocated to a parallel printer port.

5.2 The IBM PC/XT 85

Note that very often, peripheral board manufacturers use interrupts in
nonstandard ways for functions not previously defined. The same problem
holds true for the use of /O addresses and even with memory addresses above
640 Kbytes (the limit of MS-DOS). This is especially the case for some
PC/XT data acquisition cards. If two cards in the same PC try to use the same
interrupt or address, they will malfunction. This is an incompatibility or an
address clash. The solution is to change the interrupt/address selection on
one or the other card, or remove one card entirely. In newer PCs with plug-
and-play support, the system automatically assigns addresses and thus avoids
this problem.

Another important PC/XT feature is the use of direct-memory access
(DMA). DMA hardware allows data to be transmitted very quickly between
a peripheral device and system memory without the CPU’s intervention.
Programmed I/O transfers, under CPU control, are inherently slower than
DMA I/O transfers. DMA is especially useful for accessing hard disk drives.
The CPU initializes the DMA controller with the required information and
the DMA controller takes over the system bus, managing the data transfer.

There are four DMA channels in a PC/XT system. The highest-priority
DMA channel (DMA channel 0) controls memory refresh, as discussed below.
The other three DMA channels (1-3) are available for use by external I/O
cards. Care must be taken in using DMA transfers, which can prevent normal
CPU actions and result in a system crash.

The PC/XT contains three programmable timer/counters. The first
timer/counter (channel 0) is implemented as a general-purpose time-of-day
clock, producing a level 0 interrupt (IRQO) approximately every 55 millisec-
onds. The second timer/counter (channel 1) times the DMA cycles for mem-
ory refresh, as described below. The third timer/counter (channel 2) controls
the speaker’s tone generation. If you need to use one of these timer/counters
for other applications, try to use channel 2 only! This will not interfere with
any critical system functions, whereas using other channels might.

5.2.2 PC/XT Memory: RAM and ROM

The PC/XT’s main system memory consists of dynamic RAM. This read/write
memory starts at address O and can extend up to 640K (9FFFFh). This is the
memory used by the operating system, DOS, and is available for loading and
running programs, along with any transient data storage required by those
programs.

Two types of RAM devices are static and dynamic. Both memories
retain their contents only while power is applied to them. Dynamic RAM
(DRAM), in addition, requires a periodic read access (on the order of every

86 CHAPTER5 The PC

few milliseconds) to retain its memory. This process is called a refresh cycle.
It is required because each memory cell in a dynamic RAM acts like a
capacitor whose charge slowly leaks off over time; it needs to be periodically
recharged to the appropriate voltage (logic level).

Even though DRAM refresh uses up a finite amount of CPU time, it is
commonly used in PCs because of its lower price-per-bit than static RAM
and its higher density (more bits per package). When the original IBM PC
appeared in 1981, its motherboard supported only 64 Kbytes of DRAM, using
16-Kbit ICs. A decade later, 4-Mbit DRAM ICs were common. Today (as of
writing the second edition), 512-Mbit DRAMs are available.

Early DRAMs were 1 bit wide, so a 1-Mbit DRAM was configured as
1,048,576 (220) addresses by 1 bit. Most PC/XT machines used nine DRAMs
to produce a memory block 1 byte (8 bits) wide, with the additional bit used
for parity checking. This is a hardware scheme to detect if there was an error
in reading memory. The DRAM refresh time on a PC/XT system used approx-
imately 7% of the available system time. This was accomplished using DMA
channel 0 and timer channel 1.

Newer DRAM ICs are organized as either 4, 8, or 16 bits wide, to
minimize chip count when supporting a 32-bit or 64-bit wide memory bus.
Memory ICs also use newer architectures to speed them up and keep pace
with faster CPUs. These type of memories include extended data output
(EDO) and synchronous DRAM (SDRAM).

The PC/XT’s ROM contains the nonvolatile memory required to start
up the system. This includes hardware initialization, power-on diagnostics
(including a memory test), and a bootstrap program. The bootstrap allows
the PC to load the operating system and start running it, usually from a hard
disk drive or diskette. This allows for the flexibility to upgrade or even change
the operating system a PC uses, without any hardware changes. Other impor-
tant contents of the system ROMs include the programs needed for low-level
control of various hardware /O devices (such as disk drives, displays, and
keyboard). This is referred to as the basic input/output system, or BIOS
(sometimes denoted ROM BIOS). This firmware (software resident in a
nonvolatile memory IC) is continuously used by the operating system for
interfacing to all system I/O devices. If nonstandard system hardware is not
supported by the BIOS, usually a special piece of software, called a driver,
must be loaded into the operating system before the hardware can be used.
An example of this would be support for a tape drive.

Newer PCs store the BIOS in flash memory, which is a form of rewrit-
able ROM. This allows the BIOS to be upgraded via software without having
to replace any internal ICs (ROMS). In addition, many PCs use a portion of
the upper 360 Kbytes of basic PC memory (RAM) to temporarily store a
copy of the BIOS program, often called shadow ROM. This is a useful feature

5.2 The IBM PC/XT 87

because system RAM has faster access time than most ROM chips and the
repeated use of BIOS functions by most software gets sped up.

The most common operating system originally used with PC/XT/AT
computers was DOS (disk operating system), often specified as IBM-DOS
or MS-DOS (for Microsoft, its developer). It is a single-user, single-task
operating system with a limited memory usage of 640 Kbytes (see Chapter 7
for a more detailed discussion of DOS, Windows, and other PC operating
systems).

The system ROM is located in high memory addresses, above F4000h.
Expansion cards plugged into the I/O sockets may also contain ROM, for
integration into system code. This ROM may be present within the address
range of CO000h-DFFFFh. If it contains valid information, the system will
be able to execute the code (instructions) it contains. This was a common
approach for early hard disk drive controllers or special video display
adapters.

5.2.3 PC/XT Expansion Bus

The key to the PC/XT’s flexibility is its expansion bus, with connectors for
external I/O cards. Figure 5-2 shows the bus connections to an expansion
slot. This bus gives an add-in card access to all the system address, data, and
control lines, except for those dedicated to the motherboard, such as IRQO,
IRQ1, and DRQO.

Here is a brief description of the I/O bus signal lines, designated pins
A1-A31 and B1-B31 (as shown in Figure 5-2): Lines A0-A19 (pins
A31-A12) are the address bits used for memory and I/O addressing, where
AQ is the least significant bit (LSB) and A19 is the most significant bit (MSB).
These are output lines, relative to the motherboard. Similarly, signal lines
DO0-D7 (pins A9-A2) are the data bits, used for all data transfers (including
DMA cycles), where DO is the LSB and D7 is the MSB. These lines are
bidirectional (both input and output).

Signals DRQ1-DRQ3 (pins B18, B6, B16) are the DMA request lines
for channels 1-3. They are input lines, used by external devices to initiate a
DMA cycle. Signals DACKO-DACKS3 (pins B19, B17, B26, B15) are DMA
acknowledge lines. They are outputs used to indicate DMA activity, acting
as handshake signals for their respective DRQ lines.

Signals IRQ2-IRQ7 (pins B4, B25-B21) are interrupt request input
lines, used by an external device to generate a CPU interrupt. IRQ2 is the
highest priority and IRQ7 is the lowest. The system has to be initialized prior
to an interrupt generation for it to be properly serviced.

Signal IOR (pin B14) is an output line indicating an I/O read cycle.
This tells the external I/O device being addressed to place its data on the bus.

88 CHAPTER 5 The PC

B A
B1 | GND -1/Q CH CK Al
RESET DRV D7
+5V D6
IRQ2 D5
-5VDC D4
DRQ2 D3
-12VDC D2
Reserved D1
+12VDC DO
B10 | GND I/OCH RDY A10
-MEMW AEN
-MEMR A19
-IOW A18
-10R A17
-DACK3 A16
-DRQ3 A15
-DACK1 Al4
DRQ1 A13
-DACKO A12
B20 | CLK A1 A20
IRQ7 A10
IRQ6 A9
IRQ5 A8
IRQ4 A7
IRQ3 A6
-DACK2 A5
T/C A4
ALE A3
+5VDC A2
0SC A1l
B31 | GND AO A31

Figure 5-2 PC/XT I/0 card slot connector.

Similarly, IOW (pin B13) is an output signal indicating an I/O write cycle.
This instructs an external I/O device to read data from the system bus. MEMR
and MEMW (pins B12, B11) are the equivalent read and write output lines
for reading from and writing to memory addresses.

Signal I/O CH RDY (pin A10) is an important input line. It is used by
slow memory or I/O devices to lengthen a read or write cycle. This is known
as inserting wait states. It allows slower (and less expensive) peripherals to
interface to the PC/XT, with only the penalty of more time required for a
data transfer. If this signal is not used properly, it can be asserted for too long
(more than a few microseconds) and effectively monopolize the system bus,

5.3 The IBM PC/AT 89

preventing other activities. This could result in a system crash, where DRAM
is not being properly refreshed or important interrupts are not being serviced.
Figure 6-5, in Chapter 6, illustrates how to safely control I/O CH RDY.

Signal AEN (pin Al1) is an output line which is used to prevent the
CPU and other devices from accessing the system bus during DMA transfers.
Signal ALE (pin B28) is an output line used to latch valid bus addresses by
memory and peripheral devices. Signal I/O CH CK (pin Al) is an input line,
used to indicate a memory or I/O device parity error. Signal RESET DRV
(pin B2) is an output line used to initialize (reset) devices on the bus at system
power-on. Signal T/C (pin B27) is an output line that indicates when the
maximum DMA transfer count is reached.

Signal OSC (pin B30) is an output line containing a 14.31818-MHz
clock, with a 50% duty cycle. This clock may be divided down to provide
other clock signals, such as dividing by 4 for the 3.58-MHz color video
subcarrier frequency. On original PC and PC/XT systems, it was divided by
3 to provide the main system clock frequency of 4.77 MHz. Signal CLK (pin
B20) is an output line containing the main system clock, with a 33% duty
cycle. It is often higher than 4.77 MHz in later PC/XT compatible systems.
The most common clock frequencies used are § MHz and 10 MHz. Obviously,
the higher the system clock, the faster the CPU will operate. Overall system
performance is not necessarily proportional to this clock frequency. In fact,
some slower peripheral cards may not work properly with faster clocks, unless
enough wait states are inserted.

The other lines on the /O bus connector are power for the expansion
cards. These lines are +5 V (pins B3, B29), -5 V (pin B5), +12 V (pin B9),
—~12V (pin B7) and ground (pins B1, B10, B31). The positive voltage supplies
typically have a higher current capability and are regulated to 5%, as opposed
to the negative supplies regulated to +10% with lower current capacity. The
original IBM PC’s power supply could only produce approximately 65 watts
of DC power, mostly for the +5 V (7 amps, maximum) and +12 V (2 amps,
maximum) supplies. Most later PC/XT compatible systems used a power
supply providing 120-150 watts of DC power.

For examples of using some of these expansion bus signals, refer to
Chapter 6.

5.3 The IBM PC/AT

Now we will examine IBM PC/AT computers and the ISA bus. The original
IBM PC/AT and compatible systems were based on the Intel 80286 CPU.
This was an expansion of the PC/XT architecture, including the external /O
bus. The PC/AT block diagram is shown in Figure 5-3. The 80286 processor

9 CHAPTERS ThePC
CONTROL BUS
| |
INTERRUPT BUS
CONTROLLER | | CONTROLLER -
3
ADDRESS BUS |24,
INTERFACE 7
CLOCK[—+ 80286CPU [e» '~ ~“"|DATA BUS L
H
80287 SOCKET]
/O CARD
SLOTS
DMA CONTROLLER
TIMER/COUNTER

SPEAKER

CONTROL
KEYBOARD PARALLEL /O

CONTROL
REAL-TIME

CLOCK &

CONFIG ROM (BIOS)

MEMORY

BATTERY

P

Figure 5-3 PC/AT motherboard block diagram.

increased the number of address bits to 24, for a 16-Mbyte addressing space,
and the number of data bits to 16. The motherboard had 16 interrupt levels
and seven DMA channels. It still had three timer/counters. New features
included a real-time clock with battery-backup CMOS RAM. This small
amount of memory stored clock and system configuration data. In addition,
the real-time clock included a 1024-Hz timer that could provide DOS programs
with much finer timing resolution (approximately 1-msec counts) compared to

5.3 The IBM PC/AT 91

the XT 18-Hz RTC (approximately 55-msec counts). This new timer was
accessed via INT 70h.

The functioning of the IBM PC/AT (usually referred to as an AT or ISA
system) was very similar to the PC/XT operation. Because of the higher speed
and improved features of the 80286 CPU, overall system performance was
enhanced. In addition, external data transfers could be 16 bits at a time,
although 8-bit data transfers were still supported. The original IBM PC/AT
had a 6-MHz system clock, which was later upgraded to 8§ MHz. Most 80286-
based AT compatible systems used clocks ranging from 8 MHz up to 16 MHz.
The faster systems required memory (RAM) with fast access time (or they
had to add wait states to memory access cycles). The IEEE ISA bus standard
(IEEE P996-1990) specified an 8-MHz bus frequency while allowing for
higher, internal CPU clock frequencies (such as a 33-MHz 80486 PC).

AT systems use two connectors for each external I/O card slot. One is
a 62-pin connector, compatible with the single PC/XT /O connector. The
differences are that now pin B4 is IRQ9 instead of IRQ2, pin B19 is
REFRESH instead of DACK 0, and previously unused pin B8 is now OWS.
Also, CLK (at pin B20) is faster and has a 50% duty cycle. Most cards
designed for the PC/XT bus will work in an AT, as long as they can deal
with the higher clock frequency and do not do any special remapping of
memory.

5.3.1 PC/AT (ISA) Expansion Bus

As shown in Figure 5-4, AT 1/O slots have a new, second connector consisting
of 36 additional pins. These lines carry the additional address and data bits,
IRQ signals, DMA signals, and special control lines that allow for 16-bit data
transfers, zero wait state memory accesses, and multiple CPU operations.

Here is a brief description of these new I/O bus signals: Signal OWS,
added to the original 62-pin connector at pin B8, is an input line used to tell
the CPU not to add any wait states to the present bus cycle. This is useful
for fast memory and I/O cards. The remaining new signal lines are on the
new 36-pin connector, designated C1-C18 and D1-D18. The additional
address lines are LA17-LA23 (pins C8-C2). The additional data lines are
SD08-SD15 (pins C11-C18). The additional interrupt lines available on the
I/O bus (besides IRQ9) are [IRQ10-IRQ12, IRQ14, and IRQ15 (pins D3-D7).
The additional DMA channel-control signals now available are DRQO and
DACKO, DRQ5-DRQ7, and DACK5-DACK?7 (pins D8-D15).

Additional control lines also exist on the 36-pin connector. MEM CS16
(pin D1) is an input signal used to signify a 16-bit, one wait-state memory
transfer. Similarly, pin I/O CS16 (pin D2) is an input signal indicating a 16-bit,

92 CHAPTER 5 The PC

B A D Cc
B1|[GND -1/0 CH CK Al D1 |-MEM CS16 | SBHE C1
RESET DRV |SD7 -1/0 CS16 LA23
+5V SDé IRQ10 LA22
IRQ9 SD5 IRQ11 LA21
—5VDC SD4 IRQ12 LA20
DRQ2 SD3 IRQ15 LA19
-12VDC 8D2 IRQ14 LA18
OWSs SD1 —DACKO LA17
+12VDC SDO DRQO -MEMR
B10| GND I/OCH RDY A10 D10 {-DACKS -MEMW | C10
-SMEMW AEN DRQ5 SDo08
~-SMEMR SA19 -DACK6 SDo9
-IOW SA18 DRQ6 Sb10
-IOR SA17 —DACK?7 SD1t
-DACK3 SA16 DRQ7 SD12
-DRQ3 SA15 +5VDC SD13
-DACK1 SA14 -MASTER SD14
DRQ1 SA13 D18 [GND SD15 Cc18
—REFRESH |SA12
B20| CLK SA11 A20
IRQ7 SA10
IRQ6 SA9
IRQ5 SA8
IRQ4 SA7
IRQ3 SA6
-DACK2 SA5
T/C SA4
BALE SA3
+5VDC SA2
OSC SA1
B31| GND SA0 A31

Figure 5-4 PC/AT I/0 card slot connector.

one wait-state /O data transfer. Signal SBHE (pin C1) is a bidirectional line
used to indicate a data transfer on the upper 8 bits (D8-D15) of the data bus.
This line is used by devices that support 16-bit data transfers. Signal MASTER
(pin D17) is an input line used by additional processors or DMA controllers
to take control of the system bus. This line must be used carefully. If an
external device holds the bus too long, system memory may be lost because
of lack of DRAM refresh cycles.

Signal MEMR (pin C9) is similar to the original PC/XT bus signal
MEMR (pin B12), now called SMEMR. The difference is, the original
SMEMR is only active during a memory read cycle within the low 1 Mbyte
of memory (original PC/XT address space). MEMR is active on all memory

54 BIOS 93

read cycles. Furthermore, SMEMR is an output line while MEMR can be
either an output or input. It can be driven by an external CPU. In a similar
fashion, signal MEMW (pin C10) is a superset of the original MEMW (pin
B11), now called SMEMW. The remaining lines on the 36-pin connector are
extra power (+5 V) at pin D16 and ground at pin D18.

The PC/AT power supply provides +5 V, =5V, +12 V, and -12 V. The
positive supplies have much higher current capabilities than the PC/XT power
supply. The +5 V supply is rated at approximately 20 amps and the +12 V
supply at approximately 7 amps. The overall AT power supply output power
is approximately 200 watts, which is typical for most AT compatibles (although
some industrial PCs can have power supplies as large as 600 watts).

The memory map of the PC/AT is an expansion of the PC/XT’s memory
map, using a 16-Mbyte memory space, as shown in Table 5-3. Note that the
AT motherboard supports 64 Kbytes of ROM, as opposed to 40 Kbytes on
the PC/XT motherboard. The PC/XT supported an Intel 8087 math copro-
cessor IC, for accelerated calculations involving floating-point math. The AT
supported an Intel 80287 math coprocessor, for an 80286 CPU. If a system
used an 80386 CPU, it would support an 80387 coprocessor. Note that
application software must explicitly utilize the math coprocessor for you to
realize any benefit from it.

PC manufacturers retained the basic PC/AT architecture as they moved
to faster, more powerful CPUs, such as the 80386 and 80486 families. Nota-
bly, they increased addressable memory space (since the newer processors
had 32-bit address buses for a 4-Gbyte address range) and implemented local
buses (such as VESA and PCI) to take advantage of higher CPU speeds. The
80386 processors had internal clock frequencies up to 33 MHz and the 80486
CPUs went up to 100 MHz.

5.4 BIOS

As mentioned above, the BIOS code located in ROM on a PC/XT/AT system
handles the low-level software interface to the hardware. For example, to
display a character on the video screen you send an appropriate command,
along with the character, to the proper BIOS routine. Without the BIOS, you
would have to know the intimate details of the video hardware, such as where
in physical video memory to write the character for display. If the video
display hardware was changed, software that directly addresses the hardware
will no longer work. This is known as “ill-behaved” software. On the other
hand, if BIOS calls were used, the BIOS will take care of hardware changes
and the software can remain the same. This is “well-behaved” software.

94 CHAPTER 5 The PC

TABLE 5-3
PC/AT Memory Map

ADDRESS MEMORY AREA MEMORY TYPE
FDFFFFh
EXTENDED MEMORY
(15 Mbytes) | /7 RAM
100000h
SYSTEM BIOS
E0000h
------ ROM
ROM ON I/O ADAPTER
CARDS (BIOS)
C0000h
VIDEO ADAPTER AREA | ™.
... ADAPTER RAM
(DISPLAY BUFFERS)
A0000h
TRANSIENT
PROGRAM
AREA
COMMAND.COM
RESIDENT PORTION ;- SYSTEM RAM
BUFFERS, DRIVERS
DOS KERNEL
USED BY BIOS
00400h
INTERRUPT VECTORS
00000h

The penalty for using BIOS calls is a slower response than directly
addressing hardware. Also, if a needed function does not exist in the BIOS,
the hardware may need to be directly addressed. However, it is desirable to
use BIOS functions whenever possible, as they will work universally with
nearly all PCs. In addition, modern 32-bit protected-mode operating systems
(such as Windows NT and Windows 2000) only allow device driver software,

not application software, to directly access hardware.

5.5 PCl and Other Local Buses 95

Some of the I/O facilities provided by BIOS routines support the key-
board, system clock/timer, communications ports, video display, floppy disk
drive, hard disk drive, CD-ROM, printer, and system status. Original IBM
PCs even had ROM BASIC built into the BIOS.

5.5 PCIl and Other Local Buses

As microprocessor frequencies increased, the 8-MHz speed of the ISA bus
became a limiting factor to PC performance. A processor could not commu-
nicate with external memory or I/O devices nearly as fast as it could process
data internally. Several new buses appeared in the PC marketplace. Enhanced
ISA (EISA) had a 32-bit data bus and address bus and was backward com-
patible with ISA cards. It also ran at just § MHz, but by doubling the data
bus to 32 bits, it doubled I/O throughput. However, EISA never became very
popular because of its relatively high cost.

The Video Electronics Standards Association (VESA) developed the
VESA Local Bus (VL Bus) primarily for improving video performance. But
it also supported many other high-speed peripherals, such as network cards.
VL Bus was originally 32 bits wide and had speeds up to 50 MHz. It was
very common in PCs built in the early 1990s. However, VL Bus soon became
displaced by the PCI local bus.

5.5.1 PCI Overview

Peripheral component interconnect (PCI) was developed by Intel as a processor-
independent, high-speed replacement for ISA. It was originally 32 bits wide
(address and data) and ran at speeds up to 33 MHz. Later versions support
64-bit data transfers and 66 MHz rates. It accesses up to 4 Gbytes in each of
its 32-bit memory and I/O address spaces, using multiplexed address and data
lines.

PCI can coexist with other buses, such as ISA, on the same motherboard.
Many PCs have both ISA and PCI slots. However, ISA slots are being phased
out in most newer desktop PCs (but not necessarily in embedded and industrial
PCs—see Chapter 12). In addition, PCI is now used in Apple Macintosh
computers. The current revision of the PCI specification (as of this writing
in 2001) is 2.2, released in December 1998.

The PCI bus can operate in either a synchronous or asynchronous mode.
In synchronous operation, the bus typically runs at the microprocessor’s
external clock frequency or a submultiple of it. So, a 66-MHz Pentium could
synchronously connect to a PCI bus running at half of its clock frequency (33
MHz). In this mode, the standard PCI clock can be between 20 and 33 MHz.

96 CHAPTER5 The PC

In asynchronous operation, the PCI bus speed is independent of the proces-
sor’s clock. This mode is often better suited for operating at the maximum
PCI bus frequency for the fastest possible performance.

The PCI standard also supports cards that cannot operate at the full bus
speed (33 or 66 MHz), using flow-control signals that indicate when a board
is ready to send or receive data. This is akin to the wait state capabilities of
the ISA bus.

Because of its high-frequency operation, the PCI standard limits the
number of add-in board connectors on a single bus to four. However, bridges
can be used to implement multiple PCI buses on a single motherboard,
allowing for larger numbers of expansion slots. This is commonly used in
industrial PCs.

The PCI standard supports both 5 V and 3.3 V logic levels. Three types
of boards are defined: 3.3 V only, 5 V only, and universal. Expansion board
connectors are keyed to prevent inserting a 3.3 V board into a 5 V socket or
vice versa.

PCI expansion boards are similar in size to their ISA counterparts,
available as either full-length or short-length cards. They use the same style
of connectors that IBM employed in its Micro Channel PCs. These connectors
have twice the pin density of ISA connectors and accommodate their larger
pin count (124 pins for 32-bit connectors) in a smaller space.

5.5.2 PCI Operations

The PCI bus multiplexes its address and data signals on the same pins
(AD[00]-ADI[31]). A control signal, FRAME# (cycle frame) indicates when
a transfer cycle starts. It remains valid throughout most of the data cycle. During
the first phase of a transfer cycle, the AD lines contain address information.
For later phases, the AD lines contain data values. Figure 5-5 shows a basic
PCI read operation.

Control lines C/BE[0:3]# (command/byte enables) indicate which bytes
are active during the data cycle, allowing 8- to 32-bit data transfers (for a 32-
bit PCI bus). The IRDY# (initiator ready) signal indicates that the bus master
is ready to complete the transaction. During a read cycle this means that the
master is ready to accept data and during a write cycle it indicates that valid
data is present on the bus (AD[00:31]). The TRDY# (target ready) signal
indicates that the selected (addressed) device is able to complete the transfer.
A data phase is complete when both IRDY# and TRDY# are asserted. Wait
states are inserted when IRDY# and TRDY# are not both active. The STOP#
(stop) signal is used by the current target device to abort the current transfer.
The DEVSEL# (device select) signal indicates that the device selected to

5.5 PCland Other Local Buses 97

AN AW AYAYAYANE
g

FRAME#

AD[00:31] - ADDRESS)---r-rebrmememn <DATA 1> XDATA ZX DATA 3 > ---------------

C/BE[0:3]# - (Busiom BYTE ENABLES

oo 1 ST

wAIT DATA waT DATA wAT DATA
XFR XER X

o T LT
s T i

ADDRESS DATA DATA DATA
PHASE PHASE PHASE PHASE

Figure 5-5 Basic PCl read operation.

drive the bus (write data) has decoded its address and knows it has been
selected. Since most of these control signals are bidirectional and tri-stated,
a PCI bus data transfer uses a fairly complex protocol.

One way the PCI bus improves data throughput is via a burst mode.
Here, a single address cycle is followed by multiple data transfer cycles. This
allows for an instantaneous speed of 132 Mbytes/sec for a 32-bit PCI bus
running at 33 MHz. Of course, the maximum average or sustained data
transfer rate will be slower than this (speeds up to 100 Mbytes/sec are
commonly attained). If a large amount of data is transferred during a single
burst, it ensures a high data rate, since the overhead of the address cycle
becomes minimal.

To ensure data integrity on the bus, PCI employs three signals: PAR
(parity), PERR# (parity error), and SERR# (system error). PAR is the even parity
bit, derived from the 32 AD lines and the four C/BE# lines. The sum of those
bits and PAR should be an even number. If a parity error is detected during a
standard cycle, PERR# is asserted. For a special cycle, SERR# is asserted.

98 CHAPTER5 The PC

A PCI add-in card can either be a slave or a bus master. The bus master
capability is implemented via the REQ# (request) and GNT# (grant) signals.
When a bus master board wants to take control of the bus, it asserts REQ#.
The motherboard asserts GNT# when it is ready to relinquish bus control to
the board. Each PCI slot has its own, independent REQ# and GNT# lines.

The bus master feature is important for data acquisition boards, allowing
them to take over the bus and quickly transfer large amounts of data into
memory when they need to, instead of waiting for the CPU to a acknowledge
a request via software.

PCI also support four interrupt lines, INTA#, INTB#, INTC#, and
INTD#, which are level-sensitive, active-low, using open-drain drivers which
allows signal sharing among multiple boards.

Table 5-4 shows the pinouts for 32-bit PCI expansion cards—both 5 V
and 3.3 V boards.

5.5.3 64-Bit PCI Bus

PCI supports a 64-bit standard as an extension to the basic 32-bit bus. This
is an additional 32-bit bus that uses 39 new signal pins: AD[32:64],
C/BE[4:7]#, REQ64#, ACK64#, and PAR64. The new control lines are only
valid for this additional bus. REQ64# (request 64-bit transfer) and ACK64#
(acknowledge 64-bit transfer) are used to request and enable a 64-bit data
transfer cycle. C/BE[4:7]# (control/byte enables) lines are used to control
which bytes of AD[32:64] contain valid data. PAR64 (parity upper) is the
parity bit for AD[32:64] and C/BE[4:7], behaving the same way as PAR does
for the lower 32-bit bus.

Table 5-5 show the pinouts for the 64-bit extension on 5 V and 3.3 V
PCI boards.

5.5.4 PCI-X

As with the rest of the PC industry, the PCI standard continues to evolve into
faster versions and special applications. PCI-X is a high-performance exten-
sion to the PCI bus that doubles the maximum clock frequency to 133 MHz
while still allowing 64-bit transfers. This produces a maximum burst transfer
rate of over 1 Gbyte/sec while preserving backward compatibility with stan-
dard PCI devices. PCI-X also includes protocol enhancements that make bus
operations more efficient. PCI-X motherboards may only support keying for
3.3 V cards, although the specification does describe universal (5 'V or 3.3 V)
cards.

TABLE 5-4

32-bit PCI Expansion Card Pinout

5.5 PCland Other Local Buses

5V CARD 3.3V CARD
PIN # SIDE B SIDE A SIDE B SIDE A
1 -12V TRST# -12V TRST#
2 TCK +12V TCK +12V
3 Ground T™S Ground TMS
4 TDO TDI TDO TDI
5 +5V +5V +5V +5V
6 +5V INTA# +5V INTA#
7 INTB# INTC# INTB# INTC#
8 INTD# +5V INTD# +5V
9 PRSNT1# | Reserved PRSNT1# Reserved
10 Reserved | +5V Reserved +3.3V
11 PRSNT2# | Reserved PRSNT2# Reserved
12 Ground Ground
13 Ground Ground KEYWAY
14 Reserved | 3.3Vaux Reserved 3.3Vaux
15 Ground RST# Ground RST#
16 CLK +5V CLK +3.3V
17 Ground GNT# Ground GNT#
18 REQ# Ground REQ# Ground
19 +5V PME# +3.3V PME#
20 AD[31] ADI[30] AD[31} AD[30]
21 AD[29] +3.3V ADI[29} +3.3V
22 Ground AD[28] Ground AD[28]
23 AD[27] AD[26] AD[27] AD[26]
24 ADI[25] Ground AD[25] Ground
25 433V AD[24] +33V AD[24]
26 C/BE[3]# IDSEL C/BE[3]# IDSEL
27 AD[23] +33V AD[23] 3.3V
28 Ground AD[22] Ground AD[22]
29 AD[21] AD[20] AD[21] AD[20]
30 AD[19] Ground AD[19] Ground
31 +3.3V AD[18] +3.3V AD[18]

99

100 CHAPTER5 The PC

TABLE 5-4

32-bit PCI Expansion Card Pinout (Continued)

5V CARD 3.3V CARD

PIN # SIDE B SIDE A SIDE B SIDE A
32 AD[17] AD[18] AD[17] AD[186]
33 C/BE[2]# | +3.3V C/BE[2]# +3.3V
34 Ground FRAME# Ground FRAME#
35 IRDY# Ground IRDY# Ground
36 +3.3V TRDY# +3.3V TRDY#
37 DEVSEL# | Ground DEVSEL# Ground
38 Ground STOP# Ground STOP#
39 LOCK# +3.3V LOCK# +3.3V
40 PERR# Reserved PERR# Reserved
4 +33V Reserved +33V Reserved
42 SERR# Ground SERR# Ground
43 +3.3V PAR +3.3V PAR
44 C/BE[1]# | AD[15] C/BE[1]# AD[15]
45 AD[14] +3.3V AD[14] +3.3V
46 Ground AD[13] Ground AD[13]
47 AD[12] AD[11] AD[12] AD[11]
48 AD[10] Ground AD[10] Ground
49 Ground AD[09] M66EN AD[09]
50 Ground Ground
51 KEYWAY Ground Ground
52 AD[08] C/BE[0]# AD[08] C/BE[0]#
53 AD[07] +3.3V AD[07] +3.3V
54 +33V AD[06] +3.3V AD[06]
55 AD[05] ADI[04] ADI[05] AD[04]
56 AD[03] Ground AD[03] Ground
57 Ground AD[02] Ground AD[02]
58 AD[01] AD[00] AD[01] AD[00]
59 +5V +5V +3.3V +3.3V
60 ACK64# REQ64# ACK64# REQ64#
61 +5V +5V +5V +5V
62 +5V +5V 5V +5V

TABLE 5-5
PCI 64-Bit Extension Pinout

5.5 PCl and Other Local Buses

5V CARD 3.3V CARD

PIN # SIDE B SIDE A SIDE B SIDE A
63 Reserved | Ground Reserved | Ground
64 Ground C/BE[7]# Ground C/BE[7]#
65 C/BE[6]# | C/BE[5}# | C/BE[6}# | C/BE[5])#
66 C/BE[4l# | +5V C/BE[4# | +3.3V
67 Ground PAR64 Ground PAR64
68 AD[63] AD[62] AD[63] AD[62]
69 AD[61] Ground AD[61] Ground
70 +5V AD[60] +3.3V AD[60]
71 AD[59] AD[58] AD[59] AD[58]
72 AD[57] Ground AD[57] Ground
73 Ground AD[56] Ground AD[56]
74 AD[55] AD[54] AD[55] AD[54]
75 AD[53] +5V AD[53] +3.3V
76 Ground AD[52] Ground ADI[52]
77 AD[51] AD[50] ADI[51]} AD[50}
78 ADI[49] Ground AD[49] Ground
79 5V AD[48] +33V AD[48]
80 AD[47] AD[46] AD[47] AD[46]
81 AD[45] Ground AD[45] Ground
82 Ground AD[44] Ground AD{44]
83 ADI[43] AD[42] AD[43] AD[42]
84 AD[41] +5V AD[41] +33V
85 Ground AD[40] Ground AD[40]
86 AD[39] AD[38] AD[39] AD(38]
87 AD[37] Ground AD[37] Ground
88 +5V AD[36] +3.3V AD[36]
89 ADI[35] AD[34] AD[35] AD[34]
90 AD[33] Ground ADI[33] Ground
91 Ground AD[32] Ground AD[32]
92 Reserved | Reserved | Reserved | Reserved
93 Reserved | Ground Reserved | Ground
94 Ground Reserved | Ground Reserved

101

102 CHAPTER5 The PC

5.6 PC Peripherals

Nearly all PC systems use at least one floppy drive (a notable exception being
diskless LAN workstations) and a hard-disk drive. It is strongly recommended
that a PC-based data acquisition platform have at least a 10-Gbyte or larger
hard drive, for storage of raw and analyzed data as well as room for typically
large application software.

Older PCs usually had at least one parallel printer port and a serial port,
for asynchronous communications. Newer PCs have one or more USB ports
for external peripherals. See Chapter 8 for a discussion of parallel, serial, and
USB interfaces.

Several standard video displays have been available for PCs. The most
basic was the text-only monochrome display, employing IBM’s monochrome
display adapter (MDA), used on older PC/XT/AT machines. It offered 1
page of 25 lines of 80 characters with hardware support for high-intensity,
underlining, and reverse video. It supported simple character-based graphics,
where special characters are graphic symbols (such as lines) instead of alpha-
numerics. The MDA had a video buffer (memory) 4 Kbytes long. It produced
sharp, easy-to-read text.

True bit-mapped color graphics were supported by the color graphics
adapter (CGA). It provided 4 pages of 80-character by 25-line text, as well
as several graphics modes. Its highest graphics resolution was 640 points
horizontally by 200 points vertically in 2 colors. It also supported 4 colors
with a resolution of 320 points horizontally by 200 points vertically. The
CGA had a 16-Kbyte video buffer. Text on a CGA monitor was much “fuzzier”
than on an MDA monitor. The original IBM PC only offered MDA and CGA
display options. These displays are obsolete now.

The next available IBM video display was the enhanced graphics
adapter (EGA). Its video buffer size varied from 64 to 256 Kbytes and it
supported multiple pages of text. It displayed graphics with a resolution of
640 points horizontally by 350 points vertically, with up to 16 colors (with
maximum buffer memory). It also emulated a CGA or MDA display.

Some of IBM’s PS/2 series of computers supported multicolor graphics
array (MCGA), which was an enhanced version of CGA. It used 64 Kbytes
of video buffer memory and stored up to 8 pages of monochrome text.
For graphics, it supported all the CGA modes as well as adding support for
256 colors in a 320 points by 200 points mode. In addition, it had a high-
resolution 2-color graphics mode with 640 points horizontally by 480 points
vertically.

The newer IBM video display for PCs is the virtual graphics array
(VGA) family. VGA started on many IBM PS/2 systems and older ISA
systems. It has a 256-Kbyte video buffer. It emulates MDA, CGA, EGA, and

5.6 PC Peripherals 103

MCGA modes. It can support a 640-point by 480-point high-resolution graph-
ics display with 16 colors. VGA has become the most popular PC display
standard, especially with higher resolution versions, collectively referred to
as super VGA or SVGA. These displays are defined under VESA standards,
having resolutions up to 1600 points by 1200 points using up to 16 million
colors. Nearly all current PCs support VGA displays.

There is also one early, non-IBM video display standard, the Hercules
graphics adapter (HGA), sometimes referred to as monochrome graphics. It
was developed to fill the void between the original text-only MDA and color
graphics CGA, as a graphics display using a monochrome monitor. It emu-
lated MDA (and used the same monitor) in text mode, along with MDA
graphics characters. It could switch into a monochrome (two-color), bit-
mapped graphics mode supporting a resolution of 720 points horizontally by
348 points vertically. Its video buffer contained 64 Kbytes of memory. Being
a non-IBM standard, it was not supported by BIOS or DOS video functions.
A special software driver had to be installed to fully use it. However, many
early commercial software products supported HGA and it was a low-cost
alternative to high-resolution color displays (EGA and VGA) when multicolor
video was not required. Today, the VESA standards have made HGA and
most other nonstandard PC displays obsolete. There are even monochrome
VGA monitors commercially available.

Most video cards contain their own BIOS, which is loaded when the
PC boots up. Currently, display adapter cards fall into three groups: SVGA,
2-D graphics accelerators, and 3-D graphics accelerators. Some of these cards
plug into an accelerated graphics port (AGP) slot on the PC’s motherboard.
This is a special local bus, just for connecting a video adapter to the CPU.

The keyboard is the PC’s standard user-input device, fully supported
by BIOS, DOS, and Windows functions. There are many other user input and
control devices for PCs, the most popular being the mouse. The mouse is a
device that connects to the PC via a standard serial port, a special mouse
connector (the IBM PS/2 mouse standard), or a USB port. It is moved by the
user’s hand in a two-dimensional plane on an ordinary tabletop or a special
pad. It has two or more buttons the user can push (some also have a scroll
wheel). In conjunction with supporting software, a mouse simplifies using
graphics-based applications, such as CAD systems or operating systems such
as Windows (see Chapter 7). For example, a painting program allows the user
to create and edit graphics images. A mouse can be used, among other things,
to draw lines, select functions, and select objects on the screen to manipulate.
Other, less common peripherals for user input are digitizing pads and track-
balls (a stationary version of a mouse, either built into a keyboard or free-
standing). Many newer PCs use USB ports to connect a mouse and keyboard
to a PC.

104 CHAPTER5 The PC

An important and sometimes overwhelming area of PC peripherals is
that of mass storage. This includes floppy drives (diskettes), hard drives,
optical drives, and other, more esoteric storage devices. For floppy drives,
there were two common form-factors, 5-1/4 inch and 3-1/2 inch diskettes, each
with two standard densities. The early 5-1/4 inch drive supported double-
sided double-density storage, which allowed 360 Kbytes of formatted capac-
ity. This was common on XT class machines. Most AT machines used a
double-sided high-density drive that was capable of 1.2 Mbytes of formatted
storage. Similarly, both 3-1/2 inch drive formats are double sided. The original
double-density 3-1/2 inch drive had a formatted capacity of 720 Kbytes. The
standard quad-density 3-1/2 inch drive has a 1.44 Mbyte capacity. Most newer
PCs only have a 1.44-Mbyte drive, even though 2.88-Mbyte capacity 3-1/2
inch drives are available.

There are some wrinkles to note when using diskettes with different
density drives. Most notably, if a diskette was formatted on a double-density
5-1/4 inch drive, it can be read by a high-density drive, but a high-density
diskette cannot be read by a double-density drive. If a double-density diskette
was written on by a high-density drive, sometimes it may not be read reliably
by a double-density drive. Also, for both 5-1/4 and 3-1/2 inch drives, the
diskettes used must be the appropriate type for that drive. So, do not use low-
density diskettes in high-density drives or vice versa. In 3-1/2 inch drives,
the hardware recognizes whether the diskette is low or high density via a
permanent notch in the diskette.

The hard drive arena can be even more confusing. Hard disk drives can
vary in capacity from megabytes (Mbytes) to gigabytes (Gbytes). The com-
mon sizes keep increasing each year as storage technology improves. Early
hard drives used MFM (modified frequency modulation) encoding. Some
used RLL (run length limited) encoding to increase capacity and transfer
speed by 50%, over MFM. Advanced RLL drives doubled the data density
over MFM. An important measure of performance is a drive’s average access
time, ranging from around 60 msec with older drives to less than 10 msec
on newer models.

The type of drive-to-computer interface is another important hard disk
parameter. Early PCs used the serial ST506/412 interface with its peak data
transfer rate of only 625 Kbytes/sec (its serial data rate was 5 MHz). An
improvement to this standard was the enhanced small device interface (ESDI),
which also used a serial data stream but ran at 25 MHz, resulting in a peak
data rate of 3.125 Mbytes/sec.

These standards were made obsolete by the integrated drive electronics
(IDE) interface (sometimes called the AT attachment) and its many variations.
As the name implies, an IDE drive has control electronics built into it. So, a
PC’s motherboard requires a very simple interface to connect to an IDE drive,

5.6 PC Peripherals 105

and the need for a separate controller card (as with ST506/412 or ESDI) is
eliminated. IDE drives were originally developed for AT computers.

IDE is a parallel interface, 16 bits wide. Its original peak transfer rate
was 4 Mbytes/sec. Later improvements, such as ATA-2 or enhanced IDE
(EIDE), increased the peak data transfer speed to 16 Mbytes/sec. ATA-4 or
Ultra DMA raised this rate to 33 Mbytes/sec. The newest IDE standard (as
of this writing), ATA-5 or Ultra DMA/66, has a peak rate of 66 Mbytes/sec.
The biggest advantage of ATA/IDE drives is their fairly low price at a good
performance level.

If you need a higher performance hard drive system (i.e., faster transfer
rates than IDE drives) the best alternative is the small computer system
interface (SCSI). SCSI is a self-contained bus that can connect up to 15
devices to a PC, using an interface card (some PCs, mostly network servers,
have SCSI controllers built into the motherboard). SCSI supports other
devices besides hard drives, such as high-performance CD-ROM drives and
scanners. SCSI was originally an 8-bit wide bus with a peak transfer rate of
5 Mbytes/sec. Later versions increased bus width to 16 bits and raised the
speed. Currently (as of this writing) the fastest SCSI standard is the Ultra
160/m Wide SCSI with a 16-bit bus, 80-MHz speed, and a peak data rate of
160 Mbytes/sec.

The performance of SCSI hard drive systems depends on many factors,
including the length of the signal cables and the properties of the controller
card. When streaming large amounts of data to a hard drive at high rates, as
is common in some data acquisition applications, a high-performance disk
drive is necessary. Just bear in mind that peak data rates are only one indi-
cation of overall throughput. Appropriate software must be used to obtain the
full benefits of fast hardware.

Another important class of mass storage devices are tape drives, typi-
cally used to back up data from hard drives. As PCs progress to larger hard
drives, backing up data onto diskettes becomes cumbersome and often
impractical. For example, a PC with a small 100-Mbyte hard drive requires
70 high-density 3-1/2 inch diskettes (1.44 Mbytes each) for a total backup.
Even using data compression techniques, about 30 diskettes would be
required. Instead, a tape drive using a single tape cartridge can easily store
hundreds of megabytes or even several gigabytes. Tape drives have shown a
trend toward standardization, making their use more attractive for backing
up large hard drives.

The quarter-inch cartridge (QIC) standard encompasses a range of tapes
that can store as little as 60 Mbytes or as much as 25 Gbytes on a single
tape cartridge. Drives that use QIC tapes are fairly common. A newer tape
cartridge standard, the Travan, ranges from 400 Mbytes up to 4 Gbytes on
a tape. There are digital audio tapes (DAT) used for data backups with

106 CHAPTER5 The PC

capacities up to 20 Gbytes. Another format, digital linear tape (DLT), can
also store up to 20 Gbytes on a tape. Nearly all tape drive systems support
data compression, which can sometimes double the capacity of a cartridge
(although it may slow down the backup process).

Optical drives are a fast-growing alternative to some magnetic media.
The CD-ROM (compact disc-read only memory) drive has become ubiqui-
tous as a means of distributing programs and data for PCs. These compact
discs are prerecorded digital media (as are audio CDs) containing up to 700
Mbytes on a standard disc. A CD-ROM is, as the name implies, read-only.

CD-R (compact disc-recordable) drives allow you to record data on a
blank disc. Once the disc is full you cannot write any more data onto it.
However, it is possible using appropriate software to write multiple data
“sessions” onto a CD-R disc. CD-R is ideal as a backup medium since the
data cannot be erased and the discs are readable on nearly any CD-ROM
drive. It has similar capacities to CD-ROMs.

CD-RW (CD-rewritable) drives allow you to erase data on an optical
disc and record new data over it, just like conventional magnetic media (floppy
and hard drives). CD-RW drives also function as CD-R drives, using the
appropriate blank media. CD-RW drives have become very popular in recent
years as their price has fallen. However, not all CD-RW discs can be read in
CD-ROM or even CD-R drives.

The newest optical storage technology is DVD (digital video disc or
digital versatile disc), originally developed for storing video data. Currently,
DVD media store about 4 Gbytes on a disc, although standards are defined
for up to 16-Gbyte discs. The DVD-ROM drive is analogous to the CD-ROM.
It is a read-only medium used in PCs for software and video distribution.
There are also recordable DVD drive formats, DVD-R and DVD-RW, which
are initially too expensive for widespread use (but should eventually become
as common as CD-R and CD-RW). DVD drives can also read CDs but not
all CD-R and CD-RW discs. Because of their much larger capacity, it is very
likely that DVD drives will eventually supplant CD drives.

Another popular realm of PC mass storage is the high-capacity floppy
disk. Standard floppy drive capacities are now much too small for data and
software requirements. One early attempt to significantly increase floppy disk
capacity was the “Floptical” disk drive, which used an optical track servo
system to provide 20 Mbytes of storage on a floppy-sized disk. This approach
is used in the popular ZIP drive, which comes in 100-Mbyte and 250-Mbyte
versions, using a special cartridge that is larger than a standard 3-1/2 inch
diskette. Super Disk or LS-120 drives store 120 Mbytes and are backward
compatible with 1.44 Mbyte floppy disks.

One final class of PC peripherals we will touch on here is that of printers
and plotters. Most PC printers use either a parallel (Centronics) port or a

5.6 PC Peripherals 107

USB port. Nearly all plotters use a serial port or a network connection (usually
Ethernet). A printer is used to produce text and graphics output. The majority
of printers used are ink-jet based, dot-matrix devices, forming characters and
graphics images out of small, individual dots. Even laser printers use indi-
vidual dots, albeit at very high densities (300 to 600 dots per inch or more).

Plotters are devices that produce drawings from a set of lines. They use
one or more pens, whose position on the paper is accurately controlled.
Plotters are commonly used by CAD and graphic art software. Newer plotter
also use inkjet technology, instead of pens, for increased speed.

This completes our brief overview of standard PCs. In the next chapter
we will look at the details of connecting external hardware to a PC’s I/O
expansion bus.

CHAPTER

Interfacing Hardware
to a PC Bus

We will now look at the details of connecting external hardware to an XT,
AT, or PCI bus. Initially we will examine 8-bit data transfers on a PC/XT
bus. Later we will see the differences when connecting 16-bit devices to an
AT (ISA) bus. We will also look at the issues involved with interfacing to the
PCI bus.

As we touched on in the previous chapter, three types of XT/AT bus
cycles are used for data transfers: memory, /O port, and direct memory access
(DMA) cycles. On the PCI bus there are also burst transfers and special
access cycles. For the XT/AT bus, these can be either a read cycle where data
is transferred from an external device or memory into the CPU (or bus
controller, when it is a DMA operation) or a write cycle where data is transferred
from the CPU (or bus controller) to an external device or memory. Memory
cycles are used to access system memory and memory on expansion cards
(such as video buffers). Most data transfers to external devices use 1/O port
cycles or DMA cycles.

6.1 1/0 Data Transfers

In XT systems, /O port addresses in the range 200h—3FFh are available for
use by I/O cards. Many of the /O port addresses are reserved for particular
functions. For example, the range 320h—32Fh is used by hard disk drive
adapter cards (or the equivalent controller on a motherboard). One popular
I/O address range for undefined functions is 300h-31Fh, assigned to IBM’s
prototype card.

108

6.1 /0 Data Transfers 109

AEN
AO-A15 X I/0 PORT ADDRESS VALID ><:
IOR I I
Iow
10 CH RDY

-

DATA FROM 1/O PORT VALID

Figure 6-1 8088 CPU ¥/0 port bus read cycle.

Only a few control signals are needed, along with the address and data
buses, to implement an 1/O port read or write cycle on the XT bus. These are
IOR (for a read cycle), IOW (for a write cycle), and AEN (to distinguish
between an I/O port cycle and a DMA cycle). The timing for an I/O port read
cycle is shown in Figure 6-1.

A standard PC/XT 1/O port bus cycle requires five clock cycles, includ-
ing one wait state injected by logic on the motherboard. Many systems with
high clock frequencies inject additional wait states so that /O cards designed
for slower systems will still operate properly. The ALE signal occurs at the
beginning of the I/O port cycle and indicates when the address bus contents
are valid for the addressed port. IOR or IOW go active low to indicate an I/O
port cycle. AEN stays inactive (low) to indicate this is not a DMA cycle. An
active IOR signal tells the addressed I/O port to place its data (for the CPU
to read) on the data bus (D0-D7). An active IOW signal tells the addressed

10 CHAPTER 6 Interfacing Hardware to a PC Bus

1/0 port to read the contents of the data bus (from the CPU). The control line
1/0 CH RDY is normally left active (high). If a slow /O port needs additional
wait states inserted into the cycle, it pulls this line low.

6.2 Memory Data Transfers

Memory bus cycles use timing very similar to I/O port bus cycles, as shown
by the memory read cycle in Figure 6-2. The main control lines here are
MEMR and MEMW. AEN is not needed for memory bus cycle decoding. One
difference from I/O addressing is that for memory bus cycles, the motherboard
does not inject an additional wait state (hence, only four clock cycles are
needed instead of five). Another difference is that all 20 address lines (A0-A19)
are valid for a memory bus cycle and should be used for decoding the memory
address. Only the first 16 lines (A0—A1S5) are valid for an I/O bus cycle; in
practice, just the first 10 address lines (AO—A9) are decoded on a PC/XT bus.

AD-A15 X MEMORY ADDRESS VALID X

MEMW

10 CH RDY

e

DATA FROM MEMORY VALID

Figure 6-2 8088 CPU memory bus read cycle.

6.3 A Simple, 8-Bit I/0 Port Design M

6.3 A Simple, 8-Bit 1/0 Port Design

A simple, fixed-address, 8-bit I/O port schematic is shown in Figure 6-3. The
port I/O address is fixed at 300h by the decoding logic used on inputs AO—A9.
IOW is used to write data to the output port latch (74LS373). IOR is used to
read data at the input port buffer (74LS244). Note that the decode and control
logic can be handled by a single PLD (programmable logic device) having
at least 13 inputs and 2 outputs. A PLD is a logic device (such as a PAL
or GAL) which contains an array of internal logic gates and flip-flops. The
programming of the PL.D determines the interconnection of its resources and
the overall logic functions it performs (such as address decoding). A more

PC BUS

10, |DECODE
AO-A9 ——~— = o

I

AEN —

oW —
1
1
I
1
|

. 1

IOR — *Q
[}
1
1
|
i ~ 74LS244

G1
; BUFFER
) J—
! G2
)
5 . Y1-8 A1-8 #INPUT PORT
i
i
[}
]
i
DO-D7 :8

| 74LS373
; > LATCH
!
i >D1-8 Q1-8—2<— OUTPUT PORT

Figure 6-3 Simple 8-bit PC/XT digital I/0 port.

112 CHAPTER 6 Interfacing Hardware to a PC Bus

versatile I/O port circuit would have a selectable I/O port address, determined
by jumper or switch settings.

Whenever the CPU writes to I/O address 300h, a data byte appears at
the output port. When the CPU reads from that address, it retrieves the byte
currently present at the input port. This is simple, programmed I/O that must
be completely handled by the CPU. The CPU’s program must determine when
it is time for an I/O data transfer and must control the I/O read or write cycle
as well as store or retrieve the data from memory. This limits the maximum
data transfer rate and prevents the CPU from doing other tasks while it is
waiting for another I/O cycle.

6.3.1 Using Hardware Interrupts

Usually, a better alternative to the polled I/O technique just described is to
use hardware interrupts. The occurrence of a hardware interrupt causes the
CPU to stop its current program execution and go to a special interrupt
service routine, previously installed. This is designed to handle asynchronous
external events without tying up the CPU’s time in polling for the event.
Nine hardware interrupts are used in a PC/XT system. The highest priority
is the NMI (nonmaskable interrupt), which cannot be internally masked by
the CPU (but can be masked by hardware on the motherboard). This line is
usually used to report memory errors and is not available to cards connected
to the I/O expansion slots. The other eight hardware interrupt lines,
IRQO-IRQ7, are connected to an Intel 8259 Interrupt Controller (which
connects to the 8088’s maskable interrupt input line). The highest priority
lines, IRQQO and IRQ1, are used on the motherboard only and are not con-
nected to the I/O slots. IRQQ is used by channel 0 of the timer/counter, and
IRQ1 is used by the keyboard adapter circuit. Interrupts IRQ2-IRQ7 are
available to I/O cards.

The 8088 CPU supports 256 unique interrupt types. These can be
hardware or software interrupts. Each interrupt type has assigned to it a
4-byte block in low memory (0-3FFh) containing the starting address of
that interrupt’s service routine. This interrupt vector consists of the 16-bit
code segment (CS) and instruction pointer (IP) of the service routine.
Interrupt types 0—4 are used by the 8088 CPU. For example, interrupt type
0 is called by a divided-by-zero error. Interrupt types 5 and 6 are unused for
8088-based PCs. Interrupt type 7 is used by the BIOS for the Print Screen
function.

Hardware interrupts IRQO-7 are mapped to types 8—15. So, the vector
for IRQO is at addresses 20h—23h, IRQI is at 24h—27h, and so on. A hardware
interrupt is asserted when the appropriate IRQ line goes high and stays high

6.3 A Simple, 8-Bit /0 Port Design 13

10 DECODE
AO-A9 %ﬁ 301h

O

O

74L8244
BUFFER

[}
i
I
i
1
I
]
t
I
|
I
|
]
f
I
|
|
| 8 8
DO-D7 vi-8 A1-8 <7L INPUT PORT
|
I
]
|
1
1
|
|
|
|
|
|
I
|
I
|
|
|
I
i
|
|
I
I

]
Q@

BR D
gl
741874 <J——— INTERRUPT
FLIP-FLOP REQUEST
IRQ7 + Q5

RESET ‘.—"D—?
DRV

Figure 6-4 Interrupt-driven 8-bit PC/XT digital input port.

until the interrupt is acknowledged. There is no direct interrupt acknowledge
line from the I/O bus (it occurs between the CPU and the 8259 Interrupt
Controller), so an I/O line under CPU control is used for this function and
activated by the interrupt service routine.

Figure 6-4 shows a simple 8-bit input port designed for interrupt-driven
access, at I/O address 301h. As in Figure 6-3, the enable line of the input
port buffer is decoded by a combination of address bits AO-A9, IOR, and
AEN. In addition, the input port provides a Request for Interrupt line, used
by the external hardware to signal when it is ready for the CPU to read data
from it. A pulse or positive-going edge on this line sets the flip-flop, asserting

114 CHAPTER 6 Interfacing Hardware to a PC Bus

the IRQ7 line (lowest priority interrupt). When the interrupt service routine
for interrupt type 15 is called, it performs a read from I/O address 301h to
retrieve the data. This access will also reset the flip-flop, negating the IRQ7
line and preventing an additional (and unwanted) interrupt service cycle after
the current one is completed.

Note that IRQ7 is typically used by a parallel printer port. To prevent
unwanted hardware clashes, the flip-flop output in Figure 6-4 should be
buffered by a tri-state driver, which can be disabled when the input port is
not in use. A practical input port design would also have some selectability
for the I/O port address and the IRQ line used.

Any interrupt type can be accessed via software by simply using the
INT instruction. This includes interrupt types used by IRQ lines. This is a
good way of testing hardware interrupt service routines.

6.3.2 Software Considerations for Hardware Interrupts

Implementing hardware interrupt support in software requires many steps.
The interrupt service routine must be written and placed at a known memory
location. The address of this service routine must be placed in the 4 bytes of
low memory corresponding to the appropriate interrupt type (for IRQ7 it
would be addresses 3Ch—3Fh). The 8259 Interrupt Controller must be initial-
ized to enable the desired IRQ line. The 8088’s maskable interrupt input must
be unmasked (if it is not already). If you are using a standard peripheral
device supported by BIOS functions, such as an asynchronous communica-
tions (serial) port, this initialization will be done for you by the BIOS.
Similarly, commercial peripherals that come with their own software drivers
should take care of these details for you. If you build your own data acquisition
card with interrupt support, you will have to incorporate the initialization
procedure into your custom software.

There are conditions where polled I/O is preferable to interrupt-driven
I/O. It takes the CPU 61 clock periods to respond to a hardware interrupt and
begin executing the interrupt service routine. In addition, it requires 32 more
clock cycles to return from an interrupt. For an older PC/XT system with a
4.77-MHz clock, this corresponds to a processing overhead of 19.2 usec
added to the execution time of the interrupt service routine. If high-speed I/0
transfers were required, such as every 20 usec (for a 50,000 sample/sec rate),
a tight polling loop would be preferable. There would not be much time left
over from servicing the I/O transfer for the CPU to do much else. In general,
when the time between consecutive hardware interrupts starts approaching
the overhead required to process an interrupt, a polled approach to software
is in order.

6.5 Wait State Generation 115

6.4 DMA

When very high speed data transfers are required between a peripheral device
and memory, direct memory access (DMA) hardware is often used. PC/XT
systems support four DMA channels via an Intel 8237 DMA controller. The
highest priority DMA is on channel O, used only on the motherboard for
DRAM refresh. The other three DMA channels are available for use by
peripherals (channel 3 is the lowest priority). During a DMA cycle, the 8237
takes over control of the bus from the 8088 and performs the data transfer
between a peripheral and system memory. Even though the 8237 supports a
burst mode, where many consecutive DMA cycles can occur, only a single-
byte DMA cycle is used on PC/XT systems. This ensures that CPU cycles
can still occur while DMA transfers take place, preserving system integrity
(including memory refresh operations).

In PC/XT systems, DMA transfers require six clock periods. After each
DMA cycle a CPU cycle of four clock periods occurs. So, the maximum
DMA transfer rate is 1 byte every 10 clock periods. On original 4.77 MHz
PC/XT systems, this is every 2.1 usec for a maximum DMA data rate of
476 Kbytes per second. This is still much faster than CPU-controlled data
transfers.

As with servicing interrupt requests, software must perform initializa-
tions before DMA transfers can occur. The 8237 DMA controller must be
programmed for the type of DMA cycle, including read or write, number of
bytes to transfer, and the starting address. Once it has been properly initial-
ized, the DMA cycle is started by a DMA request from the peripheral
hardware.

6.5 Wait State Generation

As we previously discussed, sometimes a peripheral device is too slow for a
normal PC/XT bus cycle. The length of a bus cycle can be extended by
generating wait states. These are additional clock periods inserted into a
memory or I/O bus cycle. Wait states are inserted by pulling line 10 CH RDY
low (negated) for two or more clock cycles after the data transfer cycle has
started.

Figure 6-5 shows a simple circuit for generating one additional wait
state for an /O cycle. When the I/O port is selected (for either a read or write)
it sets a flip-flop that pulls IO CH RDY low. Note that the inverter driving
the JO CH RDY line is an open-collector device. This is because several

116 CHAPTER 6 Interfacing Hardware to a PC Bus

PCBUS |
!
110
AO-A9 —14+ ADDRESS D 74574 Qp
AEN —i—- DECODE >FLIP-FLOP
]
! —
i CLR
;
]
]
]
— i
IOR !
—_— i
IOW ;
!
]
]
]
]
]
]
|
RESET DRV ;
i
]
]
1
]
|
+5V
5 L 1 J
' 1o PR q p PR
! 74LS74
! 74L574 FLIP-FLOP
CLK ' >FLIP-FLOP >
! _ —
! CLR CLR
\ 1 d
]
i
IO CH RDY i
]

74LOSQ

Figure 6-5 I/0 wait state generation.

peripherals on the PC/XT bus can drive this line simultaneously and will be
OR-tied if they use open-collector outputs. This flip-flop output then goes to
a two-stage shift register (using two additional flip-flops), which waits two
clock cycles and then outputs a signal resetting the flip-flop and reasserting
IO CH RDY, ensuring that no additional wait states are injected into the cycle.
For each additional wait state desired, an additional shift register stage should
be added, for more clock cycle delays. The timing is very similar for gener-
ating memory cycle wait states, except only one clock cycle delay is required
to generate the first wait state.

6.6 Analog Input Card Design

6.6 Analog Input Card Design

Building on what we have discussed in this chapter, Figure 6-6 shows an 8-
bit data acquisition circuit with eight analog inputs. It is based on a National
Semiconductor ADCO0808 successive-approximation ADC with a maximum
conversion rate of approximately 10,000 samples per second (100-psec aver-
age conversion time). This device has an eight-channel analog multiplexer.
It accepts input signals in the range of 0 to +5 V. If a wider analog input
range is required, op amps can be used.

’ +5V
PC BUS REFERENCE
ANALOG INPUTS
500 KHz oLk VREF INO =——CHO
| CLOCK IN1 fe—CH 1
: IN2 e CH2
2 IN3 «——CH3
Lo
A3-A9 —{ DECODE | ApcwR IN4 le—CH 4
o 300 - 307h START IN5 fe——CH5
OR [lae IN6 e——CH 6
IN7 e——CH7
oW N
ADCRD | o
AEN g ADC0808
AO o A
Al »| B
A2 —— c EOC
DO-D7 ¢+~ » DO-7
RESET DRV {>< oy
IRQ2 ——o" 7" PR D
IRQ3 +——o 7457 <
IRQ4 +—+—o FLIP-FLOP
IRQ5 «—+——o
IRQ7 «—+——o0 Q CIR
INTERRUPT
SELECT
JUMPER

Figure 6-6

8-bit, 8-channel analog input card.

17

118 CHAPTER 6 Interfacing Hardware to a PC Bus

This circuit occupies I/O addresses 300h—307h. Writing dummy data
to address 300h starts a conversion for the signal on ADC channel 1. A write
to 301h converts channel 2, and so on. When conversion is complete an IRQ
is generated (the interrupt line used is jumper-selectable). The interrupt ser-
vice routine then reads the value from any I/O address in the 300h-307h
range. The flip-flop that generates the IRQ is set by the ADC’s end-of-
conversion (EOC) signal and cleared when the interrupt service routine reads
the ADC value.

6.7 16-Bit Data Transfers on ISA Computers
The PC/XT /O circuits described above will also work in an AT (ISA) system.
Most AT computers with high-frequency clocks (above 8 MHz) insert addi-
tional wait states for I/O port bus cycles so that cards designed for XT and
slower AT systems will still work properly. Even 16-bit transfers to 8-bit
peripherals are supported by hardware on the AT motherboard. However, to
fully exploit the power of an AT system, an interface card should support 16-bit
data transfers wherever possible. This utilizes the additional data, address,
and control lines of the AT 1/O bus.

Basically, to perform 16-bit I/O port data transfers, we must decode the
I/O port address, use IOR or IOW to determine the transfer direction, tell the
system bus that we want a 16-bit transfer cycle, and input or output the 16-
bit data word. An AT has the same I/O address map for devices connected to
the system bus as the PC/XT (in the range 100h-3FFh). This makes 1/O
address decoding the same. One new control line used on the ISA bus is I/O
CS16 (pin D02), which indicates to the CPU (80286 or above) that a 16-bit
data transfer is requested by the peripheral device. Another new control line
is SBHE (pin C1), which is active when data on the upper byte of the data
bus (D8-D15) is valid.

Figure 6-7 shows a simple 16-bit ISA I/O interface, designed for
address 300h. The main difference between this circuit and the PC/XT 1/0
circuits shown previously is the transfer of 16 instead of 8 bits at a time.
Otherwise the I/O address decoding is the same, except for the LSB (A0).
In addition, the bus signal I/O CS16 is asserted, active low (by an open-
collector driver), when the I/O port is accessed for a 16-bit I/O transfer
cycle. If this line was not asserted, as with an 8-bit PC/XT card, only the
lower 8 data bits (DO-D7) would be used for the I/O cycle. The signal SBHE
is used when the upper 8 data bits (D8-D15) are ready for bus transfer, and
it enables the buffer for that data. AQ must be asserted to transfer the lower
8 data bits.

6.7 16-Bit Data Transfers on ISA Computers
PC BUS
20 RDLO
: L
‘g WRLO
A1-A9 — DECODE]
AEN —i | 300-301h []
VOCST6 N
oW WRHI
IOR >
SBFE Ne RDH
RDLO——&
G2
7405244
BUFFER 8
Y1-8 A1-e<+'Nng_s'TS
o8,
DO-D7 = > WRLO— 7&ngz|3
: 8
sois Q-8 —Z » OUTFSL(;:I'? BITS
RDHI —y—&1
G2
7415244
BUFFER 8
: Y1-8 At-8le——~— 'NPSJ; 1E'éITS
N
D8-D15 «+——4—» 7418373
WRH'—J LATCH
OUTPUT BITS
: »D1-8 Q1-8 ﬁsL» D8-15

Figure 6-7 Simple 16-bit ISA digital 1/0 port.

119

It may be necessary, because of the higher clock frequency of most

AT systems (especially 80386- and 80486-based computers), to add addi-
tional wait states to an I/O or memory bus cycle over and above the wait
states automatically injected by logic on the motherboard. As with PC/XT
systems, pulling the IO CH RDY line low can be used to add wait states to
a bus cycle.

120 CHAPTER 6 Interfacing Hardware to a PC Bus

6.8 Plug and Play

Configuring add-in cards on XT and older AT (ISA) computers was often a
time-consuming chore. You had to set jumpers or switches on most boards
to select appropriate I/O addresses, memory addresses, IRQ channels, and
DMA channels. Aside from some peripherals whose settings were originally
determined by IBM (such as some disk drive and video adapters), most boards
had no standard settings. If more than one board in a PC tried to use the same
resources (i.e., addresses or IRQ lines), they would produce a hardware
conflict and not operate properly. This could even prevent the PC from booting
up. So, add-in cards had to be manually configured.

To automate the configuration process, Intel and Microsoft developed
the Plug and Play specification for the ISA bus. This encompasses a mixture
of BIOS software, operating system software, and expansion card hardware.
If all these elements are in place, the PC configures the resources a Plug and
Play add-in card requires and even loads the appropriate software drivers.

Since the ISA bus was designed without any support for automatic card
configuration, Plug and Play relies on a complex process. First it isolates the
boards so they do not respond to standard ISA bus control signals. Then each
board gets identified and initialized, allowing it to respond to bus signals.
Next, each board individually goes into a mode where the PC reads the card’s
configuration information and programs its resource settings. After all boards
have been configured, the operating system loads appropriate software drivers
for them.

Most older ISA PCs (pre-Pentium) do not have a Plug and Play
compatible BIOS. But as long as the operating system supports it, Plug and
Play boards can still be automatically configured. Microsoft operating sys-
tems starting with Windows 95 (see Chapter 7) fully support Plug and Play
ISA.

Note that with Plug and Play configuration, the resources selected by
this process may not be the same as in an older ISA PC using standard
settings. For example, plug and play may configure the first serial port
(COMLI) to use IRQ7 instead of the older standard of IRQ4.

In contrast to ISA, the PCI bus was designed with autoconfiguration in
mind. Each PCI slot (up to four per bus) has a unique input line, IDSEL
(initialization device select), which allows the system software to uniquely
access the card’s 256-byte configuration space. This is a special address space,
separate from the conventional I/O and memory spaces on the PCI bus. The
configuration space approach is much cleaner and does not require special
procedures to isolate add-in cards from each other or the bus. In a PCI-only
computer, all expansion boards can be automatically configured.

6.9 Interfacing to the PCI Bus 121

There is also a Plug and Play specification for parallel ports that are
IEEE 1284 compliant (see Chapter 8). If a printer, or other device, supports
Plug and Play, the PC can detect it and install the appropriate software driver,
simplifying setup of the peripheral.

6.9 Interfacing to the PCI Bus

As we saw in Chapter 5, the PCI bus is several times faster and much more
complex than the ISA bus. It would be very difficult to implement even the
simplest subset of PCI bus controls using standard TTL-style logic ICs (such
as the 7400 series). It would be better to use a large CPLD (complex pro-
grammable logic device) to incorporate PCI logic into a custom design.

The simplest way to interface old or new hardware to the PCI bus is
through a commercially available controller chip such as those available from
AMCC or PLX Technology. ICs such as the PLX PCI9050 or the AMCC
$5920 convert PCI signals with their complex protocol into a simple, local
bus. This local bus can then interface directly to custom hardware with 8-,
16-, or 32-bit data (for digital I/O ports, ADCs, DACs, etc.) or get converted
to ISA bus signals with 8- or 16-bit data, using additional logic.

To quickly convert a simple ISA board to the PCI bus, these chip
families have development kits. The kits typically contain a board designed
around the conversion chip that has a piggy-back connector for an ISA card.
The development kit board plugs into the PCI bus and provides the bus
conversion features needed by the ISA card. Since the development kit takes
care of most of the hardware issues, the remaining design work is just software
conversion, using the tools provided by the kit.

Typically, these conversion chips act only as PCI slaves, without bus
mastering capabilities. So they would not be suitable for converting an ISA
card that uses DMA. However, more complex chips are available from these
manufacturers that support full PCI bus master capabilities.

Figure 6-8 shows a simplified block diagram of an ISA-to-PCI slave
interface using the PLX PCI9052 chip. This IC has a built-in ISA interface,
so additional logic is not needed. The PCI9052 can also interface non-ISA
resources, such as memory and I/O devices, to the PCI bus using its local
bus. A serial EEPROM (electrically erasable PROM) is used to store config-
uration information for the PCI9052.

Many new PCI-based interface cards use CPLD and FPGA (field pro-
grammable gate array) logic devices for custom designs. CPLD and FPGA
manufacturers, such as Altera, Cypress, Lucent, and Xilinx, offer PCI inter-
face designs that easily incorporate into their chips. The designer simply

122 CHAPTER 6 Interfacing Hardware to a PC Bus

« » Memory
PCI L _ PCI Local Bus
BUS Interface Interface < » 1/O Devices
PLX PCI 9052
ISABus |, R
Interface ¢ » ISACARD

Figure 6-8 Interfacing an ISA card to the PCI bus.

connects the supplied PCI core to the chip’s custom logic. This is usually
accomplished using a high-level hardware design language, such as VHDL
or Verilog. This approach frees the designer from reinventing PCI interface
logic while providing greater flexibility than a fixed interface chip allows. It
also lowers costs by placing both the PCI interface and board control logic
in the same programmable chip.

In the next chapter, we will examine software techniques for interfacing
to PCs. The topics covered will include how the PC’s software system works
and how to produce software to support peripheral hardware, especially for
data acquisition applications.

CHAPTER

Interfacing Software
to the PC

Using the correct techniques for interfacing software to a PC is as important
as implementing the proper hardware interface. In this chapter we will start
with an overview of the PC/XT/AT DOS-based software structure and proceed
to using this arrangement. Then we will explore the Windows environment
as well as UNIX.

7.1 DOS-Based PC Software Layers

Four general layers of software are present on a DOS-based PC, as shown in
Figure 7-1. The lowest is the hardware level, where the software directly
accesses the hardware. For example, if the addressed hardware was a display
adapter, writing to a specific address in its video buffer (to display a character)
would be directly accessing the hardware. At this level, the actual computer
circuitry (IO and memory addresses) determines the software instructions
needed.

The next layer is the basic input—output system, or BIOS. This is
software, often referred to as firmware, residing in read-only memory (ROM)
on the motherboard. The system ROM includes code to test the computer
system and bootstrap (or boot) it, to begin normal DOS or other operating
system execution. The BIOS routines in ROM act as an interface between
higher level software and the actual hardware. They implement the details
needed to operate various standard hardware peripherals (such as video displays
or disk drives) and begin to provide some hardware independence. When a
program uses a BIOS function, it does not need to know hardware-level details,

123

124 CHAPTER 7 Interfacing Software to the PC

APPLICATION
PROGRAMS

DOS

BIOS

HARDWARE
REGISTERS

Figure 7-1 PC (MS-DOS) software layers.

such as the address of the status register on a disk drive controller card. It
only needs to request the BIOS function it wants completed, such as to read
data from a particular sector on a specified disk.

This hardware independence has important advantages. If different com-
puters use different hardware components to carry out the same functions,
this approach eliminates the need to rewrite a program for each machine, as
long as the BIOS commands are the same. A hardware change in the same
machine does not require a software change, as long as the BIOS supports
the new hardware or is upgraded with it.

The only disadvantages with this approach are slower program execu-
tion and somewhat limited functionality. Since more instructions must be
executed to produce a function from a BIOS call, compared to directly address-
ing hardware, a slower response is produced. Of course, the speed of newer
PCs makes this less of an issue and for many functions a slower response
is not important (such as the PC response when a user hits a key). When
fast execution is required, such as in real-time control or data acquisition,
direct hardware addressing may be necessary. If the BIOS functions do not
support all the features of a particular hardware device, again direct hard-
ware access may be required. Often, system software is loaded to supple-
ment the BIOS and use the same software interface to call it, as described
later.

The next layer of system software is the disk operating system, or DOS.
This software is loaded into the PC’s memory from a disk drive, by a bootstrap

7.2 Software Interrupts 125

program in ROM. It operates at a higher level than the BIOS, even further
removed from the hardware layer. Among other things, it implements the file
and directory structure for disk drives. It advances the concept of hardware
independence to device independence. For example, when a calling program
requests data from a file, under DOS it does not need to know what type of
physical drive contains the data. DOS keeps track of that information and
retrieves the requested data by appropriate calls to BIOS functions. The
program just uses a logical drive identification (such as A: or C:).

This device independence extends to the type of device, using the DOS
feature of redirection, when it redirects data from one device to another. For
example, the DOS TYPE command usually displays the contents of a text
file on a video display (for example: TYPE MYDATA.TXT). DOS can redi-
rect this data to a printer, with the command: TYPE MYDATA.TXT > PRN:
(which sends this data to the system’s default printer). A program calling
DOS to perform these functions does not need to know about the differences
between the two output devices (video display and printer) or even that very
different BIOS calls are used to perform this function. DOS takes care of all
these details.

The final, highest layer of PC software is the application program. This
is the software that performs the useful functions we need a computer for in
the first place, such as mathematical calculations, word processing, data
acquisition, and graphical display. To perform these high-level activities, the
application program calls various functions at the DOS, BIOS, and hardware
levels. As before, for the highest degree of portability, maintainability, and
hardware support, software interfacing should be at the highest level possible,
preferably DOS, or BIOS if necessary. However, calling system functions
through DOS is also the slowest route. As with BIOS calls, trade-offs are
sometimes necessary. When running DOS on a fast, relatively new PC (Pentium-
based) the slower speed of DOS function calls is minimal.

7.2 Software Interrupts

|
The mechanism for calling BIOS and DOS functions uses software interrupts.
This provides a means of software independence for the called functions. A
software interrupt works like a hardware-generated interrupt. It causes pro-
gram execution to jump to a new location, specified by the interrupt number
or level. There are 256 possible interrupt levels in 80x86-based PCs. Some
are used by hardware interrupts, some by BIOS, and some by DOS. Table 7-1
lists the interrupt usage in a PC/XT system. To generate a software interrupt,
the Assembler instruction INT, followed by the level (0-255), is executed.

126 CHAPTER 7 Interfacing Software to the PC

TABLE 7-1
Interrupt Usage in MS-DOS PCs

INTERRUPT #] CLASSIFICATION FUNCTION
0-7 BIOS/DOS CPU Interrupts
8—F BIOS 8259 H/W Interrupts
10-1C BIOS BIOS Function Calis
1D-1F Data Video/Disk Table Pointers
20-3F, 5C, 67 DOS DOS Function Calls
80-FO0 BASIC BASIC Functions

This specifies which interrupt vector to use. An interrupt vector is a 4-byte
address in low memory, 0-3FFh, which contains the location of the interrupt
service routine. This is the address the program jumps to when the interrupt
is called, which contains the code to handle the interrupt request.

The beauty of this system is that the software calling the interrupt routine,
such as a BIOS function call, does not have to know exactly where in memory
the interrupt service routine is located. This is the software independence
alluded to above. If the BIOS code is upgraded at some future point, the
absolute location of the interrupt service routine may change, but the soft-
ware calling it does not have to change, since the interrupt vectors will also
be upgraded.

7.2.1 BIOS Interrupts

Using a previous example, the BIOS routine interfacing with the video display
works through INT 10h. To display an alphanumeric character on the current
video screen, the character byte is loaded into CPU register AL (the low byte
of the accumulator) and 14h is loaded into AH (the accumulator’s high byte),
which specifies the video command (display a character). Then an INT 10h
instruction is executed. Written in Assembler, the code to display the character
“9” would be

MOV AL, 39H
MOV AH, 14H
INT 10H

Note that 39H is the ASCII code for the character “9.”

As shown in this example, BIOS functions use some of the CPU’s reg-
isters for sending data to and receiving data from the function called. Some-
times, the carry flag is returned to specify a particular condition. When one

7.2 Software Interrupts 127

TABLE 7-2
Standard MS-D0S PC BIOS Functions

INTERRUPT # PURPOSE
10h Video Display Functions (0—13h)
11h Equipment Check
12h Memory Size Check
13h Floppy Disk Functions (0—18h)
14h Communications Functions (0-5h)
15h Cassette and Misc System Functions (0—-C4h)
16h Keyboard Functions (0-12h)
17h Printer Functions (0—2h)
18h Execute IBM BASIC from ROM (IBM-PC, Only)
19h Re—Boot System
1Ah System Timer/Clock Functions (0—7h)
1Bh Keyboard CTRL-BREAK interrupt Handler
1Ch System Timer Tick (18 Hz) Interrupt Handler

interrupt is used for several different functions (as Int 10h, 13h, 14h, 15h, 16h,
17h, and 1Ah), register AH is loaded with the function number. Table 7-2 is a
summary of most of the BIOS functions available on PC/XT/AT systems.

7.22 DOS interrupts

DOS functions are called by software interrupts similar to BIOS functions.
Most DOS functions are called via INT 21h. DOS reserves the use of INT
20h-3Fh, although only INT 20h-27h are used for most common functions.
Again, the function number is selected by the value placed in register AH.
Some DOS INT 21h functions also have a subfunction, selected by the value
in register AL.

As an example of using a DOS function, we will once again write a
character to the video display, using INT 21h, Function 2. Here, register AH
contains the function number (2) and register DL contains the character to
be displayed. If we use Microsoft C instead of Assembler in this case, we
can write a general-purpose subroutine for video display called disp_ch():

#include <dos.h> /* standard definition files */
#include <stdio.h>
#define FUNCT 2 /* function number 2 */

128 CHAPTER 7 Interfacing Software to the PC

disp_ch(ch) /* subroutine name */

char ch; /* character argument */

{ /* start of subroutine */
union REGS regs; /* sets up register use */
regs.h.ah = FUNCT; /* AH = 2 */
regs.h.dl = ch; /* DL = character to display */
intdos (®s, ®s) ; /* call INT 21h */

A calling program, to display the character “9” would be:

main()

{ /* start of program */
char c;
c = 0x39; /* ASCII value for 9 */
disp_ch(c); /* call subroutine */

Even though more coding (along with more software overhead) is required
to implement this DOS function in C, compared to Assembler, this approach
is usually preferable. C is a high-level language with good functionality and
ease-of-use. It is much easier to maintain a program in C than in Assembler
and the penalty of larger, slower programs is not as severe as with some other
high-level programming languages. We will discuss the various trade-offs
between different programming languages later in Chapter 13.

7.3 Polled versus Interrupt-Driven Software
I
In Chapter 6 we looked at the trade-offs between accessing a peripheral device
via polled software versus interrupt-driven software. If a peripheral device
needs to be serviced relatively infrequently (for example, using only 10% of
the available CPU time) and asynchronously (so the program cannot predict
when the next service will be required), interrupt-driven software is in order.
On the other hand, if interrupt servicing takes up too much CPU time (some-
times referred to as CPU bandwidth) for very frequent servicing, polled
software would be preferable. In this case, there would be little CPU band-
width left over for other processing anyway. One other general case is when
the peripheral servicing is synchronous, as when the value of an ADC is read
at preset time intervals and requires a small amount of CPU bandwidth. Again,
interrupt-driven software is the best solution. If the peripheral (ADC) does
not provide a hardware interrupt, the PC’s timer could.
The following program listing, written in Microsoft Macro Assembler,
shows the basic concepts for installing and using interrupt-driven software.
It can be used with the data acquisition circuit from Chapter 6 (Figure 6-6),

7.3 Polled versus Interrupt-Driven Software 129

set to generate an IRQ7 hardware interrupt whenever a new ADC reading is
ready. It is assumed that the 8259 interrupt controller already enables IRQ7
interrupts and that the system interrupt flag is set to enable the maskable
interrupt input from the 8259. Otherwise, these functions must be taken care
of in LOADVEC, the routine that prepares the system for the interrupt and
loads the interrupt service routine INT7SVC, as

;*** MACRO ASSEMBLER PROGRAM TO READ ADC VALUE VIA IRQ7 ***

;* DATA INITIALIZATION *

DSEG1 SEGMENT AT O
ORG 3CH
IRQ7 LABEL WORD
DSEGL ENDS
DSEG2 SEGMENT
PUBLIC DVALUES, DINDEX
DVALUES DB 256 DUP (?)
DINDEX DwW 0
DSEG2 ENDS
CSEG SEGMENT
ASSUME

;interrupt vector table starts at
;addr 0

;start of vector for IRQ7

;Now we can access the vector for
; IRQ7

;via the label IRQ7.

;Data storage segment

;Allows other programs access
;to these variables.

;ADC data storage table

; {uninitialized)

;Index into table (initialized to
; Zzero)

;Code segment, for programs

CS:CSEG, DS:DSEG2

;* ROUTINE TO INITIALIZE IRQ 7 & LOAD SERVICE ROUTINE INTO MEMORY

LOADVEC: MOV AX, 0

MOV ES,AX

MOV ES:IRQ7,0FFSET INT7SVC
MOV ES:IRQ7+2,SEG INT7SVC

MOV DX, 200

MOV AL, O
MOV AH, 31H
INT 21H

;* INTERRUPT SERVICE ROUTINE

ADC EQU 300H
INT7SVC: PUSH AX
PUSH DS

PUSH BX

;Point to memory segment 0

; for interrupt

;vector table.

;Set address of IRQ 7
;service routine.

;DX contains amount of memory
;Lo save

;for keeping service routine

; INT7SVC

;loaded in memory.

;Get ready for DOS function 31h
;Return to DOS, leaving

; INT7SVC resident

;in memory.

;Address of ADC port
;data)
;Save all working registers

(to read

130 CHAPTER 7 Interfacing Software to the PC

PUSH CX

PUSH SI

MOV AX, DSEG2 ;Point to data storage segment
MOV DS, AX

IN AL,ADC ;Read data from ADC

MOV SI,DVALUES
MOV [SI+DINDEX],AL ;Store data in table

INC DINDEX ;Point to next location in table

CMP DINDEX, 257 ;Past end of table?

JNZ CONTIN ;No

DEC DINDEX ;Yes, stay at end of data table
CONTIN: MOV AL, 20H ;8end EOI command to 8259

ouUT 20H,AL

POP SI ;Restore working registers before

POP CX ;returning.

POP BX

POP DS

POP AX

IRET ;Return from interrupt
CSEG ENDS

END LOADVEC ;Start execution at routine

; LOADVEC

;* END OF PROGRAM

Since IRQ7 is interrupt type OFh, its vector is located at memory
address OFh x 4 = 3Ch in segment zero (physical address 0000:003Ch).
When the program is run by DOS, it starts execution at routine LOADVEC.
This short program loads the address of the interrupt service routine,
INT7SVC, into the vector location for IRQ7 (3Ch-3Fh). Then it allocates
enough space for INT7SVC and its data and returns to DOS, leaving
INT7SVC resident in memory. This type of software is called terminate-
and-stay-resident, or TSR. It is useful here, allowing the servicing of the
IRQ7 interrupt independent of other software. The DOS call to INT 21h
Function 31h is used to load TSR programs. The value in DX is the amount
of memory to preserve for the resident program. AL contains the value
returned by the function, which is useful for error codes. AH contains the
function number.

Once INT7SVC is loaded into memory, whenever it is called it reads
the current value from the ADC and stores it in a data table, starting at location
DVALUES and indexed by DINDEX. Both DVALUES and DINDEX are
declared as public labels, so that other software can access them and retrieve
the data. A typical program making use of INT7SVC would check the value
in DINDEX, address the ADC, start a data conversion, and then go about
other business. When it was ready to retrieve the data, it would check that
DINDEX has incremented and then read the data out of the table, DVALUES.
When it was done, it would decrement DINDEX.

7.3 Polled versus Interrupt-Driven Software 131

Note that the above program is merely an illustrative example of the use
of interrupt-driven software for data acquisition. It is still fairly rough and
incomplete for practical use, lacking refinements. INT7SVC does show some
important aspects of interrupt service routines. They should be as fast as
possible, to avoid interfering with other system interrupts. That is why they
are usually written in Assembler (although short C programs are sometimes
used). The working system registers (AX, BX, CX, DS, SI) should be saved,
by PUSHing onto the stack at the routine’s start, and restored, by POPing, at
its end. Otherwise, any use of these registers by the interrupt service routine
will corrupt the interrupted program, on return. For hardware interrupt service,
the routine must send an EOI command to the 8259 interrupt controller.
Otherwise, new hardware interrupts will not be enabled. The service routine
should end with an IRET statement for a proper return from the interrupt.

An interrupt routine to service a software interrupt is somewhat simpler,
since the 8259 does not have to be serviced and hardware interrupts do not
need to be unmasked. In addition, there is little danger of monopolizing the
CPU’s bandwidth (unless hardware interrupts are masked off). Software inter-
rupts are a convenient way to install and call software functions in memory.

To illustrate polled software used to retrieve an ADC value, the follow-
ing is a function written in Microsoft C:

#include <conio.h> /* needed for library function
inp() */

#define ADC_STATUS 0X301 /* Address of ADC status port */

#define ADC DATA 0x300 /* Address of ADC data port */

char read_adc() /* Name of function is

adc_read */

£

while (inp(ADC_STATUS)!=1); /* wait till ADC is done */

return (inp (ADC_DATA)) ; /* send ADC value back to
calling program */

} /* Done */

Note that this is a very short and simple subroutine. The main program
calls it whenever it has started an ADC conversion and wants to retrieve the
results. It assumes that I/O port 301h contains a value of 1 only when the
conversion is complete. This is the status required by a polling routine such
as read_adc().

In this simple example, there is no provision for the error condition when
something goes wrong and the ADC status port never returns a 1, as when
there is a hardware failure or a software bug calling read_adc() at the wrong
time. A more practical program would have a time-out provision in the
while(...) statement. Otherwise, the PC will remain stuck in that loop
indefinitely.

132 CHAPTER 7 Interfacing Software to the PC

7.4 Special DOS Programs

There are several special-purpose programs used by DOS. These include
device drivers and TSR programs.

7.4.1 Device Drivers

Previously, we have seen how useful interrupts are, both for calling existing
DOS and BIOS functions and for interfacing to additional software functions,
especially to support hardware such as data acquisition devices. Another special
type of software is the device driver. A device driver is a distinctive program
that is loaded into DOS (or any operating system) when the system boots up
and then acts as if it is part of the operating system. As such, it must adhere to
very strict guidelines. Device drivers are typically used to support special
hardware functions. For example, a hardware mouse will usually have a device
driver that allows it to work with common application software packages. Both
16- and 32-bit versions of Microsoft Windows rely even more heavily on device
drivers for interfacing to hardware, as we will see later in this chapter.

In DOS, device drivers are loaded into the system by including com-
mands in a text file called CONFIG.SYS in the root directory of the boot
disk. This file contains entries used to customize DOS, such as number of
buffers and number of files that can be open simultaneously. It also contains
entries in the form

DEVICE = filename

where filename is the name of a device driver, typically with a SYS extension.
So, to load a mouse driver (file MOUSE.SYS), CONFIG.SYS should contain
the line

DEVICE = MOUSE.SYS

When DOS boots up, it looks for CONFIG.SYS and, if it is found, it executes
the commands it contains and loads the device drivers listed in the file. It
should be noted that DOS device drivers must be written in Assembler for
the proper control of program and data layout. They are normally only written
by experienced DOS programmers.

7.4.2 TSR Programs

When DOS software support is required for special hardware, often writing a
terminate-and-stay-resident (TSR) program is an appropriate choice, especially
if it is not for commercial product support. It is much easier than producing a
device driver and it can be written in a high-level language, such as C.

7.5 DOS 133

As we previously touched on, a TSR program is interrupt-driven soft-
ware. It is loaded into a PC’s memory and can interface with other programs
or with DOS itself. It continues to function until the system is turned off and
RAM contents are lost (unless it is explicitly removed from memory). All
TSR programs are activated by interrupts, either hardware or software. Some
use software interrupt levels not reserved by DOS or BIOS, to allow an
application program to access the TSR functions.

It is common for TSR programs to attach themselves to interrupts
already in use. For example, many utility TSR functions are activated when
a special combination of keys is pressed (a hot key). To do this, the TSR
program attaches itself to the keyboard interrupt 09h. This interrupt occurs
whenever any key combination is pressed. If the TSR program’s hot key is
pressed, it can take over and perform its function. If not, it passes control on
to the original interrupt service routine. This is also an example of how
interrupt routines can be chained, with more than one service routine using
the same interrupt level. In a similar fashion, some TSR programs that must
perform a task periodically use the system timer interrupt.

7.5 DOS

As the primary hardware focus of this book has been on IBM PC/XT/AT
systems and compatibles, the software focus has been on Microsoft/IBM DOS
as the operating system for older PCs. DOS was by far the most popular
software environment used by pre-80386-based PCs, but not the only one. It
is still widely used in embedded PCs (see Chapter 12). DOS is a single-user,
single-task operating system, meaning it can only do one thing (execute one
program) at a time. For simple PC applications, including some data acqui-
sition and control, this is adequate. For cases where mainframe-style func-
tioning is needed (such as multiuser support) a more sophisticated operating
system could be used. Similarly, special operating systems are used for
operating a local area network (LAN) connecting multiple PCs together.
DOS grew considerably after its initial release in 1981. Version 1.0, for
the original IBM PC, only supported single-sided 5-1/4" floppy disks.
Version 1.1 supported double-sided 5-1/4" floppy disks. Version 2.0 was
released with the IBM PC/XT and added support for a hard disk drive. Version
2.1 added support for IBM’s Portable PC and its ill-fated PCjr. Version 3.0
was released for the IBM PC/AT and supported high-density (1.2 Mbyte) 5-1/4"
floppy disks. Version 3.1 added networking support. Version 3.2 added support
for 3-1/2" floppy disks. Version 3.3 included support for the IBM PS/2 systems.
Version 4.01 added expanded memory support and an optional, menu-based

134 CHAPTER 7 Interfacing Software to the PC

interface shell, enhancing its standard command-line interface. In addition,
it allowed larger disk drives (up to 512 Mbytes) to be used as a single logical
device. DOS versions below 4.0 required a hard disk greater than 32 Mbytes
to be partitioned into multiple logical drives. Version 5.0 increased the max-
imum hard disk partition to over 2 Gbytes, added the ability to load DOS
into high memory (between 640K and 1M) and included new utilities such
as DOSKEY (to recall previous commands) and UNDELETE (to recover an
accidentally erased file).

The last version of MS-DOS was 6.22. It contained additional utilities
such as MEMMAKER (a memory-optimization program) and SCANDISK
(a disk drive maintenance program). It even had integrated disk compression
support (via DriveSpace), which was useful for older, smaller hard drives.

The primary advantage for using DOS was that it was supported by a
vast array of commercial software products. Plus, it was a simple, real-time
operating system that allowed you to directly control hardware. In addition,
it was relatively inexpensive. Its primary disadvantage, besides being a single-
task environment, was its memory limitation. A DOS application could only
directly access up to 640 Kbytes of system RAM, regardless of the hardware
capabilities of the PC. This stemmed from the original PC’s 8088 CPU with
1 Mbyte of available physical addressing space and 384 Kbytes reserved for
memory on peripheral devices (such as video display and disk controller
cards). As an additional limitation, DOS allocated some memory for its own
uses, typically leaving well under 600 Kbytes available for use by an appli-
cation program. If a PC had drivers loaded for network support, there may
have been less than 500 Kbytes available for applications. In general, each
successive version of DOS monopolized more memory for itself.

When an 80286 or higher CPU (80386, 80486, Pentium) runs DOS,
with its 1 Mbyte addressing limit, it is working in the processor’s real mode,
which is fully compatible with the old 8088. To access physical memory
above 1 Mbyte, the CPU must use its protected mode, which is not supported
by DOS. Windows running on an 80386 or above PC does fully support
protected mode and an extremely large address space, as we will see later.

For many applications, the 640-Kbyte limit of DOS is not a problem.
For data acquisition applications, however, this can be a severe limitation,
especially when a huge amount of data is being acquired and analyzed. For
example, let us assume a system was acquiring 16-bit data at a rate of 50,000
samples/second, running a program under DOS. Also assume it had 512
Kbytes of memory available as data storage (the rest of the DOS range was
needed for the program code). It would take just 5.12 seconds of data to fill
up this memory buffer. Obviously, if more data acquisition was required for
each test, the data would have to be stored in a disk file as quickly as possible,
before the memory buffer filled completely. If this data was being analyzed,

7.6 Overcoming DOS Memory Limitations 135

the application program would have to keep reading in new data from the
disk file if more than 5.12 seconds was stored. There are several ways to get
around the memory limitations of DOS. The best option is to use a protected-
mode operating system such as Microsoft Windows or Linux.

7.6 Overcoming DOS Memory Limitations

There are several techniques available to extend the memory limitations of
DOS. These approaches are useful when working with older or embedded
PCs that would not be suitable for running a protected-mode operating system
such as Linux or Windows.

7.6.1 Overlays

When writing your own program, a simple technique to reduce the amount
of memory required for execution is to use overlays. An overlay is a section
of program code that is loaded into memory only when needed, and other-
wise resides in a disk file. As illustrated graphically in Figure 7-2, an
executable program residing in memory can consist of several code sections.
These code sections, containing the program’s instructions, can be subdi-
vided into a program core, which is always resident, and one or more overlay
sections. An overlay section contains code that can be swapped out and
replaced by other code as the program executes. This swapping is controlled
by the program core, which would contain all the functions and variables
required by the various overlay. It is important for the individual overlay code

TOVERLAY
OVERLAY OVE';LAY
TOTAL o}
MEMORY AREA .
USED | .
FOR .
PROGRAM
CODE PROGRAM | OVEELAY
L CORE

Figure 7-2 Example of program overlays.

136 CHAPTER 7 Interfacing Software to the PC

sections to operate independently of each other, though not of the program
core.

In the example of Figure 7-2, one overlay swap area is shared by three
overlay sections. The overlay swap area must be as large as the biggest overlay
that uses it. In this case, if the largest overlay is number 3, the memory saved
by this technique (presumably for data storage) is the sum of the memory
required for overlays 1 and 2. Of course, there are limitations on the amount
of memory savings produced by using overlays and a program’s structure
must be very carefully worked out to use them. One major drawback to using
overlays is slow program execution. Every time an overlay is swapped into
memory (from a disk drive) the program must wait. The more overlays a
program uses, the more swapping will occur during execution and the slower
the overall program will run.

7.6.2 Expanded Memory

One popular and well-supported technique for stretching the 640-Kbyte mem-
ory limit of DOS was called expanded memory, which should not be confused
with an AT’s extended memory (beginning at an address of 1 Mbyte). Expanded
memory was a standard developed by Lotus, Intel, and Microsoft, referred to
as the LIM standard, which provided access to up to 8 Mbytes of extra memory,
even on a PC/XT system. Expanded memory worked within the 1-Mbyte DOS
addressing range. It was a memory page swapping technique. As shown in
Figure 7-3, an unused block of memory up to 64 Kbytes long, between 640K
and 1M, was set aside as a page frame. This area could contain up to four
pages of memory, each 16 Kbytes long. Special hardware (either a separate
peripheral card or part of the system’s motherboard) contained the physical
memory storage: up to 8 Mbytes of pages, 16 Kbytes long. At any time, up
to four pages of physical memory could be mapped into the 64-Kbyte page
frame, where they were addressable by DOS and the rest of the system.

To make use of expanded memory hardware, a device driver had to be
installed into the system’s CONFIG.SYS file. This DOS driver was usually
called EMM.SYS (for expanded memory manager) and it operated through
INT 67h. This driver controlled the memory page mapping and allocation
functions. Many DOS applications supported expanded memory when it was
present in a system.

It should be noted that expanded memory was normally used just for
data storage since you could not execute code from it or even from the page
frame space (above 640 Kbytes). LIM version 4.0 did add support for
enhanced expanded memory which could swap an entire program into and
out of expanded memory, and it supported a multitasking environment.

7.7 Protected-Mode Operating Systems 137

M
Page n
64K Page a Page n-1
P Page b
age Page ¢ \
Frame Page d
640K
Page 1
Page 0
Physical Expanded Memory
0
DOS Memory Address Range

Figure 7-3 Mapping of expanded memory page frames.

Since the memory page mapping of expanded memory was controlled
by dedicated hardware it was relatively fast, though not as fast as directly
addressing memory in an AT system’s protected mode (as long as there is no
context switching between protected mode and real mode, which is fairly
slow). Expanded memory was extremely useful for DOS data acquisition
applications that required large amounts (megabytes) of data storage in RAM,
at data transfer rates that could outrun disk drive speeds.

7.7 Protected-Mode Operating Systems

To make full use of AT systems which can physically address more than 640
Kbytes of system memory (using 80286, 80386, 80486, or Pentium CPUs),
special software or another operating system is needed to operate in the
processor’s protected mode. One such early operating system from IBM and
Microsoft was OS/2. It allowed a system to run large application programs

138 CHAPTER 7 Interfacing Software to the PC

using more than 640 Kbytes of RAM for code and data. It enabled the use of
an AT system’s extended memory, which starts at address 100000h or
10000:0000h (which is 1 Mbyte). Of course, an application had to be compatible
with OS/2 to make use of all the available extended memory. OS/2 never became
very popular, in part because it did not support DOS programs well.

7.7.1 Microsoft Windows

Microsoft’s Windows, in its many variants, is now the most popular operating
system for newer PCs (running 80386 or above CPUs). It is an operating
system that supports large applications and makes full use of a system’s
physical memory. As a multitasking system, MS Windows allows more than
one program to reside in memory and operate at any given time. Each program
has its own window on the display screen. In addition, data can be easily
transferred from one program or window to another, facilitating complex
tasks using multiple applications (such as incorporating the results of a spread-
sheet calculation into a word processing document). Windows is built around
a graphics-based user interface, analogous to Apple’s Macintosh operating
system. To take advantage of all these features, an application must be spe-
cifically written to be compatible with Windows (although DOS applications
will run under most versions of Windows).

Microsoft Windows actually encompasses several different operating
systems. The original MS Windows, which eventually evolved into the pop-
ular Windows 3.1, was a 16-bit operating system that ran on top of DOS (you
booted the PC into DOS and then started running Windows). It used real
mode (16-bit) DOS for file services while running Windows applications in
protected mode (32-bit). Software in protected mode had access to all the
extended memory installed in the PC. Windows acted as a memory manager,
allocating memory to multiple applications while keeping them isolated from
each other (in their separate screen windows). This allowed multitasking and
simplified data sharing.

Windows 3.1 could also run multiple DOS applications in separate
windows. Each DOS program appeared to have a virtual PC at its disposal
with 1 Mbyte of memory available. The hybrid real mode—protected mode
environment of Windows 3.1 was somewhat clumsy and not always reliable.
Still, a plethora of application software was written for Windows 3.1. This is
sometimes referred to as 16-bit Windows software.

Windows 3.1 used text files with an INI suffix, including SYSTEM.INI
and WIN.INI, as a means of controlling the system’s configuration. These
configuration files were akin to CONFIG.SYS and AUTOEXEC.BAT used by
DOS. Newer versions of Windows (such as Windows 95 and later) continue to
support these INI files but rely on a registry for most configuration information.

7.7 Protected-Mode Operating Systems 139

Windows NT was Microsoft’s first full 32-bit operating system. It was
aimed primarily at high-end systems and network servers running only 32-bit
software and did not run DOS or 16-bit Windows software very efficiently.
NT did become popular among commercial users who liked its extended
network support, multiuser capabilities, and mainframe-style security features.
Newer versions of Windows NT (including Windows 2000) have become quite
suitable for stand-alone PCs and are extremely robust operating systems.

Windows 95 became Microsoft’s successor to Windows 3.1. It is a full
32-bit operating system that allows applications to access up to 2 Gbytes of
memory using a protected-mode 32-bit linear address space (as opposed to
the real-mode 16-bit memory model of segment:offset). This operating system
totally replaces DOS, offering new features such as long file names. Yet, it
can still run multiple DOS applications with better control and reliability than
under Windows 3.1. Windows 95 can also run 16-bit Windows programs.
Still, it always stays in protected mode even when running 16-bit, real-mode
software (including processing the INT 21h instruction for DOS function calls).

An application “talks” to Windows 95 by calling an application program
interface (API) function. The program requests system services using a named
function call instead of a numbered software interrupt, as used in MS-DOS.
A connection is made between a Windows application and the function it
calls at program load time by a process called dynamic linking. By contrast,
MS-DOS would simply load an application into real-mode memory and give
it full control of the PC, because it was single-tasking.

Another improvement in Windows 95 over Windows 3.1 is how it
handles multitasking. Windows 3.1 was a cooperative multitasking system
that relied on the application program to surrender the CPU periodically. If
software was poorly written or just “hung,” Windows could not do anything
about it and the system would easily crash, forcing a reboot.

Windows 95 is a preemptive system that alone decides when to switch
tasks, preventing a single application from monopolizing all the CPU time.
Not only does this make the operating system more robust, it provides a faster
response to high-priority, real-time events. This is especially important for
data acquisition and control applications. Windows 95 also uses a registry, a
special database, to keep track of system information, especially regarding
application software. The registry is updated whenever new software is
installed or removed.

Windows 95 is already considered obsolete. Its successors are Windows
98, Windows Me, and Windows XP. However, these newer operating systems
still use the same basic 32-bit core of Windows 95. They primarily include
more features such as improved Internet functionality, USB support, and a
32-bit file allocation table (see Chapter 9) which increases the maximum hard
drive size from 2 Gbytes to over 2000 Gbytes.

140 CHAPTER 7 Interfacing Software to the PC

Microsoft Windows NT has also continued to evolve. Windows NT 4.0
was succeeded by Windows 2000 (not to be confused with Windows Me).
Again, the newer versions of NT have additional features and improvements
such as support for multiple processors in a single PC. In general, the Win-
dows NT family is still a bit more robust than the Windows 95 family.

Nearly all software written for Windows 95/98/Me will run under Win-
dows NT/2000. Because of security features under Windows NT, you may
need administrator privileges to load some application software or to install
new hardware and device drivers.

7.7.2 UNIX and Linux

One other operating system we should note here is UNIX. This is a multitask-
ing, multiuser operating system developed for minicomputers by AT&T Bell
Laboratories. It has been ported to (adapted for use on) many different
computing platforms. It has been especially popular on workstations and high-
end PCs. Standard UNIX has a command-driven user interface, as DOS does.
In fact, UNIX inspired many of the redirection and piping features of DOS.
UNIX provides a large amount of power and flexibility, although some versions
are not very user-friendly, owing to its often terse and cryptic commands.
Microsoft even sold a 16-bit PC version of UNIX called Xenix.

A recently popularized UNIX-like operating system which runs on PCs
(and other platforms) is Linux. Linux is a free UNIX work-alike, independently
developed by a Finnish student, Linus Torvalds. Using the Internet he freely
distributed his code and collaborated with many other programmers to
develop the Linux kernel and its many add-on utilities. The kernel is the heart
of the operating system that interfaces to peripherals and schedules and runs
tasks, along with controlling the file system. The addition of several hundred
utility programs makes a full distribution of Linux equal or superior to
commercial PC operating systems. In addition, versions of Linux exist for
many different types of computers, not just Intel-based PCs.

Linux, like UNIX, is a multitasking, multiuser operating system with full
security features (as in Microsoft Windows NT). Later versions even support
multiple processors in a single PC. It has extensive networking support and
a growing list of free and commercial application software. Linux can even
run software written for other operating systems and CPUs through emulation
programs such as emu for MS-DOS, wine for MS Windows, and executor for
the Macintosh operating system.

Linux is an extremely robust multitasking system that does a good job
of isolating tasks from each other. An application program sends requests to
the kernel using system calls. These calls are very general-purpose and not
device-specific, which provides a great deal of flexibility.

7.7 Protected-Mode Operating Systems 141

An important part of Linux is the shell, which is a flexible command
interpreter that also acts as a powerful, high-level command language.
Complex tasks can be automated using simple shell programs or scripts. Linux
also supports graphical user interfaces (GUIs) such as the X Window System,
developed by MIT. This allows Linux users to work in an environment similar
to MS Windows.

You can download a version or distribution of Linux for free via the
Internet. A distribution contains code for the kernel, utilities, shells, GUIs,
and installation programs. Alternatively, you can buy, at a nominal price, a
prepackaged Linux distribution which includes manuals, technical support,
and often some commercial applications. Two popular commercial Linux
distributors are Red Hat and Caldera.

Linux is especially attractive if you want to do extensive software
development because it is usually distributed with compilers and other soft-
ware tools. Since the source code is also distributed with it, you can even
customize the operating system.

This completes our survey of PC software interfacing. In the next
chapter, we will explore common PC hardware interface standards including
GPIB, RS-232C, and USB.

CHAPTER

Standard Hardware
Interfaces

Previously we saw how a PC’s 1/O operates from its expansion bus. However,
not all external I/O goes directly through the expansion bus. Often a standard
hardware interface is used either by another computer or by an external
peripheral device. This is increasingly the case with newer PCs that contain
very few motherboard expansion slots and rely more on standard interface
ports. We will explore several of these parallel and serial computer interfaces.

8.1 Paraliel versus Serial Digital Interfaces

I
In general, digital computer interfaces to the outside world fall into two
categories: parallel and serial. The differentiation between the two is impor-
tant. For a digital interface n bits wide a parallel device uses n wires to
simultaneously transfer the data in one cycle, whereas a serial device uses
one wire to transfer the same data in n cycles. All things being equal (which
they rarely are), the parallel interface transfers data n times faster than the
serial interface.

Figure 8-1 shows an 8-bit wide interface between a PC and an external
device. For simplicity, let us assume the data is unidirectional. The parallel
interface in Figure 8-1a consists of eight data lines and one or more control
lines. Control lines are needed to tell the receiving side when data is available
(when the data lines are valid) and sometimes to acknowledge to the trans-
mitting side that the data was received (a handshake). If this was a bidirec-
tional interface, another control line indicating data direction would be

142

8.1 Parallel versus Serial Digital Interfaces 143

Do
D1
D2
D3
PC D4 Peripheral
D5
D6
o7__|
CONTROL

(a) 8-bit, Unidirectional Paralle! Interface

DATA

CONTROL |

PC Peripheral

(b) Unidirectional Serial Interface

Figure 8-1 Simple unidirectional digital interfaces: (a) parallel and (b) serial.

needed, along with a mechanism to prevent both sides from transmitting at
the same time.

The serial interface in Figure 8-1b consists of only one data line (if it
were bidirectional it probably would have two) and one or more control lines.
In this scheme the data is time multiplexed. Control lines are used to indicate
when the receiving end is ready to get the data along with other functions.
The digital value of the data line represents a different bit at a different time.
This requires a timing reference for the receiving end to decode the data
accurately. When an external timing reference is used, this becomes a syn-
chronous serial interface, with a control line carrying the required clock
signal. When a receiver’s internal timing reference is used, this becomes an
asynchronous serial interface. To synchronize the incoming data stream with
the internal clock, either a separate control line is used or, more commonly,
a special start bit with a predetermined value is transmitted first. Then the
data is sent, one bit per clock cycle, as shown in Figure 8-2.

Even though a parallel interface is inherently faster than an equivalent
serial interface, it has its own drawbacks. Many parallel interfaces uses
standard digital logic voltage levels, usually TTL compatible. This limits their
noise immunity, where a long length of cable acts as an antenna, producing

144 CHAPTER 8 Standard Hardware Interfaces

Data

BitNumber : 1 { 2131 4i5i6:{7:8:

Bitvalue : 1 1 91 1i1i0:0:01i1

Figure 8-2 Sample 8 bits of serial data.

errors in the received data. In noisy environments, shielded cables are often
required. In addition, long cables increase the capacitive coupling between
adjacent signal lines, producing cross-talk errors (a signal transition on one
signal line induces a voltage spike in another signal line). Dispersion further
distorts the signals as cable length increases. All in all, parallel interfaces
have severe cable length limitations, often on the order of just a few meters.
High-speed interfaces, both serial and parallel, tend to use differential signal
lines (where a pair of wires carry a single signal) to lower noise immunity.

In contrast, some serial interfaces use much wider voltage swings to
increase noise immunity (£12 V is not unusual for RS-232C) and with few
active signal wires, cross-talk noise is minimized. This enables serial inter-
faces to connect equipment hundreds of meters apart. Additionally, because
fewer wires are required (and often shielding is not needed), serial interface
cables are substantially less expensive (per foot) than parallel interface cables.

We will now explore some of these standard digital interfaces. First we
will look at common parallel interfaces. Then, we will examine several serial
interfaces supported on PCs. Later, we will look at some high-speed serial
interfaces developed for PCs, including FireWire (IEEE 1394) and USB, as
well as network interfaces such as Ethernet.

8.2 Parallel Interfaces

8.21 Centronics (Standard) Printer Interface

The standard parallel printer interface, sometimes called the Centronics inter-
face, is available on most PCs (except for some of the newest models) and
is supported by most printers. It is an 8-bit, unidirectional interface designed
to transmit data from a computer to a printer, using TTL signal levels. The
data usually sent is either ASCII codes, where each byte representing a
printable character or a command (such as a line feed), or graphics data,
consisting of command codes or data values (see Section 8.3.1 for a discussion
of ASCII codes).

8.2 Parallel interfaces 145

TABLE 8-1
Standard Parallel Printer Port Pin Assignments

PIN # SIGNAL NAME DIRECTION
1 -STROBE ouT
2 DATAQ ouT
3 DATA1 ouT
4 DATA2 ouT
5 DATA3 ouT
6 DATA4 ouT
7 DATAS5 ouT
8 DATA6 ouT
9 DATA7 ouT
10 —-ACK IN
11 BUSY IN
12 PE IN
13 SELECT IN
14 —AUTO FD XT ouT
15 -ERROR IN
16 —INIT ouT
17 -SELECT IN ouT
18-25 GROUND N/A

The standard IBM-style PC parallel printer port uses a 25-pin connector
(DB-25) with the pin designations shown in Table 8-1. A special cable is used
to connect this port to the 36-pin Centronics connector on most printers. The
signal directions shown in Table 8-1 are relative to the PC. Signals with names
starting with a “=” (such as —ACK) are active low. The eight data lines,
DATAO-DATA7, are unidirectional, sending data to the printer. The primary
control and handshake lines in this interface are BUSY, —ACK, and
—STROBE. BUSY goes low when the printer is ready to receive a new data
byte. When the PC detects the printer is ready, it puts out data on the lines
DATAO-DATA7 for a minimum of 500 nsec. Then it asserts the -STROBE
signal for a minimum of 500 nsec, which tells the printer to read the data.
The PC keeps the data lines valid for at least another 500 nsec.

In the meantime, the printer asserts BUSY and does its internal pro-
cessing. When ready, it simultaneously negates BUSY and asserts ~ACK. ~ACK
is typically asserted for 5 to 10 psec. The —ACK line is virtually a redundant

146 CHAPTER 8 Standard Hardware Interfaces

BUSY
— Valid
DATA 0-7 I—I
-STROBE U
-ACK
TIME (psec) |-
0 5 10 15 20

Figure 8-3 Parallel printer port interface timing.

signal and usually the BUSY line alone is an adequate handshake for the PC,
signaling data was received by the printer. The timing of this interface is
shown in Figure 8-3.

The other parallel port control lines are used for various status and
control functions. When —AUTO FEED XT is asserted by the PC, the printer
automatically performs a line feed after it receives a carriage return. When
the PC asserts —INIT for a minimum of 50 psec, the printer is reset to a
known state (usually equivalent to its initial power-on conditions). When the
PC asserts —-SELECT IN, it enables the printer to receive data.

When the printer asserts PE it indicates it is out of paper. When the
printer asserts SELECT it indicates it is enabled to receive data from the PC.
When the printer asserts -ERROR it indicates that it is in an error state and
cannot receive data.

A DOS-based PC can support up to three standard parallel printer ports
(depending on its BIOS) designated LPT1, LPT2, and LPT3. Each port uses
three consecutive I/O addresses. When a system boots up, DOS assigns the
physical printer ports present to the logical LPT designations. LPT1 is
assigned first, followed by LPT2, then LPT3. The starting addresses of parallel
printer ports, in the order assigned to LPT designations are 3BCh, 378h, and
278h. So, if all three ports are present in one system, port 3BCh becomes
LPT1, port 378h becomes LPT2, and port 278h becomes LPT3. If port 3BCh
is not present, port 378h becomes LPT1 and port 278h becomes LPT2. If
only one parallel printer port is present it is designated LPT1. In newer PCs

8.2 Parallel Interfaces 147

running Windows 95 or later, the operating system determines the parallel
port settings as well as the parallel port type (see Section 8.2.2).

The printer port’s starting address (3BCh, 378h, or 278h) is the data port,
which can be an input or output. Writing to this port address latches 8 bits of
data on the DATAQ-DATA7 lines sent to the printer. Reading from this port
address returns the last byte latched (the real-time status of the output).

The printer port’s next address (3BDh, 379h, or 279h) is the status port,
which is read-only. It returns to the PC the value of the five status lines coming
from the printer on the upper five bits of the port, as follows:

Bits 0—2 = unused

Bit 3 = -ERROR
Bit 4 = SELECT
Bit 5 =PE

Bit 6 = -ACK
Bit 7 = -BUSY

These lines can be polled for proper handshaking during a data output
sequence. In addition, when —ACK is asserted (active low) it can generate
IRQ7 (if enabled). This allows interrupt-driven software to handle printer
output as a background task, for printer spooling. The printer would interrupt
the PC, via its —ACK line, whenever it is ready to receive new data.

The printer port’s next address (3BEh, 37Ah, or 27Ah) is the control
port that can be an input or output. As an output, the PC latches the values
of its control lines on the lower five bits of the port, as follows:

Bit 0 = -STROBE (1 = asserted)

Bit 1 = ~AUTO FEED XT (1 = asserted)
Bit 2 = -INIT (0 = asserted)

Bit 3 = -SELECT IN (1 = asserted)

Bit 4 = IRQ EN (1 = asserted)

Bit 5-7 = unused

Note that most of the lines are inverted and asserted by a high bit except
for —INIT, whose output follows the control port bit. The signal IRQ EN
enables the port’s IRQ7 output when bit 4 is latched high. As with the data
port, a read from the control port will return the last value written to it.

The easiest way to use this parallel port to send data to a printer is with
existing BIOS, DOS, or Windows functions. Using the BIOS, INT 17h ser-
vices the printer ports. It can print a character (Function 0), initialize the
printer (Function 1), or read the printer status (Function 2). On printing a
character, the proper handshaking protocol is used, with a time out if there
is no response (if BUSY stays asserted indefinitely). The logical printer port

148 CHAPTER 8 Standard Hardware Interfaces

(LPT) designation is used to select the desired printer. The BIOS does not
support printer spooling, and special software must be used to support IRQ7
for printer output control.

A PC’s parallel printer port can be used for other purposes besides
printing, with certain limitations. It is ideal as a general-purpose output port
with its eight unidirectional data lines, four output control lines and five input
control lines. There was originally no standard software support for using it
this way, unless the standard printer interface handshake protocol (as in Figure
8-3) was adhered to. This required special software to directly address the
I/O ports used, supporting a custom protocol.

The parallel printer port can also be used as a general-purpose 5-bit
input port, using the five status lines (-ACK, BUSY, PE, SELECT, and
—ERROR). The real-time state of these lines can be read from the printer
port’s status register. In addition, the ~ACK line can be used to generate
IRQ7. The disadvantage here is having only 5 bits available for input and not
being able to latch the data. Some commercial software has used this
approach, called a nibble mode, to transfer 4 bits of data at a time. A common
application is connecting a laptop computer to a PC via a special cable.

8.2.2 Advanced Parallel Printer Ports

The original printer port’s limitations, of relatively low speed (only about
100 Kbytes/sec) and being primarily unidirectional, led to several improved
standards.

The PS/2 Bidirectional Parallel Port IBM originally addressed the standard
parallel port limitations in its PS/2 line of PCs. The parallel port on a PS/2
system has a fully bidirectional 8-bit data port, while keeping compatibility
with the earlier implementation, as previously described. On this bidirectional
parallel port (sometimes called a PS/2 parallel port), there is an extended
mode that enables controlling the direction of the data port. Control port bit
5 (previously unused) now determines whether the data port is an output (bit
5 =0) or an input (bit 5 = 1) port. The other control lines can now be used
for different handshaking operations.

The PS/2 parallel port could also operate at speeds up to about 250
Kbytes/sec. It was better suited for transferring data between two computers
than the standard (Centronics) parallel port was.

The Enhanced Parallel Port The Enhanced Parallel Port (EPP) was origi-
nally developed by Xircom Inc., Zenith Data Systems, and Intel Corp. as a

8.2 Parallel Interfaces 149

next-generation parallel port. It is a fully bidirectional port with a typical data
rate of about 800 Kbytes/sec and a peak rate of 2 Mbytes/sec.

The EPP uses a data register up to 32 bits wide (if it is running on a
32-bit processor) to speed up data transfers to the PC bus. The EPP uses
hardware to handie all the details of partitioning 32-bit data into 8-bit transfers
and controlling handshaking with the peripheral device (printer). Only one
/O port operation is required to write (or read) parallel port data. These
features, along with stringent timing control, allow EPP to operate as fast as
2 Mbytes/sec (500 nsec for a single transfer cycle).

The EPP’s pin assignments are shown in Table 8-2. EPP is backward
compatible with a standard parallel port (often designated SPP). There are
only six control lines used by EPP’s hardware handshaking protocol. A signal
name beginning with “n” indicates that it is active low. The nWRITE signal

TABLE 8-2
Enhanced Parallel Port (EPP) Pin Assignments

PIN # SIGNAL NAME DIRECTION
1 nWRITE ouT
2 ADO IN/OUT
3 AD1 INJOUT
4 AD2 INJOUT
5 AD3 INJOUT
6 AD4 IN/OUT
7 AD5 IN/JOUT
8 AD6 IN/JOUT
9 AD7 INJOUT
10 INTR IN
11 nWAIT IN
12 Spare (unused) IN
13 Spare (unused) IN
14 nDSTRB ouT
15 Spare (unused) IN
16 niNIT ouT
17 nASTRB ouT
18-25 GROUND N/A

150 CHAPTER 8 Standard Hardware Interfaces

indicates whether the current cycle is a write or read operation. The INTR
line is used by a peripheral to signal the PC that it needs service. The nWAIT
signal is part of the hardware handshake and is used by the peripheral to
signal that it has finished the transfer. The nDSTRB line indicates that there
is valid data on the ADO-AD?7 lines. The nINIT signal, when asserted, forces
the interface out of EPP mode and into SPP mode. The nASTRB line indicates
that there is a valid address on the ADO-AD7 lines.

EPP support four types of cycles: data write, data read, address write,
and address read. An address refers to a register on the peripheral (printer or
other device). Once an address is specified, data transfers, including bursts
or multiple bytes, can occur between the PC and the register.

Figure 8-4 shows a simple EPP data write cycle. The nWRITE line first
goes low to indicate a write cycle. Data is placed on the AD0O-7 lines and
nDSTRB is asserted (as long as nWAIT is low). The EPP waits for the
handshake from the peripheral when nWAIT goes high. Then, nDSTRB is
negated (high). When the peripheral is ready for another transfer, it sets
nWAIT low again. If nWAIT never goes high (because of a hardware failure)
the EPP times out after about 10 psec.

The EPP uses the original three SPP registers at the I/O address base
(3BEh, 37Ah, or 27Ah), base+1 and base+2. It additionally uses an EPP

nWRITE \ ’
nDSTRB \ ’

nWAIT ’ \
ADO-7 X DATA VALID X

Figure 8-4 EPP Data Write cycle.

8.2 Parallel Interfaces 151

address register at location base+3 (for address write/read cycles) and an EPP
data register starting at location base+4. This data register can be up to 32
bits long (four I/O addresses) on PCs that support 32-bit /O transfers. This
way, a single I/O write to the data register under software control can result
in four EPP byte writes to a peripheral, under hardware control. This mini-
mizes CPU overhead in servicing the parallel port.

The Extended Capabilities Port The extended capabilities port (ECP) was orig-
inally developed by Hewlett Packard and Microsoft as a means of extending
EPP functionality into a universal expansion bus. As such, ECP is backward
compatible with both SPP and EPP standards and has transfer rates compa-
rable to EPP. The ECP protocol allows a PC to negotiate with a peripheral
to determine which transfer mode and speed to use. A PC can query the
peripheral to check its capabilities.

ECP uses seven signals to control data transfers, with hardware hand-
shaking similar to EPP. It also uses separate data and command transfer cycles,
where one of the control lines acts as a data/command flag.

ECP has several hardware features to improve its performance. It
employs FIFO (first in, first out) memories to buffer data and reduce CPU
overhead. ECP supports both hardware interrupts (IRQs) and DMA transfers
to further minimize CPU involvement. Most notably, ECP supports data
compression using run length encoding (RLE) for compression ratios up to
64:1. RLE works well with data that has high bit redundancy, such as printer
and scanner data (see Chapter 9 for more information on data compression).

As with EPP, ECP support the three original SPP I/O registers at the
base address (3BEh, 37Ah, or 27Ah), base+1, and base+2. Unlike EPP, ECP
adds its new registers at address base+400h (data FIFO), base+401h (config-
uration register), and base+402h (extended control register). The pin assign-
ments for an ECP connector are shown in Table 8-3.

The IEEE 1284 Standard In 1994 the IEEE approved a parallel port standard:
IEEE 1284. This standard encompasses all the parallel ports we have previ-
ously discussed and classifies them by the transfer mode used. IEEE 1284
covers connectors (several different types) and their pin assignments, cables
and electrical operation of each interface.

Under IEEE 1284, the SPP used unidirectionally is operating in com-
patibility mode. When an unmodified SPP is used for limited bidirectional data
transfers it operates in nibble mode. A PS/2 bidirectional port uses byte mode
while an EPP operates in EPP mode and an ECP in ECP mode. When a parallel

152 CHAPTER 8 Standard Hardware Interfaces

TABLE 8-3
Extended Capabilities Port (ECP) Pin Assignments

PIN # § SIGNAL NAME DIRECTION
1 HostCLK ouT
2 DATAO INJOUT
3 DATA1 IN/OUT
4 DATA2 INJOUT
5 DATA3 IN/OUT
6 DATA4 IN/OUT
7 DATAS IN/OUT
8 DATA6 INJOUT
9 DATA7 INJOUT
10 PeriphCLK IN
11 PeriphAck IN
12 nAckReverse IN
13 XFlag IN
14 HostAck ouT
15 nPeriphReq IN
16 nReverseReq ouT
17 1284Active ouT
18-25 GROUND N/A

port is IEEE 1284 compliant, it supports EPP and ECP modes at data rates
up to 2 Mbytes/sec over cables as long as 10 meters.

The EPP and ECP are electrically defined by IEEE 1284 but their
operating protocols are determined by their independent standards. Still, IEEE
1284 has been an important means of standardizing the use of PC parallel
ports, especially for advanced data transfer applications with intelligent
peripherals.

8.2.3 The IEEE 488 (GPIB) Interface

Another common parallel interface, primarily used for data acquisition, is
IEEE 488 or GPIB (general-purpose interface bus). This interface is some-
times called the HPIB, as it was originally developed by Hewlett Packard to
connect computers to their programmable instruments. GPIB was designed
to connect multiple peripherals to a computer or other controlling device.

8.2 Parallel Interfaces 153

Even though it was intended for automated instrumentation applications, it
has been used to drive standard PC peripherals such as printers, plotters, and
disk drives. It transfers data asynchronously via eight parallel data lines and
several control and handshaking lines. All signals are at TTL voltage levels.

Instead of connecting one computer to one peripheral device, GPIB
allows one computer to control up to 15 separate devices. In many ways, GPIB
acts like a conventional computer bus or network. Each GPIB device has its
own bus address, so it can be uniquely accessed. It uses a hardware handshak-
ing protocol for communications, which supports slow devices. When com-
municating between fast devices, data rates up to 1 Mbyte/sec can be obtained.

The GPIB uses a master—slave protocol for data transfer. There can only
be one bus master, or controller, at any given time. Typically, the master
device is the controlling computer. A device on the bus has one of three
possible attributes: controller, talker, or listener. The controller manages the
bus, sending out commands that enable or disable the talkers and listeners
(usually, slave devices). Talkers place data on the bus, when commanded to.
Listeners accept data from the bus. A device can have multiple attributes, but
only one at any given time. The computer can be a controller, talker, and
listener; a read-only device, such as a plotter, will just be a listener; and a
write-only device, such as a digital voltmeter, can be both a talker (when it
reports a data reading) and a listener (when it is sent setup information, such
as a scale change).

The GPIB cable consists of 16 signal lines divided into three groups.
The first group of signals consists of the eight bidirectional data lines,
DIO1-DIOS. The second signal group consists of the three handshaking lines
used to control data transfer: DAV, NRFD, and NDAC. The third signal group
consists of five interface management lines that handle bus control and status
information: ATN, IFC, REN, SRQ, and EOIL

The GPIB cable itself consists of 24 conductors, shielded, with the extra
eight lines grounded. The cable is terminated with a special connector having
both a plug and a receptacle, so that all the devices on the bus can be daisy-
chained together in either a linear or star configuration. Typically, the cable
length between any two devices on the bus must be no more than 2 meters,
while the total cable length of the entire bus must be no more than 20 meters.
To exceed these limits, special bus extenders are needed. An additional lim-
itation is that at least two-thirds of the devices on the bus must be powered on.

The GPIB uses standard TTL logic levels with negative logic, so a
control line is asserted at logic 0. This is because open-collector (or open-
drain) drivers are normally used on the bus interfaces. Therefore, a signal is
pulled to a logic 1 level until a device asserts it and pulls it down to a logic
0 level (this is a standard OR-tied technique). Figure 8-5a shows a simple
GPIB linear configuration with four devices on the bus: a PC (controller),

154 CHAPTER 8 Standard Hardware Interfaces

CONTROLLER
(PC)
LISTENER TALKER LISTENER/TALKER
(PLOTTER) (METER) (DISK DRIVE)
(a)
DAV
+5v E Y -
LUSTENER | | TALKER | LISTENER/TALKER

(b)

Figure 8-5 General-purpose interface bus (GPIB): (a) Typical GPIB linear config-
uration; (b} Open collector logic of a GPIB signal line (DAV).

plotter (listener), meter (talker), and disk drive (listener and talker). Note that
there is a separate cable connecting each pair of devices in the daisy chain.
No special termination is needed for the last device.

Figure 8-5b shows schematically the electrical connection of a signal
line (DAYV in this example), with open-collector drivers drawn as a switch to
ground. Special line drivers specified for the GPIB are used on these interfaces
to ensure that when a device is not powered on it does not load down the
signal line (the switch to ground is open). Even with special drivers, there is
some leakage current to ground when a device is not powered on. That is
why a maximum number of devices are allowed to be powered off when the
GPIB is operational.

The pin designations for the standard GPIB connector is shown in Figure
8-6. As previously mentioned, the bidirectional data lines are signals
DIO1-DIOS8. The descriptions of the three handshake lines are as follows:

1. DAV (data valid) indicates when the data line values are valid and
can be read.
2. NRFD (not ready for data) indicates whether or not a device is ready

to accept a byte of data.
3. NDAC (not data accepted) indicates whether or not a device has
accepted a byte of data.

8.2 Parallel Interfaces 155

[~
DIO1 1 13 DIO5
DIO2 2 | 14 DIO6
DIO3 3 |15 DIO7
DIO4 4 16 DIO8
EOI 5 17 REN
DAV 6 18 GND
NRFD 7 119 GND
NDAC 8 | 20 GND
IFC 9 |21 GND
SRQ 10 | 22 GND
ATN 11 |23 GND
SHIELD 12 | 24 SIGNAL GROUND

Figure 8-6 GPIB connector and pin designations.

The descriptions of the five interface management lines are as follows:

1. ATN (attention) is asserted by the controller when it is sending a
command over the data lines. When a talker sends data over the data
lines, ATN is negated.

2. IFC (interface clear) is asserted by the controller to initialize the bus
when it wants to take control of it or recover from an error condition.
This is especially useful when there are multiple controllers on a bus.

3. REN (remote enable) is used by the controller to place a device in
the local or remote mode, which determines whether or not it will
respond to data sent to it.

4. SRQ (service request) is used by any device on the bus to get the
controller’s attention, requesting some action.

5. EOI (end or identify) is a dual-purpose line. It is used by a talker to
indicate the end of the data message it is sending. It is also used by
the controller requesting devices to respond to a parallel poll.

The sequence used to transfer data asynchronously on the bus, using
the handshaking signals, is shown in Figure 8-7. This sequence is between
an active talker (or the controller) and one or more active listeners. The speed
of the transfer is determined by the slowest device on the bus. Initially, all the
listeners indicate their readiness to accept data via the NRFD line. When a

156 CHAPTER 8 Standard Hardware Interfaces

NRFD

DAV 2usec—» |
DIO1-8 DATA VALID l

NDAC l

Figure 8-7 GPIB data transfer handshaking.

device is not ready, it pulls the NRFD line to a logic level 0, via its open
collector output. As long as one active listener is not ready, NRFD is held
low. Only when all active listeners are ready to receive data can NRFD go
high (to logic level 1).

When the active talker (or controller) sees NRFD is high, it places its
data byte on the bus (lines DIO1-8) and waits 2 usec for the data bus to
settle. Then it asserts DAV (to logic level 0), telling the active listeners to
read the data. The listeners then pull NRFD low again, in response to the DAV,

The active listeners have all been holding NDAC active low. After DAV
is asserted, as each active listener accepts the data on the bus it releases
NDAC. When the last (slowest) listener releases NDAC, the signal goes high.
The active talker (or controller) sees NDAC go high, negates DAV (goes
high), and no longer drives the DIO lines.

Finally, the listeners recognize the negating of DAV and pull NDAC
back low again, completing the transfer cycle. Now the handshake signals
are ready for another data transfer to begin.

An important point is that this data transfer cycle is occurring between
an active talker and one or more active listeners. Once the bus has been
configured with talkers and listeners activated, the controller does not have
to be involved in the transfer (unless it is operating as a talker or listener).
For example, a disk drive on the GPIB could send data to a printer on the
bus without a computer’s involvement, once the process was set up.

Two types of data are sent over the DIO lines: control data and message
data. When the data flows from a talker to selected listeners, it is a message,
which is machine-dependent data. This message data can either be an instruc-
tion for a device (e.g., change the output voltage on an programmable power
supply) or data to/from a device (e.g., a voltage reading from a DMM). When
a controller uses the data lines, it is sending control data (a command) to all

8.2 Parallel Interfaces 157

the devices (both talkers and listeners) on the bus. The controller asserts the
interface management line ATN to signal that this is a control data transfer
(normally, it is negated for message data transfers). When ATN is asserted,
any active talker releases the DAV line. The control data is sent by the
controller using the same handshaking protocol described above. The major
difference is that all devices on the bus receive this data, whether listener or
talker and regardless of their active/inactive status.

The control data handles many aspects of the bus operation. It can
configure devices as active listeners or talkers or it can trigger a device to
perform its specific function. Each device on the bus has a unique 5-bit address
(0-30). The controller can specify a device’s address, enabling it as an active
listener, for example, during a control data transfer cycle. Since control data
commands are used for configuring the active talker and listeners, it must be
able to address all devices on the bus.

Device address 31 has unique meaning for setting up listeners and
talkers. If a control data command is sent to activate a listener at address 31,
it actually deactivates all listeners. This is effectively the “unlisten” command.
Similarly, when a control data cornmand is sent to activate a talker at address
31, it deactivates the current talker. This is the “untalk” command. In addition,
if a device is selected as the active talker, any talker that is currently active
deactivates itself. This ensures there is only one active talker at a time without
requiring the bus overhead to explicitly deactivate the previous talker.

Another important GPIB management line is SRQ (service request),
which is asserted by a device when it requires service from the controller. This
may be an error condition in the device or an external event sensed by the
device. Using SRQ is analogous to a processor interrupt, except that in this
case the controller can ignore the SRQ or respond whenever it wants to. When
the controller attempts to service the SRQ, it must first determine which device
(or devices) is asserting the line. To do this it must poll all the devices on the bus.

There are two types of GPIB polling techniques: serial and parallel. In
a serial poll, the controller issues a serial poll command, asserting ATN, to
each device on the bus, getting back 8 bits of status information. One of these
status bits indicates whether the device issued the service request. The other
bits convey device-dependent information. The main disadvantage with using
a serial poll is that it is slow, requiring the controller to poll all the devices
one at a time. Using a parallel poll is faster. In this case, the controller issues
the appropriate parallel poll bus command, along with asserting the ATN and
EOQI lines. Up to eight devices on the GPIB can respond at once, setting or
clearing the appropriate bit. In a parallel poll the only information obtained
is which devices requested service.

So far, software aspects of the GPIB have not been mentioned,
because they were not part of the original IEEE 488.1 specification and

158 CHAPTER 8 Standard Hardware Interfaces

were device-dependent. Every GPIB compatible device had its own unique
set of commands. For example, a function generator would have a command
telling it what type of waveform to output, and a programmable power supply
would have a command for setting its current limit. These commands, and
any appropriate responses such as the readings from a digital voltmeter, were
all message data. Usually, message data on the GPIB consisted of ASCII
characters. The use of ASCII data for the GPIB is supported by HP and the
vast majority of GPIB equipment manufacturers.

IEEE 488.2 Tektronix attempted to standardize instrument message formats
with a set of common commands and controller protocols. This grew into a new
GPIB standard: IEEE 488.2-1987. The original GPIB standard was renamed as
IEEE 488.1. The newer 488.2 standard is a superset of 488.1 (it is backward
compatible).

The standard defines 10 commands that IEEE 488.2 compatible instru-
ments must respond to. A good example of this is IDN?, which is the iden-
tification query command. An instrument should respond to this command
with its manufacturer, model number, serial number, and revision.

IEEE 488.2 added a new status reporting structure to the original 488.1
status byte. This consists of a standard event status register (ESR) and an
output queue. The ESR reports device status and command errors. An event
status enable register determines which ESR bits become logically OR’d into
the ESB bit of the status byte register.

IEEE 488.2 also supports instruments that can save and recall config-
uration information in nonvolatile memory (such as EEPROMs). This is done
with the SAV and RCL commands.

One difference between the older and newer standard is the downgraded
use of the device clear (DCL) command in IEEE 488.2. DCL no longer resets
an instrument to its power-up state, as it did under IEEE 488.1. The RST or
RCLO command should be used for this purpose under 488.2.

The eight protocols defined under IEEE 488.2 are high-level routines
that combine multiple control sequences into standard system operations.
They include the ALLSPOOL (serial poll) and RESET protocols, supported
by controllers. The FINDLSTN protocol finds and lists all the devices con-
nected to the bus. The TESTSYS protocol runs a self-test of the system.

SCPI While IEEE 488.2 standardized communications with GPIB devices
it still did not resolve the problem of each instrument having a unique set of
commands. Hewlett Packard addressed this problem by developing its test

8.2 Parallel Interfaces 159

measurement language (TML) which evolved into the industry-wide standard
commands for programmable instruments (SCPI).

SCPI defines a comprehensive command set suitable for all GPIB instru-
ments using common keywords and programming syntax. All SCPI-compatible
voltmeters, for example, respond to the same command for reading DC
voltage, independent of the manufacturer or model. Even different types of
instruments use similar SCPI commands.

SCPI commands are usually a series of keywords and parameters. For
example, the command to set the serial port bit rate on an instrument to 1200
bps would be

SYST:COMM: SER:BAUD 1200<CR>

The command to read back the bit rate would be
SYST:COMM: SER : BAUD?<CR>

The structure of the GPIB standards and how they interact is illustrated
graphically in Figure 8-8.

Using a GPIB system can be very advantageous for complex data
acquisition and control systems that require the high-level functionality of
commercial test instruments. For example, consider a system required to
characterize the frequency response of an electronic block box. Figure 8-9
shows a simple implementation using GPIB-compatible instruments: a func-
tion generator (to produce the variable excitation signal) and an AC voltmeter
(to read the results).

A PC acts as the bus controller, using a commercially available GPIB
interface card (see Chapter 11 for a sample of commercial sources). It controls
the frequency and amplitude of the function generator’s output (in this case
a sine wave) and reads the AC voltmeter’s input. Initially, the function gen-
erator should be directly connected to the AC voltmeter, to calibrate the system
at its test frequencies. Then the device under test (DUT) is inserted between
the generator and meter, and a new set of amplitude measurements is taken
at the same set of frequencies. From this set of data, the transfer function or
frequency response of the device under test (DUT) can be calculated.

There is a large amount of software support for PC-based GPIB inter-
faces. Most GPIB interface cards for PCs come with software drivers for use
with popular programming languages, including versions of C, C++, and
BASIC. Most high-end data acquisition software packages, such as MATLAB
or LABTECH NOTEBOOK (see Chapter 11), support common GPIB cards,
making the details of the GPIB operations invisible to the user. There are
many other software packages with special features, making the process of
implementing a GPIB system relatively painless. This is extremely useful

160 CHAPTER 8 Standard Hardware Interfaces

Command
Hierarchy

Standard Response
Format

Standard Program
Command Set

Software
Firmware

v,
5 Common Commands
&
@Y
Ly

Syntax/Data Structures

Hardware

Handshaking/Control

&
480, ’

Mechanical/Electrical Standards

Figure 8-8 Structure of the GPIB standards.

because of the ever-growing number of instruments using the GPIB interface.
GPIB equipment runs the gamut from power supplies and waveform synthe-
sizers to digital storage oscilloscopes and network analyzers, to name just a few.

For example, National Instruments, a leading manufacturer of GPIB
interfaces for a wide range of computers, provides the NI-488.2 software
package for its PC-based products. NI-488.2 includes drivers for calling
industry-standard NI-488 functions or newer NI-488.2 functions that cover
all the IEEE 488.2 protocols. They offer software packages for most popular
operating systems, such as Windows, Mac OS, and versions of UNIX (includ-
ing Linux).

8.2 Parallel Interfaces 161

PC
L —
GPIB PORT GPIB PORT
FUNCTION
GENERATOR AC VOLTMETER
ouTPUT > L INPUT

DEVICE
UNDER
TEST

Figure 8-9 GPIB instrumentation example.

In an MS-DOS PC, the driver package would be loaded using standard
procedures. Then the special GPIB functions are called from the user’s pro-
gram. One of the languages supported by the DOS version of NI-488.2 is
QuickBASIC, a compiled version of BASIC (see Chapter 13 for a discussion
of programming languages). A simple program in QuickBASIC to take a
reading from a digital multimeter is as follows:

CALL IBFIND ("DMM",DMM%)
CALL IBWRT(DMM%, “FOR0S2")
CALL IBRSP(DMM%, SPR%)
CALL IBRD{DMM%,DATAS)
PRINT DATAS

END

The first line in this program, calling IBFIND, retrieves initialization
information on the specified device (“DMM”) and returns the identifier code
needed for the other functions. The second line, calling IBWRT, sends a
device-specific message string to the DMM (“FOR0S2”), configuring it for
voltage type, range, and speed (this is not a SCPI-compatible instrument).
Next, the IBRSP call performs a serial poll on the DMM, checking its status.
Finally, the IBRD call takes a voltage reading on the DMM and returns it in
the string DATAS, which is then displayed by the print statement. In all of
this, the user does not have to care about the details of the GPIB data transfers.

Newer versions of NI-488.2 software for MS Windows 95/98/NT sup-
port Microsoft Visual C/C++, Borland C/C++, and Microsoft Visual Basic
32-bit compilers. These drivers take full advantage of 32-bit multitasking

162 CHAPTER 8 Standard Hardware interfaces

operating systems. They also allow you to control several different GPIB
interface types (such as PCI and PCMCIA cards) from the same PC using a
single driver.

HS 488 By today’s standards, the IEEE 488 maximum data rate of 1
Mbyte/sec is not very fast. One approach to improving this, developed by
National Instruments, is HS 488, a high-speed GPIB handshake protocol that
uses the same three control lines as IEEE 488 (DAV, NRFD, and NDAC).

HS 488 is backward compatibie with standard GPIB instruments. How-
ever, if all devices on a bus support HS 488, the high-speed handshake is
used and overall data rates can run as high as 8 Mbytes/sec (for two devices
connected by no more than 2 meters of cable). A fully loaded bus with 15
devices connected by 15 meters of cable has a maximum HS 488 data rate
of 1.5 Mbytes/sec (still a 50% speed improvement).

HS 488 accomplishes this speedup by removing excessive propagation
delays and settling times associated with the standard IEEE 488 handshake
(designed for maximum cable length and bus loading). Since the actual delays
increase with longer bus cable lengths, the greatest speed improvement is
seen with short cables.

There are already many instruments that support this new protocol. HS
488 has been proposed as an addition to the IEEE 488.1 standard. Currently
(as of this writing) it is still a proprietary but well accepted standard.

8.2.4 Other Parallel Interfaces

Before leaving the topic of parallel digital interfaces, it should be noted that
there are many other standards besides the parallel printer interface (IEEE
1284) and the GPIB. Most of these, such as BCD instrumentation interfaces
or proprietary interfaces have little or no support in the world of PC-based
data acquisition equipment.

One significant parallel standard is the Small Computer System Inter-
face, or SCSI, which is usually used to connect high-speed disk drives to
PCs. It is a general-purpose, asynchronous parallel interface, originally 8 bits
wide, with later implementations 16 bits wide. SCSI can be used to connect
virtually any piece of equipment to a PC, including data acquisition devices.
In practice, this is rarely done, except for older Macintosh computers that
used a SCSI interface as an external expansion port.

Over the years, SCSI technology has continued to improve. Currently
(as of this writing), its fastest data transfer rate is 160 Mbytes/sec using Ultra
160/m Wide SCSI. The older SCSI interfaces used single-ended (SE) signal

8.3 Standard Serial Interfaces 163

TABLE 8-4
SCSI Standards

BUSWIDTH | SIGNAL TYPE |MAX DATA RATE
SCSI STANDARD (bits) (SE or LVD) (Mbytes/sec)
SCSI-1 8 SE 5
Fast SCSI 8 SE 10
Fast Wide SCSI 16 SE 20
Ultra SCSI 8 SE 20
Ultra Wide SCSI 16 SE 40
Ultra2 SCSI 8 LVD 40
Ultra2 Wide SCSI 16 LVD 80
Ultra 160/m SCSI 8 LVD 80
Ultra 160/m Wide SCSI 16 LVD 160

transmission (TTL or similar). Newer SCSI standards, such as Ultra2 SCSI
and Ultra 160/m SCSI, use low-voltage differential (LVD) signals to improve
data speed and integrity. SCSI interfaces are still only 8 or 16 bits wide, but
newer standards run at faster speeds. Table 8-4 shows some of the common
SCSI standards and their maximum data transfer rates.

8.3 Standard Serial Interfaces

Many standard digital serial interfaces are in use. They are differentiated by
several factors, including voltage levels, current drive capability, differential
versus single-ended lines, single receiver and transmitter versus multidrop
capability, half- versus full-duplex, synchronous versus asynchronous, type
of cable required, and communications protocols. These factors, in turn,
determine important system specifications such as maximum data rate and
maximum cable length. As we noted previously, the major reasons for using
serial interfaces are low cable cost and potentially long cable lengths. The
serial interfaces we will discuss in this section are all standards developed
by the Electronic Industries Association (EIA) and are identified by their EIA
standard number. The next section will cover high-speed serial interfaces
developed primarily for PCs: USB and IEEE 1394 (FireWire).

The EIA standards define electrical characteristics and definitions of
signal lines used in the interfaces. They do not define how the data will be
sent or what each bit means. The two types of protocols used are asynchronous

164 CHAPTER 8 Standard Hardware Interfaces

and synchronous. In an asynchronous protocol, the timing hardware at the
transmitter and that at the receiver are independent of each other (they are
not synchronized). Synchronization is provided by the data stream itself,
usually a particular level transition to indicate the start of data.

In a synchronous protocol, timing information is exchanged along with
data, providing a single clock signal used by both ends of the interface. This
allows serial transmissions at higher data rates than asynchronous protocols,
since extra control bits indicating the beginning and end of a data byte are
not needed, along with the extra time for an asynchronous receiver to syn-
chronize itself to an incoming data stream. It is, however, a more complicated
and expensive approach. Most standard PC-based serial data interfaces use
an asynchronous protocol. We will discuss the commonly used asynchronous
protocols in the following sections, followed by a brief description of some
common synchronous protocols.

8.3.1 The EIA RS-232C and RS-423A Interfaces

Without any question, the EIA RS-232C interface is the oldest and most
common serial interface used by computer equipment. In fact, a PC’s serial
port is almost always RS-232C compatible. Because of its widespread use,
RS-232C has paradoxically become one of the most nonstandard standards
available. This is because it is used for much more than originally intended.
RS-232C was developed in the 1960s as a standard for connecting data
terminal equipment (DTE), such as the “dumb” terminals used with main-
frame computers, to data communications equipment (DCE), such as
modems, over moderately short distances at modest data rates. Over the years,
RS-232C evolved as a general-purpose interface between many varieties of
equipment. One common example is connecting a PC to a printer or plotter.
You can even use a special interface box to control a GPIB system via a
computer’s RS-232C port.

The RS-232C standard uses a 25-pin D-shell connector, with line des-
ignations as shown in Figure 8-10. Note that transmit and receive data direc-
tions are relative to the DTE end. RS-232C is a serial interface having two
data lines to support full-duplex operation. That is, the connected devices can
simultaneously transmit and receive data, if they are capable. The maximum
data rate on an original RS-232C interface is 20,000 bits per second (bps)
and the maximum cable length is 50 feet (although this can be increased at
lower data rates or in low-noise environments). In most PCs, the serial port
can operate as fast as 115,200 bps. Note that EIA RS-232C can support either
synchronous or asynchronous serial communications. In the vast majority of
applications, asynchronous communications is used. However, the inclusion

8.3 Standard Serial Interfaces 165

Protective Ground

sy
-

Signal Ground
Transmitted Data (TXD)
Received Data (RXD)
Request to Send (RTS)
Clear to Send (RTS)
Data Set Ready (DSR)

Data Terminal Ready (DTR)
Received Line Signal Detector (Carrier Detect)

A

O O~ W NN
D O b W NN

»

DTE DCE

20 » 20

Speed Select

23 » 23

15 le Transmit Signal Element Timing 15

17 Receive Signal Element Timing 17
Ring Indicator (RI)

22 |« 22

Figure 8-10 Standard RS-232C connections between data terminal equipment
(DTE) and data communications equipment (DCE).

of two lines, Transmit Signal Element Timing and Receive Signal Element
Timing, can provide the external clocking required by synchronous interfaces.

The RS-232C interface supports several handshaking lines, indicating
each device’s readiness to send or receive data. This is not an interlocking
handshake, as used in GPIB for control of data flow. It simply enables or
disables data transmission. These lines include Request to Send (RTS), Clear
to Send (CTS), Data Set Ready (DSR), and Data Terminal Ready (DTR).
The control lines, Ring Indicator (RI), and Received Line Signal Detector (or
Carrier Detect, CD) are specifically used by modems.

On a PC, the usual RS-232C serial interface card or motherboard cir-
cuitry supports asynchronous communications only and uses either a DB-25
or DB-9 connector. A PC/XT compatible system typically uses the 25-pin
connector, with pin assignments shown in Figure 8-11. Note that some of the
EIA RS-232C standard signal lines are not used, such as those needed for
synchronous communications. In addition, four non-RS-232C signals are
added: +Transmit Current Loop Data, —Transmit Current Loop Data,
+Receive Current Loop Data, and —Receive Current Loop Data. These lines
support the 20 mA current loop interface, used by older Teletype equipment
and certain special devices such as industrial sensors.

166 CHAPTER 8 Standard Hardware Interfaces

Signal Ground
Transmitted Data (TXD)
Received Data (RXD)
Request to Send (RTS)
Clear to Send (RTS)
" Data Set Ready (DSR)

ASYNCHRONOUS Data Terminal Ready (DTR)
ADAPTER

A 4

v

n
O O O A~ W NN

8 e Received Line Signal Detector (Carrier Detect)
Ring Indicator (R!)

22) +Transmit Current Loop Data .
11 —Transmit Current Loop Data -
18 +Receive Current Loop Data
25 le —Receive Current Loop Data

Figure 8-11 Pin designations for 25-pin asynchronous adapter.

Newer PC systems (PC/AT and above) usually have a 9-pin connector,
with its pin assignments shown in Figure 8-12. This limits the signals available
to Transmitted Data (TXD), Received Data (RXD), DTR, DSR, RTS, CTS,
RI, and CD. Usually a cable adapter is required to connect this 9-pin port to
external devices with a conventional 25-pin D-shell connector.

Signals on RS-232C lines have well-defined electrical characteristics.
Only one driver and one receiver are allowed on a line. The signals are all
single-ended (unbalanced) and ground-referenced (the logic level on the line

Signal Ground
Transmitted Data (TXD)
Received Data (RXD)
Request to Send (RTS)
Clear to Send (RTS)
Data Set Ready (DSR)
Data Terminal Ready (DTR)

Carrier Detect
Ring Indicator (RI)

A 4

A

v

ASYNCHRONOUS
ADAPTER

O = A O OO NN W WO
A A

A

Figure 8-12 Pin designations for 9-pin asynchronous adapter.

8.3 Standard Serial Interfaces 167

FEEV -
+12V —

— Logic O

3V a
Signal
Amplitude

BV b -

— Logic 1

-12v
BV _

1t ¢ o { o i 1 BitValues

Figure 8-13 RS-232C signal levels.

depends solely on that signal’s voltage value relative to the signal ground
line). The signals are bipolar with a minimum driver amplitude of +5 V and
a maximum of £15V (£12V is the most common voltage used) into a receiver
resistance of 3000 to 7000 ohms. Receiver sensitivity is 3 V, so any signal
amplitude less than 3 V (regardless of polarity) is undefined. Otherwise, a
voltage level above +3 V is a logic 0 and below -3 V is a logic 1, as shown
in Figure 8-13. Another important parameter is a maximum slew rate of 30
volts per microsecond. This means that an RS-232C signal running at the
maximum voltage range of £15 V must take at least 1 psec to switch states.

If we look at the typical RS-232C application in Figure 8-14, where a
terminal is connected to a modem, we see that most of the handshaking lines

Transmitted Data (TXD)
Received Data (RXD)
Request to Send (RTS)
Clear to Send (RTS)
< Data Set Ready (DSR)
Data Terminal Ready (DTR)
Signal Ground

».

(o) BN & BN - /V I \V |
(o) B &) P - N /S I\ |

MODEM |eAn2log,

TERMINAL Tine

20

~
~

Carrier Detect
Ring Indicator (RI)

22

Figure 8-14 RS-232C connections between a terminal and a modem.

168 CHAPTER 8 Standard Hardware Interfaces

act in pairs. When the terminal wants to establish communications, it asserts
DTR. As long as the modem is powered on and operational, it asserts DSR
as the handshake. These signals stay asserted as long as the communications
link exists. When the terminal is ready to send data it asserts RTS. The modem
generates a carrier signal on its analog line (usually a telephone line connec-
tion) and after a delay (allowing time for the modem on the other end to
detect the carrier) it asserts CTS. Then the terminal can transmit its data over
TXD.

When the terminal is finished transmitting, it negates RTS, causing the
modem to turn off its carrier and negate CTS. If the modem now receives a
carrier from a remote system over the analog line, it asserts CD. When it
receives data from the remote system, it sends the data to the terminal over
RXD. The cable used to connect the terminal to the modem is a straight-
through variety. That is, pin 2 on one end goes to pin 2 on the other end, pin
3 on one end goes to pin 3 on the other end, and so on.

In actual practice, RS-232C interfaces are used to connect many dif-
ferent types of equipment. The asynchronous communications port in a PC
(the serial port) is nearly always set up as a DTE (TXD is an output line and
RXD is an input line—the opposite is true for a DCE device). The meaning
of the handshaking lines is software-dependent and they may not have to be
used. If required, just three lines can be used to minimize cable costs: TXD,
RXD, and signal ground. If the software requires it, CTS and DSR must be
asserted at the PC end for it to communicate, as when BIOS INT 14h
functions are used for sending and receiving data over the serial port (for
DOS programs).

For example, if we want to send data between two nearby PCs without
using two modems, we need a special cable, as shown in Figure 8-15. There
are two approaches we can use to satisfy the handshake lines. In Figure 8-15a
we implement full handshaking support, using seven wires. The data lines
are crossed over, so TXD on one side is connected to RXD on the other side.
Similarly RTS and CTS are crossed over as well as DTR and DSR. In this
way, if the receiving end wants the transmitting end to wait, it negates its
RTS line, which the other side sees as a negated CTS and CD; it then stops
transmitting. Similarly, if one end wants to suspend communications entirely,
it negates its DTR line, which the other side sees as a negated DSR. Signal
ground is directly connected between the two ends. This cable, with the data
and control lines crossed, is often referred to as a null modem cable. It is
needed to connect a DTE to a DTE (or a DCE to a DCE).

A simpler connection using only three wires is shown in Figure 8-15b.
In this case, the handshake lines are permanently enabled (self-satisfying) by
connecting RTS to CTS and CD and connecting DTR to DSR at each PC.
These lines cannot be used to control the data flow on the interface. The data

8.3 Standard Serial Interfaces

2 2
TXD TXD
RXD j > i RXD
RTS RTS
5 > 5
PC1 crs ors PC2
oo |8 | Le e
DSR |8 6 Ipsr
DTR |20 20 | prR
SIG GND |7 7_|siG GND
(a) Full Handshaking Support
2 2
TXD TXD
RXD |—2 > S |RxD
RTS |24 4 I RTS
ooy CTS 5 5 lcts eoo
cp |-8 8 lcp
6 6
DSR DSR
o 20] [20 |m
SIG GND |7 7_Isia GND

(b) No Handshaking Support

Figure 8-15 Connecting two PCs via an RS-232C cable.

169

flow can still be controlled, using special data characters in a software hand-
shaking protocol. One software protocol widely supported is XON/XOFF.
These are two ASCII control characters (XON is 11h, XOFF is 13h). When
the receiving end needs to temporarily halt data flow, it sends an XOFF
character to the transmitting end. When it is ready for data flow to resume, it
sends an XON character. In a similar fashion, the ASCII characters ACK (06h)
and NAK (15h) are also used for controlling data transmission. Employing
either of these software control protocols necessitates the use of ASCII data.

ASCII stands for the American Standard Code for Information Inter-
change. It is the most widely used computer code for handling alphanumeric
(text) data and is usually employed for data transfers between equipment over
standard interfaces. It is a 7-bit code consisting of printable (alphanumeric)
and control characters, such as XOFF and CR (carriage return). The standard
ASCII code is shown in Table 8-5. On IBM-style PCs, an eighth bit is added
to the code producing special ASCII extension characters. These are nonal-
phanumeric printable characters, such as lines for character-based graphics.

170 CHAPTER 8 Standard Hardware Interfaces

TABLE 8-5
Standard ASCIl Codes

0 0 0 0 1 1 1 1 b7
0 0 1 1 0 0 1 1 b6
b4 | b3 b2 | bl 0 1 0 1 0 1 0 1 b5
0 0 0 0 |NUL |DLE | SP 0 @ P - p
0 0 0 1]SOH |DC1 ! 1 A Q a q
0 0 1 0 |sTx |DbC2| 2 B R b r
0 0 1 1 JETX |DC3 | # 3 C S c S
0 1 0 0 |EOT |DC4 | $ 4 D T d t
0 1 0 1 JENQ |NAK | % 5 E U e u
0 1 1 0 JACK |SYN| & 6 F \ f v
0 1 1 1]BEL |ETB - 7 G w g w
1 0 0 0 |BS |CAN| (8 H X h X
1 0 0 1 JHT |EM) 9 | Y i y
1 0 1 0 JLF |suB| * J z j z
1 0 1 1 JvT |ESC| + ; K [k {
1 1 0 0 [FF |FS , < L \ | |
1 1 0 1 |cr |Gs - = | M] m | }
1 1 1 0 JSO |RS . > N A n ~
1 1 1 1]8I us / (o] _ o | DEL

As previously mentioned, the RS-232C standard does not specify the
protocol used for data transmission. The vast majority of RS-232C interfaces
on PCs use an asynchronous protocol. The transmission of 1 data byte using
this protocol is shown in Figure 8-16. When no data is being transmitted, the
line is at the marking level, which represents a logic 1. At the beginning of
transmission, a start bit is sent, causing a line transition to the spacing level,
a logic 0. This transition tells the receiver that data is coming. Next, the data

Marking
Level : ' i H ey H “
: ; § ; : iParity: Stop
§D1;D2§D3§D4§DS§D6§D7§B“EBits
Spacing _ I T T T A e
Level

Figure 8-16 Asynchronous communications protocol.

8.3 Standard Serial Interfaces 17

bits (usually 7 or 8) are sent, one at a time, where a bit value of 1 is at the
marking level and a bit value of 0 is at the spacing level. The data is followed
by an optional parity bit, for error detection. Finally, one or more stop bits
at the marking level are sent to indicate the end of the data byte. Since RS-
232C line drivers and receivers are inverters, the marking level (logical 1)
corresponds to a negative voltage (-3 V to —15 V) and the spacing level (logical
0) corresponds to a positive voltage (+3 V to +15 V) on the interface line.

The heart of a serial port’s electronics is the IC that converts parallel
data to a serial format and serial data back to a parallel byte. This device is
a Universal Asynchronous Receiver/Transmitter (UART). IBM and compat-
ible computers originally used the National Semiconductor INS8250 UART
IC in PC/XT machines and the INS16450 UART (which is a superset of the
INS8250) in AT and newer machines (later PCs had the UARTS built into the
motherboard). These devices have separate transmit and receive channels and
control logic for simultaneously sending and receiving data. They produce
their own programmable timing signals, from on-board oscillators, for soft-
ware control of data rates. They can send or receive serial data in the range
of 50 bits per second (bps) to 38,400 bps (up to 115,200 bps with the
INS16450). The width of each bit (in time) is the inverse of its data rate. So,
at 9600 bps, each bit is 1/9600 = 0.104 msec long. If 7-bit data is sent at this
rate using a parity bit and only 1 stop bit (for a total of 10 bits per character,
including the start bit), it would take 1.04 msec (0.104 x 10) to transmit a
character. This would produce a maximum overall data transmission rate of
961 characters per second. This is not incredibly fast, but for small amounts
of data it is acceptable. Bear in mind that many early serial terminals and
modems ran at only 110 bps (which is nearly two orders of magnitude slower).

To set up an asynchronous RS-232C communications link, both
machines (at the two ends of the line) must be set to the same data rate
(sometimes, incorrectly, called the baud rate). In addition, the number of data
bits must be known. It can often vary from 5 to 8 bits, although 7 or 8 bits
is the most common. The next parameter needed is the parity bit. This is used
as a simple error-detection scheme, to determine if a character was incorrectly
received. The number of logical 1’s in the transmitted character is totaled,
including the parity bit. For even parity, the parity bit is chosen to make the
number of 1’s an even number, and for odd parity it is chosen to make the
number of 1’s odd. For example, the ASCII character “a” is 61h or 01100001
binary. For even parity, the parity bit would be 1 (making four 1’s, an even
number), whereas for odd parity, the parity bit would be 0 (leaving three 1’s,
an odd number).

When a parity bit is used (typically with 7-bit data characters), the
transmitting end determines the correct parity bit value, as just described, and
incorporates it in the character sent. The receiving end calculates the expected

172 CHAPTER 8 Standard Hardware Interfaces

value of the parity bit from the character’s data and compares it to the parity
bit actually received. If these values are not the same, an error is assumed.

Of course, this scheme is not foolproof. It assumes that the most likely
error will be a single wrong bit, which a parity check will always catch. If
multiple bits are wrong in the same character, a parity error may not always
be detected. Note that on IBM-style PCs, the parity bit is not used with 8-
bit data.

One final asynchronous communications parameter is the number of
stop bits. This can be set to 1, 1-1/2, or 2 stop bits, although 1 bit is most
commonly used. Unless very slow data rates are used, such as 110 bps, only
1 stop bit is adequate.

Several other single-ended serial communications interfaces are com-
monly used, besides RS-232C. One of these is RS-423A. This standard is
sometimes used as an enhanced version of RS-232C, with several notable
differences. RS-423A has a driver voltage output range of £3.6 V to £6.0 V,
which is lower than RS-232C. However, RS-423A has much higher allowable
data rates, up to 100K bps, and longer cable lengths (up to 4000 feet). One
other important difference is that RS-423A can support multiple receivers on
the same line, up to a maximum of 10. This is very useful for unidirectional
data transfers in a broadcast mode, such as updating multiple CRT displays
with the same information. Table 8-6 shows the differences between several
of the EIA transmission line standards.

8.3.2 The EIA RS-422A and RS-485 Interfaces

Another popular EIA serial transmission standard is the RS-422A interface,
which uses differential data transmission on a balanced line. A differential
signal requires two wires, one for noninverted data and the other for inverted
data. It is transmitted over a balanced line, usually twisted-pair wire with a
termination resistor at one end (the receiver side). As shown in Figure 8-17a,
a driver IC converts normal logic levels to a differential signal pair for
transmission. A receiver converts the differential signals back to logic levels.
The received data is the difference between the noninverted data (A) and the
inverted data (A*), as shown in the waveforms of Figure 8-17b. Note that no
ground wire is required between the receiver and transmitter, since the two
signal lines are referenced to each other. However, there is a maximum
common-mode voltage (referenced to ground) range on either line of -0.25 V
to +6 V, as shown in Table 8-6. This is because most RS-422A driver and
receiver ICs are powered by the same +5 V power supply as many other logic
chips. Usually the signal ground is connected between the transmitter and
receiver to keep the signals within this common-mode range.

TABLE 8-6

Comparison of Selected EIA Interface Standards

83

Standard Serial Interfaces

173

PARAMETER RS-232C RS-422A RS-423A RS-485
LINE MODE Single-ended] Differential Single-ended | Differential
MAXIMUM DRIVERS AND | 1 Driver 1 Driver 1 Driver 32 Drivers
RECEIVERS 1 Receiver 10 Receivers | 10 Receivers | 32 Receivers
MAXIMUM CABLE LENGTH | 50 feet 4000 feet 4000 feet 4000 feet
MAXIMUM DATA RATE 20 Kbps 10 Mbps 100 Kbps 10 Mbps
MAXIMUM () COMMON- |25V +6 V 6V +12V
MODE VOLTAGE -0.25V -7V
MINIMUM/MAXIMUM +5 V min +2 V min +3.6Vmin J+1.5V min
DRIVER OUTPUT +15V max +6.0 V max
DRIVER OUTPUT 300 ohm 60K ohm 60K ohm 120K ohm
RESISTANCE
(with power off)
RECEIVER INPUT 3K-7K ohm [|4K ohm 4K ohm 12K ohm
RESISTANCE
RECEIVER SENSITIVITY J£3V +200 mV +200 mV +200 mV

DATA DATA

IN ouT
Balanced Line
(Twisted Pair)
(a) Driver-Receiver Connections
A i
A*
DATA

(b) Waveforms

Figure 8-17 Differential data transmission signals.

174 CHAPTER 8 Standard Hardware Interfaces

Transmitted
Data
+ Noise Spike
A /
Line Data _<
with Noise A
A - Noise Spike
Received
Data

Figure 8-18 Differential data lines with common-mode noise.

This differential signal scheme enables the use of high data rates (up
to 10 Mbps) over long cable lengths (up to 4000 feet) because of its high
noise 1mmyn1ty If external noise induces a signal on the transmission line,
it will be the same on both conductors (A and A¥*). The receiver will cancel
out this common-mode noise by taking the difference between the two lines,
as shown in Figure 8-18. If a single-ended transmission line was used, the
noise spikes could show up as false data at the receiver. The example in Figure
8-18 shows both a positive- and a negative-going noise spike.

As with RS-423A, RS-422A can have multiple receivers (10 maximum)
on the same line with a single transmitter. Again, this is basically useful for
applications that require broadcasting data from a single source to multiple
remote locations.

There are variations in the connectors and pin designations used for
RS-422A interconnections. Most RS-422A interface cards for PCs use 9-pin
D-shell connectors, but in lieu of an IBM standard, the pin designations
employed vary from one manufacturer to another. An example of the pin
designations on a typical RS-422A interface card for PCs (from Qua Tech
Inc.) is shown in Figure 8-19. Note that all the signal lines are differential.

The signal lines for AUXOUT are outputs and can be used to implement
an RTS function. The signal lines for AUXIN are inputs and can be used to
implement a CTS function. In this way, the RS-422A card can operate like
a typical asynchronous RS-232C card in a PC (and use the same control
software). Alternatively, the AUXOUT and AUXIN lines can be used to send
transmit and receive clocks, for use with synchronous communications
schemes.

8.3 Standard Serial Interfaces 175

AUXOUT+ — —o\
o8 auxouT-
TXD+ —2 -0 ,
. o= TxD-
aND —31o
4 o8 Rxp-
RXD+ —4-10
. ol 2 AuxiN-
AUXIN+ —o/

Figure 8-19 Pin designations for a typical RS-422A PC interface card.

The EIA RS-485 interface is basically a superset of the RS-422A stan-
dard. As shown in Table 8-6, its electrical specifications are similar to those
of RS-422A. RS-485 is another differential transmission scheme, using bal-
anced lines that can operate at speeds up to 10 Mbps over cable lengths up
to 4000 feet long. It has somewhat different output voltage ranges, including
a much wider common mode range of =7 V to +12 V. The most important
difference is that an RS-485 interface can support up to 32 drivers and 32
receivers on the same line. This allows actual networking applications on a
party line system (sometimes called multidrop) where all transmitters and
receivers share the same wires.

To allow for this multidrop capability, RS-485 drivers must be able to
switch into a high-impedance (tri-state) mode, so that only one driver is trans-
mitting data at any given time. As with RS-422A, all receivers can be active at
the same time. A typical RS-485 multidrop line is shown in Figure 8-20. Note
that the termination resistor is typically placed at the last receiver on the line.

IN1 % RECEIVER OuUT1

AVAY

IN2 OuT2 IN3 ouT3

Figure 8-20 RS-485 multidrop application.

176 CHAPTER 8 Standard Hardware Interfaces

RS-485 interface cards for PCs are readily available and typically use
the same connector (DB-9) and pin designations as similar RS-422A interface
cards. The RS-485 driver output can be tri-stated using a control signal on
the card. Usually a standard control line such as DTR is used for this since
it would not be used as an external line in a multidrop interface. It is up to
the software protocol to ensure that only one driver is enabled at any given
time. One common way to do this is to use a master—slave relationship on
the line. Only one driver/receiver station would be the master (or a network
controller)—the others would be slaves. The master can transmit data at any
time. The slaves can only transmit data after receiving an appropriate com-
mand from the master. Each slave would have a unique ID or address on the
line and would not be able to transmit unsolicited data. The high data rates
available to an RS-485 network would compensate for the moderate amount
of communications overhead required to implement a master—slave protocol
and the constant polling performed by the master. For more information about
networks, see Section 8.4.

8.3.3 Synchronous Communications Protocols

As previously mentioned, synchronous serial communications protocols are
much less common than their asynchronous counterparts in the world of PCs,
even though IBM did have synchronous communications adapters available
for their older PCs. Synchronous communications has noticeable advantages
over asynchronous methods. Synchronizing bits (start and stop bits) are not
needed, increasing the overall data transmission rate. Data does not have to
be byte oriented (i.e., character-based) to be sent. In addition, it allows a system
to communicate with large mainframe computers (especially IBM systems)
which often use synchronous protocols. The drawbacks to using synchronous
communications with PCs are higher costs for hardware and software along
with limited support.

In synchronous transmissions, data is not always broken up into discrete
characters, as with asynchronous methods. It tends to be block oriented, with
a large amount of data (a block) transmitted at one time, with various control
and error-checking information along with it. The data can be discrete char-
acters (as with asynchronous methods) or bit oriented (no explicit data length).
There are three common synchronous communications protocols: Binary
Synchronous Communication (BSC), Synchronous Data Link Control
(SDLC), and High-Level Data Link Control (HDLC).

BSC or bisync is a protocol developed by IBM. It is a character-oriented
synchronous protocol where each character has a specific boundary. As with
other synchronous protocols, there are no delays between adjacent characters

8.3 Standard Serial Interfaces i

in a block. Each block transmission may start with two or more PAD char-
acters to ensure that the clock at the receiving end of the line becomes
synchronized with the clock at the transmitting end, even if a clock signal is
being transmitted along with the data. Then, the start of the data stream is
signaled by sending one or more SYN (synchronous idle) characters, which
alerts the receiver to incoming data.

Next, one or more blocks of data are continuously sent. The data consists
of characters 5 through 8 bits long with an optional parity bit, as with
asynchronous methods. Often the data is encoded as ASCII characters,
although it could also be EBCDIC (a code supported by IBM). Each block
of data ends with an error-checking character which provides much better
data integrity than each character’s parity bit. A popular error-checking tech-
nique used here (and in many other applications) is the cyclic redundancy
check (CRC). The CRC takes the binary value of all the bits in the block of
data and divides it by a particular constant. The remainder of this division is
the CRC character, which will reflect multibit as well as single-bit errors.

IBM supported bisync on original PCs with its Binary Synchronous
Communications adapter. This card used an RS-232C compatible interface
with a 25-pin D-shell connector. It was based on an Intel 8251A USART
(Universal Synchronous/Asynchronous Receiver/Transmitter) IC. All the nec-
essary protocol parameters were programmable, including mode of operation,
clock source, and time out after no activity.

The other two popular synchronous protocols are SDLC and HDLC,
which are both bit-oriented techniques, where there are no character bound-
aries. The data is just a continuous stream of binary numbers, sent as an
information field. This information field can vary from zero bytes up to the
maximum allowed by the particular protocol in force. Like bisync, SDLC
and HDLC data fields are framed by control information at the beginning
and end. They also contain additional addressing information that makes them
suitable for use with communications networks. HDLC contains more control
information than SDLC. Unlike bisync, if transmission stops within an SDLC
or HDLC field, an error is always assumed.

IBM supported SDLC for PCs with its Synchronous Data Link Control
Communications Adapter. This card, as its BSC card, used RS-232C com-
patible signal levels and a 25-pin D-shell connector. It was based on the Intel
8273 SDLC Protocol Controller IC.

8.3.4 High-Speed PC Serial Interfaces

Many of the standard EIA serial interfaces we have previously discussed are
still in common use, especially RS-232C. However, they have not kept pace
with advances in PC speed and performance. In addition, they were developed

178 CHAPTER 8 Standard Hardware Interfaces

for the world of mainframe computers and lacked the ease-of-use and stan-
dardization that PC users now expect. Newer serial standards have been
developed in recent years, targeting PCs.

Universal Serial Bus The PC industry leaders (including Compag, IBM, Intel,
and Microsoft) developed the Universal Serial Bus (USB) as a replacement
for standard serial and parallel ports on a PC. USB is a high-speed, multidrop
serial bus with data rates as high as 12 Mbits/sec (or as low as 1.5 Mbits/sec
for slower devices). It is a true bus that can support as many as 127 devices,
with one host controller (the PC).

USB uses a strictly controlled wiring system that prevents erroneous
connections. In addition, it can provide DC power to peripheral devices (S V
at up to 5 A) and is hot-swappable. That is, you can safely connect or
disconnect USB devices from the bus without powering down or rebooting
your PC. USB devices are also plug-and-play, so their driver software is self-
configuring on a PC running Windows 98 or Windows 2000 (or Windows 95
if it is version 4.00950B or later). Windows NT does not support USB.

USB was designed to connect standard, slow (mouse, keyboard), and
medium speed (scanner, printer) peripherals to a PC with minimal user effort.
To this end, most new PCs now contain USB ports and some have eliminated
the older serial and parallel ports. Eventually, mainstream PC makers will
eliminate most or all internal expansion slots (PCI) and rely on USB and
FireWire (see the next section) for connecting all peripherals to a PC. This
is called the ‘“closed box” strategy for the future (users will never have to
open their PC to connect a new device). Industrial PCs should still retain
their expansion slots and “legacy” ports for many more years.

With this trend in mind, many data acquisition manufacturers have
products that connect to USB ports. Of course, because of USB’s limited bus
speed, most of these products work at low sampling rates, only up to about
100K samples/sec (see Chapter 11 for more information on USB data acqui-
sition products).

USB uses a special four-conductor cable, up to 5 meters long, with a
connector pinout shown in Table 8-7. Two wires, +DATA and -DATA,
comprise a twisted pair carrying a differential data signal. The other two
wires, VCC and GND, provide optional +5 V power to the peripherals. USB
is designed for a single host device, so you cannot normally use it to connect
one PC to another (as opposed to an IEEE-1284 parallel port). However,
some manufacturers produce special USB cables along with custom software
for this purpose (for example, to transfer data between a PC and a laptop
computer).

8.3 Standard Serial Interfaces 179

TABLE 8-7
USB Connector Pin Assignments

PIN # SIGNAL NAME
1 vCC
2 -DATA
3 +DATA
4 GND

A typical PC has two USB ports. If you want to connect more devices
to the PC you need a hub, a special USB device that contains several additional
USB ports. Figure 8-21 shows a typical USB connection scheme utilizing
5-port hubs.

Since USB uses just one differential data pair, it is asynchronous. Also,
only one device can transmit at any given time (as on an RS-485 bus). Data is

PC
(Host)

USB Port 1 KEYBOARD
USB Port 2

USB
HUB

DATA
MOUSE PRINTER SCANNER ACQUISITION — SENSORS
UNIT

Figure 8-21 Typical USB connections to a PC.

180 CHAPTER 8 Standard Hardware Interfaces

encoded using the NRZI (no return to zero, inverted) scheme. In NRZI, a bit
value of O causes the line driver to switch states while a value of 1 causes it
to stay the same. For example, a stream of O bits will generate a clock signal,
since there will be a transition for every bit interval. USB adds bit stuffing
to NRZI to ensure that the receiver does not get out of synchronization with
the transmitter if too many 1’s are sent. Whenever there is a continuous stream
of six 1-bits, the transmitter adds (or stuffs) a 0 bit to produce a new transition.
The receiver uses the 0 bit transitions to synchronize its clock to the data
stream.

USB uses a sophisticated communications protocol based on three types
of packets: token, data, and handshake. The host (PC) starts a transaction by
sending out a token packet that addresses the desired device. Each device on
the bus has a unique address. The address field in the token packet is 7 bits
long, allowing for 128 unique addresses (and the 127-device limit on the bus).
Next, data is exchanged via a data packet, containing up to 1023 bits of data
along with a CRC for error checking. Finally, a handshake packet is trans-
mitted to end the transaction.

As with most technologies connected to PCs, the USB standard con-
tinues to evolve. The first USB standard in common use was version 1.1. A
few years later, USB 2.0 was developed, with a 40x speed improvement—up
to 480 Mbits/sec. USB 2.0 is backward compatible with the original 12
Mbits/sec USB devices and cables. USB devices will negotiate with the host
to run at the highest speed allowed on that bus. USB 2.0 is directly supported
by newer operating systems, such as Windows 2000 and Windows Me.

This faster USB standard, even with the overhead of its transfer protocol,
can support high-speed data acquisition. Still, it is slower than a PCI interface
card that uses a DMA engine to capture data. However, for the majority of
general-purpose applications, USB 2.0 will be fast enough.

IEEE 1394 (FireWire) The IEEE 1394 standard defines a high-performance
serial bus, originally developed by Apple Computer as FireWire. It is a peer-
to-peer system as opposed to USB’s host-based protocol. Two IEEE 1394
devices can communicate with each other without requiring a host computer
to run the bus.

IEEE 1394 is a very high speed bus, with the original standard defining
data rates of 100 Mbits/sec, 200 Mbits/sec, and 400 Mbits/sec. It uses a simple
6-pin connector with ease-of-use similar to USB. Up to 16 devices or 64
nodes can connect to a single IEEE 1394 bus, with individual cable lengths
up to 4.5 meters. As with USB, it is also hot-swappable.

IEEE 1394 was designed with high-bandwidth applications in mind,
such as digital video. In fact, digital video camcorders were some of the first

8.3 Standard Serial Interfaces 181

TABLE 8-8
IEEE 1394 Connector Pin Assignments

PIN # SIGNAL NAME DESCRIPTION
1 VP Cable Power
2 VG Cable Ground
3 TPB* Differential Signal Pair:
4 TPB Data on Xmt, Strobe on Rev
5 TPA* Differential Signal Pair:
6 TPA Data on Rcv, Strobe on Xmt

commercial devices to use a 1394 (FireWire) interface. IEEE 1394 ports are
not currently standard on most PCs, since they are more expensive than USB.
However, IEEE 1394 interface cards are available for PCs from many man-
ufacturers.

The IEEE 1394 cable consists of six conductors: two twisted pairs and
two power wires. As with USB, 1394 provides power to devices on the bus.
Since there is no default host node, any 1394 device can supply power. Cable
power, VP, is between +8 V and +40 V relative to VG, cable ground. A device
that provides power is limited to a maximum of 1.5 A. A device that uses this
power initially cannot draw more than 1 W (i.e., 125 mA at +8 V). Table 8-8
shows the pinout of an IEEE 1394 connector.

As with USB, IEEE 1394 uses differential signals to transmit high-
speed data reliably. The 1394 bus uses two signals (compared to only one
signal for USB): TPA and TPB. These are low-voltage differential signals
(LVDS) with amplitudes of only about 200 mV, to improve high-speed per-
formance. The signals are bidirectional and tri-state capable. A device trans-
mits data on TPB and receives data on TPA. However, when transmitting
data, a device uses TPA to transmit a special strobe signal. When receiving
data, TPB contains the received strobe signal.

This special signal is used to implement data strobe encoding. It is a
technique that allows the receiving device to extract a stable clock with better
jitter tolerance than a standard clock signal line would provide (as in typical
synchronous communications protocols). As shown in Figure 8-22, for each
bit interval, only one of the two signals, Data or Strobe, changes. That is, if
Data changes, Strobe stays constant. When Data stays the same (because of
two consecutive identical bits), Strobe will switch. The receiving device
generates an exclusive-OR (XOR) of the Data and Strobe signals, producing
a recreated clock.

182 CHAPTER 8 Standard Hardware Interfaces

DATA

STROBE F

XOR

BIT: 1) 1 1 0 0 0 1
VALUE

Figure 8-22 IEEE 1394 data strobe encoding.

IEEE 1394 is also a packet-based system but uses a more complex
protocol than USB. When the system turns on, or whenever a new device is
connected, the bus starts a configuration process. This proceeds from devices
with only one connection, called leaf nodes, to those with multiple attach-
ments, called branch nodes. The bus appears as a large memory-mapped space
in which each device or node takes up a unique address range. After config-
uration is complete, a bus topology with a simple root node (typically a PC,
if present) is determined. Now that each node has its own address, data
transfers can occur.

IEEE 1394 supports two types of data transfers: isochronous and asyn-
chronous. The bus operates using approximately 125-pusec time slices or
cycles. For each cycle, devices can arbitrate to transfer a data packet. A simple
isochronous transfer, which has highest priority, can use up to 80% of the
available bus bandwidth (or cycle time). This transfer could be as long as
5000 bytes in one cycle if no other device is requesting an isochronous transfer
for the same cycle. Isochronous transfers are suitable for time-critical, high-
bandwidth data, such as digital video. Isochronous transfers are fast and
virtually real-time but they do not contain error correction data nor are
retransmissions available. The isochronous philosophy is that it is better to
drop a few pixels in a video frame than to corrupt the frame timing and get
a distorted image. Here, speed is more important than data quality. This may
not be suitable for many data acquisition applications where data integrity is
important.

Asynchronous transfers are not guaranteed a certain amount of bus
bandwidth, but they are given a fair chance at bus access when they are

8.3 Standard Serial Interfaces 183

allowed, later in the cycle (after isochronous transfers). The maximum size
for an asynchronous data block depends on the system’s transfer rate with a
maximum of 2048 bytes for a 400 Mbits/sec bus. Since an asynchronous
block can get sent each cycle, which is every 125 psec, this corresponds to
a maximum asynchronous rate of about 16 Mbytes/sec. Asynchronous trans-
fers do use error checking and handshakes to allow for retransmissions, if
necessary. They can be slower than isochronous transfers but are better suited
for data acquisition applications where errors cannot be tolerated. Also, the
IEEE 1394 uses an arbitration system that ensures all devices on the bus,
regardless of transfer mode, have an opportunity to transfer data and are not
locked out by high-priority devices.

The IEEE 1394 standard defines four protocol layers, as shown in Figure
8-23: the physical layer, the link layer, the transaction layer, and the serial
bus management layer. The physical layer includes the connectors, cables,
and electronic circuits that transmit the signals. It defines the data encoding
and the arbitration mechanisms used. The physical layer is also responsible
for bus initialization.

SYSTEM CONTROLLER

Bus Management Asynchronous Transfers Isochronous Transfers
A

!

Serial Bus
Management
Layer

A

i Isochronous | JoT tion L.
. Resource ¢ » Transaction Layer
Manager
............................] v
: »> Link Layer
. Node !
i Controller : : i

Physical Layer

A

Hardware

Figure 8-23 IEEE 1394 protocol layers.

184 CHAPTER 8 Standard Hardware Interfaces

The link layer sits between the physical and transaction layers. For
asynchronous transfers, the link layer handles CRC checking and generation
for the transaction layer. For isochronous transfers, the link layer has full
responsibility for handling data transmission and reception. There are a min-
imum of 17 signals that make up the interface between the link and physical
layers. Part of this interface, in the link layer, includes transmit/receive FIFOs,
interrupt generation, and a DMA channel.

The transaction layer is only used for asynchronous transfers. It deter-
mines the size and type of the next transaction, such as read, write, or lock
(write followed by a read back). The serial bus management layer handles
basic control functions. Some of the bus control responsibilities are assumed
by different nodes, including cyclemaster (running the 125 psec bus cycle),
isochronous resource manager (allocating isochronous transfer bandwidth),
and bus manager (keeping track of bus topology, optimizing bus traffic, and
managing DC power distribution).

There are several available chipsets that implement the physical and
link layers in hardware. Still, IEEE 1394 devices are fairly complex to design,
and this accounts for part of their higher cost compared to USB. There is
some operating system software support for IEEE 1394 in PCs. Currently it
is supported to varying degrees in Windows 98 (second edition), Windows
Me, and Windows 2000. Since IEEE 1394 is a peer-to-peer system, it can be
used as-is to connect two PCs together for high-speed data transfers.

As with USB, IEEE 1394 continues to evolve faster implementations.
A newer standard, IEEE 1394b, is backward compatible with existing hard-
ware having data rates up to 400 Mbits/sec while adding new data rates of
800, 1600, and 3200 Mbits/sec. This keeps it well ahead of USB 2.0, with a
480 Mbits/sec maximum rate. IEEE 1394b also supports long transmission
line lengths, up to 100 meters using twisted-pair cables at a data rate of 100
Mbits/sec. This is still an order of magnitude faster than RS-422 or RS-485
transmissions. Data rates up to 3200 Mbits/sec are supported on glass optical
fiber cables up to 100 meters long.

8.4 PC Networks

Networking PCs has become more common than ever. The ability to share
data and resources, such as laser printers and plotters, has made PC networks
standard in most lab, office, and industrial environments. Sharing information
on a global scale, using the Internet, has opened up new realms of possibilities.
For example, you can acquire data from remote data acquisition equipment
using standard commercial hardware and software. Microsoft Windows has

8.4 PC Networks 185

supported networking since version 3.11 (Windows for Workgroups). Starting
with Windows 95, Microsoft has supported the popular TCP/IP protocol—the
same software protocol used by the Internet.

To discuss networks, we will first cover the basic signaling aspects: the
electrical signal characteristics and the hardware protocols used to transmit
and receive data. Then we will look at software protocols. The most popular
hardware/software system used to implement a local area network is Ethernet
and the most common networking protocol is TCP/IP.

8.4.1 Ethernet

The Ethernet local area network (LAN) was originally developed by Xerox
in the 1970s and became a published specification in the 1980s. It is a
combination of hardware and software that allows different computers run-
ning different operating systems to communicate and exchange data at rela-
tively high speeds. Ethernet is made up of four basic elements: the physical
medium, the signaling components, the media access control protocol, and
the frame.

The physical medium encompasses the cables and other components
used to carry the signals for the network. The most popular medium for PC-
based Ethernet systems is twisted-pair wiring terminated with 8-pin RJ-45
(telephone style) connectors, although coaxial and fiber optic cables are also
commonly used. There are cable length limitations based on signaling speed
and media type to ensure that the maximum round-trip time is not exceeded.
This is the time it takes a signal to go from one end of the system to the other
and back again. This timing limitation can be overcome by dividing a large
LAN into multiple, separate LANs using switching hubs.

The signaling components are the electronic devices that transmit and
receive data via the physical medium. These components include signal line
transceivers and a computer’s Ethernet interface, often residing on a PC’s
network interface card (NIC) or motherboard. Most PCs use a 10BASE-T or
100BASE-T NIC with twisted-pair cables (rated as Category 5 cables for 100
Mbits/sec service). Multiple PCs connect to the LAN in a star configuration
through a multiport repeater hub, as shown in Figure 8-24. The repeater is
used to retransmit the network signals to all its ports or network segments.

Up till now, the elements we have discussed could apply to many
communications protocols, such as RS-485. The next two elements are the
key to Ethernet’s usefulness and popularity. The media access control (MAC)
protocol is a set of rules that allows multiple computers to fairly share a
channel. For example, employing coaxial cable in a multidrop configuration,
Ethernet uses a half-duplex operation mode. At any given time each computer

186 CHAPTER 8 Standard Hardware Interfaces

REPEATER HUB

NIC NIC NIC
PC1 PC2 PC3

Figure 8-24 Simple Ethernet LAN employing a repeater hub.

interface can either receive or transmit data but not both simultaneously. In
this case there can only be one transmitter at a time, as on a USB network.
However, there is no designated host or root device in Ethernet (it is a peer-
to-peer network). To allow all computers on the network a fair chance to
transmit data the CSMA/CD (carrier sense, multiple access/collision detection)
protocol is used. Before transmitting, each Ethernet interface waits until there is
no signal on the cable or channel (carrier sense). Then, all interfaces have
equal priority attempting to transmit data (multiple access). If an interface
detects that other transmissions are occurring (collision detection) it stops
transmitting and chooses a random retransmission time to try again. This
arbitration system give all Ethernet interfaces a good chance of accessing the
network. On a 10 Mbits/sec system, collisions are typically resolved within
a few microseconds. Multiple collisions are only likely on a heavily loaded
network (many devices transmitting data very often). Even then, Ethernet can
adapt by trying different retransmission times.

The final element, the frame, is the standard packet used to carry data
over an Ethernet system. Figure 8-25 shows the components of an Ethernet
frame, which is the heart of the system. The frame is divided into fields,
starting with a 64-bit preamble. On a 10 Mbits/sec network (such as 10BASE-
T) the preamble gives the hardware time to correctly receive the rest of the
frame. At faster network speeds such as 100 Mbits/sec (100BASE-T) and
1000 Mbits/sec, there is constant signaling and the preamble is not necessary.

The next fields are the 48-bit destination and source addresses. The first
24 bits of the address is an organization unique identification (OUI), assigned
to individual manufacturers and organizations by the IEEE Standards Asso-
ciation. The remaining 24 address bits are unique for that organization (still

8.4 PC Networks 187

_ 64bits | 48bits | 48 bits |16 bitg], 46—1500 bytes |, 32 bits |
"
T Frame
Destination| Source ype Check
Preamble Field| Address Address L or th Data Field Sequence
Field Field |-S"9 Field
Field (CRC)

Figure 8-25 Composition of an Ethernet frame.

allowing for more than 16 million devices from a single manufacturer). The
resulting 48 bits form the physical address for that interface, which is fixed
in the hardware.

Next is the 16-bit type or length field. This is often used to describe the
high-level protocol in use, such as TCP/IP. It is followed by the data field,
ranging from 46 to 1500 bytes long. The final field is the frame check
sequence, which is a 32-bit CRC. This provides the frame with data integrity,
allowing receiver error detection.

If only a minimum amount of data (46 bytes) is being transferred, the
frame overhead is large (approximately 36% of the total frame). Using the
maximum size data field (1500 bytes) the overhead now becomes fairly small
(less than 2%).

As previously mentioned, the most popular Ethernet implementations
are 10BASE-T and 100BASE-T, using twisted-pair wiring. The 10BASE-T
system was largely responsible for the growing acceptance of Ethernet for
PCs in the 1990s. The signaling rate of 10BASE-T is 10 Mbits/sec. Of course,
the actual delivered data rate depends on network loading and the amount of
data contained in each frame, resulting in less than 10 Mbits/sec. I0BASE-T
is a point-to-point system, as opposed to multidrop, so it needs repeater hubs
to interconnect multiple computers (as previously shown in Figure 8-24).
10BASE-T uses an 8-pin RJ-45 modular connector, even though it needs only
four conductors for its two differential data pairs. Table 8-9 shows the pinout
for a 10BASE-T connector. The twisted-pair cable can be up to 100 meters
long.

10BASE-T’s differential signals are £2.5 V and use Manchester encod-
ing. In this scheme each bit interval has a clock transition, as shown in
Figure 8-26. At 10 Mbits/sec each bit is 100 nsec wide. When the clock in
the middle of the interval goes from high to low it is a 0 bit. When it goes
from low to high it is a 1 bit. This way a clock is transmitted along with the
data.

188 CHAPTER 8 Standard Hardware Interfaces

TABLE 8-9
10BASE-T Connector Pin Assignments

PIN # SIGNAL NAME DESCRIPTION
1 TD+ Transmit Data
2 TD- Pair
3 RD+ Receive Data
6 RD- Pair
4,5,7,8 N/C Unused
+2.5V
0
-25V— : : : :
100 nsec _i 100 nsec i 100 nsec i 100 nsec
BitValue : 0 . 0 i 1 io

Figure 8-26 10BASE-T Manchester encoding.

Ethernet is a means of delivering a data frame across a network. To be
useful, the data in that frame should be part of a high-level network protocol.
This protocol controls the actual communications between computers and
their application software. Ethernet is simply a messenger, unaware of high-
level protocols. This allows computers running different protocols (such as
NETBEUI and TCP/IP) to share the same Ethernet system.

8.4.2 TCP/IP

The most commonly used high-level network protocol is TCP/IP (transmis-
sion control protocol and Internet protocol). As with all network protocols,
TCP/IP uses data packets conforming to its own standard to communicate

8.4 PC Networks 189

with applications on different computers. These packets are independent of
the network hardware and topology used. For example, TCP/IP packets can
be transmitted just as easily using Ethernet or FireWire. Using Ethernet as a
common example, a TCP/IP packet is transmitted within the data field of an
Ethernet frame.

Since TCP/IP uses its own 32-bit addresses, when a computer wants to
send a TCP/IP packet using Ethernet it knows the TCP/IP address of the
destination computer but not necessarily its Ethernet address. Using TCP/IP’s
address resolution protocol (ARP), the source computer can broadcast a
request over the Ethernet LAN for the computer with the desired TCP/IP
address to respond with its Ethernet address.

The basic TCP/IP architecture is a series of layers and components that
make up these layers, collectively called the TCP/IP stack. Every layer in the
stack receives frames of data from the layer below it and sends frames to the
layer above. Figure 8-27 shows a simplified TCP/IP stack using Ethernet as
the physical layer.

The physical layer is the actual network hardware and control protocol,
such as Ethernet, which has its own physical address. The data link layer
isolates the software layers above it from the hardware. This layer handles

To Application Software

Transport Layer (TCP)

Network Layer (IP)

Data Link Layer

Physical Layer (Ethernet)

Figure 8-27 Basic TCP/IP stack.

190 CHAPTER 8 Standard Hardware Interfaces

the details of the TCP/IP frames. The network layer handles TCP/IP address-
ing and routing protocols. The transport layer controls the features required
for reliable, sequenced packet delivery. This includes retrying and sequencing
the packets to correct for any information lost at the lower layers. TCP/IP
assumes that the data link layer and physical layers are not necessarily reliable
and adds its own error recovery features.

This section has been just a brief introduction to networking technolo-
gies commonly used with PCs. For greater details, the reader is encouraged
to see the appropriate references listed in the bibliography.

This concludes our survey of common computer interfaces and proto-
cols used by PCs. In the next chapter we will look at data storage on the PC
as well as data compression techniques.

CHAPTER

Data Storage
and Compression
Techniques

Acquired data must be permanently stored by a PC to allow future retrieval
for display and analysis. The conventional storage devices available for PCs
use magnetic or optical media. Most of the general-purpose storage devices
(magnetic disk drives) use a random access, file-based structure. Magnetic
tapes, for archiving (backup) applications, use a sequential structure.

Since most application software, including data acquisition programs,
assumes data is stored on a magnetic disk (either a floppy diskette or a hard
disk), these are the storage devices we will consider here. Furthermore, we
will only consider MS-DOS and Windows files in this discussion, although
many of the basic principles covered will apply to other operating systems
and non-80x86 computers.

9.1 DOS Disk Structure and Files

A file is a logical grouping of data, physically located on a magnetic disk or
other permanent storage medium, such as a CD-ROM. The physical structure
of a magnetic disk consists of concentric rings, called cylinders, and angular
segments, called sectors, as shown in Figure 9-1. In addition, hard drives may
consist of multiple platters (more than one physical disk in the drive package).
The cylinder on a single surface of a disk is referred to as a track. The
read/write sensor used in a disk drive is the head. A double-sided floppy drive
has two heads (one for each side of the diskette). A hard drive with four

191

192 CHAPTER 9 Data Storage and Compression Techniques

Cylinder a
Cylinder b

" Cylinder ¢

/" Sector x

Sectorz Sector y

Figure 9-1 Physical organization of a magnetic disk surface.

platters has eight heads. The read/write heads usually move together as one
unit, so they are always on the same sector and cylinder (but not the same
side of the platter or disk). Therefore, a physical location for data on a disk
is specified by cylinder, sector, and head number.

The physical structuring of a disk into cylinders and sectors is produced
by the DOS FORMAT program (or the FORMAT command in Windows). In
addition, FORMAT also initializes a disk’s logical structure, which is unique
to DOS or Windows. Each sector on every disk track (or cylinder) contains
512 bytes of data, along with header and trailer information to identify and
delineate the data. This is why a formatted disk has lower storage capacity
than an unformatted disk. The first sector (on the first cylinder) of every
formatted DOS disk is called the boot sector. It contains the boot program (for
a bootable disk) along with a table containing the disk’s characteristics. The
boot program, which is small enough to fit within a 512-byte sector, is loaded
into memory and executed to begin running the operating system (DOS).

The boot sector is immediately followed by the file allocation table
(FAT). The FAT contains a mapping of data clusters on the disk, where a
cluster is composed of two to eight sectors (or more, depending on the
operating system and hard drive). A cluster is the smallest logical storage
area used by DOS or Windows. For floppy disks, a cluster is usually two
sectors (1024 bytes); it is larger for hard drives. The FAT contains entries for
all the logical clusters on a disk, indicating which are used by a file and which
are unusable (because of errors discovered during formatting). Each FAT
entry is a code, indicating the status of that cluster. If the cluster is allocated

9.1 DOS Disk Structure and Files 193

to a file, its FAT entry points to the next cluster used by that file. The file is
represented by a chain of clusters, each one’s FAT entry pointing to the next
cluster in the file. The last cluster in a file’s chain is indicated by a special
code in its FAT entry. This structure enables DOS (or Windows) to dynami-
cally allocate disk clusters to files. The clusters making up a particular file
do not have to be contiguous. An existing file can be expanded using unal-
located clusters anywhere on the disk.

Because of the way file clusters are chained, a corrupted FAT will
prevent accessing data properly from a disk. That is why DOS usually main-
tains a second FAT on a disk, immediately following the first one. This second
FAT is used by third-party data recovery programs (and in later versions of
MS-DOS, by SCANDISK) to “fix” a disk with a damaged primary FAT.
Another side effect of the dynamic cluster allocation ability of DOS (and
Windows) is that heavily used disks tend to become fragmented, where
clusters for most files are physically spread out over the disk. This slows
down file access, since the read/write heads must continuously move from
track to track to get data from a single file. Several commercial utility pro-
grams are available to correct this, by moving data clusters on a disk to make
them contiguous for each file and thus decrease file access time. Later versions
of DOS and Windows contain a DEFRAG program to do this.

The FAT (and its copy) on a DOS disk is followed by the root directory,
which contains all the information needed to access a file present on that drive.
This information is the file name and extension, its size (number of bytes), a
date and time stamp, its starting cluster number, and the file’s attributes. The
root directory is a fixed size (along with each file entry) so that DOS knows
where the disk’s data area, immediately following the root directory, begins.
This limits the number of files that can be placed in the root directory. For
example, an old 360-Kbyte, double-sided 5-1/4" floppy disk can only keep
112 entries in its root directory (which consists of four clusters of two sectors
each). If more files must be stored on this disk, subdirectories have to be used.
A subdirectory is a special file that contains directory information. It is avail-
able starting with DOS 2.0 and is used to organize groups of files on a disk.
It is especially useful with large storage devices, such as hard drives.

Hard disks have one additional special area, besides the boot sector, the
FAT, and the root directory. It is called the partition table. The information
in the table describes how the hard disk is partitioned, from one to four logical
drives. This information includes whether a partition is bootable, where it
starts, its ID code (it can be a non-DOS partition for another operating system,
such as UNIX), and where it ends. To get around the disk size limitation of
32 Mbytes in versions of DOS prior to 4.0, it was necessary to partition large
hard disks into smaller logical drives. This was usually done with a special
utility software package, or via the DOS FDISK program.

194 CHAPTER 9 Data Storage and Compression Techniques

Root Directory

[v] LEVEL 0

[suBt] [suB2][sue3 | [suB4 | LEVEL1

[suBsuB1 | | suBsSUB2 | [SuBSUB3] [SUBSUB4 | LEVEL 2
SSS LEVEL 3

Figure 9-2 Example of DOS directory structure.

The directory structure of a DOS disk can be described as an inverted
tree diagram, as illustrated in Figure 9-2. The root directory is symbolized
by the backslash (\) character. The root has a limited number of possible entries
that can be either standard files or subdirectories. A subdirectory is a variable-
size file (as are all DOS files), so its size and maximum number of entries is
only limited by the free storage space available on the disk. Each subdirectory
can contain conventional files along with other subdirectories. You can keep
adding level after level of subdirectories. In Figure 9-2, the top level (Level 0)
is the root directory, present on all DOS disks. Level 1 contains the first level
of subdirectories (Subl, Sub2, Sub3, Sub4), along with their files. Level 2
contains the subdirectories of Subl (Subsubl, Subsub2) and Sub3 (Subsub3,
Subsub4). Level 3 contains the subdirectory of Subsub3 (SSS). Note that
subdirectory names are limited to eight characters, as are all file names.
However, subdirectory names do not use a three-character extension, as other
files do.

To access a file via DOS, the path to the directory containing that file
must be specified, usually starting from the root (if the root is not explicitly
shown, the current default directory is assumed). In that path, directory levels
are separated using the backslash (\) character. For example, \SUBI\SUBSUB2
would be the path to the SUBSUB2 directory. A \ character is also used to
separate the directory path from the file name. For example, \SUB3\
SUBSUB3\SSS\DATA.001 would be the complete file specification allowing
DOS to locate the file DATA.001 in subdirectory SSS.

It should be noted that each directory level used on a disk requires DOS
to search an additional subdirectory file to locate and access the file requested.

9.2 Common DOS File Types 195

If many directory levels are used (such as greater than five) DOS file access
will be considerably slowed. You should use directories to organize your file
storage logically, especially with a hard drive. Just do not use more levels of
subdirectories than you need.

For instance, you might have a hard disk subdirectory containing your data
acquisition programs, called \ACQUISIT. You should keep your data files orga-
nized by projects or experiments, and separated into subdirectories, such as
\ACQUISIT\PROJ1, \ACQUISIT\PROJ2, etc. However, there is no need to put
each data file from the same project into its own subdirectory \ACQUISIT\
PROJI\TEST1, ACQUISIT\PROJI\TEST?2) unless they all have the same
name. So, \ACQUISIT\PROJ1 may contain TEST1.DAT and TEST2.DAT.

9.2 Common DOS File Types

Standard DOS and Windows file types are denoted by a three-letter extension
to the file name. We previously saw that .SYS files are loadable DOS drivers,
for example. DOS and Windows files can be broken down into two broad
categories: binary files and ASCII files.

In a binary file, data is stored in an unencoded binary format, just as it
would appear in system memory. The end of a binary file is determined strictly
from the file length recorded in its directory listing. Executable programs and
device drivers are example of the many types of standard binary files. Many
data file formats are binary.

In an ASCII or text file, the data is stored as printable ASCII characters
(see Chapter 8 for a discussion of the ASCII code). Each byte represents one
ASCII character that is either printable or a special control character. The
ASCII data is usually terminated by a control character signifying the end of
the file. The file’s directory listing still contains its file length. Various appli-
cation programs, such as editors and word processors, typically operate on
ASCII data files. We will now look at some of the standard DOS file types,
some of which are also common Windows file types.

9.2.1 .BAT Files

Under DOS, file names ending with the .BAT extension are considered batch
files. A batch file contains DOS commands that will automatically run, as if
they were a program. Batch files have some rudimentary program capabilities,
such as branching and conditional execution. For the most part, they are used
to automate a group of commonly executed DOS commands, including calling
application programs.

196 CHAPTER 9 Data Storage and Compression Techniques

.BAT files are always ASCII files. They are usually created with an
editor program, such as EDIT (part of DOS) or NOTEPAD (part of Windows).
As an example, let us assume we want to copy all the files with a .DAT extension
from a hard disk (drive C:) directory \TEMP to a floppy disk (drive A:) and
then delete the original files. We can create a file named TRANSFER.BAT,
with the following lines:

COPY C:\TEMP*.DAT A:
DEL C:\TEMP*.DAT

These instructions will be carried out by DOS when we give the TRANSFER
command (which executes TRANSFER.BAT). Note that a batch file is an
interpreted program. DOS reads each ASCII line and then executes it. There-
fore, it is relatively slow compared to performing the same function with a
dedicated, compiled program.

A useful feature of DOS batch programs is the ability to employ variable
data, which are ASCII strings. The contents of the variables used are specified
at run time, when the batch file is executed. When the batch program is
written, a percent sign (%) followed by a digit is used to represent the
appropriate parameter supplied with the command to run the batch file (%1
is the first parameter, %2 is the second, and so forth). Using this feature, we can
make TRANSFER.BAT more generalized, with the data files name in \TEMP
becoming a variable:

COPY C:\TEMP\%1 A:
DEL C:\TEMP\%1

To use this batch program to transfer all the .DOC files from CATEMP to A,
use the command

TRANSFER *.DOC

Batch files become more than just a list of commands when conditional
statements are used. The following example is a file called HIDE.BAT, which
changes a file’s attribute to hidden, via the DOS ATTRIB command (with the
+H option). The variable parameter (%1) is the name of the file to hide:

ECHO OFF

IF EXIST %1 GOTO OK

ECHO “SYNTAX: HIDE <file name>”
GOTO END

;0K

ATTRIB +H %1

:END

ECHO ON

9.2 Common DOS File Types 197

The ECHO OFF command tells DOS not to display the batch program lines
as it executes them (normally it would). At the end of the program, ECHO
ON turns this feature back on. The second program line checks to see if there
was a valid file name given with the batch file command, via IF EXIST. If
there was, execution jumps to the label :OK to execute the ATTRIB +H
command. Otherwise, it displays the quoted text in the ECHO command
(showing the proper syntax for the batch program) and jumps to the label
:END, skipping the ATTRIB +H command.

One special batch file used by DOS is called AUTOEXEC.BAT. This
file is executed by DOS after it boots up, if it exists in the root directory of
the disk. It is used to perform many initialization functions such as custom-
izing system parameters (i.e., changing the DOS prompt), calling an appli-
cation program needed at system startup (such as starting a network driver),
or changing the default directory. Windows will also run the AUTOEXEC.BAT
file.

Batch files can handle fairly complex tasks, but are best suited for
simpler, commonly performed functions that do not warrant the time and
trouble needed to develop a full-fledged program. The minimum functionality
of the DOS batch facility also limits the tasks that can be performed by a
batch file. In general, if you continuously repeat the same sequence of DOS
commands, that sequence is a good candidate for a batch file.

9.2.2 .TXT and Other ASCI! Files

Many file extensions are commonly associated with ASCII files, although
they are specified by application programs rather than by DOS itself. For
example, .TXT and .DOC are common ASCII file types in DOS. In Windows,
files with specific extensions are explicitly associated with particular appli-
cations: for example, .TXT files are usually associated with the text editor
NOTEPAD. Even when ASCII data is used by an application it is not always
“plain vanilla” (exactly following the 7-bit ASCII code). Some word processing
application programs mix ASCII with binary data in their files. Others use
the eighth bit of each character for special text formatting commands (such
as underlining), which ASCII does not directly support.

The DOS TYPE command displays an ASCII file on the video display.
If the displayed text appears garbled or has nonalphanumeric characters (such
as smiling faces), the file is not composed of plain 7-bit ASCII characters.

IBM BASIC and GW BASIC produced program files with the .BAS
extension. These files were usually modified ASCII, using special characters,
called tokens, to represent common BASIC commands. BASIC could save
its program files in plain ASCII, if specifically instructed. BASIC also

198 CHAPTER 9 Data Storage and Compression Techniques

produced ASCII data files that could be used by a variety of application
programs.

Many data acquisition and analysis programs will read or write ASCII
data files. This is very useful, since the data can be directly printed and easily
reviewed by different people or imported into another data processing appli-
cation, such as a spreadsheet.

9.2.3 .COM Files

DOS files with the .COM extension are executable programs in a binary
format. A .COM file contains a short program that must fit within a single
64-Kbyte memory segment, including all its data. The .COM file contains an
absolute memory image of the program. The contents of the file are identical
to the computer’s memory contents when the program is loaded.

When the command to run a program is issued, either by the user at
the DOS prompt or from another program via the DOS EXEC function call,
DOS determines whether enough free memory exists to load the program. If
not, it returns an error message. If there is adequate space, DOS determines
the lowest available memory address to use. This memory area is called the
program segment. At the beginning of the program segment (offset 0) DOS
creates the program segment prefix (PSP) control block. The program itself
is then loaded into memory at offset 100h of the program segment, since
256 bytes are reserved for the PSP. The PSP contains information needed to
execute the program and return to DOS properly. After the program is loaded
into memory, it begins execution.

A .COM program is automatically allocated all of the available system
memory. If the .COM program wants to run another program without termi-
nating itself first, via the DOS EXEC function call, it must first deallocate
enough memory for this secondary program. Even though a .COM program
must fit within a single 64-Kbyte memory segment, it can access memory
outside of its segment by changing its segment pointers (such as the data
segment pointer, DS).

Another idiosyncrasy of .COM programs is that they must begin exe-
cution at offset 100h of their segment (immediately following the PSP). Since
most .COM programs are written in Assembler, to minimize their size, they
would have the following statement, just prior to the start of the program code:

ORG 100H

This requirement is not a severe limitation, since the first program
statement can be a jump to some other section of code in the segment.

9.3 Windows File Systems 199

9.2.4 .EXE Files

The second DOS format for executable programs is the .EXE file, which is
another type of binary file. This format is also used under Windows. Programs
in the .EXE format tend to be much larger and more complex than .COM
programs. They can span multiple segments, both for code and data. In
addition, they are relocatable and the exact locations of various parts of the
program are determined at execution time by DOS. Furthermore, they are not
automatically allocated all available memory, as .COM programs are.

To accommodate this flexibility, DOS .EXE files begin with a special
header area. The first two bytes of this header begin with 4Dh and 5Ah (in
ASCII, “MZ”) to indicate to DOS that this is an .EXE program. The rest of
the header contains various information including the length of the program,
the length of the file, its memory requirement, the relocation parameters, and
where to begin program execution. Unlike .COM files, .EXE programs do
not have a fixed starting point for program execution. In an .EXE file, the
header is immediately followed by the program itself.

When DOS attempts to run an .EXE program, it first reads the header,
determines whether enough free memory is available, creates the PSP, loads
the program, and starts its execution. Because of their larger size and the
extra work DOS must do, .EXE programs tend to load more slowly than
.COM programs. The vast majority of commercial DOS applications are .EXE
programs. Some are so large that they need more than the maximum available
DOS memory area of 640 Kbytes. They typically make use of overlays to
accommodate large code areas and use expanded or extended memory (when
available) to handle large data-area requirements.

When a program is developed using a standard compiler (such as Macro
Assembler, C, Pascal, or FORTRAN) under DOS, an .EXE file will be
produced by the final linking process (see Chapter 13 for a discussion of
programming languages and the various compiling processes). If the program
was written to fit within a single 64-Kbyte segment, it can be successfully
converted into a .COM file, using the DOS program EXE2BIN. If program
file size or load time do not need to be minimized, it is not necessary to
convert an .EXE program into a .COM program. When given the choice
between the two executable program formats, it is usually advantageous to
keep the flexibility of an .EXE program.

9.3 Windows File Systems

MS Windows, up to version 3.11 (Windows for Workgroups), used DOS for
all file services. Files were accessed through the standard DOS FAT, in real
mode (16-bit mode).

200 CHAPTER S Data Storage and Compression Techniques

In MS-DOS, up to version 3.3, the FAT used 12-bit values for numbering
clusters. This was referred to as a 12-bit FAT. This 12-bit value accounted
for the 32-Mbyte limit DOS had as a maximum disk or partition size: the
maximum number of clusters was 4096 (2’2), while the maximum cluster size
was 8192 bytes (4096 x 8192 bytes = 32 Mbytes). Starting with DOS version
4.0, the FAT used 16-bit cluster values (it was a 16-bit FAT). This allowed
the cluster size to shrink to 2048 bytes while increasing the maximum disk
size to 128 Mbytes. Smaller cluster sizes make more efficient use of disk
space since a cluster is the minimum amount of disk storage used by a file
(or the last piece of a file).

As hard drive capacity grew, so did DOS and FAT cluster size, reaching
a maximum of 32 Kbytes. This limits a hard disk (or partition) to 2 Gbytes
capacity with a 16-bit FAT.

9.3.1 Windows 95 File System

Microsoft Windows 95 was the first version of Windows to abandon DOS.
Windows 95 incorporated its own protected-mode (32-bit) file management
system that originally used a 16-bit FAT. Using this protected-mode system,
Windows no longer had to switch into real mode for file services (as in
Windows 3.1 or earlier versions), which was slow and inefficient.

In Windows 95 version 950b, Microsoft changed the FAT to a 32-bit
version. This 32-bit FAT can address disks as large as 2048 Gbytes (with 32-
Kbyte clusters). Later versions of Windows, such as Windows 98 and Windows
NT 4.0, use a 32-bit FAT. This 32-bit FAT structure is not compatible with
the older 16-bit FAT. Installing it requires overwriting an entire hard disk
drive and its operating system.

Starting with Windows 95, Microsoft introduced a new, layered file
system architecture, referred to as the installable file systems (IFS) architec-
ture. The IFS supports multiple file systems such as the VFAT file system
and the CD-ROM file system (CDFS). The IFS allows additional file systems,
such as network support components, to be added as needed.

The VFAT file system is a 32-bit protected-mode FAT that fully supports
multitasking. By providing 32-bit file access and 32-bit disk drive access, VFAT
significantly improves file I/O performance over MS-DOS and Windows 3.1.
The CDFS is a 32-bit protected-mode file system that provides improved
CD-ROM performance (compared to DOS drivers) along with multitasking
support.

Figure 9-3 shows the Windows 95 IFS architecture. The IFS manager
is the only interface to application software (as opposed to DOS, where a
program could access disk sectors directly, via a BIOS call to INT 13h).

9.3 Windows File Systems 201

Application Software

¢

Installable File System (IFS) Manager

§ H i

. 32-bit CD-ROM Additional File
32(\-/b£A_|[:_/)°\T File System Systems (from
(CDFS) other vendors)

¢ H ¢

Block 1/0O Subsystem

input/Output Supervisor (I0S)

Additional Layers
(VTD, VSD, etc.)

Drivers: Port and Miniport

Figure 9-3 Windows 95 installable file system (IFS) architecture.

Under the IFS manager are the various file systems such as VFAT and CDFS.
Below the file systems is the block I/O subsystem, consisting of a series of
layers that interact with the disk hardware through low-level drivers. The
input/output supervisor (I0S) acts as an interface between higher layers and
the file system drivers. The IOS queues file service requests and routes them
to the appropriate driver.

Only 32-bit protected-mode drivers are used in the IFS. The additional
layers in Figure 9-3 include the volume tracking driver (VTD), which
manages removable devices (such as floppy disks), and the vendor supplied
driver (VSD), which can intercept I/O requests for a particular device
without having to deal with low-level (hardware) details. This is especially
useful for adding special processing to disk files, such as data compression/
expansion.

202 CHAPTER 9 Data Storage and Compression Techniques

9.3.2 Windows NT File System

Windows NT and its successors (such as Windows 2000) can use the same
VFAT file system as Windows 95, Windows 98, or later versions. However,
these operating systems also support the NT file system (NTFS), which has
a different structure along with more sophisticated security features.

NTES is based on a master file table (MFT) that stores all the informa-
tion describing each file and directory on a hard drive. Each MFT entry is a
record up to eight sectors (4 Kbytes) long, containing data on its associated
file or directory. This data is a set of attributes that include the file name,
creation date, last modification date, the type of data in the file, and so on.
Each file has a unique 48-bit identification number.

NTFS uses sectors (512 bytes each) instead of clusters to allocate
storage space, with 32-bit relative sector numbers to identify disk locations.
This allows NTFS to access up to 2048 Gbytes (2°° x 512 bytes) of disk
space (equivalent to a 32-bit FAT) while allowing greater efficiency when
storing many small files. NTFS also allows file names to be as long as 254
characters (as with Windows 95).

NTFS is organized to access data faster than FAT-based file systems
while minimizing disk fragmentation. For example, when a file is opened,
NTFS preallocates sectors to it, reserving a block of contiguous disk storage
space (all of which may or may not be used). NTFS also places directories
near the center of a disk to speed up directory searches.

Since Windows NT is designed for a multiuser, networked computing
environment, NTFS supports all of NT’s security features. These include
controlling the rights to read, create, modify, or delete both files and directories
on an individual user or group basis.

9.4 Data Compression Techniques
]
Data acquisition applications usually involve the creation and storage of large
amounts of unprocessed data. If a particular test was acquiring 16-bit data at
the modest rate of 10,000 samples/sec, 1 minute of data would require 1.2
Mbytes of storage. Ten minutes of unprocessed data would require 12 Mbytes
of storage. Data at this rate could fill a small hard drive after a relatively modest
number of tests. That is why data compression techniques are so important.
If large amounts of data need to be transferred between remote systems,
data compression not only reduces the storage requirements for the data—it
also reduces the transfer time needed (and its inherent cost). If data is being
sent serially via modem, even at the relatively fast rate of 38,400 bps, it would
take more than 4 minutes to transfer 1 Mbyte of data.

9.4 Data Compression Techniques 203

Many different techniques are employed to reduce the storage require-
ments of large amounts of data. The most important measurement of a par-
ticular technique is its compression ratio: the size of the original data divided
by the size of the compressed data. Another important parameter of a data
compression technique is its fidelity or distortion. This is a measure of the
difference between the original data and the compressed/restored data. In
many applications, no data distortion can be tolerated, such as when the data
represents a program file or an ASCII document. This would call for a lossless
compression technique. A relatively low compression ratio would be expected
then. In other cases, a small but finite amount of distortion may be acceptable,
accompanied by a higher compression ratio, using a lossy technique. For
example, if the data in question represents a waveform acquired at a relatively
high sampling rate, storing every other point is equivalent to filtering the
waveform and producing a small amount of distortion, particularly for high-
frequency components in the data.

Thus, the nature of the data dictates the parameters important to the
data compression process and helps indicate which technique is best suited.
The general trade-offs are between compression ratio and fidelity. An addi-
tional factor, usually less important, is the amount of time required to com-
press or restore the data using a particular technique. This can become an
important factor if the data compression is done in real time, along with the
data acquisition or transmission.

We will now look at various data compression techniques and their
appropriate applications. Most of the techniques, unless otherwise noted, are
primarily useful for files containing numerical data.

9.4.1 ASCII to Binary Conversion

Sometimes there are very obvious ways to reduce the size of a data file. If a
set of numerical data is stored in an ASCII format (as many commercial data
acquisition application programs are), encoding it directly as binary numbers
could produce large space savings. For example, if the data values are signed
integers within the range of £32,767, they can be represented by 2 bytes
(16 bits) of binary data. These 2 bytes would replace up to seven ASCII
characters, composed of up to five digits, one sign character, and at least one
delimiter character, separating values. This ASCII-to-binary conversion would
produce a maximum compression ratio of 3.5:1 with no distortion. Even if
the average value used four ASCII digits (1000-9999) the compression ratio
would still be 3:1. After this conversion, other techniques could also be
applied to the data set, further increasing the data compression.

204 CHAPTER 9 Data Storage and Compression Techniques

9.4.2 Bit Resolution and Sampling Reduction

When a set of data represents numerical values, as in a waveform or data
table, the number of bits used to represent these values determines the min-
imum resolution and the maximum dynamic range. As we saw previously,
the minimum resolution is the smallest difference that can be detected
between two values, which is one least significant bit (LSB) for digitized
numbers. The ratio between the maximum and minimum measurable values
determines the dynamic range:

Dynamic range (in dB) = 20 X log(max/min)

If lowering the resolution can be tolerated, data compression can be easily
and quickly implemented. The resulting compression ratio is simply the
original number of bits of data resolution divided by the new (lower) number
of bits.

As an example, let us assume we have a set of data acquired by a 12-bit
ADC system, with a dynamic range of 4096:1 or 72 dB. We first search the
data set for the minimum and maximum values (we will assume the data is
represented as unsigned integer values, for simplicity). In this example, the
minimum value is 17 and the maximum is 483. A data range of 17-483 can
be represented by 9 bits without any loss of resolution (or fidelity) for a
compression ratio of 12/9 = 1.33:1. If the minimum value was larger, such
as 250, the difference between maximum and minimum, now 233, can be
represented as fewer bits (8, for a range of 0-255) than the full range of zero
to the maximum value (483). In this case, we can get a compression ratio of
nearly 12/8 = 1.5:1 by subtracting the minimum value from all the data points.
The minimum value must then be included with the 8-bit data, so the correct
values can be reconstructed. Adding a single 12-bit value to the compressed
data is very little overhead when many points are contained in the waveform.

The simple technique just described is useful when the acquired data
does not fill the entire dynamic range of the data acquisition system. Then,
the unused bits of resolution can be discarded without causing any data
distortion. Most of the time, we do not have this luxury. To highly compress
a set of data we usually have to sacrifice some resolution.

Still using a 12-bit data acquisition system, let us assume a data set has
a minimum value of 83 and a maximum value of 3548. Now, maximum —
minimum = 3465, which still requires 12 bits of resolution. If we have to
compress this data, we will lose some resolution. Assuming we need a min-
imum compression ratio of 1.5:1, we can normalize the data to 8 bits. To do
this, we multiply all the data values by the new maximum value (255, for
8 bits) and divide them all by the original maximum value (3548). The number
3548/255 = 13.9 is the scaling factor. Either this scaling factor or the original

9.4 Data Compression Techniques 205

maximum value is kept with the normalized data, to enable its restoration to
the proper values and dynamic range. The data can be restored to its full
dynamic range, but its resolution will be 14 times coarser, because of the
rounding off that occurred when the data was normalized. Any two original
data points that were separated by values of less than 14 will no longer be
distinguishable. So, if two data points had original values of 126 and 131,
after normalizing to 8 bits (dividing by 13.9), they will both be encoded as
9 and restored as 125.

Figure 9-4a shows a simplified flowchart for an algorithm that compresses
a set of data by reducing the number of bits used to represent it. As we see, this
approach can produce a loss of fine details, due to lower resolution. To exploit
this form of compression, the data must be stored efficiently. Figure 9-4b shows

Input new # of bits
of resolution —> n

!

Scan input data for
maximum value

!

New data value =
Orig Val x 2"/max

}

Store compressed
value

(a) Simplified flowchart for resolution reduction algorithm

Value 3 Value 2 Value 1 Value 0
D|D(D|DID|D|D|D|D(D|ID|D|D|D|D(D|D{D|D|D|D|D|D|D
5|4|3(2|1{0|5|4({3|2{1|0|5(4(|3]|2[1|0|5(4|3]|2(1]|0

Byte 2 Byte 1 Byte 0

(b) Data packing resulting from n = 6 bits per value

Figure 9-4 Data compression via resolution reduction.

206 CHAPTER 9 Data Storage and Compression Techniques

data compressed to 6 bits per value. Four point values are stored in three data
bytes, where each byte contains the bits from two adjacent values.

Another simple approach, often more acceptable than extreme resolu-
tion reduction, is sampling reduction. If the maximum frequency content of
the digitized data is well below the Nyquist frequency, the effective sampling
frequency can be reduced. For example, if an original set of data was filtered
to limit its high end to 1 kHz, while being sampled at 10 kHz, the Nyquist
frequency is 5 kHz. If every pair of adjacent values was averaged and stored,
the effective sampling rate would be reduced to 5 kHz and a compression
ratio of 2:1 would result. For this new set of data, the Nyquist frequency is
also reduced by 2 to 2.5 kHz, still well above the maximum frequency content
of the data.

This sample compression technique still distorts the data, as does the
bit compression previously described. Still, if the high-frequency data artifacts
lost are mostly noise, there is little harm done.

9.4.3 Delta Encoding

Another popular technique for compressing strictly numerical data is delta
encoding. This approach is especially useful when the data represents a
continuous waveform with relatively low instantaneous slopes. In such a set
of data, the difference between adjacent points is small and can be represented
by far fewer bits than the data values themselves. Delta encoding consists of
keeping the first value of the data set at its full bit resolution, as the starting
point. All subsequent values are differences, or deltas, from the previous
value, using fewer bits. This is a lossless technique.

To illustrate this, Table 9-1 contains a data set of 11 original values,
which require 12 bits each for full binary representation. The delta-encoded
numbers start with the first, original 12-bit value. The next number is +20,
the difference between the second and first values. The next delta-encoded
number is +30, the difference between the third and second values. This
continues until the delta between the last and next-to-last values is computed.
Examining the delta-encoded numbers shows us that they all fit within the
range of +31 and can be represented by 6 bits (1 bit is for the sign). If we
do use 6 bits for each delta value, the delta-encoded data set would require
10 X 6 + 12 = 72 bits for storage (remember, the first value is at full 12-bit
resolution), compared to 11 X 12 = 132 bits for the original data set. The
compression ratio here is 1.83:1. It will approach 2:1 as the size of the data
set grows and the overhead of the first 12-bit value becomes negligible.

The key to getting high compression ratios with delta encoding is to
use as few bits as possible to represent the delta values. One common problem
with most data sets is that a small number of bits can represent most of the

9.4 Data Compression Techniques 207

TABLE 9-1
Example of Delta Encoding a Small Data Array

ORIGINAL VALUES |DELTA ENCODED VALUES
3125 3125
3145 +20
3175 +30
3185 +10
3193 +8
3201 +8
3192 -9
3183 -9
3170 -13
3152 -18
3130 -22

delta values, while a few deltas require many more bits, because of occasion-
ally high local slopes or transient spikes. Instead of increasing the number
of bits for delta representation to accommodate a very small number of
anomalous values, an escape code can be used. Let us assume that our data
set is still using a 6-bit delta representation (£31) and a delta value of +43
comes along. We can designate one of the least-used delta values as the escape
code; either +31 or =31 would be a good choice. This escape code would be
followed by the full-resolution 12-bit value, which cannot be represented by
a small delta value. After this number, delta values continue as before. So, if
we had a data set with 128 12-bit numbers, using 6-bit delta encoding that
handled all but three values, the total number of bits encoded would be:

124 x 6 +4 x 12 =792

for a compression ratio of 1.9:1. If the three anomalous values could be
accommodated by 8-bit delta numbers and no escape codes were used, the
total number of bits would be

127 x 8 + 12 = 1028

for a compression ratio of 1.5:1. Obviously, the judicious use of escape codes
for infrequently large delta values will produce the best compression ratio.
If the escape code is used too often, the compression ratio can decrease
severely (it could even become less than 1:1 if a large fraction of values use
the escape code).

208 CHAPTER 9 Data Storage and Compression Techniques

With the appropriate data set, delta encoding can produce reasonable
compression ratios with no data distortion. If it is combined with a statistical
technique, such as Huffman encoding (described later), even higher compres-
sion ratios can be obtained, without any data distortion. One drawback to
delta encoding, especially when used to transfer data via potentially error-
prone means (such as over a telephone line via modems), is that once an error
occurs in the compressed data set, all values following it will be erroneous.
As with any other set of compressed or encoded data, it is always a good
idea to include error detection information with the data, such as a checksum
or CRC. If the block of data is large enough (for example, several hundred
bytes) the overhead from the few extra error detection bytes will have a
negligible impact on the overall compression ratio, while increasing the
integrity of the data tremendously.

9.4.4 Huffman Encoding

Many compression techniques are based on statistical relationships among
items in a data set. One of the more popular statistical methods is Huffiman
encoding. This technique will only work well if a relatively small number of
data set members (possible numerical values or characters) have a high
probability of occurrence. If nearly all possible values (or characters) have
equal probability of occurrence (a random distribution) this method will
actually produce a compression ratio of less than 1:1.

Basically, Huffman encoding employs a variable number of bits to
represent all possible members of the data set. Data set members with a high
probability of occurrence use the smallest number of bits (fewer than the
unencoded number of bits) while those members with very low probabilities
use larger number of bits (sometimes more than the unencoded number of
bits). The bit values are chosen so that there is no confusion in decoding the
encoded data. Huffman encoding produces no data distortion (it is a lossless
technique). The restored data is identical to the original, uncompressed data.
The amount of data compression produced by this technique varies with the
statistical distribution of the data set used.

ASCII data representing English text is commonly compressed using
Huffman encoding, since the probability of occurrence of the various alpha-
numeric characters is well known. Certain vowels, such as e or a, or even the
space character will occur very frequently while other characters, such as x
or z, will occur very rarely. The common characters may need only 3 or 4
bits to represent them in a Huffman code, while the uncommon ones may
require more than 7 or 8 bits. A typical ASCII document may average around
5 bits per character using Huffman encoding. If the original data was stored
as 8-bit characters, this produces an average compression ratio of 1.6:1.

9.4 Data Compression Techniques 209

TABLE 9-2
Data for Huffman Encoding Example

DELTA VALUE PROBABILITY | HUFFMAN CODE # OF BITS
+1 0.20 00 2
-1 0.20 01 2
+2 0.15 100 3
-2 0.15 110 3

0 0.10 1010 4
+3 0.05 1110 4
-3 0.05 10110 5
-4 0.02 11110 5
-5 0.02 101110 6
+4 0.01 1011110 7
+5 0.01 1011111 7
+6 0.01 1111100 7
+7 0.01 1111101 7
-6 0.01 1111110 7
-7 0.01 1111111 7

Huffman encoding is often used with other techniques, such as delta
encoding, to further increase a data set’s compression ratio. To implement
Huffman encoding, the statistical probability of occurrence of each possible
data set member (numerical value or ASCII character, for example) must be
known. Table 9-2 shows a simple example of a set of 4-bit delta encoded
values, in the range 7. Only a few delta values have very high probabilities.
Just five of the possible 15 delta values account for 80% of the data set (1 =
20%, £2 = 15%, 0 = 10%). In fact, a crude figure of merit can be calculated
by taking this major subset of data values and dividing its total probability
of occurrence (here, 80%) by the fraction of possible values it represents (in
this case 5/15 = 0.33). For our example, this figure of merit is 0.80/0.33 =
2.4, which is good enough to warrant using Huffman encoding. A figure of
merit below 2.0 would not be very promising for Huffman encoding.

Figure 9-5 shows a graphical method used to implement Huffman
encoding. This approach is only manageable with small data sets, as in our
example. The algorithm can readily be translated into a computer program
for data sets with a large number of members (such as 7-bit ASCII characters).

First, we start with the data set of 15 possible values, listed in order of
probability of occurrence, from Table 9-2. The data values (deltas) are listed

210 CHAPTER 9 Data Storage and Compression Techniques

Delta Value | -7 —- +7 +6 +5 +4 -5 -4 -3 +3 [-2 +2 -1 +1
(Probability) | (.o1) [} (o) [} con]| Lo || con|]on 1|02 [{co2]]os)]] o)t 10y || 18]] (15]| (20) || (20)
1 0 1 (] 1 0 N\ /0

[(02)] (40)

1.06)

Figure 8-5 Example of graphical approach to determining Huffman codes.

across the top of the figure along with their probabilities (in parentheses),
which should all add up to 1.00. To start, we draw pairs of lines connecting
the lowest probability values—in this case, the .01 values at the left side of
the diagram. At the vertex of the two lines connecting these pairs, we write the
sum of their probabilities (.02, in this case). We continue pairing off and
summing probability values, until all the values are used and the overall sum
at the bottom of the diagram is 1.00.

Now, we arbitrarily assign a binary 1 to every line that points up to the
left and a binary 0 to each line that points up to the right, differentiating the
paths used to get from the 1.00 probability value up to the original delta
value. Finally, each line connecting the 1.00 vertex to a delta value’s starting
point, at the top, represents a bit. We could have just as easily reversed the
I's and 0’s. The code for each delta value is the concatenation of bit codes
used to trace its path, starting at 1.00.

So, the Huffman code for delta value +1 is 00, and the code for —1 is
01, each only 2 bits long. The paths for delta values +2 and -2 use three lines
(for 3 bits) and are, respectively, 100 and 110. All the other delta values are
assigned their codes in the same way. Values 0 and +3 use 4 bits, -3 and -4
use 5 bits, —5 uses 6 bits, and all the other values use 7 bits. As we see, the
delta values with the highest probabilities use the smallest number of bits.

9.4 Data Compression Techniques n

When the encoded data is restored, the codes with the smallest number
of bits are tested first. If no match is found, the number of bits tested expands,
until a valid code is located. If no valid code is determined after examining
the maximum number of bits, an error is assumed.

Using the Huffman codes in Table 9-2, let us see how the following
encoded binary string would be decoded:

111000101111001

First, we look at the first 2 bits, 11, which are not a valid 2-bit code (only
00 or 01 are valid). Looking next at the first 3 bits, 111, we do not see a valid
3-bit code (only 100 and 110 are valid). When we check the first 4 bits, 1110,
we find a valid code for +3. The remaining bits are now

00101111001
The first 2 bits here, 00, are a valid code for +1. We are now left with
101111001

Here, there are no valid 2-, 3-, 4-, 5-, or 6-bit codes. The first code to match
is the 7-bit code for +4, 1011110. The remaining 2 bits, 01, are the valid code
for —1. So, the decoded delta values in this 15-bit binary string are +3, +1,
+4, and —1. Of course, in a practical implementation, a program would use
this search algorithm.

We can calculate the average number of bits a delta entry from Table 9-2
would use when encoded this way, and hence, the compression ratio. We just
sum the product of the probability times the number of bits in the Huffman
code for each delta value:

m=p0><n0+p1><n1+---+pk><nk

where

m = average number of encoded bits

p; = probability of occurrence for the ith data set value
n; = number of encoded bits for ith data set value

k = number of values in the data set

If n is the number of bits per value in the original data set, the com-
pression ratio is simply n/m. In our example, m = 3.19 bits and the compres-
sion ratio is 4/3.19 = 1.25:1, which is not very large. However, since the data
was already delta encoded, the original compression ratio (say, 2:1) gets
multiplied by the Huffman encoding compression ratio (1.25:1) to give a

212 CHAPTER 9 Data Storage and Compression Techniques

larger overall compression ratio (2.5:1). Sometimes, this particular combina-
tion of compression techniques is referred to as delta Huffman encoding.

If a data set contained many more members than this previous example
while maintaining a large percentage of values represented by very few
members (with a large figure of merit), the compression ratio provided by
Huffman encoding would be much larger. As with delta encoding, it may be
useful to implement an escape code for the rare value that will not fit within
the set of encoded values. In our example, it would be a delta value greater
than +7 or less than —7. By its very nature, the escape code would be a very
low probability code, with a relatively large number of bits.

9.4.5 Run Length Encoding

One data compression technique that is extremely useful with data sets con-
taining large amounts of redundant information is run length encoding (RLE).
This approach is commonly used on graphics and video data at fairly high
compression ratios without producing any data loss or distortion.

In essence, RLE replaces a contiguous set of identical data values with
a single count value. In video or graphics data, an image may contain large
monochrome areas (such as white space) that are pixels having the same color
and intensity value. Replacing a string (or run) of these identical pixels with
a count code significantly reduces the amount of data without losing any
information.

For example, a basic VGA display has an array of 640 x 480 pixels.
Typically, 3 bytes (24 bits) are used to represent each pixel. So, the repre-
sentation of an entire screen requires 921,600 bytes of storage.

Let us assume that in a typical VGA graphics image about 75% of the
screen data are in monochrome sections (black, white, or a constant color).
Also assume that on average, these monochrome areas occur as runs that are
100 pixels long in each VGA line (remember, this is a bit-mapped display,
arranged as a raster scan).

We will use a unique 3-byte escape code to represent an RLE entry
(instead of a pixel value), along with a 3-byte count value. To represent the
encoded run, we need 9 bytes: 3-byte RLE code + 3-byte pixel value + 3-byte
count value. So, our algorithm would only replace a constant-value pixel run
with an RLE code if it is more than three pixels long.

In our example, 75% of the original 921,600 bytes (or 307,300 pixels)
are monochrome in runs that average 100 pixels. So, the total number of these
runs would be

0.75 x 307,200 pixels
100 pixels/run

= 2304 runs

9.4 Data Compression Technigues 213

Since each run needs only 9 bytes to represent it, 75% of the data is com-
pressed to 9 x 2304 = 20,736 bytes. The remaining 25% of the data (uncom-
pressed) is 0.25 x 921,600 = 203,400 bytes. So, the total compressed data
size is 203,400 + 20,736 = 251,136 bytes. This gives us an overall compres-
sion ratio of 3.67:1.

Of course, even in the nonmonochrome regions of a typical graphics
display there will be some redundant information. In such a case, it is not
unusual to achieve compression ratios of greater than 10:1 with RLE.

Since RLE is a lossless compression method, it can also be applied to
typical data acquisition data sets if they contain large amounts of redundant
information. For example, if a data set has many idle values (such as 0) in
between events, they can be represented by an RLE code. RLE is often used
by many general-purpose data compression software products.

9.4.6 Significant Point Extraction

Some compression techniques are used exclusively on data points that con-
stitute a waveform. Significant point extraction is a generalized technique that
reduces the number of points required to describe a waveform. This approach
causes varying degrees of data distortion, but can provide large compression
ratios (in the range of 5:1 to 10:1, for example).

Significant point extraction operates on a digitized waveform, consisting
of either a one-dimensional array of amplitude (y) values acquired at known,
constant time intervals or a two-dimensional array of (x, y) coordinates. The
one-dimensional array is the most common form of storage for values saved
by a data acquisition system. The data is analyzed point-by-point to see where
a group of adjacent points can be replaced by a straight line. The discarded
point values can be estimated by interpolating from this line. Only the sig-
nificant points required to produce a close approximation of the original
waveform are retained.

Figure 9-6a illustrates a typical digitized waveform with significant
points indicated by X characters. If the original waveform was composed of
100 points, extracting only 10 significant points produces a 10:1 point com-
pression ratio (the actual byte compression ratio will be smaller). The signif-
icant points include the waveform boundary points (start and stop) as well
as places where the slope and/or amplitude change dramatically. Figure 9-6b
shows the waveform reconstructed from the significant points. Note that some
of the finer details are lost, while the gross waveform structures remain. The
acceptability of this distortion depends on the application of the waveform
data. Often, the distortion is determined quantitatively, such as by the root

214 CHAPTER 9 Data Storage and Compression Technigues

(a) Original waveform with significant points noted by x

(b) Waveform reconstructed from 10 significant points

Figure 9-6 Example of significant point extraction and reconstruction.

mean square (RMS) deviation of the reconstructed data points from the
original data points:

d = {[(m = m) + (= m)” + - + (= m)"Vj} "
where

d = RMS distortion
n; = value of ith original point

m; = value of ith restored point

{1

Jj = number of points in waveform

One method of determining the significance of a point in a waveform
is to calculate its local curvature. This is a measure of how much a waveform
deviates from a straight line in the vicinity of a point. To illustrate, Figure 9-7a
contains a simple waveform with one peak, composed of 23 points. To
calculate local curvature, we pick a window size—in this case 3 points—
to consider the curvature around each point. If this window is too small, the
calculation is not very significant. If the window is too large, local details
tend to be averaged and lost (“washed out”). If the window is 2n points wide,
we first start looking » points from the end of the waveform, in this case from
the left side.

Since this is a one-dimensional array, the x-direction increment is con-
stant for each point and we only need to look at data in the y direction
(amplitude). For each point, number i, we do two scans from left to right.

9.4 Data Compression Techniques 215

LC Window

x = significant point

Point# 0 1 2 3 456 7 8 9 1011121314 151617 1819 20 21 22
(LC Value) 0123212 4642123210

(a) Measuring local curvature (LC) with +/-3 point window

(b) Reconstructed waveform from 5 significant points

Figure 9-7 Using local curvature maxima to determine significant points.

The first scan starts at point i — n and ends at point i and the second starts at
point i and ends at point i + »n. This means that we cannot scan the first or
last n points in the waveform completely. For the first scan, we have two
counters: dy+ and dy—. Starting with the leftmost point in the scan window,
if the next point is more positive than the previous point we increment dy+;
if it is more negative, we increment dy— (if it is unchanged, we leave the
counters alone). We continue with the next pair of points until we get to the
end of our scan (point i). The second scan starting at point i is similar, except
now if the new (rightmost) point is more positive than the previous point we
decrement counter dy+ and if it is more negative we decrement dy— (if it is
unchanged we leave the counters alone). After completing the £# points scan,
the local curvature (I¢) is the sum of the absolute values of these two counters:

Ic = |dy+| + |dy-]|

In Figure 9-7a, we cannot calculate the local curvature for points 0-2
and 20-22. Starting at point 3, after the first scan (from point O to point 3),
dy+ =0 and dy- = 0. After the second scan (from point 3 to point 6), dy+ =
0 and dy— = 0. So, for point 3, the local curvature is 0, or 1c(3) = 0. For point
4, from the first scan dy+ = dy— = 0, while from the second scan dy+ =1
(since point 7 is greater than point 6) and dy— = 0. So, Ic(4) = 1. These
calculations of lc continue for the rest of the waveform, up to point 19. We
notice at the peak, Ic(11) = 6.

216 CHAPTER 9 Data Storage and Compression Techniques

Once the Ic values are calculated, we can pick the significant points as
the locations of the local curvature maxima. In this example, these are points
6 (Ic =3), 11 (Ic = 6), and 16 (Ic = 3). We also keep the first and last points (0
and 22) of the waveform as significant, since they are the boundaries. There-
fore, we have reduced a 23-point waveform to five points, for a point com-
pression ratio of 4.6:1. Figure 9-7b shows the waveform reconstructed from
these five significant points.

There are many variants on using this local curvature technique to
extract significant points. A minimum threshold could be selected that max-
imum lc values must reach before the corresponding point is considered
significant. Another approach is to use amplitude weighting in the lc calcu-
lations. The dy+ and dy— counters, previously described, produce an unweighted
measure of local curvature, where a large amplitude change counts as much as
a small change in the same direction. They could be weighted by the relative
amount of amplitude change, not just direction. When dy+ and dy— would
ordinarily be incremented or decremented by 1, they now increase or decrease
by the amount of amplitude change between two adjacent points. This would
help distinguish meaningful signal peaks from noise.

9.4.7 Predictive and Interpolative Techniques

Significant point extraction is a particular data compression method, related
to the generalized techniques based on predictors and interpolators. These
are algorithms that operate on waveforms or other data streams and produce
compression by reducing the amount of redundancy present in that data. As
long as the data set is not random, there is some correlation between adjacent
data values that can be exploited. Predictive encoding techniques use the
information contained in previous data samples to extrapolate (or predict) the
value of the next data sample. This approach is used extensively in data
communications systems for compressing data streams “on the fly,” just prior
to transmission (often using dedicated hardware). This extrapolation is done
by fitting a function (or polynomial) to the existing data. Usually, only a zero-
order (constant) or first-order (linear) function is used, since high-order func-
tions tend to be very sensitive to noise and can become unstable.

The simplest extrapolation method is the zero-order predictor with a
fixed aperture. In Figure 9-8a, a sample waveform is shown with its discrete
points. Starting with the first data point, a vertical aperture (or window) of
fixed amplitude, 24, is drawn around the first point. Additional 24 windows
are extended over the full amplitude of the waveform. The first point is always
saved, and saved points are denoted by the X character. If the next point’s
amplitude fits within the same 2d window, it is discarded; otherwise it is saved.

9.4 Data Compression Techniques 217

X = Saved Point
............................. o = Discarded Point

1 window 15

. A
window 5 I window 16
window 9

window 0

0 5 10 15
Sampling Intervals

(a) Original waveform with sampled points (0 or x) and ZOP windows

0 5 10 15
Sampling Intervals

(b) Reconstructed waveform from saved points

Figure 9-8 Zero-order predictor (ZOP) used for waveform data compression.

After determining a new point to save, subsequent points that fit within the
new 2d window are discarded. Of course, the x coordinate (usually time) of
the saved points must also be kept.

Figure 9-8b shows the reconstructed waveform, using only the saved
points from Figure 9-8a. Notice how using a zero-order predictor tends to
“flatten out” small amplitude changes. Obviously, there is a moderate amount
of data distortion using this technique. However, it is useful for filtering out
low-amplitude noise.

Data compression can be improved using a zero-order predictor with a
floating aperture. Instead of the window locations being fixed by the value

218 CHAPTER 9 Data Storage and Compression Techniques

of the first data point, each new 2d aperture is centered on the last point saved.
In this case, if a new point is close in amplitude to the last saved point it will
always be discarded. With a fixed aperture, if this new point happened to be
just over the next aperture boundary, it would be unnecessarily saved.

An approach more flexible than the zero-order predictor is the first-
order predictor or the linear predictor. This is a very popular method used
for many applications, such as compressing digitized human voice data. For
this use, some data distortion is acceptable, since the final receiver (a human
being) can still understand moderately garbled data.

Using a linear predictor is very similar to implementing a zero-order
predictor, except now new data points are predicted by extrapolation from a
line connecting the previous two points. Figure 9-9a shows the same sample
waveform as in Figure 9-8a. The points saved by the algorithm are again
marked with the character x. The first two points are always saved, to generate
the first line. The following two points fit on the line, within the error window
of 2d. They can be discarded, since a reconstruction algorithm can extrapolate

x = Saved Point
o = Discarded Point

line 0

0 5 10 15
Sampling Intervals
(a) Original waveform with sampled points (o or x) using linear predictors

|
I
0 5 10 15
Sampling Intervals
(b) Reconstructed waveform from saved points

Figure 9-9 First-order (finear) predictors used for waveform data compression.

9.4 Data Compression Technigques 219

them from that line. The next point does not fit within the line and must be
saved. A new line is drawn between this newly saved point and the previous,
extrapolated point. The next point does not fit on this line and is saved,
generating another line the following point does fit. This process continues,
discarding points that fit (within +d) existing extrapolation lines and saving
those that do not, while drawing new lines.

When the resulting saved points reconstruct the waveform in Figure 9-9b,
we see that more of the fine details and curvature of the original waveform
are maintained by the linear predictor, compared to the zero-order predictor.
The compression ratios from both techniques are also comparable.

When data does not have to be compressed in real time, if it has been
previously acquired and stored, interpolator techniques can be used. These
are very similar to the predictor methods, except that now interpolation is
used instead of extrapolation.

For example, using a linear interpolator is very similar to using a linear
predictor. Using the waveform in Figure 9-10 as an example, the first point
is always saved. The second point is skipped, and an imaginary line is drawn

x = Saved Point
o= Discarded Point

T
0 5 10 15
Sampling Intervals

(a) Original waveform with sampled points (o or x) using linear interpolators

0 5 10 15
Sampling Intervals
(b) Reconstructed waveform from saved points

Figure 9-10 First-order (linear) interpolators used for waveform data compression.

220 CHAPTER 9 Data Storage and Compression Techniques

from the first to the third point. If the second point falls on this line within
a 2d window, it is discarded. A new line is tested between the first and fourth
points. If both the second and third points fall on this line (within the
tolerance window of 2d), they are both discarded. This process continues
until a line is drawn that does not fit all the intermediate points. The last
point that ended an acceptable test line (the fourth point, ending the first
line in this example) is saved. For data reconstruction, the intermediate,
discarded points are interpolated between the two saved end points. Now,
the process starts again with the end point of the last line serving as the start
point for a new line. When this process is complete, at the last point in the
waveform, the saved points represent the end points of interpolation lines
used for reconstructing the data.

Sometimes, no intermediate points can be discarded and adjacent points
are saved, especially at the peak of a curve. Since this approach requires the
entire waveform to be present before processing can occur, it is not suitable
for real-time compression. It is very useful for postacquisition or postpro-
cessing applications. As with a linear predictor, a linear interpolator does
produce data distortion. This can be balanced against the compression ratio
by adjusting the window size. A larger window will produce higher distortion
along with a higher compression ratio. Typically, an interpolator will produce
a higher compression ratio than an equivalent predictor, with slightly less
distortion.

Since all predictors and interpolators produce an output array of (x, y)
points, they are often combined with other techniques, such as delta modu-
lation and Huffman encoding, to reduce the total number of bits required to
store the compressed waveform. The true measure of the compression ratio
for the overall process is its bit compression ratio (as opposed to the point
compression ratio, produced by the predictor or interpolator alone):

Bit compression ratio = b,/b,

where

b, = number of bits in original waveform
b. = number of bits in compressed data

Quite often, the optimum compression technique for a particular class
of data must be determined strictly by trial and error. The data compression
information in this chapter is hardly exhaustive. Certain nonlinear curve fitting
techniques, such as splines, are commonly used. Fields that use extremely
large data sets, such as imaging, have numerous, dedicated compression
techniques producing very large compression ratios.

9.5 Commercial Data Compression Software 221

9.5 Commercial Data Compression Software
I
Many commercial data compression products are available for use on PCs.
Some are hardware-based, for increasing hard disk storage without utilizing
CPU overhead. Other products are strictly software-based, often used for
producing hard disk file backups (as on tape systems). Since the nature of
the data stored on a PC’s files can vary tremendously, intelligent systems can
determine the compression algorithm to use based on the data itself.

Most commercial data compression programs use lossless techniques,
especially when they operate on general-purpose PC files. Several third-party
applications, such as Stacker, were used to compress MS-DOS files, saving
disk space. Microsoft introduced its own disk compression product, DriveSpace,
as part of MS-DOS 6.22.

DriveSpace creates a virtual disk drive that contains compressed files.
This virtual drive appears as a normal disk drive to the operating system.
However, additional layers of software compress and restore file data during
access (which does slow up I/O processes). Windows 95 uses DriveSpace 2
as its standard disk compression software while Windows 98 contains
DriveSpace 3. Each newer version of DriveSpace can create a larger virtual
drive, along with other enhancements.

Two popular programs that compress individual files or groups of files
are PKZIP (for DOS or Windows) and WINZIP (for Windows only). They
apply lossless compression algorithms to minimize file size for storage or
transmission (such as via modem).

Exceptions to lossless compression of PC files are techniques applied
to multimedia files. There are several popular compression standards used on
audio and video files. For example, digital photographs are often stored as
JPEG files, which allow for high compression ratios at the expense of reduced
picture resolution (the compression—distortion trade-off is selected when a
file is stored as JPEG). Audio files can be compressed using MPEG algorithms
that remove inaudible information to produce high compression ratios.

This concludes our look at PC file storage and data compression. In the
next chapter we will examine some common processing and analysis tech-
niques applied to acquired data, along with considerations of numerical rep-
resentation and precision.

CHAPTER

Data Processing
and Analysis

The power and flexibility in using a PC as a data acquisition platform is
shown most clearly by how data can be manipulated once it is acquired. In
this chapter we will explore some of the data analysis and processing tech-
niques commonly used with data acquisition systems. Since most data col-
lected by data acquisition systems is numeric, it is important to know how
numbers are represented and manipulated on a computer. We will start by
looking at numerical representation and storage in a PC.

10.1 Numerical Representation

As we previously touched on while discussing ADCs and DACs, there are
many possible ways to represent conventional decimal numbers in a binary
format. The simplest of these are integer representations. For nonintegral
numbers, various fractional formats can be used, though for maximum flex-
ibility and dynamic range, floating-point representations are preferable.

10.1.1 Integer Formats

The fastest and most efficient way to manipulate data on a PC is to store it
in an integer format. An integer can either be signed (representing both
positive and negative numbers) or unsigned (positive numbers, only). The
maximum dynamic range of the values that can be represented is determined
by the number of bits used. Therefore, n bits can represent 2" numbers with
a dynamic range (in dB) of 20 log;(2"). If n = 8, then 256 different integers
can be represented: positive integers in the range 0 to 255, or signed integers

222

10.1 Numerical Representation 223

TABLE 10-1
Integer Formats

INTEGER TYPE | # OF BITS SIGNED VALUES UNSIGNED VALUES
Byte 8 128 to +127 0 to 255

Word 16 —32,768 to +32,767 0 to 65,535

Long Word 32 —2.14 x 10° to +2.14 x 10° 0 to 4.29 x10°
Double Word 64 —9.22 x10" t0 +9.22 x10"® | 010 1.84 x 10"

in the range —128 to +127. This corresponds to a dynamic range of 48 dB.
If n =16 bits, 65,536 values can be represented, for a dynamic range of 96 dB.

The standard integer formats commonly used on a PC are byte (8 bits),
word (16 bits), long word (32 bits), and double word (64 bits), as shown in
Table 10-1. On an Intel 80x86/Pentium family PC, data is addressed on a
byte-by-byte basis. The starting memory address for a word (or long word) is
the first of the 2 (or 4) bytes comprising that word. The first (addressed)
memory location contains the least significant byte (LSB), while the last
location contains the most significant byte (MSB), as illustrated in Figure 10-1.

This byte ordering is processor-dependent. On a computer based on a
Motorola 68000 series CPU, such as an older Apple Macintosh, a different
storage arrangement is used. All words must start at an even address with the
MSB at the starting (even) address and the LSB at the higher (odd) address.
For a long word, the high-order 16 bits are stored at the starting (lower)
address and the low-order 16-bits at the higher address (start +2).

Long Word MSB (3) | Address + 6

Long Word (2) | Address +5

Long Word (1) | Address + 4

Long Word LSB (0) | Address + 3

Word MSB (1) Address + 2
Word LSB (0) Address + 1
Byte Starting Address

Figure 10-1 Muitibyte integer storage in Intel-based PC memory.

224 CHAPTER 10 Data Processing and Analysis

Most of the time, the method used by a CPU to store and access data
in memory is transparent to the user and even the programmer. It only
becomes an issue when one data storage element, such as a word, is also
accessed as a different element, such as a byte. Because of the strong likeli-
hood of error in doing this, it is not a recommended approach. For a program
written in C (see Chapter 13), if you explicitly use a casting technique, you
can safely convert one element size to another.

The nature of data storage depends only on how many bytes are needed
to represent a particular data storage element. An unsigned integer is usually
represented as a natural binary number, such as 25 = 11001. If an element is a
signed integer, there are several ways to encode or represent it. The most popular
approach is to use twos-complement representation, as shown in Table 10-2.
In twos-complement notation, the most significant bit is a sign bit. If it is O,
the number is a positive integer, with the same value as its unsigned binary
counterpart. If the sign bit is 1, the number is negative.

TABLE 10-2
Four-Bit Signed Integers

DECIMAL TWOS-COMPLEMENT
VALUE BINARY CODE

+7 o111
+6 0110
+5 0101
+4 0100
+3 0011
+2 0010
+1 0001

0 0000
-1 1111
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

10.1 Numerical Representation 225

The twos-complement value is calculated by first writing the binary
value of the corresponding positive number, then inverting all the bits, and
finally adding 1 to the result. To get the 4-bit twos-complement representation
of —4, we start with the unsigned binary value for +4 = 0100. When we invert
all the bits, we get 1011. Adding 0001 to this number produces the final value
of 1100 = —4. Using twos-complement representation for negative integers
is widely accepted because if you add corresponding positive and negative
numbers together, using this system, you will get a result of zero when
truncated to the original number of bits. So, adding —4 to +4, we get

1100
+ 0100

= 0000

The use of twos-complement representation produces the n-bit signed integer
range of -2 to +2"™" —1 (i.e., for n = 4 this range is -8 to +7).

Other encoding techniques are used to represent decimal integers in a
binary format, besides natural binary and twos-complement. One of the more
common alternatives is binary coded decimal (BCD). This code uses 4 bits
to represent a decimal digit, in the range O to 9. It uses natural unsigned
binary representation (0000 to 1001). The six codes above 9 (1010 to 1111
or Ah to Fh) are unused. To represent a decimal value, a separate BCD code
is used for each decimal digit. For example, to represent the value 437:

437 =0100 0011 0111
@ & O

If only one BCD digit is stored in a byte (upper 4 bits are set to 0), it is called
unpacked BCD storage. If two BCD digits are stored in a byte it is called
packed BCD storage. Even using packed storage, BCD numbers require more
storage than natural binary or twos-complement values. As an illustration of
unsigned integers, four BCD digits (16 bits) can represent the values 0 to
9999 while a natural binary word (16 bits) can represent values 0 to 65,535.
Alternatively, we only need 16 bits to represent 50,000 with an unsigned
natural binary word, whereas we need 20 bits (five digits) to do the same
with BCD. BCD is popular with systems processing large amounts of impor-
tant numerical data, such as those used by financial institutions.

An even less efficient means of numerical representation is using an
ASCII character to represent each decimal digit. In this case, 7 (or 8) bits are
needed to represent 0 to 9 (as well as sign and decimal point, for nonintegers).
This is about twice as inefficient as BCD representation. ASCII numerical
representation is usually used strictly to store data in a format that is easy to

226 CHAPTER 10 Data Processing and Analysis

read, print, and export to other applications (such as spreadsheets). It is usually
converted into a format more convenient to use before numerical processing
proceeds.

10.1.2 Noninteger Formats

Quite often, when using a computer to process acquired data, integer precision
is not adequate, because of round-off errors, dynamic range limitations, or
poor modeling of the measured phenomena. Several numerical formats are
used to overcome this problem.

The simplest way to depict fractional values is with fixed-point repre-
sentation, which is basically an extension of binary integer representation.
For integer representation, using n bits, the binary number b,b,_;...b by is
evaluated by adding the weighted value of each nonzero bit as follows:

b,x2" +b, x2" '+ 4 b, x2 +byx2°

where b; is the ith bit (0 or 1). For binary fixed-point representation, both
posmve and negative exponents are used and a binary point appears after the
2’ digit. For example, if we had an 8-bit number with a 3-bit fraction, it would
be written as

b4b3b2b bo N lb—Zb 3

The weights for the bits following by, b_, b_,, and b_; are 2! 2 ,and 27,
respectively. The resolution of this representation is 0.125 (2 *), whlle its
range of values for unsigned numbers is 0 to 31.875, which is still the same
number of values as an 8-bit unsigned integer (31.875/0.125 = 255).

When more bits are added to unsigned integers, the resolution stays the
same (1) while the range of values increases. When the number of bits after
the binary point in a fixed point, fractional representation increases, the
resolution increases, while the range of values stays the same. This trade-off
between range of values and resolution is inherent in these representations.

If we needed to increase both the dynamic range and resolution of our
numerical representation, we could keep increasing the number of bits per
number. The problem here is that most CPUs can perform math on only a
fixed number of bits at a time. For 16-bit processors (as used in earlier PCs),
if more than 2 bytes represent a number, additional instructions must be
performed when executing a math function, splitting the function into multiple
16-bit operations. If we are using 32-bit integers and need to add them, we
have to first add the lower 16-bit words, then add the upper 16-bit words with
any carry from the previous addition. The software overhead and processing
time increase quickly as we increase the size of numerical elements.

10.1 Numerical Representation 227

1 bit 8 bits 23 bits
[Sign T Exponent | Mantissa]
(MSB) D31 D30 D23 D22 DO (LSB)

(a) Single precision (32 bits)

1 bit 11 bits 52 bits
[Sign | Exponent] Mantissa |
(MSB) D63 D62 D52 D51 DO (LSB)

(b) Double precision (64 bits})

Figure 10-2 |EEE floating-point formats.

The standard solution to this dilemma is to use a floating-point format,
consisting of a fractional part (the mantissa) and an exponent. The number
of bits used to represent the exponent determines the floating-point number’s
range of values, and the number of bits used for the mantissa determines its
resolution. The mantissa is a signed, binary fraction that is multiplied by 2°**
to produce the represented value. The exponent is a signed integer.

Certain standard formats are used to represent floating-point numbers.
Among the most popular, the IEEE 754 Floating-Point Standard is also
commonly used with PCs. This standard defines two formats: single-
precision, using 32 bits, and double-precision, using 64 bits, as shown in
Figure 10-2.

In both formats the sign bit (most significant bit) is for the mantissa,
which is in a normalized form (with a value between 1.0 and 2.0). In frac-
tional binary, this would be 1.000...0 through 1.111...1 (using a fixed
binary point). Since the most significant mantissa bit (before the binary
point) is always 1, it is implied and not stored with the number. So, a single-
precision mantissa of 1.01101111000010101010011 would be stored as
01101111000010101010011.

The exponent is stored in a biased form, with a fixed value, or bias,
added to it. For single-precision numbers, this bias is +127, and for double-
precision numbers it is +1023. This biased exponent is useful for determining
which of two exponents is larger, by comparing them bit by bit, starting with
the leftmost bit. For example, consider two single-precision numbers with
exponents of +15 and —5, represented as signed integers:

+15 = 00001111 -5 =11111011
and represented as biased integers (+127):
+15 + 127 = 10001110 -5+ 127 =01111010

228 CHAPTER 10 Data Processing and Analysis

1 bit 15 bits 64 bits
[sign | Exponent I Mantissa |
(MSB) D79 D78 D64 D63 DO (LSB)

Figure 10-3 Intel 8087 80-bit temporary floating-point format.

So, just looking at the leftmost bit indicates that +15 is the larger exponent.

The valid exponent range for single-precision is —126 to +127, and for
double-precision it is —1022 to +1023. When represented as a biased exponent,
a value consisting of either all 0’s or all 1’s indicates an invalid number. This
way numerical overflow/underflow errors can be indicated.

A special, non-IEEE format is used on Intel-family PCs with 80x87-
style math coprocessors, the temporary format, shown in Figure 10-3. This
is an 80-bit format, incorporating a 64-bit mantissa with a 15-bit exponent.
It is very useful for highly repetitive mathematical operations where round-
off errors can reduce precision, as well as calculations involving very large
or very small numbers.

The temporary format uses an exponent bias of +16,383. It differs in
spirit from the single- and double-precision formats by explicitly keeping the
leftmost 1 in the normalized mantissa value. Since the math operations using
this 80-bit temporary format are performed in hardware, the large number
size does not cause severe processing speed penalties.

Table 10-3 lists decimal precision (number of significant digits) and
range for some of the integer and floating-point numerical formats we have

TABLE 10-3
Range and Precision of Various Numerical Formats

TOTAL | EXPONENT/ DECIMAL
NUMBER # OF MANTISSA DIGITS OF | DECIMAL
TYPE FORMAT BITS # OF BITS PRECISION] RANGE
Byte 8 — >2 >+10°
Word 16 — >4 >+10*
Integer 5
Long Word 32 —_ >9 >+10
Double Word 64 — >18 >+10"
. Single Precision | 32 8/23 >7 >+10%
E':i';‘:'"g Double Precision| 64 11/52 15 107
Temporary 80 15/64 >19 >+10%%%

10.2 Data Analysis Techniques 229

discussed here. Note that for an equivalent number of bits (such as 32 or 64),
floating-point formats have slightly lower precision along with much higher
dynamic range than the corresponding integer formats. This is simply due to
diverting some of the bits used for precision in an integer to the exponent of
a floating-point value, increasing its range.

10.2 Data Analysis Techniques
A wide variety of processing techniques are commonly applied to the data
produced by data acquisition systems. These can range from simply plotting
the data on a graph to applying sophisticated digital signal processing (DSP)
algorithms. A large number of commercial software packages, such as those
discussed in the next chapter, have many of these capabilities built in. This
enables the user to concentrate on the data analysis without getting bogged
down in the details of programming a PC. We will begin our survey of data
processing by looking at statistical analyses.

10.2.1 Statistical Analysis Techniques

The most common analysis applied to acquired data is some statistical cal-
culation. Statistical parameters describe the distribution of values within a
data set. They indicate where data values are most likely to be found as well
as the probable variability between them.

The most important statistical measurement for a data set is the mean,
which is simply the average of a set of values. If we have a set Y of n values,
Y1> Y25 --+5 Yur the mean of Y is just

Ym=(+y,++y)n

The values of the data set must have some relationship to each other for the
mean to have significance. For example, the set may consist of n measure-
ments of the same quantity, repeated over time.

The conventional mean is used to analyze an existing data set. A special
variation on the mean is the running average, sometimes referred to as the
circular average or sliding average. The running average is useful for real-
time control applications, when the current average value is needed. For
instance, an intelligent heater controller needs to know the current temperature
of a system to apply the appropriate amount of heater power. If the temper-
ature varies significantly from reading to reading, an average of the last n
readings would be useful to smooth out this temperature noise. The running

230 CHAPTER 10 Data Processing and Analysis

average is just the mean of the last n values. If the current reading is 7; and
the running average is n points wide, its value at point i is

Tmi = (Tt + Ti—l +-e- Ti—n+1)/n
At the next point, { + 1, the running average is
Ty = (T + Ti+ -+ Tipio)/n

The running average is updated with each new value acquired. It acts as a
low-pass filter on the incoming data. Only relatively slow artifacts with large
amplitude changes will be reflected in the running average. When this tech-
nique is applied to an existing, acquired waveform, the n-point averaging
window is usually symmetric around the selected point.

Another statistical measurement is the median. It is selected so that half
of the data set values are higher than the median and the other half are lower.
The median is often close in value to the mean, but it does not have to be.

An important measure of variation within a set of data is the standard
deviation. If we have a data set (y,, y5,..., ¥,) of n values with a mean of y,,
the standard deviation o is

o= [[(yl - ym)2 + ()’2 - ym)2 +---+ (yn - ym)z]/n]”z

This is a measure of the differences between the data set values and the
average value. The smaller the standard deviation, the “tighter” the distribution
of data values is. In the case where all values in a data set are identical, the
standard deviation would be zero.

When a data set fits a normal Gaussian distribution (a “bell” curve),
approximately 68% of the values will be found within one standard deviation
of the mean value. As an illustration, assume a manufacturer is interested in
analyzing the length of a production part. Length measurements are taken on a
sample of parts that fit a Gaussian distribution, having as its peak the mean
value. Here, the standard deviation is a measure of the length variations from
part to part. From these measurements, the manufacturer can predict the
percentage of a production run that will fall within an acceptable tolerance.
If this percentage is too small, it indicates a need to control the production
process better.

10.2.2 Curve Fitting

The mean and standard deviation are mostly used on sets of values that should
be describing the same or similar measurements. When the acquired data is
a waveform, described as two-dimensional (x, y) points, a common requirement

10.2 Data Analysis Techniques 231

is comparing it to a theoretical model, or finding a model that fits the data.
This data can be a one-dimensional array where time is the independent (x)
variable. The theoretical model describes a waveform that should be similar
to our acquired data. Finding a mathematical model that fits the measured
data is referred to as curve fitting.

Very often, a polynomial is used to describe a theoretical curve. The
general form of a polynomial of order » is

2
F(X) =ay+ a;x + ax” + -+ a,x"

The coefficients are the constants a@;, which are adjusted during the curve
fitting process. To determine the coefficient values for the best curve fit, the
sum of the error terms for each of j data points in the curve is calculated as

[F(x)) = »iF + [F(xp) = yol” + -+ + [F(x) =y

where y;, y,, ... , y; are the measured values. When this function is minimized,
the coefficients for F(x) describe the best curve fit to the data set. This is
referred to as the least squares fit. Using least squares to test how well a
function fits a data set is not limited to polynomials. Exponential and trigo-
nometric functions are also commonly employed for curve fitting and still
use a least squares fit measurement. The iterative type of calculations used
to find the least squares fit is well suited to digital computer calculations.

The simplest curve fitting is a first-order (n = 1) or linear fit, sometimes
referred to as a linear regression. Analytically, the coefficients a, and a, are
determined. Graphically, a straight line is drawn through the data points. The
resulting line is described by the standard formula

y=mx+b

where m = the slope and b = the y-intercept. This means that the general
coefficients ay = b and a; = m.

Given a set of (x, y) data points, the coefficients for a linear regression
can be determined analytically. The coefficients a, and a, are calculated from
summations over all » points in the data set:

_ [EY X (Ex) - Ex) x (Exy)]
[nx (Zx") - (Zx)*]
_ [nx(Exy) - (Tx) x (I
[nx (Zx%) - (Zx)*]

For higher-order polynomial fits, analytic approaches are impractical. An
iterative process of successive approximations is typically used.

232 CHAPTER 10 Data Processing and Analysis

q Y=055X+1.9

Figure 10-4 Example of linear curve fitting.

Figure 10-4 is a simple example of a linear curve fit. There are four
(x, y) values: (1, 2), (3, 4), (5, 5), and (8, 6). Calculating the coefficients from
the above equations, we find the least squares fit line to these points is y =
0.55x + 1.9.

Notice the similarity between linear curve fitting and linear predictors
or interpolators, discussed in Chapter 9. In both cases, a straight line is found
that best fits the data. Furthermore, minimizing the distortion produced by
data compression is often a least squares process.

Curve fitting is a broad, complex field. This brief discussion should
serve to give you a feel for implementing curve fitting on a PC-based data
acquisition system. An advantage of using these systems (with appropriate
software) is the ability to see the data graphically, along with getting the
numerical processing power of a PC. When it comes to processing waveforms,
seeing the data displayed as a graph is invaluable.

10.2.3 Waveform Processing

A large portion of the information gathered by data acquisition systems is in
the form of waveforms (commonly, a function varying with time). These
waveforms are easily displayed graphically, using many of the software pack-
ages described in Chapter 11. Very often, this acquired data is operated on as
a single entity: a vector (one dimension) or an array (two or more dimensions).

10.2 Data Analysis Techniques 233

+2V —

Amplitude

+V

0 Time
(a) Ultrasonic pulse with DC offset

+V

Amplitude

0 A [

Time

(b) Ultrasonic pulse with DC offset subtracted

Figure 10-5 Example of subtracting a DC offset from a waveform.

Many of these operations are simple mathematical functions, such as sub-
traction or multiplication with a scalar or another array.

Consider the example in Figure 10-5a, a waveform representing an
ultrasonic pulse, which should have a net DC component of zero. Because
of DC offsets in the analog receiver system, the acquired signal may not meet
this criterion. To determine the net DC offset, we take the mean value of all
the waveform points. If this mean is not zero, we subtract it (a scalar) from
the waveform (a vector). The result, shown in Figure 10-5b, now has a zero
DC offset.

Waveforms can also be used to operate on each other. For example,
special windowing functions are commonly used in DSP algorithms. Wave-
forms under analysis are multiplied by these windowing functions, which are
also waveforms. In many cases a reference or baseline waveform is acquired.
Subsequent data is then divided by this reference data, for normalization.

Other common operations are integration and differentiation. If we
wish to determine portions of a waveform with high slopes, we would
differentiate it. The peaks of a differentiated function occur at slope maxima.
When a particular function is difficult to differentiate or integrate analyti-
cally, this numerical approach is very useful. For numerical differentiation,

234 CHAPTER 10 Data Processing and Analysis

the slope, dy/dx, is calculated for every pair of adjacent points. In a similar
fashion, the area under the curve at each point is calculated for numerical
integration.

For example, suppose a waveform represented the measured displace-
ment of an object versus time. Differentiating this waveform would produce
anew waveform representing the object’s velocity versus time. Differentiating
a second time would produce an acceleration-versus-time waveform. Con-
versely, if the acquired waveform represented acceleration data, as from an
accelerometer, integrating it once would produce a velocity curve and inte-
grating it a second time would produce a displacement curve. The only
problem here is that any fixed offsets in either displacement or velocity would
not appear in the integrated data, as they were lost by the original acceleration
measurements.)

Again, this brief discussion is only scratching the surface on the topic
of waveform processing. Many mathematical operations are performed on
data representing vectors and arrays, such as dot products and cross products.
The huge variety of waveform processing techniques find an immense range
of applications. We will look at a few specialized techniques now, starting
with Fourier transforms.

10.2.4 Fourier Transforms

Undoubtedly, Fourier transforms are among the most popular signal process-
ing techniques in use today. Analytically, the Fourier series for a single-valued
periodic function is a representation of that function using a series of sinu-
soidal waveforms of appropriate amplitude and phase. The sine waves used
in the series are at multiple frequencies (harmonics) of the lowest frequency
(the fundamental). The Fourier series for a periodic function, f(f), with a
period 7 would be

f(H) = ag + a;sin(@t + ¢)) + asinQwt + @) + -+ + a,sin(nwt + @,)

where

o = 27/T, the fundamental frequency

a,,...,a, are the amplitude values for each frequency component (g, is
the DC component)

o,.... ¢, are the phase values for each frequency component

To represent a single-frequency sinusoidal wave, only the DC and funda-
mental frequency terms are needed. Most functions require many terms to
provide a good approximation of their real value. For example, Figure 10-6

10.2 Data Analysis Techniques 235

f + 3f + 5f

Ry Complete Square Wave

Amplitude
0 » Time

-V

Figure 10-6 Fourier series for a square wave.

shows a square wave, which has a Fourier series consisting of decreasing odd
harmonics:

J(0) = 4ay/m [sin(wr) + 1/3 X sin(Bwr) +--- + 1/n X sin(nwt)]

Using only the first term (fundamental frequency) we only get a crude
approximation of the real waveform. After we use the first three terms (up to
the fifth harmonic) we have a much closer approximation of the square wave.

By fitting trigonometric functions to an arbitrary waveform, we can get
the frequency content of that waveform. In essence, the Fourier transform is
used to convert from a conventional data (time)-domain waveform to a spec-
tral (frequency)-domain waveform. Since this transformation is bilateral, an
inverse Fourier transform converts data back from the frequency domain into
the time domain. Data-domain waveforms include functions of time as well
as of space. The Fourier transform of a distance-based waveform contains
spatial frequency information.

Analytically, the Fourier transform is defined for operation on contin-
uous, periodic functions. Given a function of a real variable (the function
itself can be complex), f(x), its continuous Fourier transform (CFT), F(y), is
defined as

F(y) = [[f(x)xe "™ dx]

236 CHAPTER 10 Data Processing and Analysis

This integral must exist for every real value of x. The complex exponential used
in the integral has an equivalent trigonometric form, using Euler’s formula:
¢ = cos(x) + j sin(x)
where j = /-1, the imaginary number operator.
An alternative form for the CFT would be

F() = [_f(x)lcos(2mxy) - jsin(2mey)]dx

For data acquisition applications, a special Fourier transform is used to
operate on discrete, finite functions. This is called the discrete Fourier trans-
form (DFT) and is used to operate on discrete (digitized) data. The DFT is
the workhorse of DSP techniques. If we have a waveform, f(k), consisting of
n points, the DFT produces a complex waveform of n points, F(m). Both &
and m vary from O to n — 1. The data points of f(k) are evenly spaced in the
time domain by df and range from 0 to (n — 1)dr. The transformed data points
of F(m) are evenly spaced in the frequency domain by 1/dt and range from
0 to (n — 1)/dt. The DFT is calculated from

n-1

F(m) = Y Lf(k)x el

k=0

The frequency-determining component is 27xm/n, which is a normalized value.
The DFT assumes the time-domain waveform is a periodic function, with a
period of n points. The normalized frequency at the first DFT point is 0 and
at the last point is 2z (n — 1)/n radians. This maximum frequency is (n — 1)/dt,
so the time-domain sampling is normalized to dt = n/2~x.

Note that the first term of the DFT, F(0) = X, f(k), at zero frequency
(m = 0). This is simply the area under the curve or the result of integrating
f(k). Also note that for each term in F(m), n complex multiplications must be
done as f(k) times the complex exponential term [where f(k) can be either real
or complex]. It is a fair assumption that the amount of time required to
calculate a DFT using a digital computer is proportional to the number of
complex multiplications (each involving four separate real multiplications
and additions). Since n complex multiplications are performed for each of »
points, the number of complex multiplications required to perform a DFT is
proportional to n’. As the number of input points n increases, the time required
to calculate the transform goes up by the square. When real-time frequency
analysis is required on a large amount of data, such as with spectrum analysis,
the required computation time can be much too long. In this case, the output
frequency data (DFT) falls behind the input time-domain data.

10.2 Data Analysis Techniques 237

If we have frequency-domain data and want to convert it back to the
time domain, we can use the inverse DFT:

n-1
fk)= }1 X ¥ [F(m)x QlU2mmmil]
m=0

For the inverse transform, the frequency data, F(m), is multiplied by a
complex exponential and summed over all its points to calculate each f(k)
point. Notice the scale factor of 1/n here. As with the forward DFT, the time
required to compute the inverse DFT is proportional to the square of the
number of points.

The answer to the problem of DFT computations taking too long to
calculate is the fast Fourier transform (FFT), which is a special implementation
of the DFT. By exploiting the symmetry inherent in the DFT and breaking
up the calculations into several smaller transforms, computation time using
the FFT can be greatly reduced. Most FFT algorithms only operate on a set
of points that is an exact power of 2 (rn = 2"). However, the number of complex
multiplications required by an FFT is only n X log,(n). So an FFT is n/log,(n)
faster than an equivalent DFT. For a waveform of 1024 points, this is a speed-
up by a factor of more than 100 (1024/10).

For the rest of this discussion, we will assume that the Fourier trans-
forms used on a PC will always be FFTs. The commercial software packages
listed in Chapter 11 (and the Appendix) that contain Fourier transform func-
tions all employ an FFT algorithm.

Some of the symmetry inherent in the FFT of a waveform is shown by
plotting it. All FFTs are complex waveforms with a real and imaginary
component for each frequency value (point). If the original time-domain
function is real, the real component of its FFT has even symmetry (symmet-
rical about point n/2) and the imaginary component has odd symmetry (anti-
symmetric about n/2). If the original function is imaginary, the real component
of the FFT has odd symmetry and the imaginary component has even sym-
metry. If the original function is purely real or purely imaginary, the magni-
tude of its FFT will have even symmetry.

Very often, when looking at the FFT of a waveform for frequency
analysis, only the magnitude |F(m)| is of interest. Since the FFT points are
complex:

|F(m)| = [(Fn)eq)” + (F(m)imgae) 1

If the signal of interest, in the time domain, is an ideal impulse, infinitely
sharp (all but one point is zero amplitude), the magnitude of its FFT is a
constant. That is, an impulse contains a spectrum of equal amplitude at all

238 CHAPTER 10 Data Processing and Analysis

1.0

Amplitude

0 T T T — Time
0 63
(a) 8-point wide rectangular pulse

8.0

Amplitude

0 T T 1 T Frequency
0 63

(b) FFT magnitude from transform of rectangular pulse

Figure 10-7 Example of fast Fourier transform (FFT): 64-point FFT of 8-point wide
rectangular pulse.

frequencies. This makes an impulse very useful as a broad-band excitation
signal.

As an example, Figure 10-7a shows a simple rectangular pulse of unit
amplitude (1.0), eight points wide in a 64-point waveform. Figure 10-7b
displays the magnitude of the FFT of this simple waveform.

Notice the even symmetry of the FFT magnitude. This is because the
original function was purely real. For an FFT of » points, the magnitude is
symmetrical about point n/2. The actual frequency data is valid only up to
point n/2, which is half the entire frequency range. Since the maximum
frequency is equal to the original data acquisition sampling rate (f; = 1/dt,
where dt is the time between consecutive samples) the FFT data is valid only
up to f, /2, the Nyquist frequency. Above that point it is just the mirror image.

Another interesting feature is the periodicity in the magnitude of the
FFT, displayed in Figure 10-7b. With a rectangular pulse y points wide in the
time domain, the period in the frequency domain is n/y, which is every eight
points in this case. If the rectangular pulse was wider, the number of peaks
in the FFT magnitude would increase as the period decreased. Also, note that

10.2 Data Analysis Techniques 239

e'
Amplitude
&0
0 T T T > Time
0 63
{a) Exponential decay from e to e'/64
110
Amplitude
10 L\—”/
0 T T T I Frequency
0 63

(b) FFT magnitude from transform of exponential decay

Figure 10-8 Example of 64-point FFT of exponential decay waveform.

the value of the zero-frequency point |F(0)| = 8. This is equal to the value
obtained by integrating the original pulse waveform (eight points wide with
an amplitude of 1), which is its DC component.

Figure 10-8a displays a 64-point exponential waveform decay, ¢, from
e at point 0 to ¢ at point 63. The magnitude of its FFT is shown in Figure
10-8b. Again, the value we get for |F(0)| is equivalent to the result of integra-
ting under the waveform, which has a large DC offset (note that the expo-
nential waveform does not approach a zero value in the sampled time
interval).

The following is a simple FFT program written in BASIC. It will run
under IBM BASIC, GW-BASIC, or QBASIC. Since BASIC is an interpreted
language (see Chapter 13 for more details), it executes slowly. The actual
FFT or (IFFT) computation is done by the subroutine starting at line 400.
The test program, starting at line 10, allows the user to enter a 16-point data
array as input to the FFT subroutine. This illustrative program is only useful
for relatively small data arrays, such as 64 points or less. For larger arrays,
the FFT computation time could take several minutes on older PCs.

240

CHAPTER 10 Data Processing and Analysis

REM - FFT PROGRAM, TESTS FFT SUBROUTINE WITH
REM -~ ARRAY OF 16 POINTS, PROVIDED BY USER.
CODE = 1 ‘SET FOR FFT (-1 = IFFT)

PI
N

= 3.14159
= 16 'NUMBER OF POINTS IN WAVEFORM

DIM R(N) 'REAL DATA ARRAY, INPUT & OUTPUT

DIM I(N) 'IMAGINARY DATA ARRAY, INPUT & OUTPUT
PRINT "FFT TEST PROGRAM": PRINT

PRINT "NUMBER OF POINTS = "; N: PRINT

INPUT "REAL DATA INPUT, ONLY - Y OR N?",A$
CLS 'CLEAR SCREEN

INPUT "INPUT DELTA T (1): ",DELTA

PRINT "INPUT SIGNAL DATA POINTS" : PRINT

FOR J = 1 TO 16

PRINT "POINT"; J; ": ";

INPUT "XR = ",R{J)

IF A$S = "Y" THEN I(J) = 0! : GOTO 190
PRINT "POINT"; J; ": ";

INPUT "XI = ",I{(J)

PRINT

NEXT J 'END OF DATA INPUT LOOP

PRINT

CLS 'CLEAR SCREEN

PRINT “"CALCULATING FFT ...vvirrrrinnnnnnnnnn "
GOSUB 400 'CALL FFT SUBROUTINE

PRINT: PRINT "POINT","FFT REAL","FFT IMAG"
FOR J = 1 TO N

PRINT J,R(J),I(J)

NEXT J

PRINT

INPUT "DISPLAY FFT MAGNITUDE & PHASE - Y OR N?",A$
IF AS <> "Y" THEN STOP

PRINT: PRINT "POINT", "FFT AMP", "FFT PHS"
FOR J = 1 TO 16

AMP = (R(J)"2 + I(J)"2)".5

PHS = PI/2

IF R(J) <> 0 THEN PHS = ATN(I(J)/R{J))
PRINT J,AMP, PHS

NEXT J

STOP

REM - SUBROUTINE CALCULATES FFT OR INVERSE FFT
REM - N = # OF POINTS IN WAVEFORM (POWER OF 2)
REM - CODE = 1 FOR FFT, -1 FOR IFFT

REM - DELTA = dT FOR FFT OR 1/dT FOR IFFT

REM - R(N) = REAL DATA ARRAY FOR INPUT & OUTPUT

REM - I(N) = IMAGINARY DATA ARRAY FOR INPUT & OUTPUT
IR = 0

Nl = N

N2 = INT(N1/2) ‘CHECK IF N IS A POWER OF 2

IF N2*2 <> N1 THEN PRINT "N IS NOT A POWER OF 2!": RETURN
IR = IR + 1

N1 = N2

IF N1 > 1 THEN GOTO 480

PN = 2! * PI/N

L = INT(N/2)

1080
1090

10.2 Data Analysis Techniques

Kl = 0

FOR Z = 1 TO IR
FOR J = 1 TO L
K =KL + 1

P =K+ L

KAY = INT(K1l/(2"IR1l}))

GOSUB 1030 'BIT REVERSAL SUBROUTINE
AM = KBITR

IF AM <> 0 THEN GOTO 680

XR1 = R(P)
XI1 = I(P)
GOTO 730

ARG = AM * PN
C = COS(ARG)

S = -1 * CODE * SIN(ARG)
XRl = C * R{P) - S * I(P)
XI1 = C * I(P) + S * R(P)
R(P) = R(K) - XR1

I(P) = I(K) - XIl1

R(K) = R(K) + XR1

I(K) = I(K) + XI1l

Kl = Kl + 1

NEXT J

Kl = Kl + L

IF K1 < N THEN GOTO 580
Kl =0

IRl = IR1 - 1

L = INT(L/2)

NEXT Z

FOR K =1 TO N

KAY = K - 1

GOSUB 1030 'BIT REVERSAL SUBROUTINE
Kl = KBITR + 1

IF Kl <= K THEN GOTO 960

XR1 = R(K)
XI1 = I(K)
R(K) = R(K1)
I(K) = I(K1l)
R(K1l) = XR1
I(Kl) = XIl
NEXT K

IF DELTA = 1 THEN RETURN

FOR K = 1 TO N 'SCALE OUTPUT DATA BY DELTA
R(K) = DELTA * R(K)

I(K) = DELTA * I(K)

NEXT K

RETURN

REM -BIT REVERSAL SUBROUTINE

REM - KAY = INPUT NUMBER

REM - IR = NUMBER OF BITS TO REVERSE
REM - KBITR = REVERSED NUMBER

KBITR = 0

KAY1 = KAY

FOR Y = 1 TO IR

241

242 CHAPTER 10 Data Processing and Analysis

1100 KAY2 = INT(KAY1l/2)

1110 KBITR = 2 * KBITR + KAYl - 2 * KAY2
1120 KAY1l = KAY2

1130 NEXT Y

1140 RETURN

For most practical FFT applications you will undoubtedly use an FFT
function built into a commercial software package (such as those described
in Chapter 11 or the Appendix). However, if you need to incorporate FFTs
into a custom program, there are many freeware and shareware sources for
FFT routines (usually written in C or FORTRAN). One such free FFT library
developed and maintained by MIT is FFTW, available via the Internet (at
URL: http://www.fftw.org).

10.2.5 Convolutions and Window Functions

Convolution and Deconvolution ~The utility of FFTs extends far beyond simple
frequency analysis of acquired signals, even though this is still an important
application. In the real world it is often difficult to measure a quantity
“cleanly,” without distortion due to the measurement system itself. For time-
based or distance-based measurements, the overall system response is a func-
tion of the measured quantity along with a function of the system response.
This system-response transfer function operates on the desired physical quan-
tity through a process called convolution, producing the measured response.

The convolution A(x) of two time (or space)-domain functions f(x) and
g(x) is defined as

ho) = f(0)08(x) = [f(X)g(x-X)dX

We will use the symbol e here to denote convolution. Convolution literally
means “folding back.” The value of one function at a particular point (x value)
affects the overall response at neighboring points, as shown by the g(x — X)
function. Convolving two transfer functions produces the overall system-
response transfer function.

The convolution integral can be difficult to calculate in the time (or
space) domain for many functions. It becomes a simple problem in the fre-
quency domain. The convolution of two signals in the time (or space) domain
is equivalent to multiplying their FFTs in the frequency domain. If the FFTs
of functions f(x), g(x), and h(x) are, respectively, F(y), G(v), and H(y):

H(y) = F(y) X G(y)

where h(x) is calculated from the inverse FFT of H(y). This is illustrated
graphically in Figure 10-9. Notice that once the FFTs are multiplied (point

10.2 Data Analysis Techniques 243

FFT
f(x) Fy)
Response A Spectrum A
IFFT
F(y) x G(y) h(x)
FET Convoluted
R
9(x) G(y) esponse
Response B Spectrum B

Figure 10-9 Convolution algorithm using FFTs.

by point), an inverse FFT (IFFT) is performed on the result to produce the
output impulse response, which is the convolution of the two input responses.

An important aspect of transforming convolutions into multiplications
via FFTs is that we can reverse the process. If we have data acquired from
a system with a known impulse response, we can correct for that response.
We transform the measured data, along with the impulse response, to the
frequency domain (via an FFT). By dividing the FFT of the measured data
by the FFT of the impulse response, we deconvolve the data. Transforming
the result via an IFFT results in data fully corrected for the system’s impulse
response. This process is shown graphically in Figure 10-10.

Deconvolution is an extremely useful analysis technique. In the field of
optics, for example, image enhancements can be implemented via deconvolution.

O e

(measured H(y)
data)
Convoluted

Response H(y)/Gly) IFFT f(x)

g(x) FFT Deconvoluted
Gly) Response

(measured
data)
System
Impulse
Response

Figure 10-10 Deconvolution algorithm.

244 CHAPTER 10 Data Processing and Analysis

Object Image

(a) Ideal pinhole

Object Image
(b) Nonideal pinhole

Figure 10-11 Optical pinhole.

A simple example is a pinhole camera. An ideal pinhole, with a diameter
much smaller than the wavelength of light used, acts like a lense, producing
an inverted image of an object, as shown in Figure 10-11a. Each point of the
image corresponds to light from only a single point of the object. With a
nonideal pinhole, each image point corresponds to several object points, as
in Figure 10-11b. The image becomes blurred as light from neighboring points
mixes together. This is the convolution of the real image with the light
distribution function of the pinhole. Knowing that pinhole transfer function,
we can deconvolve the data to get the undistorted image.

There are many other examples of the utility of deconvolution, as in
the field of ultrasonics. Figure 10-12 shows a simple experiment using a pair
of ultrasonic transducers in a water bath. An ultrasonic pulse is transmitted
by one transducer and received by another transducer for data acquisition.
The ultrasonic properties of the test sample, between the two transducers, are
of interest. By deconvolving the measurement taken when the test sample is
present with a measurement taken without the test sample, the impulse (and
frequency) response of the entire test system can be eliminated from the data.
This leaves the true ultrasonic response of the test sample. The test sample
frequency response provides information about its physical properties.

Window Functions When analyzing real-world data, there are often artifacts
we wish to ignore. With ultrasonic or optical measurements, for example,
there are often pulse echoes. If we need to analyze the data of interest without

10.2 Data Analysis Techniques 245

Signal

Generator Detector

Transmit | [\/| J Test | Receive
Transducer Sample Transducer

Water Tank

Figure 10-12 Simple ultrasonic test system.

including the entire waveform, often a windowing function is used. The
simplest time-domain window function is a rectangular pulse that is multi-
plied with the time-domain waveform of interest. The width and position of
the pulse is selected so that it has a value of 1 over the region of interest in
the waveform and a value of zero elsewhere, as illustrated in Figure 10-13.

Multiplying two functions (signal and window) in the time domain is
equivalent to convolving their FFTs in the frequency domain. As we previ-
ously saw in Figure 10-6, the FFT of a rectangular function produces multiple
peaks following the first main peak at zero frequency. These secondary peaks
are referred to as side lobes. The higher the amplitude of the side lobes, the
more the windowing function distorts the signal when they are transformed.
For a rectangular window, the first side lobe has a peak amplitude of only —13 dB
relative to the main (zero frequency) peak.

] Rectangular Window
+ -+ 1

|
i
Amplitude m :
I m
0 — [\ ! V) Time

Echo to keep Echoes to ignore

Figure 10-13 Using a rectangular window on ultrasonic echo waveforms.

246 CHAPTER 10 Data Processing and Analysis

Because of the convolution distortion, time-domain window functions
other than simple rectangles are used. Several are based on cosine functions
that slowly taper to zero near the edges of the window region. Besides having
lower side lobes, these windows also have wider main lobes than a rectangular
function. This further helps to decrease any distortion they cause.

Two commonly used window functions are the Hanning and Hamming
windows, shown in Figure 10-14. These window functions are defined for a
width of N points as follows:

w(x) = 0.5 x (1 = cos[2rx/(N - 1)]) Hanning Window
w(x) = 0.54 — 0.46 X cos[2nx/(N — 1)] Hamming Window

where x varies from point 0 to point N — 1.

w(x)
1
1.0
0.1
0 T T X
0 (N-1) N-1
2
(a) Hanning window function
w(x)
1.0
0.1+
Y T T X
0 (N-1) N-1

2
(b) Hamming window function

Figure 10-14 Hanning and Hamming window functions.

10.2 Data Analysis Techniques 247

Notice that both window functions have their amplitude peak of 1.0 at
the center of their range, (N — 1)/2. The main difference between them is that
the Hanning window goes to zero amplitude at the edges of its range (x =0
and x = N — 1) while the Hamming window has a finite amplitude of 0.08 at
these edges. Both of these windows have a main lobe twice as wide as an
equivalent rectangular window, with the same value of N. The Hanning
window has a peak side lobe amplitude of —31 dB and the Hamming window
has a peak side lobe amplitude of —41 dB. These indicate a large improvement
(18 to 28 dB) over the rectangular window’s peak side lobe amplitude of only
—13 dB.

10.2.6 Other Transforms

There are many other transforms used for DSP analyses. We will briefly look
at two of them here: the Hilbert transform and wavelets.

The Hilbert Transform The Hilbert transform is a technique used to obtain
the minimum-phase response from a spectral analysis. When performing a
conventional FFT, any signal energy occurring after time ¢ = 0 will produce
a linear delay component in the phase of the FFT. Even if a pulse occurs at
t= 0, if it has finite width it will produce this linear slope in the resulting
FFT phase. The slope of the FFT phase (versus frequency) is proportional
to this time delay term. Significant delays can produce phase variations of
greater than 27. If the FFT data contains phase nonlinearities of interest
(such as a small bump), they can be hidden by this large linear phase
component.

The Hilbert transform, based on special processing of an FFT, will
produce a frequency response with this linear-phase component removed.
This is the “minimum phase” data desired. The algorithm involves signal
processing in both the time and frequency domains.

Wavelet Analysis Fourier transforms (and FFTs) are ideally suited for ana-
lyzing continuous, periodic signals but do not work well when a signal has
sharp discontinuities or spikes. The problem is, a Fourier series tells you what
frequencies a signal is composed of but not their locations in time (it assumes
that all the frequencies are always present, within the analysis window). If
we increase time resolution by using a smaller sampling window in an FFT
analysis, our frequency resolution becomes poorer since the frequency step
df = 1/dt, the time step. This is the inherent FFT limitation for concurrent
time—frequency analysis.

248 CHAPTER 10 Data Processing and Analysis

Wavelet analysis (or the wavelet transform) is a fairly new mathematical
technique that addresses these shortcomings. Unlike FFTs, wavelets are well
suited to representing discontinuous signals. Wavelet analysis uses a scalable
window that is time-shifted across a signal. A spectrum is calculated at each
new window position. The window size is slightly changed for each iteration.
The final result is a group of time—frequency representations of the original
signal, all having different resolutions. This wavelet analysis is called a
multiresolution technique. Wavelets allow you to analyze a signal with both
coarse (large scale) and fine (small scale) resolution.

Wavelet analysis has many similarities to Fourier analysis. There is a
continuous wavelet transform (CWT) analogous to the CFT and a discrete
wavelet transform (DWT) analogous to the DFT, used for computer-based
signal processing algorithms. Wavelet functions contain frequency informa-
tion as Fourier functions do. Unlike FFTs, wavelet functions are also localized
in space (or time). In addition, a wavelet transform of a one-dimensional
waveform produces a two-dimensional function.

The CWT of a time-based function f(¢) is

¥(t,5) = f()W,(t)dt
where

1 (-1
1s(1) = =y——
|43 jW

s N

Now the transformed time signal is a function of two variables: 7, the trans-
lation parameter (time-based) and s, the scale parameter (inverse frequency-
based). ¥ (f), the transforming function, is the mother wavelet. All of the
wavelets required by the analysis are generated from this mother wavelet by
scaling and translation.

A set of waveforms comprising a transform is called a basis function.
Fourier transforms use only sine and cosine waves as its basis functions—a
signal is decomposed into a series of sine and cosine functions by the FFT.
The CWT and DWT have an infinite set of basis functions or wavelets.
Usually, a specific wavelet family is selected for a particular application.

By its nature, the CWT contains a large amount of redundant informa-
tion along with an infinite number of wavelets. The DWT, using discrete
wavelets, overcomes these problems. With the redundancy removed, wavelet
transforms become sparse—only a few wavelets are needed to describe or
decompose a given signal. This makes DWTs well suited for data-compression,

10.2 Data Analysis Techniques 249

image-analysis, and noise-reduction applications. Efficient software algo-
rithms implementing DWTs have led to their widespread use.

It is likely that wavelet transforms will continue to increase in popularity
and they may eventually replace the ubiquitous FFT as the technique of choice
for signal analysis.

10.2.7 Other DSP Techniques

A host of DSP techniques besides the FFT are commonly used. An exhaustive
survey of the DSP field is outside the scope of this book. We will just look
at a few more techniques that you may likely need in a data acquisition
system. Please refer to the bibliography for sources of more detailed infor-
mation on DSP.

Digital Filters Digital filtering techniques are most often applied to time-
domain signals, as in real-time filtering applications. Depending on system
parameters, a digital filter can operate more quickly than using an FFT
algorithm where a forward FFT converts a time-domain signal to the fre-
quency domain. Then the frequency signal is multiplied by a filter function
and finally the frequency signal is converted back to the time domain via an
IFFT.

The two common types of digital filter approaches are finite impulse
response (FIR) and infinite impulse response (IIR). The filtering process is
effectively a convolution of the time-domain signal with a filter function.

FIR digital filters are considered nonrecursive. They mix delayed por-
tions of the input signal with feedforward of the undelayed signal. They
operate only on a small time-domain window of signal data. The filter function
describes the coefficients for each of the delayed and undelayed components.
FIR filters usually have a linear phase response, are relatively easy to imple-
ment, and do not tend to accumulate errors, since they operate on a data
window of finite width. Their main limitation is the need to use many coef-
ficients for good performance. This results in longer computation times and
lower bandwidths.

IIR digital filters are considered recursive. They mix the input signal
with time-delayed feedback of the output signal. They operate on a wide
time-domain window of signal data. Even though it may be more difficult to
design an [IR filter than an FIR filter, the resulting IR filter is simpler, with
fewer coefficients. This results in shorter computation time and wider band-
widths. Their main drawbacks are their sensitivity to noise and error accu-
mulations, due to including effects of all past data.

250 CHAPTER 10 Data Processing and Analysis

Cross-Correlation The final DSP technique we will touch on here is cross-
correlation. This is used to see how similar two functions are. The cross
correlation function of x(¢) and y(¢) is

1
(a.a,)

e(r) = j x(T)y(r+T)dr

where a, and a, are the RMS values of the two functions. This normalizes
c(r) to a maximum value of 1 (if the two functions correlate). If the two
signals are very similar, there will be a maximum in the cross-correlation
function. Otherwise, there will not be any significant maximum. If one func-
tion represents a delayed version of the other function, c(¢) will equal 1 (or
its maximum) at a value of ¢ equal to the time delay.

This concludes our overview of data processing with PCs. The tech-
niques covered include some of the most common data analysis methods used
with data acquisition systems. In the next chapter we will look at commercial
hardware and software data acquisition products for PCs.

CHAPTER

Commercial Data
Acquisition Products

There is a plethora of commercially available data acquisition products for
PCs, with the number growing larger every day. The largest selection exists
for Intel CPU-based, PCI-bus systems running MS Windows 95/98/NT/
2000 (so-called “Wintel” PCs). However, there are still products available
for ISA and PC-104 buses as well as some software support for MS-DOS.
There is also a growing number of products using the USB interface. In addi-
tion, some products support newer Apple Macintosh computers that use the
PCI bus.

These commercial products fall into two broad categories: hardware
and software. Some software is included with most hardware products, to
assist the user. Occasionally, hardware manufacturers just recommend com-
patible software products, along with programming guidelines. Some prod-
ucts are a complete hardware/software bundle, requiring both for proper
operation.

In this chapter we will survey the vast array of data acquisition hardware
and software products. We will look at products from a few major manufac-
turers in detail, including both operational information and how to use the
products. The Appendix contains lists of commercial data acquisition product
manufacturers (hardware and software). Since most hardware products oper-
ate similarly, regardless of the computer platform used (PC, Macintosh, VME
bus), an in-depth discussion will again center on “Wintel” products. First, we
will examine hardware products.

251

252 CHAPTER 11 Commercial Data Acquisition Products

11.1 Commercial Data Acquisition
Hardware Products

A large number of manufacturers produce data acquisition hardware products
for PCs. The largest market is for Microsoft Windows-based, PCI-bus and
ISA-bus computers running Intel or compatible processors. For these
machines, most data acquisition hardware products are cards that plug into
a PC’s expansion bus. Typically, the newest and fastest products are PCI-
based. Many ISA-bus products are still available, but they are not recom-
mended for new applications. ISA boards come in two major versions: 8-bit
cards for PC/XT class computers and 16-bit cards for AT (ISA) machines.
Many products have additional hardware, external to the PC, which connects
to the main data acquisition card. These add-on devices include connection
boxes, signal conditioning boards, and high-power I/O interfaces, including
relay boards. Some PC-based data acquisition systems consist of an external
box connected to the PC’s bus for control, usually via a special interface card.

Besides plug-in cards, there are now data acquisition hardware modules
that connect to a PC via a USB port. These plug-and-play devices are very
easy to install but are usually not high-performance products (having limited
data transfer rates). Notebook PCs can also use data acquisition hardware via
PCMCIA cards. In addition, some data acquisition products connect to a PC
via a standard serial or parallel port.

Many data acquisition boards for PCs have dedicated functionality, such
as only analog inputs. Some may have expansion capability, such as an
additional multiplexer for more analog inputs. Other PC-based data acquisi-
tion cards are designed to be modular. They consist of a basic plug-in card,
the carrier, which accepts several modules riding “piggy-back™ on it. These
modules offer specific functions, allowing the user to tailor the hardware to
his or her particular needs (such as the number of analog inputs and outputs
required). The module functions include analog I/O, digital I/O, and signal
conditioning. This modular approach offers greater flexibility, at a higher
price. It is usually justified when a highly customized system is required or
configuration changes will occur often.

Data communications interface cards are also an important piece of data
acquisition system hardware. In this case, the PC is used as an intelligent
controller, running remote data acquisition equipment through the interface.
These interfaces include GPIB, RS-232C, RS-422, and RS-485. Of course,
these cards can also be used in PCs for communications purposes other than
data acquisition. For example, even though a GPIB interface card is often
used in a PC to control automated instruments, it could be used to simply
drive a printer or plotter.

11,1 Commercial Data Acquisition Hardware Products 253

Figure 11-1 Typical ISA, single-function data acquisition cards for PCs. (Courtesy
of intelligent Instrumentation)

Data acquisition cards for PCs fall into several major functional cate-
gories, including digital I/O, analog /O, and counter/timer. Some boards have
most or all of these features; others have only one or a few. A few typical
ISA data acquisition cards are shown in Figure 11-1. There are also special-
ized data acquisition cards which have features geared to a particular appli-
cation, such as chromatography equipment used in analytical chemistry labs.

Another variation on data acquisition cards is the virtual instrument.
This type of device is a combination of hardware (a card) and software that
emulates the functionality of a standard test instrument, such as an oscillo-
scope or function generator. The user interface is a graphics environment that
looks like the front panel of the emulated instrument. By adjusting the virtual
knobs or pressing virtual buttons, the user operates the virtual instrument.
When the virtual instrument is an oscilloscope, the hardware consists of an
analog input card. A virtual function generator would use an analog output
card.

Digital I/O cards have input and output lines typically operating at TTL
logic levels (in the range of 0 to +5 V). Stand-alone digital I/O cards often
contain some multiple of 8 I/O lines, with 16 or 24 being most common.
These cards can be used as parallel, digital interfaces as well as dedicated
controllers. Most digital I/O cards allow programming lines for input, output,

254 CHAPTER 11 Commercial Data Acquisition Products

1
GROUP A
. | I/0 LINES
< » PORTA ({¢— PAQ - PA7
(8-bits)
[GROUP A
CONTROL["
I K]
GROUP A
« | PORTC VO LINES
UPPER [¢ > PC4-PC7
8 (4-bits)
8/ System %ﬁTQ | |
Data Bus BUFFER Local Data Bus
GROUP B
M | PORTC I/0 LINES
N * Lower [Pco-PC3
RD — (4-bits)
WR— ; L)
READ/WRITE
AQ ——|
Al CONTROL |-b] GROUP B,
Al— T haic CONTROL
€8 — GROUP B
. N I/0 LINES
RESET f N » PORTB ¢ > PBO-PB?
(8-bits)
I

Figure 11-2 Intel 8255A programmable peripheral interface (PPI).

or both. Usually they contain interrupt-generation hardware. Some digital /O
cards support DMA for maximum data transfer speeds.

A popular IC used for digital I/O was the Intel 8255A Programmable
Peripheral Interface (PPI), whose block diagram is shown in Figure 11-2.
This device had three 8-bit ports that could be programmed for one of three
modes: simple, unidirectional I/O without handshaking; strobed, unidirec-
tional I/O with handshaking; and strobed, bidirectional I/O on the same pins,
with handshaking. The 8255A was controlled by addressing its control port
and three data ports. It was so popular that the 8255 became an industry
standard for digital I/O and it still remains a standard, long after Intel stopped
manufacturing the chip. In current digital I/O cards (which do not use the
8255A itself), the IC’s functionality is usually part of a highly integrated
programmable logic device (PLD). This logic emulates an 8255A and its

11.1 Commercial Data Acquisition Hardware Products 255

registers, providing full compatibility with software written for the original
chip.

Analog I/O cards are the most common form of data acquisition hard-
ware for PCs. They contain one or more ADCs for analog input and DACs
for analog output. Usually, any card containing an ADC for analog input is
considered a data acquisition card. Analog input cards typically contain one
ADC IC or module along with one or more analog multiplexers. This enables
several analog signal sources (such as conditioned sensors) to be connected
to one board at the same time. For example, multiple temperature sensors
may be used in monitoring different portions of a piece of equipment under
test. The multiplexer allows one of several analog inputs to be connected to
the ADC at any given time. Commonly, commercial ADC cards have 8-32
analog input channels. These channels may be differential or single-ended.

The resolution of the ADCs and DACs used on these cards range from
8 bits to 24 bits. Analog 1/0 boards with 12-bit resolution are still the most
common. Another important parameter is the maximum conversion rate for
analog input cards. This can range from only tens of samples/sec, on high-
resolution and/or low-cost cards, to more than 2 million samples/sec at 16-bit
resolution or 100 million samples/sec at 14-bit resolution on high-speed data
acquisition cards with PCI interfaces. Cards with conversion rates up to 5 billion
samples/sec (five gigasamples/sec) at 8-bit resolution are also available at this
time.

When looking at the maximum conversion rate for an ADC card,
remember that it is usually specified for a single channel only. If you need
to measure several inputs simultaneously, the maximum conversion rate at
any channel is the ADC’s maximum rate divided by the number of multiplexed
channels used. If this overall rate is too slow, you will need multiple ADCs
(one or more cards), a faster ADC, or a card with simultaneous sampling
hardware.

Analog output cards usually contain one DAC per output channel.
Occasionally, a card may contain one DAC and several analog output chan-
nels, employing a sample-and-hold (S&H) amplifier for each channel. As we
previously saw (in Chapter 3), S&H amplifiers “remember” a voltage level
using a charged capacitor. Since the capacitor’s charge slowly drops (because
of its own leakage current and that of the surrounding circuitry), the S&H
output “droops” with time. The S&H output must be continuously refreshed
by recharging the capacitor (as with DRAMs), or the analog output will be
valid only for a short period of time (usually on the order of milliseconds).
Because of these drawbacks, this approach is not widely used. Most analog
output boards have only a few channels, with an independent DAC for each.

Most analog I/O cards contain a timer/counter with multiple channels.
This enables the card to perform conversions at a fixed rate, without any PC

256 CHAPTER 11 Commercial Data Acquisition Products

software overhead. It is a common option for data conversions to be controlled
by an internal (on-board) clock, by an external clock, or by PC software
commands. Most analog input cards have hardware interrupt capability. This
is a programmable option, used to generate an interrupt when the ADC is
ready to be read. It is especially important when the ADC conversion rate is
controlled by an on-board clock and is essentially asynchronous to the control
software running on the PC.

Some ISA analog I/O cards have DMA capability. This allows data to
be transferred between the data acquisition card and the PC at the fastest
possible rate. It does require special software support, but this is usually
commercially available. These software packages are used for data streaming
(transferring data between the data acquisition card and a disk file at high
speed) as well as simulating the functions of a high-speed strip-chart recorder.
Only high-speed ISA analog 1/O cards use DMA, since for slower cards the
analog data conversion speed, not the data transfer rate, becomes the rate-
limiting factor.

PCI analog I/O cards are potentially much faster than their ISA coun-
terparts, because of their faster bus speed. Most PCI data acquisition cards
are PCI version 2.1 compliant, supporting a 32-bit data bus at speeds up to
33 MHz, with a peak burst rate of 132 Mbytes/sec. This is well over an order
of magnitude faster than ISA-bus DMA. Another important feature of many
PCI data acquisition cards is bus-mastering capability. This allows the board
to transfer data into memory as soon as it is available, without waiting for
application software to respond to a poll or interrupt (in a manner analogous
to an ISA DMA operation, but with better handshaking and more hardware
“intelligence”). In addition, high PCI transfer rates minimize the amount of
on-board memory required by the card to buffer acquired data, before it can
be transferred to the PC’s main memory. Usually, a FIFO that is only a few
thousand samples deep is an adequate buffer (as opposed to the several
megabytes of buffer memory that is required on a high-speed ISA card).

Timer/counters are available on separate cards, typically in conjunction
with digital I/O lines. Besides being used for controlling data conversion
rates, they are also useful as general-purpose clocks, frequency counters, and
event counters. They usually have TTL compatible inputs, but with proper
signal conditioning, such as an amplifier (to boost the signal level) and a
comparator with hysteresis (to square up slow rise/fall times of a signal and
convert it to TTL levels), analog signals can also be measured.

ICs commonly used for timer/counters were the Intel 8254 Program-
mable Interval Timer (PIT) (used in earlier PC motherboards) and the AMD
AMI513A System Timing Controller (STC), shown in the block diagrams
of Figure 11-3. The Intel 8254 PIT contained three independent 16-bit
counters; the AMD AM9513A STC had five.

11.1 Commercial Data Acquisition Hardware Products 257

— CLK
o ysem | DATABUS |, 1, 4! COUNTERO |—— gATé) 0
Data Bus BUFFER - T
> OUTO
. I Local
RD —1 Bus e CLK 1
VX'; READ/WRITE «—1» COUNTER1 (e GATE 1
A1 ” LOGIC L+ OUT1
—
5 1
1 e——— CLK 2
CONTROLWORD |, _[¢—1# COUNTER2 |e—— GATE2
REGISTER D ——» OUT 2

(a) Intel 8254 Programmable Interval Timer (PIT)

SOURCE 1-5 5/ N
GATE 1-5 S,
16-BIT COUNTER]| 5
cLock FREQ SCALER

‘_A

FOUT DIVIDER INPUT] 3/ | COUNTER 1 outt
FOUT | (4-BIT L SELECT [«*» .
COUNTER) LOGIC 3 JCOUNTER 2 — OuT2
. e e I
—_ OUNTER 3
W READ/WRITE

c/B CONTROL

pdnd LOGIC 3/] COUNTER 4 — OUT4
s —|

i [REGISTERS| 3/ JCOUNTERS — OUT5
DATA t

8, System 16,
7 Data Bus BUS

BUFFER

(b) AMD AM9513A System Timing Controller

Figure 11-3 Commonly used counter/timer integrated circuits (ICs).

These ICs are now obsolete. However, they were once such popular
industry standards that their functionality has been emulated using program-
mable logic in many current products. As with the 8255A PPI, these emulated
timer/counters appear the same as the original ICs to software. Of course, some
new timet/counter cards dispense with this backward compatibility and imple-
ment counter logic with different (and usually more advanced) characteristics.

As shown in Figure 11-3, each of the three 8254 counters has a clock
input, a gate input, and an output line. They are synchronous down-counters

258 CHAPTER 11 Commercial Data Acquisition Products

(binary or BCD) with a count register to load a counter value, an output
register to read the counter value, and a status register. Six programmable
counting modes are available, allowing the 8254 to be used as a clock, an
event counter, a one-shot generator, a programmable square-wave generator,
or a complex digital waveform generator.

The AM9513A design is an extremely powerful counter/timer, with many
operational modes and advanced features, making its functionality a popular
choice for manufacturers of high-performance data acquisition cards. Each of
the five AM9513A counters has a source input, a gate input, and an output line.
It differs from the 8254 by having a common clock generator as part of the
device. Each counter can choose its clock input from either this internal source
(including a clock divided down from the internal one) or an external clock on
its source line. This internal clock was originally 1 MHz, but later designs went
as high as 7 MHz. The synchronous counters can count either up or down in
binary or BCD. They can be concatenated for an effective counter length of
80 bits. The device has a scaled frequency output. Each counter has a load
register to initialize the counter, a hold register to read the instantaneous count
value, and a mode register to program the counter’s features (such as clock
source, polarity of gating line, or output conditions). The AM9513A can be
used for extremely complex timing and waveform-generation applications.

The most useful configuration for PC-based data acquisition hardware
is the multifunction board. This card contains, at a minimum, an ADC and
digital I/O lines. A typical multifunction data acquisition card contains several
analog input channels, one or more analog output channels, several digital
1/0 lines, and several timer/counter channels. Some may even contain signal-
conditioning circuitry, such as filters. These boards can contain all the hard-
ware needed to convert a PC into a complete data acquisition system (along
with the appropriate software), usually at a very attractive price. Just make
sure that you need most of the functions on the card and that each individual
function meets your requirements (such as an adequate number of I/O chan-
nels or an ADC conversion rate that is fast enough). Without a doubt, multi-
function boards are the most popular type of data acquisition card for a PC.

Now that we have covered some of the general aspects of data acqui-
sition hardware, we will look at some commercially available products, cov-
ering a few of the more popular manufacturers. Complete addresses and other
details are in the Appendix.

11.1.1 Keithley Instruments, Inc.

Keithley Instruments, Inc. (previously Keithley Metrabyte Corp.) manufac-
tures data acquisition cards and accessories for PCI and ISA-bus computers
as well as PCMCIA cards for notebook PCs, communications interface cards

11.1 Commercial Data Acquisition Hardware Products 259

Figure11-4 Keithley KPCl-3108 multifunction PCI data acquisition card. (Courtesy
of Keithley Instruments, Inc.)

(serial and IEEE-488), and virtual instruments. Their products for PC-based
data acquisition range from low-cost ISA boards, such as the DAS-8, to high-
performance, multifunction PCI cards, such as the KPCI-3108. The DAS-8
has eight single-ended analog input channels with 12-bit resolution, an input
range of =5 V and a maximum conversion rate of 4000 samples/sec. It also
has seven digital I/O lines (four outputs and three inputs).

The KPCI-3108 (shown in Figure 11-4) has 16 single-ended (or 8
differential) analog input channels of 16-bit resolution with a maximum
conversion rate of 100,000 samples/sec. The analog input range is software
selectable, from +0.0125 V to £10 V, full-scale. It also contains two 16-bit
analog output channels with a maximum conversion rate of 100,000 samples/
sec and an output range up to +10 V. In addition, the KPCI-3108 has 32
digital I/O lines, three 16-bit counter/timers, 12 auxiliary digital I/O lines for
timer gating or clocking, and full PCI bus-mastering capability for high-speed
data transfers. This board also contains a 256-location channel-gain queue
that allows you to acquire data from nonsequential channels at different gain
settings, using a preprogrammed sequence.

260 CHAPTER 11 Commercial Data Acquisition Products

You can use the KPCI-3108 (and most newer Keithley cards) with a
fully integrated data acquisition software package, such as LABTECH NOTE-
BOOK or TestPoint. Alternatively you can write your own custom program
using a standard 32-bit programming language (running under Windows
95/98/NT/2000), such as Microsoft Visual Basic or Visual C/C++ . The board
comes with drivers: Keithley’s Driver Linx software. Unlike older ISA cards,
the KPCI-3108 (and other newer cards) does not use register-level program-
ming. The Driver Linx software provides a higher-level interface to the
board’s analog and digital functions within the Windows environment. You
simply make calls to driver functions.

Keithley produces an ultrahigh-speed ISA ADC board, the DAS-4300,
which has a maximum transient conversion rate of 1 gigasample (Gsample)/sec
with 8-bit resolution. To support this data acquisition rate, which is much
faster than PC DMA transfer rates, the DAS-4300 has on-board memory of
8 Kbytes for data storage. It has two single-ended analog input channels (with
50-ohm input impedance), but no digital I/O or analog output lines. ADC
triggering can come from a software command, an external logic level, or an
analog signal. The analog input range is software selectable from +25 mV to
+1 V full-scale, with both coarse and fine steps.

A special feature of the DAS-4300 is equivalent time sampling (ETS),
used to increase the effective sampling rate when digitizing repetitive signals
(see Chapter 4). Using ETS, the DAS-4300 can run as fast as 20 Gsamples/sec.

The DAS-4100 is another 8-bit, high-speed analog input board in the
same family as the DAS-4300. The DAS-4100 has a maximum transient con-
version rate of 64 million samples/sec and an ETS rate up to 2 Gsamples/sec.
This card can have as much as 1 Mbyte of on-board memory, allowing full-
speed capture of relatively long waveforms.

An example of a high-resolution PCI card is Keithley’s KPCI-3116,
which has an ADC with 16-bit resolution and a maximum conversion rate of
250,000 samples/sec with 32 single-ended or 16 differential analog input
channels. It also includes two 16-bit analog outputs, 16 digital /O lines, and
four counter/timers. As with the KPCI-3108, the KPCI-3116 has full PCI
bus-mastering capabilities.

Keithley also produces a line of PCMCIA (see Chapter 12) data acqui-
sition cards for use with laptop or notebook computers. This class of products
is ideal for portable data acquisition systems. Figure 11-5 shows a collection
of some PCMCIA cards. A typical example is the KPCMCIA-12AIAOQ, which
has a 12-bit ADC with conversion rates up to 100,000 samples/sec, a pro-
grammable input range of £1.25V to £10 V full-scale and eight single-ended
(or four differential) inputs. The KPCMCIA-12AIAO also has two DAC
outputs with a maximum update rate of 100,000 samples/sec, a 16-bit

11.1 Commercial Data Acquisition Hardware Products 261

Figure 11-5 Collection of PCMCIA cards. (Courtesy of Keithley Instruments, inc.)

counter/timer, and eight digital I/O lines (four inputs, four outputs). The
KPCMCIA-16AIAO is a 16-bit data acquisition card with the same specifi-
cations as the KPCMCIA-12AIAO (i.e., 100,000 samples/sec conversion rate)
except for higher resolution. As with standard PCMCIA devices, these cards
are hot-swappable (they can be plugged or unplugged when the PC is on).

As an illustration of a typical data acquisition card for ISA PCs, we
will examine another Keithley board in greater detail, the DAS-16, shown in
Figure 11-6. Even though this is an old product (originally designed for the
8-bit PC-XT bus) it has been so popular that not only does Keithley still build
it but many other manufacturers also produce functionally equivalent versions
of the board (so-called “clones™). Versions of the DAS-16 are even available
as PC-104 cards (see Chapter 12).

The DAS-16 is a multifunction card, with 16 single-ended (or eight
differential) analog input channels of 12-bit resolution, with a maximum
conversion rate of 50,000 samples/sec (the DAS-16F, with DMA support, has
a maximum rate of 100,000 samples/sec). It has two 12-bit analog output
channels, eight digital I/O lines, three timer/counter channels, and interrupt
support.

The DAS-16 card will work in virtually all PC/XT and ISA PCs, as it
requires only a PC/XT bus (62-pin) expansion slot. This makes it useful for
older PCs in nondemanding applications, such as temperature logging. A
block diagram of the DAS-16 is shown in Figure 11-7. Like most older ISA
data acquisition cards, the I/O addresses used by the card are switch selectable

262

CHAPTER 11

Commercial Data Acquisition Products

Figure 11-6 Keithley DAS-16 multifunction ISA data acquisition card. (Courtesy
of Keithley Instruments, Inc.)

CHo Instrumentation Sample & Hold
CH1 — Amplifier Amplifier OP 0-3
Analog | — DIGITAL .
Inputs MUX L] ADC e Digital Ports
CH14 —i] < 5 P03
CH15 T 1
STATUS ADC/MUX DATA IEIT Counter
REGISTER REGISTER . Vo

D/A 0 DACO 1« Internal Data Bus 4 s

Analog CONTROL

Outputs ! REGISTER
D/A1+— DAC 1

ISA INTERFACE [«

ISA BUS

Figure 11-7 Block diagram of Keithley DAS-16 card.

11.1 Commercial Data Acquisition Hardware Products 263

(it is not plug-and-play). Since the DAS-16 uses 16 consecutive addresses,
only the base or starting address is explicitly selected. By default, this address
is 300h, which is commonly used for ISA data acquisition cards, being part
of the I/O map (300h—-31Fh) reserved by IBM for prototype cards. In this
case, the DAS-16 would occupy 300h—30Fh. If this space was already in use,
another base address would be selected, such as 310h. The base address has
to fall on a 16-bit boundary, as the address select switches are for bits A4
through A9. Newer ISA and all PCI data acquisition cards are plug-and-play,
so I/O addresses are automatically selected.

Other switches on the DAS-16 select differential or single-ended lines
for the analog input channels, ADC gain level, and unipolar-versus-bipolar
ADC input range. The DAS-16 has five preset gain levels for the ADC,
determining full-scale range. In bipolar mode these are £10V, £5V, 125V,
+1V, and £0.5 V. For many newer data acquisition cards, the gain levels are
set by software commands.

All external connections to the DAS-16 (other than the ISA expansion
bus connector) are made via a 37-pin D-shell connector, at the back of the
card. Most data acquisition cards use this type of arrangement if the number
of connector lines is not excessive (usually 50 or less). The most common
connectors used are D-shell and ribbon-cable varieties. If many external
connections are needed, as with a multifunction card having a large number
of analog and digital I/O lines, usually several ribbon cable connectors on
the board itself are used. These cables then have to be routed through an
opening in card’s mounting bracket. On the DAS-16, the 37-pin D-shell
connector contains all the analog and digital I/O lines. In addition, it contains
control lines for the accessible timer/counters, power supply (+5 V) and
reference voltage (-5 V) outputs, along with an input for an external DAC
reference voltage (if a range other than 0 to +5 V is desired).

All software access to the DAS-16 is done by reading from and writing
to the 16 /O ports located in the ISA I/O space between the base address
and base +15. These I/O ports are listed in Table 11-1. Note that some of
these ports are either read-only or write-only, while some are both read and
write. In addition, the same port address can have a different function, depend-
ing on whether you read from it or write to it. For example, the base address,
as a read port, returns the low byte of the last ADC conversion. As a write
port it initiates an ADC conversion.

The mux scan port (at base +2) allows multiple ADC channel conver-
sions to be performed without explicitly stating the desired analog input
channel prior to each conversion. The first and last channel numbers are
written to this port. Each successive ADC trigger operates on the next analog
input channel, within the range of first-to-last. After the last channel, the

264 CHAPTER 11 Commercial Data Acquisition Products

TABLE 11-1
DAS-16 1/0 Ports

PORT LOCATION FUNCTION READ/WRITE
Base Address + 0 | ADC Low Byte R
Start ADC w
Base Address + 1 ADC High Byte R
Base Address + 2 | MUX Scan Control R/W

Base Address + 3 | Digital /O Out (4 bits)
Digital I/O In (4 bits)

W

R

Base Address + 4 | DAC 0 Low Byte w
Base Address + 5 | DAC 0 High Byte w
w

w

R

R

Base Address + 6 | DAC 1 Low Byte
Base Address + 7 DAC 1 High Byte
Base Address + 8 DAS-16 Status

Base Address + 9 | DAS-16 Control /W
Base Address + 10 | Counter Enable (2 bits) w

Base Address + 11] Not Used N/A
Base Address + 12 | Counter O R/W
Base Address + 13 | Counter 1 R/W
Base Address + 14 | Counter 2 R/W
Base Address + 15 | Counter Control w

selection rolls around to the first one again. This feature is extremely handy
if you use multiple analog inputs with a hardware clock trigger. Once the
software sets up the card to convert the desired ADC channels, all it has to
do is keep reading the data until the required number of readings have been
accumulated. Of course, the analog input channels used must be consecutive
numbers. By contrast, a board such as the KPCI-3108, with a channel-gain
queue, does not have the limitation of consecutive channel numbers.

The analog output ports (at base +4 through base +7) are write-only,
requiring two 8-bit ports to access the complete 12-bit DAC word. The DAC
output is not changed until both bytes have been written, preventing a glitch
in the DAC output when one byte is an old value and the other is a new value.

The eight digital /O lines of the DAS-16 are configured as a 4-bit input
port and a 4-bit output port. By writing to the digital I/O port (at base +3),
the four output lines are latched. Reading from the digital /O port reflects
the state of the four input lines. Two of the input lines are also used for special
ADC trigger and counter gate functions.

11.1 Commercial Data Acquisition Hardware Products 265

The status port (at base +8) is read-only. It contains information about
the ADC and interrupt status. This information includes whether the ADC is
busy or has valid data and if the analog inputs are single-ended or differential
as well as unipolar or bipolar. This allows software to check the state of the
hardware switches. In addition, the mux channel for the next conversion is
read here, along with the status of the board’s interrupt generator.

The control port (at base +9) is both a read and write address and
determines the operating modes of the DAS-16. It is used to enable or disable
interrupt generation and select the hardware interrupt level to use (ISA IRQ
2-IRQ 7). The control port can also enable DMA transfers (if enabled, the
PC’s DMA controller must be properly initialized). In addition, this port
determines the source of the ADC conversion trigger: software only, internal
timer control, or external trigger control.

The counter-enable port (at base +10), along with the four 8254 ports
(at base +12 through base +15), controls operation of the three counter/timer
channels. Counters 1 and 2 are cascaded, so that counting periods ranging
from microseconds to hours can be used to periodically trigger the ADC.

As an example of software for the DAS-16, here is a small segment of an
MS-DOS BASIC program. This code triggers an ADC conversion (via software)
for a board at base address BASADR, returns the 12-bit result in DAT and the
analog input channel number in CHANL, and then displays the result:

10 BASADR = &H300 'Default Base Address
20 OUT BASADRS%, 0 'Start ADC conversion
30 IF INP(BASADR%+8)>=&H80 THEN GOTO 30 'Conversion Done?

40 LOW% = INP(BASADR%) 'Read low byte

50 HI% = INP(BASADR%+1) 'Read high byte

60 DAT% = 16 * HI% + INT (LOW%/16) '12-bit data read

70 CHANL% = LOW% AND &HOF 'Analog channel number
80 PRINT "For Channel #";CHANL%;", ADC Value = ";DAT%

Note that the variable names end in % to signify they are integers (as opposed
to floating-point numbers).
In Microsoft C for MS-DOS, a similar program would look like

#include <conio> /* for inp() & outp() functions */
#include <stdio> /* for printf() */
#define BASADR 0X300 /* default base address = 300h */
#define ADCLOW BASADR /* address of ADC low byte */
#define ADCHI BASADR+1 /* address or ADC high byte */
#define ADCSTAT BASADR+S8 /* address of status port */
main ()

{ /* start of program */

int dat, low, high, chanl; /* declare integers */

outp (BASADR, 0) ; /* start conversion */

while (inp (ADCSTAT) >=0%80) ; /* wait for end of conversion */

266 CHAPTER 11 Commercial Data Acquisition Products

low = inp (ADCLOW) ; /* read low byte */

high = inp(ADCHI); /* read high byte */

dat = 16 * high + low / 16; /* full 12-bit reading */
chanl = low & Ox0f; /* mask bits to get channel number */
printf ("\nFor Channel #%d, ADC Value = %d\n",chanl,dat);

} /* end of program */

This program may look more verbose than the BASIC version, but as
the size and complexity of a program increase, the extra overhead of C is
minimal compared to its flexibility, speed, and power.

This examination of the Keithley DAS-16 board has shown us how a
typical, older ISA data acquisition card operates. Besides conventional plug-
in cards, Keithley manufactures many stand-alone instruments and special-
ized data acquisition products, such as their ADWIN series for real-time
response (under 500 nsec). The devices in this series range from plug-in
PC cards to expandable instrument racks. They contain their own micro-
processors so these devices can operate independently of the controlling
PC’s operating system. Their networking capabilities (including Ethernet
support) make them a good choice for remote data acquisition and control
applications.

One other interesting Keithley product line is their PC Instrument Prod-
ucts (PCIP): PC plug-in boards that emulate conventional test instruments.
They are ISA cards that include a digital storage oscilloscope (PCIP-SCOPE),
a digital multimeter (PCIP-DMMA), an arbitrary waveform generator (PCIP-
AWEFG), and a frequency counter (PCIP-CNTR). These virtual instruments
can operate in either a manual mode (via virtual control panels, on the PC
monitor) or in an automated mode via a DOS or Windows program.

This concludes our look at some of Keithley Instrument’s PC-based
data acquisition products. For up-to-date information, visit their Web site
(www.keithley.com).

11.1.2 Data Translation Inc.

Data Translation Inc. is another leading producer of data acquisition boards
for PCs. Their product line supports both ISA and PCI platforms as well as
USB and PCMCIA interfaces. They also provide some software for use with
their data acquisition products. In addition, Data Translation produces image-
capture boards (frame grabbers and video processors) for ISA and PCI PCs.

Data Translation’s data acquisition card product line ranges from low-
cost, low-speed, multifunction cards, such as the DTO1-EZ ISA board, to
high-performance PCI cards, such as the DT3010 series. The DTO1-EZ is a
good general-purpose ISA data acquisition card, with 12-bit resolution and
16 single-ended or eight differential input lines. It has a maximum conversion

11.1 Commercial Data Acquisition Hardware Products 267

rate of 27,500 samples/sec and analog input ranges of 1.25 V through 10V,
full-scale (both unipolar and bipolar ranges). It has two 12-bit analog output
channels with a max conversion rate of 29,500 samples/sec and 16 digital
I/0 lines. The DTO1-EZ has a programmable pacer clock to initiate repeated
conversions but no general-purpose, user-accessible counter/timers.

The PCI data acquisition cards in the DT3010 series contain either a
12-bit or a 16-bit ADC with up to 16 differential or 32 single-ended analog
input channels. The maximum ADC conversion rate for the 12-bit boards is
1.25 million samples/sec. For the 16-bit model (DT3016) this maximum rate
is 250,000 samples/sec. The cards in this series have two analog output
channels (DACs) with the same resolution as their ADC (12-bit or 16-bit).
These analog outputs have maximum conversion rates of either 500,000
samples/sec for the 12-bit boards or 200,000 samples/sec for the 16-bit board.
In this series, the analog input amplitude ranges vary from 1.25 V through
10 V, full-scale (both unipolar and bipolar). Analog outputs have a bipolar
range of £10 V. The analog outputs also have a FIFO, for outputting repetitive
waveforms, up to 32,768 samples long.

The DT3010 series boards all have 16 digital 1/O lines, configured as
two programmable 8-bit ports. Digital inputs can be read as part of the analog
channel list, providing an accurate time stamp relative to the analog readings.
There are also two dedicated programmable digital outputs that can indicate
when a particular analog channel is read, providing synchronization to exter-
nal equipment. These boards have a programmable pacer clock to initiate
repeated data conversions as well as four 16-bit counter/timers.

Data Translation has another interesting ISA data acquisition product
line, their DT2831 series. The boards in this series are very similar to other
Data Translation ISA boards with one important exception. Once the base
address of a DT2831 card has been selected, all its data acquisition parameters
are set by software only. There is no need to change switch or jumper settings
to modify parameters such as analog input gain, single-ended versus differ-
ential analog inputs, analog voltage ranges, DMA channel, interrupt channel,
or even ADC and DAC calibration. These boards support either 12-bit or 16-bit
analog I/O. The maximum analog input conversion rate is 250,000 samples/sec
for 12-bit boards and 160,000 samples/sec for 16-bit boards. The analog
output conversion rates are 130,000 samples/sec for 12-bit DACs and
100,000 samples/sec for 16-bit DACs, with either a unipolar (0-10 V) or
bipolar (£ 10 V) output range. The DT2831 boards have eight digital 1/O lines,
configured as a single 8-bit port. They also have two counter/timer channels.
These boards support hardware interrupts and two DMA channels. They also
have available simultaneous sample-and-hold inputs for sampling all analog
inputs at the same time.

268 CHAPTER 11 Commercial Data Acquisition Products

Another unique Data Translation product line is their Fulcrum
(DT3800) series of intelligent data acquisition boards. These ISA cards are
controlled by an on-board Texas Instruments TMS320C40 DSP (digital sig-
nal processor), which is a 32-bit floating-point CPU. A DT3800-series board
can operate independently of its host PC, since the TMS320C40 controls all
of its operations. All configuration and calibration is done via software
controls from the host PC. Cards in this series have 12-bit ADC inputs with
conversion rates up to 1 million samples/sec and 16-bit ADCs as fast as
160,000 samples/sec.

The Fulcrum series boards have two high-speed, 16-bit analog output
channels with data rates up to 200,000 samples/sec and software-selectable
settings. They also have 16 digital I/O lines with speeds up to 3.3 MHz. These
digital lines are partitioned into two 8-bit ports. The two 16-bit on-board
counter/timers are 8254-based, running from an internal 10-MHz clock. These
cards run SPOX, a DSP real-time, multitasking operating system. Application
software is developed using the DSPLAB developer’s kit, which runs on the
host PC.

Data Translation, along with most other major manufacturers, produces
screw-terminal and signal-conditioning panels for their data acquisition cards.
These panels simplify connecting external devices to the data acquisition
cards. Some common signal-conditioning functions are available, such as
antialiasing filters and cold-junction compensation for thermocouples. If a
thermocouple is directly connected to the appropriate panel, the analog signal
sent to the data acquisition card can be directly read as degrees (temperature)
without additional circuitry or complex software.

Data Translation also manufactures data acquisition products for PCM-
CIA and USB interfaces. Their PCMCIA products include the DT7100 series.
The DT7101 PCMCIA card has a 12-bit ADC with eight single-ended (or
four differential) inputs and a maximum conversion rate of 100,000 samples/sec.
It also has four digital /O lines (two inputs and two outputs). The DT7102
card has a 12-bit ADC with 16 single-ended (or eight differential) inputs and
a maximum conversion rate of 200,000 samples/sec. The DT7102 also has
two 12-bit analog outputs with maximum rates of 50,000 samples/sec, as well
as six digital I/O lines (two inputs and four outputs).

Data Translation’s USB data acquisition products include their DT9800
series. These modules are fully USB 1.1 compliant, with hot-swap and plug-
and-play capabilities. One of the major advantages of using external USB
data acquisition devices, such as these, is that they can provide a much lower
noise level than PCI or ISA cards that reside inside a PC (where the electronic
noise from the power supply and motherboard is fairly high). The current
disadvantage with USB 1.1 devices is their limited top speed of 12 Mbits/sec

11.1 Commercial Data Acquisition Hardware Products 269

Figure 11-8 Data Translation DT9800 series USB data acquisition module. (Courtesy
of Data Translation, Inc.)

(or 1.5 Mbytes/sec), with typical sustained transfer rates closer to 100
Kbytes/sec. USB 2.0, with its 40x speed increase, should eliminate this
limitation. Figure 11-8 shows a typical Data Translation USB Module.

An example of a multifunction USB device is the DT9802. This module
has a 12-bit ADC with 16 single-ended (or eight differential) inputs that range
from 1.25 V to 10 V full-scale and a maximum conversion rate of 100,000
samples/sec. It has two 12-bit analog outputs, 16 digital I/O lines (eight inputs
and eight outputs), and two 16-bit counter/timers.

Another Data Translation USB device is the DT9821, which has four
independent ADCs with a maximum resolution of 24 bits at conversion rates of
7.5 samples/sec or slower. At the maximum conversion rate of 960 samples/sec,
the ADC resolution is reduced to 16 bits. With an input range varying from
approximately 40 mV to 2.5V full-scale, even at 16-bits the ADC can resolve
inputs less than 1-uV (for 1 LSB).

As with most major data acquisition vendors, Data Translation bundles
software with its hardware products. With PCI cards or USB modules, this
manufacturer includes its Omni CD: a collection of drivers, development
tools, and basic applications for its data acquisition boards that runs under
MS Windows 98/Me/2000. For example, the Scope application requires no
programming and allows you to acquire data in either a high-speed oscillo-
scope mode or a strip-chart mode. Quick Data Acq is a menu-driven appli-
cation that provides verification of board operations and allows you to collect,

270 CHAPTER 11 Commercial Data Acquisition Products

display, and save acquired data. Source code for Quick Data Acq (written in
Microsoft Visual Basic) is also included, allowing you to customize the
application.

Data Translation has other hardware products, such as the DATAX
modular data acquisition system that connects to a host PC via USB. This
system is optimized for expandability and signal conditioning via its stand-
alone, 16-slot chassis. Data Translation also produces some virtual instru-
ments, such as their DT2040 series of PCI-based digital multimeter cards.

This concludes our discussion of Data Translation’s PC-based data
acquisition products. For current information, you can view their Web site
(www.datatranslation.com).

11.1.3 National Instruments

National Instruments had primarily been a leading manufacturer of GPIB
controller hardware and software products for PCs and other computer plat-
forms. In the decade following the first edition of this book, National Instru-
ments has also become a major manufacturer of data acquisition products for
PCs and industrial computer platforms, such as VME and Compact PCI. They
also produce data acquisition hardware for PCMCIA, USB, and IEEE-1394
interfaces. Additional product lines include motion control and image capture
products.

Besides hardware, National Instruments produces software products,
most notably, LabVIEW. LabVIEW, a data acquisition programming lan-
guage, is so popular that it can be used with other manufacturers’ hardware
products. For example, Data Translation and Keithley Instruments provide
software (in the form of virtual instruments) that allow their boards to work
under LabVIEW. We will discuss LabVIEW in greater detail later in this
chapter (see Section 11.2.2).

National Instruments produces a wide range of PCI and ISA data
acquisition cards for PCs. The low-cost, multifunction PCI-6023E is a PCI
card with 16 single-ended (or eight differential) inputs to a 12-bit ADC,
having a maximum conversion rate of 200,000 samples/sec. It also has eight
digital I/O lines and two 24-bit counter/timers, but no analog outputs. The
AT-MIO-16E-1 is an ISA card with 16 single-ended (or 8 differential)
inputs to a 12-bit ADC with a maximum conversion rate of 1.25 million
samples/sec (Msamples/sec). This board has eight digital I/O lines, two
24-bit counter/timers, and two 12-bit analog outputs with an update rate of
1 Msample/sec. It is also fully plug-and-play compatible for simple instal-
lation and configuration.

11.1 Commercial Data Acquisition Hardware Products 21

National Instruments has a family of high-speed digitizers, with analog
inputs only. The NI-5911 is a PCI card having a single analog input channel
and an 8-bit ADC with a maximum conversion rate of 100 Msamples/sec in
real-time mode. For repetitive signals, using its random interleaved sampling
mode, it has a conversion rate up to 1 gigasample/sec (Gsample/sec). This
card has either 4 or 16 Mbytes of on-board memory for temporary data
storage. A special feature of the NI-5911 is the flexible resolution mode that
uses a DSP technique similar to delta-sigma conversion to increase the effec-
tive ADC resolution at lower sampling rates (and lower bandwidth). For
example, at S Msamples/sec the card has 14 bits of effective resolution. This
increases to 21 bits at a conversion rate of 10,000 samples/sec.

Another high-performance National Instruments product line is the NI-
611X family of simultaneous-sampling, multifunction data acquisition
boards. The NI-6110 is a PCI card with four 12-bit analog inputs and a
maximum conversion rate of 5 Msamples/sec. It has two 16-bit analog output
channels with a 4-Msamples/sec maximum rate, eight digital I/O lines, and
two 24-bit counter/timers. Unlike conventional multifunction cards that use
one ADC and an input multiplexer, the NI-6110 (and other family members)
has an ADC for each input channel, allowing simultaneous sampling on all
inputs. This is essential when an accurate relative phase or time measurement
needs to be made.

National Instruments also has PCMCIA and USB versions of some of
its data acquisition products. For example, the NI-6020E, a 12-bit, 100,000
samples/sec multifunction data acquisition device, is available as either an
ISA board or a USB module (the DAQPad-6020E). Another example, the
6024E is similar to the NI-6023E (12-bit ADC, 200,000 samples/sec) except
it also includes two 12-bit analog outputs. The 6024E is available as either
a PCI board (the PCI-6024E) or a PCMCIA card (the DAQCard-6024E).

A National Instruments product even uses the IEEE-1394 bus: the NI-
6070E family (which includes the AT-MIO-16E-1). This is a 12-bit ADC with
16 single-ended (or 8 differential) inputs and a maximum conversion rate
of 1.25 Msamples/sec. It has two 12-bit analog outputs with a maximum
rate of 1 Msamples/sec, eight digital 1/O lines, and two 24-bit counter/timers.
The IEEE-1394 version is the DAQPad-6070E, which is a stand-alone mod-
ule, similar to USB data acquisition devices. Of course, to use this device, a
PC must have an IEEE-1394 interface (usually as an add-in card) and appro-
priate software support. Note that some older versions of 32-bit MS Windows
(such as Windows 95 and Windows NT) are not suitable for IEEE-1394.

Other National Instrument product lines include stand-alone instrumen-
tation chassis, based on Compact PCI cards. Many of their data acquisition
PCI cards are also available in Compact PCI versions.

272 CHAPTER 11 Commercial Data Acquisition Products

As with other major hardware vendors, National Instruments bundles
basic software with their data acquisition products. For example, their E series
of multifunction devices (such as the PCI-6023E card) come with NI-DAQ
driver software to simplify writing your own application program. They also
include Measurement and Automation Explorer software to configure and test
the hardware.

This concludes our brief survey of National Instruments’ data acquisi-
tion products. As with other manufacturers, their Web site (www.ni.com) is
a good source for current product information.

11.1.4 Other Hardware Manufacturers

A large number of other PC-based data acquisition hardware manufacturers
are listed in the Appendix. Without going into much detail, we will look at
a few more of them.

Scientific Solutions, Inc. The first manufacturer of data acquisition boards for
IBM PCs was Scientific Solutions, Inc. Their current product line supports
both ISA and PCI buses and includes multifunction data acquisition boards,
digital /O boards, and GPIB interface cards.

Scientific Solutions’ Lab Tender ISA board is a new, software-com-
patible version of the original 8-bit Lab Tender, introduced in 1981. It contains
a 16-bit ADC with 32 single-ended (or 16 differential) inputs, having a range
of £5 V and a maximum conversion rate of 50,000 samples/sec. The Lab
Tender has a 16-bit DAC, multiplexed with 16 sample-and-hold outputs. If
more than one output at a time is in use, they must be periodically refreshed
(their LabPac 32 driver software takes care of this automatically). This board
has 24 digital I/O lines, configured as two 8-bit and two 4-bit ports, con-
trolled by 8255A-compatible hardware. It also has five counter/timer chan-
nels, with AM9513A-compatible hardware. The Lab Tender supports
hardware interrupts.

Scientific Solutions also produces the multifunction Lab Master DMA
that consists of an ISA board and an external analog box (containing the ADC
and analog input circuitry). This produces very low-noise measurements. The
Lab Master DMA contains a 12-bit or 16-bit ADC with a maximum conver-
sion rate of either 50,000 or 160,000 samples/sec and 16 single-ended (or
8 differential) analog inputs. The analog input range can either be unipolar
or bipolar, and the gain can be adjusted via hardware (through jumpers) or
software. The Lab Master DMA has two independent 12-bit DACs with five
selectable output ranges and a maximum conversion rate of 200,000 samples/sec.

11.1 Commercial Data Acquisition Hardware Products 273

In addition it contains 24 digital I/O lines and five counter/timers, as the Lab
Tender does. The Lab Master DMA supports hardware interrupts as well as
DMA data transfers.

Scientific Solutions PCI product is the Lab Master Pro PCI. This mul-
tifunction board has a 16-bit ADC with 16 analog inputs, expandable to 256,
and a maximum conversion rate of 333,000 samples/sec. It has two 16-bit
analog outputs with rates up to 500,000 samples/sec. The Lab Master Pro
PCI also has five 16-bit counter/timers and 16 digital I/O lines. It supports
PCI bus mastering for high-speed data transfers. The card also has an on-
board FIFO to buffer ADC or DAC data.

Scientific Solutions also provides software support for its boards. Lab-
Pac is a memory-resident driver that runs under MS-DOS. Any standard DOS
programming language can access its functions, such as analog input, analog
output, and digital I/O.

LabPac 32 is a 32-bit application programming interface (API) for
Windows 95/98/NT/2000. Working in conjunction with a board-specific
device driver, LabPac 32 functions access the target device’s features. It
supports most standard 32-bit MS Windows programming languages, includ-
ing Java, Visual C/C++, Visual Basic, and Borland C/C++.

As with other vendors we have surveyed, up-to-date product information
is available at Scientific Solutions” Web site (www.labmaster.com).

Intelligent Instrumentation Intelligent Instrumentation (formerly Burr-Brown/
Intelligent Instrumentation) produces a variety of data acquisition products
for PCs. These include both plug-in cards and remote data acquisition prod-
ucts (with a strong emphasis on Ethernet). Intelligent Instrumentation man-
ufactures a series of plug-in ISA boards with dedicated functions as well as
those with modular features, all part of their PCI-20000 system (please note
that boards in this series, despite its name, are only for the ISA bus and not
the PCI bus). This product line stresses the use of modular boards, based on
the PCI-20098C and PCI-20047C series. Multifunction dedicated boards are
available as well as digital I/O, analog input, and analog output (as shown in
Figure 11-1). Termination panels are also available.

The carrier boards used with expansion modules act as multifunction
cards, plugging into a PC’s ISA slot. Some carrier boards require modules for
analog I/O, such as the PCI-20041C series that contains only digital I/O. The
PCI-20098C is considered a multifunction carrier board, containing analog
/0O, digital I/O, and counter/timers as well as supporting additional modules.

The add-in modules for these carrier boards include various analog-input
options, such as high gain (up to 25 mV, full-scale), high resolution (16 bits at

274 CHAPTER 11 Commercial Data Acquisition Products

85,000 samples/sec), and analog input e