

This E-Book and More

From

http://ali-almukhtar.blogspot.com

This E-Book and More

From

http://ali-almukhtar.blogspot.com

Data Acquisition
Tecliniques Using PCs
Second Edition

This Page Intentionally Left Blank

Data Acquisition
Tecliniques Using PCs
Second Edition

Howard Austerlitz
Parker Hannifin Corporation
Parl<er Aerospace
Electronic Systems Division
Smittitown, New Yorl<

ACADEMIC
PRESS
An imprint of Elsevier Science

Amsterdam Boston London New York Oxford Paris San Diego
San Francisco Singapore Sydney Tokyo

This book is printed on acid-free paper. ©

Copyright 2003, 1991, Elsevier Science (USA).

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and
retrieval system, without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should be mailed to:
Permissions Department, Harcourt, Inc., 6277 Sea Harbor Drive, Orlando, Florida
32887-6777.

Academic Press
An imprint of Elsevier Science
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
http://www.academicpress.com

Academic Press
An imprint of Elsevier Science
84 Theobald's Road, London WCIX 8RR, UK
http://www.academicpress.com

Library of Congress Control Number: 2002107710
International Standard Book Number: 0-12-068377-6

PRINTED IN THE UNITED STATES OF AMERICA

02 03 04 05 06 9 8 7 6 5 4 3 2 1

This book is dedicated to my wife, Kiel,
whose guidance and understanding
continue to make it all possible

This Page Intentionally Left Blank

Contents

Preface to the Second Edition xi

CHAPTER 1
Introduction to Data Acquisition

CHAPTER
Analog Signal Transducers.

2.1 Temperature Sensors 7
2.2 Optical Sensors 8
2.3 Force and Pressure Transducers 13
2.4 Magnetic Field Sensors 16
2.5 Ionizing Radiation Sensors 18
2.6 Position (Displacement) Sensors 19
2.7 Humidity Sensors 22
2.8 Fluid Flow Sensors 23
2.9 Fiber Optic Sensors 24
2.10 Other New Sensor Technologies 26

Analog Signal Conditioning
CHAPTER

3.1 Signal Conditioning Techniques 29
3.2 Analog Circuit Components 30
3.3 Analog Conditioning Circuits 37

VII

viii Contents

CHAPTER'
Analog/Digital Conversions

4.1 Digital Quantities 51
4.2 Data Conversion and DACs 55
4.3 ADCs 62

CHAPTER'
The PC

5.1 IBM PC/XT/AT and Compatible Computers 80
5.2 The IBM PC/XT 81
5.3 The IBM PC/AT 89
5.4 BIOS 93
5.5 PCI and Other Local Buses 95
5.6 PC Peripherals 102

CHAPTER I
Interfacing Hardware to a PC Bus

6.1 I/O Data Transfers 108
6.2 Memory Data Transfers 110
6.3 A Simple, 8-Bit I/O Port Design 111
6.4 DMA 115
6.5 Wait State Generation 115
6.6 Analog Input Card Design 117
6.7 16-Bit Data Transfers on ISA Computers 118
6.8 Plug and Play 120
6.9 Interfacing to the PCI Bus 121

Interfacing Software to the PC

7.1 DOS-Based PC Software Layers 123
7.2 Software Interrupts 125
7.3 Polled versus Interrupt-Driven Software 128
7.4 Special DOS Programs 132
7.5 DOS 133
7.6 Overcoming DOS Memory Limitations 135
7.7 Protected-Mode Operating Systems 137

CHAPTER

Contents ix

CHAPTER 8

Standard Hardware Interfaces
8.1 Parallel versus Serial Digital Interfaces 142
8.2 Parallel Interfaces 144
8.3 Standard Serial Interfaces 163
8.4 PC Networks 184

CHAPTER
Data Storage and Compression Techniques

9.1 DOS Disk Structure and Files 191
9.2 Common DOS File Types 195
9.3 Windows File Systems 199
9.4 Data Compression Techniques 202
9.5 Commercial Data Compression Software 221

CHAPTER 10
Data Processing and Analysis

10.1 Numerical Representation 222
10.2 Data Analysis Techniques 229

CHAPTER 11
Commercial Data Acquisition Products

1L1 Commercial Data Acquisition Hardware Products 252
11.2 Commercial Data Acquisition Software Products 277
11.3 How to Choose Conmiercial Data Acquisition

Products 302

CHAPTER 12
Otiier PC Configurations and Hardware
for Data Acquisition

12.1 Alternative PC Architectures and Processors 304
12.2 Notebook PCs and PCMCIA Cards 312
12.3 Industrial and Embedded PCs 314
12.4 Image Capture Products 322

Contents

CHAPTER 13
Computer Programming Languages

13.1 Popular Programming Languages 330
13.2 Programming for Microsoft Windows 352
13.3 Considerations for Writing Computer Programs 357

CHAPTER 14
PC-Based Data Acquisition Applications

14.1 Ultrasonic Measurement System 362
14.2 Electrocardiogram Measurement System 369
14.3 Conmiercial Equipment Using Embedded PCs 374
14.4 Future Trends in PC-Based Data Acquisition 383

APPENDIX
Data Acquisition and Related
PC Product Manufacturers 385

Bibliography 401
Index 405

Preface to the _
Second Edition

Many things have changed in the decade since the first edition of Data
Acquisition Techniques Using PCs was pubUshed. PCs based on Intel micro-
processors and Microsoft Windows (the ubiquitous "Wintel" platform) have
become the dominant standard in small computers. They have also become
the most common computers in labs, offices, and industrial settings for data
acquisition and general-purpose applications. The world of PCs has continued
to evolve at a frenetic pace and the data acquisition market has changed along
with it, albeit more gradually (for example, ISA data acquisition cards are
still readily available).

Some of the changes in this edition include minimizing the amount of
material covering now-obsolete PCs (such as IBM's Micro Channel PS/2 line
and Apple's NuBus-based Macintosh line) while adding information about
more current standards (such as the PCI bus, the USB interface, and the Java
programming language). Most importantly, I have completely updated infor-
mation about commercially available data acquisition products (both hard-
ware and software) in Chapter 11. The listing of hardware and software data
acquisition product manufacturers in the Appendix is now twice the size it
was in the original edition.

This book is intended as a tutorial and reference for engineers, scientists,
students, and technicians interested in using a PC for data acquisition, anal-
ysis, and control applications. It is assumed that the reader knows the basic
workings of PCs and electronic hardware, although these aspects will be
briefly reviewed here. Several sources listed in the bibliography are good
introductions to many of these topics (both hardware and software).

This book stresses "real" applications and includes specific examples.
It is intended to provide all the information you need to use a PC as a data
acquisition system. In addition, it serves as a useful reference on PC technol-
ogy. Since the area of software is at least as important as hardware, if not
more so, software topics (such as programming languages, interfacing to a
PC's software environment, and data analysis techniques) are covered in detail.

xii Preface

I wish to acknowledge the help I received in writing this new edition.
My thanks to Academic Press for patiently seeing this project through. I am
grateful for the assistance I received from many manufacturers in the data
acquisition field, including Keithley Instruments, Laboratory Technologies,
and The Math Works. Finally, I want to acknowledge Omdorff, the laptop
editor, who kept me company during all those late nights at my PC.

Howard Austerlitz

C H A P T E R

Introduction t o -
Data Acquisition

Data acquisition, in the general sense, is the process of collecting information
from the real world. For most engineers and scientists these data are mostly
numerical and are usually collected, stored, and analyzed with a computer.
The use of a computer automates the data acquisition process, enabling the
collection of more data in less time with fewer errors. This book deals solely
with automated data acquisition and control using personal computers (PCs).
We will primarily concern ourselves with IBM-style PCs based on Intel
microprocessors (80x86 and Pentium families) running Microsoft operating
systems (MS-DOS and Windows). In general, the information in this book
is applicable to desktop, laptop, and embedded PCs. However, many plug-in
PCI data acquisition cards will also work in newer Apple Macintosh comput-
ers, with appropriate software drivers. In addition, USB, IEEE-1394 (FireWire)
and PCMCIA-based data acquisition hardware will work with any style of
computer which supports that interface, as long as software drivers are avail-
able for that platform.

An illustrative example of the utiUty of automated data acquisition is
measuring the temperature of a heated object versus time. Human observers are
limited in how fast they can record readings (say, every second, at best) and
how much data can be recorded before errors due to fatigue occur (perhaps after
5 minutes or 300 readings). An automated data acquisition system can easily
record readings for very small time intervals (i.e., much less than a millisecond),
continuing for arbitrarily long time periods (hmited mainly by the amount of
storage media available). In fact, it is easy to acquire too much data, which can
complicate the subsequent analysis. Once the data are stored in a computer,
they can be displayed graphically, analyzed, or otherwise manipulated.

2 CHAPTER 1 Introduction to Data Acquisition

Most real-world data are not in a form that can be directly recorded by
a computer. These quantities typically include temperature, pressure, distance,
velocity, mass, and energy output (such as optical, acoustic, and electrical
energy). Very often these quantities are measured versus time or position. A
physical quantity must first be converted to an electrical quantity (voltage,
current, or resistance) using a sensor or transducer. This enables it to be
conditioned by electronic instrumentation, which operates on analog signals
or waveforms (a signal or waveform is an electrical parameter, most often a
voltage, which varies with time). This analog signal is continuous and mono-
tonic, that is, its values can vary over a specified range (for example, some-
where between -5.0 volts and +3.2 volts) and they can change an arbitrarily
small amount within an arbitrarily small time interval.

To be recorded (and understood) by a computer, data must be in a digital
form. Digital waveforms have discrete values (only certain values are allowed)
and have a specified (usually constant) time interval between values. This
gives them a "stepped" (noncontinuous) appearance, as shown by the digitized
sawtooth in Figure 1-1. When this time interval becomes small enough, the
digital waveform becomes a good approximation to the analog waveform (for
example, music recorded digitally on a CD). If the transfer function of the
transducer and the analog instrumentation is known, the digital waveform can
be an accurate representation of the time-varying-quantity to be measured.

The process of converting an analog signal to a digital one is called
analog-to-digital conversion, and the device that does this is an analog-to-
digital converter (ADC). The resulting digital signal is usually an array of
digital values of known range (scale factor) separated by a fixed time interval
(or sampling interval). If the values are sampled at irregular time intervals,
the acquired data will contain both value and time information.

The reverse process of converting digital data to an analog signal is
called digital-to-analog conversion, and the device that does this is called a

(a) Analog Waveform (b) Digitized Waveform

Figure 1-1 Comparison of analog and digitized wavefornfis: (a) sawtooth analog
wavefornfi with (b) a coarse digitized representation.

Introduction to Data Acquisition

Keyboard Display Mass
Storage

Analog Inputs Analog Outputs

TTTTTITT
Inputs from Sensors Outputs to Controls

Figure 1-2 Simplified block diagram of a data acquisition system.

digital-to-analog converter (DAC). Some common applications for DACs
include control systems, waveform generation, and speech synthesis.

A general-purpose laboratory data acquisition system typically consists
of ADCs, DACs, and digital inputs and outputs. Figure 1-2 is a simplified
block diagram of such a system. Note that additional channels are often added
to an ADC via a multiplexer (or mux), used to select which one of the several
analog input signals to convert at any given time. This is an economical
approach when all the analog signals do not need to be simultaneously
monitored.

Economics is a major rationale behind using PCs for data acquisition
systems. The typical data acquisition system of 20-25 years ago, based on a
minicomputer, cost about 20 times as much as today's systems, based on PCs,
and ran at lower performance levels. This is largely due to the continuing
decrease in electronic component costs along with increased functionality
(more logic elements in the same package) and more sophisticated software.
The PC has become ubiquitous throughout our society, both in and out of
laboratories. Continuous improvements in hardware and software technologies
drive PCs and their peripheral devices to lower costs and higher performance.

CHAPTER 1 Introduction to Data Acquisition

Since PCs are commonplace in most labs and offices, the cost of imple-
menting a data acquisition system is often just the price of an add-in board
(or module) and support software, which is usually just a moderate expense.
For very simple applications, standard PC hardware (such as a sound card)
may be all you need for data acquisition.

There may be applications where a data acquisition system based on a
PC is not appropriate and a more expensive, dedicated system should be used.
The important system parameters for making such a decision include sam-
pling speed, accuracy, resolution, amount of data, multitasking capabilities,
and the required data processing and display. Of course, dedicated data
acquisition systems may be PC-based themselves, with an embedded PC (see
Chapter 12 for information on embedded PCs).

PC-based systems have fewer limitations in these areas than ever before,
even regarding sampling speed and handling large amounts of data. Newer,
high-performance PCs can even outperform some dedicated data acquisition
systems. The evolution of PCs based on the Intel 80x86 microprocessor (or
CPU), which includes the original IBM PC/XT/AT/PS2 computers, is dem-
onstrated in Table 1-1, showing processor speed, bus width, and the amount
of available memory space.

Apple's Macintosh computer line has also been used as a platform for
data acquisition. These machines, originally based on the Motorola 68000
family of microprocessors, had certain advantages over the older Intel-based
PCs, including a graphical, consistent operating environment and a linear
memory addressing space (the segmented addressing space of the Intel 80x86
family will be discussed in Chapter 5). Newer Macintosh computers use the
same PCI interface for add-in cards as contemporary Intel-based PCs (see
Chapter 5 for a discussion of the PCI bus).

TABLE 1-1
Intel 80x86 CPU Family Bus Size Characteristics

CPU

jsose
8088

i80286

180386

180486

1 Pentium

DATA BUS
WIDTH (bits)

16

8

16

32

32

32̂ ^

ADDRESS BUS
WIDTH (bits)

20

20

24

32

32

32

MEMORY SPACE 1
(Mbytes)

1 1
1 1

16 1
4096 1
4096 1
4096 1

* Internal Bus = 64 bits wide.

Introduction to Data Acquisition 5

Software is as important to data acquisition systems as hardware capa-
bilities. Inefficient software can waste the usefulness of the most able data
acquisition hardware system. Conversely, well-written software can squeeze
the maximum performance out of mediocre hardware. Software selection is
at least as important as hardware selection and often more complex.

Data acquisition software controls not only the collection of data, but
also its analysis and eventual display. Ease of data analysis and presentation
are the major reasons behind using computers for data acquisition in the first
place. With the appropriate software, computers can process the acquired data
and produce outputs in the form of tables or plots. Without these capabilities,
you are not doing much more than using a sophisticated (and expensive) data
recorder.

An additional area of software use is that of control. Computer outputs
may control some aspects of the system that is being measured, as in auto-
mated industrial process controls. The software must be able to measure
system parameters, make decisions based on those measurements, and vary
the computer outputs accordingly. For example, in a temperature regulation
system, the input would be a temperature sensor and the output would control
a heater. In control applications, software reliability and response time are
paramount. Slow or erroneous software responses could cause physical dam-
age. Control applications are especially important for embedded PCs, which
package full PC functionality into a small form factor, such as PC-104 (see
Chapter 12).

A recent, important software capability is Internet access. Many new
products allow you to perform remote data acquisition using the Internet (and
its TCP/IP protocol). It is now fairly simple to monitor and control a data
acquisition system located nearly anywhere in the world as well as share the
data with a large group of colleagues.

There is a plethora of PC-based software packages commercially avail-
able, which can collect, analyze, and display data graphically, using little or
no programming (see Chapter 11). They allow users to concentrate on their
applications, instead of worrying about the mechanics of getting data from
point A to point B, or how to plot a set of Cartesian coordinates. Many
commercial software packages contain all three capabilities of data acquisi-
tion, analysis, and display (the so-called "integrated" packages), whereas
others are optimized for only one or two of these areas.

The important point is that you do not have to be a computer expert or
even a programmer to implement an entire PC-based data acquisition system.
Best of all, you do not have to be rich, either.

The next chapter examines the world of analog signals and their trans-
ducers, the "front end" of any data acquisition system.

C H A P T E R

Analog Signal
Transducers

Most real-world events and their measurements are analog. That is, the mea-
surements can take on a wide, nearly continuous range of values. The physical
quantities of interest can be as diverse as heat, pressure, light, force, velocity,
or position. To be measured using an electronic data acquisition system, these
quantities must first be converted to electrical quantities such as voltage,
current, or impedance.

A transducer converts one physical quantity into another. For the pur-
poses of this book, all the transducers mentioned convert physical quantities
into electrical ones, for use with electronic instrumentation. The mathematical
description of what a transducer does is its transfer function, often designated
H. So the operation of a transducer can be described as

Output Quantity = Hx Input Quantity

Since the transducer is the "front end" of the data acquisition system,
its properties are critical to the overall system performance. Some of these
properties are sensitivity (the efficiency of the energy conversion), stability
(output drift with a constant input), noise, dynamic range, and linearity. Very
often the transfer function is dependent on the input quantity. It may be a
linear function for one range of input values and then become nonlinear for
another range (such as a square-law curve). Looking at sensitivity and noise,
if the transducer's sensitivity is too low, or its noise level too high, signal
conditioning may not produce an adequate signal-to-noise ratio.

Often the transducer is the last consideration in a data acquisition
system, since it is seen as mundane. Yet, it should be the primary consideration.

2.1 Temperature Sensors 7

The characteristics of the transducer, in large part, determine the Umits of a
system's performance.

Now we will look at some common transducers in detail.

2.1 Temperature Sensors.

Temperature sensors have electrical parameters that vary with temperature,
following well-characterized transfer functions. In fact, nearly all electronic
components have properties which vary with temperature. Many of them
could potentially be temperature transducers if their transfer functions were
well behaved and insensitive to other variables.

2.1.1 Thermocouples

The thermocouple converts temperature to a small DC voltage or current. It
consists of two dissimilar metal wires in intimate contact in two or more
junctions. The output voltage varies linearly with the temperature difference
between the junctions—the higher the temperature difference, the higher the
voltage output. This linearity is a chief advantage of using a thermocouple, as
well as its ruggedness as a sensor. In addition, thermocouples operate over very
large temperature ranges and at very high temperatures (some, over 1000°C).

Disadvantages include low output voltage (especially at lower tempera-
tures), low sensitivity (typical output voltages vary only about 5 mV for a 100°C
temperature change), susceptibility to noise (both externally induced and inter-
nally caused by wire imperfections and impurities), and the need for a reference
junction (at a known temperature) for calibration. Most data acquisition hard-
ware designed for temperature measurements contain an electronic reference
junction. You must enter the thermocouple material type you are using, so it is
properly calibrated. Common thermocouple materials include copper/constan-
tan (Type T), iron/constantan (Type J), and chromel/alumel (Type K).

When several thermocouples, made of the same materials are combined
in series, they are called a thermopile. The output voltage of a thermopile consists
of the sum of all the individual thermocouple outputs, resulting in increased
sensitivity. All the reference junctions are kept at the same temperature.

2.1.2 Thermistors

A thermistor is a temperature-sensitive resistor with a large, nonlinear, negative
temperature coefficient. That is, its resistance decreases nonlinearly as temper-
ature increases. It is usually composed of a mixture of semiconductor materials.

8 CHAPTER 2 Analog Signal Transducers

It is a very sensitive device, but has to be properly calibrated for the desired
temperature ranges, since it is a nonlinear detector. Repeatability from device
to device is not very good. Over relatively small temperature ranges it can
approximate a linear response. It is prone to self-heating errors due to the
power dissipated in it (P = IR), This effect is minimized by keeping the
current passing through the thermistor to a minimum.

2.1.3 Resistance Temperature Detectors

Resistance temperature detectors (RTDs) rely on the temperature dependence
of a material's electrical resistance. They are usually made of a pure metal
having a small but accurate positive temperature coefficient. The most accu-
rate RTDs are made of platinum wire and are well characterized and linear
from 14°K to higher than 600°C.

2.1.4 Monolithic Temperature Transducers

The monolithic temperature transducer is a semiconductor temperature sensor
combined with all the required signal conditioning circuitry and located in
one integrated circuit. This device typically produces an output voltage pro-
portional to the absolute temperature, with very good accuracy and sensitivity
(a typical device produces an output of 10 mV per degree Kelvin over a
temperature range of 0-100 degrees Celsius). The output of this device can
usually go directly into an ADC with very little signal conditioning.

2.2 Optical Sensors

Optical sensors are used for detecting light intensity. Typically, they respond
only to particular wavelengths or spectral bands. One sensor may respond
only to visible light in the blue-green region, while another sensor may have
a peak sensitivity to near-infrared radiation.

2.2.1 Vacuum Tube Photosensors

This class of transducers consists of special-purpose vacuum tubes used as
optical detectors. They are all relatively large, require a high-voltage power
supply to operate, and are used only in very specialized applications (as is
true with vacuum tubes in general). These sensors exploit the photoelectric
effect, when photons of light striking a suitable surface produce free electrons.

2.2 Optical Sensors 9

Incident
Photons

Figure 2-1 Vacuum photodiode.

The vacuum photodiode consists of a photocathode and anode in a
glass or quartz tube. The photocathode emits electrons when struck by
photons of light. These electrons are accelerated to the anode by the high (+)
voltage and produce a current pulse in the external load resistor /?L (see Figure
2-1). These tubes have relatively low sensitivity, but they can detect high-
frequency light variations or modulation (as high as 100 MHz to 1 GHz), for
an extremely fast response.

The gas photodiode is similar to a vacuum photodiode, except the tube
contains a neutral gas. A single photoelectron (emitted by the photocathode)
can collide with several gas atoms, ionizing them and producing several extra
electrons. So, more than one electron reaches the anode for every photon.
This gas amplification factor is usually 3-5 (larger values cause instabilities).
These tubes have a limited frequency response of less than 10 kHz, resulting
in a much slower response time.

The photomultiplier tube (PMT) is the most popular vacuum tube device
in this category. It is similar to a vacuum photodiode with several extra
electrodes between the photocathode and anode, called dynodes. Each dynode
is held at a more positive voltage than the previous dynode (and the cathode)
via a resistor voltage-divider network (see Figure 2-2). Photoelectrons emitted
by the photocathode strike the first dynode, which emits several secondary
electrons for each photoelectron, amplifying the photoelectric effect. These
secondary electrons strike the next dynode and release more electrons. This
process continues until the electrons reach the end of the dynode amplifier
chain. There, the anode collects all the electrons produced by a single photon,
resulting in a relatively large current pulse in the external circuit.

10 CHAPTER 2 Analog Signal Transducers

Dynode

Dynode
Dynode

Incident
Anode Cathode Photon

(a) Cross section of typical PMT

Anode

^Dynode

* Dynode

* Dynode

* Dynode

»Dynode

»Dynode I

^Cathode!

(b) Wiring diagrann for typical PMT

Figure 2-2 Photomultiplier tube (PMT).

The PMT exhibits very high gain, in the range of 10-10 electrons
emitted per incident photon. This is determined by the number of dynodes,
the photocathode sensitivity, power supply voltage, and tube design factors.
Some PMTs can detect individual photons!

A PMT's output pulses can be measured as a time-averaged current
(good for detecting relatively high light levels) or in an individual pulse-
counting mode (good for very low light levels) measuring the number of
pulses per second. Then, a threshold level is used to filter out unwanted pulses
(noise) below a selected amplitude.

Some of the noise produced in a PMT is spontaneous emission from
the electrodes, which occurs even in the absence of light. This is called the
dark count, which determines the PMT's sensitivity threshold. So, the number
of photons striking the PMT per unit time must be greater than the dark count
for the photons to be detected. In addition, most PMTs have a fairly low
quantum efficiency, a measure of how many photons are required to produce
a measurable output (expressed as a percentage, where 100% means that

2.2 Optical Sensors 11

every photon striking the sensor will produce an output). Also, PMTs have
a limited usable life, as the photocathode wears out with time.

2.2.2 Photoconductive Cells

A photoconductive cell consists of a thin layer of material, such as cadmium
sulfide (CdS) or cadmium selenide (CdSe) sandwiched between two elec-
trodes, with a transparent window. The resistance of a cell decreases as the
incident light intensity increases. These cells can be used with any resistance-
measuring apparatus, such as a bridge. They are commonly used in photo-
graphic light meters. A photoconductive cell is usually classified by maximum
(dark) resistance, minimum (light) resistance, spectral response, maximum
power dissipation, and response time (or frequency).

These devices are usually nonlinear and have aging and repeatability
problems. They exhibit hysteresis in their response to light. For example, the
same cell exposed to the same light source may have a different resistance,
depending on the light levels it was previously exposed to.

2.2.3 Photovoltaic (Solar) Cells

These sensors are similar in construction to photoconductive cells. They are
made of a semiconductor material, usually silicon (Si) or gallium arsenide
(GaAs), that produces a voltage when exposed to light (of suitable wavelength).
They require no external power supply and very large cells can be used as DC
power sources. They have a relatively slow response time to light variations
but are fairly sensitive. Since the material used must be grown as a single
crystal, large photovoltaic cells are very expensive.

A large amount of research has been conducted in recent years in an
attempt to produce less expensive photovoltaic cells made from either amor-
phous, polycrystalline, or thin-film semiconductors. If these low-cost devices
can attain light conversion efficiency similar to that of monocrystalline cells
(in the range of 15-20%), they can become a practical source of electric energy.

2.2.4 Semiconductor Light Sensors

The members of this class of transducers are all based on a semiconductor
device, such as a diode or transistor, whose output current is a function of
the light (of suitable wavelength) incident upon it.

The photodiode is a PN junction diode with a transparent window that
produces charge carriers (holes and electrons) at a rate proportional to the
incident light intensity. So the photodiode acts as a photoconductive device,
varying the current in its external circuit (but, being a semiconductor, it does
not obey Ohm's law). A photodiode is a versatile device with a high frequency

12 CHAPTER 2 Analog Signal Transducers

response and a linear output, but low sensitivity, and it usually requires large
amounts of amplification. It typically uses a transconductance amplifier,
which converts the photodiode output current to a voltage. A common pho-
todiode sensor is the PIN diode, which has an insulating region between the
p and n materials. This device usually requires a reverse DC bias voltage for
optimum performance (speed and sensitivity). Conventional silicon photo-
diodes have usable sensitivity to light wavelengths in the range of 450-1050
nanometers (from the visible spectrum into the near infrared). For longer
wavelengths, other semiconductors, such as indium gallium arsenide
(InGaAs) are used.

The phototransistor is similar to a photodiode, except that the transistor
can provide amplification of the PN junction's light-dependent current. The
transistor's emitter-base junction is the light-sensitive element. A photodar-
lington is a special phototransistor, composed of two transistors in a high-gain
circuit. The phototransistor offers much higher sensitivity than the photodiode
at the expense of a much lower bandwidth (response time) and poorer linearity.

The avalanche photodiode (APD) is a special photodiode which has
internal gain and is a semiconductor analog to the PMT. This gain is normally
in the range of 10 to a few hundred (typically around 100 for a silicon device).
The APD employs a high reverse bias (from several hundred volts up to a
few thousand volts) to produce a strong internal electrical field that accelerates
the electrons generated by the incident photons and results in secondary
electrons from impact ionization. This is the electron avalanche, resulting in
gain. Advantages of the APD are small size, solid-state reliability (as long as
the breakdown voltage is not exceeded), high quantum efficiency, and a large
dynamic range. Compared to PMTs, APDs have much lower gain, smaller
light-collecting areas, and a high temperature sensitivity. APD bias must be
temperature compensated to keep gain constant.

The charge-coupled device (CCD) is a special optical sensor consisting
of an array (one- or two-dimensional) of light-sensitive elements. When photons
strike a photosensitive area, electron/hole pairs are created in the semiconductor
crystal. The holes move into the substrate and the electrons remain in the
elements, producing a net electrical charge. The amount of charge is propor-
tional to the amplitude of incident light and the exposure time. The charge at
each photosensitive element is then read out serially, via support electronics.
CCDs are conmionly used in many imaging systems, including video cameras.

2.2.5 Thermoelectric Optical Sensors

This class of transducers convert incident light to heat and produce a tem-
perature output dependent on light intensity, by absorbing all the incident
radiation in a "black box." They generally respond to a very broad light

2.3 Force and Pressure Transducers 13

spectrum and are relatively insensitive to wavelength, unlike vacuum tube
and solid-state sensors. However, they have very slow response times and
low sensitivities and are best suited for measuring static or slowly changing
light levels, such as calibrating the output of a light source.

The bolometer varies its resistance with thermal energy produced by
incident radiation. The most common detector element used in a bolometer
is a thermistor. They are also commonly used for measuring microwave power
levels.

The thermopile, as discussed under temperature sensors, is more com-
monly used than individual thermocouples in light-detecting applications
because of its higher sensitivity. It is often used in infrared detectors.

2.3 Force and Pressure Transducers

A wide range of sensors are used for measuring force and pressure. Most
pressure transducers rely on the movement of a diaphragm mounted across
a pressure differential. The transducer measures this minute movement.
Capacitive and inductive pressure sensors operate the same way as capacitive
and inductive displacement sensors, which are described later on.

2.3.1 strain Gages

Strain gages are transducers used for directly measuring forces and their
resulting strain on an object. Stress on an object produces a mechanical
deformation—strain—defined as

Strain = length change/length

Strain gages are conductors (often metallic) whose resistance varies with strain.
For example, as a wire is stretched, its resistance increases. Strain gages are
bonded to the object under stress and are subject to the same forces. They are
very sensitive to strain in one direction only (the axis of the conductor).

A simple unbonded strain gage consists of free wires on supports
bonded to the stressed surface. These are not usually used (outside of labo-
ratory demonstrations) because of their large size and mechanical clumsiness.

The bonded strain gage overcomes these problems by putting a zigzag
pattern of the conductor on an insulating surface, as shown in Figure 2-3.
These are relatively small, have good sensitivity, and are easily bonded to the
surface under test. The conductor in a bonded strain gage is a metallic wire,
foil, or thin film.

14 CHAPTER 2 Analog Signal Transducers

SENSITIVE AXIS

Figure 2-3 Sinfipie, one-dimensional strain gage.

Strain gage materials must have certain, well-controlled properties. The
most important is sensitivity or gage factor (GF), which is the change in
resistance per change in length. Most metallic strain gages have a GF in the
range of 2 to 6. The material must also have a low temperature coefficient of
resistance as well as stable elastic properties and high tensile strength. Often,
strain gages are subject to very large stresses as well as wide temperature swings.

Semiconductor strain gages, usually made of silicon, have a much
higher GF than metals (typically in the range of 50 to 200). However, they
also have much higher temperature coefficients, which have to be compen-
sated for. They are conmionly used in monolithic pressure sensors.

Because of their relatively low sensitivities (resistance changes nomi-
nally 0.1 to 1.0%), strain gages require bridge circuits to produce useful
outputs. (We will discuss bridge circuits in Chapter 3.) If a second, identical
strain gage, not under stress, is put into the bridge circuit, it acts as a
temperature compensator.

2.3.2 Piezoelectric Transducers

Piezoelectric transducers are used for, among other things, measuring time-
varying forces and pressures. They do not work for static measurement, since
they produce no output from a constant force or pressure.

Certain crystalline materials (including quartz, barium titanate, and
lithium niobate) generate an electromotive force (emf) when mechanically
stressed. Conversely, when a voltage is applied to the crystal, it will become
mechanically distorted. This is the piezoelectric effect.

If electrodes are placed on suitable (usually opposite) faces of the crystal,
the direction of the deforming force can be controlled. If an AC voltage is
applied to the electrodes, the crystal can produce periodic motion, resulting

2.3 Force and Pressure Transducers 15

Electrodes

Ultrasonic ^
Waves N

Crystal
/

/

^ ^

- < ^

Electrodes

K Ultrasonic
y^ Waves

Ultrasonic
Waves i

Sr Ultrasonic
Waves

^

Crystal

^ — • ^ ^ — ^

(a) Longitudinal Mode (b) Transverse Mode

Figure 2-4 Oscillation modes of piezoelectric crystals.

in an acoustic wave, which can be transmitted through other material. When
an acoustic wave strikes a piezoelectric crystal, it produces an AC voltage.

When a piezoelectric crystal oscillates in the thickness or longitudinal
mode, an acoustic wave is produced, where the direction of displacement is
the direction of wave propagation, as shown in Figure 2-4a. When the crystal's
thickness equals a half-wavelength of the longitudinal wave's frequency (or
an odd multiple half-wavelength) it is resonant at that frequency. At resonance
its mechanical motion is maximum along with the acoustic wave output. And
when it is detecting acoustic energy, the output voltage is maximum for the
resonant frequency.

This characteristic is applied to quartz crystal oscillators, used as highly
accurate electronic frequency references in a broad range of equipment, from
computers to digital watches.

Typically, piezoelectric crystals are used as ultrasonic transducers for
frequencies above 20 kHz, up to about 100 MHz. The limitation on frequency
range is due to the impracticalities of producing crystals thin enough for very
high frequencies, or the unnecessary expense of producing very thick crystals
for low frequencies (where electromagnetic transducers work better).

16 CHAPTER 2 Analog Signal Transducers

Other crystal deformation modes are transverse, where the direction of
motion is at right angles to the direction of wave propagation (as shown in
Figure 2-4b), and shear, which is a mix of longitudinal and transverse modes.
These modes all have different resonant frequencies.

Piezoelectric transducers have a wide range of applications, besides
dynamic pressure and force sensing, including the following:

1. Acoustic microscopy for medical and industrial applications, such
as "seeing" through materials that are optically opaque. An example
is the sonogram.

2. Distance measurements including sonar and range finders.
3. Sound and noise detection such as microphones and loudspeakers

for audio and ultrasonic acoustic frequencies.

2.4 Magnetic Field Sensors

This group of transducers is used to measure either varying or fixed magnetic
fields.

2.4.1 Varying Magnetic Field Sensors

These transducers are simple inductors (coils) that can measure time-varying
magnetic fields such as those produced from an AC current source. The
magnetic flux through the coil changes with time, so an AC voltage is induced
that is proportional to the magnetic field strength.

These devices are often used to measure an alternating current (which
is proportional to the AC magnetic field). For standard 60-Hz loads, trans-
formers are used that clamp around a conductor (no direct electrical contact).
These are usually low-sensitivity devices, good for 60 Hz currents greater
than 0.1 ampere.

2.4.2 Fixed Magnetic Field Sensors

Several types of transducers are commonly used to measure static and slowly
varying magnetic fields, such as those produced by a permanent magnet or
a DC electromagnet.

Hall Effect Sensors When a current-carrying conductor strip is placed with
its plane perpendicular to an applied magnetic field (B) and a control current
(IQ) is passing through it, a voltage (VH) is developed across the strip at right

2.4 Magnetic Field Sensors 17

Current
Source

• c l

Magnetic Field

/ ^ 1 ^ r^>^

^^ ^

i

^ ^ ^ s . ^ ^

/^^5s^ • ^ ^

vSl

Figure 2-5 Hall effect nfiagnetic field sensor.

angles to 1Q and B, as shown in Figure 2-5. VH is known as the Hall voltage
and this is the Hall effect:

VH = Kl^BId

where:

B = magnetic field (in gauss),
d = thickness of strip,
K = Hall coefficient.

The value of K is very small for most metals, but relatively large for certain
n-type semiconductors, including germanium, silicon, and indium arsenide.
Typical outputs are still just a few millivolts/kilogauss at rated /c- Although
a larger IQ or a smaller d should increase V, these would cause excessive self-
heating of the device (by increasing its resistance) and would change its
characteristics as well as lower its sensitivity. The resistance of typical Hall
devices varies from a few ohms to hundreds of ohms.

SQUIDs SQUID stands for superconducting quantum interference device, a
superconducting transducer based on the Josephson junction. A SQUID is a
thin-film device operating at liquid helium temperature (~4°K), usually made
from lead or niobium. The advent of higher temperature superconductors that

18 CHAPTER 2 Analog Signal Transducers

can operate in the liquid nitrogen region (~78°K) may produce more practical
and inexpensive SQUIDs.

A SQUID element is a Josephson junction that is based on quantum
mechanical tunneling between two superconductors. Normally, the device is
superconducting, with zero resistance, until an applied magnetic field switches
it into a normal conducting state, with some resistance. If an external current
is applied to the device (and it must be low enough to prevent the current
from switching it to a normal conductive state—another Josephson junction
property), the voltage across the SQUID element switches between zero and
a small value. The resistance and measured voltage go up by steps (or quanta)
as the applied magnetic field increases. It measures very small, discrete
(quantum) changes in magnetic field strength.

Practical SQUIDs are composed of arrays of these individual junctions
and are extremely sensitive magnetometers. For example, they are used to
measure small variations in the earth's magnetic field, or even magnetic fields
generated inside a living brain.

2.5 Ionizing Radiation Sensors.

Ionizing radiation can be particles produced by radioactive decay, such as
alpha or beta radiation, or high-energy electromagnetic radiation, including
gamma and X-rays. In many of these detectors, a radiation particle (a photon)
collides with an active surface material and produces charged particles, ions,
and electrons, which are then collected and counted as pulses (or events) per
second or measured as an average current.

2.5.1 Geiger Counters

When the electric field strength (or voltage) is high enough in a gas-filled
tube, electrons produced by primary ionization gain enough energy between
coUisions to produce secondary ionization and act as charge multipUers. In
a Geiger-Muller tube the probability of this secondary ionization approaches
unity, producing an avalanche effect. So, a very large current pulse is caused
by one or very few ionizing particles. The Geiger-Muller tube is made of
metal and filled with low-pressure gas (at about 0.1 atm) with a fine, electri-
cally isolated wire running through its center, as shown in Figure 2-6.

A Geiger counter requires a recovery time (dead time) of -200 micro-
seconds before it can produce another discharge (to allow the ionized particles
to neutralize). This limits its counting rate to less than a few kilohertz.

2.6 Position (Displacement) Sensors 19

Fine Wire

Glass Seal ^ _

Brass Tube

High-Voltage
Power Supply

Gas Pressure ~ 0.1 Atm

Glass Seal

Figure 2-6 Typical Geiger-Muller tube.

2.5.2 Semiconductor Radiation Detectors

Some/7-n junction devices (typically diodes), when properly biased, can act
as solid-state analogs of an ion chamber, where a high DC voltage across a
gas-filled chamber produces a current proportional to the number of ionizing
particles striking it per unit time, due to primary ionization. When struck by
radiation the devices produce charge carriers (electrons and holes) as opposed
to ionized particles. The more sensitive (and useful) devices must be cooled
to low temperatures (usually 78°K, by liquid nitrogen).

2.5.3 Scintillation Counters

This device consists of a fluorescent material that emits Ught when struck by a
charged particle or radiation, similar to the action of a photocathode in a pho-
todiode. The emitted hght is then detected by an optical sensor, such as a PMT.

2.6 Position (Displacement) Sensors

A wide variety of transducers are used to measure mechanical displacement
or the position of an object. Some require actual contact with the measured
object; others do not.

20 CHAPTER 2 Analog Signal Transducers

2.6.1 Potentiometers

The potentiometer (variable resistor) is often mechanically coupled for dis-
placement measurements. It can be driven by either AC or DC signals and
does not usually require an amplifier. It is inexpensive but cannot usually be
used in high-speed applications. It has limited accuracy, repeatability, and
lifetime, due to mechanical wear of the active resistive material. These devices
can either be conventional rotary potentiometers or have a linear configuration
with a slide mechanism. Often, the resistive element is polymer-based to
increase its usable life.

2.6.2 Capacitive and Inductive Sensors

Simple capacitive and inductive sensors produce a change in reactance
(capacitance or inductance) with varying distance between the sensor and the
measured object. They require AC signals and conditioning circuitry and have
limited dynamic range and linearity. They are typically used over short dis-
tances as a proximity sensor, to determine if an object is present or not. They
do not require contact with the measured object.

2.6.3 LVDTs

The LVDT {linear voltage differential transformer) is a versatile device used
to measure displacement. It is an inductor consisting of three coils wound
around a movable core, connected to a shaft, as shown in Figure 2-7. The
center coil is the transformer's primary winding. The two outer coils are
connected in series to produce the secondary winding. The primary is driven
by an AC voltage, typically between 60 Hz and several kilohertz. At the null
point (zero displacement), the core is exactly centered under the coils and
the secondary output voltage is zero. If the shaft moves, and the core along
with it, the output voltage increases linearly with displacement, as the induc-
tive coupling to the secondary coils becomes unbalanced. A movement to
one side of the null produces a 0° phase shift between output and input signal.
A movement to the other side of null produces a 180° phase shift.

If the displacement is kept within a specified range, the output voltage
varies linearly with displacement. The main disadvantages to using an LVDT
are its size, its complex control circuitry, and its relatively high cost.

2.6.4 Optical Encoders

The optical encoder is a transducer commonly used for measuring rotational
motion. It consists of a shaft connected to a circular disc, containing one or
more tracks of alternating transparent and opaque areas. A light source and

2.6 Position (Displacement) Sensors 21

Secondary Coil 1 Primary Coil Secondary Coil 2

Core

Shaft

(a) Cross-Section View

- Signal Output -

Secondary Coil 1 uuuu
Core

Secondary Coil 2 uuuu
nnnn

Primary Coil

AC Input •

(b) Schematic Diagram

Figure 2-7 Linear variable differential transfornfier (LVDT).

an optical sensor are mounted on opposite sides of each track. As the shaft
rotates, the Ught sensor emits a series of pulses as the light source is inter-
rupted by the pattern on the disc. This output signal can be directly compatible
with digital circuitry. The number of output pulses per rotation of the disc is
a known quantity, so the number of output pulses per second can be directly
converted to the rotational speed (or rotations per second) of the shaft. Encod-
ers are commonly used in motor speed control applications. Figure 2-8 shows
a simple, one-track encoder wheel.

An incremental optical encoder has two tracks, 90° out of phase with
each other, producing two outputs. The relative phase between the two chan-
nels indicates whether the encoder is rotating clockwise or counterclockwise.
Often there is a third track that produces a single index pulse, to indicate an
absolute position reference. Otherwise, an incremental encoder produces only
relative position information. The interface circuitry or computer must keep
track of the absolute position.

22 CHAPTER 2 Analog Signal Transducers

Figure 2-8 Simple one-track optical encoder wheel (24 lines = 15° resolution).

An absolute optical encoder has several tracks, with different patterns on
each, to produce a binary code output that is unique for each encoded position.
There is a track for each output bit, so an 8-bit absolute encoder has 8 tracks,
8 outputs and 256 output combinations, for a resolution of 360/256 = 1.4°. The
encoding is not always a simple binary counting pattern, since this would
result in adjacent counts where many bits change at once, increasing the
likelihood of noise and reading errors. A Gray code is often used, because
it produces a pattern where each adjacent count results in only one bit
change. An absolute encoder is usually much more expensive than a compa-
rable incremental encoder. Its main advantage is the ability to retain absolute
position information, even when system power is removed.

2.6.5 Ultrasonic Range Finder

In Chapter 14, an ultrasonic range finder is discussed, as a noncontact dis-
placement measurement technique. The time it takes an ultrasonic pulse to
reflect from an object is measured and the distance to the object calculated
from that time delay, using a known ultrasonic velocity.

2.7 Humidity Sensors.

Relative humidity is the moisture content of the air compared to air completely
saturated with moisture and is expressed as a percentage.

2.7.1 Resistive Hygrometer Sensors

There are resistive hygrometer elements whose resistance varies with the
vapor pressure of water in the surrounding atmosphere. They usually contain
a hygroscopic (water-absorbing) salt film, such as lithium chloride, which
ionizes in water and is conductive with a measurable resistance. These devices

2.8 Fluid Flow Sensors 23

are usable over a limited humidity range and have to be periodically cali-
brated, as their resistance may vary with time, because of temperature and
humidity cycling, as well as exposure to contaminating agents.

2.7.2 Capacitive Hygrometer Sensors

There are also capacitive hygrometer elements that contain a hygroscopic
film whose dielectric constant varies with humidity, producing a change
in the device's capacitance. Some of these can be more stable than the
resistive elements. The capacitance is usually measured using an AC bridge
circuit.

2.8 Fluid Flow Sensors

Many industrial processes use fluids and need to measure and control their flow
in a system. A wide range of transducers and techniques are commonly used
to measure fluid flow rates (expressed as volume per unit time passing a point).

2.8.1 Head Meters

A head meter is a common device, where a restriction is placed in the flow
tube producing a pressure differential across it. This differential is measured
by a pair of pressure sensors and converted to a flow measurement. The
pressure transducers can be any type, such as those previously discussed. The
restriction devices include the orifice plate, the venturi tube, and the flow nozzle.

2.8.2 Rotational Flowmeters

Rotational flowmeters use a rotating element (such as a turbine) which is
turned by the fluid flow. Its rotational rate varies with fluid flow rate. The
turbine blades are usually made of a magnetized material so that an external
magnetic pickup coil can produce an output voltage pulse each time a blade
passes under it.

2.8.3 Ultrasonic Flowmeters

Ultrasonic flowmeters commonly use a pair of piezoelectric transducers
mounted diagonally across the fluid flow path. The transducers act as a
transmitter and a receiver (a multiplexed arrangement), measuring the velocity
of ultrasonic pulses traveling through the moving fluid. The difference in the
ultrasonic frequency between the "upstream" and "downstream" measure-
ments is a function of the flow rate, due to the Doppler effect. Alternately,

24 CHAPTER 2 Analog Signal Transducers

small time delay differences between the "upstream" and "downstream" mea-
surements can be used to determine flow rate.

2.9 Fiber Optic Sensors

A new class of sensors, based on optical fibers, is emerging from laboratories
throughout the world. These fiber optic sensors are used to measure a wide
range of quantities, including temperature, pressure, strain, displacement,
vibration, and magnetic field, as well as sensing chemical and biomedical
materials. They are immune from electromagnetic interference (EMI), can
operate in extremely harsh environments, can be very small, and are fairly
sensitive. They are even embedded into large structures (such as bridges and
buildings) to monitor mechanical integrity.

Inherently, fiber optic sensors measure optical amplitude, phase, or
polarization properties. In a practical sensor, one or more of these parameters
varies with the physical quantity of interest (pressure, temperature, etc.). The
simplest fiber optic sensors are based on optical amplitude variations. These
sensors require a reference channel to minimize errors due to long-term drift
and light source variations. Sensors that measure optical phase or frequency
employ an interferometer. These interferometric sensors offer much better
sensitivity, resolution, and stability than simpler amplitude-based sensors. In
addition, they are insensitive to fiber length. That is why they are the most
commonly used type of fiber optic sensor.

2.9.1 Fiber Optic IVIicrobend Sensor

This type of fiber optic sensor is commonly used to measure pressure, dis-
placement, and vibration. An optical fiber is sandwiched between two rigid
plates with a wavy profile, as shown in Figure 2-9. This produces microbends

Plate

Optical Fiber

Plate

Figure 2-9 Fiber optic microbend sensor.

2.9 Fiber Optic Sensors 25

in the fiber, which cause light loss and decreased amplitude. A change in
distance between the plates varies the magnitude of these bends and thus
modulates the light intensity.

2.9.2 Fiber Optic Fabry-Perot Interferometric Sensor

The Fabry-Perot etalon is the most common interferometer structure used as
a fiber optic sensor, since only one fiber is required to connect the sensor to
the detector section. A classic Fabry-Perot interferometer is formed by two
closely spaced, partially reflecting mirrors which form a resonant optical
cavity with maximum optical transmission at wavelengths that are multiples
of the mirror spacing, at small incident light angles (see Figure 2-10).

In a fiber sensor, a Fabry-Perot etalon can be formed using one end of
the fiber itself (with a reflective coating deposited on it) and a separate,
movable mirror. Alternatively, two mirrored surfaces can be used, and the
fiber simply transmits the light. When the position of a moveable mirror in

Ligiit Out

Light In
Partially Silvered Glass Plates

Maximum Light Transmission when:
n?i = 2 w cos (a)

n = an integer
X = wavelength of light

Figure 2-10 Fabry-Perot interferometer.

26 CHAPTER 2 Analog Signal Transducers

J21 .

Fabry-Perot
Sensor

Optical Fiber

Optical Coupler White Light
Source

CCD Array

CCD Controls
and Readout

Optical
Cross-Correlator Lense

Spectrometer

Figure 2-11 Fabry-Perot fiber sensor and detector.

the etalon changes, the intensity of Hght reflected back up the fiber changes,
for a fixed wavelength, narrow-band Hght source. With a broad-band Hght
source (i.e., white Hght), the peak wavelength shifts with mirror position and
can be measured using a spectrometer detector. A simplified system diagram
of a Fabry-Perot fiber sensor, commercially used for pressure and strain
measurements, is shown in Figure 2-11.

2.10 Other New Sensor Technologies

Besides fiber optics, other new technologies are gaining importance in com-
mercial sensors. These include microelectromechanical systems (MEMS) and
smart sensors.

2.10.1 MEMS

MEMS are small electromechanical devices fabricated using semiconductor
integrated-circuit processing techniques. By building a "micromachine" on a
silicon wafer, the device can connect to signal processing electronics on that
same wafer. Many of the sensors we have previously discussed have MEMS-
based versions available. Sophisticated demonstrations of MEMS have
included devices such as micromotors and gas chromatographs. Practical

2.10 Other New Sensor Technologies 27

MEMS pressure sensors and accelerometers have been commercially avail-
able for several years.

For example, Analog Devices' ADXL series of MEMS accelerometers
are based on a structure suspended on the surface of a silicon wafer via
polysilicon springs, which provide resistance to acceleration. Under acceler-
ation, the structure deflects and this is measured via an arrangement of
capacitors, fabricated using both fixed plates and plates attached to the moving
structure. Signal generating and conditioning circuitry on the chip decodes
this capacitance change to produce an output pulse with a duty cycle propor-
tional to the measured acceleration.

2.10.2 Smart Sensors and the IEEE 1451 Standards

The category of smart sensors is quite broad and not clearly defined. A smart
sensor can range from a traditional transducer that simply contains its own
signal conditioning circuitry to a device that can calibrate itself, acquire data,
analyze it, and transmit the results over a network to a remote computer.
There are many commercial devices that can be called smart sensors, such
as temperature sensor ICs that incorporate high and low temperature set points
(to control heating or cooling devices). Many sensors, including pressure
sensors, are now available with an RS-232C interface (see Chapter 8) to
receive configuration commands and transmit measurements back to a host
computer.

An emerging class of smart sensors is defined by the family of IEEE
1451 standards, which are designed to simplify the task of establishing com-
munications between transducers and networks.

IEEE 1451.2 is an adopted standard in this group that defines transducer-
to-microcontroller and microcontroller-to-network protocols. This standard
defines a Smart Transducer Interface Module (STIM), which is a remote,
networked, intelligent transducer node, supporting from 1 to 255 sensor and
actuator channels. This STIM contains a Transducer Electronic Datasheet
(TEDS), which is a section of memory that describes the STIM and its
transducer channels. The STIM communicates with a microcontroller in a
Network Capable Application Processor (NCAP) via the Transducer Inde-
pendent Interface (Til), which is a 10-wire serial bus. Figure 2-12 shows how
these parts of the IEEE 1451.2 standard fit together in a typical application.

The TEDS is a key element of the IEEE 1451.2 standard. It describes
the transducer type for each channel, timing requirements, data format,
measurement limits, and whether calibration information is present in the
STIM. This information is read by the microcontroller in the NCAP, through
the Til connection. Among other functions, the NCAP can write correction

28 CHAPTER 2 Analog Signal Transducers

Transducer H ADC

Channel 1

Transducer DAC

Channel 2

Transducer
Digital

I/O

Channel 3

Transducer

Channel n

Address
Logic

Transducer
Electronic

Data Sheet
(TEDS)

Smart Transducer Interface Module
(STIM)

Micro-
controller

Transceiver

Network Capable
Application Processor

(NCAP)

Transducer
Independent

Interface
(Til)

Network

Figure 2-12 IEEE 1451.2 smart transducer interface standard.

coefficients into the TEDS and read sensor data from the STIM. The read
data is then sent to a remote computer on the network, via the NCAP. The
NCAP definition is network independent. There are already commercial
NCAPs available that work with RS-485 and Ethernet networks.

Some other early commercial IEEE 1451.2 products are STIMs and
STIM-ready ICs. An example of the later is Analog Devices' ADuC812
MicroConverter. It is a special-purpose microcontroller containing an ADC,
two DACS, both program and data flash EEPROM, and data RAM. It contains
the logic to implement a Til, memory for TEDS storage, a multiplexer for
up to eight transducer channels, and the circuitry to convert data from those
analog channels.

This survey of common transducers and sensors suitable for a data
acquisition system is hardly exhaustive. It should give you a feel for the types
of devices and techniques applied to various applications and help you deter-
mine the proper transducer to use for your own system.

C H A P T E R

Analog Signal
Conditioning

Nearly all transducer signals must be conditioned by analog circuitry before
they can be digitized and used by a computer. This conditioning often includes
amplification and filtering, although more complex operations can also be
performed on the waveforms.

3.1 Signal Conditioning Techniques

Amplification (or occasionally attenuation) is necessary for the signal's ampli-
tude to fit within a reasonable portion of the ADC's dynamic range. For
example, let us assume an ADC has an input range of 0-5 V and an 8-bit
output of 2 = 256 steps. Each output step represents 5/256 = 19.5 mV. If a
sensor produces a waveform of 60 mV peak-to-peak (p-p), when directly
digitized (by this ADC) it will use only 3 of the 256 available output steps
and be severely distorted. If the sensor signal is first amplified by a factor of
83 (producing a 5 V p-p waveform), it will use the ADC's full dynamic range
and a minimum of information is lost. Of course, if it is amplified too much,
some of the signal will be cUpped and severely distorted, now in a different way.

Filtering must usually be performed on analog signals for several rea-
sons. Sometimes noise or unwanted signal artifacts can be eliminated by
filtering out certain portions of the signal's spectra. For example, a system
with high gain levels may need a 60 Hz notch filter to remove noise produced
by AC power lines. A low-frequency drift on a signal without useful DC
information can be removed using a high-pass filter. Most often, low-pass
filters are employed to limit the high end of a waveform's frequency response

29

30 CHAPTER 3 Analog Signal Conditioning

just prior to digitization, to prevent aliasing problems (which will be discussed
in Chapter 4).

Additional analog signal processing functions include modulation,
demodulation, and other nonlinear operations.

3.2 Analog Circuit Components

The simplest analog circuit elements are passive components: resistors, capac-
itors, and inductors. They can be used as attenuators and filters. For example,
a simple RC circuit can be used as a high-pass or low-pass filter, as shown
in Figure 3-1.

Discrete semiconductor devices, such as diodes and transistors, are
commonly used in analog signal-conditioning circuits. Diodes are useful,
among other things, as rectifiers/detectors, switches, clamps, and mixers.
Transistors are often used as amplifiers, switches, oscillators, phase shifters,
filters, and many other applications.

3.2.1 The Operational Amplifier

The most common analog circuit semiconductor component is the operational
amplifier, called the op amp. This circuit element is usually a monolithic device
(an integrated circuit), although hybrid modules, based on discrete transistors,
are still used in special applications. The op amp is used in both linear and
nonlinear applications involving amplification and signal conditioning.

The "classic" op amp, which we will discuss in detail here, is based on
a voltage-feedback architecture. There is a newer class of amplifiers, based

input Output Input Output

(a) Low-Pass Filter (b) High-Pass Filter

Figure 3-1 Simple RC filters.

3.2 Analog Circuit Components 31

NONINVERTING-
INPUTS I > OUTPUT

INVERTING

Figure 3-2 The operational amplifier (op amp).

on a current-feedback architecture, which we will cover later in this chapter
while discussing high-frequency circuits.

An op amp, shown in Figure 3-2, consists of a differential voltage
amplifier that can operate at frequencies from zero up to several megahertz.
However, there are special high-frequency amplifiers, usable up to several
hundred megahertz. The op amp has two inputs, called noninverting (+) and
inverting (-), and responds to the voltage difference between them. The part
of the output derived from the (-h) source is in phase with the input, while
the part from the (-) source is 180° out of phase. If a signal is equally applied
to both inputs, the output will be zero.

This property is called common-mode rejection. Since an op amp can
have very high gain at low frequencies (100,000 is typical), a high common-
mode rejection ratio (CMRR) prevents amplification of unwanted noise, such
as the ubiquitous 60-Hz power-line frequency. Typical op amps have a CMRR
in the range of 80-100 decibels (dB).

Most op amps are powered by dual, symmetrical supply voltages, +V and
-Vrelative to ground, where Vis typically in the range of 3 to 15 volts. Some
units are designed to work from single-ended suppUes (+y only). There are low-
voltage, very low power op amps designed for use in battery-operated equipment.
Op amps have very high input impedance at the + input (typically 1 milUon
ohms or more) and low output impedance (in the range of 1 to 100 ohms).
A voltage-feedback op amp's gain decreases with signal frequency, as shown
in Figure 3-3. The point on the gain-versus-frequency curve where its gain
reaches 1 is called its unity-gain frequency, which is equal to its gain-bandwidth
product, a constant above low frequencies.

The op amp is more than a differential amplifier, however. Its real beauty
lies in how readily its functionality can be changed by modifying the com-
ponents in its external circuit. By changing the elements in the feedback loop

32 CHAPTER 3 Analog Signal Conditioning

Voltage Gain
(dB)

120

Frequency (Hz)

10K 100K 1M

Figure 3-3 Typical op amp galn-versus-frequency curve.

(connected between the output and one or both inputs), the entire character-
istics of the circuit are changed both quantitatively and quaHtatively. The op
amp acts Hke a servo loop, always trying to adjust its output so that the
difference between its two inputs is zero.

We will examine some common op amp applications here. The reader
should refer to the bibliography for other books that treat op amp theory and
practice in greater depth.

The simplest op amp circuit is the voltage follower shown in Figure 3-4.
It is characterized by full feedback from the output to the inverting (-) input,
where the output is in phase with the noninverting (+) input. It is a buffer
with very high input impedance and low output impedance. If the op amp

Vout

Figure 3-4 Op amp voltage follower.

3.2 Analog Circuit Components 33

Vout

Figure 3-5 Op amp inverting amplifier.

has JFET (junction field effect transistor) inputs, its input impedance is
extremely high (up to 10 ohms).

The inverting amplifier shown in Figure 3-5 uses feedback resistor R2
with input resistor Ri to produce a voltage gain ofR2/Ri with the output signal
being the inverse of the input. Resistor R^, used for DC balance, should be
approximately equal to the parallel resistance combination ofRi and R2. Here,
the input impedance is primarily determined by the value of Ri, since the op
amp's (-) input acts as a virtual ground.

The noninverting amplifier shown in Figure 3-6 uses feedback resistor
R2 with grounded resistor R^ to produce a voltage gain of {Ri + R2)IR\ with
the output following the shape of the input (hence, noninverting). Unlike the
inverting amplifier, which can have an arbitrarily small gain well below 1,
the noninverting amplifier has a minimum gain of 1 (when 7̂2 = 0). In this
case, the input impedance is very high (typically from 10 to 10 ohms), as
determined by the op amp's specification.

The difference amplifier shown in Figure 3-7 produces an output pro-
portional to the difference between the two input signals. If R^ = R2 and 7̂3 =
/?4, then the output voltage is {V^^2 - îni) x (^3/^1)-

Figure 3-6 Op amp noninverting amplifier.

34 CHAPTER 3 Analog Signal Conditioning

Figure 3-7 Op anfip difference amplifier.

In the simple integrator shown in Figure 3-8, the feedback element is
a capacitor (C), producing a nonlinear response. Resistor Ri and capacitor C
have a time constant RiC, The change in output voltage with time {dV^Jcit) =
-ViJiRiQ. Put another way, the output voltage is the integral of-VJ(RiC)dt.
So, this circuit integrates the input waveform. For example, a square-wave
input will produce a triangle-wave output, as long as the integrator's time
constant is close to the period of the input waveform.

Similarly, Figure 3-9 shows a simple differentiator, where the positions
of the resistor and capacitor are reversed from those in the integrator circuit.
Here, the output voltage is RxC{dVJdt).

More complex op amp circuits include oscillators (both fixed-frequency
and voltage-controlled oscillators or VCOs), analog multipliers and dividers
(used in analog computers and modulation circuits), active filters, precision
diodes, peak detectors, and log generators.

When choosing an op amp for a particular application, there are many
factors to consider, such as frequency response, required gain, power supply
voltage, and output current. Some other important specifications include input
offset voltage and input bias current.

Figure 3-8 Op anfip Integrator.

3.2 Analog Circuit Components 35

Figure 3-9 Op amp differentiator.

An amplifier's input offset voltage is the apparent voltage at an input
even if zero volts is applied. This DC error voltage gets multiplied by the op
amp circuit's gain to produce an output error voltage. For example, consider
a typical op amp with an input offset voltage of 5 mV, used in a circuit with
a gain of 20. This would produce an output offset error of 100 mV. Depending
upon the application, this error may not be acceptable (especially if you are
amplifying a sensor signal whose output is comparable to the input offset
voltage). In that case, a precision op amp, with a very low input offset voltage
(«1 mV) should be used, or the offset voltage must be zeroed out using
additional components connected to the IC's null adjust pin.

Input bias current is a DC current that flows from an op amp's input
into the components connected to that input. If the device at the op amp's
input has a very high impedance (or is a current-output device with a very
small output), this error can be significant. Consider a resistive sensor with
an impedance of 100,000 ohms connected to an op amp voltage follower
(Figure 3-4). If the op amp has an input bias current of 1 jiA, it produces a
DC error voltage of Verr = 4 xR^^= 1 iiAx 100,000 ohm = 0.1 V. In a case
like this, a high input impedance op amp with a low input bias current (1 nA
or less) would be more appropriate.

Many other analog integrated circuits besides op amps are used as
common building blocks in signal-conditioning systems. These ICs include
voltage comparators, phase-locked loops, and function generators.

3.2.2 The Voltage Comparator

A voltage comparator, as shown in Figure 3-10, is very similar to an op amp
used in its highest gain, open-loop configuration (no feedback). Here, if the -
input (Vin) is greater than the + input (Vref) by at least a few millivolts, the
output voltage swings to one extreme (-V); if the + input is greater than the
- input, the output swings to the other extreme (+V). By setting the + or -
input to a known reference voltage, an unknown voltage (at the other input)

36 CHAPTER 3 Analog Signal Conditioning

Figure 3-10 Voltage confiparator.

can be evaluated. The comparator can be used to determine if analog voltages
are within a certain range. It can also be used as a 1-bit ADC. There are even
comparators available with response times as fast as a few nanoseconds.

3.2.3 The Phase-Locked Loop

The phase-locked loop (PLL) is an interesting device. As shown in Figure 3-11,
it consists of a phase detector, VCO, and low-pass filter. This comprises a
servo loop, where the VCO is phase-locked to the input signal and oscillates
at the same frequency. If there is a phase or frequency difference between
the two sources, the phase detector produces an output that is used to correct
the VCO. The low-pass filter is used to remove unwanted high-frequency
components from the phase detector's output. One application for this device
is to demodulate an FM (frequency modulated) signal.

3.2.4 The Tone Decoder

The tone decoder is similar to the phase-locked loop (see Figure 3-12) except
that the filtered phase-detector output goes to a comparator instead of feeding
back to the VCO. The VCO frequency is constant, so the comparator is
activated only when the input signal is within the pass band centered on the
VCO frequency. This device is commonly used for frequency detection, as
in telephone touch-tone equipment.

IMPi IT

PHASE-LOCKED
OUTPUT

1 •

PHASE
DETECTOR

• LOW PASS
FILTER

\ir^r\
y\^\j

CONTROL
' VOLTA GE

Figure 3-11 Phase-locked loop.

3.3 Analog Conditioning Circuits 37

INPUT-
PHASE

DETECTOR
LOW PASS

FILTER

VCO

"ref-

COMPARATOR

DC
OUTPUT

FREQ SET

Figure 3-12 Tone decoder.

3.2.5 The Function Generator

Function generator ICs are special-purpose oscillators used to produce sine,
square, and triangle waveforms. The signal frequencies are varied either by
external resistors and capacitors or by a control voltage, as with a VCO. The
output can be frequency modulated by a signal on the VCO input. Some
devices also provide for amplitude modulation. These devices can typically
produce outputs within the range of 0.01 Hz to 1 MHz. They are often used
in test equipment.

Other common analog ICs include a wide range of amplifiers, signal
generators, timers, and filters, some of which we will cover later in this
chapter.

3.3 Analog Conditioning Circuits

Analog signal-conditioning circuitry can range from a simple RC filter, using
two passive components, to a complex system using hundreds of ICs and
discrete devices.

3.3.1 Filters

Filtering is undoubtedly the most commonly used analog signal-conditioning
function. Usually only a portion of a signal's frequency spectrum contains
valid data and the rest is noise. A common example is 60-Hz AC power-line
noise, present in most lab and industrial environments. A high-gain amplifier
will easily amplify this low-frequency noise, unless it is rejected using a band-
reject filter or high-pass filter. The standard types of filter responses are low-
pass, high-pass, band-pass, and band-reject (or notch filter). The low-pass

38 CHAPTER 3 Analog Signal Conditioning

Amplitude

1.0

0.5 —

Amplitude

1.0 — t

0.5 —

fc Frequency

(a) Low Pass Filter

Amplitude
A

1.0-^

0.5

(b) High Pass Filter

Amplitude

to fi Frequency

(c) Band Pass Filter

fo fi Frequency

(d) Band Reject (Notch) Filter

Figure 3-13 Ideal filter responses.

filter attenuates signals above its cutoff frequency, whereas the high-pass filter
attenuates signals below its cutoff frequency. The band-pass filter attenuates
frequencies outside of its pass-band range (both above and below), and the
band-reject filter attenuates those frequencies within its pass-band range. See
Figure 3-13 for amplitude-versus-frequency curves of ideal filters.

The study of filters is an entire discipline unto itself. We will only touch
on some simple examples here. The reader is referred to the bibliography for
more details on the design and use of filters. Two general classes of filters
are active and passive, depending on the components used. A passive filter,
using only resistors, capacitors, and inductors, has a maximum gain (or
transfer function value) of 1; an active filter, which uses passive components
along with active components (often op amps), can have a much higher gain,
as well as a sharper frequency response curve.

3.3 Analog Conditioning Circuits 39

Passive Filters The simplest filters use a single resistor and capacitor, so they
are called RC filters. They rely on the frequency-dependent reactance of
capacitors for filtering effects. RC circuits are usually used as simple low-
pass and high-pass filters. The reactance of an ideal capacitor is -jlcoC (where
(O = Inf, C is capacitance, and 7 = 7~1)-

The RC low-pass filter is shown in Figure 3-la. V^^ is the input AC
voltage and V^^^ is the output AC voltage. The transfer function that describes
the response of the circuit is H{f) = Ku/̂ in- Since the two components are
in series, the current through them is the same: /R = IQ. Z is the AC impedance.
Since V = IxZ,

if(/) = (/xZc)/(/x(ZR + Zc))

= ZC/(ZR + Zc)

Since Z^= R and ZQ = -j/o)C,

H(f)= 1/(1+j(0RQ

Note that as frequency (or co = Inf) approaches zero, the magnitude of
the transfer function \H{f)\ approaches 1, or no attenuation. Also, the phase
angle of / /(/) (the phase shift between output and input) approaches 0°. As
/increases, \H{f)\ decreases and the phase angle becomes more negative. The
cutoff frequency fc is where the magnitude of the real and imaginary imped-
ance components are equal (when coRC = 1), and \H(f)\ = lljl - Q.lOl. This
is the -3 dB point [20 x log(0.707) = -3 dB]. The phase angle a t / is -45°.
Well above / (i.e., / > 10 x /) \H{f)\ falls off at -20 dB per decade of
frequency (for every frequency increase of lOx the voltage output drops lOx).
This is the same as dropping 6 dB per octave (whenever the frequency
doubles). At these higher frequencies, the phase shift approaches -90°. Now
the low-pass filter acts as an integrator. It is important to remember that this
integration is only accurate at high frequencies (well above cutoff).

The RC high-pass filter, shown in Figure 3-lb, is similar to the low-
pass filter just discussed. Here, the output voltage is across the resistor, instead
of the capacitor. The transfer function for this circuit is H{f) = 1/[1 -j/(coRC)].
Now, as the frequency gets higher, \H(f)\ approaches 1. As the frequency
approaches zero, \H(f)\ becomes very small.

Again, the 3-dB cutoff frequency,/, is where coRC= 1. The phase angle
a t / is now -1-45°. At higher frequencies, the phase angle decreases toward 0.
At lower frequencies (/</ /10) , the phase angle approaches -1-90° and \H{f)\
increases at the rate of 20 dB per decade. In this low-frequency, high-
attenuation region, the RC high-pass filter performs as a differentiator. Similar
to the RC integrator, this differentiation is only accurate at relatively low
frequencies.

40 CHAPTER 3 Analog Signal Conditioning

R

INPUT ^ OUTPUT

Figure 3-14 Series RLC filter.

Another important point about passive RC integrators and differentiators
is that their operational frequency range is in a high-attenuation region. So,
their output signals will be very low amplitude, possibly limiting their use-
fulness because of excessive noise.

RL circuits can also be used as low-pass and high-pass filters, yet they
are much less common. A series RLC circuit, as shown in Figure 3-14, is
used as a band-reject or notch filter. Here, the minimum value of \H(f)\ occurs
at/o = \I{2TI4TC), where the phase angle is ±90°. This is the filter's resonant
frequency. Below/Q, \H{f)\ increases while the phase angle increases toward
0° (as / approaches zero). Above/o, \H{f)\ again increases, while the phase
angle decreases to 0°. Well above or below/o, \H{f)\ approaches 1.

A parallel RLC circuit, as shown in Figure 3-15, acts as a band-pass
filter, with a maximum \H{f)\ = 1 at resonance (/o). At/o, the phase angle is
0°. This arrangement is sometimes referred to as a tank circuit because, at
the resonant frequency, it effectively stores most of the electrical energy
available (except for losses through the resistor). Below/o, \H{f)\ decreases
while the phase angle increases toward +90°. Above/o, \H{f)\ again decreases,
while the phase angle approaches -90°. Well above or below/o, \H{f)\ falls
off at -20 dB per decade. However, close to /Q, this fall off may be much
steeper, depending on the value of Q, a measure of the filter's resistive losses:

INPUT OUTPUT

Figure 3-15 Parallel RLC filter.

3.3 Analog Conditioning Circuits 41

Q = 27c/o X L/R. The smaller the value of R is, the larger Q becomes and the
steeper the \H(f)\ curve becomes, around/Q.

Using passive components, if a broader pass-band response or a
steeper attenuation curve for out-of-band frequencies is desired, usually
several simple filter stages are concatenated. This can produce the desired
frequency response, at the expense of higher attenuation within the pass-
band, referred to as the insertion loss. One way around this problem is to
use an active filter.

Active Filters Active filters are typically op amp circuits using resistors and
capacitors to produce the required frequency response, usually with a gain
equal to or greater than 1 (no inductors are needed). They have been limited
to relatively low frequencies (i.e., <1 MHz) because of the limited frequency
response of standard op amps. In the audio and ultrasonic regions these filters
are indispensable. The availability of high-frequency amplifier ICs (with
usable gains well above 100 MHz) has greatly extended the usefulness of
active filters. Figure 3-16 shows simple active low-pass and high-pass filters,
using a 2-pole Salen-Key topology.

A newer type of active filter is the switched capacitor filter. This device
is very attractive because external components are not needed (as they are
with op amp active filters, where value selection is critical). In addition, this
filter can be tuned by varying the frequency of the applied clock signal
(usually a digital waveform). This is a good choice when a computer-controlled
filter is required. There are a wide range of switched capacitor filter devices
available from analog IC manufacturers.

A switched capacitor filter is a sampled-data device, where an internal
capacitor is switched between the input signal and an integrating amplifier
(where the integrator simulates a resistor), as shown in Figure 3-17. Initially,
capacitor Cj charges to the input voltage at that moment, when switch Si
is at position (a). Then Si switches to position (b) and Ci dumps its charge
into C2, the integrating capacitor, via the op amp. This process repeats over
many switching cycles, where C2 averages the input signal voltage. The
filter's time constant depends upon the switching frequency, which essen-
tially determines the cutoff frequency. Since this is a sampled device, it
will have aliasing problems (see Chapter 4 for a discussion of aliasing) as
the signal frequency approaches the switch rate. Typically, the switching
(clock) frequency is 50 to 100 times the cutoff frequency. To prevent
problems with high-frequency signals or switching clock feed-through, a
simple passive low-pass filter is often used in conjunction with a switched
capacitor filter.

42 CHAPTER 3 Analog Signal Conditioning

(b) High Pass Filter

Figure 3-16 Active filters based on op anfips.

Input Output

Figure 3-17 Switched capacitor filter.

3.3 Analog Conditioning Circuits 43

Standard Filter Functions There are several commonly used filter functions,
each with its own special properties. These functions are often used as low-
pass, high-pass, or band-pass filters. The Butterworth or maximally flat filter
is characterized by a nearly flat pass-band with no ripples. The roll-off is
smooth and monotonic (again without ripples) with a roll-off rate for high-
pass or low-pass filters of 20 dB/decade, for each pole. Multiple poles can
be concatenated for steeper roll-off. This filter is often used as a good com-
promise between attenuation and phase response.

The Chebyshev or equal-ripple filter does have pass-band ripple,
although the amount of ripple is specified by the design. It has a faster roll-
off near the cutoff frequency than a Butterworth filter but it has a poorer
transient response (in the time domain).

A Bessel or Thompson filter has a linear phase response in the pass-
band, which does not distort a nonsinusoidal waveform (such as a square
wave) the way a Butterworth or Chebyshev filter would. However, this filter
has a much slower roll-off and often requires using higher-order designs (with
multiple stages).

The elliptic or Cauer filter has a much steeper roll-off than the other
filter types, at the expense of both ripple in the pass-band and stop-band along
with a very nonlinear phase response.

3.3.2 Wheatstone Bridge

Many other types of analog circuits are used for conditioning transducer signals.
For resistive sensors, such as strain gages and thermistors, the classic Wheat-
stone bridge is still used. A DC Wheatstone bridge is shown in Figure 3-18. If
the resistance values are set so that there is no voltage across the meter (and
no current through it) the bridge is said to be balanced. At balance, it can be
shown that /?i//?3 = î 2/R4- Typically a resistive sensor is placed in a bridge
circuit to produce a voltage signal output. Usually, one of the resistors in the
bridge is the variable sensor element, and initially the bridge is not balanced.
Let us assume for the moment that Ri is the variable resistive transducer and
that for simplicity R^, = R^. When Ri = R2 the bridge is balanced and the
output is zero. As Ri increases or decreases slightly, the output voltage will
swing positive or negative. A calibrated variable resistor in the bridge circuit
(for example, R2) is adjusted until the bridge is again balanced. Then we
know that Ri equals the new value of R2.

Bridges are also used with AC excitation and reactive elements. This is
how a capacitive sensor can produce an accurate voltage signal. In the case
of an AC bridge, usually one leg is left as purely resistive, making it easier
to balance the unknown reactive element in the other leg.

44 CHAPTER 3 Analog Signal Conditioning

Figure 3-18 Wheatstone bridge.

3.3.3 The Sample-and-Hold Amplifier

Another special analog circuit, extremely useful in data acquisition applica-
tions, is the sample-and-hold amplifier as shown in Figure 3-19. This is used
to get a stable sample of a changing analog signal, prior to using an ADC.
The field-effect transistor (FET) acts as a switch, charging the capacitor to
the analog signal's present voltage level when the sample line is asserted.
When the transistor is switched off, the capacitor "remembers" the voltage,
which is buffered by the op amp. The very high input impedance of the op
amp, along with a low-leakage capacitor, prevents the voltage from dropping
off too quickly.

A sample-and-hold amplifier is used as the front end of an ADC because
if the analog waveform is rapidly changing during the ADC cycle, the value

FET

Vi.

Sample

Figure 3-19 Sanfiple-and-hold anfiplifier.

3.3 Analog Conditioning Circuits 45

rWW^

Figure 3-20 Peak detector.

produced can have a large error. This way, there is an accurate "snapshot" of
the waveform during the brief sample interval. The sample interval is typically
much shorter than the time between successive analog conversions. Sample-
and-hold amplifiers are available as monolithic devices, some with sampling
intervals as short as a few nanoseconds. In addition, many high-speed ADCs
incorporate a sample-and-hold amplifier in the IC.

3.3.4 Peak Detector

Another useful circuit is the peak detector, as shown in Figure 3-20, which
again is op amp based. It is similar to the sample-and-hold circuit, with a
diode used as a switch, for charging the capacitor, Ci. The second (output)
op amp is simply a buffer, allowing the circuit to drive a low-impedance load
without draining the capacitor. Whenever the input voltage is greater than the
output voltage, the diode is forward biased and the capacitor is charged up
to that voltage. Usually a switch (such as a FET) may be placed across the
capacitor to implement a discharge or reset function. Also, a second diode
may be used to compensate for the switching diode's voltage drop (-0.6 V
for a silicon signal diode).

3.3.5 Log and Antilog Amplifiers

There are many important nonlinear amplifier circuits, including the log
amplifier and the antilog amplifier. A log amplifier is commonly used to
compress a signal's large-amplitude dynamic range into something more
manageable by other circuits (such as ADCs). The simple logarithmic ampli-
fier uses a junction diode as a nonlinear element. In a forward-biased diode.

46 CHAPTER 3 Analog Signal Conditioning

Figure 3-21 Simple logarithmic amplifier.

the voltage drop across the diode varies proportionally to the log of the current
through it. When a diode is connected in the feedback loop of an inverting
amplifier, the output voltage is a logarithmic function of the input voltage. If
a diode is used in a noninverting amplifier, the result is an antilog amplifier.

There are some problems using diodes in log amplifiers. They are very
temperature sensitive, since the forward voltage drop across a diode is a
function of temperature. In fact, this property is often exploited in diode
temperature sensors. Also, the signal range over which the diode has a log-
arithmic response is somewhat limited. Often a bipolar transistor is used in
place of a diode, since its emitter-base voltage varies with the log of its
collector current over a very wide range. A log amp using a transistor is
shown in Figure 3-21. There are monolithic log amplifier ICs available, which
have good temperature compensation and fairly wide operating ranges, often
usable over 60 dB or more of input voltage variation.

3.3.6 Other Common Amplifiers

There are several other types of analog amplifier circuits besides the op amp,
commonly used for data acquisition purposes. Theses include instrumentation
amplifiers, programmable gain amplifiers, and isolation amplifiers.

Instrumentation Amplifiers An instrumentation amplifier (lA) is used to pro-
vide a large amount of gain for very low-level signals, often in the presence
of high noise levels. The major properties of lAs are high gain, large common-
mode rejection ratio (CMRR), and very high input impedance. They are often
used to directly amplify signals from passive sensors, such as strain gages
(see Chapter 2). An IA is a device which only amplifies the difference between

3.3 Analog Conditioning Circuits 47

- Input-

+ Input

i Output

Figure 3-22 Instrumentation amplifier.

the two input lines while ignoring any common-mode noise they both carry.
It is usually used for low-frequency signals («1 MHz).

A typical instrumentation amplifier configuration consists of three op
amps, as shown in Figure 3-22. The resistors used should be high-precision
(0.1% tolerance or better) to achieve the highest CMRR possible. The overall
gain of this lA circuit is R4/R2[l + {2RJR^)\.

Monolithic lA ICs are readily available and are often preferable to
building one out of individual op amps, since the internal components will
be well matched. These I As can have a CMRR over 100 dB and a voltage
gain up to 10,000x.

Progranfimable-Gain Anfiplifiers Programmable-gain ampUfiers (PGAs) are a
special class of instrumentation amplifiers that have selectable gain, either
through external component selection or, more commonly, through digital
control lines. They are used in data acquisition systems to enable software
control of analog gain, tailoring the amount of amplification to the current
task. Typical PGAs have either decade (Ix, lOx, lOOx, lOOOx) or binary (Ix,
2x, 4x, 8x) gain settings, using just a few digital control lines.

These control signals are usually used to select different, internal feed-
back resistor values, to change the gain. Some PGAs have multiple amplifiers
configured for different gain values and the digital controls select which
amplifier output is used.

48 CHAPTER 3 Analog Signal Conditioning

Isolation Amplifiers Isolation amplifiers are used to boost low-level analog
signals when electrical isolation between input and output is needed. This
may be when there are high common-mode voltages present, such as a sensor
biased by a high DC voltage. Another use is when medical monitoring equipment
is connected to a patient and current flowing from the instrumentation to the
patient connections (such as ECG electrodes) can be dangerous.

Most conamercial isolation amplifiers use transformers, capacitors, or
optical couplers to separate input from output. The important characteristics
are isolation voltage (commonly up to 5000 V), leakage current (typically
less than 1 |iA), gain error, and bandwidth.

3.3.7 Other Common Analog ICs

There are many other analog ICs commonly used in data acquisition equip-
ment, besides those we have previously covered in this chapter. Some of these
are analog switches, multiplexers, and voltage references.

Analog Switches and Multiplexers An analog switch is a digitally controlled
device that is used to pass or interrupt an analog signal, analogous to a
mechanical switch or relay. These devices usually use FETs as the main
switching elements. Unhke mechanical switches, analog switches have an
extremely limited signal voltage range (usually less than the switch's power
supply voltage) and a relatively high "on" resistance (typically ranging from
a few tenths of an ohm to over 100 ohms). However, these devices are much
smaller and faster than mechanical relays, many exhibiting switching speeds
under 1 |Lisec.

Multiple analog switches can be arranged in a single IC to produce a
multiplexer (mux) with multiple inputs and a single output. The device's
digital control lines determine which input is steered to the output. A data
acquisition card containing a single ADC may have an eight-channel multi-
plexer at its input, allowing eight analog signals to be simultaneously con-
nected to it. However, only one channel at a time can be digitized by the ADC.

Voltage References The absolute accuracy of an ADC is determined, among
other factors, by its analog reference. A voltage reference is an IC that either
contains or behaves as if it is a precision Zener diode, with a well-characterized
breakdown voltage. This voltage is also fairly insensitive to temperature
changes and aging. Some voltage references contain internal buffer amplifiers
that allow them to drive low-impedance loads. A high-quality voltage refer-
ence also allows a data acquisition board to perform an accuracy self-test and
even autocalibration on its analog input channels.

3.3 Analog Conditioning Circuits 49

INPUT 1 —\

INPUT 2—^

OUTPUT=
INPUT 1 X INPUT 2

Figure 3-23 Analog multiplier.

3.3.8 Modulation

An important nonlinear function is modulation. Frequency modulation was
discussed with the VCO. Amplitude modulation is easily achieved using an
analog multiplier. A simple means of producing an analog multiplier is shown
in Figure 3-23. The two inputs each pass through a log amplifier and then
are added together; finally they pass through an antilog amplifier. The output
voltage is equal to the product of the input voltages times a scaling factor.
Analog multipliers are also commonly available as single-chip devices. Many
of these monolithic multipliers can perform division and square functions.

3.3.9 High-Frequenoy Analog Circuits

As ADCs operate at higher speeds (up to 1 gigasample/second), analog
circuitry bandwidth must also increase or these fast sampling speeds are
wasted. To maintain high bandwidths, special attention must be paid to factors
such as transmission line impedance, stray capacitance, shielding, and con-
nector quality.

When working with analog signal frequencies well above 1 MHz, coax-
ial cables and connectors should be used. This will help minimize signal
attenuation and distortion due to impedance mismatches, as well as reduce
external noise pickup. The most common coaxial connectors used are BNC
and SMA types.

When designing a high-frequency amplifier circuit, component place-
ment on the board is critical. A high-speed op amp with a bandwidth of
several hundred MHz, up to 1 GHz, can easily become an oscillator because
of circuit instabilities caused by stray capacitance of the board itself. RF
design techniques must be used.

Conventional, voltage-feedback op amps operate at high frequencies in
much the same way as their low-frequency counterparts. Their bandwidth

50 CHAPTER 3 Analog Signal Conditioning

varies inversely with circuit gain, since gain-bandwidth product is constant.
Newer, current-feedback amplifiers are commonly used at high frequencies
(usually 100 MHz or above). Their gain-bandwidth product is not constant.
The circuit's bandwidth is mostly determined by the value of the feedback
resistor used, not simply the gain settings. When a current-feedback amplifier
is used as a voltage follower (gain of Ix), a resistor should be connected from
the output to the - input, as per the manufacturer's recommendation.

When working with high-speed and high-frequency circuits, grounding
and shielding also become critical. Analog and digital devices should have
appropriate (often separate) ground paths on the circuit board, usually with
a single conmion connection point. This helps to minimize digital noise
appearing in analog circuits. Shielding of circuit cards may be necessary, both
to minimize susceptibility to received high-frequency noise and to limit the
amount of RF noise the card itself generates. If external power supplies are
used, the cables should be properly filtered, using ferrite beads and bypass
capacitors.

These are just some basic guidelines for working with high-speed
devices. In general, high-frequency analog circuits are much less forgiving
than their low-frequency equivalents.

There are other standard analog signal conditioning devices and circuits
besides the ones shown in this chapter. The information here should give you
a feel for what is commonly available and help you locate more detailed
information, as you require it.

C H A P T E R

Analog/Digital
Conversions

As previously noted, we live in an analog world. Nearly all "real-world"
measured quantities are analog, at least at the macroscopic level we typically
deal with. Analog waveforms are usually defined as smooth, continuous func-
tions that have derivatives existing nearly everywhere. Most transducers have
analog outputs, usually voltage or current, which represent the physical quan-
tities being measured, such as temperature or pressure (notable exceptions
include optical encoders and smart sensors with digital outputs). Whenever
an analog quantity is discussed here, it refers to a voltage or current suitable
for use with common electronic equipment. This is typically in the frequency
range of 0 to 1 MHz, with a voltage range of around 1 microvolt (|LIV) to 100 V
or a current range of about 1 microampere (|LiA) to 10 amps.

4.1 Digital Quantities

Digital quantities have discrete levels that vary by steps instead of continu-
ously (as shown in Figure 1-1 of Chapter 1). Most digital electronic equipment
uses binary values, which have two possible states, called true (on or 1) and
false (off or 0). Most often the 0/1 notation is used to describe the binary
level of a single line or wire, represented as a binary digit or bit. For the
standard family of TTL (transistor transistor logic) digital ICs, which operate
from a +5 V power supply, a high level (>2.4 V) is a logical 1 and a low
level (<0.8 V) is a logical 0. These logic levels also apply to new low-voltage
logic families (such as LVTTL) that operate from +3.3 V power supplies.

51

52 CHAPTER 4 Analog/Digital Conversions

Logic families that operate from even lower supply voltages (+2.5 V or +1.8 V)
use different threshold values for 1 and 0.

Binary values are a base-2 numbering system, as opposed to our every-
day base-10 decimal system. It takes many bits grouped together to represent
a useful quantity. In general, a collection of n bits can represent 2" discrete
levels. For example, a group of 8 bits is referred to as a byte, where 2 =
256 levels, for a representation of values in the range of 0 to 255 (or -128
to +127). A group of 16 bits is referred to as a short word, having 2 = 65,536
steps. A long word of 32 bits has 2 = 4,294,967,296 steps. In digital electronic
equipment, these groups of bits are usually parallel lines or wires, where each
bit is present at the same time. One wire typically carries the value for one bit.
This means that increasing the number of levels a digital circuit can represent
increases the number of wires (or interconnections) in that circuit. This increase
also allows the digital representation to more closely approximate the analog
signal, within a given dynamic range.

The concept of dynamic range is very important for data acquisition
systems; it will be addressed at greater length in Chapter 10. By definition,
the dynamic range of a data acquisition system is the ratio of the maximum
value that can be measured to the smallest value that can be resolved. This
number is often represented in decibels (dB) as

Dynamic range (dB) = 20 x logio (max/min)

If both positive and negative values are measured.

Maximum value = maximum positive value - minimum negative value

For example, a data acquisition system with a 1-mV resolution and a
value range of 0 to +10 V (or -5 to +5 V) has a dynamic range of 10,000:1,
or 80 dB. This dynamic range requires a minimum of 14 bits to represent it,
since 2̂ ^ = 16,384, which is greater than 10,000, whereas 2̂ ^ (8192) is less
than 10,000.

4.1.1 Binary Codes

For n binary lines to represent 2" levels, each line must have a different value
or weight. For a natural binary code, having any value from 0 to 2" - 1, integers
are represented by a series of weighting bits having the value 2^ (where m
varies from 0 to n - 1). The bit number m is zero for the least significant bit
(LSB) on the far right and increases ton-I for the most significant bit (MSB)
on the far left. The values of integer bit weights for the first 16 bits are given
in Table 4-1. The value of a collection of parallel bits is the sum of the weighted
values of all nonzero bits (or the value of a bit, either 0 or 1, times its weight).

4.1 Digital Quantities 53

TABLE 4-1
Positive Integer Bit Weights for
Natural Binary Code

|BIT#(m)

1 ^
1 1
1 ^

3

1 ^
5

1 ^
1 ^
1 ^

9

1 ^^
1 ^^
\ ^^

1 ""̂
1 ^̂
1 15

BIT WEIGHT (2'") |

1 1
2 1
4 1
8 1
16

32 1
64 1
128 1

256

512 1

1024 1

2048 1

4096 1

8192 1

16384 1

32768 1

For example, we will evaluate the 8-bit binary integer 01011101. Starting
with the LSB, working from right to left:

Sum = 1 X 2V 0 X 2̂ + 1 X 2 ^ 1 X 2^+ 1 X 2 V 0 X 2^+ 1 X 2 S 0 X 2̂

= 1 + 0 + 4 + 8 + 16 + 0 + 64 + 0

= 93

Sometimes it is necessary to represent both positive and negative integer
values, as when dealing with a bipolar voltage. The most conmion binary
code for this is called twos complement, which can represent values from
-2"~ to +2"~ - 1. In this notation, positive values are encoded the same way
as the positive-only, natural binary code above (this includes zero). To encode
a negative value, write down the code for the corresponding positive value
(including all leading zeros), invert the number by changing all ones to zeros
and all zeros to ones (which is called the ones complement), and then add 1
to the result. Table 4-2 contains twos complement codes for 5-bit numbers

54 CHAPTER 4 Analog/Digital Conversions

TABLE 4-2
Twos-Complement Coding for Five-Bit Bipolar Values

1VALUE

1 "̂""̂
1 '^^^
1 +13

1 +^2

1 '^^^
\ +10

1 +^
1 +^
1 +^

+6

1 +^
1 ^
1 +^
1 ^2
1 +̂
1 ^
1 "̂
1 "̂
1 "̂
1 "̂

-5

1 "̂
1 "̂
1 "̂

-9

1 -10

1 "̂^
1 ~^^

-13

1 ~^4
-15

1 -16

TWOS COMPLEMENT CODE |

01111 1
01110

01101 1
01100 1
01011 1
01010 1
01001 1
01000 1
00111 1
00110

00101 1
00100 1
00011 1

1 00010 1
1 00001 1
1 00000 1

1 "'''''"'"' 1
1 11110 1

11101 1
11100 1
11011 1
11010 1
11001 1
11000 1
10111 1
10110 1
10101 1
10100 1
10011 1
10010 1
10001 1
10000 1

4.2 Data Conversion and DACs 55

representing values +15 to -16. For example, to get the twos complement
representation of the value -12 using 5 bits:

1. +12 = 01100
2. Ones complement = 10011
3. Twos complement =10011 + 1
4. -12 = 10100

One additional coding system we will mention here is fractional binary.
This is useful when digital readings must be normalized to an arbitrary full-
scale value, as when a converter's reference voltage is variable. The n bits of
the code represent values between 0 and 1 - 2~". The weight of each bit is a
fractional value, equal to its natural binary integer value (of 2^) divided by 2".
This means the MSB has a weight of 1/2 (since 2"~ /2" = 2~), the next bit to
the right has a weight of 1/4, and so on, down to the LSB with a weight of
1/2̂ " (or 2~"). When all bit values are 1, the total value = 1 - 2~". Again, 2"
levels are represented by this code. Table 4-3 lists fractional binary codes for
5-bit values. Note that sometimes fractional binary values are written with a
binary point and sometimes not. So, the fractional binary for 1/32 can be
written as either 0.00001 or 00001, even though they both mean the same thing.

4.2 Data Conversion and DACs

Data conversion is at the heart of data acquisition systems. Real-world analog
signals must be converted to binary representations via an analog-to-digital
converter (or ADC). Similarly, if output to the analog world is required, as
in control systems, digital values are transformed using a digital-to-analog
converter (or DAC). We will look at DACs first, because they are usually
simpler devices than ADCs. In addition, many ADCs contain DACs as part
of their circuitry.

DACs use either current or voltage switching techniques to produce an
output analog value equal to the sum of several discrete analog values. Because
it is easier to sum currents (rather than voltages) using analog circuitry, most
commonly available DACs are current-mode devices. They produce the sum
of internal current sources and use either an internal or external op amp as
an output current-to-voltage converter.

4.2.1 Fully Decoded DAC

One type of DAC is shown in Figure 4-1. This is a fully decoded current-
mode 3-bit DAC. A fully decoded DAC, for n input bits, contains 2" - 1
switches and identical current sources. Basically, the input bits are decoded

56 CHAPTER 4 Analog/Digital Conversions

TABLE 4-3
Five-Bit Fractional Binary Codes

1 CODE

1 0.00000

1 0.00001

0.00010

1 0.00011

1 0.00100

0.00101

1 0.00110

1 0.00111

1 0.01000

1 0.01001

1 0.01010

1 0.01011

1 0.01100

1 0.01101

1 0.01110

1 0.01111

1 0.10000

1 0.10001

1 0.10010

1 0.10011

1 0.10100

1 0.10101

1 0.10110

1 0.10111

1 0.11000

0.11001

1 0.11010

1 0.11011

1 0.11100

1 0.11101

1 0.11110

1 0.11111

FRACTION OF FULL SCALE 1

0 1
1/32 (LSB)

2/32 = 1/16 1

3/32 1
4/32 = 1/8 1

1 5/32 1
1 6/32 = 3/16 1

1 7/32 1
8/32 = 1/4

1 9/32 1
1 10/32 = 5/16 1

11/32

1 12/32 = 1/8 1
13/32

1 14/32 = 7/16 1

15/32

1 16/32 = 1/2 (MSB) 1

1 17/32 1
1 18/32 = 9/16 1

1 19/32 1
20/32 = 5/8

1 21/32 1
1 22/32 = 11/16 1

23/32 1

24/32 = 3/4

25/32 1

26/32 = 13/16 1

27/32 1

28/32 = 7/8 1

29/32 1

30/32 = 15/16 1

31/32 1

4.2 Data Conversion and DACs 57

CURRENT SOURCES

IQ I I I2 I3 I4 I5 l6 »7

SWITCH MATRIX

Figure 4-1 Fully decoded 3-bit current mode DAC.

and control switches to the current sources of equal magnitude. A digital
value of 001 connects one current source to the output, a value of 010 connects
two sources to the output, Oil connects three sources to the output, and so
on up to seven sources for 111. These current sources are summed at the
output, producing a current proportional to the digital value.

The main advantage to this type of fully decoded DAC is that with
proper switching the output current is guaranteed to be monotonic. That is,
as the digital code continues to increase the analog output will also increase,
step by step. This is not always true of all DACs. The disadvantage of this
type of DAC is that 2^ - \ current sources and switches are required. This
becomes prohibitive for reasonably large numbers of bits, such as 4095
current sources for a 12-bit DAC.

4.2.2 Weighted Resistor DAC

A simpler DAC can be produced using a voltage reference with a set of
weighted precision resistors and switches, as shown in the 3-bit DAC example
in Figure 4-2. The resistor values are in a binary bit-weight ratio (1:2:4:8:16

58 CHAPTER 4 Analog/Digital Conversions

Bit 2 (MSB) Bit 1 Bit 0 (LSB)

Figure 4-2 Weighted resistor, 3-bit current mode DAG.

and so on). Again, this converter is a current-mode device, with the sum of
all resistor currents resulting in an analog current.

In this example, as in nearly all practical current-mode DACs, the output
current is passed through an op amp. This acts as a current-to-voltage con-
verter as well as isolating the DAC from output circuit loading. Here, since
the op amp is inverting (because the virtual ground of the inverting input is
needed) the output is a negative voltage proportional to the input binary word
and the voltage reference.

When all input bits are zero, no current flows into the op amp, and the
output voltage is zero. If the MSB (bit 2) is 1, the current flowing into the
op amp is V^^^IIK, producing an output voltage of -V^^^ll, since the feedback
resistor {R^ is IK ohm and the op amp's gain is -Rf/Rin- Similarly, if bit 1 is
1, it generates a current of Vref/4K, producing an output voltage of -V^^f/A;
and if the LSB (bit 0) is 1, it generates a current of Vref/8K, producing an
output voltage of -Vref/8. If more than a single bit is 1, their currents sum at
the op amp's input and produce the appropriate output voltage. If all bits are
1, the output voltage is -7/8 Vref- This is the full-scale output.

This DAC can produce eight discrete analog output levels, spaced 1/8
Vj-ef apart. Note, that if we treat these values as normalized to Vref̂ we are
dealing with fractional binary values. If we set V^^f = 10.00 V, the full-scale
output is -8.75 V, with steps of 1.25 V. If we increased the number of bits
in this DAC to n, the resistor values for the most significant bits would stay

4.2 Data Conversion and DACs 59

the same and larger resistors would be added for the least significant bits.
The LSB will have a value of 2" x IK ohm.

The advantage of the DAC in Figure 4-2 is that only one switch and
resistor are needed per bit. The main drawbacks are that as the number of
converter bits increases, the number of different precision resistor values
needed, as well as the overall range of resistor values, increases. If we
increased the resolution of the DAC in Figure 4-2 from 3 bits to 8 bits, the
resistance values would increase up to 256K ohms. This makes it very difficult
to maintain monotonicity, linearity, and overall accuracy, because of the wide
range of resistance values required.

4.2.3 Resistor Quad

Other techniques are used to overcome these drawbacks. One of these is the
binary resistance quad, used in an 8-bit DAC in Figure 4-3. Here, the resistor
network uses the same four values for more than 4 bits resolution. The resistors
and switches constitute a voltage-divider network. The most significant 4 bits
(bits 4-7) are in the usual scaled binary ratio of 2:4:8:16. The least significant
4 bits (bits 0-3) are these same values, repeated. However, these values are
attenuated 16:1, via the additional (16K ohm) resistor. Each section of four
resistors is called a quad.

4.2.4 /7-2/? Ladder

A very common DAC uses the R-2R resistance ladder, where only two different
resistor values are needed, as shown in Figure 4-4. When only the MSB
(bit 7) is 1, the output voltage is -V^^f/l, since V̂ef is switched through 2R from

(LSB) Bit 0 Bit 1 Bit 2 Bit 3
0 9 0 P

Bit 4 Bit 5 Bit 6 Bit 7 (MSB)
0 O O 9

Vout

Figure 4-3 8-bit DAC using resistor quads.

60 CHAPTER 4 Analog/Digital Conversions

''ref

R R R R R R R 2 R
-AAAr-f-AAAr^^VVWAAAr^^VW-f-^^

>2R >2R >2R >2R >2R >2R >2R >2R

^^^~P^

(MSB) Bit 7 Bite Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 BitO(LSB)

^ V , ,

Figure 4-4 8-bit DAG using FI-2R resistor ladder.

bit 7 and the op amp's feedback resistor is R. When moving down the ladder
(toward less significant bits), each 2R resistor sees one-half the voltage of the
one above it (when it is the only 1 bit). This is due to the constant resistance
of the attenuator network to ground. So, bit 6 contributes -V^^f/A to the output
voltage, bit 5 contributes -Vref/8, and so on down to bit 0 contributing -Vref/256.

4.2.5 Multiplying DAC

When a DAC can operate with a variable analog reference voltage, instead
of the usual fixed value, it is called a multiplying DAC. The output of this
DAC is proportional to both the analog reference input and the digital input.
If it can respond to bipolar inputs (both analog and digital) and produce a
bipolar output, it is a four-quadrant multiplying DAC. This refers to a Car-
tesian plot of the transfer function. A multiplying DAC is commonly used as
a digitally controlled attenuator or amplifier of an analog signal.

4.2.6 DAC Characteristics

Some important criteria must be considered when choosing a DAC. The first
parameter to determine is the number of bits of resolution. This is selected
by knowing the desired dynamic range of the output signal. Eight-, 12-, and
14-bit DACs are commonly available as monolithic devices or integrated
circuits (ICs). Even 16-bit DACs are produced commercially.

Another major parameter is settling time, which determines the speed
of conversion, as shown graphically in Figure 4-5a. This is the amount of time
required for a DAC to move to and stay within its new output value (usually
to ±1/2 LSB), when the digital input changes. For common, current output

4.2 Data Conversion and DACs 61

Analog Output

Digital Output

Analog Output

Digital Input
(b) Linearity

Figure 4-5 Important DAC parameters.

DACs, settling time is reasonably fast, typically a few hundred nanoseconds.
If a fast-settling op amp is used as an output current-to-voltage converter,
output waveforms at frequencies well over 1 MHz can be produced.

Linearity is another major DAC parameter. It is the maximum deviation
of the DACs transfer curve from an ideal straight line, usually expressed as
a fraction of the full-scale reading, as illustrated in Figure 4-5b.

One final DAC parameter to note is monotonicity. If the output of a
DAC always increases for increasing digital input, the DAC is considered
monotonic. Monotonicity is specified over a certain number of input bits,
typically the full number of bits of resolution. A nonmonotonic DAC would
have a dip in its transfer curve.

62 CHAPTER 4 Analog/Digital Conversions

4.2.7 High-Speed DACs

There are monolithic DACs available with update rates in the range of 100-300
million samples per second (MSPS). These DACs can go up to 16-bit resolu-
tion (although 12- and 14-bit devices are more common at these high speeds).
High-speed DACs typically employ a mixed architecture to achieve good
performance at these speeds. Most use a segmented current source along with
an R-2R ladder. The important specifications for these high-speed converters
are update rate (in MSPS), settling time (in nsec) and slew rate (in V/|Lisec).

Some of these fast DACs require emitter-coupled logic (ECL) digital
control signals. As opposed to TTL digital signal levels (see Section 4.1),
ECL signals are negative (relative to ground) and have a smaller difference
between logic 0 and 1 levels. ECL logic devices are one of the fastest families
of digital ICs commonly available. Some high-speed DACs use external TTL
controls and translate them internally into ECL signals. ECL devices are
powered by a -5.2 V supply (compared to +5 V or lower for TTL ICs). There
are several different ECL families, with typical logic levels of -1.75 V
representing 0 and -0.9 V representing 1.

4.3 ADCs

Now we will turn our attention to ADCs. A multitude of techniques are used
to produce an analog-to-digital converter. We will look at some of the more
common ones here.

4.3.1 Ramp ADC

One of the simpler approaches in implementing an ADC is the ramp converter
shown in Figure 4-6. It consists of a digital counter, a DAC, an analog
comparator, and control logic with timing generation. Basically, when an
analog conversion is requested, the digital counter starts counting up from
zero. As it counts, the analog output of the DAC increases, or ramps up. When
the DACs output is equal to or exceeds the analog input, the comparator's
output switches and the control logic stops the counting. An end of conversion
is indicated, with the digital counter output now containing the converted
value. This conversion sequence is illustrated in Figure 4-7.

The problem with this technique is its relatively long conversion time,
or slow speed, which becomes worse with increasing number of output bits.
Everything else being equal, the maximum conversion time for the ramp
converter increases as 2", where n is the number of bits of resolution. The

4.3 ADCs 63

ANALOG INPUT-

x^

DAC

DIGITAL OUTPUT ^

END OF
CONVERSION

START OF
CONVERSION

CLOCK

DIGITAL COUNTER

CONTROL LOGIC

Figure 4-6 Simple ramp analog-to-digital converter (ADC).

DAC
OUTPUT

FS —

3/4 FS -

1/2 FS -

1/4 FS — I

Full Scale

CONVERSION TIME (CLOCK CYCLES)

Figure 4-7 Ramp ADC, typical conversion sequence.

conversion time is inversely proportional to the frequency of the clock used
in counting.

For example, if the converter's DAC had a 200-nsec settling time and
ŵ e used a 5-MHz clock for a 12-bit ADC, maximum conversion time would be
^—,x 4096 = 819.2 |isec. This w ôuld allow a conversion rate of only 1220
samples per second. Of course, this is a worst-case value. If the analog input
is less than the maximum allowable value, conversion time will be shorter.

64 CHAPTER 4 Analog/Digital Conversions

Even using a fast DAC with a 10-nsec settling time and a 100-MHz clock,
the minimum conversion rate is just 24,400 samples per second.

One minor variant on this technique is the servo ADC. Its digital counter
can count both up and down. When the DAC output is below the analog input,
it counts up. When the DAC output is above the analog input, it counts down.
It tends to track the analog input continuously, analogous to a servo control
loop. It will respond to small input changes rapidly, but it is as slow as the
standard ramp converter when a large input change has occurred.

4.3.2 Successive-Approximation ADC

A major improvement on the ramp converter is the successive-approximation
converter, probably the most popular class of general-purpose ADCs com-
mercially available at present. The overall block diagram of this system is
very similar to that of the ramp converter, as shown in Figure 4-8, except that
the digital counter is replaced by more sophisticated control logic that includes
a shift register. Instead of simply counting up until the analog value is exceeded,
the successive-approximation ADC tests one bit at a time (starting with the
most significant) until the internal DAC value is as close as possible to the
analog input without exceeding it.

First, the most significant bit (MSB), equal to 1/2 full scale (FS) value,
is turned on; if the DAC's output is less than the analog input, it is left on
(otherwise it is turned off). Then the next bit down (1/4 FS) is turned on and

ANALOG INPUT

J^

+
Comparator;;

DAC

DIGITAL OUTPUT

END OF
CONVERSION

START OF
CONVERSION

DIGITAL COUNTER CLOCK

TIMING
SHIFT REGISTER
CONTROL LOGIC

Figure 4-8 Simple successive approximation ADC.

4.3 ADCs 65

DAC
OUTPUT t

FS

3/4 FS

1/2 FS

1/4 FS

Full Scale

CONVERSION TIME (CLOCK CYCLES)

Figure 4-9 Successive approximation ADC, typical conversion sequence.

left on only if the DAC's output is still less than the analog input. This process
continues until all n bits have been tested. Figure 4-9 shows a typical con-
version sequence. The entire conversion requires many fewer than 2^ clock cycles
(usually between n and In cycles). Furthermore, the conversion time is relatively
constant and insensitive to the input analog value, as opposed to ramp converters.

It is not unusual to find successive approximation ADCs with conversion
rates well over one million samples/second and resolution as high as 16 bits.
Lower-speed and lower-resolution successive approximation ADCs are common
commercial ICs, available at very low prices. For example, there are 8-bit
devices with conversion times of 5 |xsec or under (i.e., 200 kHz sampling
rates) available for only a few dollars.

4.3.3 Dual-Slope ADC

Another common ADC is the dual-slope converter, which relies on integra-
tion. As shown in Figures 4-lOa and 4-lOb, the voltage to be measured (VJ
is input to an integrator, charging the capacitor for a fixed time interval ^i,
which corresponds to a certain number of clock cycles. At the end of this
interval, a known reference voltage (Vj.) of opposite polarity is applied to the
integrator, discharging the capacitor. The time (and number of clock cycles)
required to bring the integrator output back to zero, (̂ 2 ~ î)» is measured.

The charge on the capacitor at time ti is proportional to the average
value of Vx times ti. This is equal to the charge lost by the capacitor during
time t2-h, while being discharged by the reference voltage, proportional to
Vr times (̂ 2 - î)- Hence (̂ 2 - t^lti is proportional to VJV^ The output binary

66 CHAPTER 4 Analog/Digital Conversions

+ INPUT

REF o ^

DIGITAL OUTPUT ^ y

START OF CONVERSION

END OF CONVERSION <

CLOCK

CONTROL LOGIC
& COUNTER

(a) Block Diagram

Integrator
Output (V)

h tg

(b) Typical Conversion Sequence

Tinne

Figure 4-10 Dual-slope ADC.

count for the time interval (̂ 2 - 1̂) is thus proportional to V̂^ the input voltage.
With appropriate circuitry, bipolar voltages can also be measured.

The dual-slope ADC has many advantages. Noise present on the input
voltage is reduced by averaging. The value of the capacitor and conversion
clock do not affect conversion accuracy, since they act equivalently on the up-
slope and down-slope. Linearity is very good and extremely high-resolution
measurements can be obtained. Its main disadvantage is a slow conversion
rate, often in the range of 10 samples/second. In applications where this is
not a problem, such as in measuring temperature transducers, a dual-slope
ADC is a good choice. They are commonly used in digital voltmeters (DVMs)

4.3 ADCs 67

where their resolution is measured in display digits (4-1/2 digits = ±19999
counts or approximately 15 bits).

4.3.4 Voltage-to-Frequency Converter

Another slow ADC is the voltage-to-frequency converter, or VFC. It changes
an analog signal into a digital pulse train with a frequency proportional to
the signal voltage. This pulse train can be converted into a usable digital
output of n parallel bits by clocking a counter for a fixed time interval.

The VFC is an integrating device with good noise rejection and mono-
tonicity, similar to the dual-slope converter. It can also be used as an inexpen-
sive, high-resolution ADC, with slow conversion rates. Its drawbacks include
nonlinearity, a limited input-voltage dynamic range, and output offset. As the
input voltage approaches zero, the output frequency is still offset from zero.

4.3.5 Flash ADC

The fastest type of ADC is the flash converter. An n-bit flash ADC applies
the input voltage to an array of 2" - 1 comparators, via a ladder of 2" resistors.
The threshold for the comparators are spaced 1 LSB apart.

Figure 4-11 shows a simple 3-bit flash ADC. When V^^ is zero, all
comparators are off. As the input voltage increases to V^^f/S, the lowest
comparator (a) goes on. As Vi^ keeps increasing by steps of Vref/S, each
successive comparator (b, c, d,. . .) switches on. All comparators are on when
the input voltage reaches or exceeds 7/8 x Vj-ef- The digital logic decodes the
comparator outputs into a 3-bit word. The digital output can either be normal
binary code (000 = minimum value, 111= maximum value) or a Gray code.
In a Gray code, only one output bit changes for each one-step input change,
to minimize noise and "glitches" when many digital switches change at once
at high speed.

The conversion speed of a flash ADC is limited only by the speed of
its comparators and digital logic circuitry. It has a conversion rate measured
in speeds ranging from millions of samples per second (MSPS) to over a
billion samples per second (GSPS). A common application for this device is
digitizing video signals at rates well above 10 MSPS. Flash ADCs are fairly
expensive devices when high digital resolution is required, since their com-
plexity grows geometrically with the number of bits (2" - 1 comparators for
n bits). So, even an 8-bit flash converter requires 255 comparators and a
moderately complex digital decoder. See Section 4.3.8 for more information
on high-speed flash ADCs.

68 CHAPTER 4 Analog/Djgital Conversions

3 A DIGITAL
OUTPUT

Figure 4-11 3-bit flash ADC.

4.3.6 Sigma-Delta Converter

A fairly new commercial converter is the sigma-delta ADC (sometimes
referred to as a delta-sigma converter). This device is a low-cost, high-
resolution ADC, suitable for low conversion rates. Sigma-delta ADCs typi-
cally have 16 to 24-bit resolution, with a usable input signal frequency range
of a few Hz to a few kHz. There are some 16-bit sigma-delta ADCs with
conversion rates up to 1 MSPS.

A block diagram of a 16-bit sigma-delta converter appears in Figure 4-12.
It consists of an analog modulator loop followed by a digital filter. The modulator

4.3 ADCs

's ig - INTEGRATOR

DAC

CLOCK AND CONTROL LOGIC

DIGITAL OUTPUT ^
16.

DIGITAL FILTER

Figure 4-12 SIgma-delta ADC.

operates at a very high clock frequency, effectively oversampling the input signal.
It produces a serial data stream, which the digital filter averages to produce a
16-bit output word.

For example, assume the analog signal range (Vsig) is - 1 0 V to +1.0 V,
as well as the DAC output, and the input signal voltage is constant at +0.4 V.
The comparator's output will be high and the DAC's output will be +1.0 V if
the output of the integrator (Vi^^) is positive. The comparator's output will be
low and the DAC's output will be -1.0 V if Vjnt is negative.

Let us follow the voltages at Vsum (where the DAC output is summed
with the input signal), Vjnt (the integrator output, where Vsum is averaged), and
the DAC output, as we step through the first few clock cycles, as shown in
Table 4-4. Note that the DAC is a single-bit device, with an output of either
+1.0 V or-1.0 V.

Initially, at clock cycle 0, we assume that the DAC output is turned off,
ŝig = Kum = înt (+0.4 V), and the comparator output is 1, producing a DAC

70 CHAPTER 4 Analog/Digital Conversions

TABLE 4-4
Sigma-Delta Converter, Internal Cycles

1 CLOCK
CYCLE

I °
1 "• 1 1 ^

3

1 ^
5

6

1 7
8

1 ^
1 ̂ °
I 11

" s u m

+0.4

-0.6

+1.4

-0.6

-0.6

-0.6

+1.4

-0.6

-0.6

+1.4

-0.6

1 -0.6

V,nt

+0.4

-0.2 1

+1.2

+0.6

0

-0.6

+0.8

+0.2

-0.4

+1.0

+0.4

1 -0.2

COMPARATOR

1 1
1 ^

0

0

["o"

DAC
OUT

+1.0

-1.0

+1.0

+1.0

+1.0

-1.0

+1.0

+1.0

-1.0

+1.0

+1.0

-1.0

F uli
Conversion

0 ycie

output of +1.0 V, to be subtracted from Vsum on the next clock cycle. At clock
cycle 1, the first full clock cycle, Vsum = Kig - ^DAC = +0-4 V - 1.0 V = -0.6 V.
Vint is simply the previous value of Vint plus the new value of Vsuni» or +0.4 V
+ (-0.6 V) = -0.2 V. This process continues until the values at clock cycle 1
occur again and the process is repeated. In this example, the conversion
process starts repeating at clock cycle 11. Hence, 10 clock cycles are required
to complete the conversion. If the analog voltage of the DAC output is averaged
over those 10 cycles, we get a value of -1-4.0/10 = -1-0.4 V, the value of V̂ ig.
Since the digital filter sees the same numbers as the DAC, its output will also
be -1-0.4 V, but as a digital representation.

Note that the number of clock cycles required for conversion varies
with the value of V̂ ig. If we used a Vsig value of -1-0.2 V, only five clock cycles
would be required. So, if high resolution at low sampling rates is adequate,
the sigma-delta ADC is a good selection and a strong competitor to dual-
slope ADCs.

4.3.7 Other ADC Variants

Many current ADC ICs use variations on the techniques we have previously
examined, along with additional features such as input multiplexers, sample-
and-hold amplifiers, and programmable gain amplifiers. Some sigma-delta

4.3 ADCs 71

ADCs have programmable filters for signal conditioning. There are ADCs
with multiple channels and programmable characteristics that are called data
acquisition systems by their manufacturers.

One important variant is the serial ADC. For the ADCs previously
discussed, the output digital data was presented in a parallel format, with all
bits available simultaneously. This parallel approach forces the number of
pins on a monolithic ADC package to increase as the resolution (number of bits)
increases, along with the overall package size.

For medium-speed ADCs (up to about 1 MSPS) many IC manufacturers
produce devices with serial outputs. For these converters, there is a single
data line that is time-multiplexed: each bit of the output digital word is present
in sequential order, for a fixed amount of time, usually one clock cycle (see
Chapter 8 for a discussion of serial signals). These serial interfaces usually
require only two or three wires: a data line, a clock line, and sometimes a
control or synchronization line. This enables manufacturers to produce high-
resolution (12 to 16-bit) ADCs in 8-pin surface-mount IC packages as small
as 3 mm x 5 mm.

There are also ADCs designed for low-power applications, such as bat-
tery-powered accessories. These ICs can operate from low power supply volt-
ages. They usually have a "sleep" mode that drastically reduces power
dissipation when not actively converting data. This low-power mode can be
initiated via an external command or automatically after a predefined idle time.

4.3.8 High-Speed ADCs

In recent years, both the speed and resolution of ADCs have increased.
Commercial ADC ICs are available up to 1000 MSPS (for eight-bit resolu-
tion)—this speed is one sample every nanosecond. Even at higher resolutions,
ADC speeds have increased significantly. Currently, there are 10-bit ADC
ICs as fast as 100 MSPS, 12-bit ADCs over 50 MSPS, 14-bit devices up to
10 MSPS, and 16-bit converters up to 5 MSPS.

Very High Speed Flash ADCs For resolution up to eight bits, flash ADCs are
still the fastest converters available, currently with speeds up to 1000 MSPS or
higher. As with high-speed analog circuits, these very high speed ADCs require
great care in their implementation. At very high speeds (typically above 100
MSPS) these ADCs no longer use standard TTL digital signal levels. Instead,
ECL levels are used, as with high-speed DACs (see Section 4.2.7).

Even with ECL signal levels, many of the fastest ADCs (at 500 MSPS
or above) employ a 1:2 demultiplexer at their data output, producing two

72 CHAPTER 4 Analog/Digital Conversions

digital output words. Each output changes at half of the sampling rate, giving
the external circuit a chance to capture the ADC data. For example, the fastest
ECL clock frequency is around 500 MHz, so a single ECL latch needs 2 nsec
to store its data.

Pipelined ADCs At high resolution, such as 12 and 14-bits, a technique called
pipelining is used to enable high-speed conversions. A pipeline converter
consists of multiple ADC stages of low resolution. The analog signal is
captured by a sample-and-hold amplifier, to keep the input constant during
the conversion process. Each ADC stage performs a conversion and passes
its amplified quantization error (or residue) to the next stage for continued
conversion. This residue is generated by passing the local stage's ADC output
through a DAC and subtracting the result from the buffered input analog
signal. After all stages have completed their conversions, logic circuitry com-
bines the result into an output word, usually employing digital error-correction
techniques.

The multiple ADC stages run in parallel, performing a local conversion
for each clock cycle. This means that the output data conversion rate is equal
to the clock rate, producing a high-speed ADC that is not slowed down by
more bits of resolution. However, there is a delay between the time the analog
signal is sampled and when the digital output word for that sample is available.
This latency is the pipe delay, measured in clock cycles. It is determined by
the number of internal stages the ADC employs. Pipe delays of 7-14 clock
cycles are common. Figure 4-13 shows the timing for a pipelined ADC with
a 7-clock latency.

A pipelined ADC is useful for continuously sampling a signal (under
normal circumstances the clock must be constantly running). The conversion

Analog
Input ' n

n+4
n+5 n+6 n+7

Clock

Data
Out 1IDQGIIZI3QG1II

Figure 4-13 Pipelined ADC with 7-clock latency.

4.3 ADCs 73

time required is much slower for the first sample, only. So, intermittently sam-
pling with a pipelined ADC is about as fast as using a successive-approximation
ADC.

Other High-Speed ADC Considerations Many high-resolution (12-bit and above),
high-speed ADCs employ differential analog inputs. A differential input con-
sists of two signals, each 180° out of phase with the other. This greatly reduces
the reception of common-mode noise. It does add the extra complexity of
converting a single-ended (ground-referenced) analog signal to a differential
one, but it is worth the improvement in data quality. There are now single
ICs available that translate single-ended to differential signals.

Many high-speed ADCs are available as multiple converters in a single
IC package—some contain three converters and are used for digitizing high-
resolution analog video waveforms (R, G, and B signals). These devices may
contain programmable gain amplifiers for input scaling and digital data stor-
age for output buffering, often in the form of a first-in-first-out (FIFO) memory.
A FIFO buffer allows a relatively slow device to read the ADC output without
losing data, even at high conversion rates. In a FIFO, data is independently
stored and retrieved at different rates.

4.3.9 ADC Characteristics

After exploring some of the common ADC techniques, a discussion of their
major characteristics is in order. The most important ADC parameters are
resolution and sampling rate.

ADC Resolution An ADC's resolution is the smallest change it can detect in
a measurement. This value is actually a percentage of the full-scale reading,
but it is commonly specified as the number of output bits. An n-bit ADC has
2" possible output values and a resolution of one part in 2". For example, a
10-bit ADC has a resolution of approximately 0.1% (1/1024). High resolution
(more bits) is usually desirable in an ADC. Note that an ADC's accuracy can
be no better than its resolution, for an individual reading.

ADC Sampling Rate Sampling or conversion rate is the ADC specification
most often examined. It is the number of readings completed every second.
This parameter is extremely important when rapidly changing signals are
measured. It is obvious that if a signal frequency is higher than the sampling
rate, rapid signal variations can be missed when they occur between consec-
utive ADC samples. This is true whether the ADC takes an instantaneous

74 CHAPTER 4 Analog/Digital Conversions

analog measurement, using a sample-and-hold amplifier to keep the value
constant for the conversion cycle, or whether the signal value is averaged (with
an integrator) during the conversion cycle. In fact, a successive-approximation
ADC can produce highly erroneous results if the input signal varies signifi-
cantly during a conversion cycle.

The Nyquist Theorem For an analog signal to be accurately digitized by an
ADC, it must be sampled at a rate at least two times the highest frequency
component in that signal. To put it another way, only signals whose highest
frequency components are no more than one-half the sampling frequency can
be accurately digitized. This maximum signal frequency is called the Nyquist
frequency and this rule is called the Nyquist theorem.

Aliasing When a signal is sampled too slowly (it contains frequency com-
ponents above the Nyquist frequency), the digitized waveform is distorted.
This distortion is called aliasing. It is the result of mixing or beating between
the signal frequencies and the sampling frequency. Low-frequency harmonics
composed of the differences between the signal and sampling frequencies are
recorded instead of the signal itself.

Figure 4-14 shows a simplified example of aliasing, using a single-
frequency signal. Figure 4-14a shows a sine wave of fixed frequency,/Q. If
that signal was digitized at a rate of 2/o, the samples taken would produce
a waveform with a frequency of/o, as shown in Figure 4-14b. The only
distortion here is that the digitized waveform appears to be a triangle wave
instead of a sine wave. If a sampling rate much higher than 2/o was used,
the digitized waveform would "fill in" more, and it would better approxi-
mate a sine wave. If the signal was digitized at a rate of only (4/3)/o, the
samples would produce a waveform of frequency (l/3)/o, as shown in Figure
4-14c. This result of aliasing is the difference frequency between the sam-
pling rate and signal frequency, which is (4/3 - 1) x /Q. If the sampling rate
was equal to the signal frequency, the digitized waveform would be a constant
value.

In practice, an ADC's sampling rate should be much higher than twice
the maximum signal frequency. A value of five times is a good choice. In
most data acquisition systems, the analog input is filtered to eliminate any
signal components above the Nyquist frequency. This is often referred to as
an anti-aliasing filter. For such a low-pass filter to produce adequate attenu-
ation at the Nyquist frequency, it should have a cutoff frequency well below
that point, requiring a sampling rate many times higher than the maximum
frequency of interest.

4.3 ADCs 75

O = sampled at 2 fg

X = sampled at 4/3 fo

(a) Sine Wave of Frequency fo Sampled at 2 fo and 4/3 fo

(b) Waveform Reconstructed from 2 fo Samples

(c) Waveform Reconstructed from 4/3 fo Samples

Figure 4-14 Examples of aliasing.

ADC Accuracy Another important ADC characteristic is its absolute accuracy,
which is the measure of all error sources. This is sometime referred to as the
total unadjusted error. It is the difference between the ideal input voltage and
the actual input voltage (range) to produce a given output code, usually
expressed as a percentage of full scale (i.e., ±1 LSB). It is possible for a
converter's absolute accuracy to be better than its resolution, for multiple read-
ings. By definition, a converter's resolution is 1 LSB. It is not uncommon to
find a commercial ADC with an ideal absolute accuracy of ±0.5 LSB. The
sources contributing to the total unadjusted error include offset and Unearity
errors.

An error-free 3-bit ADC transfer curve is displayed in Figure 4-15a,
showing digital output code versus analog input voltage, as a fraction of full-
scale input. As the resolution of the ADC increases, the "coarseness" of this

76 CHAPTER 4 Analog/Digital Conversions

DIGITAL
OUTPUT "'"'0

101

DIGITAL
OUTPUT

0/8 1/8 2/8 3/8

(a) No Errors

5/8 6/8 7/8
ANALOG INPUT

(fraction of full scale)

0/8 1/8

(b) Offset Error

ANALOG INPUT
(fraction of full scale)

DIGITAL ^^^ —\
OUTPUT 110—1

101
100—1
Oil
010
001
000

Infinite Resolution Line

0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8

(c) Linearity (Gain) Error

ANALOG INPUT
(fraction of full scale)

Figure 4-15 3-bit ADC transfer curves illustrating errors.

curve decreases and it approaches a straight line, shown as the infinite reso-
lution line in the figure.

An offset error would move the entire curve to the left or right, unchanged.
This type of error can be corrected by adjusting the analog reference voltage.
Figure 4-15b shows an offset error of 1 LSB.

A linearity or gain error would be equivalent to having the slope of the
infinite resolution line vary, producing a larger error for larger input values.
This would be more difficult to correct for, especially if it was temperature

4.3 ADCs 77

dependent. Figure 4-15c shows a linearity error of less than 1 (the gain drops
at larger inputs).

Special-Purpose ADC Approaches The ADC techniques discussed in this chap-
ter have been standard, general-purpose approaches, in common use. Some-
times, a data acquisition system can be tailored to a special application for
increased performance (one hopes, without a significant cost penalty). One
class of special applications particularly amenable to unique ADC systems
is the realm of repetitive signals. These are identical waveforms that can be
produced multiple times, without any significant change. Basically, these are
static measurements under complete experimental control.

This type of repetitive system allows us to use a high effective sampling
rate based on a relatively slow ADC. Let us assume that the waveforms of
interest have measurable energy up to 10 MHz. We need to sample at 20 MHz,
which at high resolution (such as 16 bits) would require a very expensive
ADC or multiple ADCs. We can get by with a high-resolution, slow (i.e.,
10 kHz sample rate) ADC by adding a sample-and-hold (S&H) amplifier and
a timing controller (or use the S&H amplifier within an ADC).

The idea here is to take one narrow sample of the waveform for each
repetition of the waveform. The S&H amp must be able to capture an analog
voltage with a 50-nsec window (equivalent to a 20-MHz sample rate). The
timing circuit must be able to step through the waveform in 50-nsec incre-
ments. For each repetition of the waveform, the next 50-nsec aperture is
captured and digitized. The ADC's maximum conversion rate of 10 kHz
determines the maximum waveform repetition rate. If the width of the wave-
form is 100 |isec, it would take 2000 repetitions or 200 msec to sample it at
effectively 20 MHz. See Chapter 14 for an example of this technique, some-
times called equivalent time sampling.

This survey of DACs and ADCs should help you decide which com-
mercial hardware solutions are best suited to your own data acquisition
problems, or whether to build your own special-purpose system, as well as
what performance to expect from a commercial product.

C H A P T E R

The PC

A computer is the heart of any contemporary data acquisition system. In the
early 1980s minicomputers were the workhorses of most science and engi-
neering labs. Hardware was expensive, most software had to be written in-
house, and performance was barely adequate for all but the most expensive
systems. Two decades later, PCs (personal computers) are commonplace
throughout the scientific and engineering communities. The low cost and
high performance of PCs made them the ideal platform for most data acqui-
sition tasks. In addition, a plethora of high-quality commercial software is
available for all imaginable PC applications, including data acquisition and
analysis.

The typical high-end engineering desktop computer is the workstation.
This is usually a system with several hundred megabytes (Mbytes) of volatile
memory, a large-screen, high-resolution video display, and a large amount of
fast on-line storage (typically a hard disk drive of well over 10 gigabytes).
In addition, it would have a network connection and a fast microprocessor
(possibly a RISC CPU, or reduced instruction set computer) or several micro-
processors in parallel. A workstation will often run the UNIX operating system
or a version of Windows NT. This is usually the platform of choice for a very
high performance data acquisition system, at a relatively high price.

Even though workstations are more powerful than standard PCs, the
distinction blurs when looking at high-end PCs. In fact, the major differences
between a high-end PC and a low-end workstation are price, CPU, operating
system, and software availability. Now that a variation of the UNIX operating
system, called Linux, is running on many PCs, workstation-PC distinctions
are reduced further.

There are several popular classes of computers useful as platforms for
data acquisition systems. The ones we will examine in this book are based

78

The PC 79

on the original IBM PC/XT/AT bus (now called the ISA bus) and the newer
PCI bus. The IBM Micro Channel bus and the Apple NuBus (which were
covered in the first edition of this book) are now obsolete. The IBM and
compatible machines are based on Intel's 80x86 and Pentium microprocessor
(or CPU, central processing unit) families.

There are many members in Intel's 80x86 and Pentium families. The
original device was the 8086, a "true" 16-bit CPU. It had a 16-bit wide data
bus and a 20-bit address bus, producing a 1-Mbyte address range. The original
IBM PC and PC/XT used Intel's 8088 CPU, which was effectively an 8086
with only an 8-bit external data bus and a 20-bit address bus, for a 1-Mbyte
address range, while keeping the same 16-bit registers internally for 8086
software compatibility. When the IBM PC was released, in 1981, this hybrid
approach of 16 bits internal and 8 bits external was common.

The IBM PC/AT used Intel's 80286 CPU, which employed a true 16-bit
architecture, a 16-bit external data bus, and a 24-bit address bus, for a 16-Mbyte
address range. It was software-compatible with the 8088 while providing faster
processing speed and additional features. The expansion bus of the IBM
PC/AT computer, a superset of the PC/XT expansion bus, eventually became
an explicit standard: ISA {industry standard architecture).

The next Intel processor was the 80386, which used a 32-bit architecture
both internally and externally. It had a 32-bit external data bus and a 32-bit
address bus, for a 4-gigabyte (Gbyte) address range. IBM switched to its
newer PS/2 line of PCs with the Micro Channel bus to use the 80386 and
later CPUs. Many other manufacturers stayed with the original AT (ISA) bus,
with modifications for 32-bit wide memory to accommodate 80386 machines.
The ISA bus has been replaced in mainstream desktop PCs by the PCI bus.
However, the ISA bus is still very popular in embedded PCs, including PC-
104 systems (see Chapter 12).

The next Intel processor in this family was the 80486. It was another
32-bit device with the same bus widths and features as the 80386 plus
additional integrated functions, such as a floating-point processor. IBM used
this processor in its higher end PS/2 systems while other manufacturers put
it into ISA computers.

After the 80486, Intel introduced the Pentium family of microproces-
sors (and abandoned the 80x86 naming convention, which could not be
trademarked). Pentium processors had a 32-bit internal architecture (regis-
ters) with a 64-bit internal data bus. The external address and data buses
were each 32 bits wide. Pentiums were based on superscalar architecture,
which used two pipelines for parallel processing. They also had better cache
memory than 80486 processors. Pentium processors had CPU speeds ranging
from 60 MHz to 200 MHz, although their maximum external bus speed was
about 60 MHz.

80 CHAPTERS The PC

Intel kept the trademarked Pentium name for its later families of CPUs,
even as their technology evolved. The next generation of Intel processors
began with the Pentium Pro, which increased addressing to 36 bits (for a 64-
Gbyte range). More significantly, the Pentium Pro had a RISC-based core,
more parallel processing hardware, and a secondary memory cache. However,
its improved performance was significant only when running fully 32-bit
software and operating systems, such as Microsoft Windows NT.

The Pentium II followed, using essentially the same core logic as the
Pentium Pro. It had some performance enhancements, including MMX
instructions for improved multimedia support, and had speeds up to 400 MHz.
The Celeron, was a lower-cost, lower-performance variant of the Pentium II.

The Pentium III was Intel's next generation of microprocessors. It used
the same core logic as the Pentium II series but had enhanced performance
for certain types of data processing. This was done with single instruction
multiple data (SIMD) instructions, which operated on entire blocks of data
in parallel. The Pentium III had internal processor speeds over 1 GHz.

As of this writing, the newest Intel processor is the Pentium 4, with
speeds up to 2 GHz. It is optimized for digital video and Internet technologies,
using Intel's NetBurst microarchitecture. This encompasses a 20-stage pipe-
line, a double-speed arithmetic logic unit (ALU), a 400 MHz memory bus,
and additional SIMD and MMX instructions.

Manufacturers other than Intel produce microprocessors for IBM-type
PCs, most notably Advanced Micro Devices (AMD) and Cyrix Corporation.
Their products are software compatible with Pentiums and are often of com-
parable performance.

5.1 IBM PC/XT/AT and Compatible Computers

We will now look in depth at the IBM PC/XT/AT class of PCs and their
compatibles (sometimes called clones). First we will examine the IBM PC/XT
computer, which is based on the Intel 8088 CPU. It has an external data bus
8 bits wide and an address bus 20 bits wide, for an address range of 1 Mbyte.
Even though 8088-based PCs have long been obsolete as desktop computers,
they are still produced in small form factors (such as PC-104) for embedded
PC applications (see Chapter 12).

5.1.1 Memory Segmentation

One idiosyncrasy of the 16-bit processors in this Intel CPU family is the
way 20-bit physical addresses are generated from 16-bit registers. Intel uses
an approach called segmentation. A special segment register specifies which

5.2 The IBM PC/XT 81

64-Kbyte section of the 1-Mbyte address space is being accessed by another
16-bit register. A segment register changes the memory address accessed by 16
bits at a time, because its value is shifted left by 4 bits (or multiplied by 16)
to cover the entire 20-bit address space. The segment register value is added
to the addressing register's 16-bit value to produce the actual 20-bit memory
address. Four segment registers and five addressing registers are available in
an 8088, all 16 bits wide.

For example, when the stack is accessed, the 16-bit value in the Stack
Segment (SS) register is shifted left by four bits (to produce a 20-bit value)
and added to the 16-bit Stack Pointer (SP) register to get the full 20-bit physical
address of the stack. The value added to the segment is referred to as the offset.
The usual notation is segment:ojfset. So, if the code segment (CS) contained
B021h and the instruction pointer (IP) contained 12C4h, the segmented nota-
tion is B021:12C4 and the physical location addressed would be B14D4h.

Note that throughout this book, most addresses will be presented in
hexadecimal (base 16) notation (with digits 0-9, A-F) using a trailing h. For
example, lOOh = 256 (decimal).

5.1.2 Motherboards

The heart of any PC is a single printed circuit board (PCB) referred to as the
system board or the motherboard. It contains the CPU and the system's
memory, timing, and control functions, as well as external interface capabil-
ities {input/output or I/O). This external I/O is usually available through
special connectors on the motherboard, often referred to as expansion slots.
Various cards are plugged into these slots, including display adapters (video
controllers), disk drive controllers, and parallel and serial interfaces, as well
as boards for data acquisition.

Newer PCs have many of these common functions (video control, disk
drive control, etc.) integrated into the motherboard with appropriate connec-
tors. USB ports (see Chapter 8) are also built into new PC motherboards,
simplifying connections to external peripherals such as scanners, printers,
mice, and even data acquisition hardware.

5.2 The IBM PC/XT

A simplified block diagram of a PC/XT motherboard is shown in Figure 5-1.
This motherboard contains: the CPU, an optional coprocessor (Intel 8087)
for floating-point math, eight hardware interrupts, four direct memory access
(DMA) channels, three timer/counter channels, read/write memory (usually

82 CHAPTERS The PC

CONTROL BUS

INTERRUPT
CONTROLLER

CLOCK

BUS
CONTROLLER

8088 CPU INTERFACE
LOGIC

ADDRESS BUS

DATA BUS

8087 SOCKET

DMA CONTROLLER

SPEAKER
CONTROL

TIMER/COUNTER

KEYBOARD
CONTROL

PARALLEL I/O

ROM (BIOS)

RAM

20/

^

I/O CARD
SLOTS

Figure 5-1 PC/XT motherboard block diagram.

referred to as random access memory, or RAM), read-only memory (ROM)
and all the required control logic and interfaces for the external I/O slots. The
20-bit address bus, 8-bit data bus, and various control lines go to the I/O slots
to support numerous peripherals.

Even though the 8088 can address 1 Mbyte of memory, only 640 Kbytes
of RAM is usable on the PC/XT, in the address range 0 to 9FFFFh. The upper
360 Kbytes are reserved for system ROM and memory on expansion cards,

5.2 The IBM PC/XT 83

TABLE 5-1

PC/XT Memory Map

ADDRESS MEMORY AREA

r r r r r h — — —

Fonnnh

p p o n o h

C8000h

COOOOh

Annnoh

00400n

OOOOOh

SYSTEM BIOS

ROM EXPANSION

HARD DRIVE BIOS

ROM EXPANSION

VIDEO ADAPTER AREA
(DISPLAY BUFFERS)

TRANSIENT

PROGRAM

AREA

C0MMAND.COM
RESIDENT PORTION

BUFFERS, DRIVERS

DOS KERNEL

USED BY BIOS

INTERRUPT VECTORS

MEMORY TYPE

> ROM

•> ADAPTER RAM

) SYSTEM RAM

which plug into the I/O expansion slots on the motherboard. A simplified
PC/XT memory map is shown in Table 5-1.

5.2.1 I/O Addressing, interrupts, DIVIA, and Timers

For communicating with peripheral, nonmemory (I/O) devices, the 8088 CPU
supports both I/O mapped and memory mapped I/O. I/O mapping separates
I/O addressing from memory addressing, so I/O ports can be directly and
easily accessed, even if they have the same addresses as memory locations,
by using separate control signals. In memory mapping, I/O ports look like
memory addresses and use up part of the memory addressing space. In the
PC/XT design, I/O mapping is used. Although the 8088 will support 16 bits

84 CHAPTERS The PC

TABLE 5-2
PC/XT I/O Address Map

1 I/O ADDRESS

000-OOFh

020-021h

1 040-043h

060-063h

080-083h

1 OAOh
1 200-20Fh

1 210-217h

2F8-2FFh

300-31Fh

320-32Fh

1 378-37Fh

1 380-38Ch

390-393h

1 3A0-3A9h

1 3B0-3BFh

1 3D0-3DFh

1 3F0-3F7h

1 3F8-3FFh

usi
DMA CONTROLLER

INTERRUPT CONTROLLER

TIMER

PPI (8255)

DMA PAGE REGISTERS

NMI MASK REGISTER

GAME ADAPTER

EXPANSION UNIT

ASYNC ADAPTER (COM2)

PROTOTYPE CARD

HARD DISK DRIVE ADAPTER

PRINTER ADAPTER

SDLC COMM ADAPTER

1 CLUSTER ADAPTER

BISYNC ADAPTER

MONO DISPLAY/PRINTER
ADAPTER

CGA ADAPTER

DISKETTE DRIVE ADAPTER

ASYNC ADAPTER (C0M1)

LOCATION 1

ON
MOTHERBOARD

ON
ADAPTER

CARDS

of I/O addressing, only 10 bits are used here (for a total of 1024 I/O addresses).
This I/O space is divided into two regions of 512 locations each. The lower
512 addresses (0 to IFFh) are used exclusively on the motherboard. The upper
512 addresses (200h to 3FFh) are decoded by interface cards connected to
the I/O slots. An I/O address map for the PC^T is shown in Table 5-2.

The PC/XT has nine interrupt lines or levels, with unique priorities.
The highest priority interrupt is the NMI (nonmaskable interrupt), used for
trapping serious system problems, such as memory (RAM) parity errors. The
next two interrupts, IRQO and IRQl, are also used only by the motherboard
(IRQl interrupts the processor whenever the keyboard is hit). The other six
interrupts, IRQ2-IRQ7, are available for use by cards in the extemal I/O
slots. The lowest priority interrupt, IRQ7, is allocated to a parallel printer port.

5.2 The IBM PC/XT 85

Note that very often, peripheral board manufacturers use interrupts in
nonstandard ways for functions not previously defined. The same problem
holds true for the use of I/O addresses and even with memory addresses above
640 Kbytes (the limit of MS-DOS). This is especially the case for some
PC/XT data acquisition cards. If two cards in the same PC try to use the same
interrupt or address, they will malfunction. This is an incompatibility or an
address clash. The solution is to change the interrupt/address selection on
one or the other card, or remove one card entirely. In newer PCs with plug-
and-play support, the system automatically assigns addresses and thus avoids
this problem.

Another important PC/XT feature is the use of direct-memory access
(DMA). DMA hardware allows data to be transmitted very quickly between
a peripheral device and system memory without the CPU's intervention.
Programmed I/O transfers, under CPU control, are inherently slower than
DMA I/O transfers. DMA is especially useful for accessing hard disk drives.
The CPU initializes the DMA controller with the required information and
the DMA controller takes over the system bus, managing the data transfer.

There are four DMA channels in a PC/XT system. The highest-priority
DMA channel (DMA channel 0) controls memory refresh, as discussed below.
The other three DMA channels (1-3) are available for use by external I/O
cards. Care must be taken in using DMA transfers, which can prevent normal
CPU actions and result in a system crash.

The PC/XT contains three programmable timer/counters. The first
timer/counter (channel 0) is implemented as a general-purpose time-of-day
clock, producing a level 0 interrupt (IRQO) approximately every 55 millisec-
onds. The second timer/counter (channel 1) times the DMA cycles for mem-
ory refresh, as described below. The third timer/counter (channel 2) controls
the speaker's tone generation. If you need to use one of these timer/counters
for other applications, try to use channel 2 only! This will not interfere with
any critical system functions, whereas using other channels might.

5.2.2 PC/XT Memory: RAM and ROM

The PC/XT's main system memory consists of dynamic RAM. This read/write
memory starts at address 0 and can extend up to 640K (9FFFFh). This is the
memory used by the operating system, DOS, and is available for loading and
running programs, along with any transient data storage required by those
programs.

Two types of RAM devices are static and dynamic. Both memories
retain their contents only while power is applied to them. Dynamic RAM
(DRAM), in addition, requires a periodic read access (on the order of every

86 CHAPTERS The PC

few milliseconds) to retain its memory. This process is called a refresh cycle.
It is required because each memory cell in a dynamic RAM acts like a
capacitor whose charge slowly leaks off over time; it needs to be periodically
recharged to the appropriate voltage (logic level).

Even though DRAM refresh uses up a finite amount of CPU time, it is
commonly used in PCs because of its lower price-per-bit than static RAM
and its higher density (more bits per package). When the original IBM PC
appeared in 1981, its motherboard supported only 64 Kbytes of DRAM, using
16-Kbit ICs. A decade later, 4-Mbit DRAM ICs were common. Today (as of
writing the second edition), 512-Mbit DRAMs are available.

Early DRAMs were 1 bit wide, so a 1-Mbit DRAM was configured as
1,048,576 (2̂)̂ addresses by 1 bit. Most PC/XT machines used nine DRAMs
to produce a memory block 1 byte (8 bits) wide, with the additional bit used
for parity checking. This is a hardware scheme to detect if there was an error
in reading memory. The DRAM refresh time on a PC/XT system used approx-
imately 7% of the available system time. This was accomplished using DMA
channel 0 and timer channel 1.

Newer DRAM ICs are organized as either 4, 8, or 16 bits wide, to
minimize chip count when supporting a 32-bit or 64-bit wide memory bus.
Memory ICs also use newer architectures to speed them up and keep pace
with faster CPUs. These type of memories include extended data output
(EDO) and synchronous DRAM (SDRAM).

The PC/XT's ROM contains the nonvolatile memory required to start
up the system. This includes hardware initialization, power-on diagnostics
(including a memory test), and a bootstrap program. The bootstrap allows
the PC to load the operating system and start running it, usually from a hard
disk drive or diskette. This allows for the flexibility to upgrade or even change
the operating system a PC uses, without any hardware changes. Other impor-
tant contents of the system ROMs include the programs needed for low-level
control of various hardware I/O devices (such as disk drives, displays, and
keyboard). This is referred to as the basic input/output system, or BIOS
(sometimes denoted ROM BIOS). This firmware (software resident in a
nonvolatile memory IC) is continuously used by the operating system for
interfacing to all system I/O devices. If nonstandard system hardware is not
supported by the BIOS, usually a special piece of software, called a driver,
must be loaded into the operating system before the hardware can be used.
An example of this would be support for a tape drive.

Newer PCs store the BIOS in flash memory, which is a form of rewrit-
able ROM. This allows the BIOS to be upgraded via software without having
to replace any internal ICs (ROMS). In addition, many PCs use a portion of
the upper 360 Kbytes of basic PC memory (RAM) to temporarily store a
copy of the BIOS program, often called shadow ROM. This is a useful feature

5.2 The IBM PC/XT 87

because system RAM has faster access time than most ROM chips and the
repeated use of BIOS functions by most software gets sped up.

The most common operating system originally used with PC/XT/AT
computers was DOS (disk operating system), often specified as IBM-DOS
or MS-DOS (for Microsoft, its developer). It is a single-user, single-task
operating system with a hmited memory usage of 640 Kbytes (see Chapter 7
for a more detailed discussion of DOS, Windows, and other PC operating
systems).

The system ROM is located in high memory addresses, above F4000h.
Expansion cards plugged into the I/O sockets may also contain ROM, for
integration into system code. This ROM may be present within the address
range of COOOOh-DFFFFh. If it contains valid information, the system will
be able to execute the code (instructions) it contains. This was a common
approach for early hard disk drive controllers or special video display
adapters.

5.2.3 PC/XT Expansion Bus

The key to the PC/XT's flexibility is its expansion bus, with connectors for
external I/O cards. Figure 5-2 shows the bus connections to an expansion
slot. This bus gives an add-in card access to all the system address, data, and
control lines, except for those dedicated to the motherboard, such as IRQO,
IRQl, and DRQO.

Here is a brief description of the I/O bus signal lines, designated pins
A1-A31 and B1-B31 (as shown in Figure 5-2): Lines A0-A19 (pins
A31-A12) are the address bits used for memory and I/O addressing, where
AO is the least significant bit (LSB) and A19 is the most significant bit (MSB).
These are output lines, relative to the motherboard. Similarly, signal lines
D0-D7 (pins A9-A2) are the data bits, used for all data transfers (including
DMA cycles), where DO is the LSB and D7 is the MSB. These lines are
bidirectional (both input and output).

Signals DRQ1-DRQ3 (pins B18, B6, B16) are the DMA request lines
for channels 1-3. They are input lines, used by external devices to initiate a
DMA cycle. Signals DACK0-DACK3 (pins B19, B17, B26, B15) are DMA
acknowledge lines. They are outputs used to indicate DMA activity, acting
as handshake signals for their respective DRQ lines.

Signals IRQ2-IRQ7 (pins B4, B25-B21) are interrupt request input
lines, used by an external device to generate a CPU interrupt. IRQ2 is the
highest priority and IRQ7 is the lowest. The system has to be initialized prior
to an interrupt generation for it to be properly serviced.

Signal lOR (pin B14) is an output line indicating an I/O read cycle.
This tells the external I/O device being addressed to place its data on the bus.

CHAPTERS The PC

B1

B10

B20

831

B
GND
RESET DRV
+5V
IRQ2
-5VDC
DRQ2
-12VDC
Reserved
+12VDC
GND
-MEMW
-MEMR
-low
-lOR
-DACK3
-DRQ3
-DACK1
DRQ1
-DACKO
CLK
IRQ7
IRQ6
IRQ5
IRQ4
IRQ3
-DACK2
T/C
ALE
+5VDC
OSC
GND

A
-I/O OH OK 1
D7
D6
D5
D4
D3
D2
D1
DO
l/OCH RDY
AEN
A19
A18
A17
A16
A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
AO

A1

A10

A20

A31

Figure 5-2 PC/XT I/O card slot connector.

Similarly, lOW (pin B13) is an output signal indicating an I/O write cycle.
This instructs an external I/O device to read data from the system bus. MEMR
and MEMW (pins B12, B11) are the equivalent read and write output lines
for reading from and writing to memory addresses.

Signal I/O CH RDY (pin A10) is an important input line. It is used by
slow memory or I/O devices to lengthen a read or write cycle. This is known
as inserting wait states. It allows slower (and less expensive) peripherals to
interface to the PC/XT, with only the penalty of more time required for a
data transfer. If this signal is not used properly, it can be asserted for too long
(more than a few microseconds) and effectively monopolize the system bus.

5.3 The IBM PC/AT 89

preventing other activities. This could result in a system crash, where DRAM
is not being properly refreshed or important interrupts are not being serviced.
Figure 6-5, in Chapter 6, illustrates how to safely control I/O CH RDY.

Signal AEN (pin All) is an output line which is used to prevent the
CPU and other devices from accessing the system bus during DMA transfers.
Signal ALE (pin B28) is an output line used to latch valid bus addresses by
memory and peripheral devices. Signal I/O CH CK (pin Al) is an input line,
used to indicate a memory or I/O device parity error. Signal RESET DRV
(pin B2) is an output line used to initialize (reset) devices on the bus at system
power-on. Signal T/C (pin B27) is an output line that indicates when the
maximum DMA transfer count is reached.

Signal OSC (pin B30) is an output line containing a 14.31818-MHz
clock, with a 50% duty cycle. This clock may be divided down to provide
other clock signals, such as dividing by 4 for the 3.58-MHz color video
subcarrier frequency. On original PC and PC/XT systems, it was divided by
3 to provide the main system clock frequency of 4.77 MHz. Signal CLK (pin
B20) is an output line containing the main system clock, with a 33% duty
cycle. It is often higher than 4.77 MHz in later PC/XT compatible systems.
The most common clock frequencies used are 8 MHz and 10 MHz. Obviously,
the higher the system clock, the faster the CPU will operate. Overall system
performance is not necessarily proportional to this clock frequency. In fact,
some slower peripheral cards may not work properly with faster clocks, unless
enough wait states are inserted.

The other lines on the I/O bus connector are power for the expansion
cards. These lines are +5 V (pins B3, B29), -5 V (pin B5), +12 V (pin B9),
-12 V (pin B7) and ground (pins Bl, BIO, B31). The positive voltage supplies
typically have a higher current capability and are regulated to ±5%, as opposed
to the negative supplies regulated to ±10% with lower current capacity. The
original IBM PC's power supply could only produce approximately 65 watts
of DC power, mostly for the +5 V (7 amps, maximum) and +12 V (2 amps,
maximum) supplies. Most later PC/XT compatible systems used a power
supply providing 120-150 watts of DC power.

For examples of using some of these expansion bus signals, refer to
Chapter 6.

5.3 The IBM PC/AT

Now we will examine IBM PC/AT computers and the ISA bus. The original
IBM PC/AT and compatible systems were based on the Intel 80286 CPU.
This was an expansion of the PC/XT architecture, including the external I/O
bus. The PC/AT block diagram is shown in Figure 5-3. The 80286 processor

90 CHAPTERS The PC

CONTROL BUS

1 I
INTERRUPT

CONTROLLER
1 BUS
1 CONTROLLER

T t

CLOCK — w 80286 CPU

:

80287 SOCKET

SPEAKER \
CONTROL [

KEYBOARD 1
CONTROL 1

REAL-TIME 1
CLOCK & 1
CONFIG 1

MEMORY 1
1

1 BATTERY 1

1—

r *
INTERFACE

LOGIC

"1 ADDRESS BUS

"DATA BUS

DMA CONTROLLER

TIMER/COUNTER

PARALLEL I/O

ROM (BIOS)

RAM

>

»

•

»

>

•

•

>

24/

/

>

>

I/O UAHU
SLOTS

Figure 5-3 PC/AT motherboard block diagram.

increased the number of address bits to 24, for a 16-Mbyte addressing space,
and the number of data bits to 16. The motherboard had 16 interrupt levels
and seven DMA channels. It still had three timer/counters. New features
included a real-time clock with battery-backup CMOS RAM. This small
amount of memory stored clock and system configuration data. In addition,
the real-time clock included a 1024-Hz timer that could provide DOS programs
with much finer timing resolution (approximately 1-msec counts) compared to

5.3 The IBM PC/AT 91

the XT 18-Hz RTC (approximately 55-msec counts). This new timer was
accessed via INT 70h.

The functioning of the IBM PC/AT (usually referred to as an AT or ISA
system) was very similar to the PC/XT operation. Because of the higher speed
and improved features of the 80286 CPU, overall system performance was
enhanced. In addition, external data transfers could be 16 bits at a time,
although 8-bit data transfers were still supported. The original IBM PC/AT
had a 6-MHz system clock, which was later upgraded to 8 MHz. Most 80286-
based AT compatible systems used clocks ranging from 8 MHz up to 16 MHz.
The faster systems required memory (RAM) with fast access time (or they
had to add wait states to memory access cycles). The IEEE ISA bus standard
(IEEE P996-1990) specified an 8-MHz bus frequency while allowing for
higher, internal CPU clock frequencies (such as a 33-MHz 80486 PC).

AT systems use two connectors for each external I/O card slot. One is
a 62-pin connector, compatible with the single PC/XT I/O connector. The
differences are that now pin B4 is IRQ9 instead of IRQ2, pin B19 is
REFRESH instead of DACK 0, and previously unused pin B8 is now OWS.
Also, CLK (at pin B20) is faster and has a 50% duty cycle. Most cards
designed for the PC/XT bus will work in an AT, as long as they can deal
with the higher clock frequency and do not do any special remapping of
memory.

5.3.1 PC/AT (ISA) Expansion Bus

As shown in Figure 5-4, AT I/O slots have a new, second connector consisting
of 36 additional pins. These lines carry the additional address and data bits,
IRQ signals, DMA signals, and special control lines that allow for 16-bit data
transfers, zero wait state memory accesses, and multiple CPU operations.

Here is a brief description of these new I/O bus signals: Signal OWS,
added to the original 62-pin connector at pin B8, is an input line used to tell
the CPU not to add any wait states to the present bus cycle. This is useful
for fast memory and I/O cards. The remaining new signal lines are on the
new 36-pin connector, designated C1-C18 and D1-D18. The additional
address lines are LA17-LA23 (pins C8-C2). The additional data lines are
SD08-SD15 (pins C11-C18). The additional interrupt lines available on the
I/O bus (besides IRQ9) are IRQ10-IRQ12, IRQ14, and IRQ15 (pins D3-D7).
The additional DMA channel-control signals now available are DRQO and
DACKO, DRQ5-DRQ7, and DACK5-DACK7 (pins D8-D15).

Additional control lines also exist on the 36-pin connector. MEM CS16
(pin Dl) is an input signal used to signify a 16-bit, one wait-state memory
transfer. Similarly, pin I/O CS16 (pin D2) is an input signal indicating a 16-bit,

92 CHAPTERS The PC

B1

B10

B20

831

B
GND
RESET DRV
+5V
IRQ9
-5VDC
DRQ2
-12VDC
OWS
+12VDC
GND
-SMEMW
-SMEMR
-low
-lOR
-DACK3
-DRQ3
-DACK1
DRQ1
-REFRESH
CLK
IRQ7
IRQ6
IRQ5
IRQ4
IRQ3
-DACK2
T/C
BALE
+5VDC
OSC
GND

A

-I/O CH CK
SD7
SD6
SD5
SD4
SD3
SD2
SD1
SDO
l/OCH RDY
AEN
SA19
SA18
SA17
SA16
SA15
SA14
SA13
SA12
SA11
SA10
SA9
SA8
SA7
SA6
SA5
SA4
SA3
SA2
SA1
SAO 1

A1

A10

D1

D10

D18

D
-MEMCS16
-I /0CS16
IRQ10
IRQ11
IRQ12
IRQ15
IRQ14
-DACKO
DRQO
-DACK5
DRQ5
-DACK6
DRQ6
-DACK7
DRQ7
+5VDC
-MASTER
GND

C
SBHE 1
LA23
LA22
LA21
LA20
LA19
LA18
LA17
-MEMR
-MEMW
SD08
SD09
SD10
SD11
SD12
SD13
SD14
SD15

C1

A20

C10

C18

A31

Figure 5-4 PC/AT I/O card slot connector.

one wait-state I/O data transfer. Signal SBHE (pin CI) is a bidirectional line
used to indicate a data transfer on the upper 8 bits (D8-D15) of the data bus.
This line is used by devices that support 16-bit data transfers. Signal MASTER
(pin D17) is an input line used by additional processors or DMA controllers
to take control of the system bus. This line must be used carefully. If an
external device holds the bus too long, system memory may be lost because
of lack of DRAM refresh cycles.

Signal MEMR (pin C9) is similar to the original PC/XT bus signal
MEMR (pin B12), now called SMEMR. The difference is, the original
SMEMR is only active during a memory read cycle within the low 1 Mbyte
of memory (original PC/XT address space). MEMR is active on all memory

5.4 BIOS 93

read cycles. Furthermore, SMEMR is an output line while MEMR can be
either an output or input. It can be driven by an external CPU. In a similar
fashion, signal MEMW (pin CIO) is a superset of the original MEMW (pin
Bll), now called SMEMW. The remaining lines on the 36-pin connector are
extra power (+5 V) at pin D16 and ground at pin D18.

The PC/AT power supply provides +5 V, -5 V, +12 V, and -12 V. The
positive supplies have much higher current capabilities than the PC/XT power
supply. The +5 V supply is rated at approximately 20 amps and the +12 V
supply at approximately 7 amps. The overall AT power supply output power
is approximately 200 watts, which is typical for most AT compatibles (although
some industrial PCs can have power supplies as large as 600 watts).

The memory map of the PC/AT is an expansion of the PC/XT's memory
map, using a 16-Mbyte memory space, as shown in Table 5-3. Note that the
AT motherboard supports 64 Kbytes of ROM, as opposed to 40 Kbytes on
the PC/XT motherboard. The PC/XT supported an Intel 8087 math copro-
cessor IC, for accelerated calculations involving floating-point math. The AT
supported an Intel 80287 math coprocessor, for an 80286 CPU. If a system
used an 80386 CPU, it would support an 80387 coprocessor. Note that
application software must explicitly utilize the math coprocessor for you to
realize any benefit from it.

PC manufacturers retained the basic PC/AT architecture as they moved
to faster, more powerful CPUs, such as the 80386 and 80486 families. Nota-
bly, they increased addressable memory space (since the newer processors
had 32-bit address buses for a 4-Gbyte address range) and implemented local
buses (such as VESA and PCI) to take advantage of higher CPU speeds. The
80386 processors had internal clock frequencies up to 33 MHz and the 80486
CPUs went up to 100 MHz.

5.4 BIOS

As mentioned above, the BIOS code located in ROM on a PC/XT/AT system
handles the low-level software interface to the hardware. For example, to
display a character on the video screen you send an appropriate command,
along with the character, to the proper BIOS routine. Without the BIOS, you
would have to know the intimate details of the video hardware, such as where
in physical video memory to write the character for display. If the video
display hardware was changed, software that directly addresses the hardware
will no longer work. This is known as "ill-behaved" software. On the other
hand, if BIOS calls were used, the BIOS will take care of hardware changes
and the software can remain the same. This is "well-behaved" software.

94 CHAPTERS The PC

TABLE 5-3

PC/AT Memory Map

ADDRESS

FDFFFFh

lOOOOOh

EOOOOh

COOOOh

AOOOOh

00400h

OOOOOh

MEMORY AREA MEMORY TYPE

EXTENDED MEMORY
(15 Mbytes)

SYSTEM BIOS

ROM ON I/O ADAPTER
CARDS (BIOS)

VIDEO ADAPTER AREA
(DISPLAY BUFFERS)

TRANSIENT

PROGRAM

AREA

C0MMAND.COM
RESIDENT PORTION

BUFFERS, DRIVERS

DOS KERNEL

USED BY BIOS

INTERRUPT VECTORS

) F

V F

RAM

ROM

ADAPTER RAM

SYSTEM RAM

The penalty for using BIOS calls is a slower response than directly
addressing hardware. Also, if a needed function does not exist in the BIOS,
the hardware may need to be directly addressed. However, it is desirable to
use BIOS functions whenever possible, as they will work universally with
nearly all PCs. In addition, modem 32-bit protected-mode operating systems
(such as Windows NT and Windows 2000) only allow device driver software,
not application software, to directly access hardware.

5.5 PCI and Other Local Buses 95

Some of the I/O facilities provided by BIOS routines support the key-
board, system clock/timer, communications ports, video display, floppy disk
drive, hard disk drive, CD-ROM, printer, and system status. Original IBM
PCs even had ROM BASIC built into the BIOS.

5.5 PCI and Other Local Buses

As microprocessor frequencies increased, the 8-MHz speed of the ISA bus
became a limiting factor to PC performance. A processor could not commu-
nicate with external memory or I/O devices nearly as fast as it could process
data internally. Several new buses appeared in the PC marketplace. Enhanced
ISA (EISA) had a 32-bit data bus and address bus and was backward com-
patible with ISA cards. It also ran at just 8 MHz, but by doubling the data
bus to 32 bits, it doubled I/O throughput. However, EISA never became very
popular because of its relatively high cost.

The Video Electronics Standards Association (VESA) developed the
VESA Local Bus (VL Bus) primarily for improving video performance. But
it also supported many other high-speed peripherals, such as network cards.
VL Bus was originally 32 bits wide and had speeds up to 50 MHz. It was
very common in PCs built in the early 1990s. However, VL Bus soon became
displaced by the PCI local bus.

5.5.1 PCI Overview

Peripheral component interconnect (PCI) was developed by Intel as a processor-
independent, high-speed replacement for ISA. It was originally 32 bits wide
(address and data) and ran at speeds up to 33 MHz. Later versions support
64-bit data transfers and 66 MHz rates. It accesses up to 4 Gbytes in each of
its 32-bit memory and I/O address spaces, using multiplexed address and data
lines.

PCI can coexist with other buses, such as ISA, on the same motherboard.
Many PCs have both ISA and PCI slots. However, ISA slots are being phased
out in most newer desktop PCs (but not necessarily in embedded and industrial
PCs—see Chapter 12). In addition, PCI is now used in Apple Macintosh
computers. The current revision of the PCI specification (as of this writing
in 2001) is 2.2, released in December 1998.

The PCI bus can operate in either a synchronous or asynchronous mode.
In synchronous operation, the bus typically runs at the microprocessor's
external clock frequency or a submultiple of it. So, a 66-MHz Pentium could
synchronously connect to a PCI bus running at half of its clock frequency (33
MHz). In this mode, the standard PCI clock can be between 20 and 33 MHz.

96 CHAPTERS The PC

In asynchronous operation, the PCI bus speed is independent of the proces-
sor's clock. This mode is often better suited for operating at the maximum
PCI bus frequency for the fastest possible performance.

The PCI standard also supports cards that cannot operate at the full bus
speed (33 or 66 MHz), using flow-control signals that indicate when a board
is ready to send or receive data. This is akin to the wait state capabilities of
the ISA bus.

Because of its high-frequency operation, the PCI standard limits the
number of add-in board connectors on a single bus to four. However, bridges
can be used to implement multiple PCI buses on a single motherboard,
allowing for larger numbers of expansion slots. This is commonly used in
industrial PCs.

The PCI standard supports both 5 V and 3.3 V logic levels. Three types
of boards are defined: 3.3 V only, 5 V only, and universal. Expansion board
connectors are keyed to prevent inserting a 3.3 V board into a 5 V socket or
vice versa.

PCI expansion boards are similar in size to their ISA counterparts,
available as either full-length or short-length cards. They use the same style
of connectors that IBM employed in its Micro Channel PCs. These connectors
have twice the pin density of ISA connectors and accommodate their larger
pin count (124 pins for 32-bit connectors) in a smaller space.

5.5.2 PCI Operations

The PCI bus multiplexes its address and data signals on the same pins
(AD[00]-AD[31]). A control signal, FRAME# (cycle frame) indicates when
a transfer cycle starts. It remains vaUd throughout most of the data cycle. During
the first phase of a transfer cycle, the AD lines contain address information.
For later phases, the AD lines contain data values. Figure 5-5 shows a basic
PCI read operation.

Control lines C/BE[0:3]# (command/byte enables) indicate which bytes
are active during the data cycle, allowing 8- to 32-bit data transfers (for a 32-
bit PCI bus). The IRDY# (initiator ready) signal indicates that the bus master
is ready to complete the transaction. During a read cycle this means that the
master is ready to accept data and during a write cycle it indicates that valid
data is present on the bus (AD[00:31]). The TRDY# (target ready) signal
indicates that the selected (addressed) device is able to complete the transfer.
A data phase is complete when both IRDY# and TRDY# are asserted. Wait
states are inserted when IRDY# and TRDY# are not both active. The STOP#
(stop) signal is used by the current target device to abort the current transfer.
The DEVSEL# (device select) signal indicates that the device selected to

5.5 PCI and Other Local Buses 97

CLK

FRAME#

AD[00:31]

C/BE[0:3]#

IRDY#

TRDY#

DEVSEL#

• • (

ADDPES!

BUS ICMD:

DATA1

XlfR

BYTE ENABLES

DATA 2

WAlT DATA wAlT ^ATA ^vAlT D^TA
XFR

I DATA 3

XfFR

> -

ADDRESS
M • -4-

DATA
PHASE PHASE

-^ . DATA ^ ^ DATA
PHASE PHASE

Figure 5-5 Basic PCI read operation.

drive the bus (write data) has decoded its address and knows it has been
selected. Since most of these control signals are bidirectional and tri-stated,
a PCI bus data transfer uses a fairly complex protocol.

One way the PCI bus improves data throughput is via a burst mode.
Here, a single address cycle is followed by multiple data transfer cycles. This
allows for an instantaneous speed of 132 Mbytes/sec for a 32-bit PCI bus
running at 33 MHz. Of course, the maximum average or sustained data
transfer rate will be slower than this (speeds up to 100 Mbytes/sec are
commonly attained). If a large amount of data is transferred during a single
burst, it ensures a high data rate, since the overhead of the address cycle
becomes minimal.

To ensure data integrity on the bus, PCI employs three signals: PAR
(parity), PERR# (parity error), and SERR# (system error). PAR is the even parity
bit, derived from the 32 AD lines and the four C/BE# lines. The sum of those
bits and PAR should be an even number. If a parity error is detected during a
standard cycle, PERR# is asserted. For a special cycle, SERR# is asserted.

98 CHAPTERS The PC

A PCI add-in card can either be a slave or a bus master. The bus master
capability is implemented via the REQ# (request) and GNT# (grant) signals.
When a bus master board wants to take control of the bus, it asserts REQ#.
The motherboard asserts GNT# when it is ready to relinquish bus control to
the board. Each PCI slot has its own, independent REQ# and GNT# lines.

The bus master feature is important for data acquisition boards, allowing
them to take over the bus and quickly transfer large amounts of data into
memory when they need to, instead of waiting for the CPU to a acknowledge
a request via software.

PCI also support four interrupt lines, INTA#, INTB#, INTC#, and
INTD#, which are level-sensitive, active-low, using open-drain drivers which
allows signal sharing among multiple boards.

Table 5-4 shows the pinouts for 32-bit PCI expansion cards—both 5 V
and 3.3 V boards.

5.5.3 64-Bit PCI Bus

PCI supports a 64-bit standard as an extension to the basic 32-bit bus. This
is an additional 32-bit bus that uses 39 new signal pins: AD[32:64],
C/BE[4:7]#, REQ64#, ACK64#, and PAR64. The new control lines are only
valid for this additional bus. REQ64# (request 64-bit transfer) and ACK64#
(acknowledge 64-bit transfer) are used to request and enable a 64-bit data
transfer cycle. C/BE[4:7]# (control/byte enables) lines are used to control
which bytes of AD[32:64] contain valid data. PAR64 (parity upper) is the
parity bit for AD[32:64] and C/BE[4:7], behaving the same way as PAR does
for the lower 32-bit bus.

Table 5-5 show the pinouts for the 64-bit extension on 5 V and 3.3 V
PCI boards.

5.5.4 PCI-X

As with the rest of the PC industry, the PCI standard continues to evolve into
faster versions and special applications. PCI-X is a high-performance exten-
sion to the PCI bus that doubles the maximum clock frequency to 133 MHz
while still allowing 64-bit transfers. This produces a maximum burst transfer
rate of over 1 Gbyte/sec while preserving backward compatibility with stan-
dard PCI devices. PCI-X also includes protocol enhancements that make bus
operations more efficient. PCI-X motherboards may only support keying for
3.3 V cards, although the specification does describe universal (5 V or 3.3 V)
cards.

TABLE 5-4
32-blt PCI Expansion Card PInout

5.5 PCI and Other Local Buses

PIN #

1 1
1 ̂
1 ̂
1 ̂

5

6

1 ^ 1
1 ̂

9

10

1 ""̂ 1
12

13

14

15

16

1 ""̂ 1
18

19

1 ^̂
1 ^^

22

23

1 2^
25

26

1 ^̂
28

29

1 30
1 31

5 V CARD

SIDE B

-12 V

1 TCK

Ground

TDO

H-5V

+5V

INTB#

INTD#

PRSNT1#

Reserved

PRSNT2#

Ground

Ground

Reserved

Ground

CLK

Ground

REQ#

+5V

AD[31]

AD[29]

Ground

AD[27]

AD[25]

+3.3 V

C/BE[3]#

AD[23]

Ground

AD[21]

AD[19]

+3.3 V

SIDE A

TRST#

+12 V

TMS

TDI

+5V

INTA#

INTC#

+5V

Reserved

+5V

Reserved

Ground

Ground

3.3Vaux

RST#

+5V

GNT#

Ground

PME#

AD[30]

+3.3 V

AD[28]

AD[26]

Ground

AD[24]

IDSEL

+3.3 V

AD[22]

AD[201

Ground

AD[18]

3.3 V CARD 1

SIDE B

-12 V

TCK

Ground

TDO

+5V

+5V

INTB#

INTD#

PRSNT1#

Reserved

PRSNT2#

SIDE A

TRST# 1

+12 V 1

TMS 1

TDI

+5V 1
INTA# 1

INTC# 1

+5V 1
Reserved J

+3.3 V 1

Reserved 1

KEYWAY 1

Reserved

Ground

CLK

Ground

REQ#

+3.3 V

1 AD[31]

AD[29]

Ground

AD[27]

AD[25]

+3.3 V

C/BE[3]#

AD[23]

Ground

AD[21]

AD[19]

+3.3 V

3.3Vaux 1

RST# 1
+3.3 V 1
GNT# 1
Ground 1

PME#

AD[30]

+3.3 V 1

AD[28] 1

AD[26] 1

Ground 1

AD[24] 1

IDSEL 1

+3.3 V 1

AD[22]

AD[20] 1

Ground

AD[18] 1

100 CHAPTERS The PC

TABLE 5-4
32-bit PCI Expansion Card PInout (Continued)

1 PIN#
1 32
1 33

1 ^^
1 35
1 36

1 ^̂
1 38
1 39
1 40

1 ^^
1 ^̂
1 ^̂
1 44
1 45
1 46

1 ^^
1 48
1 49
1 50

1 ^̂ 1 ^̂
1 53
1 54
1 55

1 56
57

58

59

60

61

1 62

5 V CARD

SIDE B

AD[17]

C/BE[2]#

Ground

1 IRDY#

+3.3 V

1 DEVSEL#

Ground

1 LOCK#

PERR#

1 +3.3 V

SERR#

1 +3.3 V

C/BE[1]#

AD[14]

Ground

1 AD[12]

AD[10]

Ground

SIDE A

AD[16]

+3.3 V

FRAIVIE#

Ground

TRDY#

Ground

STOP#

+3.3 V

Reserved

Reserved

Ground

PAR

AD[15]

+3.3 V

AD[13]

AD[11]

Ground

AD[09]

KEYWAY

AD[08]

AD[07]

+3.3 V

AD[05]

AD[03]

Ground

AD[01]

+5V

ACK64#

+5V

+5V

C/BE[0]#

+3.3 V

AD[06]

AD[04]

Ground

AD[02]

AD[00]

+5V

REQ64#

+5V

+5V

3.3 V CARD 1

SIDE B

AD[17]

C/BE[2]#

Ground

IRDY#

+3.3 V

DEVSEL#

Ground

LOCK#

PERR#

1 +3.3 V

SERR#

1 +3.3 V

C/BE[1]#

AD[14]

Ground

1 AD[12]

1 AD[10]

1 M66EN

Ground

Ground

AD[08]

AD[07]

+3.3 V

AD[05]

AD[03]

Ground

AD[01]

+3.3 V

ACK64#

+5V

+5V

SIDE A 1

AD[16]

+3.3 V 1

FRAME# 1

Ground 1

TRDY#

Ground 1

STOP#

+3.3 V

Reserved

Reserved

Ground

PAR

AD[15]

+3.3 V

AD[131

AD[11] 1

Ground

AD[09] 1

Ground 1

Ground 1

C/BE[0]#

+3.3 V 1

AD[06]

AD[04] 1

Ground 1

AD[02] 1

AD[00] 1

+3.3 V 1
REQ64# 1

+5V 1
+5V 1

5.5 PCI and Other Local Buses 101

TABLE 5-5
PCI 64-Blt Extension PInout

1 PIN#

1 63

1 ^^
1 ^̂

66

67

1 ^̂
1 ^̂

70

1 "̂̂
1 ^̂ 1

73

1 ^̂ 1
75

1 '^^ 1
1 ^̂ 1

78

79

80

81

82

83

84

85

86

1 ^̂
1 88

1 89
1 90
1 91

1 92
1 93
1 94

5 V CARD

SIDE B

Reserved

Ground

C/BE[6]#

C/BE[4]#

Ground

AD[63]

AD[61]

+5V

AD[59]

AD[57]

AD[55]

AD[53]

Ground

AD[51]

AD[49]

+5V

AD[47]

AD[45]

Ground

AD[43]

AD[41]

Ground

AD[39]

AD[37]

+5V

AD[35]

AD[33]

Ground

Reserved

Reserved

Ground

SIDE A

Ground

C/BE[7]#

C/BE[5]#

+5V

PAR64

AD[62]

Ground

AD[60]

AD[58]

Ground

AD[56]

AD[54]

+5V

AD[52]

AD[50]

Ground

AD[48]

AD[46]

Ground

AD[44]

AD[42]

+5V

AD[40]

AD[38]

Ground

AD[36]

AD[34]

Ground

AD[32]

Reserved

Ground

Reserved

3.3 V CARD 1

SIDE B

Reserved

Ground

C/BE[6]#

C/BE[4]#

Ground

AD[63]

AD[61]

+3.3 V

AD[59]

AD[57]

Ground

AD[55]

AD[53]

Ground

AD[51]

AD[49]

+3.3 V

AD[47]

AD[45]

Ground

AD[43]

AD[41]

Ground

AD[39]

AD[37]

+3.3 V

AD[35]

AD[33]

Ground

I Reserved

Reserved

1 Ground

SIDE A 1
Ground 1

C/BE[7]#

C/BE[5]#

+3.3 V 1

PAR64 1

AD[62] 1

Ground 1

AD[601

AD[58] 1

Ground 1

AD[56] 1

AD[54] 1

+3.3 V 1

AD[52] 1

AD[50] 1

Ground 1

AD[48] 1

AD[46] 1

Ground 1

AD[44] 1

AD[42] 1

+3.3 V

AD[40] 1

AD[38]

Ground

AD[36]

AD[34]

Ground

AD[32]

Reserved 1

Ground

Reserved |

102 CHAPTERS The PC

5.6 PC Peripherals

Nearly all PC systems use at least one floppy drive (a notable exception being
diskless LAN workstations) and a hard-disk drive. It is strongly recommended
that a PC-based data acquisition platform have at least a 10-Gbyte or larger
hard drive, for storage of raw and analyzed data as well as room for typically
large application software.

Older PCs usually had at least one parallel printer port and a serial port,
for asynchronous communications. Newer PCs have one or more USB ports
for external peripherals. See Chapter 8 for a discussion of parallel, serial, and
USB interfaces.

Several standard video displays have been available for PCs. The most
basic was the text-only monochrome display, employing IBM's monochrome
display adapter (MDA), used on older PC/XT/AT machines. It offered 1
page of 25 lines of 80 characters with hardware support for high-intensity,
underlining, and reverse video. It supported simple character-based graphics,
where special characters are graphic symbols (such as lines) instead of alpha-
numerics. The MDA had a video buffer (memory) 4 Kbytes long. It produced
sharp, easy-to-read text.

True bit-mapped color graphics were supported by the color graphics
adapter (CGA). It provided 4 pages of 80-character by 25-line text, as well
as several graphics modes. Its highest graphics resolution was 640 points
horizontally by 200 points vertically in 2 colors. It also supported 4 colors
with a resolution of 320 points horizontally by 200 points vertically. The
CGA had a 16-Kbyte video buffer. Text on a CGA monitor was much "fuzzier"
than on an MDA monitor. The original IBM PC only offered MDA and CGA
display options. These displays are obsolete now.

The next available IBM video display was the enhanced graphics
adapter (EGA). Its video buffer size varied from 64 to 256 Kbytes and it
supported multiple pages of text. It displayed graphics with a resolution of
640 points horizontally by 350 points vertically, with up to 16 colors (with
maximum buffer memory). It also emulated a CGA or MDA display.

Some of IBM's PS/2 series of computers supported multicolor graphics
array (MCGA), which was an enhanced version of CGA. It used 64 Kbytes
of video buffer memory and stored up to 8 pages of monochrome text.
For graphics, it supported all the CGA modes as well as adding support for
256 colors in a 320 points by 200 points mode. In addition, it had a high-
resolution 2-color graphics mode with 640 points horizontally by 480 points
vertically.

The newer IBM video display for PCs is the virtual graphics array
(VGA) family. VGA started on many IBM PS/2 systems and older ISA
systems. It has a 256-Kbyte video buffer. It emulates MDA, CGA, EGA, and

5.6 PC Peripherals 103

MCGA modes. It can support a 640-point by 480-point high-resolution graph-
ics display with 16 colors. VGA has become the most popular PC display
standard, especially with higher resolution versions, collectively referred to
as super VGA or SVGA. These displays are defined under VESA standards,
having resolutions up to 1600 points by 1200 points using up to 16 million
colors. Nearly all current PCs support VGA displays.

There is also one early, non-IBM video display standard, the Hercules
graphics adapter (HGA), sometimes referred to as monochrome graphics. It
was developed to fill the void between the original text-only MDA and color
graphics CGA, as a graphics display using a monochrome monitor. It emu-
lated MDA (and used the same monitor) in text mode, along with MDA
graphics characters. It could switch into a monochrome (two-color), bit-
mapped graphics mode supporting a resolution of 720 points horizontally by
348 points vertically. Its video buffer contained 64 Kbytes of memory. Being
a non-IBM standard, it was not supported by BIOS or DOS video functions.
A special software driver had to be installed to fully use it. However, many
early commercial software products supported HGA and it was a low-cost
alternative to high-resolution color displays (EGA and VGA) when multicolor
video was not required. Today, the VESA standards have made HGA and
most other nonstandard PC displays obsolete. There are even monochrome
VGA monitors commercially available.

Most video cards contain their own BIOS, which is loaded when the
PC boots up. Currently, display adapter cards fall into three groups: SVGA,
2-D graphics accelerators, and 3-D graphics accelerators. Some of these cards
plug into an accelerated graphics port (AGP) slot on the PC's motherboard.
This is a special local bus, just for connecting a video adapter to the CPU.

The keyboard is the PC's standard user-input device, fully supported
by BIOS, DOS, and Windows functions. There are many other user input and
control devices for PCs, the most popular being the mouse. The mouse is a
device that connects to the PC via a standard serial port, a special mouse
connector (the IBM PS/2 mouse standard), or a USB port. It is moved by the
user's hand in a two-dimensional plane on an ordinary tabletop or a special
pad. It has two or more buttons the user can push (some also have a scroll
wheel). In conjunction with supporting software, a mouse simplifies using
graphics-based applications, such as CAD systems or operating systems such
as Windows (see Chapter 7). For example, a painting program allows the user
to create and edit graphics images. A mouse can be used, among other things,
to draw lines, select functions, and select objects on the screen to manipulate.
Other, less common peripherals for user input are digitizing pads and track-
balls (a stationary version of a mouse, either built into a keyboard or free-
standing). Many newer PCs use USB ports to connect a mouse and keyboard
to a PC.

104 CHAPTERS The PC

An important and sometimes overwhelming area of PC peripherals is
that of mass storage. This includes floppy drives (diskettes), hard drives,
optical drives, and other, more esoteric storage devices. For floppy drives,
there were two common form-factors, 5-1/4 inch and 3-1/2 inch diskettes, each
with two standard densities. The early 5-1/4 inch drive supported double-
sided double-density storage, which allowed 360 Kbytes of formatted capac-
ity. This was common on XT class machines. Most AT machines used a
double-sided high-density drive that was capable of 1.2 Mbytes of formatted
storage. Similarly, both 3-1/2 inch drive formats are double sided. The original
double-density 3-1/2 inch drive had a formatted capacity of 720 Kbytes. The
standard quad-density 3-1/2 inch drive has a 1.44 Mbyte capacity. Most newer
PCs only have a 1.44-Mbyte drive, even though 2.88-Mbyte capacity 3-1/2
inch drives are available.

There are some wrinkles to note when using diskettes with different
density drives. Most notably, if a diskette was formatted on a double-density
5-1/4 inch drive, it can be read by a high-density drive, but a high-density
diskette cannot be read by a double-density drive. If a double-density diskette
was written on by a high-density drive, sometimes it may not be read reliably
by a double-density drive. Also, for both 5-1/4 and 3-1/2 inch drives, the
diskettes used must be the appropriate type for that drive. So, do not use low-
density diskettes in high-density drives or vice versa. In 3-1/2 inch drives,
the hardware recognizes whether the diskette is low or high density via a
permanent notch in the diskette.

The hard drive arena can be even more confusing. Hard disk drives can
vary in capacity from megabytes (Mbytes) to gigabytes (Gbytes). The com-
mon sizes keep increasing each year as storage technology improves. Early
hard drives used MFM (modified frequency modulation) encoding. Some
used RLL (run length limited) encoding to increase capacity and transfer
speed by 50%, over MFM. Advanced RLL drives doubled the data density
over MFM. An important measure of performance is a drive's average access
time, ranging from around 60 msec with older drives to less than 10 msec
on newer models.

The type of drive-to-computer interface is another important hard disk
parameter. Early PCs used the serial ST506/412 interface with its peak data
transfer rate of only 625 Kbytes/sec (its serial data rate was 5 MHz). An
improvement to this standard was the enhanced small device interface (ESDI),
which also used a serial data stream but ran at 25 MHz, resulting in a peak
data rate of 3.125 Mbytes/sec.

These standards were made obsolete by the integrated drive electronics
(IDE) interface (sometimes called the AT attachment) and its many variations.
As the name implies, an IDE drive has control electronics built into it. So, a
PC's motherboard requires a very simple interface to connect to an IDE drive,

5.6 PC Peripherals 105

and the need for a separate controller card (as with ST506/412 or ESDI) is
eliminated. IDE drives were originally developed for AT computers.

IDE is a parallel interface, 16 bits wide. Its original peak transfer rate
was 4 Mbytes/sec. Later improvements, such as ATA-2 or enhanced IDE
(EIDE), increased the peak data transfer speed to 16 Mbytes/sec. ATA-4 or
Ultra DMA raised this rate to 33 Mbytes/sec. The newest IDE standard (as
of this writing), ATA-5 or Ultra DMA/66, has a peak rate of 66 Mbytes/sec.
The biggest advantage of ATA/IDE drives is their fairly low price at a good
performance level.

If you need a higher performance hard drive system (i.e., faster transfer
rates than IDE drives) the best alternative is the small computer system
interface (SCSI). SCSI is a self-contained bus that can connect up to 15
devices to a PC, using an interface card (some PCs, mostly network servers,
have SCSI controllers built into the motherboard). SCSI supports other
devices besides hard drives, such as high-performance CD-ROM drives and
scanners. SCSI was originally an 8-bit wide bus with a peak transfer rate of
5 Mbytes/sec. Later versions increased bus width to 16 bits and raised the
speed. Currently (as of this writing) the fastest SCSI standard is the Ultra
160/m Wide SCSI with a 16-bit bus, 80-MHz speed, and a peak data rate of
160 Mbytes/sec.

The performance of SCSI hard drive systems depends on many factors,
including the length of the signal cables and the properties of the controller
card. When streaming large amounts of data to a hard drive at high rates, as
is common in some data acquisition applications, a high-performance disk
drive is necessary. Just bear in mind that peak data rates are only one indi-
cation of overall throughput. Appropriate software must be used to obtain the
full benefits of fast hardware.

Another important class of mass storage devices are tape drives, typi-
cally used to back up data from hard drives. As PCs progress to larger hard
drives, backing up data onto diskettes becomes cumbersome and often
impractical. For example, a PC with a small 100-Mbyte hard drive requires
70 high-density 3-1/2 inch diskettes (1.44 Mbytes each) for a total backup.
Even using data compression techniques, about 30 diskettes would be
required. Instead, a tape drive using a single tape cartridge can easily store
hundreds of megabytes or even several gigabytes. Tape drives have shown a
trend toward standardization, making their use more attractive for backing
up large hard drives.

The quarter-inch cartridge (QIC) standard encompasses a range of tapes
that can store as little as 60 Mbytes or as much as 25 Gbytes on a single
tape cartridge. Drives that use QIC tapes are fairly common. A newer tape
cartridge standard, the Travan, ranges from 400 Mbytes up to 4 Gbytes on
a tape. There are digital audio tapes (DAT) used for data backups with

106 CHAPTERS The PC

capacities up to 20 Gbytes. Another format, digital linear tape (DLT), can
also store up to 20 Gbytes on a tape. Nearly all tape drive systems support
data compression, which can sometimes double the capacity of a cartridge
(although it may slow down the backup process).

Optical drives are a fast-growing alternative to some magnetic media.
The CD-ROM (compact disc-read only memory) drive has become ubiqui-
tous as a means of distributing programs and data for PCs. These compact
discs are prerecorded digital media (as are audio CDs) containing up to 700
Mbytes on a standard disc. A CD-ROM is, as the name implies, read-only.

CD-R (compact disc-recordable) drives allow you to record data on a
blank disc. Once the disc is full you cannot write any more data onto it.
However, it is possible using appropriate software to write multiple data
"sessions" onto a CD-R disc. CD-R is ideal as a backup medium since the
data cannot be erased and the discs are readable on nearly any CD-ROM
drive. It has similar capacities to CD-ROMs.

CD-RW (CD-rewritable) drives allow you to erase data on an optical
disc and record new data over it, just like conventional magnetic media (floppy
and hard drives). CD-RW drives also function as CD-R drives, using the
appropriate blank media. CD-RW drives have become very popular in recent
years as their price has fallen. However, not all CD-RW discs can be read in
CD-ROM or even CD-R drives.

The newest optical storage technology is DVD (digital video disc or
digital versatile disc), originally developed for storing video data. Currently,
DVD media store about 4 Gbytes on a disc, although standards are defined
for up to 16-Gbyte discs. The DVD-ROM drive is analogous to the CD-ROM.
It is a read-only medium used in PCs for software and video distribution.
There are also recordable DVD drive formats, DVD-R and DVD-RW, which
are initially too expensive for widespread use (but should eventually become
as common as CD-R and CD-RW). DVD drives can also read CDs but not
all CD-R and CD-RW discs. Because of their much larger capacity, it is very
likely that DVD drives will eventually supplant CD drives.

Another popular realm of PC mass storage is the high-capacity floppy
disk. Standard floppy drive capacities are now much too small for data and
software requirements. One early attempt to significantly increase floppy disk
capacity was the "Floptical" disk drive, which used an optical track servo
system to provide 20 Mbytes of storage on a floppy-sized disk. This approach
is used in the popular ZIP drive, which comes in 100-Mbyte and 250-Mbyte
versions, using a special cartridge that is larger than a standard 3-1/2 inch
diskette. Super Disk or LS-120 drives store 120 Mbytes and are backward
compatible with 1.44 Mbyte floppy disks.

One final class of PC peripherals we will touch on here is that of printers
and plotters. Most PC printers use either a parallel (Centronics) port or a

5.6 PC Peripherals 107

USB port. Nearly all plotters use a serial port or a network connection (usually
Ethernet). A printer is used to produce text and graphics output. The majority
of printers used are ink-jet based, dot-matrix devices, forming characters and
graphics images out of small, individual dots. Even laser printers use indi-
vidual dots, albeit at very high densities (300 to 600 dots per inch or more).

Plotters are devices that produce drawings from a set of lines. They use
one or more pens, whose position on the paper is accurately controlled.
Plotters are commonly used by CAD and graphic art software. Newer plotter
also use Inkjet technology, instead of pens, for increased speed.

This completes our brief overview of standard PCs. In the next chapter
we will look at the details of connecting external hardware to a PC's I/O
expansion bus.

C H A P T E R

Interfacing Hardware
to a PC Bus

We will now look at the details of connecting external hardware to an XT,
AT, or PCI bus. Initially we will examine 8-bit data transfers on a PC/XT
bus. Later we will see the differences when connecting 16-bit devices to an
AT (ISA) bus. We will also look at the issues involved with interfacing to the
PCI bus.

As we touched on in the previous chapter, three types of XT/AT bus
cycles are used for data transfers: memory, I/O port, and direct memory access
(DMA) cycles. On the PCI bus there are also burst transfers and special
access cycles. For the XT/AT bus, these can be either a read cycle where data
is transferred from an external device or memory into the CPU (or bus
controller, when it is a DMA operation) or a write cycle where data is transferred
from the CPU (or bus controller) to an external device or memory. Memory
cycles are used to access system memory and memory on expansion cards
(such as video buffers). Most data transfers to external devices use I/O port
cycles or DMA cycles.

6.1 I/O Data Transfers

In XT systems, I/O port addresses in the range 200h-3FFh are available for
use by I/O cards. Many of the I/O port addresses are reserved for particular
functions. For example, the range 320h-32Fh is used by hard disk drive
adapter cards (or the equivalent controller on a motherboard). One popular
I/O address range for undefined functions is 300h-31Fh, assigned to IBM's
prototype card.

108

6.1 I/O Data Transfers 109

CLOCK n
ALE

AEN

A0-A15 DC I/O PORT ADDRESS VALID X

lOR

low

lO CH RDY

D0-D7 ii
DATA FROM I/O PORT VALID

Figure 6-1 8088 CPU I/O port bus read cycle.

Only a few control signals are needed, along with the address and data
buses, to implement an I/O port read or write cycle on the XT bus. These are
lOR (for a read cycle), lOW (for a write cycle), and AEN (to distinguish
between an I/O port cycle and a DMA cycle). The timing for an I/O port read
cycle is shown in Figure 6-1.

A standard PC/XT I/O port bus cycle requires five clock cycles, includ-
ing one wait state injected by logic on the motherboard. Many systems with
high clock frequencies inject additional wait states so that I/O cards designed
for slower systems will still operate properly. The ALE signal occurs at the
beginning of the I/O port cycle and indicates when the address bus contents
are valid for the addressed port. lOR or lOW go active low to indicate an I/O
port cycle. AEN stays inactive (low) to indicate this is not a DMA cycle. An
active lOR signal tells the addressed I/O port to place its data (for the CPU
to read) on the data bus (D0-D7). An active lOW signal tells the addressed

110 CHAPTER 6 Interfacing Hardware to a PC Bus

I/O port to read the contents of the data bus (from the CPU). The control Une
I/O CH RDY is normally left active (high). If a slow I/O port needs additional
wait states inserted into the cycle, it pulls this line low.

6.2 Memory Data Transfers

Memory bus cycles use timing very similar to I/O port bus cycles, as shown
by the memory read cycle in Figure 6-2. The main control lines here are
MEMR and MEMW. AEN is not needed for memory bus cycle decoding. One
difference from I/O addressing is that for memory bus cycles, the motherboard
does not inject an additional wait state (hence, only four clock cycles are
needed instead of five). Another difference is that all 20 address lines (A0-A19)
are valid for a memory bus cycle and should be used for decoding the memory
address. Only the first 16 lines (A0-A15) are valid for an I/O bus cycle; in
practice, just the first 10 address lines (A0-A9) are decoded on a PC/XT bus.

CLOCK

ALE

AEN

AO - A15~)(MEMORY ADDRESS VALID) (

MEMR

MEMW

lO CH RDY

DO - D7 iZJ-
DATA FROM MEMORY VALID

Figure 6-2 8088 CPU memory bus read cycle.

6.3 A Simple, 8-Bit I/O Port Design 111

6.3 A Simple, 8-Bit I/O Port Design

A simple, fixed-address, 8-bit I/O port schematic is shown in Figure 6-3. The
port I/O address is fixed at 300h by the decoding logic used on inputs A0-A9.
lOW is used to write data to the output port latch (74LS373). lOR is used to
read data at the input port buffer (74LS244). Note that the decode and control
logic can be handled by a single PLD (progranmiable logic device) having
at least 13 inputs and 2 outputs. A PLD is a logic device (such as a PAL
or GAL) which contains an array of internal logic gates and flip-flops. The
programming of the PLD determines the interconnection of its resources and
the overall logic functions it performs (such as address decoding). A more

PC BUS

A0-A9

D0-D7

-^—• OUTPUT PORT

Figure 6-3 Simple 8-blt PC/XT digital I/O port.

112 CHAPTER 6 Interfacing Hardware to a PC Bus

versatile I/O port circuit would have a selectable I/O port address, determined
by jumper or switch settings.

Whenever the CPU writes to I/O address 300h, a data byte appears at
the output port. When the CPU reads from that address, it retrieves the byte
currently present at the input port. This is simple, programmed I/O that must
be completely handled by the CPU. The CPU's program must determine when
it is time for an I/O data transfer and must control the I/O read or write cycle
as well as store or retrieve the data from memory. This limits the maximum
data transfer rate and prevents the CPU from doing other tasks while it is
waiting for another I/O cycle.

6.3.1 Using Hardware Interrupts

Usually, a better alternative to the polled I/O technique just described is to
use hardware interrupts. The occurrence of a hardware interrupt causes the
CPU to stop its current program execution and go to a special interrupt
service routine, previously installed. This is designed to handle asynchronous
external events without tying up the CPU's time in polling for the event.
Nine hardware interrupts are used in a PC/XT system. The highest priority
is the NMI (nonmaskable interrupt), which cannot be internally masked by
the CPU (but can be masked by hardware on the motherboard). This line is
usually used to report memory errors and is not available to cards connected
to the I/O expansion slots. The other eight hardware interrupt lines,
IRQ0-IRQ7, are connected to an Intel 8259 Interrupt Controller (which
connects to the 8088's maskable interrupt input line). The highest priority
lines, IRQO and IRQl, are used on the motherboard only and are not con-
nected to the I/O slots. IRQO is used by channel 0 of the timer/counter, and
IRQl is used by the keyboard adapter circuit. Interrupts IRQ2-IRQ7 are
available to I/O cards.

The 8088 CPU supports 256 unique interrupt types. These can be
hardware or software interrupts. Each interrupt type has assigned to it a
4-byte block in low memory (0-3FFh) containing the starting address of
that interrupt's service routine. This interrupt vector consists of the 16-bit
code segment (CS) and instruction pointer (IP) of the service routine.
Interrupt types 0-4 are used by the 8088 CPU. For example, interrupt type
0 is called by a divided-by-zero error. Interrupt types 5 and 6 are unused for
8088-based PCs. Interrupt type 7 is used by the BIOS for the Print Screen
function.

Hardware interrupts IRQO-7 are mapped to types 8-15. So, the vector
for IRQO is at addresses 20h-23h, IRQl is at 24h-27h, and so on. A hardware
interrupt is asserted when the appropriate IRQ line goes high and stays high

6.3 A Simple, 8-Bit I/O Port Design 113

PC BUS

A0-A9

iOR
AEN

JOy
/

DECODE
301 h

D0-D7 4r-4 ^
IX

IRQ7 f-

74LS244

G2

Y1-8 A1-8 ^4^

+5V-

PR D

74LS74 < }
FLIP-FLOP

^ CLR

RESET
DRV O

7^

_rL

- INPUT PORT

. INTERRUPT
REQUEST

Figure 6-4 Interrupt-driven 8-bit PC/XT digital input port.

until the inteirupt is acknowledged. There is no direct interrupt acknowledge
line from the I/O bus (it occurs between the CPU and the 8259 Interrupt
Controller), so an I/O line under CPU control is used for this function and
activated by the interrupt service routine.

Figure 6-4 shows a simple 8-bit input port designed for interrupt-driven
access, at I/O address 301h. As in Figure 6-3, the enable line of the input
port buffer is decoded by a combination of address bits A0-A9, IOR, and
AEN. In addition, the input port provides a Request for Interrupt line, used
by the external hardware to signal when it is ready for the CPU to read data
from it. A pulse or positive-going edge on this line sets the flip-flop, asserting

114 CHAPTER 6 Interfacing Hardware to a PC Bus

the IRQ7 line (lowest priority interrupt). When the interrupt service routine
for interrupt type 15 is called, it performs a read from I/O address 301h to
retrieve the data. This access will also reset the flip-flop, negating the IRQ7
line and preventing an additional (and unwanted) interrupt service cycle after
the current one is completed.

Note that IRQ7 is typically used by a parallel printer port. To prevent
unwanted hardware clashes, the flip-flop output in Figure 6-4 should be
buffered by a tri-state driver, which can be disabled when the input port is
not in use. A practical input port design would also have some selectability
for the I/O port address and the IRQ line used.

Any interrupt type can be accessed via software by simply using the
INT instruction. This includes interrupt types used by IRQ lines. This is a
good way of testing hardware interrupt service routines.

6.3.2 Software Considerations for Hardware Interrupts

Implementing hardware interrupt support in software requires many steps.
The interrupt service routine must be written and placed at a known memory
location. The address of this service routine must be placed in the 4 bytes of
low memory corresponding to the appropriate interrupt type (for IRQ7 it
would be addresses 3Ch-3Fh). The 8259 Interrupt Controller must be initial-
ized to enable the desired IRQ line. The 8088's maskable interrupt input must
be unmasked (if it is not already). If you are using a standard peripheral
device supported by BIOS functions, such as an asynchronous communica-
tions (serial) port, this initialization will be done for you by the BIOS.
Similarly, commercial peripherals that come with their own software drivers
should take care of these details for you. If you build your own data acquisition
card with interrupt support, you will have to incorporate the initialization
procedure into your custom software.

There are conditions where polled I/O is preferable to interrupt-driven
I/O. It takes the CPU 61 clock periods to respond to a hardware interrupt and
begin executing the interrupt service routine. In addition, it requires 32 more
clock cycles to return from an interrupt. For an older PC/XT system with a
4.77-MHz clock, this corresponds to a processing overhead of 19.2 |Lisec
added to the execution time of the interrupt service routine. If high-speed I/O
transfers were required, such as every 20 |Lisec (for a 50,000 sample/sec rate),
a tight polling loop would be preferable. There would not be much time left
over from servicing the I/O transfer for the CPU to do much else. In general,
when the time between consecutive hardware interrupts starts approaching
the overhead required to process an interrupt, a polled approach to software
is in order.

6.5 Wait State Generation 115

6.4 DMA

When very high speed data transfers are required between a peripheral device
and memory, direct memory access (DMA) hardware is often used. PC/XT
systems support four DMA channels via an Intel 8237 DMA controller. The
highest priority DMA is on channel 0, used only on the motherboard for
DRAM refresh. The other three DMA channels are available for use by
peripherals (channel 3 is the lowest priority). During a DMA cycle, the 8237
takes over control of the bus from the 8088 and performs the data transfer
between a peripheral and system memory. Even though the 8237 supports a
burst mode, where many consecutive DMA cycles can occur, only a single-
byte DMA cycle is used on PC/XT systems. This ensures that CPU cycles
can still occur while DMA transfers take place, preserving system integrity
(including memory refresh operations).

In PC/XT systems, DMA transfers require six clock periods. After each
DMA cycle a CPU cycle of four clock periods occurs. So, the maximum
DMA transfer rate is 1 byte every 10 clock periods. On original 4.77 MHz
PC/XT systems, this is every 2.1 |Lisec for a maximum DMA data rate of
476 Kbytes per second. This is still much faster than CPU-controlled data
transfers.

As with servicing interrupt requests, software must perform initializa-
tions before DMA transfers can occur. The 8237 DMA controller must be
programmed for the type of DMA cycle, including read or write, number of
bytes to transfer, and the starting address. Once it has been properly initial-
ized, the DMA cycle is started by a DMA request from the peripheral
hardware.

6.5 Wait State Generation

As we previously discussed, sometimes a peripheral device is too slow for a
normal PC/XT bus cycle. The length of a bus cycle can be extended by
generating wait states. These are additional clock periods inserted into a
memory or I/O bus cycle. Wait states are inserted by pulling line lO CH RDY
low (negated) for two or more clock cycles after the data transfer cycle has
started.

Figure 6-5 shows a simple circuit for generating one additional wait
state for an I/O cycle. When the I/O port is selected (for either a read or write)
it sets a flip-flop that pulls lO CH RDY low. Note that the inverter driving
the 10 CH RDY line is an open-collector device. This is because several

116 CHAPTER 6 Interfacing Hardware to a PC Bus

PC BUS

A0-A9-
AEN-

lOR-

iow-

RESETDRV-

CLK-

l O C H R D Y ^

10 , ADDRESS
DECODE

r >
D 74LS74 Q

FLIP-FLOP

CLR

+5V-

rHD PR Q

74LS74
I^FLIP-FLOP

CLR

X.
I PR

74LS74
FLIP-FLOP

Q H

>
CLR

74LS05

Figure 6-5 I/O wait state generation.

peripherals on the PC/XT bus can drive this Hne simultaneously and will be
OR-tied if they use open-collector outputs. This flip-flop output then goes to
a two-stage shift register (using two additional flip-flops), which waits two
clock cycles and then outputs a signal resetting the flip-flop and reasserting
lO CH RDY, ensuring that no additional wait states are injected into the cycle.
For each additional wait state desired, an additional shift register stage should
be added, for more clock cycle delays. The timing is very similar for gener-
ating memory cycle wait states, except only one clock cycle delay is required
to generate the first wait state.

6.6 Analog Input Card Design 117

6.6 Analog Input Card Design

Building on what we have discussed in this chapter, Figure 6-6 shows an 8-
bit data acquisition circuit with eight analog inputs. It is based on a National
Semiconductor ADC0808 successive-approximation ADC with a maximum
conversion rate of approximately 10,000 samples per second (100-|Lisec aver-
age conversion time). This device has an eight-channel analog multiplexer.
It accepts input signals in the range of 0 to +5 V. If a wider analog input
range is required, op amps can be used.

PC BUS

A3-A9 •

iOR-

iow-

AEN-

AO —
A1 —
A2 —

D0-D7^

RESET DRV-

IRQ2^
IRQ3^
IRQ4^
IRQ5^
IRQ7^

+5V
REFERENCE

500 KHz
CLOCK

^ DECODE
300 - 307h

ADCWR

ADCRD

-cT"

INTERRUPT
SELECT
JUMPER

CLK VREF

START
ALE

INO
IN 1
IN 2
IN 3
IN 4
INS
IN 6
IN 7

OE

ADC0808

A
B
C
DO-7

EOC

+5V

_l
PR D

74LS74 \ |
FLIP-FLOP

Q CLR

Figure 6-6 8-bit, 8-channel analog input card.

118 CHAPTER 6 Interfacing Hardware to a PC Bus

This circuit occupies I/O addresses 300h-307h. Writing dummy data
to address 300h starts a conversion for the signal on ADC channel 1. A write
to 301h converts channel 2, and so on. When conversion is complete an IRQ
is generated (the interrupt line used is jumper-selectable). The interrupt ser-
vice routine then reads the value from any I/O address in the 300h-307h
range. The flip-flop that generates the IRQ is set by the ADC's end-of-
conversion (EOC) signal and cleared when the interrupt service routine reads
the ADC value.

6.7 16-Bit Data Transfers on ISA Computers.

The PC/XT I/O circuits described above will also work in an AT (ISA) system.
Most AT computers with high-frequency clocks (above 8 MHz) insert addi-
tional wait states for I/O port bus cycles so that cards designed for XT and
slower AT systems will still work properly. Even 16-bit transfers to 8-bit
peripherals are supported by hardware on the AT motherboard. However, to
fully exploit the power of an AT system, an interface card should support 16-bit
data transfers wherever possible. This utilizes the additional data, address,
and control lines of the AT I/O bus.

Basically, to perform 16-bit I/O port data transfers, we must decode the
I/O port address, use lOR or lOW to determine the transfer direction, tell the
system bus that we want a 16-bit transfer cycle, and input or output the 16-
bit data word. An AT has the same I/O address map for devices connected to
the system bus as the PC/XT (in the range 100h-3FFh). This makes I/O
address decoding the same. One new control line used on the ISA bus is I/O
CS16 (pin D02), which indicates to the CPU (80286 or above) that a 16-bit
data transfer is requested by the peripheral device. Another new control line
is SBHE (pin CI), which is active when data on the upper byte of the data
bus (D8-D15) is valid.

Figure 6-7 shows a simple 16-bit ISA I/O interface, designed for
address 300h. The main difference between this circuit and the PC/XT I/O
circuits shown previously is the transfer of 16 instead of 8 bits at a time.
Otherwise the I/O address decoding is the same, except for the LSB (AO).
In addition, the bus signal I/O CS16 is asserted, active low (by an open-
collector driver), when the I/O port is accessed for a 16-bit I/O transfer
cycle. If this line was not asserted, as with an 8-bit PC/XT card, only the
lower 8 data bits (D0-D7) would be used for the I/O cycle. The signal SBHE
is used when the upper 8 data bits (D8-D15) are ready for bus transfer, and
it enables the buffer for that data. AO must be asserted to transfer the lower
8 data bits.

6.7 16-Bit Data Transfers on ISA Computers 119

D0-D7 <-

D8-D15 <-

RDLO-

,.,D, ^ K 74LS373
WRLO 4> LATCH

G1
G2

74LS244
BUFFER

Y1-8 A1-8

D1-8 Q1-8

8y INPUT BITS
^ • — 7 ^ DO-7

Sy OUTPUT BITS
/ ^ DO-7

RDHI

WRHI-

G1
G2

74LS244
BUFFER

Y1-8 A1-8

K 74LS373
y LATCH

D1-8 Q1-8

8 / INPUT BITS ^ __̂ D8-15

8 / OUTPUT BITS
/ ^ D8-15

Figure 6-7 Simple 16-blt ISA digital I/O port.

It may be necessary, because of the higher clock frequency of most
AT systems (especially 80386- and 80486-based computers), to add addi-
tional wait states to an I/O or memory bus cycle over and above the wait
states automatically injected by logic on the motherboard. As with PC/XT
systems, pulling the lO CH RDY line low can be used to add wait states to
a bus cycle.

120 CHAPTER 6 Interfacing Hardware to a PC Bus

6.8 Plug and Play

Configuring add-in cards on XT and older AT (ISA) computers was often a
time-consuming chore. You had to set jumpers or switches on most boards
to select appropriate I/O addresses, memory addresses, IRQ channels, and
DMA channels. Aside from some peripherals whose settings were originally
determined by IBM (such as some disk drive and video adapters), most boards
had no standard settings. If more than one board in a PC tried to use the same
resources (i.e., addresses or IRQ lines), they would produce a hardware
conflict and not operate properly. This could even prevent the PC from booting
up. So, add-in cards had to be manually configured.

To automate the configuration process, Intel and Microsoft developed
the Plug and Play specification for the ISA bus. This encompasses a mixture
of BIOS software, operating system software, and expansion card hardware.
If all these elements are in place, the PC configures the resources a Plug and
Play add-in card requires and even loads the appropriate software drivers.

Since the ISA bus was designed without any support for automatic card
configuration, Plug and Play relies on a complex process. First it isolates the
boards so they do not respond to standard ISA bus control signals. Then each
board gets identified and initialized, allowing it to respond to bus signals.
Next, each board individually goes into a mode where the PC reads the card's
configuration information and programs its resource settings. After all boards
have been configured, the operating system loads appropriate software drivers
for them.

Most older ISA PCs (pre-Pentium) do not have a Plug and Play
compatible BIOS. But as long as the operating system supports it. Plug and
Play boards can still be automatically configured. Microsoft operating sys-
tems starting with Windows 95 (see Chapter 7) fully support Plug and Play
ISA.

Note that with Plug and Play configuration, the resources selected by
this process may not be the same as in an older ISA PC using standard
settings. For example, plug and play may configure the first serial port
(COMl:) to use IRQ7 instead of the older standard of IRQ4.

In contrast to ISA, the PCI bus was designed with autoconfiguration in
mind. Each PCI slot (up to four per bus) has a unique input line, IDSEL
(initialization device select), which allows the system software to uniquely
access the card's 256-byte configuration space. This is a special address space,
separate from the conventional I/O and memory spaces on the PCI bus. The
configuration space approach is much cleaner and does not require special
procedures to isolate add-in cards from each other or the bus. In a PCI-only
computer, all expansion boards can be automatically configured.

6.9 Interfacing to the PCI Bus 121

There is also a Plug and Play specification for parallel ports that are
IEEE 1284 compliant (see Chapter 8). If a printer, or other device, supports
Plug and Play, the PC can detect it and install the appropriate software driver,
simplifying setup of the peripheral.

6.9 Interfacing to the PCI Bus

As we saw in Chapter 5, the PCI bus is several times faster and much more
complex than the ISA bus. It would be very difficult to implement even the
simplest subset of PCI bus controls using standard TTL-style logic ICs (such
as the 7400 series). It would be better to use a large CPLD (complex pro-
grammable logic device) to incorporate PCI logic into a custom design.

The simplest way to interface old or new hardware to the PCI bus is
through a commercially available controller chip such as those available from
AMCC or PLX Technology. ICs such as the PLX PCI9050 or the AMCC
S5920 convert PCI signals with their complex protocol into a simple, local
bus. This local bus can then interface directly to custom hardware with 8-,
16-, or 32-bit data (for digital I/O ports, ADCs, DACs, etc.) or get converted
to ISA bus signals with 8- or 16-bit data, using additional logic.

To quickly convert a simple ISA board to the PCI bus, these chip
families have development kits. The kits typically contain a board designed
around the conversion chip that has a piggy-back connector for an ISA card.
The development kit board plugs into the PCI bus and provides the bus
conversion features needed by the ISA card. Since the development kit takes
care of most of the hardware issues, the remaining design work is just software
conversion, using the tools provided by the kit.

Typically, these conversion chips act only as PCI slaves, without bus
mastering capabilities. So they would not be suitable for converting an ISA
card that uses DMA. However, more complex chips are available from these
manufacturers that support full PCI bus master capabilities.

Figure 6-8 shows a simplified block diagram of an ISA-to-PCI slave
interface using the PLX PCI9052 chip. This IC has a built-in ISA interface,
so additional logic is not needed. The PCI9052 can also interface non-ISA
resources, such as memory and I/O devices, to the PCI bus using its local
bus. A serial EEPROM (electrically erasable PROM) is used to store config-
uration information for the PCI9052.

Many new PCI-based interface cards use CPLD and FPGA (field pro-
grammable gate array) logic devices for custom designs. CPLD and FPGA
manufacturers, such as Altera, Cypress, Lucent, and Xilinx, offer PCI inter-
face designs that easily incorporate into their chips. The designer simply

122 CHAPTER 6 Interfacing Hardware to a PC Bus

PCI
BUS ^ w

PCI
Interface

Local Bus
Interface

PLX PCI 9052

ISA Bus
Interface

^

^

•

•

Mennory

I/O Devices

ISA CARD

Figure 6-8 Interfacing an ISA card to the PCI bus.

connects the supplied PCI core to the chip's custom logic. This is usually
accomplished using a high-level hardware design language, such as VHDL
or Verilog. This approach frees the designer from reinventing PCI interface
logic while providing greater flexibility than a fixed interface chip allows. It
also lowers costs by placing both the PCI interface and board control logic
in the same programmable chip.

In the next chapter, we will examine software techniques for interfacing
to PCs. The topics covered will include how the PC's software system works
and how to produce software to support peripheral hardware, especially for
data acquisition applications.

C H A P T E R

Interfacing Software
to the PC

Using the correct techniques for interfacing software to a PC is as important
as implementing the proper hardware interface. In this chapter we will start
with an overview of the PC/XT/AT DOS-based software structure and proceed
to using this arrangement. Then we will explore the Windows environment
as well as UNIX.

7.1 DOS-Based PC Software Layers

Four general layers of software are present on a DOS-based PC, as shown in
Figure 7-1. The lowest is the hardware level, where the software directly
accesses the hardware. For example, if the addressed hardware was a display
adapter, writing to a specific address in its video buffer (to display a character)
would be directly accessing the hardware. At this level, the actual computer
circuitry (I/O and memory addresses) determines the software instructions
needed.

The next layer is the basic input-output system, or BIOS. This is
software, often referred to as firmware, residing in read-only memory (ROM)
on the motherboard. The system ROM includes code to test the computer
system and bootstrap (or boot) it, to begin normal DOS or other operating
system execution. The BIOS routines in ROM act as an interface between
higher level software and the actual hardware. They implement the details
needed to operate various standard hardware peripherals (such as video displays
or disk drives) and begin to provide some hardware independence. When a
program uses a BIOS function, it does not need to know hardware-level details.

123

124 CHAPTER 7 Interfacing Software to the PC

APPLICATION
PROGRAMS

DOS

BIOS

HARDWARE
REGISTERS

Figure 7-1 PC (MS-DOS) software layers.

such as the address of the status register on a disk drive controller card. It
only needs to request the BIOS function it wants completed, such as to read
data from a particular sector on a specified disk.

This hardware independence has important advantages. If different com-
puters use different hardware components to carry out the same functions,
this approach eliminates the need to rewrite a program for each machine, as
long as the BIOS commands are the same. A hardware change in the same
machine does not require a software change, as long as the BIOS supports
the new hardware or is upgraded with it.

The only disadvantages with this approach are slower program execu-
tion and somewhat limited functionality. Since more instructions must be
executed to produce a function from a BIOS call, compared to directly address-
ing hardware, a slower response is produced. Of course, the speed of newer
PCs makes this less of an issue and for many functions a slower response
is not important (such as the PC response when a user hits a key). When
fast execution is required, such as in real-time control or data acquisition,
direct hardware addressing may be necessary. If the BIOS functions do not
support all the features of a particular hardware device, again direct hard-
ware access may be required. Often, system software is loaded to supple-
ment the BIOS and use the same software interface to call it, as described
later.

The next layer of system software is the disk operating system, or DOS.
This software is loaded into the PC's memory from a disk drive, by a bootstrap

7.2 Software Interrupts 125

program in ROM. It operates at a higher level than the BIOS, even further
removed from the hardware layer. Among other things, it implements the file
and directory structure for disk drives. It advances the concept of hardware
independence to device independence. For example, when a calling program
requests data from a file, under DOS it does not need to know what type of
physical drive contains the data. DOS keeps track of that information and
retrieves the requested data by appropriate calls to BIOS functions. The
program just uses a logical drive identification (such as A: or C:).

This device independence extends to the type of device, using the DOS
feature of redirection, when it redirects data from one device to another. For
example, the DOS TYPE command usually displays the contents of a text
file on a video display (for example: TYPE MYDATA.TXT). DOS can redi-
rect this data to a printer, with the command: TYPE MYDATA.TXT > PRN:
(which sends this data to the system's default printer). A program calling
DOS to perform these functions does not need to know about the differences
between the two output devices (video display and printer) or even that very
different BIOS calls are used to perform this function. DOS takes care of all
these details.

The final, highest layer of PC software is the application program. This
is the software that performs the useful functions we need a computer for in
the first place, such as mathematical calculations, word processing, data
acquisition, and graphical display. To perform these high-level activities, the
application program calls various functions at the DOS, BIOS, and hardware
levels. As before, for the highest degree of portability, maintainability, and
hardware support, software interfacing should be at the highest level possible,
preferably DOS, or BIOS if necessary. However, calling system functions
through DOS is also the slowest route. As with BIOS calls, trade-offs are
sometimes necessary. When running DOS on a fast, relatively new PC (Pentium-
based) the slower speed of DOS function calls is minimal.

7.2 Software Interrupts

The mechanism for calling BIOS and DOS functions uses software interrupts.
This provides a means of software independence for the called functions. A
software interrupt works like a hardware-generated interrupt. It causes pro-
gram execution to jump to a new location, specified by the interrupt number
or level. There are 256 possible interrupt levels in 80x86-based PCs. Some
are used by hardware interrupts, some by BIOS, and some by DOS. Table 7-1
lists the interrupt usage in a PC/XT system. To generate a software interrupt,
the Assembler instruction INT, followed by the level (0-255), is executed.

126 CHAPTER 7 Interfacing Software to the PC

TABLE 7-1
Interrupt Usage in MS-DOS PCs

1 INTERRUPT #

0-7

8-F

10-1C

1D-1F

20-3F, 5C, 67

1 80-FO

CLASSIFICATION

BIOS/DOS

BIOS

BIOS

Data

DOS

BASIC

FUNCTION 1

CPU Interrupts |

8259 H/W Interrupts |

BIOS Function Calls |

Video/Disk Table Pointers

DOS Function Calls |

BASIC Functions

This specifies which interrupt vector to use. An interrupt vector is a 4-byte
address in low memory, 0-3FFh, which contains the location of the interrupt
service routine. This is the address the program jumps to when the interrupt
is called, which contains the code to handle the interrupt request.

The beauty of this system is that the software calling the interrupt routine,
such as a BIOS function call, does not have to know exactly where in memory
the interrupt service routine is located. This is the software independence
alluded to above. If the BIOS code is upgraded at some future point, the
absolute location of the interrupt service routine may change, but the soft-
ware calling it does not have to change, since the interrupt vectors will also
be upgraded.

7.2.1 BIOS Interrupts

Using a previous example, the BIOS routine interfacing with the video display
works through INT lOh. To display an alphanumeric character on the current
video screen, the character byte is loaded into CPU register AL (the low byte
of the accumulator) and 14h is loaded into AH (the accumulator's high byte),
which specifies the video command (display a character). Then an INT lOh
instruction is executed. Written in Assembler, the code to display the character
"9" would be

MOV AL,39H
MOV AH,14H
INT lOH

Note that 39H is the ASCII code for the character "9."
As shown in this example, BIOS functions use some of the CPU's reg-

isters for sending data to and receiving data from the function called. Some-
times, the carry flag is returned to specify a particular condition. When one

7.2 Software Interrupts 127

TABLE 7-2
Standard MS-DOS PC BIOS Functions

1 INTERRUPT #

1 10h
1 11h
1 12h

1 ^^^
14h

1 ^^^
1 ""̂̂
1 ""̂̂

18h

1 ^^^
1 ^^^
\ ^^^
1 1Ch

PURPOSE 1

Video Display Functions (0-13h) 1

Equipment Check 1

Memory Size Check 1

Floppy Disk Functions (0-18h) 1

Communications Functions (0-5h) 1

Cassette and Misc System Functions (0-C4h) 1

Keyboard Functions (0-12h) 1

Printer Functions (0-2h) 1

Execute IBM BASIC from ROM (IBM-PC. Only) |

Re-Boot System 1

System Timer/Clock Functions (0-7h) 1

Keyboard CTRL-BREAK Interrupt Handler |

System Timer Tick (18 Hz) Interrupt Handler |

interrupt is used for several different functions (as Int lOh, 13h, 14h, 15h, 16h,
17h, and lAh), register AH is loaded with the function number. Table 7-2 is a
summary of most of the BIOS functions available on PC/XT/AT systems.

7.2.2 DOS Interrupts

DOS functions are called by software interrupts similar to BIOS functions.
Most DOS functions are called via INT 21h. DOS reserves the use of INT
20h-3Fh, although only INT 20h-27h are used for most common functions.
Again, the function number is selected by the value placed in register AH.
Some DOS INT 21h functions also have a subfunction, selected by the value
in register AL.

As an example of using a DOS function, we will once again write a
character to the video display, using INT 21h, Function 2. Here, register AH
contains the function number (2) and register DL contains the character to
be displayed. If we use Microsoft C instead of Assembler in this case, we
can write a general-purpose subroutine for video display called disp_ch():

#include <dos.h>
include < stdio.h>
#define FUNCT 2

/* standard definition files */

/* function number 2 */

128 CHAPTER 7 Interfacing Software to the PC

disp_ch(ch) /* subroutine name */

char ch; /* character argument */
{ /* start of subroutine */

union REGS regs; /* sets up register use */
regs.h.ah = FUNCT; /* AH = 2 */
regs .h .d l = ch; /* DL = character to display */
intdos(®s,®s) ; /* c a l l INT 21h */

}

A calling program, to display the character "9" would be:

main()
{ /* start of program */

char c;
c = 0x39; /* ASCII value for 9 */
disp_ch(c) ; /* call siibroutine */

}

Even though more coding (along with more software overhead) is required
to implement this DOS function in C, compared to Assembler, this approach
is usually preferable. C is a high-level language with good functionality and
ease-of-use. It is much easier to maintain a program in C than in Assembler
and the penalty of larger, slower programs is not as severe as with some other
high-level programming languages. We will discuss the various trade-offs
between different programming languages later in Chapter 13.

7.3 Polled versus Interrupt-Driven Software

In Chapter 6 we looked at the trade-offs between accessing a peripheral device
via polled software versus interrupt-driven software. If a peripheral device
needs to be serviced relatively infrequently (for example, using only 10% of
the available CPU time) and asynchronously (so the program cannot predict
when the next service will be required), interrupt-driven software is in order.
On the other hand, if interrupt servicing takes up too much CPU time (some-
times referred to as CPU bandwidth) for very frequent servicing, polled
software would be preferable. In this case, there would be little CPU band-
width left over for other processing anyway. One other general case is when
the peripheral servicing is synchronous, as when the value of an ADC is read
at preset time intervals and requires a small amount of CPU bandwidth. Again,
interrupt-driven software is the best solution. If the peripheral (ADC) does
not provide a hardware interrupt, the PC's timer could.

The following program listing, written in Microsoft Macro Assembler,
shows the basic concepts for installing and using interrupt-driven software.
It can be used with the data acquisition circuit from Chapter 6 (Figure 6-6),

7.3 Polled versus Interrupt-Driven Software 129

set to generate an IRQ7 hardware interrupt whenever a new ADC reading is
ready. It is assumed that the 8259 interrupt controller already enables IRQ7
interrupts and that the system interrupt flag is set to enable the maskable
interrupt input from the 8259. Otherwise, these functions must be taken care
of in LOADVEC, the routine that prepares the system for the interrupt and
loads the interrupt service routine INT7SVC, as

MACRO ASSEMBLER PROGRAM TO READ ADC VALUE VIA IRQ7

* DATA INITIALIZATION *
DSEGl

IRQ7

DSEGl

DSEG2
PUBLIC

DVALUES

DINDEX

DSEG2

CSEG

SEGMENT AT 0

ORG 3CH
LABEL WORD

ENDS

SEGMENT
DVALUES, DINDEX

DB 256 DUP (?)

DW 0

ENDS

; interrupt vector table starts at
;addr 0
; start of vector for IRQ7
;Now we can access the vector for
; IRQ7
;via the label IRQ7.

;Data storage segment
;Allows other programs access
; to these variables.
;ADC data storage table
;(uninitialized)
;Index into table (initialized to
;zero)

SEGMENT
ASSUME

;Code segment, for programs
CSiCSEG, DS:DSEG2

;* ROUTINE TO INITIALIZE IRQ 7 & LOAD SERVICE ROUTINE INTO MEMORY
LOADVEC: MOV AX, 0 ; Point to memory segment 0

;for interrupt
MOV ES,AX ;vector table.
MOV ES:IRQ7,OFFSET INT7SVC ; Set address of IRQ 7
MOV ES:IRQ7+2,SEG INT7SVC /service routine.
MOV DX,200 ;DX contains amount of memory

; to save
;for keeping service routine
; INT7SVC
; loaded in memory.

MOV AL,0
MOV AH,31H ;Get ready for DOS function 31h
INT 21H ;Return to DOS, leaving

;INT7SVC resident
; in memory.

;* INTERRUPT SERVICE ROUTINE
ADC EQU 300H

INT7SVC: PUSH AX
PUSH DS
PUSH BX

/Address of ADC port (to read
;data)
;Save all working registers

130 CHAPTER 7 Interfacing Software to the PC

PUSH CX
PUSH SI
MOV AX,DSEG2 ;Point to data storage segment
MOV DS.AX
IN AL,ADC ;Read data from ADC
MOV SI,DVALUES
MOV [SI+DINDEX] ,AL ; Store data in table
INC DINDEX ; Point to next location in table
CMP DINDEX, 257 ; Past end of table?
JNZ CONTIN ;No
DEC DINDEX ;Yes, Stay at end of data table

CONTIN: MOV AL,20H ;Send EOI command to 8259
OUT 20H,AL
POP SI /Restore working registers before
POP CX /returning.
POP BX
POP DS
POP AX
IRET /Return from interrupt

CSEG ENDS
END LOADVEC /Start execution at routine

/LOADVEC
END OF PROGRAM

Since IRQ7 is interrupt type OFh, its vector is located at memory
address OFh x 4 = 3Ch in segment zero (physical address 0000:003Ch).
When the program is run by DOS, it starts execution at routine LOADVEC.
This short program loads the address of the interrupt service routine,
INT7SVC, into the vector location for IRQ7 (3Ch-3Fh). Then it allocates
enough space for INT7SVC and its data and returns to DOS, leaving
INT7SVC resident in memory. This type of software is called terminate-
and-stay-resident, or TSR. It is useful here, allowing the servicing of the
IRQ7 interrupt independent of other software. The DOS call to INT 21h
Function 31h is used to load TSR programs. The value in DX is the amount
of memory to preserve for the resident program. AL contains the value
returned by the function, which is useful for error codes. AH contains the
function number.

Once INT7SVC is loaded into memory, whenever it is called it reads
the current value from the ADC and stores it in a data table, starting at location
DVALUES and indexed by DINDEX. Both DVALUES and DINDEX are
declared as public labels, so that other software can access them and retrieve
the data. A typical program making use of INT7SVC would check the value
in DINDEX, address the ADC, start a data conversion, and then go about
other business. When it was ready to retrieve the data, it would check that
DINDEX has incremented and then read the data out of the table, DVALUES.
When it was done, it would decrement DINDEX.

7.3 Polled versus Interrupt-Driven Software 131

Note that the above program is merely an illustrative example of the use
of interrupt-driven software for data acquisition. It is still fairly rough and
incomplete for practical use, lacking refinements. INT7SVC does show some
important aspects of interrupt service routines. They should be as fast as
possible, to avoid interfering with other system interrupts. That is why they
are usually written in Assembler (although short C programs are sometimes
used). The working system registers (AX, BX, CX, DS, SI) should be saved,
by PUSHing onto the stack at the routine's start, and restored, by POPing, at
its end. Otherwise, any use of these registers by the interrupt service routine
will corrupt the interrupted program, on return. For hardware interrupt service,
the routine must send an EOI command to the 8259 interrupt controller.
Otherwise, new hardware interrupts will not be enabled. The service routine
should end with an IRET statement for a proper return from the interrupt.

An interrupt routine to service a software interrupt is somewhat simpler,
since the 8259 does not have to be serviced and hardware interrupts do not
need to be unmasked. In addition, there is little danger of monopolizing the
CPU's bandwidth (unless hardware interrupts are masked off). Software inter-
rupts are a convenient way to install and call software functions in memory.

To illustrate polled software used to retrieve an ADC value, the follow-
ing is a function written in Microsoft C:

inc lude <conio.h> /* needed for l i b r a r y func t ion
inpO V

#def ine ADC_STATUS 0x301 /* Address of ADC s t a t u s p o r t */
#def ine ADC_DATA 0x300 /* Address of ADC d a t a p o r t */

char read_adc() /* Name of f u n c t i o n i s
adc_read * /

{
whi l e (inp(ADC_STATUS) ! = 1) ; /* w a i t t i l l ADC i s done */
r e t u r n (inp (ADC_DATA)) ; / * send ADC v a l u e back t o

c a l l i n g program */
} /* Done */

Note that this is a very short and simple subroutine. The main program
calls it whenever it has started an ADC conversion and wants to retrieve the
results. It assumes that I/O port 301h contains a value of 1 only when the
conversion is complete. This is the status required by a polling routine such
as read_adc().

In this simple example, there is no provision for the error condition when
something goes wrong and the ADC status port never returns a 1, as when
there is a hardware failure or a software bug calling read_adc() at the wrong
time. A more practical program would have a time-out provision in the
while(...) statement. Otherwise, the PC will remain stuck in that loop
indefinitely.

132 CHAPTER 7 Interfacing Software to the PC

7.4 Special DOS Programs

There are several special-purpose programs used by DOS. These include
device drivers and TSR programs.

7.4.1 Device Drivers

Previously, we have seen how useful interrupts are, both for calling existing
DOS and BIOS functions and for interfacing to additional software functions,
especially to support hardware such as data acquisition devices. Another special
type of software is the device driver. A device driver is a distinctive program
that is loaded into DOS (or any operating system) when the system boots up
and then acts as if it is part of the operating system. As such, it must adhere to
very strict guidelines. Device drivers are typically used to support special
hardware functions. For example, a hardware mouse will usually have a device
driver that allows it to work with conmion application software packages. Both
16- and 32-bit versions of Microsoft Windows rely even more heavily on device
drivers for interfacing to hardware, as we will see later in this chapter.

In DOS, device drivers are loaded into the system by including com-
mands in a text file called CONFIG.SYS in the root directory of the boot
disk. This file contains entries used to customize DOS, such as number of
buffers and number of files that can be open simultaneously. It also contains
entries in the form

DEVICE = f i lename

where filename is the name of a device driver, typically with a SYS extension.
So, to load a mouse driver (file MOUSE.SYS), CONFIG.SYS should contain
the line

DEVICE = MOUSE.SYS

When DOS boots up, it looks for CONFIG.SYS and, if it is found, it executes
the commands it contains and loads the device drivers listed in the file. It
should be noted that DOS device drivers must be written in Assembler for
the proper control of program and data layout. They are normally only written
by experienced DOS programmers.

7.4.2 TSR Programs

When DOS software support is required for special hardware, often writing a
terminate-and-stay-resident (TSR) program is an appropriate choice, especially
if it is not for conmiercial product support. It is much easier than producing a
device driver and it can be written in a high-level language, such as C.

7.5 DOS 133

As we previously touched on, a TSR program is interrupt-driven soft-
ware. It is loaded into a PC's memory and can interface with other programs
or with DOS itself. It continues to function until the system is turned off and
RAM contents are lost (unless it is explicitly removed from memory). All
TSR programs are activated by interrupts, either hardware or software. Some
use software interrupt levels not reserved by DOS or BIOS, to allow an
application program to access the TSR functions.

It is common for TSR programs to attach themselves to interrupts
already in use. For example, many utility TSR functions are activated when
a special combination of keys is pressed (a hot key). To do this, the TSR
program attaches itself to the keyboard interrupt 09h. This interrupt occurs
whenever any key combination is pressed. If the TSR program's hot key is
pressed, it can take over and perform its function. If not, it passes control on
to the original interrupt service routine. This is also an example of how
interrupt routines can be chained, with more than one service routine using
the same interrupt level. In a similar fashion, some TSR programs that must
perform a task periodically use the system timer interrupt.

7.5 DOS

As the primary hardware focus of this book has been on IBM PC/XT/AT
systems and compatibles, the software focus has been on Microsoft/IBM DOS
as the operating system for older PCs. DOS was by far the most popular
software environment used by pre-80386-based PCs, but not the only one. It
is still widely used in embedded PCs (see Chapter 12). DOS is a single-user,
single-task operating system, meaning it can only do one thing (execute one
program) at a time. For simple PC applications, including some data acqui-
sition and control, this is adequate. For cases where mainframe-style func-
tioning is needed (such as multiuser support) a more sophisticated operating
system could be used. Similarly, special operating systems are used for
operating a local area network (LAN) connecting multiple PCs together.

DOS grew considerably after its initial release in 1981. Version 1.0, for
the original IBM PC, only supported single-sided 5-1/4" floppy disks.
Version 1.1 supported double-sided 5-1/4" floppy disks. Version 2.0 was
released with the IBM PC/XT and added support for a hard disk drive. Version
2.1 added support for IBM's Portable PC and its ill-fated PCjr. Version 3.0
was released for the IBM PC/AT and supported high-density (1.2 Mbyte) 5-1/4"
floppy disks. Version 3.1 added networking support. Version 3.2 added support
for 3-1/2" floppy disks. Version 3.3 included support for the IBM PS/2 systems.
Version 4.01 added expanded memory support and an optional, menu-based

134 CHAPTER 7 Interfacing Software to the PC

interface shell, enhancing its standard command-line interface. In addition,
it allowed larger disk drives (up to 512 Mbytes) to be used as a single logical
device. DOS versions below 4.0 required a hard disk greater than 32 Mbytes
to be partitioned into multiple logical drives. Version 5.0 increased the max-
imum hard disk partition to over 2 Gbytes, added the ability to load DOS
into high memory (between 640K and IM) and included new utilities such
as DOSKEY (to recall previous commands) and UNDELETE (to recover an
accidentally erased file).

The last version of MS-DOS was 6.22. It contained additional utilities
such as MEMMAKER (a memory-optimization program) and SCANDISK
(a disk drive maintenance program). It even had integrated disk compression
support (via DriveSpace), which was useful for older, smaller hard drives.

The primary advantage for using DOS was that it was supported by a
vast array of commercial software products. Plus, it was a simple, real-time
operating system that allowed you to directly control hardware. In addition,
it was relatively inexpensive. Its primary disadvantage, besides being a single-
task environment, was its memory limitation. A DOS application could only
directly access up to 640 Kbytes of system RAM, regardless of the hardware
capabilities of the PC. This stenmied from the original PC's 8088 CPU with
1 Mbyte of available physical addressing space and 384 Kbytes reserved for
memory on peripheral devices (such as video display and disk controller
cards). As an additional limitation, DOS allocated some memory for its own
uses, typically leaving well under 600 Kbytes available for use by an appli-
cation program. If a PC had drivers loaded for network support, there may
have been less than 500 Kbytes available for applications. In general, each
successive version of DOS monopolized more memory for itself.

When an 80286 or higher CPU (80386, 80486, Pentium) runs DOS,
with its 1 Mbyte addressing limit, it is working in the processor's real mode,
which is fully compatible with the old 8088. To access physical memory
above 1 Mbyte, the CPU must use its protected mode, which is not supported
by DOS. Windows running on an 80386 or above PC does fully support
protected mode and an extremely large address space, as we will see later.

For many applications, the 640-Kbyte limit of DOS is not a problem.
For data acquisition applications, however, this can be a severe limitation,
especially when a huge amount of data is being acquired and analyzed. For
example, let us assume a system was acquiring 16-bit data at a rate of 50,000
samples/second, running a program under DOS. Also assume it had 512
Kbytes of memory available as data storage (the rest of the DOS range was
needed for the program code). It would take just 5.12 seconds of data to fill
up this memory buffer. Obviously, if more data acquisition was required for
each test, the data would have to be stored in a disk file as quickly as possible,
before the memory buffer filled completely. If this data was being analyzed.

7.6 Overcoming DOS Memory Limitations 135

the application program would have to keep reading in new data from the
disk file if more than 5.12 seconds was stored. There are several ways to get
around the memory limitations of DOS. The best option is to use a protected-
mode operating system such as Microsoft Windows or Linux.

7.6 Overcoming DOS Memory Limitations

There are several techniques available to extend the memory limitations of
DOS. These approaches are useful when working with older or embedded
PCs that would not be suitable for running a protected-mode operating system
such as Linux or Windows.

7.6.1 Overlays

When writing your own program, a simple technique to reduce the amount
of memory required for execution is to use overlays. An overlay is a section
of program code that is loaded into memory only when needed, and other-
wise resides in a disk file. As illustrated graphically in Figure 7-2, an
executable program residing in memory can consist of several code sections.
These code sections, containing the program's instructions, can be subdi-
vided into a program core, which is always resident, and one or more overlay
sections. An overlay section contains code that can be swapped out and
replaced by other code as the program executes. This swapping is controlled
by the program core, which would contain all the functions and variables
required by the various overlay. It is important for the individual overlay code

TOTAL
MEMORY
USED
FOR
PROGRAM
CODE

OVERLAY
SWAP
AREA

PROGRAM
CORE

^ ^ ^ ^

A-''

r.

OVERLAY
1

OVERLAY
2

OVERLAY
3

Figure 7-2 Example of program overlays.

136 CHAPTER? Interfacing Software to the PC

sections to operate independently of each other, though not of the program
core.

In the example of Figure 7-2, one overlay swap area is shared by three
overlay sections. The overlay swap area must be as large as the biggest overlay
that uses it. In this case, if the largest overlay is number 3, the memory saved
by this technique (presumably for data storage) is the sum of the memory
required for overlays 1 and 2. Of course, there are limitations on the amount
of memory savings produced by using overlays and a program's structure
must be very carefully worked out to use them. One major drawback to using
overlays is slow program execution. Every time an overlay is swapped into
memory (from a disk drive) the program must wait. The more overlays a
program uses, the more swapping will occur during execution and the slower
the overall program will run.

7.6.2 Expanded Memory

One popular and well-supported technique for stretching the 640-Kbyte mem-
ory limit of DOS was called expanded memory, which should not be confused
with an AT's extended memory (beginning at an address of 1 Mbyte). Expanded
memory was a standard developed by Lotus, Intel, and Microsoft, referred to
as the LIM standard, which provided access to up to 8 Mbytes of extra memory,
even on a PC/XT system. Expanded memory worked within the 1-Mbyte DOS
addressing range. It was a memory page swapping technique. As shown in
Figure 7-3, an unused block of memory up to 64 Kbytes long, between 640K
and IM, was set aside as a page frame. This area could contain up to four
pages of memory, each 16 Kbytes long. Special hardware (either a separate
peripheral card or part of the system's motherboard) contained the physical
memory storage: up to 8 Mbytes of pages, 16 Kbytes long. At any time, up
to four pages of physical memory could be mapped into the 64-Kbyte page
frame, where they were addressable by DOS and the rest of the system.

To make use of expanded memory hardware, a device driver had to be
installed into the system's CONFIG.SYS file. This DOS driver was usually
called EMM.SYS (for expanded memory manager) and it operated through
INT 67h. This driver controlled the memory page mapping and allocation
functions. Many DOS applications supported expanded memory when it was
present in a system.

It should be noted that expanded memory was normally used just for
data storage since you could not execute code from it or even from the page
frame space (above 640 Kbytes). LIM version 4.0 did add support for
enhanced expanded memory which could swap an entire program into and
out of expanded memory, and it supported a multitasking environment.

7.7 Protected-Mode Operating Systems 137

Physical Expanded Memory

DOS l\/lemory Address Range

Figure 7-3 Mapping of expanded memory page frames.

Since the memory page mapping of expanded memory was controlled
by dedicated hardware it was relatively fast, though not as fast as directly
addressing memory in an AT system's protected mode (as long as there is no
context switching between protected mode and real mode, which is fairly
slow). Expanded memory was extremely useful for DOS data acquisition
applications that required large amounts (megabytes) of data storage in RAM,
at data transfer rates that could outrun disk drive speeds.

7.7 Protected-Mode Operating Systems

To make full use of AT systems which can physically address more than 640
Kbytes of system memory (using 80286, 80386, 80486, or Pentium CPUs),
special software or another operating system is needed to operate in the
processor's protected mode. One such early operating system from IBM and
Microsoft was OS/2. It allowed a system to run large application programs

138 CHAPTER 7 Interfacing Software to the PC

using more than 640 Kbytes of RAM for code and data. It enabled the use of
an AT system's extended memory, which starts at address lOOOOOh or
10000:0000h (which is 1 Mbyte). Of course, an appUcation had to be compatible
with OS/2 to make use of all tihe available extended memory. OS/2 never became
very popular, in part because it did not support DOS programs well.

7.7.1 Microsoft Windows

Microsoft's Windows, in its many variants, is now the most popular operating
system for newer PCs (running 80386 or above CPUs). It is an operating
system that supports large applications and makes full use of a system's
physical memory. As a multitasking system, MS Windows allows more than
one program to reside in memory and operate at any given time. Each program
has its own window on the display screen. In addition, data can be easily
transferred from one program or window to another, facilitating complex
tasks using multiple applications (such as incorporating the results of a spread-
sheet calculation into a word processing document). Windows is built around
a graphics-based user interface, analogous to Apple's Macintosh operating
system. To take advantage of all these features, an application must be spe-
cifically written to be compatible with Windows (although DOS applications
will run under most versions of Windows).

Microsoft Windows actually encompasses several different operating
systems. The original MS Windows, which eventually evolved into the pop-
ular Windows 3.1, was a 16-bit operating system that ran on top of DOS (you
booted the PC into DOS and then started running Windows). It used real
mode (16-bit) DOS for file services while running Windows applications in
protected mode (32-bit). Software in protected mode had access to all the
extended memory installed in the PC. Windows acted as a memory manager,
allocating memory to multiple applications while keeping them isolated from
each other (in their separate screen windows). This allowed multitasking and
simplified data sharing.

Windows 3.1 could also run multiple DOS applications in separate
windows. Each DOS program appeared to have a virtual PC at its disposal
with 1 Mbyte of memory available. The hybrid real mode-protected mode
environment of Windows 3.1 was somewhat clumsy and not always reliable.
Still, a plethora of application software was written for Windows 3.1. This is
sometimes referred to as 16-bit Windows software.

Windows 3.1 used text files with an INI suffix, including SYSTEM.INI
and WIN.INI, as a means of controlling the system's configuration. These
configuration files were akin to CONFIG.SYS and AUTOEXEC.BAT used by
DOS. Newer versions of Windows (such as Windows 95 and later) continue to
support these INI files but rely on a registry for most configuration information.

7.7 Protected-Mode Operating Systems 139

Windows NT was Microsoft's first full 32-bit operating system. It was
aimed primarily at high-end systems and network servers running only 32-bit
software and did not run DOS or 16-bit Windows software very efficiently.
NT did become popular among commercial users who liked its extended
network support, multiuser capabilities, and mainframe-style security features.
Newer versions of Windows NT (including Windows 2000) have become quite
suitable for stand-alone PCs and are extremely robust operating systems.

Windows 95 became Microsoft's successor to Windows 3.1. It is a full
32-bit operating system that allows applications to access up to 2 Gbytes of
memory using a protected-mode 32-bit linear address space (as opposed to
the real-mode 16-bit memory model of segment:offset). This operating system
totally replaces DOS, offering new features such as long file names. Yet, it
can still run multiple DOS applications with better control and reliability than
under Windows 3.1. Windows 95 can also run 16-bit Windows programs.
Still, it always stays in protected mode even when running 16-bit, real-mode
software (including processing the INT 21h instruction for DOS function calls).

An application "talks" to Windows 95 by calling an application program
interface (API) function. The program requests system services using a named
function call instead of a numbered software interrupt, as used in MS-DOS.
A connection is made between a Windows application and the function it
calls at program load time by a process called dynamic linking. By contrast,
MS-DOS would simply load an application into real-mode memory and give
it full control of the PC, because it was single-tasking.

Another improvement in Windows 95 over Windows 3.1 is how it
handles multitasking. Windows 3.1 was a cooperative multitasking system
that relied on the application program to surrender the CPU periodically. If
software was poorly written or just "hung," Windows could not do anything
about it and the system would easily crash, forcing a reboot.

Windows 95 is a preemptive system that alone decides when to switch
tasks, preventing a single application from monopolizing all the CPU time.
Not only does this make the operating system more robust, it provides a faster
response to high-priority, real-time events. This is especially important for
data acquisition and control applications. Windows 95 also uses a registry, a
special database, to keep track of system information, especially regarding
application software. The registry is updated whenever new software is
installed or removed.

Windows 95 is already considered obsolete. Its successors are Windows
98, Windows Me, and Windows XP. However, these newer operating systems
still use the same basic 32-bit core of Windows 95. They primarily include
more features such as improved Internet functionality, USB support, and a
32-bit file allocation table (see Chapter 9) which increases the maximum hard
drive size from 2 Gbytes to over 2000 Gbytes.

140 CHAPTER 7 Interfacing Software to the PC

Microsoft Windows NT has also continued to evolve. Windows NT 4.0
was succeeded by Windows 2000 (not to be confused with Windows Me).
Again, the newer versions of NT have additional features and improvements
such as support for multiple processors in a single PC. In general, the Win-
dows NT family is still a bit more robust than the Windows 95 family.

Nearly all software written for Windows 95/98/Me will run under Win-
dows NT/2000. Because of security features under Windows NT, you may
need administrator privileges to load some application software or to install
new hardware and device drivers.

7.7.2 UNIX and Linux

One other operating system we should note here is UNIX. This is a multitask-
ing, multiuser operating system developed for minicomputers by AT&T Bell
Laboratories. It has been ported to (adapted for use on) many different
computing platforms. It has been especially popular on workstations and high-
end PCs. Standard UNIX has a command-driven user interface, as DOS does.
In fact, UNIX inspired many of the redirection and piping features of DOS.
UNIX provides a large amount of power and flexibility, although some versions
are not very user-friendly, owing to its often terse and cryptic commands.
Microsoft even sold a 16-bit PC version of UNIX called Xenix.

A recently popularized UNIX-like operating system which runs on PCs
(and other platforms) is Linux. Linux is a free UNIX work-alike, independently
developed by a Finnish student, Linus Torvalds. Using the Internet he freely
distributed his code and collaborated with many other programmers to
develop the Linux kernel and its many add-on utilities. The kernel is the heart
of the operating system that interfaces to peripherals and schedules and runs
tasks, along with controlling the file system. The addition of several hundred
utility programs makes a full distribution of Linux equal or superior to
commercial PC operating systems. In addition, versions of Linux exist for
many different types of computers, not just Intel-based PCs.

Linux, like UNIX, is a multitasking, multiuser operating system with full
security features (as in Microsoft Windows NT). Later versions even support
multiple processors in a single PC. It has extensive networking support and
a growing list of free and commercial application software. Linux can even
run software written for other operating systems and CPUs through emulation
programs such as emu for MS-DOS, wine for MS Windows, and executor for
the Macintosh operating system.

Linux is an extremely robust multitasking system that does a good job
of isolating tasks from each other. An application program sends requests to
the kernel using system calls. These calls are very general-purpose and not
device-specific, which provides a great deal of flexibility.

7.7 Protected-Mode Operating Systems 141

An important part of Linux is the shell, which is a flexible command
interpreter that also acts as a powerful, high-level command language.
Complex tasks can be automated using simple shell programs or scripts. Linux
also supports graphical user interfaces (GUIs) such as the X Window System,
developed by MIT. This allows Linux users to work in an environment similar
to MS Windows.

You can download a version or distribution of Linux for free via the
Internet. A distribution contains code for the kernel, utilities, shells, GUIs,
and installation programs. Alternatively, you can buy, at a nominal price, a
prepackaged Linux distribution which includes manuals, technical support,
and often some commercial applications. Two popular commercial Linux
distributors are Red Hat and Caldera.

Linux is especially attractive if you want to do extensive software
development because it is usually distributed with compilers and other soft-
ware tools. Since the source code is also distributed with it, you can even
customize the operating system.

This completes our survey of PC software interfacing. In the next
chapter, we will explore common PC hardware interface standards including
GPIB, RS-232C, and USB.

C H A P T E R

Standard Hardware
Interfaces

Previously we saw how a PC's I/O operates from its expansion bus. However,
not all external I/O goes directly through the expansion bus. Often a standard
hardware interface is used either by another computer or by an external
peripheral device. This is increasingly the case with newer PCs that contain
very few motherboard expansion slots and rely more on standard interface
ports. We will explore several of these parallel and serial computer interfaces.

8.1 Parallel versus Serial Digital Interfaces

In general, digital computer interfaces to the outside world fall into two
categories: parallel and serial. The differentiation between the two is impor-
tant. For a digital interface n bits wide a parallel device uses n wires to
simultaneously transfer the data in one cycle, whereas a serial device uses
one wire to transfer the same data in n cycles. All things being equal (which
they rarely are), the parallel interface transfers data n times faster than the
serial interface.

Figure 8-1 shows an 8-bit wide interface between a PC and an external
device. For simplicity, let us assume the data is unidirectional. The parallel
interface in Figure 8-la consists of eight data lines and one or more control
lines. Control lines are needed to tell the receiving side when data is available
(when the data lines are valid) and sometimes to acknowledge to the trans-
mitting side that the data was received (a handshake). If this was a bidirec-
tional interface, another control line indicating data direction would be

142

8.1 Parallel versus Serial Digital Interfaces 143

PC

DO ^
D1 ^
D2 ^

D3 ^
D4 ^

D5 ^

D6 ^

D7 ^
^ CONTROL ^

Peripheral

(a) 8-bit, Unidirectional Parallel Interface

PC

DATA ^

^ CONTROL ^

Peripheral

(b) Unidirectional Serial Interface

Figure 8-1 Simple unidirectional digital interfaces: (a) parallel and (b) serial.

needed, along with a mechanism to prevent both sides from transmitting at
the same time.

The serial interface in Figure 8-lb consists of only one data line (if it
were bidirectional it probably would have two) and one or more control lines.
In this scheme the data is time multiplexed. Control lines are used to indicate
when the receiving end is ready to get the data along with other functions.
The digital value of the data line represents a different bit at a different time.
This requires a timing reference for the receiving end to decode the data
accurately. When an external timing reference is used, this becomes a syn-
chronous serial interface, with a control line carrying the required clock
signal. When a receiver's internal timing reference is used, this becomes an
asynchronous serial interface. To synchronize the incoming data stream with
the internal clock, either a separate control line is used or, more commonly,
a special start bit with a predetermined value is transmitted first. Then the
data is sent, one bit per clock cycle, as shown in Figure 8-2.

Even though a parallel interface is inherently faster than an equivalent
serial interface, it has its own drawbacks. Many parallel interfaces uses
standard digital logic voltage levels, usually TTL compatible. This limits their
noise immunity, where a long length of cable acts as an antenna, producing

144 CHAPTER 8 Standard Hardware Interfaces

Data

Bit Number

Bit Value

1

1

2

0

3

1

4

1

5

0

6

0

7

0

8 1

1 \

Figure 8-2 Sample 8 bits of serial data.

errors in the received data. In noisy environments, shielded cables are often
required. In addition, long cables increase the capacitive coupling between
adjacent signal lines, producing cross-talk errors (a signal transition on one
signal line induces a voltage spike in another signal line). Dispersion further
distorts the signals as cable length increases. All in all, parallel interfaces
have severe cable length limitations, often on the order of just a few meters.
High-speed interfaces, both serial and parallel, tend to use differential signal
lines (where a pair of wires carry a single signal) to lower noise immunity.

In contrast, some serial interfaces use much wider voltage swings to
increase noise immunity (±12 V is not unusual for RS-232C) and with few
active signal wires, cross-talk noise is minimized. This enables serial inter-
faces to connect equipment hundreds of meters apart. Additionally, because
fewer wires are required (and often shielding is not needed), serial interface
cables are substantially less expensive (per foot) than parallel interface cables.

We will now explore some of these standard digital interfaces. First we
will look at common parallel interfaces. Then, we will examine several serial
interfaces supported on PCs. Later, we will look at some high-speed serial
interfaces developed for PCs, including FireWire (IEEE 1394) and USB, as
well as network interfaces such as Ethernet.

8.2 Parallel Interfaces

8.2.1 Centronics (Standard) Printer Interface

The standard parallel printer interface, sometimes called the Centronics inter-
face, is available on most PCs (except for some of the newest models) and
is supported by most printers. It is an 8-bit, unidirectional interface designed
to transmit data from a computer to a printer, using TTL signal levels. The
data usually sent is either ASCII codes, where each byte representing a
printable character or a command (such as a line feed), or graphics data,
consisting of command codes or data values (see Section 8.3.1 for a discussion
of ASCII codes).

8.2 Parallel Interfaces 145

TABLE 8-1
Standard Parallel Printer Port Pin Assignments

1 PIN#

1 1
1 ^

3

1 ^
5

1 ^
1 ^

8

9

1 ^^
\ ^^

12

13

1 ^̂
15

1 ^̂ 1
1 '•̂
1 18-25 1

SIGNAL NAME

-STROBE

DATAO

DATA1

DATA2

DATA3

DATA4

DATA5

DATA6

DATA7

-ACK

BUSY

PE

SELECT

-AUTO FD XT 1

-ERROR

-INIT

-SELECT IN

GROUND

DIRECTION 1

OUT

OUT

OUT

OUT

OUT

OUT 1
OUT 1
OUT 1
OUT 1
IN 1
IN 1
IN 1
IN 1
OUT 1
IN 1
OUT 1
OUT 1

N/A 1

The standard IBM-style PC parallel printer port uses a 25-pin connector
(DB-25) with the pin designations shown in Table 8-1. A special cable is used
to connect this port to the 36-pin Centronics connector on most printers. The
signal directions shown in Table 8-1 are relative to the PC. Signals with names
starting with a "-" (such as -ACK) are active low. The eight data lines,
DATA0-DATA7, are unidirectional, sending data to the printer. The primary
control and handshake lines in this interface are BUSY, -ACK, and
-STROBE. BUSY goes low when the printer is ready to receive a new data
byte. When the PC detects the printer is ready, it puts out data on the lines
DATA0-DATA7 for a minimum of 500 nsec. Then it asserts the -STROBE
signal for a minimum of 500 nsec, which tells the printer to read the data.
The PC keeps the data lines valid for at least another 500 nsec.

In the meantime, the printer asserts BUSY and does its internal pro-
cessing. When ready, it simultaneously negates BUSY and asserts -ACK. -ACK
is typically asserted for 5 to 10 |LLsec. The -ACK line is virtually a redundant

146 CHAPTER 8 Standard Hardware Interfaces

BUSY

-,—Valid
DATA 0-7

-STROBE

-ACK

TIME (Msec) | | | | | | I I I I | I I I I | I I I I |

0 5 10 15 20

Figure 8-3 Parallel printer port interface timing.

signal and usually the BUSY line alone is an adequate handshake for the PC,
signaling data was received by the printer. The timing of this interface is
shown in Figure 8-3.

The other parallel port control lines are used for various status and
control functions. When -AUTO FEED XT is asserted by the PC, the printer
automatically performs a line feed after it receives a carriage return. When
the PC asserts -INIT for a minimum of 50 |Lisec, the printer is reset to a
known state (usually equivalent to its initial power-on conditions). When the
PC asserts -SELECT IN, it enables the printer to receive data.

When the printer asserts PE it indicates it is out of paper. When the
printer asserts SELECT it indicates it is enabled to receive data from the PC.
When the printer asserts -ERROR it indicates that it is in an error state and
cannot receive data.

A DOS-based PC can support up to three standard parallel printer ports
(depending on its BIOS) designated LPTl, LPT2, and LPT3. Each port uses
three consecutive I/O addresses. When a system boots up, DOS assigns the
physical printer ports present to the logical LPT designations. LPTl is
assigned first, followed by LPT2, then LPT3. The starting addresses of parallel
printer ports, in the order assigned to LPT designations are 3BCh, 378h, and
278h. So, if all three ports are present in one system, port 3BCh becomes
LPTl, port 378h becomes LPT2, and port 278h becomes LPT3. If port 3BCh
is not present, port 378h becomes LPTl and port 278h becomes LPT2. If
only one parallel printer port is present it is designated LPTl. In newer PCs

8.2 Parallel Interfaces 147

running Windows 95 or later, the operating system determines the parallel
port settings as well as the parallel port type (see Section 8.2.2).

The printer port's starting address (3BCh, 378h, or 278h) is the data port,
which can be an input or output. Writing to this port address latches 8 bits of
data on the DATA0-DATA7 lines sent to the printer. Reading from this port
address returns the last byte latched (the real-time status of the output).

The printer port's next address (3BDh, 379h, or 279h) is the status port,
which is read-only. It returns to the PC the value of the five status lines coming
from the printer on the upper five bits of the port, as follows:

Bits 0-2 = unused
Bit 3 = -ERROR
Bit 4 = SELECT
Bit 5 = PE
Bit 6 = -ACK
Bit 7 = -BUSY

These lines can be polled for proper handshaking during a data output
sequence. In addition, when -ACK is asserted (active low) it can generate
IRQ7 (if enabled). This allows interrupt-driven software to handle printer
output as a background task, for printer spooling. The printer would interrupt
the PC, via its -ACK line, whenever it is ready to receive new data.

The printer port's next address (3BEh, 37Ah, or 27Ah) is the control
port that can be an input or output. As an output, the PC latches the values
of its control lines on the lower five bits of the port, as follows:

Bit 0 = -STROBE (1 = asserted)
Bit 1 = -AUTO FEED XT (1 = asserted)
Bit 2 = -INIT (0 = asserted)
Bit 3 = -SELECT IN (1 = asserted)
Bit 4 = IRQ EN (1 = asserted)
Bit 5-7 = unused

Note that most of the lines are inverted and asserted by a high bit except
for -INIT, whose output follows the control port bit. The signal IRQ EN
enables the port's IRQ7 output when bit 4 is latched high. As with the data
port, a read from the control port will return the last value written to it.

The easiest way to use this parallel port to send data to a printer is with
existing BIOS, DOS, or Windows functions. Using the BIOS, INT 17h ser-
vices the printer ports. It can print a character (Function 0), initialize the
printer (Function 1), or read the printer status (Function 2). On printing a
character, the proper handshaking protocol is used, with a time out if there
is no response (if BUSY stays asserted indefinitely). The logical printer port

148 CHAPTER 8 Standard Hardware Interfaces

(LPT) designation is used to select the desired printer. The BIOS does not
support printer spooling, and special software must be used to support IRQ7
for printer output control.

A PC's parallel printer port can be used for other purposes besides
printing, with certain limitations. It is ideal as a general-purpose output port
with its eight unidirectional data lines, four output control lines and five input
control lines. There was originally no standard software support for using it
this way, unless the standard printer interface handshake protocol (as in Figure
8-3) was adhered to. This required special software to directly address the
I/O ports used, supporting a custom protocol.

The parallel printer port can also be used as a general-purpose 5-bit
input port, using the five status lines (-ACK, BUSY, PE, SELECT, and
-ERROR). The real-time state of these lines can be read from the printer
port's status register. In addition, the -ACK line can be used to generate
IRQ7. The disadvantage here is having only 5 bits available for input and not
being able to latch the data. Some commercial software has used this
approach, called a nibble mode, to transfer 4 bits of data at a time. A common
application is connecting a laptop computer to a PC via a special cable.

8.2.2 Advanced Parallel Printer Ports

The original printer port's limitations, of relatively low speed (only about
100 Kbytes/sec) and being primarily unidirectional, led to several improved
standards.

The PS/2 Bidirectional Parallel Port IBM originally addressed the standard
parallel port limitations in its PS/2 line of PCs. The parallel port on a PS/2
system has a fully bidirectional 8-bit data port, while keeping compatibility
with the earlier implementation, as previously described. On this bidirectional
parallel port (sometimes called a PS/2 parallel port), there is an extended
mode that enables controlling the direction of the data port. Control port bit
5 (previously unused) now determines whether the data port is an output (bit
5 = 0) or an input (bit 5 = 1) port. The other control lines can now be used
for different handshaking operations.

The PS/2 parallel port could also operate at speeds up to about 250
Kbytes/sec. It was better suited for transferring data between two computers
than the standard (Centronics) parallel port was.

The Enhanced Parallel Port The Enhanced Parallel Port (EPP) was origi-
nally developed by Xircom Inc., Zenith Data Systems, and Intel Corp. as a

8.2 Parallel Interfaces 149

next-generation parallel port. It is a fully bidirectional port with a typical data
rate of about 800 Kbytes/sec and a peak rate of 2 Mbytes/sec.

The EPP uses a data register up to 32 bits wide (if it is running on a
32-bit processor) to speed up data transfers to the PC bus. The EPP uses
hardware to handle all the details of partitioning 32-bit data into 8-bit transfers
and controlling handshaking with the peripheral device (printer). Only one
I/O port operation is required to write (or read) parallel port data. These
features, along with stringent timing control, allow EPP to operate as fast as
2 Mbytes/sec (500 nsec for a single transfer cycle).

The EPP's pin assignments are shown in Table 8-2. EPP is backward
compatible with a standard parallel port (often designated SPP). There are
only six control lines used by EPP's hardware handshaking protocol. A signal
name beginning with "n" indicates that it is active low. The nWRITE signal

TABLE 8-2
Enhanced Parallel Port (EPP) Pin Assignments

1 PIN #

1 ^
2

3

1 ̂
5

6

[7
8

9

10

11

1 ^̂
13

1 ^^
15

16

17

1 18-25

SIGNAL NAME

nWRITE

ADO

AD1

AD2

AD3

AD4

AD5

AD6

AD7

INTR

nWAIT

Spare (unused)

Spare (unused)

nDSTRB

Spare (unused)

nINIT

nASTRB

I GROUND

DIRECTION 1

OUT 1

IN/OUT 1

IN/OUT 1

IN/OUT

IN/OUT 1

IN/OUT

IN/OUT 1

IN/OUT 1

IN/OUT 1

IN 1
IN 1
IN 1
IN 1
OUT

IN 1
OUT

OUT

I N/A 1

150 CHAPTER 8 Standard Hardware Interfaces

indicates whether the current cycle is a write or read operation. The INTR
line is used by a peripheral to signal the PC that it needs service. The nWAIT
signal is part of the hardware handshake and is used by the peripheral to
signal that it has finished the transfer. The nDSTRB line indicates that there
is valid data on the AD0-AD7 lines. The nINIT signal, when asserted, forces
the interface out of EPP mode and into SPP mode. The nASTRB line indicates
that there is a valid address on the AD0-AD7 lines.

EPP support four types of cycles: data write, data read, address write,
and address read. An address refers to a register on the peripheral (printer or
other device). Once an address is specified, data transfers, including bursts
or multiple bytes, can occur between the PC and the register.

Figure 8-4 shows a simple EPP data write cycle. The nWRITE line first
goes low to indicate a write cycle. Data is placed on the ADO-7 lines and
nDSTRB is asserted (as long as nWAIT is low). The EPP waits for the
handshake from the peripheral when nWAIT goes high. Then, nDSTRB is
negated (high). When the peripheral is ready for another transfer, it sets
nWAIT low again. If nWAIT never goes high (because of a hardware failure)
the EPP times out after about 10 |Lisec.

The EPP uses the original three SPP registers at the I/O address base
(3BEh, 37Ah, or 27Ah), base+1 and base+2. It additionally uses an EPP

nWRITE

nDSTRB

nWAIT

ADO-7 I DATA VALID

Figure 8-4 EPP Data Write cycle.

8.2 Parallel Interfaces 151

address register at location base+3 (for address write/read cycles) and an EPP
data register starting at location base+4. This data register can be up to 32
bits long (four I/O addresses) on PCs that support 32-bit I/O transfers. This
way, a single I/O write to the data register under software control can result
in four EPP byte writes to a peripheral, under hardware control. This mini-
mizes CPU overhead in servicing the parallel port.

The Extended Capabilities Port The extended capabilities port (ECP) was orig-
inally developed by Hewlett Packard and Microsoft as a means of extending
EPP functionality into a universal expansion bus. As such, ECP is backward
compatible with both SPP and EPP standards and has transfer rates compa-
rable to EPP. The ECP protocol allows a PC to negotiate with a peripheral
to determine which transfer mode and speed to use. A PC can query the
peripheral to check its capabilities.

ECP uses seven signals to control data transfers, with hardware hand-
shaking similar to EPP. It also uses separate data and command transfer cycles,
where one of the control lines acts as a data/command flag.

ECP has several hardware features to improve its performance. It
employs FIFO (first in, first out) memories to buffer data and reduce CPU
overhead. ECP supports both hardware interrupts (IRQs) and DMA transfers
to further minimize CPU involvement. Most notably, ECP supports data
compression using run length encoding (RLE) for compression ratios up to
64:1. RLE works well with data that has high bit redundancy, such as printer
and scanner data (see Chapter 9 for more information on data compression).

As with EPP, ECP support the three original SPP I/O registers at the
base address (3BEh, 37Ah, or 27Ah), base+1, and base+2. Unlike EPP, ECP
adds its new registers at address base+400h (data FIFO), base+401h (config-
uration register), and base+402h (extended control register). The pin assign-
ments for an ECP connector are shown in Table 8-3.

Tiie IEEE 1284 Standard In 1994 the IEEE approved a parallel port standard:
IEEE 1284. This standard encompasses all the parallel ports we have previ-
ously discussed and classifies them by the transfer mode used. IEEE 1284
covers connectors (several different types) and their pin assignments, cables
and electrical operation of each interface.

Under IEEE 1284, the SPP used unidirectionally is operating in com-
patibility mode. When an unmodified SPP is used for limited bidirectional data
transfers it operates in nibble mode. A PS/2 bidirectional port uses byte mode
while an EPP operates in EPP mode and an ECP in ECP mode. When a parallel

152 CHAPTER 8 Standard Hardware Interfaces

TABLE 8-3
Extended Capabilities Port (ECP) Pin Assignments

1 PINT^
1 ̂
1 ̂

3

1 ̂
1 ̂

^
1 7

8

9

1 ^̂ 1 ^̂
1 ^̂
1 ^̂
1 ^̂
1 15

1 16

1 ^̂
1 18-25

SIGNAL NAME

HostCLK

DATAO

DATA1

DATA2

DATA3

j DATA4

DATA5

DATA6

DATA7

PerlphCLK

PeriphAck

nAckReverse

XFlag

HostAck

nPerlphReq

nReverseReq

1 1284Actlve

GROUND

DIRECTION 1

OUT

IN/OUT 1

IN/OUT 1

IN/OUT

IN/OUT

IN/OUT 1

IN/OUT

IN/OUT 1

IN/OUT

IN 1
IN 1
IN

IN 1
OUT

IN 1
OUT

OUT

N/A 1

port is IEEE 1284 compliant, it supports EPP and ECP modes at data rates
up to 2 Mbytes/sec over cables as long as 10 meters.

The EPP and ECP are electrically defined by IEEE 1284 but their
operating protocols are determined by their independent standards. Still, IEEE
1284 has been an important means of standardizing the use of PC parallel
ports, especially for advanced data transfer applications with intelligent
peripherals.

8.2.3 The IEEE 488 (GPIB) Interface

Another common parallel interface, primarily used for data acquisition, is
IEEE 488 or GPIB (general-purpose interface bus). This interface is some-
times called the HPIB, as it was originally developed by Hewlett Packard to
connect computers to their programmable instruments. GPIB was designed
to connect multiple peripherals to a computer or other controlling device.

8.2 Parallel Interfaces 153

Even though it was intended for automated instrumentation apphcations, it
has been used to drive standard PC peripherals such as printers, plotters, and
disk drives. It transfers data asynchronously via eight parallel data lines and
several control and handshaking lines. All signals are at TTL voltage levels.

Instead of connecting one computer to one peripheral device, GPIB
allows one computer to control up to 15 separate devices. In many ways, GPIB
acts like a conventional computer bus or network. Each GPIB device has its
own bus address, so it can be uniquely accessed. It uses a hardware handshak-
ing protocol for communications, which supports slow devices. When com-
municating between fast devices, data rates up to 1 Mbyte/sec can be obtained.

The GPIB uses a master-slave protocol for data transfer. There can only
be one bus master, or controller, at any given time. Typically, the master
device is the controlling computer. A device on the bus has one of three
possible attributes: controller, talker, or listener. The controller manages the
bus, sending out commands that enable or disable the talkers and listeners
(usually, slave devices). Talkers place data on the bus, when commanded to.
Listeners accept data from the bus. A device can have multiple attributes, but
only one at any given time. The computer can be a controller, talker, and
listener; a read-only device, such as a plotter, will just be a listener; and a
write-only device, such as a digital voltmeter, can be both a talker (when it
reports a data reading) and a listener (when it is sent setup information, such
as a scale change).

The GPIB cable consists of 16 signal lines divided into three groups.
The first group of signals consists of the eight bidirectional data lines,
DI01-DI08. The second signal group consists of the three handshaking lines
used to control data transfer: DAV, NRFD, and NDAC. The third signal group
consists of five interface management lines that handle bus control and status
information: ATN, IPC, REN, SRQ, and EOI.

The GPIB cable itself consists of 24 conductors, shielded, with the extra
eight lines grounded. The cable is terminated with a special connector having
both a plug and a receptacle, so that all the devices on the bus can be daisy-
chained together in either a linear or star configuration. Typically, the cable
length between any two devices on the bus must be no more than 2 meters,
while the total cable length of the entire bus must be no more than 20 meters.
To exceed these limits, special bus extenders are needed. An additional lim-
itation is that at least two-thirds of the devices on the bus must be powered on.

The GPIB uses standard TTL logic levels with negative logic, so a
control line is asserted at logic 0. This is because open-collector (or open-
drain) drivers are normally used on the bus interfaces. Therefore, a signal is
pulled to a logic 1 level until a device asserts it and pulls it down to a logic
0 level (this is a standard OR-tied technique). Figure 8-5a shows a simple
GPIB linear configuration with four devices on the bus: a PC (controller).

154 CHAPTER 8 Standard Hardware Interfaces

CONTROLLER

(PC)

DAV

S
LISTENER
(PLOTTER)

U
TALKER
(METER)

LISTENER/TALKER
(DISK DRIVE)

(a)

(b)

Figure 8-5 General-purpose interface bus (GPIB): (a) Typical GPIB linear config-
uration; (b) Open collector logic of a GPIB signal line (DAV).

plotter (listener), meter (talker), and disk drive (listener and talker). Note that
there is a separate cable connecting each pair of devices in the daisy chain.
No special termination is needed for the last device.

Figure 8-5b shows schematically the electrical connection of a signal
line (DAV in this example), with open-collector drivers drawn as a switch to
ground. Special line drivers specified for the GPIB are used on these interfaces
to ensure that when a device is not powered on it does not load down the
signal line (the switch to ground is open). Even with special drivers, there is
some leakage current to ground when a device is not powered on. That is
why a maximum number of devices are allowed to be powered off when the
GPIB is operational.

The pin designations for the standard GPIB connector is shown in Figure
8-6. As previously mentioned, the bidirectional data lines are signals
DI01-DI08. The descriptions of the three handshake lines are as follows:

1. DAV (data valid) indicates when the data line values are valid and
can be read.

2. NRFD (not ready for data) indicates whether or not a device is ready
to accept a byte of data.

3. NDAC (not data accepted) indicates whether or not a device has
accepted a byte of data.

8.2 Parallel Interfaces 155

DI01
DI02
DI03
DI04

EOl
DAV

NRFD
NDAC

IFC
SRQ
ATN

SHIELD

o

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
21
22
23
24

o

p i05
pi06
p i07
p i08
REN
GND
GND
GND
GND
GND
GND
SIGNAL GROUND

Figure 8-6 GPIB connector and pin designations.

The descriptions of the five interface management lines are as follows:

1. ATN (attention) is asserted by the controller when it is sending a
command over the data lines. When a talker sends data over the data
lines, ATN is negated.

2. IFC (interface clear) is asserted by the controller to initialize the bus
when it wants to take control of it or recover from an error condition.
This is especially useful when there are multiple controllers on a bus.

3. REN (remote enable) is used by the controller to place a device in
the local or remote mode, which determines whether or not it will
respond to data sent to it.

4. SRQ (service request) is used by any device on the bus to get the
controller's attention, requesting some action.

5. EOI (end or identify) is a dual-purpose line. It is used by a talker to
indicate the end of the data message it is sending. It is also used by
the controller requesting devices to respond to a parallel poll.

The sequence used to transfer data asynchronously on the bus, using
the handshaking signals, is shown in Figure 8-7. This sequence is between
an active talker (or the controller) and one or more active listeners. The speed
of the transfer is determined by the slowest device on the bus. Initially, all the
Usteners indicate their readiness to accept data via the NRFD line. When a

156 CHAPTER 8 Standard Hardware Interfaces

NRFD

DAV 2|isec—*

DI01-8 DATA VALID

NDAC

Figure 8-7 GPIB data transfer handshaking.

device is not ready, it pulls the NRFD line to a logic level 0, via its open
collector output. As long as one active listener is not ready, NRPD is held
low. Only when all active listeners are ready to receive data can NRFD go
high (to logic level 1).

When the active talker (or controller) sees NRFD is high, it places its
data byte on the bus (lines DIOl-8) and waits 2 |isec for the data bus to
settle. Then it asserts DAV (to logic level 0), telling the active listeners to
read the data. The listeners then pull NRFD low again, in response to the DAV.

The active listeners have all been holding NDAC active low. After DAV
is asserted, as each active listener accepts the data on the bus it releases
NDAC. When the last (slowest) listener releases NDAC, the signal goes high.
The active talker (or controller) sees NDAC go high, negates DAV (goes
high), and no longer drives the DIO lines.

Finally, the listeners recognize the negating of DAV and pull NDAC
back low again, completing the transfer cycle. Now the handshake signals
are ready for another data transfer to begin.

An important point is that this data transfer cycle is occurring between
an active talker and one or more active listeners. Once the bus has been
configured with talkers and listeners activated, the controller does not have
to be involved in the transfer (unless it is operating as a talker or listener).
For example, a disk drive on the GPIB could send data to a printer on the
bus without a computer's involvement, once the process was set up.

Two types of data are sent over the DIO lines: control data and message
data. When the data flows from a talker to selected listeners, it is a message,
which is machine-dependent data. This message data can either be an instruc-
tion for a device (e.g., change the output voltage on an programmable power
supply) or data to/from a device (e.g., a voltage reading from a DMM). When
a controller uses the data lines, it is sending control data (a command) to all

8.2 Parallel Interfaces 157

the devices (both talkers and hsteners) on the bus. The controller asserts the
interface management line ATN to signal that this is a control data transfer
(normally, it is negated for message data transfers). When ATN is asserted,
any active talker releases the DAV line. The control data is sent by the
controller using the same handshaking protocol described above. The major
difference is that all devices on the bus receive this data, whether listener or
talker and regardless of their active/inactive status.

The control data handles many aspects of the bus operation. It can
configure devices as active listeners or talkers or it can trigger a device to
perform its specific function. Each device on the bus has a unique 5-bit address
(0-30). The controller can specify a device's address, enabling it as an active
listener, for example, during a control data transfer cycle. Since control data
commands are used for configuring the active talker and listeners, it must be
able to address all devices on the bus.

Device address 31 has unique meaning for setting up listeners and
talkers. If a control data command is sent to activate a listener at address 31,
it actually deactivates all listeners. This is effectively the "unlisten" command.
Similarly, when a control data command is sent to activate a talker at address
31, it deactivates the current talker. This is the "untalk" command. In addition,
if a device is selected as the active talker, any talker that is currently active
deactivates itself. This ensures there is only one active talker at a time without
requiring the bus overhead to explicitly deactivate the previous talker.

Another important GPIB management line is SRQ (service request),
which is asserted by a device when it requires service from the controller. This
may be an error condition in the device or an external event sensed by the
device. Using SRQ is analogous to a processor interrupt, except that in this
case the controller can ignore the SRQ or respond whenever it wants to. When
the controller attempts to service the SRQ, it must first determine which device
(or devices) is asserting the line. To do this it must poll all the devices on the bus.

There are two types of GPIB polling techniques: serial and parallel. In
a serial poll, the controller issues a serial poll command, asserting ATN, to
each device on the bus, getting back 8 bits of status information. One of these
status bits indicates whether the device issued the service request. The other
bits convey device-dependent information. The main disadvantage with using
a serial poll is that it is slow, requiring the controller to poll all the devices
one at a time. Using a parallel poll is faster. In this case, the controller issues
the appropriate parallel poll bus command, along with asserting the ATN and
EOI lines. Up to eight devices on the GPIB can respond at once, setting or
clearing the appropriate bit. In a parallel poll the only information obtained
is which devices requested service.

So far, software aspects of the GPIB have not been mentioned,
because they were not part of the original IEEE 488.1 specification and

158 CHAPTER 8 Standard Hardware Interfaces

were device-dependent. Every GPIB compatible device had its own unique
set of commands. For example, a function generator would have a command
telling it what type of waveform to output, and a programmable power supply
would have a command for setting its current limit. These commands, and
any appropriate responses such as the readings from a digital voltmeter, were
all message data. Usually, message data on the GPIB consisted of ASCII
characters. The use of ASCII data for the GPIB is supported by HP and the
vast majority of GPIB equipment manufacturers.

IEEE 488.2 Tektronix attempted to standardize instrument message formats
with a set of common commands and controller protocols. This grew into a new
GPIB standard: IEEE 488.2-1987. The original GPIB standard was renamed as
IEEE 488.1. The newer 488.2 standard is a superset of 488.1 (it is backward
compatible).

The standard defines 10 commands that IEEE 488.2 compatible instru-
ments must respond to. A good example of this is IDN?, which is the iden-
tification query conmiand. An instrument should respond to this command
with its manufacturer, model number, serial number, and revision.

IEEE 488.2 added a new status reporting structure to the original 488.1
status byte. This consists of a standard event status register (ESR) and an
output queue. The ESR reports device status and command errors. An event
status enable register determines which ESR bits become logically OR'd into
the ESB bit of the status byte register.

IEEE 488.2 also supports instruments that can save and recall config-
uration information in nonvolatile memory (such as EEPROMs). This is done
with the SAV and RCL commands.

One difference between the older and newer standard is the downgraded
use of the device clear (DCL) command in IEEE 488.2. DCL no longer resets
an instrument to its power-up state, as it did under IEEE 488.1. The RST or
RCLO command should be used for this purpose under 488.2.

The eight protocols defined under IEEE 488.2 are high-level routines
that combine multiple control sequences into standard system operations.
They include the ALLSPOOL (serial poll) and RESET protocols, supported
by controllers. The FINDLSTN protocol finds and lists all the devices con-
nected to the bus. The TESTSYS protocol runs a self-test of the system.

SCPI While IEEE 488.2 standardized communications with GPIB devices
it still did not resolve the problem of each instrument having a unique set of
commands. Hewlett Packard addressed this problem by developing its test

8.2 Parallel Interfaces 159

measurement language (TML) which evolved into the industry-wide standard
commands for programmable instruments (SCPI).

SCPI defines a comprehensive command set suitable for all GPIB instru-
ments using common keywords and progranmiing syntax. All SCPI-compatible
voltmeters, for example, respond to the same command for reading DC
voltage, independent of the manufacturer or model. Even different types of
instruments use similar SCPI conmiands.

SCPI commands are usually a series of keywords and parameters. For
example, the command to set the serial port bit rate on an instrument to 1200
bps would be

SYST:COMM:SER:BAUD 1200<CR>

The command to read back the bit rate would be

SYST:COMM:SER:BAUD?<CR>

The structure of the GPIB standards and how they interact is illustrated
graphically in Figure 8-8.

Using a GPIB system can be very advantageous for complex data
acquisition and control systems that require the high-level functionality of
commercial test instruments. For example, consider a system required to
characterize the frequency response of an electronic block box. Figure 8-9
shows a simple implementation using GPIB-compatible instruments: a func-
tion generator (to produce the variable excitation signal) and an AC voltmeter
(to read the results).

A PC acts as the bus controller, using a commercially available GPIB
interface card (see Chapter 11 for a sample of commercial sources). It controls
the frequency and amplitude of the function generator's output (in this case
a sine wave) and reads the AC voltmeter's input. Initially, the function gen-
erator should be directly connected to the AC voltmeter, to calibrate the system
at its test frequencies. Then the device under test (DUT) is inserted between
the generator and meter, and a new set of amplitude measurements is taken
at the same set of frequencies. From this set of data, the transfer function or
frequency response of the device under test (DUT) can be calculated.

There is a large amount of software support for PC-based GPIB inter-
faces. Most GPIB interface cards for PCs come with software drivers for use
with popular progranmiing languages, including versions of C, C-H-, and
BASIC. Most high-end data acquisition software packages, such as MATLAB
or LABTECH NOTEBOOK (see Chapter 11), support common GPIB cards,
making the details of the GPIB operations invisible to the user. There are
many other software packages with special features, making the process of
implementing a GPIB system relatively painless. This is extremely useful

160 CHAPTER 8 Standard Hardware Interfaces

Common Commands

Syntax/Data Structures

Handshaking/Control

Mechanical/Electrical Standards

Figure 8-8 Structure of the GPIB standards.

because of the ever-growing number of instruments using the GPIB interface.
GPIB equipment runs the gamut from power suppUes and waveform synthe-
sizers to digital storage oscilloscopes and network analyzers, to name just a few.

For example, National Instruments, a leading manufacturer of GPIB
interfaces for a wide range of computers, provides the NI-488.2 software
package for its PC-based products. NI-488.2 includes drivers for calling
industry-standard NI-488 functions or newer NI-488.2 functions that cover
all the IEEE 488.2 protocols. They offer software packages for most popular
operating systems, such as Windows, Mac OS, and versions of UNIX (includ-
ing Linux).

8.2 Parallel Interfaces 161

GPIB PORT

FUNCTION
GENERATOR

OUTPUT O^.

GPIB PORT

AC VOLTMETER

INPUT

DEVICE
UNDER
TEST

Figure 8-9 GPIB Instrumentation example.

In an MS-DOS PC, the driver package would be loaded using standard
procedures. Then the special GPIB functions are called from the user's pro-
gram. One of the languages supported by the DOS version of NI-488.2 is
QuickBASIC, a compiled version of BASIC (see Chapter 13 for a discussion
of programming languages). A simple program in QuickBASIC to take a
reading from a digital multimeter is as follows:

CALL IBFIND("D]y[M",D]y[M%)
CALL IBWRT(DM!y[%, "F0R0S2")
CALL IBRSP(DMM%,SPR%)
CALL IBRD(DMM%,DATA$)
PRINT DATA$
END

The first line in this program, calling IBFIND, retrieves initialization
information on the specified device ("DMM") and returns the identifier code
needed for the other functions. The second line, calling IBWRT, sends a
device-specific message string to the DMM ("F0R0S2"), configuring it for
voltage type, range, and speed (this is not a SCPI-compatible instrument).
Next, the IBRSP call performs a serial poll on the DMM, checking its status.
Finally, the IBRD call takes a voltage reading on the DMM and returns it in
the string DATA$, which is then displayed by the print statement. In all of
this, the user does not have to care about the details of the GPIB data transfers.

Newer versions of NI-488.2 software for MS Windows 95/98/NT sup-
port Microsoft Visual C/C++, Borland C/C++, and Microsoft Visual Basic
32-bit compilers. These drivers take full advantage of 32-bit multitasking

162 CHAPTER 8 Standard Hardware Interfaces

operating systems. They also allow you to control several different GPIB
interface types (such as PCI and PCMCIA cards) from the same PC using a
single driver.

HS 488 By today's standards, the IEEE 488 maximum data rate of 1
Mbyte/sec is not very fast. One approach to improving this, developed by
National Instruments, is HS 488, a high-speed GPIB handshake protocol that
uses the same three control lines as IEEE 488 (DAV, NRFD, and NDAC).

HS 488 is backward compatible with standard GPIB instruments. How-
ever, if all devices on a bus support HS 488, the high-speed handshake is
used and overall data rates can run as high as 8 Mbytes/sec (for two devices
connected by no more than 2 meters of cable). A fully loaded bus with 15
devices connected by 15 meters of cable has a maximum HS 488 data rate
of 1.5 Mbytes/sec (still a 50% speed improvement).

HS 488 accomplishes this speedup by removing excessive propagation
delays and settling times associated with the standard IEEE 488 handshake
(designed for maximum cable length and bus loading). Since the actual delays
increase with longer bus cable lengths, the greatest speed improvement is
seen with short cables.

There are already many instruments that support this new protocol. HS
488 has been proposed as an addition to the IEEE 488.1 standard. Currently
(as of this writing) it is still a proprietary but well accepted standard.

8.2.4 Other Parallel Interfaces

Before leaving the topic of parallel digital interfaces, it should be noted that
there are many other standards besides the parallel printer interface (IEEE
1284) and the GPIB. Most of these, such as BCD instrumentation interfaces
or proprietary interfaces have little or no support in the world of PC-based
data acquisition equipment.

One significant parallel standard is the Small Computer System Inter-
face, or SCSI, which is usually used to connect high-speed disk drives to
PCs. It is a general-purpose, asynchronous parallel interface, originally 8 bits
wide, with later implementations 16 bits wide. SCSI can be used to connect
virtually any piece of equipment to a PC, including data acquisition devices.
In practice, this is rarely done, except for older Macintosh computers that
used a SCSI interface as an external expansion port.

Over the years, SCSI technology has continued to improve. Currently
(as of this writing), its fastest data transfer rate is 160 Mbytes/sec using Ultra
160/m Wide SCSI. The older SCSI interfaces used single-ended (SE) signal

8.3 Standard Serial Interfaces 163

TABLE 8-4
SCSI standards

1 SCSI STANDARD

SCSI-1

1 Fast SCSI

Fast Wide SCSI

1 Ultra SCSI

Ultra Wide SCSI

1 Ultra2 SCSI

Ultra2 Wide SCSI

[ultra 160/m SCSI

[ultra 160/m Wide SCSI]

BUS WIDTH
(bits)

8

8

16

8

16

8

16

8

16

SIGNAL TYPE
(SE or LVD)

SE

SE

SE

SE

SE

LVD

LVD

LVD

LVD

MAX DATA RATE 1
(Mbytes/sec) |

5 1
10

20 1
20

40 1
40 1
80 1
80 1

160 1

transmission (TTL or similar). Newer SCSI standards, such as Ultra2 SCSI
and Ultra 160/m SCSI, use low-voltage differential (LVD) signals to improve
data speed and integrity. SCSI interfaces are still only 8 or 16 bits wide, but
newer standards run at faster speeds. Table 8-4 shows some of the common
SCSI standards and their maximum data transfer rates.

8.3 Standard Serial Interfaces

Many standard digital serial interfaces are in use. They are differentiated by
several factors, including voltage levels, current drive capability, differential
versus single-ended lines, single receiver and transmitter versus multidrop
capability, half- versus full-duplex, synchronous versus asynchronous, type
of cable required, and communications protocols. These factors, in turn,
determine important system specifications such as maximum data rate and
maximum cable length. As we noted previously, the major reasons for using
serial interfaces are low cable cost and potentially long cable lengths. The
serial interfaces we will discuss in this section are all standards developed
by the Electronic Industries Association (EIA) and are identified by their EIA
standard number. The next section will cover high-speed serial interfaces
developed primarily for PCs: USB and IEEE 1394 (FireWire).

The EIA standards define electrical characteristics and definitions of
signal lines used in the interfaces. They do not define how the data will be
sent or what each bit means. The two types of protocols used are asynchronous

164 CHAPTER 8 Standard Hardware Interfaces

and synchronous. In an asynchronous protocol, the timing hardware at the
transmitter and that at the receiver are independent of each other (they are
not synchronized). Synchronization is provided by the data stream itself,
usually a particular level transition to indicate the start of data.

In a synchronous protocol, timing information is exchanged along with
data, providing a single clock signal used by both ends of the interface. This
allows serial transmissions at higher data rates than asynchronous protocols,
since extra control bits indicating the beginning and end of a data byte are
not needed, along with the extra time for an asynchronous receiver to syn-
chronize itself to an incoming data stream. It is, however, a more complicated
and expensive approach. Most standard PC-based serial data interfaces use
an asynchronous protocol. We will discuss the conmionly used asynchronous
protocols in the following sections, followed by a brief description of some
common synchronous protocols.

8.3.1 The EIA RS-232C and RS-423A Interfaces

Without any question, the EIA RS-232C interface is the oldest and most
common serial interface used by computer equipment. In fact, a PC's serial
port is almost always RS-232C compatible. Because of its widespread use,
RS-232C has paradoxically become one of the most nonstandard standards
available. This is because it is used for much more than originally intended.
RS-232C was developed in the 1960s as a standard for connecting data
terminal equipment (DTE), such as the "dumb" terminals used with main-
frame computers, to data communications equipment (DCE), such as
modems, over moderately short distances at modest data rates. Over the years,
RS-232C evolved as a general-purpose interface between many varieties of
equipment. One common example is connecting a PC to a printer or plotter.
You can even use a special interface box to control a GPIB system via a
computer's RS-232C port.

The RS-232C standard uses a 25-pin D-shell connector, with line des-
ignations as shown in Figure 8-10. Note that transmit and receive data direc-
tions are relative to the DTE end. RS-232C is a serial interface having two
data lines to support full-duplex operation. That is, the connected devices can
simultaneously transmit and receive data, if they are capable. The maximum
data rate on an original RS-232C interface is 20,000 bits per second (bps)
and the maximum cable length is 50 feet (although this can be increased at
lower data rates or in low-noise environments). In most PCs, the serial port
can operate as fast as 115,200 bps. Note that EIA RS-232C can support either
synchronous or asynchronous serial communications. In the vast majority of
applications, asynchronous communications is used. However, the inclusion

8.3 Standard Serial Interfaces 165

DTE

1

7

2

3

4

5

6

20

8

23

15

17

22

Protective Ground

Signal Ground

Transmitted Data (TXD)

Received Data (RXD)

Request to Send (RTS)

Clear to Send (RTS)

Data Set Ready (DSR)

Data Terminal Ready (DTR)

Received Line Signal Detector (Carrier Detect)

Speed Select

Transmit Signal Element Timing

Receive Signal Element Timing

Ring Indicator (Rl)

1

7

2

3

4

5

6

20

8

23

15

17

22

DCE

Figure 8-10 Standard RS-232C connections between data terminal equipment
(DTE) and data communications equipment (DCE).

of two lines, Transmit Signal Element Timing and Receive Signal Element
Timing, can provide the external clocking required by synchronous interfaces.

The RS-232C interface supports several handshaking lines, indicating
each device's readiness to send or receive data. This is not an interlocking
handshake, as used in GPIB for control of data flow. It simply enables or
disables data transmission. These lines include Request to Send (RTS), Clear
to Send (CTS), Data Set Ready (DSR), and Data Terminal Ready (DTR).
The control lines. Ring Indicator (RI), and Received Line Signal Detector (or
Carrier Detect, CD) are specifically used by modems.

On a PC, the usual RS-232C serial interface card or motherboard cir-
cuitry supports asynchronous communications only and uses either a DB-25
or DB-9 connector. A PC/XT compatible system typically uses the 25-pin
connector, with pin assignments shown in Figure 8-11. Note that some of the
EIA RS-232C standard signal lines are not used, such as those needed for
synchronous communications. In addition, four non-RS-232C signals are
added: +Transmit Current Loop Data, -Transmit Current Loop Data,
+Receive Current Loop Data, and -Receive Current Loop Data. These lines
support the 20 mA current loop interface, used by older Teletype equipment
and certain special devices such as industrial sensors.

166 CHAPTER 8 Standard Hardware Interfaces

7

2

3

4

5

6
ASYNCHRONOUS

ADAPTER 2°
8

22

9

11

18

25

Signal Ground

Transmitted Data (TXD) ^

Received Data (RXD)

Request to Send (RTS)

Clear to Send (RTS)

Data Set Ready (DSR)

Data Terminal Ready (DTR)

^ Received Line Signal Detector (Carrier Detect)

Ring Indicator (Rl)

+Transmit Current Loop Data ^

-Transmit Current Loop Data

^ +Receive Current Loop Data

^ -Receive Current Loop Data

Figure 8-11 Pin designations for 25-pin asynchronous adapter.

Newer PC systems (PC/AT and above) usually have a 9-pin connector,
with its pin assignments shown in Figure 8-12. This limits the signals available
to Transmitted Data (TXD), Received Data (RXD), DTR, DSR, RTS, CTS,
RI, and CD. Usually a cable adapter is required to connect this 9-pin port to
external devices with a conventional 25-pin D-shell connector.

Signals on RS-232C lines have well-defined electrical characteristics.
Only one driver and one receiver are allowed on a line. The signals are all
single-ended (unbalanced) and ground-referenced (the logic level on the line

ASYNCHRONOUS
ADAPTER

5

3

2

7

8

6

4

1

9

Signal Ground

Transmitted Data (TXD)

Received Data (RXD)

Request to Send (RTS)

Clear to Send (RTS)

^ Data Set Ready (DSR)

Data Terminal Ready (DTR)

Carrier Detect

Ring Indicator (Rl)

Figure 8-12 Pin designations for 9-pin asynchronous adapter.

8.3 Standard Serial Interfaces 167

+ 1 5 V -
+12V

+ 3 V -
Signal

Amplitude

10\/

AR\/

1 0 0

— Logic 0

— Logic 1

1 Bit Values

Figure 8-13 RS-232C signal levels.

depends solely on that signal's voltage value relative to the signal ground
line). The signals are bipolar with a minimum driver amplitude of ±5 V and
a maximum of ±15 V (±12 V is the most common voltage used) into a receiver
resistance of 3000 to 7000 ohms. Receiver sensitivity is ±3 V, so any signal
amplitude less than 3 V (regardless of polarity) is undefined. Otherwise, a
voltage level above +3 V is a logic 0 and below -3 V is a logic 1, as shown
in Figure 8-13. Another important parameter is a maximum slew rate of 30
volts per microsecond. This means that an RS-232C signal running at the
maximum voltage range of ±15 V must take at least 1 |Lisec to switch states.

If we look at the typical RS-232C application in Figure 8-14, where a
terminal is connected to a modem, we see that most of the handshaking lines

2

3

4

5

TERMINAL 6

20

7

8

22

Transmitted Data (TXD)

^ Received Data (RXD)

Request to Send (RTS)

^ Clear to Send (RTS)

Data Set Ready (DSR)

Data Terminal Ready (DTR) ^

Signal Ground

Carrier Detect

Ring Indicator (Rl)

2

3

4

5

6 MODEM

20

7

8

22

Analog
^ Line ^

Figure 8-14 RS-232C connections between a terminal and a modem.

168 CHAPTER 8 Standard Hardware Interfaces

act in pairs. When the terminal wants to estabUsh communications, it asserts
DTR. As long as the modem is powered on and operational, it asserts DSR
as the handshake. These signals stay asserted as long as the communications
link exists. When the terminal is ready to send data it asserts RTS. The modem
generates a carrier signal on its analog line (usually a telephone line connec-
tion) and after a delay (allowing time for the modem on the other end to
detect the carrier) it asserts CTS. Then the terminal can transmit its data over
TXD.

When the terminal is finished transmitting, it negates RTS, causing the
modem to turn off its carrier and negate CTS. If the modem now receives a
carrier from a remote system over the analog line, it asserts CD. When it
receives data from the remote system, it sends the data to the terminal over
RXD. The cable used to connect the terminal to the modem is a straight-
through variety. That is, pin 2 on one end goes to pin 2 on the other end, pin
3 on one end goes to pin 3 on the other end, and so on.

In actual practice, RS-232C interfaces are used to connect many dif-
ferent types of equipment. The asynchronous communications port in a PC
(the serial port) is nearly always set up as a DTE (TXD is an output line and
RXD is an input line—the opposite is true for a DCE device). The meaning
of the handshaking lines is software-dependent and they may not have to be
used. If required, just three lines can be used to minimize cable costs: TXD,
RXD, and signal ground. If the software requires it, CTS and DSR must be
asserted at the PC end for it to communicate, as when BIOS INT 14h
functions are used for sending and receiving data over the serial port (for
DOS programs).

For example, if we want to send data between two nearby PCs without
using two modems, we need a special cable, as shown in Figure 8-15. There
are two approaches we can use to satisfy the handshake lines. In Figure 8-15a
we implement full handshaking support, using seven wires. The data lines
are crossed over, so TXD on one side is connected to RXD on the other side.
Similarly RTS and CTS are crossed over as well as DTR and DSR. In this
way, if the receiving end wants the transmitting end to wait, it negates its
RTS line, which the other side sees as a negated CTS and CD; it then stops
transmitting. Similarly, if one end wants to suspend communications entirely,
it negates its DTR line, which the other side sees as a negated DSR. Signal
ground is directly connected between the two ends. This cable, with the data
and control lines crossed, is often referred to as a null modem cable. It is
needed to connect a DTE to a DTE (or a DCE to a DCE).

A simpler connection using only three wires is shown in Figure 8-15b.
In this case, the handshake lines are permanently enabled {self-satisfying) by
connecting RTS to CTS and CD and connecting DTR to DSR at each PC.
These lines cannot be used to control the data flow on the interface. The data

8.3 Standard Serial Interfaces

PC1

TXD

RXD

RTS

CTS

CD

DSR

DTR

SIG GND

X
X

20 X 20

TXD

RXD

RTS

CTS

CD

DSR

DTR

SIG GND

PC2

(a) Full Handshaking Support

TXD

RXD

RTS

CTS

^^^ CD

DSR

DTR

SIG GND

2 2
3 X 3
4 4

5 1 I s
8 I I s
6 6

20 1 1 20
7 7

TXD

RXD

RTS

CTS
PC2

CD
DSR

DTR

SIG GND

(b) No Handshaking Support

Figure 8-15 Connecting two PCs via an RS-232C cable.

flow can still be controlled, using special data characters in a software hand-
shaking protocol. One software protocol widely supported is XON/XOFF.
These are two ASCII control characters (XON is llh, XOFF is 13h). When
the receiving end needs to temporarily halt data flow, it sends an XOFF
character to the transmitting end. When it is ready for data flow to resume, it
sends an XON character. In a similar fashion, the ASCII characters ACK (06h)
and NAK (15h) are also used for controlling data transmission. Employing
either of these software control protocols necessitates the use of ASCII data.

ASCII stands for the American Standard Code for Information Inter-
change. It is the most widely used computer code for handling alphanumeric
(text) data and is usually employed for data transfers between equipment over
standard interfaces. It is a 7-bit code consisting of printable (alphanumeric)
and control characters, such as XOFF and CR (carriage return). The standard
ASCII code is shown in Table 8-5. On IBM-style PCs, an eighth bit is added
to the code producing special ASCII extension characters. These are nonal-
phanumeric printable characters, such as lines for character-based graphics.

170 CHAPTER 8 Standard Hardware Interfaces

TABLE 8-5
Standard ASCII Codes

b4

0

1 ̂
0

0

0

0

0

0

b3

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

b2

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

b1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0
0
0

NUL

SOH

SIX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

0
0
1

DLE

DC1

DC2

DCS

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

0
1
0

SP

!

"

$

%

&

-

(

)
*

+
,

-

/

0
1
1

0

1

2

3

4

5

6

7

8

9

;

<

=

>

?

1
0
0

@

A

B

C

D

E

F

G

H

1

J

K

L

M

N

0

1
0
1

P

Q

R

S

T

U

V

w
X

Y

z
[

\

]
A

-

1
1
0

-

a

b

c

d

e

f

g
h

i

i
k

1

m

n

0

1
1
1

P

q

r

s

t

u

V

w

X

y

z

{

1
}

~

DEL

b7
b6
b5

As previously mentioned, the RS-232C standard does not specify the
protocol used for data transmission. The vast majority of RS-232C interfaces
on PCs use an asynchronous protocol. The transmission of 1 data byte using
this protocol is shown in Figure 8-16. When no data is being transmitted, the
line is at the marking level, which represents a logic 1. At the beginning of
transmission, a start bit is sent, causing a line transition to the spacing level,
a logic 0. This transition tells the receiver that data is coming. Next, the data

Marking
Level

Spacing
Level

Start
Bit

DO D1 D2 D3 D4 D5 D6 D7 Parity: Stop
Bit i Bits

Figure 8-16 Asynchronous communications protocol.

8.3 Standard Serial Interfaces 171

bits (usually 7 or 8) are sent, one at a time, where a bit value of 1 is at the
marking level and a bit value of 0 is at the spacing level. The data is followed
by an optional parity bit, for error detection. Finally, one or more stop bits
at the marking level are sent to indicate the end of the data byte. Since RS-
232C line drivers and receivers are inverters, the marking level (logical 1)
corresponds to a negative voltage (-3 V to -15 V) and the spacing level (logical
0) corresponds to a positive voltage (+3 V to +15 V) on the interface line.

The heart of a serial port's electronics is the IC that converts parallel
data to a serial format and serial data back to a parallel byte. This device is
a Universal Asynchronous Receiver/Transmitter (UART). IBM and compat-
ible computers originally used the National Semiconductor INS8250 UART
IC in PC/XT machines and the INS 16450 UART (which is a superset of the
INS8250) in AT and newer machines (later PCs had the UARTs built into the
motherboard). These devices have separate transmit and receive channels and
control logic for simultaneously sending and receiving data. They produce
their own programmable timing signals, from on-board oscillators, for soft-
ware control of data rates. They can send or receive serial data in the range
of 50 bits per second (bps) to 38,400 bps (up to 115,200 bps with the
INS 16450). The width of each bit (in time) is the inverse of its data rate. So,
at 9600 bps, each bit is 1/9600 = 0.104 msec long. If 7-bit data is sent at this
rate using a parity bit and only 1 stop bit (for a total of 10 bits per character,
including the start bit), it would take 1.04 msec (0.104 x 10) to transmit a
character. This would produce a maximum overall data transmission rate of
961 characters per second. This is not incredibly fast, but for small amounts
of data it is acceptable. Bear in mind that many early serial terminals and
modems ran at only 110 bps (which is nearly two orders of magnitude slower).

To set up an asynchronous RS-232C communications link, both
machines (at the two ends of the line) must be set to the same data rate
(sometimes, incorrectly, called the baud rate). In addition, the number of data
bits must be known. It can often vary from 5 to 8 bits, although 7 or 8 bits
is the most common. The next parameter needed is the parity bit. This is used
as a simple error-detection scheme, to determine if a character was incorrectly
received. The number of logical I's in the transmitted character is totaled,
including the parity bit. For even parity, the parity bit is chosen to make the
number of I's an even number, and for odd parity it is chosen to make the
number of 1 's odd. For example, the ASCII character "a" is 61h or 01100001
binary. For even parity, the parity bit would be 1 (making four I's, an even
number), whereas for odd parity, the parity bit would be 0 (leaving three I's,
an odd number).

When a parity bit is used (typically with 7-bit data characters), the
transmitting end determines the correct parity bit value, as just described, and
incorporates it in the character sent. The receiving end calculates the expected

172 CHAPTER 8 Standard Hardware Interfaces

value of the parity bit from the character's data and compares it to the parity
bit actually received. If these values are not the same, an error is assumed.

Of course, this scheme is not foolproof. It assumes that the most likely
error will be a single wrong bit, which a parity check will always catch. If
multiple bits are wrong in the same character, a parity error may not always
be detected. Note that on IBM-style PCs, the parity bit is not used with 8-
bit data.

One final asynchronous communications parameter is the number of
stop bits. This can be set to 1, 1-1/2, or 2 stop bits, although 1 bit is most
commonly used. Unless very slow data rates are used, such as 110 bps, only
1 stop bit is adequate.

Several other single-ended serial communications interfaces are com-
monly used, besides RS-232C. One of these is RS-423A. This standard is
sometimes used as an enhanced version of RS-232C, with several notable
differences. RS-423A has a driver voltage output range of ±3.6 V to ±6.0 V,
which is lower than RS-232C. However, RS-423A has much higher allowable
data rates, up to lOOK bps, and longer cable lengths (up to 4000 feet). One
other important difference is that RS-423A can support multiple receivers on
the same line, up to a maximum of 10. This is very useful for unidirectional
data transfers in a broadcast mode, such as updating multiple CRT displays
with the same information. Table 8-6 shows the differences between several
of the EIA transmission line standards.

8.3.2 The EIA RS-422A and RS-485 Interfaces

Another popular EIA serial transmission standard is the RS-422A interface,
which uses differential data transmission on a balanced line. A differential
signal requires two wires, one for noninverted data and the other for inverted
data. It is transmitted over a balanced line, usually twisted-pair wire with a
termination resistor at one end (the receiver side). As shown in Figure 8-17a,
a driver IC converts normal logic levels to a differential signal pair for
transmission. A receiver converts the differential signals back to logic levels.
The received data is the difference between the noninverted data (A) and the
inverted data (A*), as shown in the waveforms of Figure 8-17b. Note that no
ground wire is required between the receiver and transmitter, since the two
signal lines are referenced to each other. However, there is a maximum
common-mode voltage (referenced to ground) range on either line of -0.25 V
to +6 V, as shown in Table 8-6. This is because most RS-422A driver and
receiver ICs are powered by the same +5 V power supply as many other logic
chips. Usually the signal ground is connected between the transmitter and
receiver to keep the signals within this common-mode range.

8.3 Standard Serial Interfaces 173

TABLE 8-6
Confiparlson of Selected EIA Interface Standards

1 PARAMETER

1 LINE MODE

MAXIMUM DRIVERS AND
1 RECEIVERS

1 MAXIMUM CABLE LENGTH |

1 MAXIMUM DATA RATE

MAXIMUM (±) COMMON-
MODE VOLTAGE

MINIMUM/MAXIMUM
DRIVER OUTPUT

DRIVER OUTPUT
RESISTANCE
(with power off)

RECEIVER INPUT
RESISTANCE

[RECEIVER SENSITIVITY

RS-232C

Single-ended

1 Driver
1 Receiver

50 feet

20 Kbps

±25 V

±5 V min
±15 V max

300 ohm

3K-7Kohm

±3V 1

RS-422A

Differential

1 Driver
10 Receivers

4000 feet

10 Mbps

+6V
-0.25 V

±2 V min

60K ohm

4K ohm

±200 mV 1

RS-423A

Single-ended

1 Driver
10 Receivers

4000 feet

100 Kbps

±6V

1 ±3.6 V min
±6.0 V max

60K ohm

4K ohm

±200 mV 1

RS-485 1

Differential 1

32 Drivers 1
32 Receivers 1

4000 feet |

10 Mbps 1

+12 V
-7V 1
±1.5 V min 1

120Kohm 1

12Kohm 1

±200 mV 1

DATA
IN

Balanced Line
(Twisted Pair)

(a) Driver-Receiver Connections

DATA
OUT

A*

DATA

(b) Waveforms

Figure 8-17 Differential data transmission signals.

174 CHAPTER 8 Standard Hardware Interfaces

Transmitted
Data

Line Data >̂
with Noise"\

A*

• Noise Spike

JL
1

Noise Spike

Received
Data

Figure 8-18 Differential data lines with common-mode noise.

This differential signal scheme enables the use of high data rates (up
to 10 Mbps) over long cable lengths (up to 4000 feet) because of its high
noise immunity. If external noise induces a signal on the transmission line,
it will be the same on both conductors (A and A*). The receiver will cancel
out this common-mode noise by taking the difference between the two lines,
as shown in Figure 8-18. If a single-ended transmission line was used, the
noise spikes could show up as false data at the receiver. The example in Figure
8-18 shows both a positive- and a negative-going noise spike.

As with RS-423A, RS-422A can have multiple receivers (10 maximum)
on the same line with a single transmitter. Again, this is basically useful for
applications that require broadcasting data from a single source to multiple
remote locations.

There are variations in the connectors and pin designations used for
RS-422A interconnections. Most RS-422A interface cards for PCs use 9-pin
D-shell connectors, but in lieu of an IBM standard, the pin designations
employed vary from one manufacturer to another. An example of the pin
designations on a typical RS-422A interface card for PCs (from Qua Tech
Inc.) is shown in Figure 8-19. Note that all the signal lines are differential.

The signal lines for AUXOUT are outputs and can be used to implement
an RTS function. The signal lines for AUXIN are inputs and can be used to
implement a CTS function. In this way, the RS-422A card can operate like
a typical asynchronous RS-232C card in a PC (and use the same control
software). Alternatively, the AUXOUT and AUXIN lines can be used to send
transmit and receive clocks, for use with synchronous communications
schemes.

8.3 Standard Serial Interfaces 175

AUXOUT+ — -

T X D + — -

G N D — ^

R X D + — -

AUXIN+ — -

O

• O

-O

•O

O

-AUXOUT-

-TXD-

-RXD-

-AUXIN-

Figure 8-19 Pin designations for a typical RS-422A PC interface card.

The EIA RS-485 interface is basically a superset of the RS-422A stan-
dard. As shown in Table 8-6, its electrical specifications are similar to those
of RS-422A. RS-485 is another differential transmission scheme, using bal-
anced lines that can operate at speeds up to 10 Mbps over cable lengths up
to 4000 feet long. It has somewhat different output voltage ranges, including
a much wider common mode range of -7 V to +12 V. The most important
difference is that an RS-485 interface can support up to 32 drivers and 32
receivers on the same line. This allows actual networking applications on a
party line system (sometimes called multidrop) where all transmitters and
receivers share the same wires.

To allow for this multidrop capability, RS-485 drivers must be able to
switch into a high-impedance (tri-state) mode, so that only one driver is trans-
mitting data at any given time. As with RS-422A, all receivers can be active at
the same time. A typical RS-485 multidrop line is shown in Figure 8-20. Note
that the termination resistor is typically placed at the last receiver on the line.

IN1—H DRIVER RECEIVEFV:::̂ -̂ 0UT1

IN2 OUT2 IN3 0UT3

Figure 8-20 RS-485 multidrop application.

176 CHAPTER 8 Standard Hardware Interfaces

RS-485 interface cards for PCs are readily available and typically use
the same connector (DB-9) and pin designations as similar RS-422A interface
cards. The RS-485 driver output can be tri-stated using a control signal on
the card. Usually a standard control line such as DTR is used for this since
it would not be used as an external line in a multidrop interface. It is up to
the software protocol to ensure that only one driver is enabled at any given
time. One common way to do this is to use a master-slave relationship on
the line. Only one driver/receiver station would be the master (or a network
controller)—the others would be slaves. The master can transmit data at any
time. The slaves can only transmit data after receiving an appropriate com-
mand from the master. Each slave would have a unique ID or address on the
line and would not be able to transmit unsolicited data. The high data rates
available to an RS-485 network would compensate for the moderate amount
of communications overhead required to implement a master-slave protocol
and the constant polling performed by the master. For more information about
networks, see Section 8.4.

8.3.3 Synchronous Communications Protocols

As previously mentioned, synchronous serial communications protocols are
much less common than their asynchronous counterparts in the world of PCs,
even though IBM did have synchronous communications adapters available
for their older PCs. Synchronous communications has noticeable advantages
over asynchronous methods. Synchronizing bits (start and stop bits) are not
needed, increasing the overall data transmission rate. Data does not have to
be byte oriented (i.e., character-based) to be sent. In addition, it allows a system
to communicate with large mainframe computers (especially IBM systems)
which often use synchronous protocols. The drawbacks to using synchronous
communications with PCs are higher costs for hardware and software along
with limited support.

In synchronous transmissions, data is not always broken up into discrete
characters, as with asynchronous methods. It tends to be block oriented, with
a large amount of data (a block) transmitted at one time, with various control
and error-checking information along with it. The data can be discrete char-
acters (as with asynchronous methods) or bit oriented (no explicit data length).
There are three common synchronous communications protocols: Binary
Synchronous Communication (BSC), Synchronous Data Link Control
(SDLC), and High-Level Data Link Control (HDLC).

BSC or bisync is a protocol developed by IBM. It is a character-oriented
synchronous protocol where each character has a specific boundary. As with
other synchronous protocols, there are no delays between adjacent characters

8.3 Standard Serial Interfaces 177

in a block. Each block transmission may start with two or more PAD char-
acters to ensure that the clock at the receiving end of the line becomes
synchronized with the clock at the transmitting end, even if a clock signal is
being transmitted along with the data. Then, the start of the data stream is
signaled by sending one or more SYN (synchronous idle) characters, which
alerts the receiver to incoming data.

Next, one or more blocks of data are continuously sent. The data consists
of characters 5 through 8 bits long with an optional parity bit, as with
asynchronous methods. Often the data is encoded as ASCII characters,
although it could also be EBCDIC (a code supported by IBM). Each block
of data ends with an error-checking character which provides much better
data integrity than each character's parity bit. A popular error-checking tech-
nique used here (and in many other applications) is the cyclic redundancy
check (CRC). The CRC takes the binary value of all the bits in the block of
data and divides it by a particular constant. The remainder of this division is
the CRC character, which will reflect multibit as well as single-bit errors.

IBM supported bisync on original PCs with its Binary Synchronous
Communications adapter. This card used an RS-232C compatible interface
with a 25-pin D-shell connector. It was based on an Intel 8251A US ART
(Universal Synchronous/Asynchronous Receiver/Transmitter) IC. All the nec-
essary protocol parameters were programmable, including mode of operation,
clock source, and time out after no activity.

The other two popular synchronous protocols are SDLC and HDLC,
which are both bit-oriented techniques, where there are no character bound-
aries. The data is just a continuous stream of binary numbers, sent as an
information field. This information field can vary from zero bytes up to the
maximum allowed by the particular protocol in force. Like bisync, SDLC
and HDLC data fields are framed by control information at the beginning
and end. They also contain additional addressing information that makes them
suitable for use with communications networks. HDLC contains more control
information than SDLC. Unlike bisync, if transmission stops within an SDLC
or HDLC field, an error is always assumed.

IBM supported SDLC for PCs with its Synchronous Data Link Control
Communications Adapter. This card, as its BSC card, used RS-232C com-
patible signal levels and a 25-pin D-shell connector. It was based on the Intel
8273 SDLC Protocol Controller IC.

8.3.4 High-Speed PC Serial Interlaces

Many of the standard EIA serial interfaces we have previously discussed are
still in common use, especially RS-232C. However, they have not kept pace
with advances in PC speed and performance. In addition, they were developed

178 CHAPTER 8 Standard Hardware Interfaces

for the world of mainframe computers and lacked the ease-of-use and stan-
dardization that PC users now expect. Newer serial standards have been
developed in recent years, targeting PCs.

Universal Serial Bus The PC industry leaders (including Compaq, IBM, Intel,
and Microsoft) developed the Universal Serial Bus (USB) as a replacement
for standard serial and parallel ports on a PC. USB is a high-speed, multidrop
serial bus with data rates as high as 12 Mbits/sec (or as low as 1.5 Mbits/sec
for slower devices). It is a true bus that can support as many as 127 devices,
with one host controller (the PC).

USB uses a strictly controlled wiring system that prevents erroneous
connections. In addition, it can provide DC power to peripheral devices (5 V
at up to 5 A) and is hot-swappable. That is, you can safely connect or
disconnect USB devices from the bus without powering down or rebooting
your PC. USB devices are also plug-and-play, so their driver software is self-
configuring on a PC running Windows 98 or Windows 2000 (or Windows 95
if it is version 4.00950B or later). Windows NT does not support USB.

USB was designed to connect standard, slow (mouse, keyboard), and
medium speed (scanner, printer) peripherals to a PC with minimal user effort.
To this end, most new PCs now contain USB ports and some have eliminated
the older serial and parallel ports. Eventually, mainstream PC makers will
eliminate most or all internal expansion slots (PCI) and rely on USB and
Fire Wire (see the next section) for connecting all peripherals to a PC. This
is called the "closed box" strategy for the future (users will never have to
open their PC to connect a new device). Industrial PCs should still retain
their expansion slots and "legacy" ports for many more years.

With this trend in mind, many data acquisition manufacturers have
products that connect to USB ports. Of course, because of USB's Hmited bus
speed, most of these products work at low sampling rates, only up to about
lOOK samples/sec (see Chapter 11 for more information on USB data acqui-
sition products).

USB uses a special four-conductor cable, up to 5 meters long, with a
connector pinout shown in Table 8-7. Two wires, +DATA and -DATA,
comprise a twisted pair carrying a differential data signal. The other two
wires, VCC and GND, provide optional -1-5 V power to the peripherals. USB
is designed for a single host device, so you cannot normally use it to connect
one PC to another (as opposed to an IEEE-1284 parallel port). However,
some manufacturers produce special USB cables along with custom software
for this purpose (for example, to transfer data between a PC and a laptop
computer).

8.3 Standard Serial Interfaces 179

TABLE 8-7
USB Connector Pin Assignments

1 PIN #""

1 1
1 ̂

3

1 4

SIGNAL NAME |

VCC

-DATA 1
+DATA

GND 1

A typical PC has two USB ports. If you want to connect more devices
to the PC you need a hub, a special USB device that contains several additional
USB ports. Figure 8-21 shows a typical USB connection scheme utilizing
5-port hubs.

Since USB uses just one differential data pair, it is asynchronous. Also,
only one device can transmit at any given time (as on an RS-485 bus). Data is

PC
(Host)

USB Port 1

USB Port 2

KEYBOARD

iVIOUSE PRINTER

Spare
, Ports

SCANNER
DATA

ACQUISITION
UNIT

SENSORS

Figure 8-21 Typical USB connections to a PC.

180 CHAPTER 8 Standard Hardware Interfaces

encoded using the NRZI (no return to zero, inverted) scheme. In NRZI, a bit
value of 0 causes the line driver to switch states while a value of 1 causes it
to stay the same. For example, a stream of 0 bits will generate a clock signal,
since there will be a transition for every bit interval. USB adds bit stuffing
to NRZI to ensure that the receiver does not get out of synchronization with
the transmitter if too many 1 's are sent. Whenever there is a continuous stream
of six 1-bits, the transmitter adds (or stuffs) a 0 bit to produce a new transition.
The receiver uses the 0 bit transitions to synchronize its clock to the data
stream.

USB uses a sophisticated communications protocol based on three types
of packets: token, data, and handshake. The host (PC) starts a transaction by
sending out a token packet that addresses the desired device. Each device on
the bus has a unique address. The address field in the token packet is 7 bits
long, allowing for 128 unique addresses (and the 127-device limit on the bus).
Next, data is exchanged via a data packet, containing up to 1023 bits of data
along with a CRC for error checking. Finally, a handshake packet is trans-
mitted to end the transaction.

As with most technologies connected to PCs, the USB standard con-
tinues to evolve. The first USB standard in common use was version 1.1. A
few years later, USB 2.0 was developed, with a 40x speed improvement—up
to 480 Mbits/sec. USB 2.0 is backward compatible with the original 12
Mbits/sec USB devices and cables. USB devices will negotiate with the host
to run at the highest speed allowed on that bus. USB 2.0 is directly supported
by newer operating systems, such as Windows 2000 and Windows Me.

This faster USB standard, even with the overhead of its transfer protocol,
can support high-speed data acquisition. Still, it is slower than a PCI interface
card that uses a DMA engine to capture data. However, for the majority of
general-purpose applications, USB 2.0 will be fast enough.

IEEE 1394 (FireWire) The IEEE 1394 standard defines a high-performance
serial bus, originally developed by Apple Computer as FireWire. It is a peer-
to-peer system as opposed to USB's host-based protocol. Two IEEE 1394
devices can communicate with each other without requiring a host computer
to run the bus.

IEEE 1394 is a very high speed bus, with the original standard defining
data rates of 100 Mbits/sec, 200 Mbits/sec, and 400 Mbits/sec. It uses a simple
6-pin connector with ease-of-use similar to USB. Up to 16 devices or 64
nodes can connect to a single IEEE 1394 bus, with individual cable lengths
up to 4.5 meters. As with USB, it is also hot-swappable.

IEEE 1394 was designed with high-bandwidth applications in mind,
such as digital video. In fact, digital video camcorders were some of the first

8.3 Standard Serial Interfaces 181

TABLE 8-8
IEEE 1394 Connector Pin Assignments

1 PIN#

1 1
1 ̂
1 ̂
1 ̂
\ ^
\ 6

SIGNAL NAME

VP

VG

TPB*

TPB

TPA*

TPA

DESCRIPTION 1

Cable Power 1

Cable Ground

Differential Signal Pair: 1

Data on Xmt, Strobe on Rev 1

Differential Signal Pair: 1

Data on Rev, Strobe on Xmt 1

commercial devices to use a 1394 (FireWire) interface. IEEE 1394 ports are
not currently standard on most PCs, since they are more expensive than USB.
However, IEEE 1394 interface cards are available for PCs from many man-
ufacturers.

The IEEE 1394 cable consists of six conductors: two twisted pairs and
two power wires. As with USB, 1394 provides power to devices on the bus.
Since there is no default host node, any 1394 device can supply power. Cable
power, VP, is between +8 V and +40 V relative to VG, cable ground. A device
that provides power is limited to a maximum of 1.5 A. A device that uses this
power initially cannot draw more than 1 W (i.e., 125 mA at +8 V). Table 8-8
shows the pinout of an IEEE 1394 connector.

As with USB, IEEE 1394 uses differential signals to transmit high-
speed data reliably. The 1394 bus uses two signals (compared to only one
signal for USB): TPA and TPB. These are low-voltage differential signals
(LVDS) with amplitudes of only about 200 mV, to improve high-speed per-
formance. The signals are bidirectional and tri-state capable. A device trans-
mits data on TPB and receives data on TPA. However, when transmitting
data, a device uses TPA to transmit a special strobe signal. When receiving
data, TPB contains the received strobe signal.

This special signal is used to implement data strobe encoding. It is a
technique that allows the receiving device to extract a stable clock with better
jitter tolerance than a standard clock signal line would provide (as in typical
synchronous communications protocols). As shown in Figure 8-22, for each
bit interval, only one of the two signals. Data or Strobe, changes. That is, if
Data changes. Strobe stays constant. When Data stays the same (because of
two consecutive identical bits), Strobe will switch. The receiving device
generates an exclusive-OR (XOR) of the Data and Strobe signals, producing
a recreated clock.

182 CHAPTER 8 Standard Hardware Interfaces

DATA

STROBE

XOR

BIT
VALUE

Figure 8-22 IEEE 1394 data strobe encoding.

IEEE 1394 is also a packet-based system but uses a more complex
protocol than USB. When the system turns on, or whenever a new device is
connected, the bus starts a configuration process. This proceeds from devices
with only one connection, called leaf nodes, to those with multiple attach-
ments, called branch nodes. The bus appears as a large memory-mapped space
in which each device or node takes up a unique address range. After config-
uration is complete, a bus topology with a simple root node (typically a PC,
if present) is determined. Now that each node has its own address, data
transfers can occur.

IEEE 1394 supports two types of data transfers: isochronous and asyn-
chronous. The bus operates using approximately 125-|Lisec time slices or
cycles. For each cycle, devices can arbitrate to transfer a data packet. A simple
isochronous transfer, which has highest priority, can use up to 80% of the
available bus bandwidth (or cycle time). This transfer could be as long as
5000 bytes in one cycle if no other device is requesting an isochronous transfer
for the same cycle. Isochronous transfers are suitable for time-critical, high-
bandwidth data, such as digital video. Isochronous transfers are fast and
virtually real-time but they do not contain error correction data nor are
retransmissions available. The isochronous philosophy is that it is better to
drop a few pixels in a video frame than to corrupt the frame timing and get
a distorted image. Here, speed is more important than data quality. This may
not be suitable for many data acquisition applications where data integrity is
important.

Asynchronous transfers are not guaranteed a certain amount of bus
bandwidth, but they are given a fair chance at bus access when they are

8.3 Standard Serial Interfaces 183

allowed, later in the cycle (after isochronous transfers). The maximum size
for an asynchronous data block depends on the system's transfer rate with a
maximum of 2048 bytes for a 400 Mbits/sec bus. Since an asynchronous
block can get sent each cycle, which is every 125 |isec, this corresponds to
a maximum asynchronous rate of about 16 Mbytes/sec. Asynchronous trans-
fers do use error checking and handshakes to allow for retransmissions, if
necessary. They can be slower than isochronous transfers but are better suited
for data acquisition applications where errors cannot be tolerated. Also, the
IEEE 1394 uses an arbitration system that ensures all devices on the bus,
regardless of transfer mode, have an opportunity to transfer data and are not
locked out by high-priority devices.

The IEEE 1394 standard defines four protocol layers, as shown in Figure
8-23: the physical layer, the link layer, the transaction layer, and the serial
bus management layer. The physical layer includes the connectors, cables,
and electronic circuits that transmit the signals. It defines the data encoding
and the arbitration mechanisms used. The physical layer is also responsible
for bus initialization.

SYSTEM CONTROLLER

Bus Management Asynchronous Transfers Isochronous Transfers

Serial Bus
Management

Layer

jBus Manager!^

i Isochronous \
\ Resource \^

Manager \

Node
Controller

Transaction Layer

Link Layer

Physical Layer

Hardware

Figure 8-23 IEEE 1394 protocol layers.

184 CHAPTER 8 Standard Hardware Interfaces

The link layer sits between the physical and transaction layers. For
asynchronous transfers, the link layer handles CRC checking and generation
for the transaction layer. For isochronous transfers, the link layer has full
responsibility for handling data transmission and reception. There are a min-
imum of 17 signals that make up the interface between the link and physical
layers. Part of this interface, in the link layer, includes transmit/receive FIFOs,
interrupt generation, and a DMA channel.

The transaction layer is only used for asynchronous transfers. It deter-
mines the size and type of the next transaction, such as read, write, or lock
(write followed by a read back). The serial bus management layer handles
basic control functions. Some of the bus control responsibilities are assumed
by different nodes, including cyclemaster (running the 125 |xsec bus cycle),
isochronous resource manager (allocating isochronous transfer bandwidth),
and bus manager (keeping track of bus topology, optimizing bus traffic, and
managing DC power distribution).

There are several available chipsets that implement the physical and
link layers in hardware. Still, IEEE 1394 devices are fairly complex to design,
and this accounts for part of their higher cost compared to USB. There is
some operating system software support for IEEE 1394 in PCs. Currently it
is supported to varying degrees in Windows 98 (second edition), Windows
Me, and Windows 2000. Since IEEE 1394 is a peer-to-peer system, it can be
used as-is to connect two PCs together for high-speed data transfers.

As with USB, IEEE 1394 continues to evolve faster implementations.
A newer standard, IEEE 1394b, is backward compatible with existing hard-
ware having data rates up to 400 Mbits/sec while adding new data rates of
800, 1600, and 3200 Mbits/sec. This keeps it well ahead of USB 2.0, with a
480 Mbits/sec maximum rate. IEEE 1394b also supports long transmission
line lengths, up to 100 meters using twisted-pair cables at a data rate of 100
Mbits/sec. This is still an order of magnitude faster than RS-422 or RS-485
transmissions. Data rates up to 3200 Mbits/sec are supported on glass optical
fiber cables up to 100 meters long.

8.4 PC Networks

Networking PCs has become more common than ever. The ability to share
data and resources, such as laser printers and plotters, has made PC networks
standard in most lab, office, and industrial environments. Sharing information
on a global scale, using the Internet, has opened up new realms of possibilities.
For example, you can acquire data from remote data acquisition equipment
using standard commercial hardware and software. Microsoft Windows has

8.4 PC Networks 185

supported networking since version 3.11 (Windows for Workgroups). Starting
with Windows 95, Microsoft has supported the popular TCP/IP protocol—the
same software protocol used by the Internet.

To discuss networks, we will first cover the basic signaling aspects: the
electrical signal characteristics and the hardware protocols used to transmit
and receive data. Then we will look at software protocols. The most popular
hardware/software system used to implement a local area network is Ethernet
and the most common networking protocol is TCP/IP.

8.4.1 Ethernet

The Ethernet local area network (LAN) was originally developed by Xerox
in the 1970s and became a published specification in the 1980s. It is a
combination of hardware and software that allows different computers run-
ning different operating systems to communicate and exchange data at rela-
tively high speeds. Ethernet is made up of four basic elements: the physical
medium, the signaling components, the media access control protocol, and
the frame.

The physical medium encompasses the cables and other components
used to carry the signals for the network. The most popular medium for PC-
based Ethernet systems is twisted-pair wiring terminated with 8-pin RJ-45
(telephone style) connectors, although coaxial and fiber optic cables are also
commonly used. There are cable length limitations based on signaling speed
and media type to ensure that the maximum round-trip time is not exceeded.
This is the time it takes a signal to go from one end of the system to the other
and back again. This timing limitation can be overcome by dividing a large
LAN into multiple, separate LANs using switching hubs.

The signaling components are the electronic devices that transmit and
receive data via the physical medium. These components include signal line
transceivers and a computer's Ethernet interface, often residing on a PC's
network interface card (NIC) or motherboard. Most PCs use a lOBASE-T or
100BASE-T NIC with twisted-pair cables (rated as Category 5 cables for 100
Mbits/sec service). Multiple PCs connect to the LAN in a star configuration
through a multiport repeater hub, as shown in Figure 8-24. The repeater is
used to retransmit the network signals to all its ports or network segments.

Up till now, the elements we have discussed could apply to many
communications protocols, such as RS-485. The next two elements are the
key to Ethernet's usefulness and popularity. The media access control (MAC)
protocol is a set of rules that allows multiple computers to fairly share a
channel. For example, employing coaxial cable in a multidrop configuration,
Ethernet uses a half-duplex operation mode. At any given time each computer

186 CHAPTER 8 Standard Hardware Interfaces

1 NIC 1

PC1

REPEATER HUB

1 NIC 1

PC2

1 >^l^ 1
PC3

Figure 8-24 Sinfiple Ethernet LAN employing a repeater hub.

interface can either receive or transmit data but not both simultaneously. In
this case there can only be one transmitter at a time, as on a USB network.
However, there is no designated host or root device in Ethernet (it is a peer-
to-peer network). To allow all computers on the network a fair chance to
transmit data the CSMA/CD (carrier sense, multiple access/collision detection)
protocol is used. Before transmitting, each Ethernet interface waits until there is
no signal on the cable or channel (carrier sense). Then, all interfaces have
equal priority attempting to transmit data (multiple access). If an interface
detects that other transmissions are occurring (collision detection) it stops
transmitting and chooses a random retransmission time to try again. This
arbitration system give all Ethernet interfaces a good chance of accessing the
network. On a 10 Mbits/sec system, collisions are typically resolved within
a few microseconds. Multiple collisions are only likely on a heavily loaded
network (many devices transmitting data very often). Even then, Ethernet can
adapt by trying different retransmission times.

The final element, the frame, is the standard packet used to carry data
over an Ethernet system. Figure 8-25 shows the components of an Ethernet
frame, which is the heart of the system. The frame is divided into fields,
starting with a 64-bit preamble. On a 10 Mbits/sec network (such as lOBASE-
T) the preamble gives the hardware time to correctly receive the rest of the
frame. At faster network speeds such as 100 Mbits/sec (100BASE-T) and
1000 Mbits/sec, there is constant signaling and the preamble is not necessary.

The next fields are the 48-bit destination and source addresses. The first
24 bits of the address is an organization unique identification (OUI), assigned
to individual manufacturers and organizations by the IEEE Standards Asso-
ciation. The remaining 24 address bits are unique for that organization (still

8.4 PC Networks 187

^ 64 bits 1̂ 48 bits 1̂ 48 bits I j6 bit^l 46-1500 bytes Î 32 bits ̂

Preamble Field
Destination

Address
Field

Source
Address

Field

Type
or

Length
Field

Data Field

Frame
Check

Sequence
Field

(CRC)

Figure 8-25 Composition of an Ethernet frame.

allowing for more than 16 million devices from a single manufacturer). The
resulting 48 bits form the physical address for that interface, which is fixed
in the hardware.

Next is the 16-bit type or length field. This is often used to describe the
high-level protocol in use, such as TCP/IP. It is followed by the data field,
ranging from 46 to 1500 bytes long. The final field is the frame check
sequence, which is a 32-bit CRC. This provides the frame with data integrity,
allowing receiver error detection.

If only a minimum amount of data (46 bytes) is being transferred, the
frame overhead is large (approximately 36% of the total frame). Using the
maximum size data field (1500 bytes) the overhead now becomes fairly small
(less than 2%).

As previously mentioned, the most popular Ethernet implementations
are lOBASE-T and 100BASE-T, using twisted-pair wiring. The lOBASE-T
system was largely responsible for the growing acceptance of Ethernet for
PCs in the 1990s. The signaling rate of lOBASE-T is 10 Mbits/sec. Of course,
the actual delivered data rate depends on network loading and the amount of
data contained in each frame, resulting in less than 10 Mbits/sec. lOBASE-T
is a point-to-point system, as opposed to multidrop, so it needs repeater hubs
to interconnect multiple computers (as previously shown in Figure 8-24).
lOBASE-T uses an 8-pin RJ-45 modular connector, even though it needs only
four conductors for its two differential data pairs. Table 8-9 shows the pinout
for a lOBASE-T connector. The twisted-pair cable can be up to 100 meters
long.

lOBASE-T's differential signals are ±2.5 V and use Manchester encod-
ing. In this scheme each bit interval has a clock transition, as shown in
Figure 8-26. At 10 Mbits/sec each bit is 100 nsec wide. When the clock in
the middle of the interval goes from high to low it is a 0 bit. When it goes
from low to high it is a 1 bit. This way a clock is transmitted along with the
data.

188 CHAPTER 8 Standard Hardware Interfaces

TABLE 8-9
10BASE-T Connector Pin Assignments

+2.5 V-

1 PIN #

1 ̂
1 ̂
1 ̂

6

1 4, 5, 7, 8

SIGNAL NAME

TD+

TD-

1 RD+

RD-

N/C

DESCRIPTION 1

Transmit Data 1

Pair 1

Receive Data

Pair

1 Unused

-2.5 V-

Bit Value

lOOnsec :̂ ̂ lOOnsec ^ ̂ 1 DO nsec ^ 100 nsec.

Figure 8-26 10BASE-T Manchester encoding.

Ethernet is a means of delivering a data frame across a network. To be
useful, the data in that frame should be part of a high-level network protocol.
This protocol controls the actual communications between computers and
their application software. Ethernet is simply a messenger, unaware of high-
level protocols. This allows computers running different protocols (such as
NETBEUI and TCP/IP) to share the same Ethernet system.

8.4.2 TCP/IP

The most commonly used high-level network protocol is TCP/IP (transmis-
sion control protocol and Internet protocol). As with all network protocols,
TCP/IP uses data packets conforming to its own standard to communicate

8.4 PC Networks 189

with applications on different computers. These packets are independent of
the network hardware and topology used. For example, TCP/IP packets can
be transmitted just as easily using Ethernet or Fire Wire. Using Ethernet as a
common example, a TCP/IP packet is transmitted within the data field of an
Ethernet frame.

Since TCP/IP uses its own 32-bit addresses, when a computer wants to
send a TCP/IP packet using Ethernet it knows the TCP/IP address of the
destination computer but not necessarily its Ethernet address. Using TCP/IP's
address resolution protocol (ARP), the source computer can broadcast a
request over the Ethernet LAN for the computer with the desired TCP/IP
address to respond with its Ethernet address.

The basic TCP/IP architecture is a series of layers and components that
make up these layers, collectively called the TCP/IP stack. Every layer in the
stack receives frames of data from the layer below it and sends frames to the
layer above. Figure 8-27 shows a simplified TCP/IP stack using Ethernet as
the physical layer.

The physical layer is the actual network hardware and control protocol,
such as Ethernet, which has its own physical address. The data link layer
isolates the software layers above it from the hardware. This layer handles

To Application Software

Transport Layer (TCP)

Network Layer (IP)

Data Link Layer

Physical Layer (Ethernet)

Figure 8-27 Basic TCP/IP stack.

190 CHAPTER 8 Standard Hardware Interfaces

the details of the TCP/IP frames. The network layer handles TCP/IP address-
ing and routing protocols. The transport layer controls the features required
for reliable, sequenced packet delivery. This includes retrying and sequencing
the packets to correct for any information lost at the lower layers. TCP/IP
assumes that the data link layer and physical layers are not necessarily reliable
and adds its own error recovery features.

This section has been just a brief introduction to networking technolo-
gies commonly used with PCs. For greater details, the reader is encouraged
to see the appropriate references listed in the bibliography.

This concludes our survey of common computer interfaces and proto-
cols used by PCs. In the next chapter we will look at data storage on the PC
as well as data compression techniques.

C H A P T E R

Data Storage
and Compression
Techniques

Acquired data must be permanently stored by a PC to allow future retrieval
for display and analysis. The conventional storage devices available for PCs
use magnetic or optical media. Most of the general-purpose storage devices
(magnetic disk drives) use a random access, file-based structure. Magnetic
tapes, for archiving (backup) applications, use a sequential structure.

Since most application software, including data acquisition programs,
assumes data is stored on a magnetic disk (either a floppy diskette or a hard
disk), these are the storage devices we will consider here. Furthermore, we
will only consider MS-DOS and Windows files in this discussion, although
many of the basic principles covered will apply to other operating systems
and non-80x86 computers.

9.1 DOS Disk Structure and Files

A file is a logical grouping of data, physically located on a magnetic disk or
other permanent storage medium, such as a CD-ROM. The physical structure
of a magnetic disk consists of concentric rings, called cylinders, and angular
segments, called sectors, as shown in Figure 9-1. In addition, hard drives may
consist of multiple platters (more than one physical disk in the drive package).
The cylinder on a single surface of a disk is referred to as a track. The
read/write sensor used in a disk drive is the head. A double-sided floppy drive
has two heads (one for each side of the diskette). A hard drive with four

191

192 CHAPTER 9 Data Storage and Compression Techniques

Cylinder a

— .Cylinder b

. Cylinder c

• Sector X

Sector z ..]... Sector y

Figure 9-1 Physical organization of a nfiagnetic disk surface.

platters has eight heads. The read/write heads usually move together as one
unit, so they are always on the same sector and cylinder (but not the same
side of the platter or disk). Therefore, a physical location for data on a disk
is specified by cylinder, sector, and head number.

The physical structuring of a disk into cylinders and sectors is produced
by the DOS FORMAT program (or the FORMAT command in Windows). In
addition, FORMAT also initializes a disk's logical structure, which is unique
to DOS or Windows. Each sector on every disk track (or cylinder) contains
512 bytes of data, along with header and trailer information to identify and
delineate the data. This is why a formatted disk has lower storage capacity
than an unformatted disk. The first sector (on the first cylinder) of every
formatted DOS disk is called the boot sector. It contains the boot program (for
a bootable disk) along with a table containing the disk's characteristics. The
boot program, which is small enough to fit within a 512-byte sector, is loaded
into memory and executed to begin running the operating system (DOS).

The boot sector is immediately followed by the file allocation table
(FAT). The FAT contains a mapping of data clusters on the disk, where a
cluster is composed of two to eight sectors (or more, depending on the
operating system and hard drive). A cluster is the smallest logical storage
area used by DOS or Windows. For floppy disks, a cluster is usually two
sectors (1024 bytes); it is larger for hard drives. The FAT contains entries for
all the logical clusters on a disk, indicating which are used by a file and which
are unusable (because of errors discovered during formatting). Each FAT
entry is a code, indicating the status of that cluster. If the cluster is allocated

9.1 DOS Disk Structure and Files 193

to a file, its FAT entry points to the next cluster used by that file. The file is
represented by a chain of clusters, each one's FAT entry pointing to the next
cluster in the file. The last cluster in a file's chain is indicated by a special
code in its FAT entry. This structure enables DOS (or Windows) to dynami-
cally allocate disk clusters to files. The clusters making up a particular file
do not have to be contiguous. An existing file can be expanded using unal-
located clusters anywhere on the disk.

Because of the way file clusters are chained, a corrupted FAT will
prevent accessing data properly from a disk. That is why DOS usually main-
tains a second FAT on a disk, immediately following the first one. This second
FAT is used by third-party data recovery programs (and in later versions of
MS-DOS, by SCANDISK) to "fix" a disk with a damaged primary FAT.
Another side effect of the dynamic cluster allocation ability of DOS (and
Windows) is that heavily used disks tend to become fragmented, where
clusters for most files are physically spread out over the disk. This slows
down file access, since the read/write heads must continuously move from
track to track to get data from a single file. Several conmiercial utility pro-
grams are available to correct this, by moving data clusters on a disk to make
them contiguous for each file and thus decrease file access time. Later versions
of DOS and Windows contain a DEFRAG program to do this.

The FAT (and its copy) on a DOS disk is followed by the root directory,
which contains all the information needed to access a file present on that drive.
This information is the file name and extension, its size (number of bytes), a
date and time stamp, its starting cluster number, and the file's attributes. The
root directory is a fixed size (along with each file entry) so that DOS knows
where the disk's data area, immediately following the root directory, begins.
This limits the number of files that can be placed in the root directory. For
example, an old 360-Kbyte, double-sided 5-1/4" floppy disk can only keep
112 entries in its root directory (which consists of four clusters of two sectors
each). If more files must be stored on this disk, subdirectories have to be used.
A subdirectory is a special file that contains directory information. It is avail-
able starting with DOS 2.0 and is used to organize groups of files on a disk.
It is especially useful with large storage devices, such as hard drives.

Hard disks have one additional special area, besides the boot sector, the
FAT, and the root directory. It is called the partition table. The information
in the table describes how the hard disk is partitioned, from one to four logical
drives. This information includes whether a partition is bootable, where it
starts, its ID code (it can be a non-DOS partition for another operating system,
such as UNIX), and where it ends. To get around the disk size limitation of
32 Mbytes in versions of DOS prior to 4.0, it was necessary to partition large
hard disks into smaller logical drives. This was usually done with a special
utility software package, or via the DOS FDISK program.

194 CHAPTER 9 Data Storage and Compression Techniques

Root Directory
LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

Figure 9-2 Exanfiple of DOS directory structure.

The directory structure of a DOS disk can be described as an inverted
tree diagram, as illustrated in Figure 9-2. The root directory is symbolized
by the backslash (\) character. The root has a limited number of possible entries
that can be either standard files or subdirectories. A subdirectory is a variable-
size file (as are all DOS files), so its size and maximum number of entries is
only limited by the free storage space available on the disk. Each subdirectory
can contain conventional files along with other subdirectories. You can keep
adding level after level of subdirectories. In Figure 9-2, the top level (Level 0)
is the root directory, present on all DOS disks. Level 1 contains the first level
of subdirectories (Subl, Sub2, Sub3, Sub4), along with their files. Level 2
contains the subdirectories of Subl (Subsubl, Subsub2) and Sub3 (SubsubS,
Subsub4). Level 3 contains the subdirectory of Subsub3 (SSS). Note that
subdirectory names are limited to eight characters, as are all file names.
However, subdirectory names do not use a three-character extension, as other
files do.

To access a file via DOS, the path to the directory containing that file
must be specified, usually starting from the root (if the root is not explicitly
shown, the current default directory is assumed). In that path, directory levels
are separated using the backslash (\) character. For example, \SUB1\SUBSUB2
would be the path to the SUBSUB2 directory. A \ character is also used to
separate the directory path from the file name. For example, \SUB3\
SUBSUB3\SSS\DATA.001 would be the complete file specification allowing
DOS to locate the file DATA.OOl in subdirectory SSS.

It should be noted that each directory level used on a disk requires DOS
to search an additional subdirectory file to locate and access the file requested.

9.2 Common DOS File Types 195

If many directory levels are used (such as greater than five) DOS file access
will be considerably slowed. You should use directories to organize your file
storage logically, especially with a hard drive. Just do not use more levels of
subdirectories than you need.

For instance, you might have a hard disk subdirectory containing your data
acquisition programs, called XACQUISIT. You should keep your data files orga-
nized by projects or experiments, and separated into subdirectories, such as
\ACQUISIT\PROJl, \ACQUISIT\PROJ2, etc. However, there is no need to put
each data file from the same project into its own subdirectory (\ACQUISIT\
PROJRTESTl, ACQUISIT\PROJl\TEST2) unless they all have the same
name. So, \ACQUISIT\PROJl may contain TEST1.DAT and TEST2.DAT.

9.2 Common DOS File Types

Standard DOS and Windows file types are denoted by a three-letter extension
to the file name. We previously saw that .SYS files are loadable DOS drivers,
for example. DOS and Windows files can be broken down into two broad
categories: binary files and ASCII files.

In a binary file, data is stored in an unencoded binary format, just as it
would appear in system memory. The end of a binary file is determined strictly
from the file length recorded in its directory listing. Executable programs and
device drivers are example of the many types of standard binary files. Many
data file formats are binary.

In an ASCII or text file, the data is stored as printable ASCII characters
(see Chapter 8 for a discussion of the ASCII code). Each byte represents one
ASCII character that is either printable or a special control character. The
ASCII data is usually terminated by a control character signifying the end of
the file. The file's directory listing still contains its file length. Various appli-
cation programs, such as editors and word processors, typically operate on
ASCII data files. We will now look at some of the standard DOS file types,
some of which are also common Windows file types.

9.2.1 .BAT Files

Under DOS, file names ending with the .BAT extension are considered batch
files. A batch file contains DOS commands that will automatically run, as if
they were a program. Batch files have some rudimentary program capabilities,
such as branching and conditional execution. For the most part, they are used
to automate a group of conmionly executed DOS commands, including calling
application programs.

196 CHAPTER 9 Data Storage and Compression Techniques

.BAT files are always ASCII files. They are usually created with an
editor program, such as EDIT (part of DOS) or NOTEPAD (part of Windows).
As an example, let us assume we want to copy all the files with a .DAT extension
from a hard disk (drive C:) directory \TEMP to a floppy disk (drive A:) and
then delete the original files. We can create a file named TRANSFER.BAT,
with the following lines:

COPY C:\TEMP*.DAT A:
DEL C:\TEMP*.DAT

These instructions will be carried out by DOS when we give the TRANSFER
command (which executes TRANSFER.BAT). Note that a batch file is an
interpreted program. DOS reads each ASCII line and then executes it. There-
fore, it is relatively slow compared to performing the same function with a
dedicated, compiled program.

A useful feature of DOS batch programs is the ability to employ variable
data, which are ASCII strings. The contents of the variables used are specified
at run time, when the batch file is executed. When the batch program is
written, a percent sign (%) followed by a digit is used to represent the
appropriate parameter supplied with the conmiand to run the batch file (%1
is the first parameter, %2 is the second, and so forth). Using this feature, we can
make TRANSFER.BAT more generalized, with the data files name in \TEMP
becoming a variable:

COPY C:\TEMP\%1 A:
DEL C:\TEMP\%1

To use this batch program to transfer all the .DOC files from C:\TEMP to A,
use the command

TRANSFER *.DOC

Batch files become more than just a list of commands when conditional
statements are used. The following example is a file called HIDE.BAT, which
changes a file's attribute to hidden, via the DOS ATTRIB command (with the
H-H option). The variable parameter (%1) is the name of the file to hide:

ECHO OFF
IF EXIST %1 GOTO OK
ECHO "SYNTAX: HIDE <file name>''
GOTO END
:0K
ATTRIB +H %1
:END
ECHO ON

9.2 Common DOS File Types 197

The ECHO OFF command tells DOS not to display the batch program lines
as it executes them (normally it would). At the end of the program, ECHO
ON turns this feature back on. The second program line checks to see if there
was a valid file name given with the batch file command, via IF EXIST. If
there was, execution jumps to the label :OK to execute the ATTRIB +H
command. Otherwise, it displays the quoted text in the ECHO command
(showing the proper syntax for the batch program) and jumps to the label
:END, skipping the ATTRIB +H command.

One special batch file used by DOS is called AUTOEXEC.BAT. This
file is executed by DOS after it boots up, if it exists in the root directory of
the disk. It is used to perform many initialization functions such as custom-
izing system parameters (i.e., changing the DOS prompt), calling an appli-
cation program needed at system startup (such as starting a network driver),
or changing the default directory. Windows will also run the AUTOEXEC.BAT
file.

Batch files can handle fairly complex tasks, but are best suited for
simpler, commonly performed functions that do not warrant the time and
trouble needed to develop a full-fledged program. The minimum functionality
of the DOS batch facility also limits the tasks that can be performed by a
batch file. In general, if you continuously repeat the same sequence of DOS
commands, that sequence is a good candidate for a batch file.

9.2.2 .TXT and Other ASCII Files

Many file extensions are commonly associated with ASCII files, although
they are specified by application programs rather than by DOS itself. For
example, .TXT and .DOC are conamon ASCII file types in DOS. In Windows,
files with specific extensions are explicitly associated with particular appli-
cations: for example, .TXT files are usually associated with the text editor
NOTEPAD. Even when ASCII data is used by an application it is not always
"plain vanilla" (exactly following the 7-bit ASCII code). Some word processing
application programs mix ASCII with binary data in their files. Others use
the eighth bit of each character for special text formatting commands (such
as underlining), which ASCII does not directly support.

The DOS TYPE command displays an ASCII file on the video display.
If the displayed text appears garbled or has nonalphanumeric characters (such
as smiling faces), the file is not composed of plain 7-bit ASCII characters.

IBM BASIC and GW BASIC produced program files with the .BAS
extension. These files were usually modified ASCII, using special characters,
called tokens, to represent common BASIC commands. BASIC could save
its program files in plain ASCII, if specifically instructed. BASIC also

198 CHAPTER 9 Data Storage and Compression Techniques

produced ASCII data files that could be used by a variety of application
programs.

Many data acquisition and analysis programs will read or write ASCII
data files. This is very useful, since the data can be directly printed and easily
reviewed by different people or imported into another data processing appli-
cation, such as a spreadsheet.

9.2.3 .COM Files

DOS files with the .COM extension are executable programs in a binary
format. A .COM file contains a short program that must fit within a single
64-Kbyte memory segment, including all its data. The .COM file contains an
absolute memory image of the program. The contents of the file are identical
to the computer's memory contents when the program is loaded.

When the command to run a program is issued, either by the user at
the DOS prompt or from another program via the DOS EXEC function call,
DOS determines whether enough free memory exists to load the program. If
not, it returns an error message. If there is adequate space, DOS determines
the lowest available memory address to use. This memory area is called the
program segment. At the beginning of the program segment (offset 0) DOS
creates the program segment prefix (PSP) control block. The program itself
is then loaded into memory at offset lOOh of the program segment, since
256 bytes are reserved for the PSP. The PSP contains information needed to
execute the program and return to DOS properly. After the program is loaded
into memory, it begins execution.

A .COM program is automatically allocated all of the available system
memory. If the .COM program wants to run another program without termi-
nating itself first, via the DOS EXEC function call, it must first deallocate
enough memory for this secondary program. Even though a .COM program
must fit within a single 64-Kbyte memory segment, it can access memory
outside of its segment by changing its segment pointers (such as the data
segment pointer, DS).

Another idiosyncrasy of .COM programs is that they must begin exe-
cution at offset lOOh of their segment (immediately following the PSP). Since
most .COM programs are written in Assembler, to minimize their size, they
would have the following statement, just prior to the start of the program code:

ORG 1 0 OH

This requirement is not a severe limitation, since the first program
statement can be a jump to some other section of code in the segment.

9.3 Windows File Systems 199

9.2.4 .EXE Files

The second DOS format for executable programs is the .EXE file, which is
another type of binary file. This format is also used under Windows. Programs
in the .EXE format tend to be much larger and more complex than .COM
programs. They can span multiple segments, both for code and data. In
addition, they are relocatable and the exact locations of various parts of the
program are determined at execution time by DOS. Furthermore, they are not
automatically allocated all available memory, as .COM programs are.

To accommodate this flexibility, DOS .EXE files begin with a special
header area. The first two bytes of this header begin with 4Dh and 5Ah (in
ASCII, "MZ") to indicate to DOS that this is an .EXE program. The rest of
the header contains various information including the length of the program,
the length of the file, its memory requirement, the relocation parameters, and
where to begin program execution. Unlike .COM files, .EXE programs do
not have a fixed starting point for program execution. In an .EXE file, the
header is immediately followed by the program itself.

When DOS attempts to run an .EXE program, it first reads the header,
determines whether enough free memory is available, creates the PSP, loads
the program, and starts its execution. Because of their larger size and the
extra work DOS must do, .EXE programs tend to load more slowly than
.COM programs. The vast majority of commercial DOS applications are .EXE
programs. Some are so large that they need more than the maximum available
DOS memory area of 640 Kbytes. They typically make use of overlays to
accommodate large code areas and use expanded or extended memory (when
available) to handle large data-area requirements.

When a program is developed using a standard compiler (such as Macro
Assembler, C, Pascal, or FORTRAN) under DOS, an .EXE file will be
produced by the final linking process (see Chapter 13 for a discussion of
programming languages and the various compiling processes). If the program
was written to fit within a single 64-Kbyte segment, it can be successfully
converted into a .COM file, using the DOS program EXE2BIN. If program
file size or load time do not need to be minimized, it is not necessary to
convert an .EXE program into a .COM program. When given the choice
between the two executable program formats, it is usually advantageous to
keep the flexibility of an .EXE program.

9.3 Windows File Systems

MS Windows, up to version 3.11 (Windows for Workgroups), used DOS for
all file services. Files were accessed through the standard DOS FAT, in real
mode (16-bit mode).

200 CHAPTER 9 Data Storage and Compression Techniques

In MS-DOS, up to version 3.3, the FAT used 12-bit values for numbering
clusters. This was referred to as a 12-bit FAT. This 12-bit value accounted
for the 32-Mbyte limit DOS had as a maximum disk or partition size: the
maximum number of clusters was 4096 (2*0, while the maximum cluster size
was 8192 bytes (4096 x 8192 bytes = 32 Mbytes). Starting with DOS version
4.0, the FAT used 16-bit cluster values (it was a 16-bit FAT). This allowed
the cluster size to shrink to 2048 bytes while increasing the maximum disk
size to 128 Mbytes. Smaller cluster sizes make more efficient use of disk
space since a cluster is the minimum amount of disk storage used by a file
(or the last piece of a file).

As hard drive capacity grew, so did DOS and FAT cluster size, reaching
a maximum of 32 Kbytes. This limits a hard disk (or partition) to 2 Gbytes
capacity with a 16-bit FAT.

9.3.1 Windows 95 File System

Microsoft Windows 95 was the first version of Windows to abandon DOS.
Windows 95 incorporated its own protected-mode (32-bit) file management
system that originally used a 16-bit FAT. Using this protected-mode system,
Windows no longer had to switch into real mode for file services (as in
Windows 3.1 or earlier versions), which was slow and inefficient.

In Windows 95 version 950b, Microsoft changed the FAT to a 32-bit
version. This 32-bit FAT can address disks as large as 2048 Gbytes (with 32-
Kbyte clusters). Later versions of Windows, such as Windows 98 and Windows
NT 4.0, use a 32-bit FAT. This 32-bit FAT structure is not compatible with
the older 16-bit FAT. Installing it requires overwriting an entire hard disk
drive and its operating system.

Starting with Windows 95, Microsoft introduced a new, layered file
system architecture, referred to as the installable file systems (IFS) architec-
ture. The IFS supports multiple file systems such as the VFAT file system
and the CD-ROM file system (CDFS). The IFS allows additional file systems,
such as network support components, to be added as needed.

The VFAT file system is a 32-bit protected-mode FAT that fully supports
multitasking. By providing 32-bit file access and 32-bit disk drive access, VFAT
significantly improves file I/O performance over MS-DOS and Windows 3.1.
The CDFS is a 32-bit protected-mode file system that provides improved
CD-ROM performance (compared to DOS drivers) along with multitasking
support.

Figure 9-3 shows the Windows 95 IFS architecture. The IFS manager
is the only interface to application software (as opposed to DOS, where a
program could access disk sectors directly, via a BIOS call to INT 13h).

9.3 Windows File Systems 201

Application Software

Installable File System (IFS) Manager

32-bit FAT
(VFAT)

32-bit CD-ROM
File System

(CDFS)

Additional File
Systems (from
other vendors)

T
Block I/O Subsystem

Input/Output Supervisor (lOS)

Additional Layers
(VTD, VSD, etc.)

Drivers: Port and Miniport

Figure 9-3 Windows 95 Installable file system (IFS) architecture.

Under the IFS manager are the various file systems such as VFAT and CDFS.
Below the file systems is the block I/O subsystem, consisting of a series of
layers that interact with the disk hardware through low-level drivers. The
input/output supervisor (lOS) acts as an interface between higher layers and
the file system drivers. The lOS queues file service requests and routes them
to the appropriate driver.

Only 32-bit protected-mode drivers are used in the IFS. The additional
layers in Figure 9-3 include the volume tracking driver (VTD), which
manages removable devices (such as floppy disks), and the vendor supplied
driver (VSD), which can intercept I/O requests for a particular device
without having to deal with low-level (hardware) details. This is especially
useful for adding special processing to disk files, such as data compression/
expansion.

202 CHAPTER 9 Data Storage and Compression Techniques

9.3.2 Windows NT File System

Windows NT and its successors (such as Windows 2000) can use the same
VFAT file system as Windows 95, Windows 98, or later versions. However,
these operating systems also support the NT file system (NTFS), which has
a different structure along with more sophisticated security features.

NTFS is based on a master file table (MFT) that stores all the informa-
tion describing each file and directory on a hard drive. Each MFT entry is a
record up to eight sectors (4 Kbytes) long, containing data on its associated
file or directory. This data is a set of attributes that include the file name,
creation date, last modification date, the type of data in the file, and so on.
Each file has a unique 48-bit identification number.

NTFS uses sectors (512 bytes each) instead of clusters to allocate
storage space, with 32-bit relative sector numbers to identify disk locations.
This allows NTFS to access up to 2048 Gbytes (2^̂ x 512 bytes) of disk
space (equivalent to a 32-bit FAT) while allowing greater efficiency when
storing many small files. NTFS also allows file names to be as long as 254
characters (as with Windows 95).

NTFS is organized to access data faster than FAT-based file systems
while minimizing disk fragmentation. For example, when a file is opened,
NTFS preallocates sectors to it, reserving a block of contiguous disk storage
space (all of which may or may not be used). NTFS also places directories
near the center of a disk to speed up directory searches.

Since Windows NT is designed for a multiuser, networked computing
environment, NTFS supports all of NT's security features. These include
controlling the rights to read, create, modify, or delete both files and directories
on an individual user or group basis.

9.4 Data Compression Techniques

Data acquisition applications usually involve the creation and storage of large
amounts of unprocessed data. If a particular test was acquiring 16-bit data at
the modest rate of 10,000 samples/sec, 1 minute of data would require 1.2
Mbytes of storage. Ten minutes of unprocessed data would require 12 Mbytes
of storage. Data at this rate could fill a small hard drive after a relatively modest
number of tests. That is why data compression techniques are so important.

If large amounts of data need to be transferred between remote systems,
data compression not only reduces the storage requirements for the data—it
also reduces the transfer time needed (and its inherent cost). If data is being
sent serially via modem, even at the relatively fast rate of 38,400 bps, it would
take more than 4 minutes to transfer 1 Mbyte of data.

9.4 Data Compression Techniques 203

Many different techniques are employed to reduce the storage require-
ments of large amounts of data. The most important measurement of a par-
ticular technique is its compression ratio: the size of the original data divided
by the size of the compressed data. Another important parameter of a data
compression technique is its fidelity or distortion. This is a measure of the
difference between the original data and the compressed/restored data. In
many applications, no data distortion can be tolerated, such as when the data
represents a program file or an ASCII document. This would call for a lossless
compression technique. A relatively low compression ratio would be expected
then. In other cases, a small but finite amount of distortion may be acceptable,
accompanied by a higher compression ratio, using a lossy technique. For
example, if the data in question represents a waveform acquired at a relatively
high sampling rate, storing every other point is equivalent to filtering the
waveform and producing a small amount of distortion, particularly for high-
frequency components in the data.

Thus, the nature of the data dictates the parameters important to the
data compression process and helps indicate which technique is best suited.
The general trade-offs are between compression ratio and fidelity. An addi-
tional factor, usually less important, is the amount of time required to com-
press or restore the data using a particular technique. This can become an
important factor if the data compression is done in real time, along with the
data acquisition or transmission.

We will now look at various data compression techniques and their
appropriate applications. Most of the techniques, unless otherwise noted, are
primarily useful for files containing numerical data.

9.4.1 ASCII to Binary Conversion

Sometimes there are very obvious ways to reduce the size of a data file. If a
set of numerical data is stored in an ASCII format (as many conmiercial data
acquisition application programs are), encoding it directly as binary numbers
could produce large space savings. For example, if the data values are signed
integers within the range of ±32,767, they can be represented by 2 bytes
(16 bits) of binary data. These 2 bytes would replace up to seven ASCII
characters, composed of up to five digits, one sign character, and at least one
delimiter character, separating values. This ASCII-to-binary conversion would
produce a maximum compression ratio of 3.5:1 with no distortion. Even if
the average value used four ASCII digits (1000-9999) the compression ratio
would still be 3:1. After this conversion, other techniques could also be
applied to the data set, further increasing the data compression.

204 CHAPTER 9 Data Storage and Compression Techniques

9.4.2 Bit Resolution and Sampling Reduction

When a set of data represents numerical values, as in a waveform or data
table, the number of bits used to represent these values determines the min-
imum resolution and the maximum dynamic range. As we saw previously,
the minimum resolution is the smallest difference that can be detected
between two values, which is one least significant bit (LSB) for digitized
numbers. The ratio between the maximum and minimum measurable values
determines the dynamic range:

Dynamic range (in dB) = 20 x log(max/min)

ff lowering the resolution can be tolerated, data compression can be easily
and quickly implemented. The resulting compression ratio is simply the
original number of bits of data resolution divided by the new (lower) number
of bits.

As an example, let us assume we have a set of data acquired by a 12-bit
ADC system, with a dynamic range of 4096:1 or 72 dB. We first search the
data set for the minimum and maximum values (we will assume the data is
represented as unsigned integer values, for simplicity). In this example, the
minimum value is 17 and the maximum is 483. A data range of 17-483 can
be represented by 9 bits without any loss of resolution (or fidelity) for a
compression ratio of 12/9 = 1.33:1. If the minimum value was larger, such
as 250, the difference between maximum and minimum, now 233, can be
represented as fewer bits (8, for a range of 0-255) than the full range of zero
to the maximum value (483). In this case, we can get a compression ratio of
nearly 12/8 = 1.5:1 by subtracting the minimum value from all the data points.
The minimum value must then be included with the 8-bit data, so the correct
values can be reconstructed. Adding a single 12-bit value to the compressed
data is very little overhead when many points are contained in the waveform.

The simple technique just described is useful when the acquired data
does not fill the entire dynamic range of the data acquisition system. Then,
the unused bits of resolution can be discarded without causing any data
distortion. Most of the time, we do not have this luxury. To highly compress
a set of data we usually have to sacrifice some resolution.

Still using a 12-bit data acquisition system, let us assume a data set has
a minimum value of 83 and a maximum value of 3548. Now, maximum -
minimum = 3465, which still requires 12 bits of resolution. If we have to
compress this data, we will lose some resolution. Assuming we need a min-
imum compression ratio of 1.5:1, we can normalize the data to 8 bits. To do
this, we multiply all the data values by the new maximum value (255, for
8 bits) and divide them all by the original maximum value (3548). The number
3548/255 = 13.9 is the scaling factor. Either this scaling factor or the original

9.4 Data Compression Techniques 205

maximum value is kept with the normaUzed data, to enable its restoration to
the proper values and dynamic range. The data can be restored to its full
dynamic range, but its resolution will be 14 times coarser, because of the
rounding off that occurred when the data was normalized. Any two original
data points that were separated by values of less than 14 will no longer be
distinguishable. So, if two data points had original values of 126 and 131,
after normalizing to 8 bits (dividing by 13.9), they will both be encoded as
9 and restored as 125.

Figure 9-4a shows a simplified flowchart for an algorithm that compresses
a set of data by reducing the number of bits used to represent it. As we see, this
approach can produce a loss of fine details, due to lower resolution. To exploit
this form of compression, the data must be stored efficiently. Figure 9-4b shows

Scan input data for
maximum value

New data value =
Orig Val x 2"/max

(a) Simplified flowchart for resolution reduction algorithm

D
5

Value 3

D
4

D
3

1

D
2

3y1

D
1

e:

D
0

>

D
5

Value 2

D
4

D
3

D
2

D
1

1

D
0

3y1

D
5

e1

Value 1

D
4

D
3

D
2

D
1

D
0

D
5

1

Value 0

D
4

3y1

D
3

e (

D
2

)

D
1

D
0

(b) Data packing resulting from n = 6 bits per value

Figure 9-4 Data compression via resolution reduction.

206 CHAPTER 9 Data Storage and Compression Techniques

data compressed to 6 bits per value. Four point values are stored in three data
bytes, where each byte contains the bits from two adjacent values.

Another simple approach, often more acceptable than extreme resolu-
tion reduction, is sampling reduction. If the maximum frequency content of
the digitized data is well below the Nyquist frequency, the effective sampling
frequency can be reduced. For example, if an original set of data was filtered
to limit its high end to 1 kHz, while being sampled at 10 kHz, the Nyquist
frequency is 5 kHz. If every pair of adjacent values was averaged and stored,
the effective sampling rate would be reduced to 5 kHz and a compression
ratio of 2:1 would result. For this new set of data, the Nyquist frequency is
also reduced by 2 to 2.5 kHz, still well above the maximum frequency content
of the data.

This sample compression technique still distorts the data, as does the
bit compression previously described. Still, if the high-frequency data artifacts
lost are mostly noise, there is little harm done.

9.4.3 Delta Encoding

Another popular technique for compressing strictly numerical data is delta
encoding. This approach is especially useful when the data represents a
continuous waveform with relatively low instantaneous slopes. In such a set
of data, the difference between adjacent points is small and can be represented
by far fewer bits than the data values themselves. Delta encoding consists of
keeping the first value of the data set at its full bit resolution, as the starting
point. All subsequent values are differences, or deltas, from the previous
value, using fewer bits. This is a lossless technique.

To illustrate this. Table 9-1 contains a data set of 11 original values,
which require 12 bits each for full binary representation. The delta-encoded
numbers start with the first, original 12-bit value. The next number is +20,
the difference between the second and first values. The next delta-encoded
number is +30, the difference between the third and second values. This
continues until the delta between the last and next-to-last values is computed.
Examining the delta-encoded numbers shows us that they all fit within the
range of ±31 and can be represented by 6 bits (1 bit is for the sign). If we
do use 6 bits for each delta value, the delta-encoded data set would require
1 0 x 6 + 12 = 72 bits for storage (remember, the first value is at full 12-bit
resolution), compared t o l l x l 2 = 1 3 2 bits for the original data set. The
compression ratio here is 1.83:1. It will approach 2:1 as the size of the data
set grows and the overhead of the first 12-bit value becomes negligible.

The key to getting high compression ratios with delta encoding is to
use as few bits as possible to represent the delta values. One common problem
with most data sets is that a small number of bits can represent most of the

9.4 Data Compression Techniques 207

TABLE 9-1
Example of Delta Encoding a Small Data Array

1 ORIGINAL VALUES

3125

3145

3175

3185

3193

3201

3192

3183

3170

3152

1 3130

DELTA ENCODED VALUES 1

3125

+20

+30

+10

+8

+8

-9

-9

-13

-18

-22 1

delta values, while a few deltas require many more bits, because of occasion-
ally high local slopes or transient spikes. Instead of increasing the number
of bits for delta representation to accommodate a very small number of
anomalous values, an escape code can be used. Let us assume that our data
set is still using a 6-bit delta representation (±31) and a delta value of +43
comes along. We can designate one of the least-used delta values as the escape
code; either +31 or -31 would be a good choice. This escape code would be
followed by the full-resolution 12-bit value, which cannot be represented by
a small delta value. After this number, delta values continue as before. So, if
we had a data set with 128 12-bit numbers, using 6-bit delta encoding that
handled all but three values, the total number of bits encoded would be:

124 X 6 + 4 X 12 = 792

for a compression ratio of 1.9:1. If the three anomalous values could be
accommodated by 8-bit delta numbers and no escape codes were used, the
total number of bits would be

127 X 8 + 12 = 1028

for a compression ratio of 1.5:1. Obviously, the judicious use of escape codes
for infrequently large delta values will produce the best compression ratio.
If the escape code is used too often, the compression ratio can decrease
severely (it could even become less than 1:1 if a large fraction of values use
the escape code).

208 CHAPTER 9 Data Storage and Compression Techniques

With the appropriate data set, delta encoding can produce reasonable
compression ratios with no data distortion. If it is combined with a statistical
technique, such as Huffman encoding (described later), even higher compres-
sion ratios can be obtained, without any data distortion. One drawback to
delta encoding, especially when used to transfer data via potentially error-
prone means (such as over a telephone line via modems), is that once an error
occurs in the compressed data set, all values following it will be erroneous.
As with any other set of compressed or encoded data, it is always a good
idea to include error detection information with the data, such as a checksum
or CRC. If the block of data is large enough (for example, several hundred
bytes) the overhead from the few extra error detection bytes will have a
negligible impact on the overall compression ratio, while increasing the
integrity of the data tremendously.

9.4.4 Huffman Encoding

Many compression techniques are based on statistical relationships among
items in a data set. One of the more popular statistical methods is Huffman
encoding. This technique will only work well if a relatively small number of
data set members (possible numerical values or characters) have a high
probability of occurrence. If nearly all possible values (or characters) have
equal probability of occurrence (a random distribution) this method will
actually produce a compression ratio of less than 1:1.

Basically, Huffman encoding employs a variable number of bits to
represent all possible members of the data set. Data set members with a high
probability of occurrence use the smallest number of bits (fewer than the
unencoded number of bits) while those members with very low probabilities
use larger number of bits (sometimes more than the unencoded number of
bits). The bit values are chosen so that there is no confusion in decoding the
encoded data. Huffman encoding produces no data distortion (it is a lossless
technique). The restored data is identical to the original, uncompressed data.
The amount of data compression produced by this technique varies with the
statistical distribution of the data set used.

ASCII data representing English text is commonly compressed using
Huffman encoding, since the probability of occurrence of the various alpha-
numeric characters is well known. Certain vowels, such as e or a, or even the
space character will occur very frequently while other characters, such as x
or z, will occur very rarely. The common characters may need only 3 or 4
bits to represent them in a Huffman code, while the uncommon ones may
require more than 7 or 8 bits. A typical ASCII document may average around
5 bits per character using Huffman encoding. If the original data was stored
as 8-bit characters, this produces an average compression ratio of 1.6:1.

9.4 Data Compression Techniques 209

TABLE 9-2
Data for Huffman Encoding Example

DELTA VALUE

+-
-1

+2
-2

0

+3

-3

-4

-5

+4

+5

+6

+7

-6

1 -7 1

PROBABILITY

0.20

0.20

0.15

0.15

0.10

0.05

0.05

0.02

0.02

0.01

0.01

0.01

0.01

0.01

0.01

HUFFMAN CODE

00

01

100

110

1010

1110

10110

. 11110

101110

1011110

1011111

1111100

1111101

1111110

1111111

OF BITS 1
2

2

3

3

4 1
4 - 1
5 1
5 1

6 1
7 1
7 1

7 1
7 1
7 1

7 1

Huffman encoding is often used with other techniques, such as delta
encoding, to further increase a data set's compression ratio. To implement
Huffman encoding, the statistical probability of occurrence of each possible
data set member (numerical value or ASCII character, for example) must be
known. Table 9-2 shows a simple example of a set of 4-bit delta encoded
values, in the range ±7. Only a few delta values have very high probabilities.
Just five of the possible 15 delta values account for 80% of the data set (±1 =
20%, ±2 = 15%, 0 == 10%). In fact, a crude figure of merit can be calculated
by taking this major subset of data values and dividing its total probability
of occurrence (here, 80%) by the fraction of possible values it represents (in
this case 5/15 = 0.33). For our example, this figure of merit is 0.80/0.33 =
2.4, which is good enough to warrant using Huffman encoding. A figure of
merit below 2.0 would not be very promising for Huffman encoding.

Figure 9-5 shows a graphical method used to implement Huffman
encoding. This approach is only manageable with small data sets, as in our
example. The algorithm can readily be translated into a computer program
for data sets with a large number of members (such as 7-bit ASCII characters).

First, we start with the data set of 15 possible values, listed in order of
probability of occurrence, from Table 9-2. The data values (deltas) are listed

210 CHAPTER 9 Data Storage and Compression Techniques

Delta Value
(Probability)

-7 1
(.01)1

1 ~^ 1
(01)

1 "̂^ 1
(01)

1 '^^ 1
(01)

\/0 \ / °
1 (02) 1 1 (02) 1

i \ y ^

[T o ^

1

1 "̂^ 1
|(01)|

1 '*'^ 1
(01)

i \ /o

[c ^

i \ / c

1 "̂ 1
1 (02) 1

/

l \

1

1 "̂ 1
1 (02) 1

1 ~̂ 1
(.05)

/o /

\ . /o
JM^

1 +^ 1
1 (05) 1

1 ° 1
(.10)

\ ^ / o
fciferj 1

1 ~̂ 1
1 (-15) 1

1 +^ 1
(.15)

1 "'' 1
1 (.20) 1

1 "̂ ''
(.20)

\/o
1 (.40) 1

1(100)1

Figure 9-5 Exannple of graphical approach to determining Huffman codes.

across the top of the figure along with their probabihties (in parentheses),
which should all add up to 1.00. To start, we draw pairs of lines connecting
the lowest probability values—in this case, the .01 values at the left side of
the diagram. At the vertex of the two lines connecting these pairs, we write the
sum of their probabilities (.02, in this case). We continue pairing off and
summing probability values, until all the values are used and the overall sum
at the bottom of the diagram is 1.00.

Now, we arbitrarily assign a binary 1 to every line that points up to the
left and a binary 0 to each line that points up to the right, differentiating the
paths used to get from the 1.00 probability value up to the original delta
value. Finally, each line connecting the 1.00 vertex to a delta value's starting
point, at the top, represents a bit. We could have just as easily reversed the
I's and O's. The code for each delta value is the concatenation of bit codes
used to trace its path, starting at 1.00.

So, the Huffman code for delta value +1 is 00, and the code for -1 is
01, each only 2 bits long. The paths for delta values +2 and -2 use three lines
(for 3 bits) and are, respectively, 100 and 110. All the other delta values are
assigned their codes in the same way. Values 0 and +3 use 4 bits, -3 and -4
use 5 bits, -5 uses 6 bits, and all the other values use 7 bits. As we see, the
delta values with the highest probabilities use the smallest number of bits.

9.4 Data Compression Techniques 211

When the encoded data is restored, the codes with the smallest number
of bits are tested first. If no match is found, the number of bits tested expands,
until a valid code is located. If no valid code is determined after examining
the maximum number of bits, an error is assumed.

Using the Huffman codes in Table 9-2, let us see how the following
encoded binary string would be decoded:

111000101111001

First, we look at the first 2 bits, 11, which are not a valid 2-bit code (only
00 or 01 are valid). Looking next at the first 3 bits, 111, we do not see a valid
3-bit code (only 100 and 110 are valid). When we check the first 4 bits, 1110,
we find a valid code for -1-3. The remaining bits are now

00101111001

The first 2 bits here, 00, are a valid code for -hi. We are now left with

101111001

Here, there are no valid 2-, 3-, 4-, 5-, or 6-bit codes. The first code to match
is the 7-bit code for -1-4, 1011110. The remaining 2 bits, 01, are the valid code
for - 1 . So, the decoded delta values in this 15-bit binary string are -1-3, -i-1,
-1-4, and - 1 . Of course, in a practical implementation, a program would use
this search algorithm.

We can calculate the average number of bits a delta entry fi-om Table 9-2
would use when encoded this way, and hence, the compression ratio. We just
sum the product of the probability times the number of bits in the Huffman
code for each delta value:

m= pQXnQ+ piX ni + '•' + PkX %

where

m = average number of encoded bits
Pi = probability of occurrence for the ith data set value
Hi = number of encoded bits for ith data set value
k = number of values in the data set

If n is the number of bits per value in the original data set, the com-
pression ratio is simply n/m. In our example, m = 3.19 bits and the compres-
sion ratio is 4/3.19 = 1.25:1, which is not very large. However, since the data
was already delta encoded, the original compression ratio (say, 2:1) gets
multiplied by the Huffman encoding compression ratio (1.25:1) to give a

212 CHAPTER 9 Data Storage and Compression Techniques

larger overall compression ratio (2.5:1). Sometimes, this particular combina-
tion of compression techniques is referred to as delta Huffman encoding.

If a data set contained many more members than this previous example
while maintaining a large percentage of values represented by very few
members (with a large figure of merit), the compression ratio provided by
Huffman encoding would be much larger. As with delta encoding, it may be
useful to implement an escape code for the rare value that will not fit within
the set of encoded values. In our example, it would be a delta value greater
than +7 or less than -7. By its very nature, the escape code would be a very
low probability code, with a relatively large number of bits.

9.4.5 Run Length Encoding

One data compression technique that is extremely useful with data sets con-
taining large amounts of redundant information is run length encoding (RLE).
This approach is commonly used on graphics and video data at fairly high
compression ratios without producing any data loss or distortion.

In essence, RLE replaces a contiguous set of identical data values with
a single count value. In video or graphics data, an image may contain large
monochrome areas (such as white space) that are pixels having the same color
and intensity value. Replacing a string (or run) of these identical pixels with
a count code significantly reduces the amount of data without losing any
information.

For example, a basic VGA display has an array of 640 x 480 pixels.
Typically, 3 bytes (24 bits) are used to represent each pixel. So, the repre-
sentation of an entire screen requires 921,600 bytes of storage.

Let us assume that in a typical VGA graphics image about 75% of the
screen data are in monochrome sections (black, white, or a constant color).
Also assume that on average, these monochrome areas occur as runs that are
100 pixels long in each VGA line (remember, this is a bit-mapped display,
arranged as a raster scan).

We will use a unique 3-byte escape code to represent an RLE entry
(instead of a pixel value), along with a 3-byte count value. To represent the
encoded run, we need 9 bytes: 3-byte RLE code + 3-byte pixel value + 3-byte
count value. So, our algorithm would only replace a constant-value pixel run
with an RLE code if it is more than three pixels long.

In our example, 75% of the original 921,600 bytes (or 307,300 pixels)
are monochrome in runs that average 100 pixels. So, the total number of these
runs would be

0.75x307,200 pixels ^
100 pixels/run

9.4 Data Compression Techniques 213

Since each run needs only 9 bytes to represent it, 75% of the data is com-
pressed to 9 X 2304 = 20,736 bytes. The remaining 25% of the data (uncom-
pressed) is 0.25 X 921,600 = 203,400 bytes. So, the total compressed data
size is 203,400 + 20,736 = 251,136 bytes. This gives us an overall compres-
sion ratio of 3.67:1.

Of course, even in the nonmonochrome regions of a typical graphics
display there will be some redundant information. In such a case, it is not
unusual to achieve compression ratios of greater than 10:1 with RLE.

Since RLE is a lossless compression method, it can also be applied to
typical data acquisition data sets if they contain large amounts of redundant
information. For example, if a data set has many idle values (such as 0) in
between events, they can be represented by an RLE code. RLE is often used
by many general-purpose data compression software products.

9.4.6 Significant Point Extraction

Some compression techniques are used exclusively on data points that con-
stitute a waveform. Significant point extraction is a generalized technique that
reduces the number of points required to describe a waveform. This approach
causes varying degrees of data distortion, but can provide large compression
ratios (in the range of 5:1 to 10:1, for example).

Significant point extraction operates on a digitized waveform, consisting
of either a one-dimensional array of amplitude (y) values acquired at known,
constant time intervals or a two-dimensional array of (x, y) coordinates. The
one-dimensional array is the most common form of storage for values saved
by a data acquisition system. The data is analyzed point-by-point to see where
a group of adjacent points can be replaced by a straight line. The discarded
point values can be estimated by interpolating from this line. Only the sig-
nificant points required to produce a close approximation of the original
waveform are retained.

Figure 9-6a illustrates a typical digitized waveform with significant
points indicated by x characters. If the original waveform was composed of
100 points, extracting only 10 significant points produces a 10:1 point com-
pression ratio (the actual byte compression ratio will be smaller). The signif-
icant points include the waveform boundary points (start and stop) as well
as places where the slope and/or amplitude change dramatically. Figure 9-6b
shows the waveform reconstructed from the significant points. Note that some
of the finer details are lost, while the gross waveform structures remain. The
acceptability of this distortion depends on the application of the waveform
data. Often, the distortion is determined quantitatively, such as by the root

214 CHAPTER 9 Data Storage and Compression Techniques

(a) Original waveform with significant points noted by x

(b) Waveform reconstructed from 10 significant points

Figure 9-6 Example of significant point extraction and reconstruction.

mean square (RMS) deviation of the reconstructed data points from the
original data points:

2 2 2 1/2

d = {[(«! - mi) + (̂ 2 - nil) + •" + {Uj - rrij)]//}
where

d = RMS distortion
Hi = value of ith original point
rrii = value of ith restored point
j = number of points in v^aveform

One method of determining the significance of a point in a waveform
is to calculate its local curvature. This is a measure of how much a waveform
deviates from a straight line in the vicinity of a point. To illustrate, Figure 9-7a
contains a simple waveform with one peak, composed of 23 points. To
calculate local curvature, we pick a window size—in this case ±3 points—
to consider the curvature around each point. If this window is too small, the
calculation is not very significant. If the window is too large, local details
tend to be averaged and lost ("washed out"). If the window is 2n points wide,
we first start looking n points from the end of the waveform, in this case from
the left side.

Since this is a one-dimensional array, the x-direction increment is con-
stant for each point and we only need to look at data in the y direction
(amplitude). For each point, number /, we do two scans from left to right.

LC Window

9.4 Data Compression Techniques 215

X = significant point

Point # 0
(LC Value)

1 2 3 4 5 6 7 8 9 10 1112 13 14 1516 17 18 19 20 2122
0 1 2 3 2 1 2 4 6 4 2 1 2 3 2 1 0

(a) Measuring local curvature (LC) with +/-3 point window

(b) Reconstructed waveform from 5 significant points

Figure 9-7 Using local curvature maxima to determine significant points.

The first scan starts at point i - n and ends at point / and the second starts at
point / and ends at point / + n. This means that we cannot scan the first or
last n points in the waveform completely. For the first scan, we have two
counters: dy-\- and dy-. Starting with the leftmost point in the scan window,
if the next point is more positive than the previous point we increment dy+',
if it is more negative, we increment dy- (if it is unchanged, we leave the
counters alone). We continue with the next pair of points until we get to the
end of our scan (point /). The second scan starting at point i is similar, except
now if the new (rightmost) point is more positive than the previous point we
decrement counter dy-\r and if it is more negative we decrement dy- (if it is
unchanged we leave the counters alone). After completing the ±n points scan,
the local curvature (Ic) is the sum of the absolute values of these two counters:

Ic = \dy+\ + \dy-\

In Figure 9-7a, we cannot calculate the local curvature for points 0-2
and 20-22. Starting at point 3, after the first scan (from point 0 to point 3),
dy+ = 0 and dy- = 0. After the second scan (from point 3 to point 6), dy+ =
0 and dy- = 0. So, for point 3, the local curvature is 0, or lc(3) = 0. For point
4, from the first scan dy-h = dy- = 0, while from the second scan dy+ = 1
(since point 7 is greater than point 6) and dy- = 0. So, lc(4) = 1. These
calculations of Ic continue for the rest of the waveform, up to point 19. We
notice at the peak, lc(ll) = 6.

216 CHAPTER 9 Data Storage and Compression Techniques

Once the Ic values are calculated, we can pick the significant points as
the locations of the local curvature maxima. In this example, these are points
6 (Ic = 3), 11 (Ic = 6), and 16 (Ic = 3). We also keep the first and last points (0
and 22) of the waveform as significant, since they are the boundaries. There-
fore, we have reduced a 23-point waveform to five points, for a point com-
pression ratio of 4.6:1. Figure 9-7b shows the waveform reconstructed from
these five significant points.

There are many variants on using this local curvature technique to
extract significant points. A minimum threshold could be selected that max-
imum Ic values must reach before the corresponding point is considered
significant. Another approach is to use amplitude weighting in the Ic calcu-
lations. The dy-\- and dy- counters, previously described, produce an unweighted
measure of local curvature, where a large amplitude change counts as much as
a small change in the same direction. They could be weighted by the relative
amount of amplitude change, not just direction. When dy+ and dy- would
ordinarily be incremented or decremented by 1, they now increase or decrease
by the amount of amplitude change between two adjacent points. This would
help distinguish meaningful signal peaks from noise.

9.4.7 Predictive and Interpolative Techniques

Significant point extraction is a particular data compression method, related
to the generalized techniques based on predictors and interpolators. These
are algorithms that operate on waveforms or other data streams and produce
compression by reducing the amount of redundancy present in that data. As
long as the data set is not random, there is some correlation between adjacent
data values that can be exploited. Predictive encoding techniques use the
information contained in previous data samples to extrapolate (or predict) the
value of the next data sample. This approach is used extensively in data
communications systems for compressing data streams "on the fly," just prior
to transmission (often using dedicated hardware). This extrapolation is done
by fitting a function (or polynomial) to the existing data. Usually, only a zero-
order (constant) or first-order (linear) function is used, since high-order func-
tions tend to be very sensitive to noise and can become unstable.

The simplest extrapolation method is the zero-order predictor with a
fixed aperture. In Figure 9-8a, a sample waveform is shown with its discrete
points. Starting with the first data point, a vertical aperture (or window) of
fixed amplitude, 2d, is drawn around the first point. Additional 2d windows
are extended over the full amplitude of the waveform. The first point is always
saved, and saved points are denoted by the x character. If the next point's
amplitude fits within the same 2d window, it is discarded; otherwise it is saved.

9.4 Data Compression Techniques 217

window

X = Saved Point
o = Discarded Point

window 16

0 5 10 15

Sampling Intervals

(a) Original waveform with sampled points (o or x) and ZOP windows

0 5 10
Sampling Intervals

(b) Reconstructed waveform from saved points

15

Figure 9-8 Zero-order predictor (ZOP) used for waveform data compression.

After determining a new point to save, subsequent points that fit within the
new 2d window are discarded. Of course, the x coordinate (usually time) of
the saved points must also be kept.

Figure 9-8b shows the reconstructed waveform, using only the saved
points from Figure 9-8a. Notice how using a zero-order predictor tends to
"flatten out" small amplitude changes. Obviously, there is a moderate amount
of data distortion using this technique. However, it is useful for filtering out
low-amplitude noise.

Data compression can be improved using a zero-order predictor with a
floating aperture. Instead of the window locations being fixed by the value

218 CHAPTER 9 Data Storage and Compression Techniques

of the first data point, each new 2d aperture is centered on the last point saved.
In this case, if a new point is close in amplitude to the last saved point it will
always be discarded. With a fixed aperture, if this new point happened to be
just over the next aperture boundary, it would be unnecessarily saved.

An approach more flexible than the zero-order predictor is the first-
order predictor or the linear predictor. This is a very popular method used
for many applications, such as compressing digitized human voice data. For
this use, some data distortion is acceptable, since the final receiver (a human
being) can still understand moderately garbled data.

Using a linear predictor is very similar to implementing a zero-order
predictor, except now new data points are predicted by extrapolation from a
line connecting the previous two points. Figure 9-9a shows the same sample
waveform as in Figure 9-8a. The points saved by the algorithm are again
marked with the character x. The first two points are always saved, to generate
the first line. The following two points fit on the line, within the error window
of 2d. They can be discarded, since a reconstruction algorithm can extrapolate

lineO

X = Saved Point
o = Discarded Point

I
0 5 10 15

Sampling Intervals

(a) Original waveform with sampled points (o or x) using linear predictors

I
0 5 10 15

Sampling Intervals

(b) Reconstructed waveform from saved points

Figure 9-9 First-order (linear) predictors used for waveform data compression.

9.4 Data Compression Techniques 219

them from that Une. The next point does not fit within the fine and must be
saved. A new Une is drawn between this newly saved point and the previous,
extrapolated point. The next point does not fit on this line and is saved,
generating another line the following point does fit. This process continues,
discarding points that fit (within ±d) existing extrapolation lines and saving
those that do not, while drawing new lines.

When the resulting saved points reconstruct the waveform in Figure 9-9b,
we see that more of the fine details and curvature of the original waveform
are maintained by the linear predictor, compared to the zero-order predictor.
The compression ratios from both techniques are also comparable.

When data does not have to be compressed in real time, if it has been
previously acquired and stored, interpolator techniques can be used. These
are very similar to the predictor methods, except that now interpolation is
used instead of extrapolation.

For example, using a linear interpolator is very similar to using a linear
predictor. Using the waveform in Figure 9-10 as an example, the first point
is always saved. The second point is skipped, and an imaginary line is drawn

Saved Point
Discarded Point

I
0 5 10 15

Sannpling Intervals

(a) Original waveform with sannpled points (o or x) using linear interpolators

I
0 5 10 15

Sampling Intervals
(b) Reconstructed waveform from saved points

Figure 9-10 First-order (linear) interpolators used for waveform data compression.

220 CHAPTER 9 Data Storage and Compression Techniques

from the first to the third point. If the second point falls on this line within
a 2d window, it is discarded. A new line is tested between the first and fourth
points. If both the second and third points fall on this line (within the
tolerance window of 2d), they are both discarded. This process continues
until a line is drawn that does not fit all the intermediate points. The last
point that ended an acceptable test line (the fourth point, ending the first
line in this example) is saved. For data reconstruction, the intermediate,
discarded points are interpolated between the two saved end points. Now,
the process starts again with the end point of the last line serving as the start
point for a new line. When this process is complete, at the last point in the
waveform, the saved points represent the end points of interpolation lines
used for reconstructing the data.

Sometimes, no intermediate points can be discarded and adjacent points
are saved, especially at the peak of a curve. Since this approach requires the
entire waveform to be present before processing can occur, it is not suitable
for real-time compression. It is very useful for postacquisition or postpro-
cessing applications. As with a linear predictor, a linear interpolator does
produce data distortion. This can be balanced against the compression ratio
by adjusting the window size. A larger window will produce higher distortion
along with a higher compression ratio. Typically, an interpolator will produce
a higher compression ratio than an equivalent predictor, with slightly less
distortion.

Since all predictors and interpolators produce an output array of (x, y)
points, they are often combined with other techniques, such as delta modu-
lation and Huffman encoding, to reduce the total number of bits required to
store the compressed waveform. The true measure of the compression ratio
for the overall process is its bit compression ratio (as opposed to the point
compression ratio, produced by the predictor or interpolator alone):

Bit compression ratio = bjbc

where

bo = number of bits in original waveform
be = number of bits in compressed data

Quite often, the optimum compression technique for a particular class
of data must be determined strictly by trial and error. The data compression
information in this chapter is hardly exhaustive. Certain nonlinear curve fitting
techniques, such as splines, are commonly used. Fields that use extremely
large data sets, such as imaging, have numerous, dedicated compression
techniques producing very large compression ratios.

9.5 Commercial Data Compression Software 221

9.5 Commercial Data Compression Software

Many commercial data compression products are available for use on PCs.
Some are hardware-based, for increasing hard disk storage without utilizing
CPU overhead. Other products are strictly software-based, often used for
producing hard disk file backups (as on tape systems). Since the nature of
the data stored on a PC's files can vary tremendously, intelligent systems can
determine the compression algorithm to use based on the data itself.

Most commercial data compression programs use lossless techniques,
especially when they operate on general-purpose PC files. Several third-party
applications, such as Stacker, were used to compress MS-DOS files, saving
disk space. Microsoft introduced its own disk compression product, DriveSpace,
as part of MS-DOS 6.22.

DriveSpace creates a virtual disk drive that contains compressed files.
This virtual drive appears as a normal disk drive to the operating system.
However, additional layers of software compress and restore file data during
access (which does slow up I/O processes). Windows 95 uses DriveSpace 2
as its standard disk compression software while Windows 98 contains
DriveSpace 3. Each newer version of DriveSpace can create a larger virtual
drive, along with other enhancements.

Two popular programs that compress individual files or groups of files
are PKZIP (for DOS or Windows) and WINZIP (for Windows only). They
apply lossless compression algorithms to minimize file size for storage or
transmission (such as via modem).

Exceptions to lossless compression of PC files are techniques applied
to multimedia files. There are several popular compression standards used on
audio and video files. For example, digital photographs are often stored as
JPEG files, which allow for high compression ratios at the expense of reduced
picture resolution (the compression-distortion trade-off is selected when a
file is stored as JPEG). Audio files can be compressed using MPEG algorithms
that remove inaudible information to produce high compression ratios.

This concludes our look at PC file storage and data compression. In the
next chapter we will examine some common processing and analysis tech-
niques applied to acquired data, along with considerations of numerical rep-
resentation and precision.

C H A P T E R

Data Processing
and Analysis

The power and flexibility in using a PC as a data acquisition platform is
shown most clearly by how data can be manipulated once it is acquired. In
this chapter we will explore some of the data analysis and processing tech-
niques conmionly used with data acquisition systems. Since most data col-
lected by data acquisition systems is numeric, it is important to know how
numbers are represented and manipulated on a computer. We will start by
looking at numerical representation and storage in a PC.

10.1 Numerical Representation

As we previously touched on while discussing ADCs and DACs, there are
many possible ways to represent conventional decimal numbers in a binary
format. The simplest of these are integer representations. For nonintegral
numbers, various fractional formats can be used, though for maximum flex-
ibility and dynamic range, floating-point representations are preferable.

10.1.1 Integer Formats

The fastest and most efficient way to manipulate data on a PC is to store it
in an integer format. An integer can either be signed (representing both
positive and negative numbers) or unsigned (positive numbers, only). The
maximum dynamic range of the values that can be represented is determined
by the number of bits used. Therefore, n bits can represent 2" numbers with
a dynamic range (in dB) of 20 logio(2"). If n = 8, then 256 different integers
can be represented: positive integers in the range 0 to 255, or signed integers

222

10.1 Numerical Representation 223

TABLE 10-1
Integer Formats

1 INTEGER TYPE

1 Byte

1 Word

Long Word

1 Double Word

OF BITS

8

16

32

64

SIGNED VALUES

-128 to+127

-32,768 to +32,767

-2 .14x10^ to+2.14x10^

-9.22x10^^ to+9.22x10^^

UNSIGNED VALUES 1

0 to 255 1

0 to 65,535 1

0 to 4.29x10^ 1

0 to 1.84x10^^ 1

in the range -128 to +127. This corresponds to a dynamic range of 48 dB.
If n = 16 bits, 65,536 values can be represented, for a dynamic range of 96 dB.

The standard integer formats commonly used on a PC are byte (8 bits),
word (16 bits), long word (32 bits), and double word (64 bits), as shown in
Table 10-1. On an Intel 80x86/Pentium family PC, data is addressed on a
byte-by-byte basis. The starting memory address for a word (or long word) is
the first of the 2 (or 4) bytes comprising that word. The first (addressed)
memory location contains the least significant byte (LSB), while the last
location contains the most significant byte (MSB), as illustrated in Figure 10-1.

This byte ordering is processor-dependent. On a computer based on a
Motorola 68000 series CPU, such as an older Apple Macintosh, a different
storage arrangement is used. All words must start at an even address with the
MSB at the starting (even) address and the LSB at the higher (odd) address.
For a long word, the high-order 16 bits are stored at the starting (lower)
address and the low-order 16-bits at the higher address (start +2).

Long Word MSB (3)

Long Word (2)

Long Word (1)

Long Word LSB (0)

Word MSB (1)

Word LSB (0)

Byte

Address + 6

Address + 5

Address + 4

Address + 3

Address + 2

Address + 1

Starting Address

Figure 10-1 Multibyte integer storage in Intel-based PC memory.

224 CHAPTER 10 Data Processing and Analysis

Most of the time, the method used by a CPU to store and access data
in memory is transparent to the user and even the programmer. It only
becomes an issue when one data storage element, such as a word, is also
accessed as a different element, such as a byte. Because of the strong likeh-
hood of error in doing this, it is not a recommended approach. For a program
written in C (see Chapter 13), if you explicitly use a casting technique, you
can safely convert one element size to another.

The nature of data storage depends only on how many bytes are needed
to represent a particular data storage element. An unsigned integer is usually
represented as a natural binary number, such as 25 = 11001. If an element is a
signed integer, there are several ways to encode or represent it. The most popular
approach is to use twos-complement representation, as shown in Table 10-2.
In twos-complement notation, the most significant bit is a sign bit. If it is 0,
the number is a positive integer, with the same value as its unsigned binary
counterpart. If the sign bit is 1, the number is negative.

TABLE 10-2
Four-Bit Signed Integers

1 DECIMAL
1 VALUE

1 +^
1 +^
1 +^
1 '^^
1 +^
1 ^̂
1 +̂
1 ^ 1 ""•
1 "2
1 "̂
1 "̂

-5

1 "̂ 1
1 ""̂ 1
1 -8 1

TWOS-COMPLEMENT 1
BINARY CODE

0111 1
0110

0101 1
0100 1
0011 1
0010 1
0001 1
0000

1111 1
1110 1
1101 1
1100 1
1011 1
1010 1
1001 1
1000 1

10.1 Numerical Representation 225

The twos-complement value is calculated by first writing the binary
value of the corresponding positive number, then inverting all the bits, and
finally adding 1 to the result. To get the 4-bit twos-complement representation
of-4, we start with the unsigned binary value for +4 = 0100. When we invert
all the bits, we get 1011. Adding 0001 to this number produces the final value
of 1100 = -4 . Using twos-complement representation for negative integers
is widely accepted because if you add corresponding positive and negative
numbers together, using this system, you will get a result of zero when
truncated to the original number of bits. So, adding - 4 to -1-4, we get

1100
+ 0100

= 0000

The use of twos-complement representation produces the n-hit signed integer
range of -2 "̂"̂ ^ to +2̂ ""̂ ^ -1 (i.e., forn = 4 this range is -8 to +7).

Other encoding techniques are used to represent decimal integers in a
binary format, besides natural binary and twos-complement. One of the more
common alternatives is binary coded decimal (BCD). This code uses 4 bits
to represent a decimal digit, in the range 0 to 9. It uses natural unsigned
binary representation (0000 to 1001). The six codes above 9 (1010 to 1111
or Ah to Fh) are unused. To represent a decimal value, a separate BCD code
is used for each decimal digit. For example, to represent the value 437:

437 = 0100 0011 0111

(4) (3) (7)

If only one BCD digit is stored in a byte (upper 4 bits are set to 0), it is called
unpacked BCD storage. If two BCD digits are stored in a byte it is called
packed BCD storage. Even using packed storage, BCD numbers require more
storage than natural binary or twos-complement values. As an illustration of
unsigned integers, four BCD digits (16 bits) can represent the values 0 to
9999 while a natural binary word (16 bits) can represent values 0 to 65,535.
Alternatively, we only need 16 bits to represent 50,000 with an unsigned
natural binary word, whereas we need 20 bits (five digits) to do the same
with BCD. BCD is popular with systems processing large amounts of impor-
tant numerical data, such as those used by financial institutions.

An even less efficient means of numerical representation is using an
ASCII character to represent each decimal digit. In this case, 7 (or 8) bits are
needed to represent 0 to 9 (as well as sign and decimal point, for nonintegers).
This is about twice as inefficient as BCD representation. ASCII numerical
representation is usually used strictly to store data in a format that is easy to

226 CHAPTER 10 Data Processing and Analysis

read, print, and export to other applications (such as spreadsheets). It is usually
converted into a format more convenient to use before numerical processing
proceeds.

10.1.2 Noninteger Formats

Quite often, when using a computer to process acquired data, integer precision
is not adequate, because of round-off errors, dynamic range limitations, or
poor modeling of the measured phenomena. Several numerical formats are
used to overcome this problem.

The simplest way to depict fractional values is with fixed-point repre-
sentation, which is basically an extension of binary integer representation.
For integer representation, using n bits, the binary number fe„fe„_i...&ifoo is
evaluated by adding the weighted value of each nonzero bit as follows:

Z7„x2" + Z7„_iX2""^-H---+Z?iX2' + fcoX2^

where bj is the iih bit (0 or 1). For binary fixed-point representation, both
positive and negative exponents are used and a binary point appears after the
2 digit. For example, if we had an 8-bit number with a 3-bit fraction, it would
be written as

b4)2,b2bxbQ ' b_yb_2b-3

The weights for the bits following b^, b_i, b_2, and fc_3 are 2~ , 2~ , and 2~ ,
respectively. The resolution of this representation is 0.125 (2~), while its
range of values for unsigned numbers is 0 to 31.875, which is still the same
number of values as an 8-bit unsigned integer (31.875/0.125 = 255).

When more bits are added to unsigned integers, the resolution stays the
same (1) while the range of values increases. When the number of bits after
the binary point in a fixed point, fractional representation increases, the
resolution increases, while the range of values stays the same. This trade-off
between range of values and resolution is inherent in these representations.

If we needed to increase both the dynamic range and resolution of our
numerical representation, we could keep increasing the number of bits per
number. The problem here is that most CPUs can perform math on only a
fixed number of bits at a time. For 16-bit processors (as used in earlier PCs),
if more than 2 bytes represent a number, additional instructions must be
performed when executing a math function, splitting the function into multiple
16-bit operations. If we are using 32-bit integers and need to add them, we
have to first add the lower 16-bit words, then add the upper 16-bit words with
any carry from the previous addition. The software overhead and processing
time increase quickly as we increase the size of numerical elements.

10.1 Numerical Representation 227

1 bit 8 bits 23 bits
I Sign I Exponent | Mantissa ~]

(MSB)D31 D30 D23 D22 DO (LSB)

(a) Single precision (32 bits)

1 bit 11 bits 52 bits
I Sign I Exponent | Mantissa |

(MSB) D63 D62 D52 D51 DO (LSB)

(b) Double precision (64 bits)

Figure 10-2 IEEE floating-point formats.

The standard solution to this dilemma is to use a floating-point format,
consisting of a fractional part (the mantissa) and an exponent. The number
of bits used to represent the exponent determines the floating-point number's
range of values, and the number of bits used for the mantissa determines its
resolution. The mantissa is a signed, binary fraction that is multiplied by 2̂ ^̂
to produce the represented value. The exponent is a signed integer.

Certain standard formats are used to represent floating-point numbers.
Among the most popular, the IEEE 754 Floating-Point Standard is also
commonly used with PCs. This standard defines two formats: single-
precision, using 32 bits, and double-precision, using 64 bits, as shown in
Figure 10-2.

In both formats the sign bit (most significant bit) is for the mantissa,
which is in a normalized form (with a value between 1.0 and 2.0). In frac-
tional binary, this would be 1.000...0 through 1.111... 1 (using a fixed
binary point). Since the most significant mantissa bit (before the binary
point) is always 1, it is implied and not stored with the number. So, a single-
precision mantissa of 1.01101111000010101010011 would be stored as
01101111000010101010011.

The exponent is stored in a biased form, with a fixed value, or bias,
added to it. For single-precision numbers, this bias is -1-127, and for double-
precision numbers it is -1-1023. This biased exponent is useful for determining
which of two exponents is larger, by comparing them bit by bit, starting with
the leftmost bit. For example, consider two single-precision numbers with
exponents of -1-15 and -5 , represented as signed integers:

-hl5 = 00001111 -5 = 11111011

and represented as biased integers (-1-127):

+15 -h 127 = 10001110 -5 -h 127 = 01111010

228 CHAPTER 10 Data Processing and Analysis

1 bit
1 Sign 1

(MSB) D79 D78

15 bits
Exponent |

D64 D63

64 bits
Mantissa 1

DO (LSB)

Figure 10-3 Intel 8087 80-bit temporary floating-point format.

So, just looking at the leftmost bit indicates that -1-15 is the larger exponent.
The valid exponent range for single-precision is -126 to -1-127, and for

double-precision it is -1022 to -1-1023. When represented as a biased exponent,
a value consisting of either all O's or all I's indicates an invalid number. This
way numerical overflow/underflow errors can be indicated.

A special, non-IEEE format is used on Intel-family PCs with 80x87-
style math coprocessors, the temporary format, shown in Figure 10-3. This
is an 80-bit format, incorporating a 64-bit mantissa with a 15-bit exponent.
It is very useful for highly repetitive mathematical operations where round-
off errors can reduce precision, as well as calculations involving very large
or very small numbers.

The temporary format uses an exponent bias of -1-16,383. It differs in
spirit from the single- and double-precision formats by explicitly keeping the
leftmost 1 in the normalized mantissa value. Since the math operations using
this 80-bit temporary format are performed in hardware, the large number
size does not cause severe processing speed penalties.

Table 10-3 lists decimal precision (number of significant digits) and
range for some of the integer and floating-point numerical formats we have

TABLE 10-3
Range and Precision of Various Numerical Formats

• N U M B E R
1 TYPE

1 Integer

1 Floating
Point

FORMAT

Byte

Word

Long Word

Double Word

Single Precision

Double Precision

Temporary

TOTAL
0 F
BITS

8

16

32

64

32

64

80

EXPONENT/
MANTISSA
OF BITS

—

—

—

—

8/23

11/52

15/64

DECIMAL
DIGITS OF
PRECISION

>2

>4

>9

>18

>7

>15

>19

DECIMAL
RANGE

>±10^ 1
>±10'

>±10^ 1
>±10^«

>±io^^ 1
>±10^°^

>±10"̂ ^̂ 1

10.2 Data Analysis Techniques 229

discussed here. Note that for an equivalent number of bits (such as 32 or 64),
floating-point formats have slightly lower precision along with much higher
dynamic range than the corresponding integer formats. This is simply due to
diverting some of the bits used for precision in an integer to the exponent of
a floating-point value, increasing its range.

10.2 Data Analysis Techniques

A wide variety of processing techniques are commonly applied to the data
produced by data acquisition systems. These can range from simply plotting
the data on a graph to applying sophisticated digital signal processing (DSP)
algorithms. A large number of commercial software packages, such as those
discussed in the next chapter, have many of these capabilities built in. This
enables the user to concentrate on the data analysis without getting bogged
down in the details of programming a PC. We will begin our survey of data
processing by looking at statistical analyses.

10.2.1 Statistical Analysis Techniques

The most common analysis applied to acquired data is some statistical cal-
culation. Statistical parameters describe the distribution of values within a
data set. They indicate where data values are most likely to be found as well
as the probable variability between them.

The most important statistical measurement for a data set is the mean,
which is simply the average of a set of values. If we have a set Yofn values,
yi^ J2. • • •. yn^ the mean of Y is just

ym = (yi+y2+'" + yn)/n

The values of the data set must have some relationship to each other for the
mean to have significance. For example, the set may consist of n measure-
ments of the same quantity, repeated over time.

The conventional mean is used to analyze an existing data set. A special
variation on the mean is the running average, sometimes referred to as the
circular average or sliding average. The running average is useful for real-
time control applications, when the current average value is needed. For
instance, an intelligent heater controller needs to know the current temperature
of a system to apply the appropriate amount of heater power. If the temper-
ature varies significantly from reading to reading, an average of the last n
readings would be useful to smooth out this temperature noise. The running

230 CHAPTER 10 Data Processing and Analysis

average is just the mean of the last n values. If the current reading is 7̂ and
the running average is n points wide, its value at point / is

At the next point, / + 1, the running average is

Tmi^i = (Ti^i + Ti + -" + Ti_^+2)ln

The running average is updated with each new value acquired. It acts as a
low-pass filter on the incoming data. Only relatively slow artifacts with large
amplitude changes will be reflected in the running average. When this tech-
nique is applied to an existing, acquired waveform, the n-point averaging
window is usually symmetric around the selected point.

Another statistical measurement is the median. It is selected so that half
of the data set values are higher than the median and the other half are lower.
The median is often close in value to the mean, but it does not have to be.

An important measure of variation within a set of data is the standard
deviation. If we have a data set {y^, >'2,..., J„) of n values with a mean of j ^ ,
the standard deviation cris

o = [[(yi - ymf + (j2 - ymf + ••• + (>'«- ymfyn]^'^
This is a measure of the differences between the data set values and the
average value. The smaller the standard deviation, the "tighter" the distribution
of data values is. In the case where all values in a data set are identical, the
standard deviation would be zero.

When a data set fits a normal Gaussian distribution (a "bell" curve),
approximately 68% of the values will be found within one standard deviation
of the mean value. As an illustration, assume a manufacturer is interested in
analyzing the length of a production part. Length measurements are taken on a
sample of parts that fit a Gaussian distribution, having as its peak the mean
value. Here, the standard deviation is a measure of the length variations from
part to part. From these measurements, the manufacturer can predict the
percentage of a production run that will fall within an acceptable tolerance.
If this percentage is too small, it indicates a need to control the production
process better.

10.2.2 Curve Fitting

The mean and standard deviation are mostly used on sets of values that should
be describing the same or similar measurements. When the acquired data is
a waveform, described as two-dimensional (x, y) points, a common requirement

10.2 Data Analysis Techniques 231

is comparing it to a theoretical model, or finding a model that fits the data.
This data can be a one-dimensional array where time is the independent (x)
variable. The theoretical model describes a waveform that should be similar
to our acquired data. Finding a mathematical model that fits the measured
data is referred to as curve fitting.

Very often, a polynomial is used to describe a theoretical curve. The
general form of a polynomial of order n is

F(x) = 0̂ + aiX + a2X -\ \- a^x^

The coefficients are the constants a^ which are adjusted during the curve
fitting process. To determine the coefficient values for the best curve fit, the
sum of the error terms for each ofj data points in the curve is calculated as

[F(x,) - y,f + [F(X2) - y2f + • • • + [F(xj) - yjf

where ji , y2, -" , yj are the measured values. When this function is minimized,
the coefficients for F(x) describe the best curve fit to the data set. This is
referred to as the least squares fit. Using least squares to test how well a
function fits a data set is not limited to polynomials. Exponential and trigo-
nometric functions are also commonly employed for curve fitting and still
use a least squares fit measurement. The iterative type of calculations used
to find the least squares fit is well suited to digital computer calculations.

The simplest curve fitting is a first-order (n=l) or linear fit, sometimes
referred to as a linear regression. Analytically, the coefficients UQ and «i are
determined. Graphically, a straight line is drawn through the data points. The
resulting line is described by the standard formula

y == mx + b

where m = the slope and b = the y-intercept. This means that the general
coefficients ao = b and aj = m.

Given a set of (jc, y) data points, the coefficients for a linear regression
can be determined analytically. The coefficients a^ and ai are calculated from
summations over all n points in the data set:

[ay)xax^)-ax)xaxy)]
[nxa/)-(ixf]

[nx(lx};)-(lx)x(l};)]

[nxax^)-axf]
For higher-order polynomial fits, analytic approaches are impractical. An
iterative process of successive approximations is typically used.

232 CHAPTER 10 Data Processing and Analysis

Y = 0.55X + 1.9.

Figure 10-4 Example of linear curve fitting.

Figure 10-4 is a simple example of a linear curve fit. There are four
(jc, y) values: (1,2), (3,4), (5,5), and (8,6). Calculating the coefficients from
the above equations, we find the least squares fit line to these points is y =
0.55JC+ 1.9.

Notice the similarity between linear curve fitting and linear predictors
or interpolators, discussed in Chapter 9. In both cases, a straight fine is found
that best fits the data. Furthermore, minimizing the distortion produced by
data compression is often a least squares process.

Curve fitting is a broad, complex field. This brief discussion should
serve to give you a feel for implementing curve fitting on a PC-based data
acquisition system. An advantage of using these systems (with appropriate
software) is the ability to see the data graphically, along with getting the
numerical processing power of a PC. When it comes to processing waveforms,
seeing the data displayed as a graph is invaluable.

10.2.3 Waveform Processing

A large portion of the information gathered by data acquisition systems is in
the form of waveforms (commonly, a function varying with time). These
waveforms are easily displayed graphically, using many of the software pack-
ages described in Chapter 11. Very often, this acquired data is operated on as
a single entity: a vector (one dimension) or an array (two or more dimensions).

10.2 Data Analysis Techniques 233

+2V

Amplitude

^ Tinne

(a) Ultrasonic pulse with DC offset

+ V - ,

Annplitude

*- Time

(b) Ultrasonic pulse with DC offset subtracted

Figure 10-5 Example of subtracting a DC offset fronfi a waveform.

Many of these operations are simple mathematical functions, such as sub-
traction or multiplication with a scalar or another array.

Consider the example in Figure 10-5a, a waveform representing an
ultrasonic pulse, which should have a net DC component of zero. Because
of DC offsets in the analog receiver system, the acquired signal may not meet
this criterion. To determine the net DC offset, we take the mean value of all
the waveform points. If this mean is not zero, we subtract it (a scalar) from
the waveform (a vector). The result, shown in Figure 10-5b, now has a zero
DC offset.

Waveforms can also be used to operate on each other. For example,
special windowing functions are commonly used in DSP algorithms. Wave-
forms under analysis are multiplied by these windowing functions, which are
also waveforms. In many cases a reference or baseline waveform is acquired.
Subsequent data is then divided by this reference data, for normalization.

Other common operations are integration and differentiation. If we
wish to determine portions of a waveform with high slopes, we would
differentiate it. The peaks of a differentiated function occur at slope maxima.
When a particular function is difficult to differentiate or integrate analyti-
cally, this numerical approach is very useful. For numerical differentiation.

234 CHAPTER 10 Data Processing and Analysis

the slope, dyldx, is calculated for every pair of adjacent points. In a similar
fashion, the area under the curve at each point is calculated for numerical
integration.

For example, suppose a waveform represented the measured displace-
ment of an object versus time. Differentiating this waveform would produce
a new waveform representing the object's velocity versus time. Differentiating
a second time would produce an acceleration-versus-time waveform. Con-
versely, if the acquired waveform represented acceleration data, as from an
accelerometer, integrating it once would produce a velocity curve and inte-
grating it a second time would produce a displacement curve. The only
problem here is that any fixed offsets in either displacement or velocity would
not appear in the integrated data, as they were lost by the original acceleration
measurements.

Again, this brief discussion is only scratching the surface on the topic
of waveform processing. Many mathematical operations are performed on
data representing vectors and arrays, such as dot products and cross products.
The huge variety of waveform processing techniques find an immense range
of applications. We will look at a few specialized techniques now, starting
with Fourier transforms.

10.2.4 Fourier Transforms

Undoubtedly, Fourier transforms are among the most popular signal process-
ing techniques in use today. Analytically, the Fourier series for a single-valued
periodic function is a representation of that function using a series of sinu-
soidal waveforms of appropriate amplitude and phase. The sine waves used
in the series are at multiple frequencies (harmonics) of the lowest frequency
(the fundamental). The Fourier series for a periodic function, /(/), with a
period T would be

f{i) = aQ-\- ai^m{cot + 0i) + a2sm{2(Ot + 2̂) + ••• + anSm{ncot + 0„)

where

(O = ITIIT, the fundamental frequency
^!,...,«„ are the amplitude values for each frequency component {UQ is

the DC component)
0i,...,0„ are the phase values for each frequency component

To represent a single-frequency sinusoidal wave, only the DC and funda-
mental frequency terms are needed. Most functions require many terms to
provide a good approximation of their real value. For example. Figure 10-6

10.2 Data Analysis Techniques 235

f + 3f + 5f v\
Complete Square Wave

Annplitude

Time

Figure 10-6 Fourier series for a square wave.

shows a square wave, which has a Fourier series consisting of decreasing odd
harmonics:

f(t) = Aa^ln [sin(coO + 1/3 x sin(3a)0 + ••• + 1/n x sin(ncoO]

Using only the first term (fundamental frequency) we only get a crude
approximation of the real waveform. After we use the first three terms (up to
the fifth harmonic) we have a much closer approximation of the square wave.

By fitting trigonometric functions to an arbitrary waveform, we can get
the frequency content of that waveform. In essence, the Fourier transform is
used to convert from a conventional data (time)-domain waveform to a spec-
tral (frequency)-domain waveform. Since this transformation is bilateral, an
inverse Fourier transform converts data back from the frequency domain into
the time domain. Data-domain waveforms include functions of time as well
as of space. The Fourier transform of a distance-based waveform contains
spatial frequency information.

Analytically, the Fourier transform is defined for operation on contin-
uous, periodic functions. Given a function of a real variable (the function
itself can be complex),/(x), its continuous Fourier transform (CFT), F(y), is
defined as

F{y) = f [fix) X e'^^^^'dx]

236 CHAPTER 10 Data Processing and Analysis

This integral must exist for every real value of x. The complex exponential used
in the integral has an equivalent trigonometric form, using Euler's formula:

e-'^ = cos(jc) + j sin(x)

where j = 7 ^ , the imaginary number operator.
An alternative form for the CFT would be

F{y) = I f(x)[cos(27Cxy) - jsin(27rxy)]dx

For data acquisition applications, a special Fourier transform is used to
operate on discrete, finite functions. This is called the discrete Fourier trans-
form (DFT) and is used to operate on discrete (digitized) data. The DFT is
the workhorse of DSP techniques. If we have a waveform,/(A:), consisting of
n points, the DFT produces a complex waveform of n points, F(m). Both k
and m vary from 0 to n - 1. The data points off(k) are evenly spaced in the
time domain by dt and range from 0 to (n - l)dt. The transformed data points
of F(m) are evenly spaced in the frequency domain by l/dt and range from
0 to (n - l)/dt. The DFT is calculated from

n - l

F(m) = X[/Wx^^^"''"^"^"'̂]
k=0

The frequency-determining component is Inmln, which is a normalized value.
The DFT assumes the time-domain waveform is a periodic function, with a
period of n points. The normalized frequency at the first DFT point is 0 and
at the last point is 2K (n - \)ln radians. This maximum frequency is {n - l)/dt,
so the time-domain sampling is normalized to dt = n/2n.

Note that the first term of the DFT, F(0) = X f(k), at zero frequency
(m = 0). This is simply the area under the curve or the result of integrating
f(k). Also note that for each term in F(m), n complex multiplications must be
done as/(/:) times the complex exponential term [where/(A:) can be either real
or complex]. It is a fair assumption that the amount of time required to
calculate a DFT using a digital computer is proportional to the number of
complex multiplications (each involving four separate real multiplications
and additions). Since n complex multiplications are performed for each of n
points, the number of complex multiplications required to perform a DFT is
proportional to ̂ .As the number of input points n increases, the time required
to calculate the transform goes up by the square. When real-time frequency
analysis is required on a large amount of data, such as with spectrum analysis,
the required computation time can be much too long. In this case, the output
frequency data (DFT) falls behind the input time-domain data.

10.2 Data Analysis Techniques 237

If we have frequency-domain data and want to convert it back to the
time domain, we can use the inverse DFT:

m=0

For the inverse transform, the frequency data, F(m), is multipUed by a
complex exponential and summed over all its points to calculate each f{k)
point. Notice the scale factor of \ln here. As with the forward DFT, the time
required to compute the inverse DFT is proportional to the square of the
number of points.

The answer to the problem of DFT computations taking too long to
calculate is the fast Fourier transform (FFT), which is a special implementation
of the DFT. By exploiting the symmetry inherent in the DFT and breaking
up the calculations into several smaller transforms, computation time using
the FFT can be greatly reduced. Most FFT algorithms only operate on a set
of points that is an exact power of 2 (^ = 2)̂. However, the number of complex
multiplications required by an FFT is only n x log2(n). So an FFT is n/log2(n)
faster than an equivalent DFT. For a waveform of 1024 points, this is a speed-
up by a factor of more than 100 (1024/10).

For the rest of this discussion, we will assume that the Fourier trans-
forms used on a PC will always be FFTs. The commercial software packages
listed in Chapter 11 (and the Appendix) that contain Fourier transform func-
tions all employ an FFT algorithm.

Some of the symmetry inherent in the FFT of a waveform is shown by
plotting it. All FFTs are complex waveforms with a real and imaginary
component for each frequency value (point). If the original time-domain
function is real, the real component of its FFT has even symmetry (symmet-
rical about point n/2) and the imaginary component has odd symmetry (anti-
symmetric about n/2). If the original function is imaginary, the real component
of the FFT has odd symmetry and the imaginary component has even sym-
metry. If the original function is purely real or purely imaginary, the magni-
tude of its FFT will have even symmetry.

Very often, when looking at the FFT of a waveform for frequency
analysis, only the magnitude \F(m)\ is of interest. Since the FFT points are
complex:

|F(m)| = [(F(m),eai)'+ (F(m)imag)']'''

If the signal of interest, in the time domain, is an ideal impulse, infinitely
sharp (all but one point is zero amplitude), the magnitude of its FFT is a
constant. That is, an impulse contains a spectrum of equal amplitude at all

238 CHAPTER 10 Data Processing and Analysis

1.0-

Amplitude

0
—I • Time
63

(a) 8-point wide rectangular pulse

Amplitude

Frequency

(b) FFT magnitude from transform of rectangular pulse

Figure 10-7 Example of fast Fourier transform (FFT): 64-point F F of 8-point wide
rectangular pulse.

frequencies. This makes an impulse very useful as a broad-band excitation
signal.

As an example, Figure 10-7a shows a simple rectangular pulse of unit
amplitude (1.0), eight points wide in a 64-point waveform. Figure 10-7b
displays the magnitude of the FFT of this simple waveform.

Notice the even symmetry of the FFT magnitude. This is because the
original function was purely real. For an FFT of n points, the magnitude is
symmetrical about point n/2. The actual frequency data is valid only up to
point n/2, which is half the entire frequency range. Since the maximum
frequency is equal to the original data acquisition sampling rate (/̂ = l/dt,
where dt is the time between consecutive samples) the FFT data is valid only
up to/s /2, the Nyquist frequency. Above that point it is just the mirror image.

Another interesting feature is the periodicity in the magnitude of the
FFT, displayed in Figure 10-7b. With a rectangular pulse y points wide in the
time domain, the period in the frequency domain is n/y, which is every eight
points in this case. If the rectangular pulse was wider, the number of peaks
in the FFT magnitude would increase as the period decreased. Also, note that

10.2 Data Analysis Techniques 239

Amplitude

1 \ \ \ »^Time
63

1 t n o1/64 (a) Exponential decay from e^ to e

110-

Amplitude

10-
0-

0 63

- • Frequency

(b) FFT magnitude from transform of exponential decay

Figure 10-8 Example of 64-point F F of exponential decay waveform.

the value of the zero-frequency point |F(0)| = 8. This is equal to the value
obtained by integrating the original pulse waveform (eight points wide with
an amplitude of 1), which is its DC component.

Figure 10-8a displays a 64-point exponential waveform decay, / , from
e^ at point 0 to e^^^ ^^ at point 63. The magnitude of its FFT is shown in Figure
10-8b. Again, the value we get for |F(0)| is equivalent to the result of integra-
ting under the waveform, which has a large DC offset (note that the expo-
nential waveform does not approach a zero value in the sampled time
interval).

The following is a simple FFT program written in BASIC. It will run
under IBM BASIC, GW-BASIC, or QBASIC. Since BASIC is an interpreted
language (see Chapter 13 for more details), it executes slowly. The actual
FFT or (IFFT) computation is done by the subroutine starting at line 400.
The test program, starting at line 10, allows the user to enter a 16-point data
array as input to the FFT subroutine. This illustrative program is only useful
for relatively small data arrays, such as 64 points or less. For larger arrays,
the FFT computation time could take several minutes on older PCs.

240 CHAPTER 10 Data Processing and Analysis

10 REM - FFT PROGRAM, TESTS FFT SUBROUTINE WITH
20 REM - ARRAY OF 16 POINTS, PROVIDED BY USER.
25 CODE = 1 ^SET FOR FFT (-1 = IFFT)
30 PI = 3.14159
40 N = 16 'NUMBER OF POINTS IN WAVEFORM
50 DIM R(N) 'REAL DATA ARRAY, INPUT & OUTPUT
60 DIM I(N) 'IMAGINARY DATA ARRAY, INPUT & OUTPUT
70 PRINT "FFT TEST PROGRAM": PRINT
80 PRINT "NUMBER OF POINTS = "; N: PRINT
90 INPUT "REAL DATA INPUT, ONLY - Y OR N?",A$
100 CLS 'CLEAR SCREEN
110 INPUT "INPUT DELTA T (1): ",DELTA
120 PRINT "INPUT SIGNAL DATA POINTS" : PRINT
130 FOR J = 1 TO 16
140 PRINT "POINT"; J; ": " ;
150 INPUT "XR = ",R(J)
160 IF A$ = "Y" THEN I (J) = 0 ! : GOTO 190
170 PRINT " POINT"; J; " : " ;
180 INPUT "XI = ",I(J)
190 PRINT
200 NEXT J 'END OF DATA INPUT LOOP
210 PRINT
220 CLS 'CLEAR SCREEN
230 PRINT "CALCULATING FFT "
240 GOSUB 400 'CALL FFT SUBROUTINE
250 PRINT: PRINT "POINT", "FFT REAL", "FFT IMAG"
260 FOR J = 1 TO N
270 PRINT J,R(J) ,I(J)
280 NEXT J
290 PRINT
300 INPUT "DISPLAY FFT MAGNITUDE & PHASE - Y OR N?",A$
310 IF A$ <> "Y" THEN STOP
320 PRINT: PRINT "POINT", "FFT AMP", "FFT PHS"
330 FOR J = 1 TO 16
340 AMP = (R(J)^2 + I(J)"2)^.5
350 PHS = PI/2
360 IF R(J) <> 0 THEN PHS = ATN(I (J)/R(J))
370 PRINT J, AMP, PHS
380 NEXT J
390 STOP
400 REM - SUBROUTINE CALCULATES FFT OR INVERSE FFT
410 REM - N = # OF POINTS IN WAVEFORM (POWER OF 2)
420 REM - CODE = 1 FOR FFT, -1 FOR IFFT
430 REM - DELTA = dT FOR FFT OR 1/dT FOR IFFT
440 REM - R(N) = REAL DATA ARRAY FOR INPUT & OUTPUT
450 REM - I(N) = IMAGINARY DATA ARRAY FOR INPUT & OUTPUT
460 IR = 0
470 Nl = N
480 N2 = INT(Nl/2) 'CHECK IF N IS A POWER OF 2
490 IF N2*2 <> Nl THEN PRINT "N IS NOT A POWER OF 2!": RETURN
500 IR = IR + 1
510 Nl = N2
520 IF Nl > 1 THEN GOTO 480
530 PN = 2! * PI/N
540 L = INT (N/2)

10.2 Data Analysis Techniques 241

550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090

IRl = IR - 1
Kl = 0
FOR Z = 1 TO IR
FOR J = 1 TO L
K = Kl + 1
P = K + L
KAY = INT(K1/(2'^IR1))
GOSUB 1030 'BIT REVERSAL SUBROUTINE
AM = KBITR
IF AM <> 0 THEN GOTO 680
XRl = R(P)
XII = I(P)
GOTO 730
ARG = AM * PN
C = COS(ARG)
S = -1 * CODE * SIN (ARG)
XRl = C * R(P) - S * I(P)
XII = C * I(P) + S * R(P)
R(P) = R(K) - XRl
I(P) = I(K) - XII
R(K) = R(K) + XRl
I(K) = I(K) + XII
Kl = Kl + 1
NEXT J
Kl = Kl + L
IF Kl < N THEN GOTO 580
Kl = 0
IRl = IRl - 1
L = INT(L/2)
NEXT Z
FOR K = 1 TO N
KAY = K - 1
GOSUB 1030 'BIT REVERSAL SUBROUTINE
Kl = KBITR + 1
IF Kl <= K THEN GOTO 960
XRl = R(K)
XII = I(K)
R(K) = R(K1)
I(K) = I(K1)
R(K1) = XRl
I(K1) = XII
NEXT K
IF DELTA = 1 THEN RETURN
FOR K = 1 TO N 'SCALE OUTPUT DATA BY
R(K) = DELTA * R(K)
I(K) = DELTA * I(K)
NEXT K
RETURN
REM -BIT REVERSAL SUBROUTINE
REM - KAY = INPUT NUMBER
REM - IR = NUMBER OF BITS TO REVERSE
REM - KBITR = REVERSED NUMBER
KBITR = 0
KAYl = KAY
FOR Y = 1 TO IR

DELTA

242 CHAPTER 10 Data Processing and Analysis

1100 KAY2 = INT(KAYl/2)
1110 KBITR = 2 * KBITR + KAYl - 2 * KAY2
1120 KAYl = KAY2
1130 NEXT Y
1140 RETURN

For most practical FFT applications you will undoubtedly use an FFT
function built into a commercial software package (such as those described
in Chapter 11 or the Appendix). However, if you need to incorporate FFTs
into a custom program, there are many freeware and shareware sources for
FFT routines (usually written in C or FORTRAN). One such free FFT library
developed and maintained by MIT is FFTW, available via the Internet (at
URL: http://www.fftw.org).

10.2.5 Convolutions and Window Functions

Convolution and Deconvolution The utiUty of FFTs extends far beyond simple
frequency analysis of acquired signals, even though this is still an important
application. In the real world it is often difficult to measure a quantity
"cleanly," without distortion due to the measurement system itself. For time-
based or distance-based measurements, the overall system response is a func-
tion of the measured quantity along with a function of the system response.
This system-response transfer function operates on the desired physical quan-
tity through a process called convolution, producing the measured response.

The convolution h(x) of two time (or space)-domain functions/(x) and
g(x) is defined as

h(x) = f(x)^g(x) = rf(X)g(x-X)dX
•'—oo

We will use the symbol • here to denote convolution. Convolution literally
means "folding back." The value of one function at a particular point (x value)
affects the overall response at neighboring points, as shown by the g(x - X)
function. Convolving two transfer functions produces the overall system-
response transfer function.

The convolution integral can be difficult to calculate in the time (or
space) domain for many functions. It becomes a simple problem in the fre-
quency domain. The convolution of two signals in the time (or space) domain
is equivalent to multiplying their FFTs in the frequency domain. If the FFTs
of functions/(jc), g(x), and h(x) are, respectively, F(y), G(y), and H(y):

H(y) = F(y) x G(y)

where h(x) is calculated from the inverse FFT of H(y). This is illustrated
graphically in Figure 10-9. Notice that once the FFTs are multiplied (point

10.2 Data Analysis Techniques 243

Convoluted
Response

Response B Spectrum B

Figure 10-9 Convolution algorithm using FFs.

by point), an inverse FFT (IFFT) is performed on the result to produce the
output impulse response, which is the convolution of the two input responses.

An important aspect of transforming convolutions into multiplications
via FFTs is that we can reverse the process. If we have data acquired from
a system with a known impulse response, we can correct for that response.
We transform the measured data, along with the impulse response, to the
frequency domain (via an FFT). By dividing the FFT of the measured data
by the FFT of the impulse response, we deconvolve the data. Transforming
the result via an IFFT results in data fully corrected for the system's impulse
response. This process is shown graphically in Figure 10-10.

Deconvolution is an extremely useful analysis technique. In the field of
optics, for example, image enhancements can be implemented via deconvolution.

h(x)

(measured
data)

Convoluted
Response

g(x)

(measured
data)

System
Impulse

Response

FFT

FFT

H(y)

G(y)

H(y)/G(y)
IFFT

D

f(x)

econvolute
Response

d

Figure 10-10 Deconvolution algorithm.

244 CHAPTER 10 Data Processing and Analysis

Object Image

(a) Ideal pinhole

Object I Image

(b) Nonideal pinhole

Figure 10-11 Optical pinhole.

A simple example is a pinhole camera. An ideal pinhole, with a diameter
much smaller than the wavelength of light used, acts like a lense, producing
an inverted image of an object, as shown in Figure 10-1 la. Each point of the
image corresponds to light from only a single point of the object. With a
nonideal pinhole, each image point corresponds to several object points, as
in Figure 10-1 lb. The image becomes blurred as light from neighboring points
mixes together. This is the convolution of the real image with the light
distribution function of the pinhole. Knowing that pinhole transfer function,
we can deconvolve the data to get the undistorted image.

There are many other examples of the utility of deconvolution, as in
the field of ultrasonics. Figure 10-12 shows a simple experiment using a pair
of ultrasonic transducers in a water bath. An ultrasonic pulse is transmitted
by one transducer and received by another transducer for data acquisition.
The ultrasonic properties of the test sample, between the two transducers, are
of interest. By deconvolving the measurement taken when the test sample is
present with a measurement taken without the test sample, the impulse (and
frequency) response of the entire test system can be eliminated from the data.
This leaves the true ultrasonic response of the test sample. The test sample
frequency response provides information about its physical properties.

Window Functions When analyzing real-world data, there are often artifacts
we wish to ignore. With ultrasonic or optical measurements, for example,
there are often pulse echoes. If we need to analyze the data of interest without

10.2 Data Analysis Techniques 245

Signal
Generator

Transmit
Transducer i] Test

Sample ^

Detector

Receive
Transducer

Water Tank

Figure 10-12 Simple ultrasonic test system.

including the entire waveform, often a windowing function is used. The
simplest time-domain window function is a rectangular pulse that is multi-
plied with the time-domain waveform of interest. The width and position of
the pulse is selected so that it has a value of 1 over the region of interest in
the waveform and a value of zero elsewhere, as illustrated in Figure 10-13.

Multiplying two functions (signal and window) in the time domain is
equivalent to convolving their FFTs in the frequency domain. As we previ-
ously saw in Figure 10-6, the FFT of a rectangular function produces multiple
peaks following the first main peak at zero frequency. These secondary peaks
are referred to as side lobes. The higher the amplitude of the side lobes, the
more the windowing function distorts the signal when they are transformed.
For a rectangular window, the first side lobe has a peak ampUtude of only -13 dB
relative to the main (zero frequency) peak.

Rectangular Window

Amplitude

Time

Echoes to ignore

Figure 10-13 Using a rectangular window on ultrasonic echo waveforms.

246 CHAPTER 10 Data Processing and Analysis

Because of the convolution distortion, time-domain window functions
other than simple rectangles are used. Several are based on cosine functions
that slowly taper to zero near the edges of the window region. Besides having
lower side lobes, these windows also have wider main lobes than a rectangular
function. This further helps to decrease any distortion they cause.

Two commonly used window functions are the Manning and Hamming
windows, shown in Figure 10-14. These window functions are defined for a
width of N points as follows:

w(x) = 0.5 X (1 - co^[2nxl{N - 1)]) Manning Window

w(x) = 0.54 - 0.46 X cos[27rjc/(A^ - 1)] Hamming Window

where x varies from point 0 to point N - I.

w(x)

(N-1)
2

(a) Manning window function

(N-1)
2

(b) Hamming window function

• • X

Figure 10-14 Manning and Hamming window functions.

10.2 Data Analysis Techniques 247

Notice that both window functions have their amplitude peak of 1.0 at
the center of their range, (N - l)/2. The main difference between them is that
the Manning window goes to zero amplitude at the edges of its range (x = 0
and x = N - 1) while the Hamming window has a finite amplitude of 0.08 at
these edges. Both of these windows have a main lobe twice as wide as an
equivalent rectangular window, with the same value of N. The Manning
window has a peak side lobe amplitude of -31 dB and the Mamming window
has a peak side lobe amplitude of-41 dB. These indicate a large improvement
(18 to 28 dB) over the rectangular window's peak side lobe amplitude of only
-13 dB.

10.2.6 Other Transforms

There are many other transforms used for DSP analyses. We will briefly look
at two of them here: the Milbert transform and wavelets.

The Hilbert Transform The Milbert transform is a technique used to obtain
the minimum-phase response from a spectral analysis. When performing a
conventional FFT, any signal energy occurring after time ^ = 0 will produce
a linear delay component in the phase of the FFT. Even if a pulse occurs at
/ = 0, if it has finite width it will produce this linear slope in the resulting
FFT phase. The slope of the FFT phase (versus frequency) is proportional
to this time delay term. Significant delays can produce phase variations of
greater than 2;r. If the FFT data contains phase nonlinearities of interest
(such as a small bump), they can be hidden by this large linear phase
component.

The Milbert transform, based on special processing of an FFT, will
produce a frequency response with this linear-phase component removed.
This is the "minimum phase" data desired. The algorithm involves signal
processing in both the time and frequency domains.

Wavelet Analysis Fourier transforms (and FFTs) are ideally suited for ana-
lyzing continuous, periodic signals but do not work well when a signal has
sharp discontinuities or spikes. The problem is, a Fourier series tells you what
frequencies a signal is composed of but not their locations in time (it assumes
that all the frequencies are always present, within the analysis window). If
we increase time resolution by using a smaller sampling window in an FFT
analysis, our frequency resolution becomes poorer since the frequency step
df = 1/dt, the time step. This is the inherent FFT limitation for concurrent
time-frequency analysis.

248 CHAPTER 10 Data Processing and Analysis

Wavelet analysis (or the wavelet transform) is a fairly new mathematical
technique that addresses these shortcomings. Unlike FFTs, wavelets are well
suited to representing discontinuous signals. Wavelet analysis uses a scalable
window that is time-shifted across a signal. A spectrum is calculated at each
new window position. The window size is slightly changed for each iteration.
The final result is a group of time-frequency representations of the original
signal, all having different resolutions. This wavelet analysis is called a
multiresolution technique. Wavelets allow you to analyze a signal with both
coarse (large scale) and fine (small scale) resolution.

Wavelet analysis has many similarities to Fourier analysis. There is a
continuous wavelet transform (CWT) analogous to the CFT and a discrete
wavelet transform (DWT) analogous to the DFT, used for computer-based
signal processing algorithms. Wavelet functions contain frequency informa-
tion as Fourier functions do. Unlike FFTs, wavelet functions are also localized
in space (or time). In addition, a wavelet transform of a one-dimensional
waveform produces a two-dimensional function.

The CWT of a time-based function/(r) is

H (̂T,5) = f(t)xi/Ut)dt

where

Now the transformed time signal is a function of two variables: r, the trans-
lation parameter (time-based) and s, the scale parameter (inverse frequency-
based), y/ (t), the transforming function, is the mother wavelet. All of the
wavelets required by the analysis are generated from this mother wavelet by
scaling and translation.

A set of waveforms comprising a transform is called a basis function.
Fourier transforms use only sine and cosine waves as its basis functions—a
signal is decomposed into a series of sine and cosine functions by the FFT.
The CWT and DWT have an infinite set of basis functions or wavelets.
Usually, a specific wavelet family is selected for a particular application.

By its nature, the CWT contains a large amount of redundant informa-
tion along with an infinite number of wavelets. The DWT, using discrete
wavelets, overcomes these problems. With the redundancy removed, wavelet
transforms become sparse—only a few wavelets are needed to describe or
decompose a given signal. This makes DWTs well suited for data-compression.

10.2 Data Analysis Techniques 249

image-analysis, and noise-reduction applications. Efficient software algo-
rithms implementing DWTs have led to their widespread use.

It is likely that wavelet transforms will continue to increase in popularity
and they may eventually replace the ubiquitous FFT as the technique of choice
for signal analysis.

10.2.7 Other DSP Techniques

A host of DSP techniques besides the FFT are commonly used. An exhaustive
survey of the DSP field is outside the scope of this book. We will just look
at a few more techniques that you may likely need in a data acquisition
system. Please refer to the bibliography for sources of more detailed infor-
mation on DSP.

Digital Filters Digital filtering techniques are most often applied to time-
domain signals, as in real-time filtering applications. Depending on system
parameters, a digital filter can operate more quickly than using an FFT
algorithm where a forward FFT converts a time-domain signal to the fre-
quency domain. Then the frequency signal is multiplied by a filter function
and finally the frequency signal is converted back to the time domain via an
IFFT.

The two common types of digital filter approaches are finite impulse
response (FIR) and infinite impulse response (IIR). The filtering process is
effectively a convolution of the time-domain signal with a filter function.

FIR digital filters are considered nonrecursive. They mix delayed por-
tions of the input signal with feedforward of the undelayed signal. They
operate only on a small time-domain window of signal data. The filter function
describes the coefficients for each of the delayed and undelayed components.
FIR filters usually have a linear phase response, are relatively easy to imple-
ment, and do not tend to accumulate errors, since they operate on a data
window of finite width. Their main limitation is the need to use many coef-
ficients for good performance. This results in longer computation times and
lower bandwidths.

IIR digital filters are considered recursive. They mix the input signal
with time-delayed feedback of the output signal. They operate on a wide
time-domain window of signal data. Even though it may be more difficult to
design an IIR filter than an FIR filter, the resulting IIR filter is simpler, with
fewer coefficients. This results in shorter computation time and wider band-
widths. Their main drawbacks are their sensitivity to noise and error accu-
mulations, due to including effects of all past data.

250 CHAPTER 10 Data Processing and Analysis

Cross-Correlation The final DSP technique we will touch on here is cross-
correlation. This is used to see how similar two functions are. The cross
correlation function of x(t) and y(t) is

(a^ay)J-oo dt

where a^ and ay are the RMS values of the two functions. This normalizes
c(t) to a maximum value of 1 (if the two functions correlate). If the two
signals are very similar, there will be a maximum in the cross-correlation
function. Otherwise, there will not be any significant maximum. If one func-
tion represents a delayed version of the other function, c{t) will equal 1 (or
its maximum) at a value of t equal to the time delay.

This concludes our overview of data processing with PCs. The tech-
niques covered include some of the most common data analysis methods used
with data acquisition systems. In the next chapter we will look at commercial
hardware and software data acquisition products for PCs.

C H A P T E R

Commercial Data
Acquisition Products

There is a plethora of commercially available data acquisition products for
PCs, with the number growing larger every day. The largest selection exists
for Intel CPU-based, PCI-bus systems running MS Windows 95/98/NT/
2000 (so-called "Wintel" PCs). However, there are still products available
for ISA and PC-104 buses as well as some software support for MS-DOS.
There is also a growing number of products using the USB interface. In addi-
tion, some products support newer Apple Macintosh computers that use the
PCI bus.

These commercial products fall into two broad categories: hardware
and software. Some software is included with most hardware products, to
assist the user. Occasionally, hardware manufacturers just recommend com-
patible software products, along with programming guidelines. Some prod-
ucts are a complete hardware/software bundle, requiring both for proper
operation.

In this chapter we will survey the vast array of data acquisition hardware
and software products. We will look at products from a few major manufac-
turers in detail, including both operational information and how to use the
products. The Appendix contains lists of commercial data acquisition product
manufacturers (hardware and software). Since most hardware products oper-
ate similarly, regardless of the computer platform used (PC, Macintosh, VME
bus), an in-depth discussion will again center on "Wintel" products. First, we
will examine hardware products.

251

252 CHAPTER 11 Commercial Data Acquisition Products

11.1 Commercial Data Acquisition
Hardware Products

A large number of manufacturers produce data acquisition hardware products
for PCs. The largest market is for Microsoft Windows-based, PCI-bus and
ISA-bus computers running Intel or compatible processors. For these
machines, most data acquisition hardware products are cards that plug into
a PC's expansion bus. Typically, the newest and fastest products are PCI-
based. Many ISA-bus products are still available, but they are not recom-
mended for new applications. ISA boards come in two major versions: 8-bit
cards for PC/XT class computers and 16-bit cards for AT (ISA) machines.
Many products have additional hardware, external to the PC, which connects
to the main data acquisition card. These add-on devices include connection
boxes, signal conditioning boards, and high-power I/O interfaces, including
relay boards. Some PC-based data acquisition systems consist of an external
box connected to the PC's bus for control, usually via a special interface card.

Besides plug-in cards, there are now data acquisition hardware modules
that connect to a PC via a USB port. These plug-and-play devices are very
easy to install but are usually not high-performance products (having limited
data transfer rates). Notebook PCs can also use data acquisition hardware via
PCMCIA cards. In addition, some data acquisition products connect to a PC
via a standard serial or parallel port.

Many data acquisition boards for PCs have dedicated functionality, such
as only analog inputs. Some may have expansion capability, such as an
additional multiplexer for more analog inputs. Other PC-based data acquisi-
tion cards are designed to be modular. They consist of a basic plug-in card,
the carrier, which accepts several modules riding "piggy-back" on it. These
modules offer specific functions, allowing the user to tailor the hardware to
his or her particular needs (such as the number of analog inputs and outputs
required). The module functions include analog I/O, digital I/O, and signal
conditioning. This modular approach offers greater flexibility, at a higher
price. It is usually justified when a highly customized system is required or
configuration changes will occur often.

Data communications interface cards are also an important piece of data
acquisition system hardware. In this case, the PC is used as an intelligent
controller, running remote data acquisition equipment through the interface.
These interfaces include GPIB, RS-232C, RS-422, and RS-485. Of course,
these cards can also be used in PCs for communications purposes other than
data acquisition. For example, even though a GPIB interface card is often
used in a PC to control automated instruments, it could be used to simply
drive a printer or plotter.

11.1 Commercial Data Acquisition Hardware Products 253

Figure 11-1 Typical ISA, single-function data acquisition cards for PCs. (Courtesy
of Intelligent Instrumentation)

Data acquisition cards for PCs fall into several major functional cate-
gories, including digital I/O, analog I/O, and counter/timer. Some boards have
most or all of these features; others have only one or a few. A few typical
ISA data acquisition cards are shown in Figure 11-1. There are also special-
ized data acquisition cards which have features geared to a particular appli-
cation, such as chromatography equipment used in analytical chemistry labs.

Another variation on data acquisition cards is the virtual instrument.
This type of device is a combination of hardware (a card) and software that
emulates the functionality of a standard test instrument, such as an oscillo-
scope or function generator. The user interface is a graphics environment that
looks like the front panel of the emulated instrument. By adjusting the virtual
knobs or pressing virtual buttons, the user operates the virtual instrument.
When the virtual instrument is an oscilloscope, the hardware consists of an
analog input card. A virtual function generator would use an analog output
card.

Digital I/O cards have input and output lines typically operating at TTL
logic levels (in the range of 0 to +5 V). Stand-alone digital I/O cards often
contain some multiple of 8 I/O lines, with 16 or 24 being most common.
These cards can be used as parallel, digital interfaces as well as dedicated
controllers. Most digital I/O cards allow programming lines for input, output.

254 CHAPTER 11 Commercial Data Acquisition Products

^ 8/ System^
Data Bus

DATA
BUS

BUFFER

RD-
WR-
AO-
A1 -

cs-

READ/WRITE
CONTROL

LOGIC

RESET-

GROUP A
CONTROL

8/

Local Data Bus

GROUP B
CONTROL

/

\

GROUP A

PORTA

(8-bits)

* GROUP A

PORTC
UPPER

(4-bits)

GROUP B

PORTC
LOWER

(4-bits)
4

GROUP B

PORTB

(8-bits)

t

I/O LINES
PAO - PA7

I/O LINES
PC4 - PC7

I/O LINES
PCO - PCS

I/O LINES
PBO - PB7

Figure 11-2 Intel 8255A programmable peripheral interface (PPI).

or both. Usually they contain interrupt-generation hardware. Some digital I/O
cards support DMA for maximum data transfer speeds.

A popular IC used for digital I/O was the Intel 8255A Programmable
Peripheral Interface (PPI), whose block diagram is shown in Figure 11-2.
This device had three 8-bit ports that could be programmed for one of three
modes: simple, unidirectional I/O without handshaking; strobed, unidirec-
tional I/O with handshaking; and strobed, bidirectional I/O on the same pins,
with handshaking. The 8255A was controlled by addressing its control port
and three data ports. It was so popular that the 8255 became an industry
standard for digital I/O and it still remains a standard, long after Intel stopped
manufacturing the chip. In current digital I/O cards (which do not use the
8255A itself), the IC's functionality is usually part of a highly integrated
programmable logic device (PLD). This logic emulates an 8255A and its

11.1 Commercial Data Acquisition Hardware Products 255

registers, providing full compatibility with software written for the original
chip.

Analog I/O cards are the most common form of data acquisition hard-
ware for PCs. They contain one or more ADCs for analog input and DACs
for analog output. Usually, any card containing an ADC for analog input is
considered a data acquisition card. Analog input cards typically contain one
ADC IC or module along with one or more analog multiplexers. This enables
several analog signal sources (such as conditioned sensors) to be connected
to one board at the same time. For example, multiple temperature sensors
may be used in monitoring different portions of a piece of equipment under
test. The multiplexer allows one of several analog inputs to be connected to
the ADC at any given time. Commonly, commercial ADC cards have 8-32
analog input channels. These channels may be differential or single-ended.

The resolution of the ADCs and DACs used on these cards range from
8 bits to 24 bits. Analog I/O boards with 12-bit resolution are still the most
common. Another important parameter is the maximum conversion rate for
analog input cards. This can range from only tens of samples/sec, on high-
resolution and/or low-cost cards, to more than 2 million samples/sec at 16-bit
resolution or 100 million samples/sec at 14-bit resolution on high-speed data
acquisition cards with PCI interfaces. Cards with conversion rates up to 5 billion
samples/sec (five gigasamples/sec) at 8-bit resolution are also available at this
time.

When looking at the maximum conversion rate for an ADC card,
remember that it is usually specified for a single channel only. If you need
to measure several inputs simultaneously, the maximum conversion rate at
any channel is the ADC's maximum rate divided by the number of multiplexed
channels used. If this overall rate is too slow, you will need multiple ADCs
(one or more cards), a faster ADC, or a card with simultaneous sampling
hardware.

Analog output cards usually contain one DAC per output channel.
Occasionally, a card may contain one DAC and several analog output chan-
nels, employing a sample-and-hold (S&H) amplifier for each channel. As we
previously saw (in Chapter 3), S&H amplifiers "remember" a voltage level
using a charged capacitor. Since the capacitor's charge slowly drops (because
of its own leakage current and that of the surrounding circuitry), the S&H
output "droops" with time. The S&H output must be continuously refreshed
by recharging the capacitor (as with DRAMs), or the analog output will be
valid only for a short period of time (usually on the order of milliseconds).
Because of these drawbacks, this approach is not widely used. Most analog
output boards have only a few channels, with an independent DAC for each.

Most analog I/O cards contain a timer/counter with multiple channels.
This enables the card to perform conversions at a fixed rate, without any PC

256 CHAPTER 11 Commercial Data Acquisition Products

software overhead. It is a common option for data conversions to be controlled
by an internal (on-board) clock, by an external clock, or by PC software
commands. Most analog input cards have hardware interrupt capability. This
is a programmable option, used to generate an interrupt when the ADC is
ready to be read. It is especially important when the ADC conversion rate is
controlled by an on-board clock and is essentially asynchronous to the control
software running on the PC.

Some ISA analog I/O cards have DMA capability. This allows data to
be transferred between the data acquisition card and the PC at the fastest
possible rate. It does require special software support, but this is usually
commercially available. These software packages are used for data streaming
(transferring data between the data acquisition card and a disk file at high
speed) as well as simulating the functions of a high-speed strip-chart recorder.
Only high-speed ISA analog I/O cards use DMA, since for slower cards the
analog data conversion speed, not the data transfer rate, becomes the rate-
limiting factor.

PCI analog I/O cards are potentially much faster than their ISA coun-
terparts, because of their faster bus speed. Most PCI data acquisition cards
are PCI version 2.1 compliant, supporting a 32-bit data bus at speeds up to
33 MHz, with a peak burst rate of 132 Mbytes/sec. This is well over an order
of magnitude faster than ISA-bus DMA. Another important feature of many
PCI data acquisition cards is bus-mastering capability. This allows the board
to transfer data into memory as soon as it is available, without waiting for
application software to respond to a poll or interrupt (in a manner analogous
to an ISA DMA operation, but with better handshaking and more hardware
"intelligence"). In addition, high PCI transfer rates minimize the amount of
on-board memory required by the card to buffer acquired data, before it can
be transferred to the PC's main memory. Usually, a FIFO that is only a few
thousand samples deep is an adequate buffer (as opposed to the several
megabytes of buffer memory that is required on a high-speed ISA card).

Timer/counters are available on separate cards, typically in conjunction
with digital I/O lines. Besides being used for controlling data conversion
rates, they are also useful as general-purpose clocks, frequency counters, and
event counters. They usually have TTL compatible inputs, but with proper
signal conditioning, such as an amplifier (to boost the signal level) and a
comparator with hysteresis (to square up slow rise/fall times of a signal and
convert it to TTL levels), analog signals can also be measured.

ICs commonly used for timer/counters were the Intel 8254 Program-
mable Interval Timer (PIT) (used in earlier PC motherboards) and the AMD
AM9513A System Timing Controller (STC), shown in the block diagrams
of Figure 11-3. The Intel 8254 PIT contained three independent 16-bit
counters; the AMD AM9513A STC had five.

11.1 Commercial Data Acquisition Hardware Products 257

8/ System
/ Data Bus

r^rT
RD ^
,,,r-,
WR ^
AO •

A1 •

U o ^

DATA BUS
BUFFER

1
READ/WRITE

LOGIC

1
CONTROL WORD

REGISTER

Local
Bus

COUNTER 0

t

COUNTER 1

t

COUNTER 2

t

^ CLK 0

GATE 0

• OUT 0

CLK 1

GATE 1

• OUT 1

CLK ^

GATE '̂
k n i IT '̂

SOURCE 1-5-

GATE 1-5

(a) Intel 8254 Programmable Interval Timer (PIT)

- ^
-^

CLOCK 16-BIT COUNTER
FREQ SCALER

F O U T ^
FOUT DIVIDER

(4-BIT
COUNTER)

INPUT
SELECT
LOGIC

^

RD-
WR-
CJD-
c s -

READA/VRITE
CONTROL

LOGIC

Sy System^
^ / Data Bus^

REGISTERS

DATA
BUS

BUFFER

COUNTER 1

^ COUNTER 2

COUNTER 3

COUNTER 4

j ^

COUNTER 5

-• 0UT1

-• OUT 2

-> OUTS

-> OUT 4

-• OUT 5

(b) AMD AM9513A System Timing Controller

Figure 11-3 Commonly used counter/timer integrated circuits (ICs).

These ICs are now obsolete. However, they were once such popular
industry standards that their functionality has been emulated using program-
mable logic in many current products. As with the 8255A PPI, these emulated
timer/counters appear the same as the original ICs to software. Of course, some
new timer/counter cards dispense with this backward compatibility and imple-
ment counter logic with different (and usually more advanced) characteristics.

As shown in Figure 11-3, each of the three 8254 counters has a clock
input, a gate input, and an output line. They are synchronous down-counters

258 CHAPTER 11 Commercial Data Acquisition Products

(binary or BCD) with a count register to load a counter value, an output
register to read the counter value, and a status register. Six programmable
counting modes are available, allowing the 8254 to be used as a clock, an
event counter, a one-shot generator, a programmable square-wave generator,
or a complex digital waveform generator.

The AM9513A design is an extremely powerful counter/timer, with many
operational modes and advanced features, making its functionality a popular
choice for manufacturers of high-performance data acquisition cards. Each of
the five AM9513A counters has a source input, a gate input, and an output line.
It differs from the 8254 by having a common clock generator as part of the
device. Each counter can choose its clock input from either this internal source
(including a clock divided down from the internal one) or an external clock on
its source line. This internal clock was originally 1 MHz, but later designs went
as high as 7 MHz. The synchronous counters can count either up or down in
binary or BCD. They can be concatenated for an effective counter length of
80 bits. The device has a scaled frequency output. Each counter has a load
register to initialize the counter, a hold register to read the instantaneous count
value, and a mode register to program the counter's features (such as clock
source, polarity of gating fine, or output conditions). The AM9513A can be
used for extremely complex timing and waveform-generation applications.

The most useful configuration for PC-based data acquisition hardware
is the multifunction board. This card contains, at a minimum, an ADC and
digital I/O lines. A typical multifunction data acquisition card contains several
analog input channels, one or more analog output channels, several digital
I/O lines, and several timer/counter channels. Some may even contain signal-
conditioning circuitry, such as filters. These boards can contain all the hard-
ware needed to convert a PC into a complete data acquisition system (along
with the appropriate software), usually at a very attractive price. Just make
sure that you need most of the functions on the card and that each individual
function meets your requirements (such as an adequate number of I/O chan-
nels or an ADC conversion rate that is fast enough). Without a doubt, multi-
function boards are the most popular type of data acquisition card for a PC.

Now that we have covered some of the general aspects of data acqui-
sition hardware, we will look at some commercially available products, cov-
ering a few of the more popular manufacturers. Complete addresses and other
details are in the Appendix.

11.1.1 Keithley Instruments, Inc.

Keithley Instruments, Inc. (previously Keithley Metrabyte Corp.) manufac-
tures data acquisition cards and accessories for PCI and ISA-bus computers
as well as PCMCIA cards for notebook PCs, communications interface cards

11.1 Commercial Data Acquisition Hardware Products 259

Figure 11-4 Keithley KPCI-3108 multifunction PCI data acquisition card. (Courtesy
of Keithley Instruments, Inc.)

(serial and IEEE-488), and virtual instruments. Their products for PC-based
data acquisition range from low-cost ISA boards, such as the DAS-8, to high-
performance, multifunction PCI cards, such as the KPCI-3108. The DAS-8
has eight single-ended analog input channels with 12-bit resolution, an input
range of ±5 V and a maximum conversion rate of 4000 samples/sec. It also
has seven digital I/O lines (four outputs and three inputs).

The KPCI-3108 (shown in Figure 11-4) has 16 single-ended (or 8
differential) analog input channels of 16-bit resolution with a maximum
conversion rate of 100,000 samples/sec. The analog input range is software
selectable, from ±0.0125 V to ±10 V, full-scale. It also contains two 16-bit
analog output channels with a maximum conversion rate of 100,000 samples/
sec and an output range up to ±10 V. In addition, the KPCI-3108 has 32
digital I/O lines, three 16-bit counter/timers, 12 auxiliary digital I/O lines for
timer gating or clocking, and full PCI bus-mastering capability for high-speed
data transfers. This board also contains a 256-location channel-gain queue
that allows you to acquire data from nonsequential channels at different gain
settings, using a preprogrammed sequence.

260 CHAPTER 11 Commercial Data Acquisition Products

You can use the KPCI-3108 (and most newer Keithley cards) with a
fully integrated data acquisition software package, such as LABTECH NOTE-
BOOK or TestPoint. Alternatively you can write your own custom program
using a standard 32-bit programming language (running under Windows
95/98/NT/2000), such as Microsoft Visual Basic or Visual C/C+ +. The board
comes with drivers: Keithley's Driver Linx software. Unlike older ISA cards,
the KPCI-3108 (and other newer cards) does not use register-level program-
ming. The Driver Linx software provides a higher-level interface to the
board's analog and digital functions within the Windows environment. You
simply make calls to driver functions.

Keithley produces an ultrahigh-speed ISA ADC board, the DAS-4300,
which has a maximum transient conversion rate of 1 gigasample (Gsample)/sec
with 8-bit resolution. To support this data acquisition rate, which is much
faster than PC DMA transfer rates, the DAS-4300 has on-board memory of
8 Kbytes for data storage. It has two single-ended analog input channels (with
50-ohm input impedance), but no digital I/O or analog output lines. ADC
triggering can come from a software command, an external logic level, or an
analog signal. The analog input range is software selectable from ±25 mV to
± 1 V full-scale, with both coarse and fine steps.

A special feature of the DAS-4300 is equivalent time sampling (ETS),
used to increase the effective sampling rate when digitizing repetitive signals
(see Chapter 4). Using ETS, the DAS-4300 can run as fast as 20 Gsamples/sec.

The DAS-4100 is another 8-bit, high-speed analog input board in the
same family as the DAS-4300. The DAS-41(K) has a maximum transient con-
version rate of 64 million samples/sec and an ETS rate up to 2 Gsamples/sec.
This card can have as much as 1 Mbyte of on-board memory, allowing full-
speed capture of relatively long waveforms.

An example of a high-resolution PCI card is Keithley's KPCI-3116,
which has an ADC with 16-bit resolution and a maximum conversion rate of
250,000 samples/sec with 32 single-ended or 16 differential analog input
channels. It also includes two 16-bit analog outputs, 16 digital I/O lines, and
four counter/timers. As with the KPCI-3108, the KPCI-3116 has full PCI
bus-mastering capabilities.

Keithley also produces a line of PCMCIA (see Chapter 12) data acqui-
sition cards for use with laptop or notebook computers. This class of products
is ideal for portable data acquisition systems. Figure 11-5 shows a collection
of some PCMCIA cards. A typical example is the KPCMCIA-12AIA0, which
has a 12-bit ADC with conversion rates up to 100,000 samples/sec, a pro-
grammable input range of ± 1.25 V to ± 10 V full-scale and eight single-ended
(or four differential) inputs. The KPCMCIA-12AIAO also has two DAC
outputs with a maximum update rate of 100,000 samples/sec, a 16-bit

11.1 Commercial Data Acquisition Hardware Products 261

Figure 11-5 Collection of PCMCIA cards. (Courtesy of Keithley Instruments, Inc.)

counter/timer, and eight digital I/O lines (four inputs, four outputs). The
KPCMCIA-16AIAO is a 16-bit data acquisition card with the same specifi-
cations as the KPCMCIA-12AIAO (i.e., 100,000 samples/sec conversion rate)
except for higher resolution. As with standard PCMCIA devices, these cards
are hot-swappable (they can be plugged or unplugged when the PC is on).

As an illustration of a typical data acquisition card for ISA PCs, we
will examine another Keithley board in greater detail, the DAS-16, shown in
Figure 11-6. Even though this is an old product (originally designed for the
8-bit PC-XT bus) it has been so popular that not only does Keithley still build
it but many other manufacturers also produce functionally equivalent versions
of the board (so-called "clones"). Versions of the DAS-16 are even available
as PC-104 cards (see Chapter 12).

The DAS-16 is a multifunction card, with 16 single-ended (or eight
differential) analog input channels of 12-bit resolution, with a maximum
conversion rate of 50,000 samples/sec (the DAS-16F, with DMA support, has
a maximum rate of 100,000 samples/sec). It has two 12-bit analog output
channels, eight digital I/O lines, three timer/counter channels, and interrupt
support.

The DAS-16 card will work in virtually all PC/XT and ISA PCs, as it
requires only a PC/XT bus (62-pin) expansion slot. This makes it useful for
older PCs in nondemanding applications, such as temperature logging. A
block diagram of the DAS-16 is shown in Figure 11-7. Like most older ISA
data acquisition cards, the I/O addresses used by the card are switch selectable

262 CHAPTER 11 Commercial Data Acquisition Products

Figure 11-6 Keithley DAS-16 multifunction ISA data acquisition card. (Courtesy
of Keithley Instruments, Inc.)

CHO-
CH1-

Analog
Inputs

C H 1 4 -
C H 1 5 -

MUX

D/AO^

Analog
Outputs

D/A1^

Instrumentation Sample & Hold
Amplifier Amplifier

ADC

STATUS
REGISTER

DACO

DAC1

DIGITAL
I/O

ADC/MUX DATA
REGISTER

Internal Data Bus

ISA INTERFACE

PIT

-• OP 0-3

Digital Ports

- IP 0-3

Counter
^ I/O

CONTROL
REGISTER

ISA BUS

Figure 11-7 Block diagram of Keithley DAS-16 card.

11.1 Commercial Data Acquisition Hardware Products 263

(it is not plug-and-play). Since the DAS-16 uses 16 consecutive addresses,
only the base or starting address is expHcitly selected. By default, this address
is 300h, which is commonly used for ISA data acquisition cards, being part
of the I/O map (300h-31Fh) reserved by IBM for prototype cards. In this
case, the DAS-16 would occupy 300h-30Fh. If this space was already in use,
another base address would be selected, such as 31 Oh. The base address has
to fall on a 16-bit boundary, as the address select switches are for bits A4
through A9. Newer ISA and all PCI data acquisition cards are plug-and-play,
so I/O addresses are automatically selected.

Other switches on the DAS-16 select differential or single-ended lines
for the analog input channels, ADC gain level, and unipolar-versus-bipolar
ADC input range. The DAS-16 has five preset gain levels for the ADC,
determining full-scale range. In bipolar mode these are ±10 V, ±5 V, ±2.5 V,
±1 V, and ±0.5 V. For many newer data acquisition cards, the gain levels are
set by software commands.

All external connections to the DAS-16 (other than the ISA expansion
bus connector) are made via a 37-pin D-shell connector, at the back of the
card. Most data acquisition cards use this type of arrangement if the number
of connector lines is not excessive (usually 50 or less). The most common
connectors used are D-shell and ribbon-cable varieties. If many external
connections are needed, as with a multifunction card having a large number
of analog and digital I/O lines, usually several ribbon cable connectors on
the board itself are used. These cables then have to be routed through an
opening in card's mounting bracket. On the DAS-16, the 37-pin D-shell
connector contains all the analog and digital I/O lines. In addition, it contains
control lines for the accessible timer/counters, power supply (+5 V) and
reference voltage (-5 V) outputs, along with an input for an external DAC
reference voltage (if a range other than 0 to +5 ^ is desired).

All software access to the DAS-16 is done by reading from and writing
to the 16 I/O ports located in the ISA I/O space between the base address
and base +15. These I/O ports are listed in Table 11-1. Note that some of
these ports are either read-only or write-only, while some are both read and
write. In addition, the same port address can have a different function, depend-
ing on whether you read from it or write to it. For example, the base address,
as a read port, returns the low byte of the last ADC conversion. As a write
port it initiates an ADC conversion.

The mux scan port (at base +2) allows multiple ADC channel conver-
sions to be performed without explicitly stating the desired analog input
channel prior to each conversion. The first and last channel numbers are
written to this port. Each successive ADC trigger operates on the next analog
input channel, within the range of first-to-last. After the last channel, the

264 CHAPTER 11 Commercial Data Acquisition Products

TABLE 11-1
DAS-16 I/O Ports

1 PORT LOCATION |

Base A(dress + 0

Base Address + 1

1 Base Address + 2

Base Address + 3

1 Base Address + 4

1 Base Address + 5

1 Base Address + 6

1 Base Address + 7

1 Base Address + 8

1 Base Address + 9

1 Base Address + 10

1 Base Address + 11

1 Base Address + 12

1 Base Address + 13

1 Base Address + 14

1 Base Address + 15

FUNCTION

ADC Low Byte
Start ADC

ADC High Byte

MUX Scan Control

Digital I/O Out (4 bits)
Digital I/O In (4 bits)

DAC 0 Low Byte

DAC 0 High Byte

DAC 1 Low Byte

DAC 1 High Byte

pAS-16 Status

DAS-16 Control

Counter Enable (2 bits)

Not Used

Counter 0

Counter 1

Counter 2

Counter Control

READ/WRITE 1

R

w 1
R 1
R / W

W
R 1
W

w 1
w 1
w 1
R

R / W 1

w 1
N / A 1
R / W

R / W 1
R / W 1

w 1

selection rolls around to the first one again. This feature is extremely handy
if you use multiple analog inputs with a hardware clock trigger. Once the
software sets up the card to convert the desired ADC channels, all it has to
do is keep reading the data until the required number of readings have been
accumulated. Of course, the analog input channels used must be consecutive
numbers. By contrast, a board such as the KPCI-3108, with a channel-gain
queue, does not have the limitation of consecutive channel numbers.

The analog output ports (at base +4 through base +7) are write-only,
requiring two 8-bit ports to access the complete 12-bit DAC word. The DAC
output is not changed until both bytes have been written, preventing a glitch
in the DAC output when one byte is an old value and the other is a new value.

The eight digital I/O lines of the DAS-16 are configured as a 4-bit input
port and a 4-bit output port. By writing to the digital I/O port (at base +3),
the four output lines are latched. Reading from the digital I/O port reflects
the state of the four input lines. Two of the input lines are also used for special
ADC trigger and counter gate functions.

11.1 Commercial Data Acquisition Hardware Products 265

The status port (at base + 8) is read-only. It contains information about
the ADC and interrupt status. This information includes whether the ADC is
busy or has valid data and if the analog inputs are single-ended or differential
as well as unipolar or bipolar. This allows software to check the state of the
hardware switches. In addition, the mux channel for the next conversion is
read here, along with the status of the board's interrupt generator.

The control port (at base +9) is both a read and write address and
determines the operating modes of the DAS-16. It is used to enable or disable
interrupt generation and select the hardware interrupt level to use (ISA IRQ
2-IRQ 7). The control port can also enable DMA transfers (if enabled, the
PC's DMA controller must be properly initialized). In addition, this port
determines the source of the ADC conversion trigger: software only, internal
timer control, or external trigger control.

The counter-enable port (at base +10), along with the four 8254 ports
(at base +12 through base +15), controls operation of the three counter/timer
channels. Counters 1 and 2 are cascaded, so that counting periods ranging
from microseconds to hours can be used to periodically trigger the ADC.

As an example of software for the DAS-16, here is a small segment of an
MS-DOS BASIC program. This code triggers an ADC conversion (via software)
for a board at base address B AS ADR, returns the 12-bit result in DAT and the
analog input channel number in CHANL, and then displays the result:

10 BASADR = &H300 'Default Base Address
20 OUT BASADR%,0 'Start ADC conversion
30 IF INP(BASADR%+8)>=&H80 THEN GOTO 30 'Conversion Done?
40 LOW% = INP(BASADR%) 'Read low byte
50 HI% = INP(BASADR%+1) 'Read high byte
60 DAT% = 16 * HI% + INT (L0W%/16) '12-bit data read
70 CHANL% = LOW% AND &HOF 'Analog channel nuinber
80 PRINT "For Channel #";CHANL%;", ADC Value = ";DAT%

Note that the variable names end in % to signify they are integers (as opposed
to floating-point numbers).

In Microsoft C for MS-DOS, a similar program would look like

inc lude <conio> /* for inp() & ou tpO func t ions */
inc lude <s td io> /* fo r p r i n t f O */
#def ine BASADR 0x300 /* d e f a u l t b a s e a d d r e s s = 30Oh */
#def ine ADCLOW BASADR /* a d d r e s s of ADC low b y t e */
#def ine ADCHI BASADR+1 /* a d d r e s s o r ADC h i g h b y t e */
#def ine ADCSTAT BASADR+8 /* a d d r e s s of s t a t u s p o r t */
mainO

{ /* start of program */
int dat, low, high, chanl; /* declare integers */
outp(BASADR,0); /* start conversion */
while(inp(ADCSTAT)>=0x80) ; /* wait for end of conversion */

266 CHAPTER 11 Commercial Data Acquisition Products

low = inp(ADCLOW); /* r ead low b y t e */
h i g h = inp(ADCHI); /* r ead h igh b y t e */
d a t = 16 * h i g h + low / 16; /* f u l l 1 2 - b i t r e ad ing */
chanl = low & OxOf; /* mask b i t s t o g e t channel number */
p r i n t f (" \ n F o r Channel #%d, ADC Value = % d \ n ' \ c h a n l , d a t) ;
} /* end of program */

This program may look more verbose than the BASIC version, but as
the size and complexity of a program increase, the extra overhead of C is
minimal compared to its flexibility, speed, and power.

This examination of the Keithley DAS-16 board has shown us how a
typical, older ISA data acquisition card operates. Besides conventional plug-
in cards, Keithley manufactures many stand-alone instruments and special-
ized data acquisition products, such as their ADWIN series for real-time
response (under 500 nsec). The devices in this series range from plug-in
PC cards to expandable instrument racks. They contain their own micro-
processors so these devices can operate independently of the controlling
PC's operating system. Their networking capabilities (including Ethernet
support) make them a good choice for remote data acquisition and control
applications.

One other interesting Keithley product line is their PC Instrument Prod-
ucts (PCIP): PC plug-in boards that emulate conventional test instruments.
They are ISA cards that include a digital storage oscilloscope (PCIP-SCOPE),
a digital multimeter (PCIP-DMMA), an arbitrary waveform generator (PCIP-
AWFG), and a frequency counter (PCIP-CNTR). These virtual instruments
can operate in either a manual mode (via virtual control panels, on the PC
monitor) or in an automated mode via a DOS or Windows program.

This concludes our look at some of Keithley Instrument's PC-based
data acquisition products. For up-to-date information, visit their Web site
(www.keithley.com).

11.1.2 Data Translation Inc.

Data Translation Inc. is another leading producer of data acquisition boards
for PCs. Their product line supports both ISA and PCI platforms as well as
USB and PCMCIA interfaces. They also provide some software for use with
their data acquisition products. In addition, Data Translation produces image-
capture boards (frame grabbers and video processors) for ISA and PCI PCs.

Data Translation's data acquisition card product line ranges from low-
cost, low-speed, multifunction cards, such as the DTOl-EZ ISA board, to
high-performance PCI cards, such as the DT3010 series. The DTOl-EZ is a
good general-purpose ISA data acquisition card, with 12-bit resolution and
16 single-ended or eight differential input lines. It has a maximum conversion

11.1 Commercial Data Acquisition Hardware Products 267

rate of 27,500 samples/sec and analog input ranges of 1.25 V through 10 V,
full-scale (both unipolar and bipolar ranges). It has two 12-bit analog output
channels with a max conversion rate of 29,500 samples/sec and 16 digital
I/O lines. The DTOl-EZ has a programmable pacer clock to initiate repeated
conversions but no general-purpose, user-accessible counter/timers.

The PCI data acquisition cards in the DT3010 series contain either a
12-bit or a 16-bit ADC with up to 16 differential or 32 single-ended analog
input channels. The maximum ADC conversion rate for the 12-bit boards is
1.25 million samples/sec. For the 16-bit model (DT3016) this maximum rate
is 250,000 samples/sec. The cards in this series have two analog output
channels (DACs) with the same resolution as their ADC (12-bit or 16-bit).
These analog outputs have maximum conversion rates of either 500,000
samples/sec for the 12-bit boards or 200,000 samples/sec for the 16-bit board.
In this series, the analog input amplitude ranges vary from 1.25 V through
10 V, full-scale (both unipolar and bipolar). Analog outputs have a bipolar
range of ± 10 V. The analog outputs also have a FIFO, for outputting repetitive
waveforms, up to 32,768 samples long.

The DT3010 series boards all have 16 digital I/O lines, configured as
two programmable 8-bit ports. Digital inputs can be read as part of the analog
channel list, providing an accurate time stamp relative to the analog readings.
There are also two dedicated programmable digital outputs that can indicate
when a particular analog channel is read, providing synchronization to exter-
nal equipment. These boards have a programmable pacer clock to initiate
repeated data conversions as well as four 16-bit counter/timers.

Data Translation has another interesting ISA data acquisition product
line, their DT2831 series. The boards in this series are very similar to other
Data Translation ISA boards with one important exception. Once the base
address of a DT2831 card has been selected, all its data acquisition parameters
are set by software only. There is no need to change switch or jumper settings
to modify parameters such as analog input gain, single-ended versus differ-
ential analog inputs, analog voltage ranges, DMA channel, interrupt channel,
or even ADC and DAC caUbration. These boards support either 12-bit or 16-bit
analog I/O. The maximum analog input conversion rate is 250,000 samples/sec
for 12-bit boards and 160,000 samples/sec for 16-bit boards. The analog
output conversion rates are 130,000 samples/sec for 12-bit DACs and
100,000 samples/sec for 16-bit DACs, with either a unipolar (0-10 V) or
bipolar (± 10 V) output range. The DT2831 boards have eight digital I/O lines,
configured as a single 8-bit port. They also have two counter/timer channels.
These boards support hardware interrupts and two DMA channels. They also
have available simultaneous sample-and-hold inputs for sampling all analog
inputs at the same time.

268 CHAPTER 11 Commercial Data Acquisition Products

Another unique Data Translation product line is their Fulcrum
(DT3800) series of inteUigent data acquisition boards. These ISA cards are
controlled by an on-board Texas Instruments TMS320C40 DSP (digital sig-
nal processor), which is a 32-bit floating-point CPU. A DT3800-series board
can operate independently of its host PC, since the TMS320C40 controls all
of its operations. All configuration and calibration is done via software
controls from the host PC. Cards in this series have 12-bit ADC inputs with
conversion rates up to 1 million samples/sec and 16-bit ADCs as fast as
160,000 samples/sec.

The Fulcrum series boards have two high-speed, 16-bit analog output
channels with data rates up to 200,000 samples/sec and software-selectable
settings. They also have 16 digital I/O lines with speeds up to 3.3 MHz. These
digital lines are partitioned into two 8-bit ports. The two 16-bit on-board
counter/timers are 8254-based, running from an internal 10-MHz clock. These
cards run SPOX, a DSP real-time, multitasking operating system. Application
software is developed using the DSPLAB developer's kit, which runs on the
host PC.

Data Translation, along with most other major manufacturers, produces
screw-terminal and signal-conditioning panels for their data acquisition cards.
These panels simplify connecting external devices to the data acquisition
cards. Some common signal-conditioning functions are available, such as
antialiasing filters and cold-junction compensation for thermocouples. If a
thermocouple is directly connected to the appropriate panel, the analog signal
sent to the data acquisition card can be directly read as degrees (temperature)
without additional circuitry or complex software.

Data Translation also manufactures data acquisition products for PCM-
CIA and USB interfaces. Their PCMCIA products include the DT7100 series.
The DT7101 PCMCIA card has a 12-bit ADC with eight single-ended (or
four differential) inputs and a maximum conversion rate of 1(X),000 samples/sec.
It also has four digital I/O lines (two inputs and two outputs). The DT7102
card has a 12-bit ADC with 16 single-ended (or eight differential) inputs and
a maximum conversion rate of 200,000 samples/sec. The DT7102 also has
two 12-bit analog outputs with maximum rates of 50,000 samples/sec, as well
as six digital I/O lines (two inputs and four outputs).

Data Translation's USB data acquisition products include their DT9800
series. These modules are fully USB 1.1 compliant, with hot-swap and plug-
and-play capabilities. One of the major advantages of using external USB
data acquisition devices, such as these, is that they can provide a much lower
noise level than PCI or ISA cards that reside inside a PC (where the electronic
noise from the power supply and motherboard is fairly high). The current
disadvantage with USB 1.1 devices is their limited top speed of 12 Mbits/sec

11.1 Commercial Data Acquisition Hardware Products 269

Figure 11-8 Data Translation DT9800 series USB data acquisition module. (Courtesy
of Data Translation, Inc.)

(or 1.5 Mbytes/sec), with typical sustained transfer rates closer to 100
Kbytes/sec. USB 2.0, with its 40x speed increase, should eliminate this
limitation. Figure 11-8 shows a typical Data Translation USB Module.

An example of a multifunction USB device is the DT9802. This module
has a 12-bit ADC with 16 single-ended (or eight differential) inputs that range
from 1.25 V to 10 V full-scale and a maximum conversion rate of 100,000
samples/sec. It has two 12-bit analog outputs, 16 digital I/O lines (eight inputs
and eight outputs), and two 16-bit counter/timers.

Another Data Translation USB device is the DT9821, which has four
independent ADCs with a maximum resolution of 24 bits at conversion rates of
7.5 samples/sec or slower. At the maximum conversion rate of 960 samples/sec,
the ADC resolution is reduced to 16 bits. With an input range varying from
approximately 40 mV to 2.5 V full-scale, even at 16-bits the ADC can resolve
inputs less than l-|xV (for 1 LSB).

As with most major data acquisition vendors. Data Translation bundles
software with its hardware products. With PCI cards or USB modules, this
manufacturer includes its Omni CD: a collection of drivers, development
tools, and basic applications for its data acquisition boards that runs under
MS Windows 98/Me/2000. For example, the Scope application requires no
programming and allows you to acquire data in either a high-speed oscillo-
scope mode or a strip-chart mode. Quick Data Acq is a menu-driven appli-
cation that provides verification of board operations and allows you to collect,

270 CHAPTER 11 Commercial Data Acquisition Products

display, and save acquired data. Source code for Quick Data Acq (written in
Microsoft Visual Basic) is also included, allowing you to customize the
application.

Data Translation has other hardware products, such as the DATAX
modular data acquisition system that connects to a host PC via USB. This
system is optimized for expandability and signal conditioning via its stand-
alone, 16-slot chassis. Data Translation also produces some virtual instru-
ments, such as their DT2040 series of PCI-based digital multimeter cards.

This concludes our discussion of Data Translation's PC-based data
acquisition products. For current information, you can view their Web site
(www.datatranslation.com).

11.1.3 National Instruments

National Instruments had primarily been a leading manufacturer of GPIB
controller hardware and software products for PCs and other computer plat-
forms. In the decade following the first edition of this book. National Instru-
ments has also become a major manufacturer of data acquisition products for
PCs and industrial computer platforms, such as VME and Compact PCI. They
also produce data acquisition hardware for PCMCIA, USB, and IEEE-1394
interfaces. Additional product lines include motion control and image capture
products.

Besides hardware. National Instruments produces software products,
most notably. Lab VIEW. Lab VIEW, a data acquisition programming lan-
guage, is so popular that it can be used with other manufacturers' hardware
products. For example, Data Translation and Keithley Instruments provide
software (in the form of virtual instruments) that allow their boards to work
under Lab VIEW. We will discuss Lab VIEW in greater detail later in this
chapter (see Section 11.2.2).

National Instruments produces a wide range of PCI and ISA data
acquisition cards for PCs. The low-cost, multifunction PCI-6023E is a PCI
card with 16 single-ended (or eight differential) inputs to a 12-bit ADC,
having a maximum conversion rate of 200,000 samples/sec. It also has eight
digital I/O lines and two 24-bit counter/timers, but no analog outputs. The
AT-MI0-16E-1 is an ISA card with 16 single-ended (or 8 differential)
inputs to a 12-bit ADC with a maximum conversion rate of 1.25 million
samples/sec (Msamples/sec). This board has eight digital I/O lines, two
24-bit counter/timers, and two 12-bit analog outputs with an update rate of
1 Msample/sec. It is also fully plug-and-play compatible for simple instal-
lation and configuration.

11.1 Commercial Data Acquisition Hardware Products 271

National Instruments has a family of high-speed digitizers, with analog
inputs only. The NI-5911 is a PCI card having a single analog input channel
and an 8-bit ADC with a maximum conversion rate of 100 Msamples/sec in
real-time mode. For repetitive signals, using its random interleaved sampling
mode, it has a conversion rate up to 1 gigasample/sec (Gsample/sec). This
card has either 4 or 16 Mbytes of on-board memory for temporary data
storage. A special feature of the NI-5911 is the flexible resolution mode that
uses a DSP technique similar to delta-sigma conversion to increase the effec-
tive ADC resolution at lower sampling rates (and lower bandwidth). For
example, at 5 Msamples/sec the card has 14 bits of effective resolution. This
increases to 21 bits at a conversion rate of 10,000 samples/sec.

Another high-performance National Instruments product line is the NI-
61IX family of simultaneous-sampling, multifunction data acquisition
boards. The NI-6110 is a PCI card with four 12-bit analog inputs and a
maximum conversion rate of 5 Msamples/sec. It has two 16-bit analog output
channels with a 4-Msamples/sec maximum rate, eight digital I/O lines, and
two 24-bit counter/timers. Unlike conventional multifunction cards that use
one ADC and an input multiplexer, the NI-6110 (and other family members)
has an ADC for each input channel, allowing simultaneous sampling on all
inputs. This is essential when an accurate relative phase or time measurement
needs to be made.

National Instruments also has PCMCIA and USB versions of some of
its data acquisition products. For example, the NI-6020E, a 12-bit, 100,000
samples/sec multifunction data acquisition device, is available as either an
ISA board or a USB module (the DAQPad-6020E). Another example, the
6024E is similar to the NI-6023E (12-bit ADC, 200,000 samples/sec) except
it also includes two 12-bit analog outputs. The 6024E is available as either
a PCI board (the PCI-6024E) or a PCMCIA card (the DAQCard-6024E).

A National Instruments product even uses the IEEE-1394 bus: the NI-
6070E family (which includes the AT-MIO-16E-1). This is a 12-bit ADC with
16 single-ended (or 8 differential) inputs and a maximum conversion rate
of 1.25 Msamples/sec. It has two 12-bit analog outputs with a maximum
rate of 1 Msamples/sec, eight digital I/O lines, and two 24-bit counter/timers.
The IEEE-1394 version is the DAQPad-6070E, which is a stand-alone mod-
ule, similar to USB data acquisition devices. Of course, to use this device, a
PC must have an IEEE-1394 interface (usually as an add-in card) and appro-
priate software support. Note that some older versions of 32-bit MS Windows
(such as Windows 95 and Windows NT) are not suitable for IEEE-1394.

Other National Instrument product lines include stand-alone instrumen-
tation chassis, based on Compact PCI cards. Many of their data acquisition
PCI cards are also available in Compact PCI versions.

272 CHAPTER 11 Commercial Data Acquisition Products

As with other major hardware vendors, National Instruments bundles
basic software with their data acquisition products. For example, their E series
of multifunction devices (such as the PCI-6023E card) come with NI-DAQ
driver software to simplify writing your own application program. They also
include Measurement and Automation Explorer software to configure and test
the hardware.

This concludes our brief survey of National Instruments' data acquisi-
tion products. As with other manufacturers, their Web site (www.ni.com) is
a good source for current product information.

11.1.4 Other Hardware Manufacturers

A large number of other PC-based data acquisition hardware manufacturers
are listed in the Appendix. Without going into much detail, we will look at
a few more of them.

Scientific Solutions, Inc. The first manufacturer of data acquisition boards for
IBM PCs was Scientific Solutions, Inc. Their current product line supports
both ISA and PCI buses and includes multifunction data acquisition boards,
digital I/O boards, and GPIB interface cards.

Scientific Solutions' Lab Tender ISA board is a new, software-com-
patible version of the original 8-bit Lab Tender, introduced in 1981. It contains
a 16-bit ADC with 32 single-ended (or 16 differential) inputs, having a range
of ±5 V and a maximum conversion rate of 50,000 samples/sec. The Lab
Tender has a 16-bit DAC, multiplexed with 16 sample-and-hold outputs. If
more than one output at a time is in use, they must be periodically refreshed
(their LabPac 32 driver software takes care of this automatically). This board
has 24 digital I/O lines, configured as two 8-bit and two 4-bit ports, con-
trolled by 8255A-compatible hardware. It also has five counter/timer chan-
nels, with AM9513A-compatible hardware. The Lab Tender supports
hardware interrupts.

Scientific Solutions also produces the multifunction Lab Master DMA
that consists of an ISA board and an external analog box (containing the ADC
and analog input circuitry). This produces very low-noise measurements. The
Lab Master DMA contains a 12-bit or 16-bit ADC with a maximum conver-
sion rate of either 50,000 or 160,000 samples/sec and 16 single-ended (or
8 differential) analog inputs. The analog input range can either be unipolar
or bipolar, and the gain can be adjusted via hardware (through jumpers) or
software. The Lab Master DMA has two independent 12-bit DACs with five
selectable output ranges and a maximum conversion rate of 200,000 samples/sec.

11.1 Commercial Data Acquisition Hardware Products 273

In addition it contains 24 digital I/O lines and five counter/timers, as the Lab
Tender does. The Lab Master DMA supports hardware interrupts as well as
DMA data transfers.

Scientific Solutions PCI product is the Lab Master Pro PCI. This mul-
tifunction board has a 16-bit ADC with 16 analog inputs, expandable to 256,
and a maximum conversion rate of 333,000 samples/sec. It has two 16-bit
analog outputs with rates up to 500,000 samples/sec. The Lab Master Pro
PCI also has five 16-bit counter/timers and 16 digital I/O lines. It supports
PCI bus mastering for high-speed data transfers. The card also has an on-
board FIFO to buffer ADC or DAC data.

Scientific Solutions also provides software support for its boards. Lab-
Pac is a memory-resident driver that runs under MS-DOS. Any standard DOS
progranmiing language can access its functions, such as analog input, analog
output, and digital I/O.

LabPac 32 is a 32-bit application programming interface (API) for
Windows 95/98/NT/2000. Working in conjunction with a board-specific
device driver, LabPac 32 functions access the target device's features. It
supports most standard 32-bit MS Windows programming languages, includ-
ing Java, Visual C/C+ + , Visual Basic, and Borland C/C+ + .

As with other vendors we have surveyed, up-to-date product information
is available at Scientific Solutions' Web site (www.labmaster.com).

Intelligent Instrumentation Intelligent Instrumentation (formerly Burr-Brown/
Intelligent Instrumentation) produces a variety of data acquisition products
for PCs. These include both plug-in cards and remote data acquisition prod-
ucts (with a strong emphasis on Ethernet). Intelligent Instrumentation man-
ufactures a series of plug-in ISA boards with dedicated functions as well as
those with modular features, all part of their PCI-20000 system {please note
that boards in this series^ despite its name, are only for the ISA bus and not
the PCI bus). This product line stresses the use of modular boards, based on
the PCI-20098C and PCI-20047C series. Multifunction dedicated boards are
available as well as digital I/O, analog input, and analog output (as shown in
Figure 11-1). Termination panels are also available.

The carrier boards used with expansion modules act as multifunction
cards, plugging into a PC's ISA slot. Some carrier boards require modules for
analog I/O, such as the PCI-20041C series that contains only digital I/O. The
PCI-20098C is considered a multifunction carrier board, containing analog
I/O, digital I/O, and counter/timers as well as supporting additional modules.

The add-in modules for these carrier boards include various analog-input
options, such as high gain (up to 25 mV, full-scale), high resolution (16 bits at

274 CHAPTER 11 Commercial Data Acquisition Products

85,000 samples/sec), and analog input expansion (32 additional single-ended
or 16 additional differential inputs). The analog output modules offer 12-bit
or 16-bit resolution, with maximum conversion rates of 80,000 samples/sec.
A digital I/O module offers 32 lines, accessible as four 8-bit ports. Other
modules with special functions include a counter/timer board, a sample-and-
hold board, and a trigger/alarm board.

Intelligent Instrumentation's dedicated multifunction ISA boards include
the PCI-2048W series, with a 12-bit ADC and 16 single-ended (or 8 differ-
ential) inputs and two 12-bit analog outputs, running as fast as 100,000 samples/
sec. These cards have 16 digital I/O lines (eight inputs and eight outputs) and
a 16-bit counter. They also support DMA transfers. The PCI-470W series
contains high-speed transient capture ISA boards with an 8-bit or 12-bit ADC
and acquisition rates up to 60 Msamples/sec. These cards contain on-board
memory for data storage (up to 512 Kbytes), since their analog input data
rate is much faster than ISA bus speeds.

Intelligent Instrumentation has a USB data acquisition system (UDAS)
which supports 100,000 samples/sec analog I/O at 12-bit resolution. It also
has a parallel port data acquisition system, the DAASport series. This is
especially useful for laptop PCs. It supports both standard and enhanced (EPP)
parallel ports with analog rates up to 100,000 samples/sec at 12-bit resolution.

Another interesting Intelligent Instrumentation product line is their
Ethernet data acquisition system (EDAS). This family consists of stand-alone
boxes that interface analog, digital, and serial communications I/O to lOBASE-T
Ethernet. For example, the EDAS-1002E is a multifunction unit that has a
12-bit ADC and 16 single-ended (or 8 differential) inputs, with a maximum
conversion rate of 100,000 samples/sec. It also has two 12-bit analog outputs
and 16 digital I/O lines along with a 16-bit counter. Additionally, the EDAS-
1002E has an RS-232 port and an optional RS-485 port. The EDAS system
is especially well suited for automated industrial applications where most
sensors and controllers use a standard serial interface.

More information about Intelligent Instrumentation's products is avail-
able on their Web site (www.instrument.com).

Gage Applied, Inc. Gage Applied Inc. (now a subsidiary of Tektronix) spe-
cializes in high-speed, high-performance data acquisition products for PCI
and ISA bus PCs. Their CompuScope line of analog input cards includes
some of the fastest digitizers currently available.

For example, the CS85G is a PCI analog digitizer with a maximum
conversion rate of 5 Gsamples/sec on two simultaneous input channels, at 8-bit
resolution. The input channels have 500 MHz analog bandwidth. Input gain
is software selectable with an input range of ±20 mV to ±20 V, full-scale.

11.1 Commercial Data Acquisition Hardware Products 275

The card has an on-board storage memory up to 10,000 samples per channel.
This means that at 5 Gsamples/sec, the maximum acquisition window is
2 |isec long.

The CS14100 is another analog input PCI card with 14-bit resolution
and a maximum conversion rate of 100 Msamples/sec, in single-channel
mode. This card contains two 50-Msamples/sec ADCs that can provide simul-
taneous sampling for two input channels. In the single-channel mode, the two
ADCs use a "ping-pong" scheme to produce a doubled conversion rate of
100 Msamples/sec.

Gage also produces high-speed ISA analog input cards, but these are
not nearly as fast as Gage's PCI products. For example, the CS2125 has an
8-bit ADC with a maximum conversion rate of 250 Msamples/sec for one of
its two input channels. It has on-board memory up to 8 Mbytes and a data
transfer rate as high as 2 Mbytes/sec into PC memory (via the ISA bus).

Gage's product lines include analog output, digital input, and digital
output boards. The CompuGen 1100 is a 12-bit PCI analog output card with
a maximum rate of 80 Msamples/sec and on-board memory up to 16 million
samples. It is used primarily as an arbitrary waveform generator (a virtual
instrument). The CS3200 is a 32-bit PCI digital input card that can run at
rates up to 100 MHz, with on-board memory as large as 2 Gbytes. The
CompuGen 3250 is a 32-bit PCI digital output card with data rates as fast as
50 MHz. It has up to 8 million samples of on-board memory. The 3250 is
especially useful as a high-speed pattern generator to test digital systems.

Gage also produces software to support their products. GageScope
software operates as a virtual oscilloscope with CompuScope cards. It is an
interactive, graphics environment that requires no programming. GageScope
acquires, saves, and displays digitized data. It also has analysis features, such
as signal averaging, correlations, and FFTs. GageScope is available for both
MS-DOS and MS Windows 95/98/NT/2000.

In addition. Gage has a software development kit (SDK) supporting its
CompuScope and CompuGen cards, for users who want to write their own
software. These SDKs support not only C/C++ programs under DOS and
Windows 95/98/NT/2000, but also programs written for MATLAB and Lab-
VIEW (see Section 11.2, later in this chapter, for more information on MAT-
LAB and Lab VIEW).

More information about Gage's products is available at their Web site
(www.gage-applied.com).

Microstar Laboratories Microstar Laboratories specializes in intelligent data
acquisition boards. Their data acquisition processor (DAP) product line consists
of PCI and ISA cards that contain an on-board microprocessor. This local

276 CHAPTER 11 Commercial Data Acquisition Products

processor runs its own operating system (DAPL) and gives the board the
capabiUties it needs for real-time processing and control applications as well
as handling large numbers of analog I/O channels.

An example of an ISA card in this series is the DAP 32009/415 running
an Intel 80486DX4 processor at 96 MHz. This card has 16 analog input
channels (expandable to 512) and a maximum conversion rate of 769,000
samples/sec at 12-bit resolution. It has 2 analog outputs (expandable to 66)
with a top data rate of 833,000 samples/sec. The board also has 16 digital
inputs (expandable to 128) and 16 digital outputs (expandable to 1024), which
have an update rate of 1.66 MHz. The board can transfer data to PC memory
through the ISA bus as fast as 909,000 samples/sec.

Microstar Laboratories' PCI products include the DAP 52009/626, run-
ning an AMD K6 III+ processor at 400 MHz. This card has 16 analog inputs
(expandable to 512) with a 14-bit ADC converting up to 800,000 samples/sec.
It also has 2 analog outputs, with an update rate of 833,000 samples/sec.
The board contains 16 digital inputs (expandable to 128) and 16 digital
outputs (expandable to 1024) with update rates of 1.66 MHz. It can transfer
data to PC memory through the PCI bus as fast as 1.66 Msamples/sec.

Microstar Laboratories provides software support for its hardware prod-
ucts. DAPview for Windows runs on a PC and implements data acquisition
and control functions without requiring any programming. Microstar Win-
dows Toolkit (MSWTK) allows you to write your own programs to run a
DAP board, using most common Windows programming languages, such as
Microsoft Visual C/CH--I-, Borland C+ + , and Microsoft Visual Basic.
Microstar Laboratories also has a developers' toolkit for DAPL (MSDTD),
to generate custom commands for the on-board processor.

Other Microstar Laboratories products include signal processing equip-
ment, such as antialiasing filter boards or chassis for special-function modules
(such as analog isolation units). More information is available at their Web
site (www.mstarlabs.com).

Omega Omega is a major manufacturer and distributor of industrial mea-
surement and control equipment, including sensors and data acquisition prod-
ucts (both hardware and software). Their data acquisition lines include ISA
and PCI plug-in cards, signal conditioning systems, and stand-alone data
acquisition systems based on serial, GPIB, and Ethernet interfaces. They also
supply software to support their hardware products.

Omega is a good one-stop source for data acquisition products, includ-
ing a very broad range of sensors. They publish a large set of catalogs.
Additional information is available at their Web site (www.omega.com).

11.2 Commercial Data Acquisition Software Products 277

This concludes our overview of commercial data acquisition hardware
for PCs. Please refer to the Appendix for a more comprehensive listing of
manufacturers. Next we will look at commercial software products.

11.2 Commercial Data Acquisition Software
Products

The availability of abundant, powerful, easy-to-use software is probably the
strongest incentive to employ a PC as the platform for a data acquisition
system. In many ways, the variations in data acquisition software products
mirror those in hardware products. These software products vary from simple
drivers, tied to a particular manufacturer's boards and dedicated to basic data
collection tasks (analogous to single-function hardware), to complete data
acquisition/analysis/display software packages, supporting a broad range of
hardware products (analogous to multifunction cards).

As we discussed previously, a software driver is a special program that
acts as an interface to a particular hardware device. It is used in conjunction
with other software: the controlling program. The driver handles all the low-
level interfacing, such as reading from and writing to a data acquisition
board's I/O ports and memory locations. It presents higher-level commands
to the controlling program, such as to initiate an ADC conversion on the
selected channel and return the result. The driver takes care of all the I/O
port conamands, simplifying the controlling program. In addition, when run-
ning a secure 32-bit operating system, such as MS Windows NT/2000, the
only way to access a board (or any hardware device) is through a software
driver, since direct hardware access is not allowed.

In nonsecure operating systems (such as DOS) a driver for a data
acquisition card is an aid to writing a program that uses the card. It is specific
not only to the board it supports, but also to the operating system and
sometimes the programming language it is used with. By itself, a driver is
not a full-blown software package; it is only a tool used to create the complete
program. That is why manufacturers offer different drivers for different oper-
ating systems (DOS, Windows 95/98/NT) and programming languages
(BASIC, C, Pascal under DOS or MS Visual C/C-H-h, MS Visual Basic under
Windows). Commonly, a manufacturer supplies a driver that allows Windows
95/98 applications to work with the data acquisition board. Other drivers,
including those for DOS systems (for older, ISA hardware), are usually
available at modest cost. Sometimes different drivers are needed for different
compiler manufacturers supporting the same language, such as Microsoft C

278 CHAPTER 11 Commercial Data Acquisition Products

and Borland's Turbo C under DOS. See Chapter 13 for a discussion of
programming languages.

DOS software drivers are usually supplied in one of two forms when
supporting a compiled language: a memory-resident module or a Hnkable
module. A memory-resident module is supplied as a small program (typically
with a .COM file name extension). The program is run, making the driver
memory-resident. Occasionally, the memory-resident driver is provided as a
.SYS file and installed as a DOS device driver, via the CONFIG.SYS file.
Once this driver is loaded into memory, another program can call its functions,
using a software interrupt. A Windows driver must be loaded using its install
program, in the same manner as any Windows application software.

A DOS driver in the form of a linkable module is usually supplied as
a .OBJ file. The user-written control program makes calls to functions in this
module. After this control program is compiled, it is linked with the driver
file, producing the complete executable program as an .EXE file.

In Microsoft Windows, executable files also have an EXE extension.
Often, collections of callable Windows functions are distributed as dynamic-
link library (DLL) files. These can be accessed by most Windows program-
ming languages.

Most hardware vendors bundle a variety of software with their prod-
ucts, including drivers for the appropriate operating system (usually MS
Windows 95/98/NT/2000) and a software development kit (to write your
own programs using common programming languages). In addition, many
include diagnostics and some simple applications to verify board operations
and perform basic data acquisition tasks (such as a virtual oscilloscope or
chart recorder).

Fortunately, you do not have to be a programmer to use most PC-based
data acquisition systems. Many software manufacturers (and more and more
hardware manufacturers) produce easy to use, menu-driven, and graphics-
based data acquisition and support programs. These software products may
have one or more general functions: data acquisition, data analysis, and data
display. Several high-end, integrated software packages provide all three
functions, in varying degrees.

An important trade-off in all types of software packages is whether the
user interface is graphics or icon-based versus command-driven. In simple,
icon-based (graphics display) software, the user chooses among many options
presented by the program. These types of programs are the easiest to learn
and use. Their drawback can be low flexibility. The only functions (or com-
bination of functions) available are those built into the selection system or
enhanced by add-ins. If you need to do something different, you may be out
of luck, unless it is added as a new feature in a product upgrade. An example

11.2 Commercial Data Acquisition Software Products 279

of this type of program is a virtual oscilloscope application, bundled with a
data acquisition card.

In contrast, command-driven software (usually text-based) is harder to
use and not as intuitive to learn. It does, however, offer the maximum flexi-
bility. All available conmiands can be used with any possible combination of
parameters. In addition, most command-driven software packages allow for
some level of programming. This can be as simple as stringing a series of
commands together, as with a macro, or as complex as a true program with
looping, conditional execution, and a wide range of data types. Some software
products, such as MATLAB, are essentially high-level programming lan-
guages, optimized for analysis or data acquisition applications.

There are also software products that act as graphics-based data acqui-
sition languages, such as LABTECH NOTEBOOK and Lab VIEW. These
types of software packages offer the best of both worlds: ease of use combined
with flexibility and extendibility. You program by connecting icons instead
of writing lines of code.

For older DOS software products, manufacturers of command-driven
software often included a menu-based shell with their packages. This shell acted
as an easily learned command interface, buffering the user from the command-
driven language itself. Once someone became familiar with the system and
"outgrew" the menu shell, they could directly use the conmiand-driven inter-
face. This was usually a flexible approach. The main drawbacks were slower
performance and a larger program, due to the extra shell layer in the software.

Figure 11-9 shows a simple comparison of DOS-based, menu-driven
versus command-based interfaces. To save a data array as a plot file, using

OUTPUT MENU
(1) Display Data
(2) Plot Data^^—
(3) Save Data
(4)1
(5)
(6)

PLOT MENU
(1) To Printer
(2) To Plotter
(3) To Disk F i i e ^
(4)
(5) PLOT TO DISK

Enter File Name:

JUNK.DAT $ PLOT > FILE JUNK.DAT

(a) Menu-Based (b) Command-Driven

Figure 11-9 Comparison of menu-based and command-driven user Interfaces.

280 CHAPTER 11 Commercial Data Acquisition Products

the menu system (Figure 11-9a) you would choose selections from several
overlapping windows, and finally specify the output file name. In the command-
driven interface (Figure 1 l-9b), a single one-line command performs the same
operation.

Software with data acquisition functions is absolutely necessary for all
data acquisition systems. This type of software enables the user to set up the
data acquisition board's parameters, record the desired amount of data at a
specified rate for a specified time, and store the resulting data in a file for
future analysis and display. In addition, real-time graphics display of data as
it is acquired is extremely useful. This software package must support the
particular data acquisition board used as well as optional hardware accessories
(such as multiplexers and signal conditioners) and must be appropriate for
your PC's operating system and resources.

This support takes many forms. There are important factors to consider
when comparing data acquisition software packages, especially which fea-
tures are present and how they are implemented. Full support of all hardware
features is mandatory, especially maximum ADC conversion rate, interrupt
support, and DMA support for ISA or bus-mastering for PCI. Support of
multiple boards is certainly desirable. Most software packages include a real-
time graphical display of the acquired data, in either an x-y graph or a strip-
chart format. It is common for data acquisition software to scale the raw input
values (usually signed integer format) from an analog input voltage to the
physical units being measured by the sensors. For example, the millivolt
readings from a thermocouple would be stored as degrees Celsius values, or
the voltage output of a LVDT displacement sensor would be stored as milli-
meter values.

The format of the stored data (from an ADC) as well as how it gets
stored are other important factors. Some software products will store data in
an ASCII format, which is easy to print out and read. ASCII data is readily
transferred to other software packages, such as spreadsheets, for analysis and
display. The drawback is that ASCII data takes up more disk space than
equivalent binary data and requires more time to be stored and transferred.
For relatively slow data rates or small amounts of data, this is not a significant
problem. If the data rates get very high (at or above approximately 1 Mbytes/
sec, for example) or the produced data gets very large, a binary storage
format is indicated. Of course, the large hard drives in current PCs may
make saving disk space appear unnecessary. However, if you want to back
up or archive your data, large files still result in longer processing times and
higher costs.

In some cases, a data compression format may be needed, although this
is not often done in real time (PKZIP or WINZIP are often used to compress

11.2 Commercial Data Acquisition Software Products 281

stored data files). A binary format may be the same as the signed integer data
produced by the data acquisition board, or it may be a more sophisticated
data structure, including scaling and coordinate information, as when it rep-
resents a data array. Some software products may use a proprietary format.
Usually, the data format is specified in the user's manual. This allows you to
transfer the data into another commercial or custom program.

Many standard data formats are supported by conmiercial data acquisi-
tion programs, besides just ASCII. One of these is the Microsoft Excel work-
sheet format. Spreadsheet programs, such as Excel and Lotus, are very popular
for numerical analysis and display in business environments. Some data acqui-
sition-only software packages produce data outputs in this worksheet format,
allowing the user to do analysis and output using Excel or a compatible
spreadsheet program. Other data acquisition software packages that provide
analysis functions can both read and write data in this worksheet format—^usu-
ally as a special ASCII file called comma-separated variables (CSV). In
addition, some products directly link to Excel or are Excel add-ins that provide
data acquisition functions within the spreadsheet environment.

One very specialized type of data acquisition software package used
under DOS with ISA cards was the data streamer. This was used to acquire
data and store it in a hard disk file at the maximum rate allowed by the
hardware. This maximum rate, sometimes referred to as throughput, was
determined by the speed of the data acquisition board's ADC and the PC's
maximum disk data-transfer rate. If the data acquisition card had on-board
memory, the PC's speed was not a factor, up to the board's storage capacity.
A data streamer supported "no-frills," high-speed data acquisition. It was
most useful with DMA hardware and provided little or no data processing.

Even with today's PCI-based PCs and fast IDE hard drives, high-speed
transfer of large amounts of real-time data to a disk drive may not keep up
with a data acquisition card's conversion rate. For these type of high-perfor-
mance streaming applications (typically well above 1 Mbytes/sec), special
SCSI hard drives are often used.

Commercially available data analysis software is another important part
of a PC-based data acquisition system. These analysis packages can be used
by themselves, with data internally generated or imported from other pro-
grams (data acquisition software, among others). Some of them also include
data acquisition functions. Nearly all Windows-based data analysis software
packages include output functions for video display as well as printer and
plotter support. The capabilities of these packages vary from general mathe-
matical operations to DSP functions (such as FFTs). Some of these data
analysis products are not specifically aimed at data acquisition, scientific, or
engineering applications. General-purpose business programs, such as Lotus

282 CHAPTER 11 Commercial Data Acquisition Products

and Excel spreadsheets, are examples of this. However, they are still very
useful analysis tools for acquired data. And Excel even has add-in features
that include some engineering functions, such as FFTs.

Some data-analysis software packages consist of function libraries for
a particular programming language. They are analogous to hardware drivers,
as they are only useful to someone creating a custom program. Of course,
these libraries are not tied to any particular data acquisition hardware. They
may require a specific data format and interface only to particular language
compilers. We will not dwell on these libraries here, as they are mostly of
interest to software developers.

Software only for data display also exists, although most data analysis
programs include extensive display capabilities. Data display usually consists
of producing a graph or chart on a video screen, a printer, or a plotter. Useful
data display features include ease of plotting data, changing scales, labeling
plots, variety of plot formats (JC, y fine plots, bar charts, pie charts, 3-D plots),
using nonlinear axes (such as logarithmic), ability to output to a file, and
support of a wide range of output device types (printers and plotters) and
data formats.

The line between data acquisition and analysis software continues to
blur. Many data acquisition software products continue to add sophisticated
data analysis features. At the same time, many data analysis software packages
add support for both generic and specific data acquisition (plug-in cards) and
instrumentation (RS-232, GPIB) hardware.

One final note on selecting suitable software products: always check
the PC resource requirements of a package before purchasing it. This includes
both a PC's hardware (processor type, speed, amount of RAM, hard drive
space) and software (operating system) environment. If a particular product
would require you to upgrade or replace a PC to meet its requirements,
perhaps you can use a different (usually older) software package in its place.

Now, we will examine a few data acquisition software packages in
greater depth.

11.2.1 LABTECH NOTEBOOK

Laboratory Technologies Corp. produces the LABTECH family of data acqui-
sition software products. These applications evolved from DOS versions into
the current MS Windows 95/98/NT/2000 graphical programs that use icons
and menu selections for setup and control of data acquisition systems. They
require no programming and are very easy to use. LABTECH NOTEBOOK
provides real-time data acquisition, display, control, and data logging for
scientific and engineering applications. LABTECH NOTEBOOKpro is

11.2 Commercial Data Acquisition Software Products 283

intended for larger data acquisition systems (requiring more system elements/
icons and interconnects) and includes support for high-speed DMA transfers
as well as RS-232 and GPIB instruments.

LABTECH CONTROL is a superset of NOTEBOOKpro, intended for
industrial applications. Besides supporting even larger systems, CONTROL'S
additional features include alarms, PID control loops, and remote-control
capabilities. LABTECH CONTROLpro is a larger version of CONTROL (for
very complex systems).

To simplify this discussion, we will refer to all of the LABTECH
NOTEBOOK and CONTROL products generically as NOTEBOOK, although
some advanced features may only be available in NOTEBOOKpro or CON-
TROL/CONTROLpro.

LABTECH NOTEBOOK supports more than 1000 different data acqui-
sition boards from at least 50 hardware manufacturers, including Data Trans-
lation, Intelligent Instrumentation, Keithley, and National Instruments. Its
advanced features include real-time data display, remote data monitoring via
the Internet, and even high-speed data streaming (up to 1 Msample/sec).

To set up NOTEBOOK for a particular data acquisition task you run Build-
Time, a graphical user interface (GUI). This consists of standard Windows-
style pull-down menus, some specialized control buttons, and a selection of
icons. The icons represent function blocks, such as analog inputs, digital
outputs, logs, and displays. You set up your data acquisition system by placing
the appropriate icons or blocks on the drawing board area of the Build-Time
screen, and then you connect them together. This becomes a graphic repre-
sentation of your data acquisition task. A simple example would be connect-
ing an analog input block to a log block (for saving data in a file) or to a
display block (for graphing the data on the screen). Figure 11-10 shows a
typical NOTEBOOK Build-Time display for a temperature measurement
application.

Each icon or block has a dialog box that lets you set up its features.
For example, an analog input block would have settings for sample rate and
input voltage range. A thermocouple block would have settings for thermo-
couple material type and temperature range.

Besides data input and output icons (both analog and digital), NOTE-
BOOK also uses calculated blocks to process data. These are connected
between a data source and destination. More than 50 processing operations
are available, including basic mathematical, trigonometric, statistical, and
Boolean functions. In addition, NOTEBOOK has several special functions
available, such as FFTs and FIR filters. You can even produce customized
blocks, based on a C program, with C-Icon blocks (using additional
LABTECH software).

284 CHAPTER 11 Commercial Data Acquisition Products

Figure 11-10 A sample LABTECH NOTEBOOK Build-Time display. (Courtesy of
Laboratory Technologies Corp.)

The display features in NOTEBOOK are available through a software
module called Realtime VISION, available as a Build-Time icon. VISION
contains its own array of icons for display, control, drawing, and even ani-
mation. The display choices include digital meters, analog meters, bar graphs,
trend graphs (y versus t), and x, y plots. VISION'S control icons include knobs,
slides, and buttons for controlling outputs.

Once your Build-Time setup is complete, you can run the system by
starting Run-Time. This is the data acquisition process in operation, using
the VISION displays set up in Build-Time. Figure 11-11 shows a typical Run-
Time VISION display.

Several of the selectable output data file formats of NOTEBOOK are
suitable for exporting data to other applications, such as spreadsheets. In
addition, LABTECH provides an Excel macro that allows you to import data
into a Microsoft Excel spreadsheet from NOTEBOOK, in real time. In addi-
tion, it can export data from Excel back to NOTEBOOK. You can set up your
acquisition (with some limitations) and run it while staying entirely within
Excel.

11.2 Commercial Data Acquisition Software Products 285

tifim m m» &^
i ^ . a L d i ii^Mssi :4mm:5\MmQim;MM

Channel 2 Tenjiperature

100

T2,ForC

Temp. 22.3

Set Ararm 2

Alarm 46.01

Press to Exit

Degrees C I O N § O N I
imnWHUud ..s^«»d!^l^ina«as Mmy^mmmmm
Set T Scale Ch. 1 Alarm Ch. 2 Alarm

Figure 11-11 A sample LABTECH NOTEBOOK Run-Time VISION display. (Courtesy
of Laboratory Technologies Corp.)

NOTEBOOK also supports interfaces to other Windows applications
via Microsoft's dynamic data exchange (DDE) protocol. Under DDE, one
program is designated the server (usually the data source) and the other
program is the client (which request and receives the data). The transfer of
data is usually accomplished using standard Windows Copy and Paste com-
mands. This sets up the DDE link. Subsequently, whenever the source data
changes (at the server) the client sees those changes. This is a good way to
export LABTECH data to another application for further analysis.

Among NOTEBOOK'S advanced features are data streaming and
remote data acquisition. When using a high-speed data acquisition board, you
may need to transfer data to your PC's memory at or close to the board's
maximum conversion rate. NOTEBOOK allows you to set up an analog input
block for high-speed streaming. You can select the sampling rate, size of the
memory buffer (in the PC's RAM) for data storage, and whether to stream
this data in real time to a disk file (or just leave it in memory). Furthermore,
you can collect the data at high speeds, such as 200,000 samples/sec, while

286 CHAPTER 11 Commercial Data Acquisition Products

displaying it at much lower rates, such as 30 Hz. This way the display
hardware and software do not slow up the acquisition process.

You can use NOTEBOOKpro or CONTROL/CONTROLpro to enable
the remote display of data via the Internet. A PC running NOTEBOOKpro
becomes a server, using LABTECHnet software. This system runs the desired
data acquisition task. Remote PCs connected to the Internet (or even a local
TCP/IP network, connected to the server PC) are clients also running
LABTECHnet as a background task. The data can then be viewed using a
standard Web browser (such as Netscape Navigator or Microsoft Internet
Explorer), Realtime VISION, or an application that supports the Active-X
protocol (such as Microsoft Word and Excel). This capability allows data
acquisition processes to be monitored anywhere in the world.

More information about LABTECH'S products is available at their Web
site (www.labtech.com).

11.2.2 LabVIEW

Lab VIEW, a software product developed by National Instruments, is used for
data acquisition, analysis, and control. It supports not only National Instru-
ments' hardware products but also those of most major manufacturers. It has
an open architecture and has become an industry standard.

LabVIEW (which is an acronym for laboratory virtual instrument engi-
neering workbench) is a graphical programming language that runs on PCs
under MS Windows 95/98/lSnr/2000, Linux, and UNIX. There are versions that
run on Power Macs and on Sun and HP workstations. As with LABTECH
NOTEBOOK, you graphically connect icons or functional blocks instead of
writing lines of programming text to define a system's operations. LabVIEW,
being a true programming language, produces 32-bit, compiled applications
as well as stand-alone executables and dynamic-link libraries (DLLs). It uses
a data-flow programming model: the execution order is determined by the
data values moving between functional nodes.

All LabVIEW programs are composed of one or more virtual instru-
ments (Vis) that emulate a physical instrument (such as an oscilloscope or a
signal generator). Each VI contains three components: the front panel, the
block diagram, and the icon/connector. The front panel is the user interface
for the VI, containing controls (inputs) such as knobs, buttons, and data
acquisition card signals as well as indicators (outputs) such as graphs and
numeric displays. This is the high-level I/O for the VI.

Once the front panel I/O functions have been determined, you build a
graphical program using the block diagram. Here, you define the operations
to be performed on data coming from the controls and going to the instruments

11.2 Commercial Data Acquisition Software Products 287

(which all have connection terminals). This is done by first placing the desired
function icons in the block diagram window and then connecting them
together.

For example, a simple VI front panel may consist of a data acquisition
card input channel (the input) and a waveform graph (the output). If no data
processing is required, the block diagram consists of wiring the terminal of
the data acquisition channel to the terminal of the waveform graph. If the
data requires some processing, such as employing an FIR filter to reduce
noise, you can add that function between the input and output. You can also
add data acquisition functions (analog and digital I/O), instrument I/O func-
tions (such as IEEE-488 and RS-232 commands), and even file I/O functions
(reading and writing data files) to the block diagram. Available functions
include basic mathematical and trigonometric operations as well as sophisti-
cated signal processing algorithms, such as FFTs and digital filters.

The third component of a VI, the icon/connector, is the key to Lab-
VIEW's modular design. The icon represents the VI and lets you use it as a
sub-VI within another VI. This is analogous to using a subroutine in a
conventional, text-based progranmiing language. The use of sub-Vis makes
Lab VIEW hierarchical and easily extendible, which is central to its power
and popularity. Many data acquisition hardware manufacturers provide Vis
for their products. Users then build their own Lab VIEW application around
these predefined Vis.

Lab VIEW works equally well with stand-alone instruments connected
to a PC via a standard interface (such as IEEE-488 or RS-232) or with data
acquisition cards installed inside a PC. Lab VIEW uses drivers, which are
specialized Vis, to simplify interfacing to the hardware. For stand-alone
instruments, Lab VIEW uses its virtual instrument software architecture
(VISA) library of Vis that provides a common software interface for different
communications standards.

For using data acquisition hardware. Lab VIEW has a DAQ Solution
Wizard. This simplifies the process of configuring the hardware and setting
up the data acquisition application. To employ the wizard, you first select the
hardware to use and assign functions to analog and digital I/O channels via
a separate DAQ Channel Wizard (which can be called from the DAQ Solution
Wizard). For example, if you are using a National Instruments PCIO-MIO-
16E-1 card, you may define analog input channels 0 and 1 as temperature
inputs, analog input channel 2 as a pressure input, analog output channel 0
as a heater control, and digital output channel 0 as an alarm relay control.

Once the data acquisition I/O channels are configured, you can go to
the Solutions Gallery and choose predefined Vis for common applications
(such as temperature measurement, data logging, and PID control). If the

288 CHAPTER 11 Commercial Data Acquisition Products

Solutions Gallery does not contain a VI similar to your application, the
Solution Wizard guides you through the process of building a custom data
acquisition application using analog I/O, digital I/O, counters and signal
generators. Once the process is completed, you have a new VI that represents
your application. As with any VI, this application can be modified. For example,
you may need to add filtering or other signal processing between the analog
input and the display or data logging output. However, you may first need to
collect some raw data before you can evaluate the filtering requirements.

Because of LabVIEW's flexibility, you can easily import data from or
export data to other applications, using files. For example, the file I/O func-
tions include Vis to write to or read from a spreadsheet file. Being a complete
programming language and development environment. Lab VIEW also con-
tains debugging features. You can step through a program in slow motion or
single-step to check for data flow problems. You can even set breakpoints in
a VI and add probes to examine intermediate data values.

Additional Lab VIEW features include remote data acquisition via
TCP/IP and the Internet and actively sharing data with other Windows appli-
cations via DDE. Specialized measurement and control applications are sup-
ported with a wide range of add-on tools, such as a PID control tool set and
a signal processing tool set that includes wavelet analysis.

There are several versions of Lab VIEW available from National Instru-
ments. The Lab VIEW Base Package contains all of the features needed to
create data acquisition applications and perform basic analysis and signal
processing operations. The Lab VIEW Full Development System adds addi-
tional mathematical and signal processing capabilities, such as array opera-
tions, integration, differentiation, statistical functions, digital filters, and 3-D
plotting. The Lab VIEW Professional Development System adds the capa-
bility of stand-alone executables, shared DLLs, and tools to support large
project development. The majority of data acquisition applications would
only need the Base Package as long as sophisticated signal processing and
analysis is not required (or data will undergo postprocessing analysis in
another program).

More information about Lab VIEW is available at National Instruments'
Web site (www.ni.com).

11.2.3 Other Data Acquisition Software Products

LABTECH NOTEBOOK and Lab VIEW are probably the most popular soft-
ware products used primarily for PC-based data acquisition. However, there
are several other widely used software packages, including Agilent VEE, Test
Point, Dasy Lab, and Snap-Master. Some data acquisition software packages

11.2 Commercial Data Acquisition Software Products 289

are produced by a hardware manufacturer only for support of their boards.
Others are produced by independent manufacturers and support a wide range
of hardware sources. The following are a sample of software products that
support multiple hardware vendors.

Agilent VEE Agilent VEE (originally HP VEE) is a Windows graphical pro-
gramming language, similar to Lab VIEW, designed for controlling electronic
instruments. Originally developed by Hewlett Packard, VEE is strongly
geared toward stand-alone instruments connected to a PC via external buses
(especially IEEE-488), but it does support some data acquisition cards.

As with Lab VIEW, in VEE you place graphical objects in a work area
and connect them to form a program. There are no separate front panel and
block diagram windows in VEE: all objects, interconnects, and displays are
in a single window. Many of these available objects are math and signal
processing functions, allowing you to build complex data acquisition systems.

Configuring instruments is done via the Instrument Manager. This has
a very useful feature. Auto Discovery, which allows VEE to find instruments
connected to the PC's interfaces. It works well for IEEE-488.2 devices, where
you do not need to know the instrument's GPIB bus address to access it.

VEE is available in two versions: OneLab or Pro. VEE OneLab is designed
for individual workstations running small-to-medium instrumentation systems.
VEE Pro supports more instruments, larger programs, and multiple users.

You can find more information about VEE at Agilent's Web site
(www.tm.agilent.com).

Test Point Test Point, from Capital Equipment Corp., is a software package
that quickly generates compiled data acquisition, test-measurement, and anal-
ysis applications without writing any code. It runs under Windows 95/98/Me/
NT/2000 and uses an object-oriented approach that is somewhat different
from that of LABTECH NOTEBOOK or Lab VIEW. Instead of connecting
symbols, you simply describe your desired application and Test Point gener-
ates the code for it.

You start by selecting objects you need for your new application: input
devices (such as switches, ADC channels, or GPIB instruments) and output
devices (such as graphs, files, and meters). Next you build an action list from
the selected objects, choosing the desired operation for each one and filling
in any application-specific information (such as acquisition rate for an ADC
object). Then Test Point generates a compiled program from the description.

Besides its ease of use, one of Test Point's advantages is that the
applications it produces can be stand-alone and run on any current PC without

290 CHAPTER 11 Commercial Data Acquisition Products

requiring an additional software license. Another Test Point feature is auto-
search that automatically finds data acquisition boards installed in a PC.

Test Point supports a wide range of data acquisition boards from major
manufacturers. Its data acquisition objects are high-level and vendor indepen-
dent. You can swap supported boards with similar functionality or move to a
different PC and still run the same Test Point application, without any modifi-
cations: at run time, auto-search handles the low-level hardware configuration.

Test Point works equally well with automated instruments that use
standard interfaces, such as IEEE-488, RS-232, and RS-485. It has a good
selection of math objects, including FFT functions, digital filters, statistical
functions, and curve-fitting functions. It supports data links to other Windows
applications through standard software protocols, such as OLE2 and DDE.
Test Point is also extendible, supporting user-defined objects.

There are several optional toolkits available for Test Point, including
the Internet Toolkit for remote data acquisition and control. Capital Equip-
ment Corp. also produces a stand-alone. Web-based data acquisition product
called Web DAQ/100. For additional information, visit their Web site
(www.cec488.com).

Dasy Lab Dasy Lab, from Dasytec USA (a subsidiary of National Instru-
ments), is a graphics-based, easy-to-use data acquisition software product
for Windows. It supports data acquisition hardware from more than 40
manufacturers. It also supports IEEE-488 and RS-232 instruments connected
to a PC.

Dasy Lab uses function modules as graphic representations of I/O
devices, signal processing/control functions, and display devices. You select
the desired function modules and place them on the worksheet. You connect
the modules with wires to represent data flow (as with LABTECH NOTE-
BOOK and Lab VIEW). Each module's parameters can be configured via a
dialog box. For example, an Analog-Input Module would have settings for
the number of channels and their sampling rate.

Dasy Lab contains math and signal processing function modules, includ-
ing differentiation, integration, curve fitting, and statistical functions. Optional
add-on modules include FFTs and digital filters. Other options include a driver
toolkit to develop software support for custom hardware and an extension
toolkit that allows you to develop your own custom function modules.

Dasy Lab has DDE input and output modules, for easy interfacing to
other Windows applications. An additional product, Dasy Lab Net, provides
remote data acquisition capabilities via any TCP/IP network, including the
Internet. More information about Dasy Lab and related products is available
at their Web site (www.dasylab.net or www.dasytec.com).

11.2 Commercial Data Acquisition Software Products 291

Snap-Master Snap-Master for Windows, from HEM Data Corp., is another
graphical data acquisition and analysis software package. This product can
run on older PCs under Windows 3.1 or on newer models using Windows 95
or above. Snap-Master supports data acquisition hardware from more than
15 manufacturers, including PCMCIA cards as well as plug-in boards. One
unique feature of Snap-Master is its sensor database that automatically con-
verts acquired data values to appropriate engineering units (degrees, psi, etc.).

As with several other graphics-based data acquisition software pack-
ages, Snap-Master is configured by selecting icons for the desired functions
and connecting them together. It also supports DDE for sharing data with
other Windows applications. In addition, Snap-Master can import or export
data in the popular CSV spreadsheet format.

Snap-Master's Waveform Analyzer module provides signal-processing
capabilities, including mathematical functions, statistical functions, and digital
filters. The Frequency Analyzer module includes FFTs, correlation functions,
and processing functions specific to electrical, mechanical, and hydraulic tests.
New functions can be added using the Programmer's Toolkit and drivers for
custom hardware can be written using the Hardware Driver Interface.

For more information on Snap-Master products you can visit HEM's
Web site (www.hemdata.com).

This survey of data acquisition software is hardly exhaustive. However, it
should give you a broad view of some major products that are commercially
available. For additional hstings, refer to the Appendix. Please bear in mind that
software products change much more rapidly than hardware products and you
should always obtain current information before making a purchasing decision.

Next, we will turn to data analysis software, both for data acquisition
and general-purpose applications. We will start by looking at MATLAB.

11.2.4 MATLAB

MATLAB, a product of The Math Works, is a popular technical programming
language and computing environment which runs under Windows 95/98/
Me/NT/2000 as well as other operating systems (Macintosh OS, Linux, and
other UNIX systems). MATLAB is a powerful tool for data analysis and
display, containing more than 600 mathematical, statistical, and engineering
functions. In addition, it supports data acquisition through external IEEE-488
and serial (RS-232, RS-485) instruments as well as data acquisition boards
from some major manufacturers (including National Instruments and Keithley).
Several independent data acquisition software products support MATLAB
and some even contain a subset of its features.

MATLAB, which stands for matrix laboratory, is an interactive system
using arrays as its basic data elements. These arrays do not require dimensioning.

292 CHAPTER 11 Commercial Data Acquisition Products

as in conventional programming languages such as BASIC or C. The base
MATLAB system contains standard mathematical, trigonometric, and matrix
manipulation functions along with 2-D and 3-D graphics capabilities. Addi-
tional features are available by adding toolboxes, which are collections of
specialized MATLAB functions. Some of these toolboxes include data acquisi-
tion, filter design, image processing, instrument control, signal processing,
statistics, and wavelet analysis. MATLAB also has application development
tools that allow you to create stand-alone MATLAB programs. In addition,
you can call MATLAB routines from standard C and FORTRAN programs
using MATLAB's application program interface (API).

When the program is started, the MATLAB desktop (consisting of
several windows) appears. These partitions include the command window,
the command history window, and the launch pad. The command window is
where you enter variables, commands, and M-files (text files containing
MATLAB commands and programs). The command window is an interactive
environment, where you spend most of your time in MATLAB. The command
history window lists all the previously entered command lines and the func-
tions used. You can execute selected lines in the command history or even
save them as an M-file (to execute at other times, as a script). The launch
pad provides access to tools, demos, toolboxes, and documentation files. A
typical MATLAB desktop is shown in Figure 11-12.

The essence of MATLAB is matrix manipulation. This allows you to
operate on multiple numbers at one time. You can enter a matrix into MATLAB
manually, from an external data file, from a built-in matrix-generating func-
tion, or using functions in M-files. To enter data manually, you give the new
matrix a name, separate elements of a row with spaces or commas, separate
rows with semicolons, and enclose the numbers with square brackets. For
example, to manually generate a 4 x 4 matrix called Test, with incrementing
values, you would type in the command window:

Tes t = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]

Then, MATLAB would display this data as a matrix:

Tes t =
1
5
9

13

2
6

10
14

3
7

11
15

4
8

12
16

Simple math operations in MATLAB default to processing data col-
umns. For example, the sum function calculates the sum of each column in
a matrix. If we typed

sum (Test)

11.2 Commercial Data Acquisition Software Products 293

Expand to view

documentation, demos, and

tools for your products.

Get help. View or change

current

directory.

Click to move window Close window,

outside of desktop.

M i^Ccmmmcations Toolbox
S™4|llSignal Processing Toolbox
i l l s imu l ink

ih^^iCDMA Reference Blockset
;+h^^^CormHini cations Blockset
t '^^'oSP Blockset

M.J,. / : . - ; ; -; >/v;

To\get started, select "MATLAB Help" from the Help menu. ^

View or use previously run functions. Use tabs to go to Vlforksp ace browser Drag the separotor bar to resize windows,

or Current Directory browser.

Figure 11-12 The MATLAB desktop. (Courtesy of The Math Works)

MATLAB would display

28 32 36 40

If we wanted to sum the rows of our matrix. Test, we first have to
transpose the matrix so that rows become columns. The transpose command
is denoted by the single quote (') character. So, typing

results in

Test '

1
2
3
4

5
6
7
8

9
10
11
12

13
14
15
16

294 CHAPTER 11 Commercial Data Acquisition Products

Now we can get the sum of the rows in Test by entering

sum (T e s t ')

This produces

ans =
10 26 42 58

If we wanted the sum of all the array elements, we would enter

sum (sum (Test) ')

giving the result

ans =
136

You can easily access and operate on individual elements of an array
using subscript notation. The element at row x and column y in array A is
denoted A(jc, y). Looking at our sample matrix, Test, element Test (2, 3) is 7.

Another important part of MATLAB is the colon (:) operator. It is used
to denote a range of values or elements. For example, entering

1:5

produces a 5-element row vector:

ans =
1 2 3 4 5

Using : in subscript notation produces references to portions of a matrix.
If we wanted to sum only the elements in the second column of our Test
matrix, we would enter

s u m (T e s t (l : 4 , 2))

and get the result

32

When used by itself, the colon operator refers to all elements in a row
or column. So, a less verbose way to get the sum of Test column 2 would be

sum (Test (: ,2))

11.2 Commercial Data Acquisition Software Products 295

MATLAB is a complete programming language as well as a computa-
tional environment. You do not need explicit type declarations or dimension
statements, which simplifies "quick-and-dirty" programming. This is ideal
for algorithm evaluations.

MATLAB contains a full set of elementary and advanced mathematical
functions that include trigonometric, logarithmic, complex, matrix manipu-
lation, Bessel, and coordinate transform functions. There are MATLAB func-
tions that generate matrices with all zeros, all ones, or random numbers. You
can also enter data from an external text file using the load command. MATLAB
has an Import Wizard that reads in data files from many standard text and
binary formats.

Most user-created MATLAB programs and functions are saved in M-files.
These text-based files contain MATLAB code that could be entered at the
Command Window. To illustrate, assume we created a data file called sam-
ple.m that contained the Test matrix declaration we used earlier:

Test = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]

Then we could simply enter in the command window

sample

Now, MATLAB has created the array Test, with its associated data. An M-file
can just as easily contain commands that operate on data.

MATLAB contains several programming flow-control statements, sim-
ilar to those used in C and other standard languages. These include if, switch,
continue, and break statements as well as for and while loops. Some aspects
of the MATLAB implementation of these control statements do differ from
their C language equivalents.

MATLAB's graphic facilities are at least as extensive and powerful as
its mathematical manipulation capabilities. You can easily create x, y graphs
with the plot function. For example, then following commands will generate
and plot a cosine function from 0 to In, using a 100-point vector:

X = 0 : p i / 5 0 : 2 * p i ;
y = c o s (x) ;
p l o t (x , Y)

Note that ending an assignment line with a semicolon (;) supresses output.
The basic plot can be enhanced by adding labels and titles as well as

specifiying fonts and colors. You can use the plot command to display multiple
curves in a single figure via the subplot command. MATLAB also supports

296 CHAPTER 11 Commercial Data Acquisition Products

Figyre No. 1
:-Bil#'-Eait 5£iaw Insert"/Ioo!s-<;-S^ftddw M^fp

^ ^ ^ 1 ^ 1 ^s^^ I

lomMml k MJ^^^'\^^M^:::^: :

0 0 0 0

1 '1
0.5

48̂

,...-•••*'':

.. • •* '^

^ ' "*

0 0 ~5 ~5

Figure 11-13 Typical MATLAB plots. (Courtesy of The Math Works)

more sophisticated plotting, such as contour and 3-D surface plots. Plus, you
can save plots as standard graphics files using common formats, including
TIFF, JPEG, and PostScript. Figure 11-13 shows some sample 3-D MATLAB
plots.

An additional reason for MATLAB's popularity is its wide selection of
toolboxes. These are collections of functions targeted at specific appUcations.
For example, the Signal Processing Toolbox includes functions for digital
filtering, spectral analysis (FFTs), convolution, and signal generation. This
toolbox contains two interactive tools that act as special programs: the filter
design and analysis (FDA) tool allows easy, interactive digital filter design and
testing; the SP tool is a graphical user interface (GUI) that simplifies the display,
analysis, and manipulation of processed signals, including filters and FFTs.

The Instrument Control Toolbox and the Data Acquisition Toolbox are
of special interest to us. The Instrument Control Toolbox contains functions
for controlling external instruments via a standard interface, such as GPIB

11.2 Commercial Data Acquisition Software Products 297

or RS-232. Here is a simple MATLAB script that uses a National Instruments
PCI-GPIB+ board to set the output amplitude of a Hewlett Packard 33120A
function generator and then read back the new setting:

fg = g p i b (' n i ' , 0 , 1) %create a GPIB object (board index=0,
%primary address=l) .
%connect object to instrument
%write ASCII data (set amplitude command)
%write ASCII data (read amplitude command)
%read ASCII data (amplitude value readback)
%disconnect object from instrument
% remove object from memory
%remove object from work space

fopen(fg)
fpr in t f (fg , 'Vol t 2'
fp r in t f (fg , 'Vol t 1'
data = fscanf(fg)
fclose(fg)
delete(fg)
c lear fg

Note that comments in MATLAB programs begin with the percent (%)
character.

The Data Acquisition Toolbox provides functions for accessing plug-in
data acquisition cards. There are functions to create analog input, analog
output, and digital I/O objects (similar to the GPIB object we created earlier).
For example, the following MATLAB script acquires 2 seconds of data from
a standard PC sound card at the maximum sampling rate of 44.1 kHz:

scard = analoginput ('winsound')

addchannel(scard,1:2)
set(scard, 'Sample Rate',44100)
set(scard, 'Samples Per

Trigger',88200)
s ta r t (scard)
sdata = getdata(scard) ;

delete(scard)

clear scard

%create an analog input
%object for a
%standard Windows
% sound card.
%define two input channels
%set sampling rate to 44.1kHz
%set # of samples
%(for 2 sec)
%acquire the data
%store the data in variable
%sdata for processing and
%di splay.
%remove analog input object
%from memory.
%remove object from work
%space

In a similar fashion, you can output analog data using the analogoutput
function. To control a card with digital I/O lines you would use the digitalio
function.

MATLAB is primarily a general-purpose data analysis and display
software product, but its growing support of data acquisition functions makes
it a good choice for many laboratory and industrial applications requiring
extensive and flexible data processing. The number of data acquisition hard-
ware vendors directly supported by MATLAB is still somewhat limited.
However, if you do use a card MATLAB supports, you can easily integrate
data acquisition with the program's powerful analysis and display capabilities.

298 CHAPTER 11 Commercial Data Acquisition Products

eliminating the need to port the acquired data from another software product.
In addition, MATLAB has a Data Acquisition Toolbox Adapter Kit that helps
you use currently unsupported hardware with its Data Acquisition Toolbox.

More information about MATLAB can be obtained at The Math Works'
Web site (www.mathworks.com).

11.2.5 DADiSP

DADiSP is a data analysis and display software package for MS Windows-
based PCs and UNIX workstations, produced by DSP Development Corp. It
is a menu-driven program that operates as an interactive graphics worksheet.
DADiSP requires no progranmiing but you can still create your own functions,
macros, and command files. It can display, process, and output data plots,
both 2-D and 3-D. Each worksheet can contain up to 100 independent graphics
windows simultaneously. Each window contains its own plot or data. Data
in one window can be a function of data in other windows. As the independent
data windows get changed, the dependent window is automatically updated.
Suppose an independent window contains a waveform (perhaps acquired via
another program). If a dependent window contains the power spectrum (via
EFT) of that waveform, it will be updated if new data is read into the original
waveform window. This is a very powerful feature for doing complex analyses
and is analogous to using a conventional spreadsheet, such as Microsoft Excel,
where the value in one cell can change if data in other cells are modified. In
addition, windows can contain formulas without data and act as templates,
ready to process any data set.

DADiSP contains more than 1000 analysis functions (as of the
DADiSP/2000 version). These functions include basic mathematical and trig-
onometric operations, statistical functions, EFT and related operations (such
as autocorrelation), function generation, digital filtering functions, graphics
operations, image processing functions, matrix manipulation functions, data
file I/O, and hardcopy (plot or print) operations. DADiSP also has many
optional add-on modules for additional functionality. Typically, DADiSP's
data input and output operate on files, using either ASCII or binary formats.
Data set size is limited only by disk storage space, not by available RAM.
This enables very large waveforms to be manipulated, intact.

You can also use some of DADiSP's add-on modules to perform data
acquisition and instrument control. The DADiSP/ACQ module supports data
collection using data acquisition boards from several major hardware manufac-
turers, including Data Translation, National Instruments, and Scientific Solu-
tions. It is a menu-driven program that incorporates LABTECH's driver software
to interface to the boards. As with other software modules, it is tightly integrated
into the DADiSP environment, allowing immediate analysis of acquired data.

11.2 Commercial Data Acquisition Software Products 299

The GPIB Lab module is another menu-driven product that allows you
to control and collect data from IEEE-488 instruments. It supports GPIB
cards from lOtech and National Instruments. It also contains drivers for many
popular GPIB instruments, eliminating the need to write your own program
from scratch.

DADiSP has many other add-on modules for specialized analysis oper-
ations. For example, DADiSP/AdvDSP contains advanced DSP algorithms
such as the chirp-Z transform, zoom FFT, cepstrum analysis, and spline
interpolation. The DADiSP/Filter module enables easy design and analysis
of FIR and IIR digital filters. DADiSP/Stats contains statistical analysis func-
tions such as chi square tests, ANOVA, and polynomial regressions.

DADiSP can directly call other programs, for uses such as data acqui-
sition or specialized analysis. It can capture data from nearly any available
source. It has advanced graphics features such as zooming and scrolling
through a waveform. Many different plot formats are supported, including
line graphs, histograms, bar charts, and scatter plots. You can annotate data
windows with text or graphics, for labels and comments. It even supports
data transfer between other MS Windows applications via DDE links.

You can define custom menus and macros in DADiSP to help automate
the analysis process and allow less skilled workers to perform it. The program
also offers programmability using its C-like series programming language (SPL).

DADiSP is supported on many different PC and workstation platforms
running 32-bit Windows or a version of UNIX. Earlier versions of DADiSP
ran under MS-DOS and MS Windows 3.1. The current version, DADiSP/
2000, requires a Pentium PC running MS Windows 95/98/NT/2000. You can
obtain additional information about DADiSP at DSP Development's Web site
(www.dadisp.com).

11.2.6 Other Analysis Software Products

There are many other software products used for data analysis and display,
besides MATLAB and DADiSP. Several are listed in the Appendix. Some
analysis and display software packages are general purpose and not specifi-
cally for data acquisition. Here is a brief overview of a few representative
products.

GAUSS GAUSS, from Aptech Systems, is a data analysis environment and
programming language. It is especially useful for complex processing of large
amounts of data. GAUSS is a general-purpose analysis package with support
for engineering applications. It runs under Windows 95/98/NT/2000 as well
as UNIX/Linux.

300 CHAPTER 11 Commercial Data Acquisition Products

Similar to MATLAB, GAUSS is a matrix programming language. Its
capabilities are enhanced by add-on packages from Aptech and third parties.
GAUSS is a full-featured progranmiing language that can execute commands
interactively (one at a time) or as a complete, compiled program. It even
contains its own debugger.

Besides powerful data analysis features, GAUSS also contains publication-
quality graphics capabilities. This is a set of routines for generating 2-D and
3-D plots, such as contours, bar graphs, and 3-D surfaces. In addition, the
optional GAUSS Engine is a tool that generates stand-alone GAUSS programs
for royalty-free distribution.

For more information on GAUSS, visit Aptech's Web site (www.Aptech.
com).

IGOR Pro IGOR Pro, from WaveMetrics, Inc., is another data analysis and
display application that can handle large data sets and produce publication-
quality graphics. Some of its features include curve fitting, FFTs, and filtering.

A feature of IGOR making it especially useful for data acquisition
applications is its use of waveforms (or waves) as basic objects to be manip-
ulated. All wave objects are assumed to have uniform spacing along the
independent axis, as most time-based digitized data does. Waves can have up
to four dimensions and contain either numeric or text data.

Data is loaded into waves manually or from a text file, or it can be
generated by a mathematical expression. Manual data entry is via a table,
which also allows editing of wave data. Wave data can be used to generate
graphs, both 2-D and 3-D plots.

You can control IGOR either through menus and dialogs, by entering
commands at the command line, or by running procedures (scripts). IGOR
Pro is available for both Windows 95/98/NT/2000/Me and the Macintosh OS.
For more information about IGOR, you can visit WaveMetrics' Web site
(www.wavemetrics.com).

Microsoft Excel Microsoft Excel is Microsoft's general-purpose spreadsheet
program for Windows, used for data analysis and display. It is commonly
used in a business environment since it is part of the Microsoft Office package.
Excel includes many features suitable for analysis and display of data acqui-
sition system data. In fact, some simple data acquisition software products
link to Excel for analysis and display functions.

Excel, like most spreadsheets, uses rows and columns of cells to store
and manipulate data. As an example, to produce an jc, y plot you would select

11.2 Commercial Data Acquisition Software Products 301

two columns of data (representing the two graph axes) and choose the appro-
priate plot function or wizard.

Excel contains basic math, trigonometric, and analysis capabilities,
including statistical functions. It also has an Analysis Toolpack with additional
features useful for analyzing acquired data, such as FFT, correlation, and
regression (curve fitting) functions. These features may have more limitations
than in a dedicated analysis or acquisition program (some versions of Excel,
for example, limit FFTs to only 1024 points), but they will usually suffice
for many basic applications.

Current versions of Excel run under MS Windows 95/98/NT/2000 (ear-
lier versions ran under Windows 3.1). For current information about Excel,
visit Microsoft's Web site for this product (www.microsoft.com/office/excel).

Mathematica Mathematica, from Wolfram Research, is a mathematical anal-
ysis and display application for Windows 95/98/NT/2000, UNIX, Linux, and
Macintosh OS that processes both numeric and algebraic expressions. It can
be used as simply and interactively as a calculator (with its push-button
interface) or you can use it to write an entire program or application. Math-
ematica allows you to state your problem at a high level of abstraction while
it chooses the best way to perform the necessary calculations.

Mathematica is especially useful at processing symbolic (algebraic)
expressions. You can use it to easily solve partial differential equations or to
evaluate complex integrals, all entered using standard mathematical notation.

Mathematica also provides a wide range of data display and visual-
ization features, including 2-D plots, 3-D plots, and graphics (video) dis-
plays. It can produce publication-quality output, designed for technical
documents.

Mathematica is a fully customizable and extendible system. The Math-
ematica Applications Library contains additional software for specific appli-
cations, including Experimental Data Analyst (for curve fitting and error
analysis). Signals and Systems (for signal processing and filter design), and
Wavelet Explorer (for signal and image analysis using wavelets). There is
even a product, Mathematica Link for Excel, that gives you access to Math-
ematica's features from within an Excel spreadsheet.

For more information about Mathematica, visit Wolfram Research's
Web site (www.wolfram.com).

This completes our survey of some popular software products useful
for data acquisition systems. We will end this chapter with a brief discussion
of how to select the appropriate conmiercial hardware and software products
for your data collection needs.

302 CHAPTER 11 Commercial Data Acquisition Products

11.3 How to Choose Commercial Data
Acquisition Products

If you are putting together a PC-based data acquisition system, you will most
likely try to do it with commercial products. This approach will save you not
only a lot of development time, but probably some money, also.

The first step in selecting your data acquisition system components is
to define the physical measurements you need. For example, an environmental
test chamber may require ten temperature transducers covering the range of
0 to + 150°C, with an accuracy of ±1°C and a reading from each transducer
every second.

Next, determine the type of transducers to be used, the signal condi-
tioning needed and whether any output control signals are required. Continu-
ing with the environmental test chamber example, since high accuracy is not
required, thermocouples are a reasonable transducer choice. This would entail
using a cold-junction compensation board to condition the thermocouple
signals. Additionally, the ADC used would need moderately high gain, to deal
with the millivolt-level signals from the thermocouples. Let us also assume
that one or more of the temperature sensors will control the temperature of
the test chamber. This temperature control would be an analog signal, in the
range of ±10 V, controlling the chamber's heating and cooling systems. So,
we also need an analog output channel.

The following step is to consider how much data will be collected, how
much analysis will be performed on it, and how it will be displayed and
stored. In our example, we will assume the maximum test run time will be
1 hour. At a sampling rate of 1 sample/sec per channel for 10 channels, 1
hour corresponds to 36,000 samples. For 8-bit data, this would produce a
binary file of 36,000 bytes. For 12-bit data, a binary file would usually be
72,000 bytes long, if the data is not compressed (assume 2 bytes/sample).
The data display should be all 10 temperature channels (transducers) in real
time with data saved to disk. The only analysis required would be the mini-
mum, maximum, and average temperature of each channel.

The next step is to decide on the computer to use. Often, this is
determined by the PCs and data acquisition products already on hand. If it
is an open question, consider costs, which software packages you want to run
on it, and whether this PC will be permanently dedicated to the data acqui-
sition task or freed up at a later date for other jobs. Usually, software com-
patibility and availability are much more important than the computer's raw
processing power, except for very specific, high-performance applications.

The final step is picking out the hardware and software products to use.
The most important factor here is hardware/software compatibility. Be absolutely

11.3 How to Choose Commercial Data Acquisition Products 303

sure that the software package you want will work properly with the hardware
selected, including any signal conditioning boards, multiplexers, and other
expansion modules.

For our test chamber example, high-performance is not required. The
overall data rates are slow (10 samples/sec). The required resolution could
fit an 8-bit ADC, with 1°C accuracy over a 150°C dynamic range, being
within 1 part in 256 (8 bits). However, low-speed 12-bit ADCs are not very
expensive and the extra resolution will produce better data. A 12-bit analog
I/O board is a good choice, with at least 10 single-ended input channels and
one output channel. At the low data acquisition speeds called for, the board
does not need a timer/counter, since the PC's internal clock (as slow as 18
ticks/sec) is adequate. A multifunction data acquisition card would be overkill,
unless the system will be used for other purposes in the future. In addition,
a signal-conditioning panel with cold-junction compensation, for thermocou-
ples, would be very useful.

Now that we have all our hardware specifications, we should pick out
the software. We will assume that we do not want to write any programs and
we would like the system to be operable by virtually anyone, without exten-
sive training. This certainly points to a simple, graphics-based data acquisition
software package. We do not need much analysis power and want a real-time
display, with data storage and some means of producing a printed graph. In
addition, automatic processing of thermocouple signals is required, to produce
outputs directly in degrees Celsius. The software should also be capable of
controlling the temperature of the test chamber. A good choice here would
be a package similar to a basic version of LABTECH NOTEBOOK, Lab-
VIEW, Test Point, or Dasy Lab.

This ends our overview of commercial data acquisition products for
PCs. This is a very dynamic field, with new products and manufacturers
appearing (and disappearing) all the time. This is particularly the case with
software products, which tend to have very short life cycles. Please refer to
the Appendix at the back of the book for more comprehensive listings of
manufacturers and products. It is always a good idea to contact a manufacturer
or visit its Web site to obtain up-to-date information.

In the next chapter, we will look at some PC hardware and architectures
we have previously just touched upon, including notebook PCs, the PCMCIA
standard, and the PC-104 bus, as well as embedded and ruggedized PCs.

C H A P T E R

Other PC Configurations
and Hardware for Data
Acquisition

Over the past decade, Microsoft Windows and Intel processor, PCI bus-based
PCs have consoHdated their position as industry standards (so-called "Wintel"
PCs). As a result, many other PC architectures and buses (some designed as
potential successors to IBM's PC/XT/AT systems) have become obsolete or
relegated to niche markets. We will briefly look at a few of these alternative
PC architectures, since many of these computers still function in labs and
factories.

We will then examine the ubiquitous notebook PC and the PCMCIA
PC Card interface standard, which is quite useful for portable data acqui-
sition and control applications. Next, we will look at industrial and embed-
ded PCs along with the PC/104 standard. We will also briefly look at image
capture products, as a specialized data acquisition application of growing
importance.

12.1 Alternative PC Architectures and Processors

Even though the computer systems covered in this section are no longer
manufactured, many were previously produced and used for data acquisition
applications. Hence, we will briefly look at them, since some of these PCs
are still in use and can continue to operate for years to come. In addition, we
will briefly examine DSP products.

304

12.1 Alternative PC Architectures and Processors 305

12.1.1 IBM PS/2 Computers with MCA

In 1987 IBM introduced its successor to its popular PC/XT/AT computer line,
the PS/2. Most (but not all) members of the PS/2 family were based on IBM's
new Micro Channel Architecture (MCA), using Intel's 80286 and 80386
CPUs. These MCA PCs were not hardware compatible with the PC/XT/AT
systems, but were software compatible. They required very different expan-
sion cards, but ran MS-DOS, MS Windows (or OS/2), and nearly all PC
application software. Data acquisition cards for these systems had to be built
specifically for the MCA bus.

The performance characteristics of MCA were a large improvement
over the ISA bus. The data bus was either 16 or 32 bits wide (depending on
the computer model). On a 16-bit system, the address bus was 24 bits wide,
for a physical address space of 16 Mbytes. On a 32-bit system, the address
bus was also 32 bits wide, for a physical address space of 4 Gbytes. There
were 11 hardware interrupt lines that were level-sensitive and could be shared
by multiple devices with open-collector drivers. DMA was supported with
eight channels and a maximum transfer rate of 5 Mbytes/sec (for 16-bit
transfers). The maximum system data transfer rate with MCA was 20
Mbytes/sec, for either memory or I/O cycles (under special conditions).

Figure 12-1 shows the 16-bit and 32-bit MCA connectors. Both were
dual-row edge connectors with separate 8-bit and 16-bit signal sections. The
16-bit connector had 58 pins (each side) with 10 optional pins for video signals.
The 32-bit connector contained 89 pins (each side) and had four optional pins
for special memory transfer support. The MCA connectors placed a ground
pin between every four signal pins to minimize electromagnetic interference
(EMI), which was a large improvement over the ISA connector layout. MCA
also supported audio signals through a special pair of bus lines.

The signal assignments for a 16-bit MCA connector are shown in Table
12-1. Most of these signals were similar to their ISA bus counterparts, such as
address (A0-A23), data (D00-D15), interrupt (-IRQ03, -IRQ04,..., -IRQ15),
and control (-REFRESH, -TC, OSC) lines. Others were new to MCA, such
as arbitration control lines (ARB/-GNT, ARB0-ARB3, -PREEMPT),
connector-specific lines (-CD SFDBK, CD CHRDY, -CD SETUP), and other
features (AUDIO).

IBM's Micro Channel was primarily an asynchronous bus (as is PCI).
Data transfers over the Micro Channel were controlled by handshaking sig-
nals, instead of relying on a synchronous clock for transfer timing. When a
device on the bus (such as an adapter card) was commanded to send or receive
data, it responded with an acknowledge when it was done. These control and
handshake signals determined the MCA timing. In addition, MCA supported
some synchronous data transfers.

306 CHAPTER 12 Other PC Configurations and Hardware for Data Acquisition

Optional
Video
Extension

8-bit
Section

16-bit
Section

V10
V09

V02
V01

44
45

48
49

57
58

M4
M3
M2
M1

44
45

48
49

57
58
59
60

88

Optional
Matched
Memory
Extension

8-bit
Section

16-bit
Section

32-bit
Section

(a) 16-bit Bus (b) 32-bit Bus

Figure 12-1 IBM Micro Channel bus connectors.

MCA supported up to 15 bus masters in a system (including the main
CPU), allowing multiprocessing with several CPUs, as well as DMA. A hardware-
based arbitration scheme allowed multiple bus master boards relatively fair
access to the system bus. In addition, MCA systems eliminated the need for
setting switches or jumpers to configure a board (for addressing as well as
interrupt and bus master arbitration levels) using its Programmable Option
Select (POS) features. POS consisted of registers that allowed a board to be
configured by software only. Each board manufactured for MCA received a
unique identification code from IBM, distinguishing it from other boards. A
utility program automatically configured one or more boards in the system,
ensuring that addresses did not clash. This was an early plug-and-play archi-
tecture that relied on external software to configure boards. If you lost the
special program you could not configure a card. Newer PCs have plug-and-
play software built into the operating system (MS Windows) and/or the BIOS.

In spite of the major hardware differences between MCA-based PS/2
PCs and PC/XT/AT systems, they were still software compatible. All PS/2
computers ran MS-DOS, MS Windows, and most available appHcation software.

12.1 Alternative PC Architectures and Processors 307

TABLE 12-1
IBM Micro Channel 16-bit Connector Pin Assignnfients

1 PIN

01

02

03

1 ^^
05

1 ^̂
07

1 ^̂
09

10

1 "•""
12

13

1 ""̂
15

16

1 """̂
18

19

20

1 ^^
1 ^̂

23

1 ̂ ^ 1
25

26

1 27
1 28
1 29

ROWB

AUDIO GND

AUDIO

GND

14.3MHZOSC

GND

A23

A22

A21

GND 1

A20

A19

A18

GND

A17 1

A16

A15

GND

A14

A13

A12

GND

^ I R Q 0 9

-IRQ03

-IRQ04

GND

-IRQ05

-IRQ06

-IRQ07

GND

ROW A

-CD SETUP

MADE 24

GND

Al l 1
A10 1

A09

+5VDC

A08

A07

A06

+5VDC 1

A05 1

A04 1

A03

+5VDC 1

A02 1

A01 1

AOO 1

+12VDC

-ADL 1

-PREEMPT 1

-BURST 1

-12VDC

ARBOO 1

ARB01

ARB02

-12VDC

ARB03

ARB/-GNT

1 PIN

30

31

32

33

34

35

36

37

38

39

40

41

42 1
43

44

45

46

1 "̂̂
48

49

50

1 ^̂
52

53

54

1 55
56

57

1 58

ROWB

Reserved

Reserved

-CHCK

GND

-CMD

CHRDYRTN

-CD SFDBK

GND

D01 1

D03

D04

GND

CHRESET

Reserved

Reserved

GND

Key

Key

D08

D09

GND

D12

D14

D15

GND

-IRQ10

-IRQ11

-1RQ12

GND

ROW A 1

-TC

+5VDC 1

-SO

-S I

M/-IO 1

+12VDC 1

CD CHRDY 1

DOO 1

D02 1

+5VDC 1

D05 1

D06 1
D07 1

GND 1

-DS 16 RTN 1

-REFRESH 1

Key 1
Key 1
+5VDC 1
D10 1
D11

D13 1

+12VDC 1

Reserved 1

-SBHE 1

-CDDS 16 1

+5VDC 1

-IRQ14 1

-IRQ15 1

308 CHAPTER 12 Other PC Configurations and Hardware for Data Acquisition

They also ran IBM's OS/2 operating system that was similar to MS Windows.
Software that directly accessed hardware addresses (memory or I/O ports)
was not necessarily PS/2-compatible.

Many data acquisition hardware manufacturers who supported PC/XT/
AT systems also produced MCA products for PS/2 computers. This was true
of most PC board manufacturers, in general. Since PS/2 PCs are now con-
sidered obsolete, manufacturers no longer produce MCA boards. Some of
the leading data acquisition hardware manufacturers who previously produced
MCA boards included Keithley, Data Translation and National Instruments.

12.1.2 The EISA Bus

The Extended ISA (EISA) bus was developed as a nonproprietary alternative
to MCA that never gained very wide acceptance. It was an extension of the
standard AT (ISA) bus from 16 to 32 data bits, along with 32 address bits.
The EISA bus retained hardware compatibility with existing ISA boards. Of
course, EISA cards had to be used in an EISA computer to obtain the potential
performance improvements. These improvements were similar to MCA: high
data transfer rates (up to 33 Mbytes/sec), multiple bus-master support, auto-
matic system configuration, and slot-specific addressing.

Even fewer EISA boards were produced than MCA boards, along with a
handful of EISA PCs. Its only advantage was being able to use standard ISA
cards in an EISA PC, while having the potential for obtaining higher perfor-
mance (only when using EISA cards). The higher cost of an EISA PC coupled
with its limited improvements minimized this standard's acceptance in the PC
industry. In the realm of data acquisition. National Instruments and Scientific
Solutions were among the handful of manufacturers who produced EISA boards.

12.1.3 Apple Macintosh II Computers with NuBus

Apple's Macintosh computer line has also been popular for scientific, engi-
neering, and industrial applications, in part because of the open expansion
architecture adopted for the Macintosh II series, based on the NuBus. NuBus
was a system bus developed by MIT and Texas Instruments for 32-bit com-
puters. It was independent of the computer's CPU, providing buffered, mul-
tiplexed signals to the expansion connectors (as does PCI).

Apple has abandoned NuBus for a PCI architecture in its newer Mac-
intosh PCs. Still, many NuBus-based Macintosh II PCs are in use, some for
data acquisition applications. The Macintosh series was originally based on
Motorola's 68000 microprocessor family. The 68020 and 68030 CPUs used
in the Macintosh II series had a 32-bit data and address bus, for a 4-Gbyte
address range.

12.1 Alternative PC Architectures and Processors 309

The initial attraction of using a Macintosh computer was its graphics-
based user interface, allowing for intuitive operation that sped up the learning
process. The software burden rested on the program developers, not the users.
The user interface was consistent across all Macintosh application software,
minimizing the time needed to learn new programs. Now that Microsoft
Windows has come of age, Intel-based PCs have these same advantages.

Apple's NuBus was a synchronous, multiplexed bus, using a 96-pin Euro-
card DIN connector (popular in many industrial computer systems, such as
those based on the VME bus). The form factor for NuBus cards (approximately
4.0 inches by 12.7 inches) was similar in size to PC/XT cards. It was based on
the 1986 IEEE specification, IEEE-1196 NuBus (which originally called for a
triple-height Eurocard form factor of 11.0 inches by 14.5 inches). NuBus was
a synchronous bus (in contrast to IBM's asynchronous MCA), where all trans-
actions were based on a fixed clock cycle. The edge of this clock determined
the bus timing parameters, such as when data was valid or when it should be
latched. Apple used a 10-MHz bus clock in its NuBus. The address and data
signals were multiplexed onto 32 lines (/AD0-/AD31). Various control signals
were used to interpret these multiplexed lines. For example, the /START signal
was asserted (active low) when the address/data lines contained a valid address.

The advantage of using synchronous bus transfers was simplicity of
protocol and hardware to implement it. The advantage of using multiplexed
address/data lines was the need for fewer bus wires (32 saved in this case) than
in a nonmultiplexed arrangement. The disadvantage with this multiplexing was
slower bus throughput, since multiple bus cycles were required for any data
transfer (with separate bus cycles for sending address and data information).

The 96-pin NuBus DIN connector was arranged as 3 rows (A, B, C) of
32 pins, each. Because of address/data multiplexing, all the needed signals
fit on 51 lines. The rest of the lines were used for power supply and ground,
as shown in Table 12-2.

Each NuBus slot had its own unique ID number, with a maximum of
16 slots allowed by the specification, so each card knew the slot it was in.
The 32-bit addressing space of the NuBus had a range of 4 Gbytes. The upper
256 Mbytes of this space was divided among the 16 possible slots, to provide
each one with its own dedicated slot space of 16 Mbytes. Apple only used
up to 6 expansion slots in its Macintosh II systems, with slot IDs of 9 to Eh.
Since each board knew the slot it occupied, it could automatically adjust its
address mapping. This was another early plug-and-play system. Since the
Macintosh (and all 68000-family computers) used memory mapping for I/O
ports, this automatic configuration applied to both memory and I/O addresses.

Several hardware manufacturers have produced NuBus data acquisition
cards for Macintosh II personal computers. These included Data Translation,
Keithley, National Instruments, and Intelligent Instrumentation.

310 CHAPTER 12 Other PC Configurations and Hardware for Data Acquisition

TABLE 12-2
NuBus Connector Pin Assignments

1 PIN NUMBER

01

02

1 03

1 04

1 05

1 06

1 ̂ ^
1 08

1 09

1 10

1 ̂^
1 ̂ ^
1 ̂ ^ 1 ^^
1 15

1 ̂ ^
1 ̂ ^
1 ̂ ^
1 ̂ ^
1 20

1 ̂^
1 22

1 23

1 2^
25

1 ̂^
1 2^

28

29

1 ̂^
31

1 32

ROW A

12VDC

Reserved

/SPV

/SP

rrm
/AD1

/AD3

/AD5

/AD7

/AD9

1 /AD11

/AD13

1 /AD15

/AD17

1 /AD19

/AD21

/AD23

/AD25

1 /AD27

1 /AD29

/AD31

GND

GND

/ARB1

/ARB3

/ID1

/ID3

/ACK

+5VDC

/RQST

/NMRQ

+12VDC 1

ROWB

-12VDC

GND

GND

+5VDC

+5VDC

+5VDC

+5VDC

Reserved

Reserved

Reserved

Reserved

1 GND

1 GND

1 GND

1 GND

GND

1 GND

1 GND

GND

GND

GND

GND

GND

Reserved

Reserved

Reserved

Reserved

+5VDC

+5VDC

GND

GND

+12VDC

ROW C 1

/RESET

Reserved 1

1 +5VDC 1

1 +5VDC 1

yTMO 1

/ADO

1 /AD2 1

1 /AD4 1

/AD6

/AD8

1 /AD10 1

/AD12

1 /AD14 1

/AD16

1 /AD18 1

1 /AD20 1

1 /AD22 1

/AD24

1 /AD26 1

1 /AD28 1

/AD30

GND 1

/PFW 1

/ARBO 1

/ARB2 1

/IDO 1

/ID2 1

/START 1

+5VDC 1

+5VDC 1

GND 1

/CLK \

12.1 Alternative PC Architectures and Processors 311

Since newer Macintosh PCs can accept PCI cards, they can use current
data acquisition boards. Many hardware manufacturers provide software driv-
ers for Macintosh computers and many software manufacturers produce ver-
sions of their products for the Macintosh operating system (Mac OS).

12.1.4 DSP Chips and Cards

DSP (digital signal processor) chips are very popular processors used alone
and with PCs in scientific and engineering environments. These devices are
the heart of DSP boards, designed for PCs with an ISA or PCI bus. These
DSP cards are special-purpose math accelerators, used to provide DSP func-
tions at very fast calculation rates, minimizing the system CPU's involvement.
For example, a 1024-sample floating-point FFT calculation could be per-
formed in under 10 msec with such an ISA card. The DSP is a stand-alone
CPU, with its own local memory and control hardware on the card. It is not
directly tied to the system CPU, as an internal math coprocessor is. The
system CPU sends the DSP commands and data via the bus. The DSP can
then operate independently of the system CPU.

Recent PCs, based on the PCI bus with an Intel Pentium processor
running at clock speeds well over 1 GHz, can also perform math calculations
at very high speeds. However, since the speed of DSP chips has kept pace
with general-purpose PC microprocessors, DSP cards are still applicable in
high-performance environments.

The most popular DSP ICs used on these cards are the Texas Instruments
TMS320 families of 16- and 32-bit processors. These chips are general-
purpose processors, optimized for the high-speed mathematical calculations
required in DSP applications. They have a special architecture with separate
buses for instructions and data (called the modified Harvard architecture).
This allows calculations to be performed in parallel with instruction fetches.
These devices also use pipelining in their computational sections, so that a
current computation can progress simultaneously with a new one starting.
When many consecutive calculations are done, the overall computation rate
decreases dramatically.

There are other popular DSP chips supported by hardware and software
products for PCs, including Analog Devices' ADSP series.

Most DSP hardware products come with software support, usually in
the form of a library of DSP functions. A programmer can then call these
functions from a conventional Windows program, without worrying about the
fine details of the DSP board's internal operations.

This concludes our look at alternative PC architectures and processors.
Next, we will look at other PC form factors, starting with laptops.

312 CHAPTER 12 Other PC Configurations and Hardware for Data Acquisition

12.2 Notebook PCs and PCMCIA Cards

Notebook or laptop PCs have become ubiquitous as portable computers with
the power of desktop PCs. In the realm of data acquisition, laptops are
indispensable when performing fieldwork and collecting data at remote sites.
The main advantages of notebooks are their small size, low weight, and ability
to run for several hours without an external power source. Their main disad-
vantage is limited expandability.

Notebook PCs are effectively closed boxes. You cannot add a conven-
tional ISA or PCI plug-in card to a laptop to expand its functionality for data
acquisition or other purposes. Originally, the only way to use a laptop for
data acquisition was through its standard parallel or serial (RS-232) port.
Since some data acquisition hardware products do exist for these standard
ports (especially RS-232 instruments) notebooks were adequate for some
applications but not as versatile as a desktop PC.

To facilitate expandability in portable PCs, the Personal Computer
Memory Card Industry Association (PCMCIA) developed the PC Card stan-
dard in 1990. The first release (1.0) defined a credit card-size device that
could expand the memory of any computer, regardless of bus type or operating
system. Release 1.0 PC Cards supported either an 8- or 16-bit bus and were
self-configuring and hot-swappable. They proved to be so popular that the
standard was expanded, in release 2.0, to include general-purpose I/O devices
and thicker cards. As the standard evolved, the PC Cards were developed to
provide portable PCs with many of the peripheral functions that desktop PCs
use add-in cards for, including modems, network interfaces (Ethernet), hard
drives, and data acquisition.

PC Cards come in three sizes. Type I, Type II, and Type III, respectively
3.3 mm, 5.0 mm, and 10.5 mm thick, all using the same 68-pin connector.
Type I cards are usually memory devices such as RAM or Flash. Type II
cards tend to be I/O devices, including modems, network interfaces, and data
acquisition cards. Type III cards are usually hard drives. Table 12-3 shows
the pin assignments for a 16-bit PC Card connector that supports both memory
and I/O devices.

A later release of the PC Card standard in 1995 defined CardBus, a
32-bit bus with speeds up to 33 MHz. CardBus is essentially a modified
PCI bus, using the PCI protocol. For example, CardBus supports multiple
bus masters and arbitration. It still uses the same 68-pin connector as older
PC Cards and is backward compatible with one exception: all CardBus
cards use a 3.3-V supply. Older PC cards that use a 5-V supply cannot plug
into a CardBus slot (newer PC Cards that run at 3.3 V will work in a
CardBus slot).

12.2 Notebook PCs and PCMCIA Cards 313

TABLE 12-3
16-bit PC Card Pin Assignments

1 PIN

1 ^̂
02

1 ^̂
1 ^̂

05

06

1 ^'^
1 ^̂

09

10

1 ^̂ 1
1 ^̂ 1

13

1 ^^ \
15

16

1 ""̂ 1
18

1 ^̂
20

1 "̂̂
1 ^̂
1 2^
1 "̂̂
1 25

26

1 2^
28

1 29

1 30

1 ^̂
32

1 33

1 34

MEMORY

GND

D3

D4

D5

D6

D7

CE1#

A10

0E#

A l l

A9

A8

A13

A14

WE#

READY

Vcc

Vppi

A16

A15

A12

A7

A6

A5

A4

A3

A2

A1

AO

DO

D1

D2

WP

GND

I/O + MEM

GND

D3

D4

D5

D6

D7 1

CE1# 1

A10 1

0E# 1

A l l 1
A9 1

A8 1

A13 1

A14 1

WE# 1

IREQ# 1

Vcc 1
Vppi

A16 1

A15 1

A12 1

A7 1

A6

A5

A4 1

A3

A2

A1 1

AO

DO

D1

D2

I0IS16#

GND

1 PIN

35

36

1 ^̂
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

1 ^̂
1 58

59

60

61

1 62

1 63

64

65

66

67

1 68

MEMORY

GND

GD1#

D11

D12

D13

D14

D15

CE2#

VS1#

RSRVD

RSRVD

A17

A18

A19

A20

A21

Vcc

Vpp2

A22

A23

A24

A25

VS2#

RESET

WAIT#

RSRVD

REQ#

BVD2

BVD1

D8

D9

1 D10

CD2#

GND

1 I/O + MEM 1

GND 1

CD1# 1

D11 1

D12 1

D13 1

D14 1

D15 1

CE2# 1

vsi# 1
IORD# 1

IOWR# 1

A17 1

A18 1

A19 1

A20 1

A21 1

Vcc 1

Vpp2

A22 1

A23 1

A24 1

A25 1

VS2# 1

RESET 1

WAIT# 1

INPACK# 1

REQ#

SPKR# 1

STSCHG# 1

D8

D9

1 ̂ ^^ \
1 CD2# 1
GND 1

314 CHAPTER 12 Other PC Configurations and Hardware for Data Acquisition

The PC Card standard uses software layers that provide compatibihty
regardless of the computer system or architecture. On a "Wintel" computer,
the primary layers are Card Services and Socket Services. Card Services, the
higher layer, provides the application programming interface (API) that allows
other software to access PC Cards. It is a client/server model where Card
Services is the server and a program calling a card function is the client. The
lowest software level is Socket Services, which interfaces to the PC Card
hardware. It acts like a BIOS interrupt call in a PC, allowing higher software
levels (Card Services) to be hardware-independent. Socket Services can actu-
ally be implemented in a computer's BIOS or it can simply be a device driver.

You can also use PC Cards with a desktop PC by adding a PCMCIA
interface. This is useful if you need a secure way to quickly move data
between notebook and desktop computers without using a network. You can
simply swap a PC Card memory or hard drive card between machines.

Most notebook computers have two PC Card slots that will accommo-
date two Type I or Type II cards (or one Type III card). In addition, USB
ports are now common on portable PCs. These are now the best ways to
connect data acquisition hardware to a laptop computer.

Many major data acquisition manufacturers produce PC Card products.
As we saw in Chapter 11, these include Keithley, Data Translation, and
National Instruments. The typical PCMCIA data acquisition card runs at
speeds up to 100,000 samples/sec with 12- or 16-bit resolution. These are
also the typical parameters of current USB data acquisition modules.

12.3 Industrial and Embedded PCs

There are now many different form factors for PCs other than desktops and
notebooks. For example, the standard desktop PC is not always well suited for
harsh lab or industrial environments, because of factors such as heat, shock,
dust, electrical noise, and vibration. Since more and more PCs are finding their
way onto factory floors and similar environments, many manufacturers produce
industrial (sometimes called "ruggedized") PCs for this market. In addition,
PCs in the form of single-board computers (SBCs) are now commonly embed-
ded within commercial equipment. These embedded PCs are usually a small
card with all or most of the features of a standard desktop PC's system unit.
PC/104 is the most common standard for small, embedded PCs.

12.3.1 Industrial PCs

Industrial PCs are very similar to their desktop counterparts. The main dif-
ferences are the components and enclosures used by the different PCs. Some
industrial PCs use a standard motherboard with expansion slots in a heavy-duty

12.3 industrial and Embedded PCs 315

case while most others use a passive backplane. A passive backplane is the
backbone of a number of computer bus systems (such as VME and STD
BUS) as well as many mainframe computers and early microcomputers (such
as the S-100 bus). It is simply an array of connectors, wired together to form
a bus, without any active circuitry present. The CPU is on a card, plugged
into the bus, just like any other expansion board (such as memory or I/O).
This adds extreme flexibility to the system, because upgrading to another
processor simply involves switching the CPU card. It also guarantees that all
signals required by the CPU are present on the passive backplane, adding
flexibility for multiprocessors.

Most of these passive backplane systems (based on PCI, ISA, or both)
have more expansion slots than standard desktop PCs. The major penalty for
the passive backplane approach is added cost. These PCs are usually more
expensive than standard desktop PCs because of their larger mechanical size,
greater number of components, larger power supplies, and overall higher
component costs. Their biggest advantage is much greater expandability than
a standard PC.

Industrial PCs tend to use different form factors. Some basic systems are
packed into boxes smaller than a diskette drive while others use large card cages
for 19-inch rack mounting. The basic systems all have several expansion slots,
whether via a motherboard or a passive backplane. The larger systems have an
oversized power supply, a cooling fan with a dust filter, superior electromagnetic
shielding (which may be poor in some desktop PCs), and often shock-mounting
for the hard disk drive (if one is present). The chassis itself may be sealed
against dust and liquids (i.e., using a standard NEMA enclosure).

Some industrial PCs are diskless. These systems, used only for dedi-
cated applications, have programs stored in ROM or Flash memory to emulate
disk-based software. This is a viable approach when a PC is embedded into
a larger piece of equipment and a disk drive is not needed or is too fragile
for a harsh environment. Memory cards that emulate disk drives (usually
Flash-based) are also available for conventional desktop PCs as add-in boards
or PCMCIA modules.

Most manufacturers of industrial PCs support both ISA and PCI buses.
Most systems accept conventional plug-in cards. Some have slots for both
PCI and ISA boards. Sometimes these mixed-configuration systems are
referred to as PISA.

A continuing problem in the area of industrial PC systems is how to
enhance bus standards while maintaining compatibility with products from
different manufacturers. One early attempt at an enhanced ISA bus was PCXI,
intended as a multivendor standard for data acquisition and industrial instru-
mentation systems. It incorporated a standard ISA passive backplane and
power supply into a modified PC chassis, which was flipped around so I/O

316 CHAPTER 12 Other PC Configurations and Hardware for Data Acquisition

connectors faced the front of the unit. Spacing between cards was increased
to 1.2 inches to accommodate metal shielding around each board. This
reduced the effects of PC-generated electrical noise on data acquisition and
instrumentation peripherals. The backplane connections followed the ISA
standard with some enhancements for better power distribution and ground-
ing. PCXI was the ISA PC equivalent of VMXI, the VME bus instrumentation
standard. Unfortunately, PCXI never became a popular standard (there were
even some EISA PCXI systems, at one point).

CompactPCI A popular standard for industrial PCI-based computers, intro-
duced in 1995, is CompactPCI. This is functionally the same as the conven-
tional PCI bus but uses a different Eurocard form factor for plug-in boards
(as the VME bus does) along with a more reliable connector. CompactPCI
cards are specified for both 3U (100 mm by 160 mm) and 6U (160 mm by
233 mm) Eurocard sizes. The high-density, 2-mm-pitch connector is arranged
as 47 rows of 5 pins and provides strong card retention capabilities along
with resistance to shock and vibration. The metal front-panel of a Compact-
PCI computer provides good environmental and EMI shielding.

CompactPCI supports both 32- and 64-bit PCI buses. The connector
has 220 pins available (15 are lost to a keying area), with many pins connected
to ground (for improved signal shielding) and also controlled signal imped-
ance. This allows Compact PCI computers to have eight slots (compared to
four in a standard PCI system). With a PCI bridge IC, a CompactPCI system
can easily have 16 slots. Table 12-4 shows the pin assignments for a Com-
pactPCI connector.

Many manufacturers support the CompactPCI standard, producing both
industrial computers and plug-in cards. Most of these systems use Intel
processors and a version of Microsoft Windows or Linux. Some data acqui-
sition cards are even available as CompactPCI.

PXI In 1997, National Instruments developed the PCI extensions for instru-
mentation (PXI) specification. This is now an open standard that expands
CompactPCI for data acquisition and control systems. PXI defines mechanical,
electrical, and software extensions to CompactPCI while allowing interopera-
bility with the older standard. The additional mechanical features are cooling
and environmental requirements to allow operation in harsh industrial settings.

PXI adds several electrical features to CompactPCI. First, it defines a
10-MHz reference clock that is distributed to all system peripherals, allowing
an easy way to synchronize multiple devices. PXI also adds two trigger buses
to the system, to carefully control and synchronize the timing of multiple cards.

12.3 Industrial and Embedded PCs 317

TABLE 12-4
CompactPCI Pin Assignments

1 PIN

1 ^̂
1 02

03

1 ^^
05

1 ^̂
1 ^̂
1 ^̂

09

1 ""̂
1 ^^
1 12-14

15

1 ̂ ^
\ "'̂ 1
1 ^̂

19

1 ^̂
1 ^^
\ ^^
1 ^̂
1 2"̂

25

1 26

1 ^̂
1 28

29

1 30

1 ^̂
1 32

33

1 34

Z

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

1 ^
5V

TCK

INTA#

BRSV

BRSV

REQ#

AD(30)

AD(26)

C/BE(3)#

AD(21)

A(18)

B

12V

5V

INTB#

GND

BRSV

GND

AD(29)

GND

IDSEL

GND

A(17)

C

TRST#

TMS

INTC#

V(l/0)

RST#

3.3V

AD(28)

V(l/0)

AD(23)

3.3V

AD(16)

D

+12V

TDO

5V

INTP

GND

CLK

GND

AD(25)

GND

AD(20)

GND

E

5V

TDI

INTD#

INTS

GNT#

AD(31)

AD(27)

AD(24)

AD(22)

AD(19)

C/BE(2)#

F 1
GND 1
GND

GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1

KEY AREA |

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

3.3V

DEVSEL#

3.3V

SERR#

3.3V

AD(12)

3.3V

AD(7)

3.3V

AD(1)

5V

GLK1

CLK2

CLK4

V(l/0)

C/BE(5)#

AD(63)

AD(59)

AD(56)

AD(52)

FRAME#

GND

SDONE

GND

AD(15)

GND

AD(9)

GND

AD(4)

5V

REQ64#

GND

CLK3

GND

|BRSV

GND

AD(62)

GND

AD(55)

GND

IRDY#

V(l/0)

SBO#

3.3V

AD(14)

V(l/0)

AD(8)

3.3V

AD(3)

V(l/0)

BRSV

REQ1#

SYSEN#

GNT3#

C/BE(7)#

V(l/0)

AD(61)

V(l/0)

AD(54)

V(l/0)

GND

STOP# 1
GND 1
PAR

GND

AD(11)

M66EN

AD(6)

5V

AD(0)

3.3V

GNT1#

GNT2#

1REQ4#
GND

C/BE(4)#

GND

AD(58)

| G N D

AD(51)

TRDY#

LOCK#

PERR#

C/BE(1)#

AD(13)

AD(10)

C/BE(0)#

AD{5)

AD(2)

ACK64#

5V

REQ2#

REQ3#

GNT4#s

C/BE(6)#

PAR64

AD(60)

AD(57)

AD(53)

AD(50)

GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1

318 CHAPTER 12 Other PC Configurations and Hardware for Data Acquisition

TABLE 12-4
ConfipactPCI Pin Assignments (Continued)

1 PIN

1 ^̂
36

37

38

1 ^̂
40

41

1 42

1 ^^
\ 44

45

1 46
1 47

Z

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

A

AD(49)

AD(45)

AD(42)

AD(38)

AD(35)

BRSV

BRSV

BRSV

USR

USR

USR

USR

USR

B

AD(48)

GND

AD(41)

GND

AD(34)

GND

BRSV

GND

USR

USR

USR

USR

USR

c
AD(47)

V(l/0)

AD(40)

V(l/0)

AD(33)

FAL#

DEG#

PRST#

USR

USR

USR

USR

USR

D

GND

AD(44)

GND

AD(37)

GND

REQ5#

GND

REQ6#

USR

USR

USR

USR

USR

E

AD(46)

AD(43)

AD(39)

AD(36)

AD(32)

GNT5#

BRSV

GNT6#

USR

USR

USR

USR

USR

F 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND 1
GND

GND 1

In addition, PXI defines a 13-line, daisy-chained local bus that connects each
card slot to its nearest neighbors. This provides a high-speed communications
channel between cards that does not reduce PCI bandwidth. These local bus
signals are both digital and analog.

PXI defines common software requirements, based on Microsoft Win-
dows. This allows PXI application developers to use industry-standard pro-
gramming languages, such as Visual C/C-I-+, Visual Basic, and Lab VIEW.
Further, all PXI cards must have device driver software available and also
support the virtual instrument software architecture (VISA) standard.

Several hardware manufacturers support PXI with both computers and
cards. National Instruments produces PXI chassis and a wide range of data
acquisition and instrument modules for PXI. For example, the PXI-6071 is
a data acquisition card for PXI with 12-bit resolution and a conversion rate
of 1.25 Msamples/sec.

For more information, refer to the Appendix for listings of industrial
PC manufacturers.

12.3.2 Embedded PCs

As a crude generalization, industrial PCs tend to be larger, stand-alone com-
puters housed in a heavy-duty enclosure and composed of several cards
plugged into an expansion bus (such as a passive backplane). Embedded PCs

12.3 Industrial and Embedded PCs 319

tend to be small, composed of only one or a few boards, and housed within
another device: the embedded application. Embedded PCs are used within a
wide range of dedicated applications, including medical instruments, test
equipment, industrial controls, and communications systems.

Often, embedded PCs are single-board computers (SBCs) that provide
the functionality of a desktop PC's motherboard along with some add-in card
features. These SBCs can be PCI-, CompactPCI-, or ISA-based and plug into
a passive backplane. They can also be small, all-in-one cards that have little
or no expandability.

A typical SBC contains most standard PC components: CPU, RAM,
BIOS ROM, keyboard interface, parallel and serial ports, floppy and hard
disk interfaces, and video display interface. It may have additional features
for embedded applications: watchdog timer, battery backup SRAM, Flash
memory, digital I/O ports, Ethernet interface. If you connect a power supply,
keyboard, disk drive, monitor, and mouse to a typical SBC you will have a
fully operational PC. For a simple application, you may only need to run MS-
DOS (or a ROM-based DOS) on that PC. But you can also run a version of
Microsoft Windows, including Windows CE (developed for embedded PCs).

The advantage of embedding the functionality of a small PC within
another piece of equipment is the ability to use the same low-cost hardware
and software tools (especially operating systems and programming languages)
you already use on a desktop PC. This speeds up a product or project
development process tremendously. The disadvantage is that the hardware
cost will likely be higher than designing in your own simple microprocessor
system.

The size of nonstandard, embedded PCs continues to shrink. For exam-
ple, the DIMM-PC from Jumptec consists of a 66 MHz AMD 486-SX CPU
with 16 Mbytes of RAM and 16 Mbytes of Flash ROM, and it measures only
2.7 inches by 1.7 inches by 0.25 inches (just over a cubic inch). Yet, it has
enough capability to run a Linux-based Internet server.

PC/104 The most common standard for embedded PCs has been the PC/104
form factor, first published in 1992. PC/104 is electrically an ISA bus standard
that defines cards measuring 3.6 x 3.8 inches and using a stack-through
connector that is much more rugged and reliable than ISA edge connectors.
PC/104 gets its name from the number of pins on the bus (104), which is just
six more than a conventional ISA connector (the extra pins are used for
grounds and keying).

PC/104 cards do not use a motherboard or backplane. The cards in a
PC/104 system (if more than one is used) simply stack together, since each
card's stack-through connector is both a plug and a socket. The boards can

320 CHAPTER 12 Other PC Configurations and Hardware for Data Acquisition

0.6

3.775

o o

1 32
Blnooooooooooooooooooooooooooooi
Alaooooooooooooooooooooooooooool

O ^ lODOOOOOOOOOOOOOOOOOO lODOOOOOOOOOOOOOOOOOO o 19

Top ^ ^ ^ ^
Components

J1

J2

(a) Top View
3.550

J1

J2

Bottom
W Components

:PI

: P 2

(b) Side View

Figure 12-2 PC/104 card—simplified mechanical drawing.

also be mechanically mounted together to secure them against shock and
vibration. The standard defines the mechanical specifications as well as the
connector pin assignments for PC/104 cards. It also specifies power supply
requirements, such as a maximum current of 2 amps at +5 V for a single
PC/104 card. Figure 12-2 shows a simplified mechanical drawing of a PC/104
card.

PC/104 defines two connectors: Jl/Pl and J2/P2. For an 8-bit card, equiv-
alent to an XT board, only the 64-pin Jl/Pl is used. A 16-bit (AT) card has an
additional 40-pin connector, J2/P2. All electrical design rules for ISA boards
apply to PC/104 cards. The pin assignments for PC/104 cards, shown in Table
12-5, are very similar to those for ISA cards but are not exactly the same.

Many manufacturers produce PC/104 cards: single-board computers,
video cards, network cards, memory expansion cards, PCMCIA interface
cards, and also data acquisition cards. For example. Diamond Systems Corp.,
a leading PC/104 card manufacturer, produces several data acquisition boards,
including the Diamond-MM-AT. This is a multifunction PC/104 data acqui-
sition card with 16 analog input channels and a 12-bit ADC running at
conversion rates up to 100,000 samples/sec. It also has two 12-bit analog

TABLE 12-5
PC/104 Pin Assignments

12.3 Industrial and Embedded PCs 321

1 ^^^
I NUMBER

00

01

02

1 ^̂
04

1 ^̂
06

07

1 ^̂
1 ^̂ 1
1 ^̂ 1
1 '*'' 1
1 ^̂ 1

13

1 ^^ 1
15

1 ^̂ 1
1 ""̂
1 ^^

19

20

1 ^^
\ ^^

1 ^̂
1 24

1 ^̂
1 26

1 2^
1 28
1 29
1 30

1 ^̂
1 32

8-BIT SIGNALS

J1/P1
ROW A

J1/P1
ROWB

lOCHCHK*

SD7

SD6

SD5

SD4

SD3

SD2

SD1

SDO

lOCHRDY

AEN

SA19

SA18

SA17

SA16

SA15

SA14

SA13

SA12

SA11

SA10

SA9

SA8

SA7

SA6

SA5

SA4

SA3

SA2

SA1

SAO

GND

GND

RESETDRV

+5V

IRQ9

-5V

DRQ2

-12V

ENDXFR*

+12V

Key

SMEMW*

SMEMR*

low*
lOR*

DACK3*

DRQ3

DACK1*

DRQ1

REFRESH*

SYSCLK

IRQ7

IRQ6

IRQ5

1RQ4

IRQ3

DACK2*

TC

BALE

+5V

OSC

GND

GND

16-BIT EXTENSION

J2/P2
ROWC

GND

SBHE*

LA23

LA22

LA21

LA20

LAI 9

LAI 8

LA17

MEMR*

MEMW*

SD8

SD9

SD10

SD11

SD12

SD13

SD14

SD15

Key

J2/P2 1
ROW D 1

GND 1

MEMCS16*!

I0CS16* 1

IRQ10 1

IRQ11 1

IRQ12 1

IRQ15

IRQ14 1

DACKO* 1

DRQO 1

DACK5* 1

DRQ5

DACK6* 1

DRQ6

DAGK7* 1

DRQ7

+5V

MASTER* 1

GND 1

GND 1

322 CHAPTER 12 Other PC Configurations and Hardware for Data Acquisition

outputs, 16 digital I/O lines, and a counter/timer. Diamond Systems also has
the Prometheus PC/104 card, which is a 486-based SBC with an Ethernet
interface and data acquisition hardware.

PC/104-PLUS PC/104 cards are adequate for 8- or 16-bit applications that
do not require high performance. They have the same performance limitations
as ISA products. To address this, the PC/104 Consortium developed the
PC/104-Plus standard in 1997. PC/104-Plus adds a PCI bus to PC/104 cards,
via a third connector. This PCI connector (J3/P3) is a 120-pin, 2-mm-pitch
stack-through, arranged in a 4 x 30 array and placed on the opposite end of
the card from the original PC/104 connectors (Jl/Pl, J2/P2).

PC/104-Plus only has a 32-bit PCI interface with a 33-MHz maximum
clock speed and does not support 64-bit extensions. Still, it is a complete
implementation of the 32-bit PCI bus with all the improvements over ISA.
The cards still keep the same form factor of 3.6 x 3.8 inches. A PC/104-Plus
card can have both ISA and PCI interfaces (using all three connectors) or
only PCI. If a processor card supports both buses, you can mix ISA (PC/104)
and PCI (PC/104-Plus) peripherals in the same system. Table 12-6 shows the
pin assignments for the PCI connector on a PC/104-Plus card.

One additional standard to note is the EBX (embedded board expand-
able) form factor, developed by Ampro and Motorola. EBX is electrically the
same as PC/104 or PC/104-Plus but it uses a larger card size: 5.75 x 8 inches,
allowing for higher levels of integration. As an example, Toronto MicroElec-
tonics, Inc., produces the model 5811 PC/104-Plus SBC using the EBX form
factor. This SBC runs a 450 MHz AMD K6 CPU with as much as 512 Mbytes
of SDRAM and a 144-Mbyte Flash Disk. It contains a dual IDE interface, a
SCSI interface (Ultra Wide), a 10/lOOBase-T Ethernet interface, a video
interface, four serial ports, a parallel port, two USB ports, and a touch-screen
interface—all on a single EBX card.

The 16-bit PC/104 standard is still quite popular and is the last remain-
ing stronghold of the ISA bus. As PC/104-Plus continues to grow in popularity
it is likely to become the dominant standard for embedded PCs in the fore-
seeable future.

12.4 Image Capture Products

Image capture (or machine vision) is a growing area of specialized data
acquisition for PCs, enabled by the speed and power of current PC hardware
and operating systems. Machine vision is now commonly used for industrial
automated inspection systems, with applications including reading bar codes
on objects, verifying correct assembly of manufactured parts, and even checking

TABLE 12-6
PC/104-Plus Pin Assignments

12.4 Image Capture Products 323

1 PIN
NUMBER

01

1 02
03

1 ^̂
05

06

1 ^̂
1 ^̂

09

10

1 ^̂
1 ^̂

13

1 '•'*
15

1 ^̂
1 ""̂

18

19

1 20

1 ^̂
22

23

1 24
25

26

1 2^
1 28

29

1 30

J3/P3
ROW A

GND (5.0V Key)

Vl/O

AD05

C/BEO*

GND

AD11

AD14

+3.3V

SERR*

GND

STOP*

+3.3V

FRAME*

GND

AD18

AD21

+3.3V

IDSELO

AD24

GND

AD29

+5V

REQO*

GND

GNT1*

+5V

CLK2

GND

+12V

-12V

J3/P3
ROWB

Reserved

AD02

GND

AD07

AD09

Vl/O

AD13

C/BE1*

GND

PERR*

+3.3V

TRDY*

GND

AD16

+3.3V

AD20

AD23

GND

C/BE3*

AD26

+5V

AD30

GND

REQ2*

Vl/O

CLKO

+5V

INTD*

INTA*

1 Reserved

J3/P3
ROWC

+5V

AD01

AD04

GND

AD08

AD10

GND

AD15

SBO*

+3.3V

LOCK* 1
GND

IRDY*

+3.3V

AD17

GND

AD22

IDSEL1

Vl/O

AD25

AD28

GND

REQ1*

+5V

GNT2*

GND

CLK3

+5V

INTB*

Reserved

J3/P3 1
ROW D

ADOO 1
+5V 1
AD03 1
AD06 1
GND 1
M66EN

AD12 1
+3.3V 1
PAR 1
SDONE 1
GND 1
DEVSEL*

+3.3V 1
C/BE2* 1
GND 1
AD19 1
+3.3V

IDSEL2 1
IDSEL3 1
GND 1
AD27 1
AD31 1
Vl/O

ONTO* 1
GND 1
GLK1 1
GND 1
RST*

INTC* 1
GND (3.3V Key) |

324 CHAPTER 12 Other PC Configurations and Hardware for Data Acquisition

the color of pharmaceutical pills. Scientific and engineering applications
include medical image processing and spectral analysis. The heart of PC-
based image capture applications is the/ram^ grabber board. This is a plug-
in card that converts the signal from an external analog or digital camera to
a digital format that can be stored in PC memory. Once the image has been
acquired, the PC can process the data to determine the required information
(i.e., does the inspected part exceed dimensional tolerances?).

Most current frame grabbers are PCI cards since ISA cards tend to be
too slow for many applications. Consider a standard composite video camera
with a frame rate of 30 frames/sec and a 640 x 480 pixel resolution. If 16
bits (two bytes) were used to represent each pixel, the data rate produced by
this camera would be over 18 Mbytes/sec. This is too fast for ISA's maximum
transfer rate of approximately 2-5 Mbytes/sec, but well under the maximum
32-bit PCI rate of 132 Mbytes/sec.

An analog video frame grabber is basically a speciaUzed, high-speed
ADC card with dedicated analog processing (such as a sync stripper) as well
as digital image processing and storage (FIFO) capabilities. A digital video
frame grabber is a specialized digital processor that converts the input data
stream (usually RS-422 or LVDS signals) into a format usable by the PC and
stores it at high speed into the PC's memory, via the PCI bus.

One data acquisition manufacturer. Data Translation, is also a leader in
machine vision products for PCs. Data Translation produces a wide range of
analog and digital video frame grabbers as well as image processing software
that runs under Microsoft Windows. For example. Data Translation's DT3120
is a low-cost PCI frame grabber for monochrome and composite color (ana-
log) video signals. It uses two 8-bit, 40-Msamples/sec ADCs and outputs the
data as 16-, 24-, or 32-bit pixels at a typical rate of 55 Mbytes/sec.

An example of a digital camera frame grabber is Data Translation's
DT3140. This PCI card accepts RS-422 and RS-644 (LVDS) inputs, from 8
to 20 bits wide with clock speeds up to 60 MHz. Note that digital cameras
use a synchronous, high-speed clock and output one pixel per clock cycle.
The DT3140 has a typical data output rate (to the PCI bus) of 100 Mbytes/sec.

One interesting aspect of digital camera frame grabbers is that they are
really just high-speed PCI interfaces, suitable for transferring any digital data
(in the correct format) into a PC's memory. For example, let us assume we
have custom hardware that generates a large amount of 16-bit digital data at
a rate of 20 MHz. It would be much easier to format our digital data to look
like the output of a digital camera (simply add a 20 MHz pixel clock, line
and frame trigger signals, and RS-422 or RS-644 drivers) than to develop our
own high-speed PCI interface. Alternatively, we could try to transfer our data
into a PC using an IEEE-1394 interface. However, this is still much more
complex than the relatively simple digital camera interface.

12.4 Image Capture Products 325

Data Translation also produces software products for their frame grab-
bers as well as for machine vision applications in general. For example, DT
Vision Foundry is software for image inspection applications that runs under
MS Windows 98/NT/2000. Global Lab Image/2 is software for scientific and
general-purpose image analysis applications that runs under MS Windows
98/NT/2000/Me.

Another data acquisition manufacturer with machine vision products is
National Instruments. For example, the National Instruments PCI-1407 (also
available as a PXI card) is an analog monochrome video frame grabber for
the PCI bus with an 8-bit flash ADC. The PCI-1424 is a digital camera frame
grabber for the PCI bus with a 32-bit input (RS-422, LVDS, or TTL signals)
and a maximum pixel clock of 50 MHz. It has 16 to 80 Mbytes of on-board
SDRAM to buffer high-speed data. National Instruments also produces
machine vision software, such as IMAQ Vision Builder for Windows
98/NT/2000, that is used to develop image-processing applications.

There are many other image capture manufacturers who produce high-
performance products with specialized image processing features built into
the hardware. A few of these manufacturers include BitFlow and Coreco.
Refer to the Appendix for more vendor listings.

This completes our overview of other PC configurations and hardware.
In the next chapter, we will examine programming languages and the trade-
offs of writing your own software.

C H A P T E R

Computer Programming
Languages

There may be times when you need a PC to perform a task not supported by
commercially available software, such as implementing a new signal-processing
algorithm. This requires a custom program that you will have to write yourself
or pay someone else to write. Unless you have very demanding requirements
(very high-speed operation or extremely large amounts of data to manipulate),
any computer language you are familiar with should enable you to do the
job. If you are new to programming, selecting a computer language can be
confusing. The best approach is to choose one of the more commonly used
languages (such as BASIC, Visual Basic, C/C++, or Visual C++) which have
a lot of support available for PC use. This support takes the form of a widely
accepted PC version of the language, availability of many third-party software
products (including libraries and debugging tools), and a good choice of
introductory books for using that language on a PC running your chosen
operating system.

Under Microsoft Windows 3.1/95/NT and above, programming is much
more complex than for MS-DOS. However, many popular Windows program-
ming languages (such as Microsoft Visual Basic and Visual C++) automate
most of the required details and give you a basic program framework to fill
in. The result is that Windows programming, using the appropriate software,
can actually be easier than writing programs for DOS.

In this chapter, we will first examine some of the important distinctions
between different types of computer languages as well as their similarities
(especially in MS-DOS and MS Windows PC environments). Then we will
go on to look at a few popular languages in detail.

326

Computer Programming Languages 327

The only language a computer understands is its machine language—the
binary commands telling it exactly what to do. The standard programming
languages in common use convert logical constructs and instructions that
make sense to people into a series of commands a computer can understand
and carry out. A set of commands used to perform some desired function is
considered a program.

The terms high-level and low-level are often associated with computer
languages. A low-level language is very close to machine language. The most
common instance of this is an assembly language, which performs a one-to-
one conversion of simple mnemonic commands into machine-language com-
mands, or object code. For example, in the Intel 80x86 family, there is a
command to multiply two 8-bit numbers, MUL. A simple example using this
conmiand to multiply 17 and 32 (decimal) is as follows:

MOV AL,17
MOV BL,32
MUL BL

load 17 into register AL
load 32 into register BL
multiply AL by BL
16-bit product is in AX (AH, AL)

Each line of assembler code (ignoring the comments after the semico-
lon) is translated into several bytes representing one computer command, or
opcode. Assembly language is a simpler way for a person to represent the
machine-language commands. The same commands in machine language
(using hexadecimal notation) would be

BO 11
B3 20
F6 E3

Obviously, the assembler nmemonics make more sense than the machine-
language conamands.

A high-level language is more abstract than a low-level language. Pro-
cessor details (such as which register contains which operand) are invisible
to the programmer. In fact, under protected-mode operating systems (Win-
dows 95/NT and above) operating system details are also hidden from the
programmer. Only the important operations and logic are visible. A high-
level language is processor-independent, making it portable. Reprogramming
the previous example in C produces the following commands, which will
work on a 68000 series CPU as well as an 80x86 processor:

char a=17, b=32;
in t c ;
c = a * b;

In this case, we do not need to know where the two operands are stored. We
will let the compiler worry about those details.

328 CHAPTER 13 Computer Programming Languages

Besides high-level versus low-level, there are two other distinctions
between different types of computer languages: compiled versus interpreted.
In a compiled language, the program under development (one or more ASCII
files) is translated into machine language through a separate, independent
series of steps. The result of the one-time compilation process is an executable
binary file (.EXE in DOS or Windows) which can then be run by the appro-
priate operating system. In an interpreted language, the program is translated
into machine language one line at a time, as the program is being run. Each
time the program is run, it is translated into machine language again. The
program has to be run from within the interpreter, which is itself a special
program running under the operating system. An example of an interpreted
language is GW-BASIC (for MS-DOS). Most other common computer lan-
guages, such as C/C++, FORTRAN, and Pascal, are compiled.

A compiled program executes much faster than an interpreted program,
since it has already been translated into machine language. It usually requires
less free memory space, since a compiled program does not need the extra
overhead of an interpreter. The main advantage of an interpreted program is
the flexible user interactions available. With GW-BASIC, for example, you
can control where to start, stop, and continue program execution and check
variable values without modifying the program or leaving the BASIC envi-
ronment. In a compiled language, these features have to be written into the
program and each modification requires a new compilation process.

Of course, many debugging programs exist to assist in the development
of compiled programs. A typical debugger provides an environment that
allows the programmer to control execution, check variables, modify data,
and perform many different tests on the program under development. An
example of such a debugger, for MS-DOS systems, is Microsoft's CodeView,
which supports both low-level (Assembler) and high-level (C, FORTRAN,
Pascal) languages. Under Windows, Microsoft Visual Basic and Visual C++
provide a complete program development environment with built-in debug-
ging facilities.

For compiled languages, the complete compilation process requires at
least two discrete steps: compilation and linking. Under MS-DOS and Win-
dows, compilation consists of translating the original ASCII program file (the
source code) into a machine-language .OBJ file (the object code or object
module). The object code file is not executable. It lacks several important
pieces. The linking process takes the object code and adds any library func-
tions it requires, as well as commands that are defined in other files (or object
modules), and produces an executable file.

For example, in C, the printf command displays a text string on the
screen. It is a standard C library function. If an object module calls printf,
this function must be extracted from the library. The linking process links

Computer Programming Languages 329

the new program's object code with other object modules, from standard
Ubraries and user-developed sources. The linker makes sure all function and
variable names are defined (and do not clash) and decides where the various
code modules should be located in memory. Linking adds all the remaining
information the operating system (i.e., DOS or Windows) needs to load the
finished program into memory and run it. The output of the linking process
is an executable (.EXE) file.

The actual compilation and linking processes may each take several
steps, though this is usually invisible to the program developer (such as
processing the source file multiple times). Most PC linkers (including the
LINK program provided with MS-DOS) support many different options,
such as control over where to place the completed program in memory and
how to include information for debuggers. An additional step, after linking,
is required to convert a .EXE program into a .COM program for DOS. If
the entire program was kept within a single 64-Kbyte memory segment, it
can be processed by the DOS command EXE2BIN, which converts it to a
.COM file.

It should be noted here that not all computer languages neatly fit into
the categories of compiled versus interpreted or high-level versus low-level.
There is no doubt, for example, that C is a high-level programming language
(and one of the most popular). Yet, it is a fairly "bare-bones" language having
a moderately sparse set of commands, making it similar in some ways to low-
level programming languages. It is the additional libraries that are packaged
with C compilers, along with the extreme flexibility of the language, that
make it so popular. C is a very efficient language, producing relatively small
programs (small executable files) compared to a less efficient high-level
language such as FORTRAN. It executes commands quickly, since a com-
mand in C is translated into a relatively small number of machine-language
conmiands, again making it appear similar to a low-level language. This is
why C is often used to produce programs for embedded processors.

An example of a progranmiing language with properties of both a
compiler and interpreter is FORTH. Commands (or words, as they are called
in FORTH) are executed in binary (machine language) form, as in a compiled
language. However, each word is executed separately under control of the
environment. In addition, new words can be defined as combinations of old
words. These new words then get translated into machine language before
they can be executed. This type of language, having some properties of both
a compiler and an interpreter, is called an incremental compiler. The com-
mands (words) are compiled one at a time, with new ones built upon com-
binations of existing ones. Another example of a high-level language with
both interpreter and compiler characteristics is MATLAB, which we looked
at in Chapter IL

330 CHAPTER 13 Computer Programming Languages

Now we will examine a few popular programming languages in greater
detail.

13.1 Popular Programming Languages

Most text-based progranmiing languages (as opposed to some of the special-
purpose, graphics languages we examined in Chapter 11, such as Lab VIEW)
can be used with any standard operating system on nearly any computer. For
example, C was originally written for UNIX (running on mainframe comput-
ers) and it is now available for nearly all operating systems, including MS-
DOS and Windows.

Microsoft Windows-based programming languages (such as Visual
C++) are usually part of a sophisticated application development environment
that simplifies the otherwise tedious task of writing a complete Windows
program. Hence, we will treat programming for MS Windows as a separate
topic, later in this chapter.

In this section, we will discuss some major programming languages,
both generically (independent of operating system) and when used in a text-
based environment, when running an MS-DOS compiler/linker on a PC. We
will start with assembly language, the lowest level of programming languages
commonly employed.

13.1.1 Assembly Language

Assembly language (or Assembler) is a compiled, low-level computer lan-
guage. It is processor-dependent, since it basically translates the Assembler's
mnemonics direcdy into the commands a particular CPU understands, on a
one-to-one basis. These Assembler mnemonics are the instruction set for that
processor. In addition, an Assembler provides commands that control the
assembly process, handle initializations, and allow the use of variables and
labels as well as controlhng output.

On PCs, Assembler is normally used only under MS-DOS. When run-
ning a 32-bit, protected-mode operating system (including Windows 95/NT
and above), low-level programs which directly access registers or memory
locations produce protection violations. All low-level access must be made
through appropriate software drivers.

For MS-DOS PCs, the most popular Assembly language was Microsoft
Macro Assembler, or MASM. As with most popular compilers, MASM was
upgraded on a regular basis. Most of this discussion refers to version 5.0 or
later, which simplified the use of certain directives and included support for
instructions available only on 80286 and 80386 CPUs.

13.1 Popular Programming Languages 331

A directive is an Assembler command that does not translate into an
executable instruction, but directs MASM to perform a certain task facilitating
the Assembly process. An executable instruction is sometimes referred to as
an op code, while an Assembler directive may be referred to as a pseudo-op
code. Directives can tell MASM many different things, including which
memory segment is being referred to, what the value of a variable or memory
location is, and where program execution begins.

One important MASM directive is .MODEL, which determines the
maximum size for a program. Remember that for an 80x86 family CPU,
memory is addressed as segments, up to 64 Kbytes in length. If 16-bit
addressing is used (for code or data) only a single 64K segment will be
accessed. The memory model of a program defines how different parts of that
program (code and data) access memory segments. Five memory models are
supported by MASM for DOS programs: Small, Medium, Compact, Large,
and Huge. In the Small model, all data fits within one 64K segment and all
code (executable instructions) fits within another single 64K segment. In the
Medium model, all data fits within one 64K segment but code can be larger
than 64K (multisegment, requiring 32-bit addressing for segment:offset). In
the Compact model, all code fits within one 64K segment but data may occupy
more than 64K (but no single array can be larger than 64K). In the Large
model, both code and data may be larger than 64K (still, no single data array
can exceed 64K). Finally, in the Huge model, both code and data can be
larger than 64K and data arrays can also exceed 64K.

Since larger models require larger addresses, they produce bigger and
slower programs than a smaller model will. In selecting a model for a pro-
gram, try to estimate the maximum amount of data storage you will need.
Let us say you are writing an FFT program, using 16-bit integer math and a
maximum sample size of 2048 points. Since each point requires two integers
(real and imaginary) and each integer is 2 bytes long, you need 8096 bytes
just to store the input (or output) data. Even if you had separate arrays for
input and output data, that would still be only 16,192 bytes. As a safety
margin, for temporary storage, we will double this number, to 32,384 bytes,
which is only half of a 64K segment. It is more difficult to estimate the size
of the code. In this example, we would start with the Small model. If the
code turned out to be larger than 64K (which is not easy to do in assembly
language), we would move to the Medium model. These same memory
models also apply to Microsoft's high-level DOS language compilers. If you
are writing a MASM program to work with another high-level language, you
should use the same memory model for both.

Here is an example of a simple MASM program that displays a text string
("This is a simple MASM program") on the screen using DOS function 09h:

DOSSEG
.MODEL
.STACK
.DATA

text DB
DB
.CODE

go: mov
mov
mov
mov
int
mov
int

SMALL
400h

"This is
ODh, OAh,

ax,@DATA
ds,ax
dx,OFFSET
ah,09h
21h
ax,4C00h
21h

332 CHAPTER 13 Computer Programming Languages

;Let MASM handle t h e segment order
; Small model i s adequate fo r t h i s
;Se t a s i d e 1024 b y t e s for a s t a c k
; S t a r t of t h e d a t a segment

a s imple MASM program"
24h ;End w i t h CR, LF and $ char

; S t a r t of code segment
;Load da ta segment loca t ion in to DS

t e x t ;Now DS:DX p o i n t s t o t e x t
;DOS s t r i n g d i sp lay function number
; C a l l DOS func t ion
;Load DOS e x i t func t ion number
;Ca l l DOS func t ion (e x i t)

END go ; S t a r t e x e c u t i o n a t l a b e l go

Several directives are used here. DOSSEG tells MASM to take care of
the order of the various segments (code, data, stack), a detail we would rather
ignore. The directive .DATA indicates the start of the data segment while
.CODE indicates the start of the code segment. The message is referred to
by the label text, where the DB directive (Defines Bytes) indicates that this
is byte data (the quotation marks indicate ASCII text). The string must be
terminated by ASCII character 24h ("$") for DOS function 09h. The execut-
able instructions are placed in the code segment. The label, go, refers to the
start of the program. The address of the text string is loaded into registers
DS:DX. Then DOS function 09h is called, to display the string. Finally, DOS
function 4Ch is called to exit the program and return to DOS. The final END
directive tells MASM to begin program execution at the label (address) go.

MASM is called a Macro Assembler, because it supports the use of
macros. A macro is a block of program statements that is given a symbolic
name that can then be used within the normal program code. A macro can
also accept parameters when it is called within a program. When the source
file is assembled by MASM, any macros are expanded (translated) to their
original definition text. This is very handy if the same section of code, such
as a programmer-defined function, is used repeatedly. Often, predefined mac-
ros may be kept in a separate file, along with other information, such as variable
initializations. The INCLUDE directive can read this file in during assembly.

This brief overview of MASM has barely scratched the surface of
assembly language. Check the bibliography for other books on this subject.
Again, you should write a program in assembly language only if you are
working in DOS and a high-level language is inadequate for your task. Even
then, you can usually get away with just writing the most critical sections in
MASM and calling them from a high-level language. Next, we will look at
a popular, high-level, interpreted language: BASIC.

13.1 Popular Programming Languages 333

13.1.2 BASIC

BASIC was probably the most popular interpreted computer language used
on early PCs. This was due, in large part, to it being included with IBM-DOS
and MS-DOS packages. In fact, original IBM PC systems had BASIC in
ROM, to save RAM space for programs. The first IBM PC had 64 Kbytes of
RAM and a floppy disk drive was optional. If no disk drive was present, the
system would start up in BASIC (since you needed a disk drive to boot up
DOS). PC compatible manufacturers did not put BASIC in ROM, but ran
Microsoft's GW-BASIC from RAM, like any other program. GW-BASIC was
functionally equivalent to IBM's BASIC and BASICA.

BASIC, which is an acronym for Beginner's All-purpose Symbolic
Instruction Code, was originally developed at Dartmouth College as a tool
for teaching fundamental programming concepts. It is one of the easiest
progranmiing languages to learn and use. It does have serious drawbacks.
Being interpreted, it executes slowly. This becomes especially obvious when
performing a real-time task, such as controlling serial communications at high
data rates on an older PC. Also, BASIC does not easily lend itself to devel-
oping neat, modular programs. It is a good tool for learning, experimenting,
and quickly prototyping software algorithms. It is not well suited for devel-
oping high-performance or commercial-quality software for DOS applica-
tions. In addition, standard BASIC can only use 64 Kbytes of memory for
data and stack storage. Under Windows, Visual Basic overcomes many of
these limitations.

Interpreted BASIC has two modes of operation: direct mode and indirect
mode. In the direct mode, BASIC conmiands and statements are executed as
soon as they are entered. Results of calculations can be displayed or saved
in a variable for further use. The statement or command lines themselves are
lost after execution. Direct mode is useful for quick calculations or debugging
operations (such as displaying or loading variable values). BASIC can accept
a direct command when it is at the conmiand level, displaying the OK prompt.
An example of a direct-mode command to display the result of a calculation
would be

PRINT 23 * 17 + 2

The PRINT command displays the result on the screen (LPRINT sends output
to the printer).

In the indirect mode, lines of program statements are stored in memory.
A line number precedes each program line. If a line number is missing, that
command line is treated as a direct-mode statement. After all program lines are
entered, the program can be executed via the RUN command. The sequence

334 CHAPTER 13 Computer Programming Languages

of program execution starts with the lowest Une number and continues through
to the highest Une number, unless a special statement (such as GOTO) explic-
itly changes the order. For example, a simple BASIC program to perform the
direct-mode calculation from the last example could be a single line:

10 PRINT 23 * 17 + 2

Or, it could be more generalized, with multiple lines:

10 A = 23

20 B = 17
30 C = 2
40 PRINT A * B + C

Here, using the variables A, B, and C, the numbers fed into the calcu-
lation can be quickly changed. An even better way would be to enter the
variable values when the program is run:

10 INPUT "ENTER A
20 INPUT "ENTER B
30 INPUT "ENTER C

A
B
C

40 PRINT "A * B + C = "; A * B + C

In this case, the simple program is now general-purpose. The user
determines the variable values each time the program is run, using the INPUT
statement, which prompts the user with the text enclosed within quotes. When
the program is run, the screen would look as follows, with the operator's
responses underlined:

RUN
ENTER
ENTER
ENTER
A * B
OK

A:
B:
C:
+

12
7
21
C = 105

It is important to note that not all BASIC statements can be used in the
direct mode (the indirect mode uses all of them), including GOSUB and
RETURN for executing subroutines.

BASIC has a rich set of commands. It has a full range of mathematical
and trigonometric functions, supporting both integer and floating-point cal-
culations. It has commands for manipulating text strings, handling data file
operations (supporting both ASCII and binary formats), and operator inter-
facing. It has several statements for program control, such as IF, THEN and
FOR, NEXT. BASIC directly supports many aspects of a PC's hardware and

13.1 Popular Programming Languages 335

software (DOS) environment. It can read the system clock (via TIME$),
directly input from or output to an I/O port (via INP and OUT), or even read
from and write to system memory locations (via PEEK and POKE). BASIC
provides many functions for controlling screen display, with both text and
graphics (if appropriate display hardware is present in older PCs). In addition,
BASIC can call assembly-language routines for functions it cannot directly
perform (or cannot perform quickly enough). The assembler code has to be
properly written to allow interfacing to a BASIC program.

BASIC provides an environment that simplifies the process of program
development. Besides just entering program lines, BASIC has special com-
mands for modifying programs. EDIT allows you to modify the specified
line. RENUM automatically renumbers the program lines, which is necessary
if you need to add a new program line between two existing lines with
consecutive numbers. You can save a program onto a disk file (SAVE) or
retrieve a previously saved program (LOAD). You can display a program on
the screen (LIST) or send it to a printer (LLIST). You can even use a special
trace mode (via TRON, TROFF), which displays the program line numbers
as they are executed.

An important aspect of BASIC is that all the variables are global. Any
part of a program can change the value of any variable. In some respects this
can be handy. A subroutine does not explicitly return any value to the main
program, it just writes to the appropriate variables. The flip side of this can
be a problem, if you lose track of which variables are being used by which
subroutines. Great care must be taken in keeping track of variables in BASIC.

Consider the following program which averages 10 values in the array
A(I):

10 DIM A(10)
20 FOR I = 1 TO 10
30 READ A(I)
40 NEXT I
50 DATA 1.1, 2.3, 5.7, 6.4,
60 DATA 3.0, 2.1, 4.0, 1.9,
70 GOSUB 500
80 PRINT "DATA AVERAGE = " ;
90 STOP
500 REM - SUBROUTINE AVERAGES
510 AVG = 0
520 FOR J = 1 TO I - 1
530 AVG = AVG + A (J)
540 NEXT J
550 AVG = AVG/(I - 1)
560 RETURN

2.9
8.4

AVG

I VALUES IN A(I

There are several points to note in this illustrative program. Line 10
defines the data array A(I). The FOR ... NEXT loop in lines 20-40 loads 10

336 CHAPTER 13 Computer Programming Languages

values into the array, from the DATA statements in Unes 50 and 60. The mean
value is calculated by the subroutine in lines 500-560. This subroutine is
called via the GOSUB command and is terminated by the RETURN com-
mand. The values in A(I) are available to the subroutine, which first uses the
variable AVG to accumulate all 10 values, with the FOR ... NEXT loop in
lines 520-540. Then the average is calculated and stored in AVG, which is
used by the main program in its PRINT statement (line 80).

Note that the FOR ... NEXT loops use a variable to keep track of how
many times that loop is executed. Even though the range of / in line 20 is
specified as 1 to 10, since / gets incremented at the end of each loop (before
its value is tested), the final value of / is 11 when the looping is terminated.
That is why the subroutine FOR ... NEXT loop, starting at line 520, loops
through / - 1 times. If both the main program's and the subroutine's FOR ...
NEXT loops used the same index variable (/), the program could not run
properly.

BASIC was so popular for early PC use that many enhancements were
provided, making it closer to a professional-quality language. Several com-
piled versions of BASIC were available for DOS. You could prototype and
debug a program in interpreted BASIC and then compile it, with few modi-
fications, if any.

Some manufacturers of data acquisition products provided extensive
BASIC support for their hardware. This included assembly language driver
functions that could be called from a BASIC program. Other manufacturers
produced their own enhanced version of BASIC to support their hardware
and extend the language's capabilities.

There were several, general-purpose, compiled versions of BASIC avail-
able, such as Microsoft's QuickBasic for MS-DOS. As the new BASIC
versions evolved, they became more like other conventional, structured, com-
piled programming languages. Visual Basic (for Windows) is a good example
of this.

Now, we will look at a few high-level compiled languages, starting
with C.

13.1.3 C Programming Language

C is one of the most popular general-purpose computer languages used by
professional programmers. As we discussed previously, C combines the best
features of low-level languages (ability to directly access hardware and to
produce fast, efficient code) with those of high-level languages (supports
abstract data structures, handles complex mathematical calculations, is well
structured and maintainable).

13.1 Popular Programming Languages 337

The power and popularity of C reside, paradoxically, in its inherent
simplicity. In one sense, C is not very robust, because it lacks many functions
present in other high-level languages, such an x command. However, it
contains all the building blocks to create this function along with any other
high-level language operation. Many of these features are present in standard
libraries that are part of a commercial C compiler package. In addition, C
contains many operators not found in most high-level languages, such a bit
manipulation commands. Since C is modular, it is easy to add new functions,
as needed, and use them as if they were an inherent part of the system.

C is also a well-standardized language. It was developed at AT&T Bell
Laboratories, during the early 1970s, by Dennis Ritchie, where it was well
controlled. The language is defined by the standard text. The C Programming
Language, by Kemighan and Ritchie. Virtually all commercial C compilers
adhere to this or a later ANSI standard (although some may add enhance-
ments, along with additional function libraries).

To illustrate some of the features of C, here is the program for calcu-
lating an average value, from the previous BASIC section, rewritten in C:

f l o a t a [10]= { 1 . 1 , 2 . 3 , 5 . 7 , 6 . 4 , 2 . 9 , / * d e f i n e d a t a a r r a y */
3 . 0 , 2 . 1 , 4 . 0 , 1 . 9 , 8 . 4 } ;

mainO /* Program e>«cuticn s ta r t s with itBin */
{
f l o a t avg; /* v a r i a b l e for ave rage v a l u e */
avg = ca l c_avg (a , 10) ; /* calculate average value of array */
printfC'DATA AVERAGE = %f \n" , avg) ; /* d i s p l a y r e s u l t */
} /* End of main program */

f l o a t c a l c _ a v g (d a t a , n v a l) /* Siitaroutine calculates average value
in a r ray da ta , nval po in t s long */

f l o a t *da ta ; /* data points to ir^xit data ar ray */
i n t n v a l ; /* nval contains # of values t o avg */
{
i n t i ; /* misc v a r i a b l e s */
f l o a t x ;

f o r (i = 0 , x=0 .0 ; i < n v a l ; ++i) / * main c a l c u l a t i o n loop */
{
X += * (da ta + i) ; /* Add d a t a v a l u e s i n t o x */
}

X /= n v a l ; /* c a l c u l a t e average (sum/nval) */
r e t u m (x) ; /* retiom r e s u l t t o main program */
} /* End of Subrou t ine */

Many aspects of C are shown in this example. Functions (including the
main program and any subroutines) are specified by a name followed by
parentheses, with or without arguments inside. The statements comprising
the function are delimited by the braces, {}. These same braces also delimit

338 CHAPTER 13 Computer Programming Languages

various loops within a function or even array initialization data (for a[]).
Program execution starts with the function main(), the main program. When
another function name appears, such as calc_avg(), that function starts exe-
cution. When it completes, control is returned to main(), along with a return
value (if any). Statements in C are terminated by a semicolon (;) and pairs
of special characters (/* */) delimit comments. Statements (and comments)
can span multiple lines. C is not rigorous about text formatting in the source
code. It allows programmers to format a file for easy readability. In this
respect, C is a fairly free-form language. Also, it does not use line numbers,
although you can give statements a label.

There are many important facets of C. One of these is function privacy.
Any variable defined and used within a function is private or local to that
function. Another function cannot directly access that variable. This is in
sharp contrast to BASIC, where all variables are global (none are private).
When a function sends a variable value to another function, it sends a copy
of that variable, so the original cannot be changed by the other function. For
a variable to be global, it must be defined outside of a function. In the
preceding example, a[] is a global array of floating-point numbers. The only
reason a[] was made a global array, instead of a local array in main(), was
to initialize its values more easily. Also note that all variables have to be
explicitly declared before they can be used. As opposed to some other lan-
guages (MATLAB, for example), C must know expHcitly what all the variable
types are (integer, floating-point) before it can use them.

Another significant aspect of C is the use of pointers. In C, any variable
(scalar or array) has two values associated with it: the lvalue and the rvalue.
The lvalue is the address of a variable, while the rvalue is its actual numeric
content. A pointer is used to address a variable (or a memory location). If we
have a pointer, pntrl, containing the address of a variable, we can store the
value of that variable in another variable, x, with the indirection operator, *,
as follows:

X = * p n t r l ;

Similarly, if we want another pointer, pntr2, to contain the address of the
variable x, we can use the address 6j/"operator, &, as follows:

p n t r 2 = &x;

The utility of this pointer scheme is shown in the program example just
given. Function calc_avg() defines two dummy parameters, data and nval. The
parameter data is defined as a pointer to an array of floating-point values via

f l o a t * d a t a ;

13.1 Popular Programming Languages 339

If data was just a scalar variable, it would be defined without the indirection
operator:

f loat data;

By specifying this parameter as a pointer, we do not have to pass 10
variables to calc_avg(). In addition, the function can handle input data arrays
of variable length—it just needs to know where the array starts (via data),
how long it is (via nval), and how big each element is (via the float declaration
for *data).

Another aspect of pointers is that they are the means to circumvent
variable privacy. The only way one function can modify the rvalue of another
function's local variable is if that function sends it the lvalue (pointer) of that
variable. This is necessary when a relatively large amount of data must be
passed between functions. Still, this is done explicitly, and the indirection
operator must be used to access the variable, from its pointer.

Several aspects of the notations used in C can be bewildering at first.
One source of confusion is = (the assignment operator) versus == (the equality
operator). The assignment operator is used to assign the rvalue of a variable,
as in most high-level languages:

X = 1 0 ;

The equality operator tests a statement to see if it is true or false (in C, false
is considered 0 and true is considered nonzero). So, a conditional statement
checking if x equals 10 would be

i f (x == 10)
{
/* conditional statements here */
}

If X does equal 10, any statements within the braces would be executed.
Other notation in the sample program may seem odd. C allows for

special assignment operators, such as += or /= (as used in the sample pro-
gram). The statement

is equivalent to

Similarly,

X += 1 0 ;

X = X + 1 0 ;

X /= n v a l ;

340 CHAPTER 13 Computer Programming Languages

is equivalent to

X / n v a l ;

These assignment statements are notational conveniences. Other impor-
tant operators are increment (++) and decrement (—). As used in the sample
program, the increment operator statement

is equivalent to

i = 1 + 1;

Similarly,

~ j

is equivalent to

j = j - 1 (decrement) .

Logical operators also can be confusing. The bitwise AND operator (&)
is different from the logical AND operator (&&). For example,

i = 0x13 & 0x27;

evaluates i = 13h AND 27h as 03h (note the use of Ox for hexadecimal
numbers). When used as a logical operator,

i = a && b ;

i is evaluated as TRUE only if both a AND b are true. The same distinctions
hold true for the OR operators (| and ||).

There are two important loop control statements in C, the for loop
(shown in the example program) and the while loop. In the example, the for
loop consists of a for() statement followed by one or more program state-
ments, enclosed in braces. The for() statement consists of three sets of expres-
sions, separated by semicolons: initializations (i = 0, x = 0.0), test condition
(i < nval), and execute at end of loop (-h+i). The initializations set up a loop
index variable (i) and any other variables used in the loop (x), where required.
The test condition (i < nval) is evaluated at the start of each loop. This usually
checks if the index is within bounds. If the test condition is true, the statements
within the loop's braces are executed (x += *(data + i);). This is followed by
the executable expression (++i), usually used to increment the loop index.

13.1 Popular Programming Languages 341

When the test condition is no longer true, as when the loop has been executed
the requisite number of times, execution continues with the first statement
following the for loop.

The while loop is simpler. It consists of a while() statement, which
contains only a test expression, followed by braces enclosing the loop state-
ments. If we rewrite the for loop from the example program as a while loop,
we get

i = 0;
X = 0 . 0 ;
wh i l e (i < nva l)

{
X += * (da ta + i) ;
++i;
}

The whileO statement is a useful way to wait for an event to happen,
regardless of how many times to try. If we are waiting for a device to produce
data, via a function get_data(), which returns 0 if no data is present, the
statement

whi le (ge t_da t a () == 0) ;

waits indefinitely until get_data() returns a nonzero value. Of course, in actual
practice there should be a way of terminating this wait, in case of error (such
as a time-out).

This concludes our brief overview of the C programming language,
which is one of the most important general-purpose languages for data acqui-
sition applications. Next, we will examine C++, an offshoot of C.

13.1.4 C++

C++ was developed by Bjame Stroustrup as an extension of C that is in effect
a superset of the original language. The most significant aspect of C++ is
that it is an object-oriented pvograimning language. Object-oriented program-
ming (OOP) languages rely on three major concepts: encapsulation, inherit-
ance, and polymorphism.

An object in an OOP language has the property of encapsulation
because it is a self-contained, logical unit, containing both data and code. An
object has the ability to hide its operations and data from other parts of the
program. It can have both private code (member functions) and data (struc-
tures) that are not accessible outside of the object. C++ implements encap-
sulation through new user-defined variable types, called classes.

342 CHAPTER 13 Computer Programming Languages

Inheritance is a process that allows one object or class to obtain the
properties of another object, including data structures and member functions.
In C++, a new type that is the extension of an existing type can be declared
as a subclass, with its unique modifications. Using inheritance, you can create
a well-organized hierarchy of classes.

Polymorphism (literally, the ability to assume many forms) allows the
same name of a function or class to be used for slightly different but related
operations. That is, one name can determine a general course of action, while
the actual type of data used selects the specific, detailed operations. In this
way, related objects operate in similar ways, just as all automobiles speed up
when you press the accelerator pedal. For example, in C++ assume we have
averaging functions avg_int() which operates on integers and avg_float()
which operates on floating-point numbers. Using polymorphism, we can
define a function avg() which operates on either data type. At compile or run
time, C++ will determine which function to use when avg() is called, depend-
ing on the input data type. Applying polymorphism to functions this way is
sometimes called function overloading.

The concept of object-oriented programming was developed to simplify
the task of developing large, complex computer programs. It enables a pro-
grammer to break up a large problem into smaller, related sections. Then,
each subsection of the problem can be translated into an object. An added
benefit of object-oriented programming is that it encourages writing reusable
code because of encapsulation and inheritance.

You can use a C++ compiler with C code with few or no changes. Of
course, the power of the new language is only apparent when you use the
unique features of C++. If you are already familiar with C, you have to learn
the new features and syntax of C++ along with its object-oriented philosophy.
If we rewrote the main() section of our C averaging program in C++ we
would see a new way of producing output:

void mainO / / exp l i c i t l y show that main() returns no data
{
float avg; // variable for average value
avg = calc_avg(a,10); // calculate average value of array
cout « "DATA AVERAGE = " « avg « endl; // display result
} // End of program

In this C++ example, cout is the standard output stream and « is the
insertion operator. When you compare the cout statement here to the previous
example using the printf statement, you will notice that there is no explicit
formatting used to display the variable avg. Since the compiler knows that
avg is a float, cout uses the correct format. This is an example of function

13.1 Popular Programming Languages 343

overloading, an aspect of polymorphism. Note that endl (end line) is the same
as the '\n' character in C. Also note that in C++ conmients begin with // and
continue to the end of the line (for multiline comments, you can still use the
C style /* */ comment delimiters).

If you wanted to explicitly format an output variable in C++ you can
use a manipulator with cout. For example, if you want to display an integer
as hexadecimal instead of decimal:

i n t temp ;
temp = 756;
cout « hex « temp « e n d l ;

Here, the manipulator hex forces the output integer value to be displayed as
a hexadecimal number.

In a similar fashion, C++ uses a standard input stream to read in values
from the keyboard, via cin:

int val ;
cout « "Enter a value: \n" ;
cin » val;

In this simple example, the variable val is assigned a value entered when the
program runs. Note that the direction of the insertion operator (») indicates
data flow—in this case from cin to val.

The heart of C++ is defining classes and using them to create objects.
Classes contain both private and public data (variables) and functions (sub-
routines). Keeping all data members (internal variables) private and only
allowing member functions to be public (accessible by other parts of the
program) is good practice for secure data encapsulation. Here is a simple
C++ example of declaring a class and using an object:

//Define the new c l a s s :
c lass Sensor / / s t a r t of c lass def in i t ion for Sensor
{
pr iva te : / / t h e following members are p r iva te

char* s_location;
i n t s_temp;
int s„press;

public: //the following members are public
//declare function prototypes

void SetLocation(char* location);
void SetTemperature(int temp);
void SetPressure(int press);
void DisplayInfo();

}; //end of class definition

344 CHAPTER 13 Computer Programming Languages

//Define the member fiinctions:
void Sensor::SetLocation(char* location)
{ //start of function definition

s_location=location; //load private variable from passed param
} //end of function definition

void Sensor::SetTemperature(int temp)
{ //start of function definition

s_temp = temp; //load private variable from passed param
} //end of function definition

void Sensor::SetPressure(int press)
{ //start of function definition

s_press = press; //load private variable from passed param
} //end of function definition

void Sensor::DisplayInfo()
{ //start of function definition

//display values of private variables:
cout « "Location = " « s_location « '\n';
cout « "Temperature = " « s_temperature « '\n';
cout « "Pressure = " « s_pressure « '\n';

} //end of function definition

//Main program:

void main()
{

Sensor sensOl; / / i n s t a n t i a t e a Sensor object (sensOl)
/ / Assign values to member var iables via member functions:

sensOl.SetLocation("Environmental Chamber 001");
/ / i n i t s_location

sensOl.SetTemperature(100); / / i n i t s_temp
sensOl.SetPressure(800); / / i n i t s_press

/ / Now display the p r iva te data:
sensOl.DisplayInfo();

} / / end of mainO

This program shows some of the basic object-oriented features of C++.
First, we define a new class called Sensor. This class contains three private
variables: sjocation (a string), s_temp (an integer), and s_press (an integer).
The only way for another part of the program to access these variables is
through the public functions SetLocation(), SetTemperature(), SetPressure(),
and DisplayInfo(). The first three functions are used to load the private
variables and the last one displays their values. The class definition in C++
is essentially an extension of the structure definition in C (which is only for
data). Note that in C++, function prototypes must always be explicitly
declared (in C it was not mandatory). A function prototype is simply a
declaration of a new function that provides its name, input parameters (in
parentheses), and type of return value (or void, if there is none).

13.1 Popular Programming Languages 345

Once the new class has been defined (along with its member variables)
the new functions are defined. Since these are member functions of the class
Sensor, the function names start with Sensor::, where :: is the scope resolution
operator. The scope resolution operator simply shows that the specified func-
tion is a member of the specified class.

The functions SetLocation(), SetTemperature(), and SetPressure() sim-
ply load the appropriate private variable (s_location, s_temp, s_press) with
the value passed to the function (location, temp, press). The function Dis-
playlnfoO outputs the values of these private variables.

The main program first creates an object, sensOl, of the class Sensor.
Here, the new class (Sensor) is used as a type definition, just as int or float
would be. You cannot use any members of a class until you create or instan-
tiate an object of that class. Once we have the object (sensOl) declared, we
can initialize its private variables by calling our Set...() functions with the
values we wish to load. Note the syntax used in main() to call our public
functions:

sens 01.SetTemperature(100);

Here, we use the dot operator (.) to indicate that SetTemperature() is a member
function of the object sensOl. This dot operator use in C+-i- is analogous to
its use in C when accessing an element of a data structure. We cannot directly
access the private variables in our object from main(), but if any were public
we could use the same construct. For example, if an integer called s_length
was defined as a public in the Sensor class, the following statement in main()
would be legal:

sens01.s_length = 25; / / d i rec t assignment of an objec t ' s member ciata

The preceding discussion was just a brief introduction to C++, designed
to give you the "flavor" of the language. There are many other aspects of
C++ that we have not even touched upon. For example, C++ uses special
functions called constructors and destructors that create objects (when instan-
tiated) and destroy them (when they are no longer needed). C++ also supports
inline functions, which allow you to fully define a simple function when you
normally declare just a function prototype, within a class definition. This is
appropriate for functions with only a few lines of code, such as the ones in
our C++ program example. Another unique feature of C++ is the reference
data type, which provides an alias for an existing variable.

Most importantly, C++ supports inheritance and class hierarchies. You
can define a derived class from an existing base class. For example, if we
wanted to define a class, based on our existing Sensor class, that added a new
variable, s_time:

346 CHAPTER 13 Computer Programming Languages

class Sens_Time : public Sensor
{ // start of derived class definition
private:

long s_time;
}; / / end of c lass def in i t ion

Notice that we are defining the new class, Sens_Time, as derived from
the base class Sensor. Sens_Time has all the original characteristics of class
Sensor plus the addition of a new, private variable, s_time. We could also
change the definition of any member variable or function in the class Sensor
by redefining it for Sens_Time.

C++ is quickly becoming the language of choice for many professional
progranmiers. For more detailed information, the reader is urged to read a
good introductory C++ text, such as those listed in the bibliography. Next,
we will quickly look at a few older high-level progranmiing languages:
FORTRAN and Pascal.

13.1.5 FORTRAN

There are many other high-level languages commonly used for program-
ming PCs. FORTRAN is one of the oldest, numerically oriented high-level
languages, extensively used for scientific and engineering programming.
FORTRAN is an acronym for FORmula TRANslator. It is not a highly
structured language (akin to BASIC), where GO TO statements are exten-
sively used for flow control. Unlike BASIC, only lines used in branching
statements get numbered.

FORTRAN supports explicit declaration of variables, but also uses
implicit variable types. It assumes that an undeclared variable is real (floating-
point) unless it begins with a letter between i and n (inclusive), which
denotes an integer. For program control it uses an IF statement, a GO TO
statement, and the DO loop (similar to the for loop, in C). To illustrate some
points, here is our sample program, calculating an average value, written in
FORTRAN:

C CALCULATE AVERAGE VALUE
DIMENSION D(10)
DATA D/1.1,2.3,5.7,6.4,2.9,3.0,2.1,4.0,1.9,8.4/
SUM=0.0
1=1

20 SUM=SUM+D(I)
1=1+1
IF(I.LE.10)GO TO 20
AVG=SUM/10.0
PRINT, AVG
STOP
END

13.1 Popular Programming Languages 347

Note that only the Une addressed by the GO TO command is numbered:
20 SUM=SUM+D(I). In the IF statement, .LE. is a logical operator (less than
or equal). All the logical operators in FORTRAN begin and end with a period
(.), such as .AND., .OR., .EQ.(equals), and .GT. (greater than).

The program can be simplified by using a DO loop, instead of the IF()
GO TO structure. A DO loop is similar to a for loop in C. The rewritten
program is as follows:

C CALCULATE AVERAGE VALUE
DIMENSION D(10)
DATA D/1.1,2.3,5.7,6.4,2.9,3.0,2.1,4.0,1.9,8.4/
SUM=0.0
DO 20 1=1,10

20 SUM=SUM+D(I)
AVG=SUM/10.0
PRINT,AVG
STOP
END

Now, as long as / is less than or equal to 10, any statements between
the DO 20 statement and line 20 (inclusive) are executed. When this condition
is no longer true, execution passes to the statement following line 20. Also
note that all the variables used in these FORTRAN examples are floating-
point, except for the integer /.

FORTRAN is a well-established language with a large base of support.
However, newer programming languages, such as Pascal, C, and C++, have
superseded it in popularity, especially in the world of PCs. It is rarely the
language of choice for data acquisition or data analysis applications on PCs,
especially if low-level interfacing or graphics are involved. Also, only DOS-
based FORTRAN compilers are conmionly available for PCs.

13.1.6 Pascal

Pascal is a highly structured, general-purpose, high-level language. It is
another example of a computer language designed by a single person, Niklaus
Wirth. It was developed as a means of teaching good programming skills and
providing clear, readable, unambiguous source code. Pascal succeeded in that
goal, as it has often been taught as an introductory programming language
to computer science as well as other engineering and science students.

Pascal is a very robust language. It contains all the standard mathemat-
ical operators as well as a large number of mathematical functions, such as
sqrt(:̂), ln(jc), sin(jc). In addition, it contains standard procedures for data I/O
and file handling. In these respects, Pascal is a higher level language than C,
which must rely on standard library functions for these capabilities.

348 CHAPTER 13 Computer Programming Languages

The structure of Pascal programs is well defined. A Pascal program
starts with a program declaration and is followed by declarations for constants
and variables. As in C, a variable has to be declared before it can be used. If
no subroutines or procedures are present, the body of the program, containing
executable statements, follows. Finally, the end of the program is declared.
If procedures are present, they precede the body of the main program. They
are structured in a way similar to the main program. As with C, variables can
be local or global. If a variable is declared in the main program, it is global
and accessible to any procedures defined with that program. If a variable is
first declared within a procedure, it is local to that procedure (and any pro-
cedures declared within it).

Pascal has its own rules for syntax. As in C and C++, the semicolon (;)
is used to terminate statements and program sections. Comments in Pascal
are enclosed within braces ({ }) and can span more than one line. The last
line in a program is the end statement, followed by a period (end.). The last
line of a procedure is an end statement, followed by a semicolon (end;).

To illustrate this language, we will look at our example of an averaging
program, now written in Pascal. Note that in this version, input is expected
from the user (via the read procedure):

program Average(input,output);
{Calculates Average of 10
input values}

{number of values to average}
{variables}

const
var

procedure
var
begin

Nvals = 10;
Sum, Avg: real;
Counter: integer

GetData;
Value: real;

read (Value) ;
Sum := Sum + Val

{Reads input value & accumulates}
{local var iable , for input value}
{body of subroutine}
{get data value}
{accumulate Sum}

end; {end of procedure GetData}

begin {Start of body of main program}
Sum := 0; { i n i t i a l i z e accumulator}
for Counter :=1 to Nvals {accumulation loop }

do GetData; {call procedure}
Avg := Sum / Nvals; {calculate average}
wri te ln('The average value = ' ,Avg);

{display resu l t}
end. {end of program Average}

We see that the main program (Average) declares it uses both input (via
read) and output (via writeln) functions. The standard output procedure,
writeln, is equivalent to printf in C. The main program calls a procedure,
GetData, which reads and accumulates the input values into variable Sum,

13.1 Popular Programming Languages 349

one at a time. GetData has one local variable, Value, used to temporarily store
the input from read(Value). GetData can access Sum, because it is a global
variable (defined by the main program. Average). The main data accumulation
is done by the for loop, which calls procedure GetData. Also note that := is
the assignment operator in Pascal. It is used to assign a value to a variable.
In the constant declaration for Nvals, an ordinary = is used, since this is just
defining the symbol Nvals.

Pascal is rich in control structures, such as the for loop. In the example
just given, Counter is initialized to 1 and then incremented with each pass
through the for loop, until it equals Nvals. For each pass through this loop,
GetData is executed. If multiple statements are to be executed within a for
loop (instead of a single procedure call), a more generalized form is

for Counter := StartVal to EndVal
do begin

{place executable statements here}
end; {last statement executed in for loop}

This is very similar to the for loop in C, except here incrementing the index
variable is implicit.

Pascal has an if.. .then.. .else structure, very similar to C. The argument
of the //"statement is a Boolean expression, evaluated as true or false. If it is
true, the statements following then are executed. If not, the statements fol-
lowing else are executed, as in the following example:

if Value = 0
then begin

wr i te ln('This i s a zero v a l u e ') ;
{more then statements here}

end {last then statement}
e l se begin

wr i te ln('This i s a nonzero v a l u e ') ;
{more e l se statements here}

end; {last e l se statement}

Pascal also has a while loop, functioning the same as it does in C. A
Boolean expression is evaluated by the while command. As long as it is true,
the statement (or loop) following the do command is executed. For example:

while Value >= 0
do begin

read (Value) ;
writeln('The current value i s ' ,Value);
{other loop statements here}

end; {last statement in while loop}

An additional control structure available in Pascal is the repeat loop.
This can be considered the reverse of a while loop. The statement or loop

350 CHAPTER 13 Computer Programming Languages

following the repeat command is continuously executed until its exit condi-
tion, in the until statement, is true. Rewriting the foregoing example with a
repeat...until structure, we get

repeat
read (Value) ;
writeln('The current value is ',Value);
{other loop statements here}
until Value < 0;

Notice that unlike the while loop, the repeat loop is always executed at least once.
This ends our brief overview of Pascal. It is a powerful language, well

suited for most programming tasks. In addition, it is well supported by
compilers, libraries, and debugging tools for PCs, especially under DOS. Next
we will take a brief look at a fairly new programming language, Java.

13.1.7 Java

The Java programming language was developed by Sun Microsystems in the
early 1990s. Although it is primarily used for Internet-based applications,
Java is a simple, efficient, general-purpose language. Java was originally
designed for embedded network applications running on multiple platforms.
It is a portable, object-oriented, interpreted language.

Java is extremely portable. The same Java application will run identi-
cally on any computer, regardless of hardware features or operating system,
as long as it has a Java interpreter. Besides portability, another of Java's key
advantages is its set of security features which protect a PC running a Java
program not only from problems caused by erroneous code but also from
malicious programs (such as viruses). You can safely run a Java applet down-
loaded from the Internet, because Java's security features prevent these types
of applets from accessing a PC's hard drive or network connections. An applet
is typically a small Java program that is embedded within an HTML page.

Java can be considered both a compiled and an interpreted language
because its source code is first compiled into a binary byte-code. This byte-code
runs on the Java Virtual Machine (JVM), which is usually a software-based
interpreter. The use of compiled byte-code allows the interpreter (the virtual
machine) to be small and efficient (and nearly as fast as the CPU running native,
compiled code). In addition, this byte-code gives Java its portability: it will run
on any JVM that is correctly implemented, regardless of computer hardware or
software configuration. Most Web browsers (such as Microsoft Internet Explorer
or Netscape Communicator) contain a JVM to run Java applets.

Compared to C-I-+ (another object-oriented language), Java code runs a
little slower (because of the JVM) but it is more portable and has much better

13.1 Popular Programming Languages 351

security features. The virtual machine provides isolation between an untrusted
Java program and the PC running the software. Java's syntax is similar to
C++ but the languages are quite different. For example, Java does not permit
programmers to implement operator overloading while C++ does. In addition,
Java is a dynamic language where you can safely modify a program while it
is running, whereas C++ does not allow it. This is especially important for
network applications that cannot afford any downtime. Also, all basic Java
data types are predefined and not platform-dependent, whereas some data
types can change with the platform used in C or C++ (such as the int type).

Java programs are more highly structured than C++ equivalents. All
functions (or Java methods) and executable statements in Java must reside
within a class while C++ allows function definitions and lines of code to exist
outside of classes (as in C-style programs). Global data and methods cannot
reside outside of a class in Java, whereas C++ allows this. These restrictions,
though cumbersome at times, help maintain the integrity and security of Java
programs and forces them to be totally object-oriented.

Another key feature of Java is that it is an open standard with publicly
available source code. Sun Microsystems controls the Java language and its
related products but Sun's liberal license policy contributed to the Internet
community embracing Java as a standard. You can freely download all the
tools you need to develop and run Java applets and applications from Sun's
Java Web site (http://java.sun.com).

Here is a simple Java program that averages numbers entered from the
keyboard:

public class AverageProgram // start of class definition
{
public static void main(String[] args)

// start of method definition
{

int npoints, counter, ace, average; // declare variables

System, out. print In ("Enter the nLimber of points to average: ") ;
npoints = Consolein.readint(); // read npoints
counter = 0 ; // initialize variables
ace = 0 ;
while (counter <npoints)
{ // start of while loop
System. out. print In (" Enter value: ") ;
ace = ace + Consolein.readint() ; // add in current value
counter = counter + 1 ; // increment counter

} // end of while loop
average = ace / npoints; // calculate average
Sy St em. out. print In ("Average value = " + average);

// display result
} // end of method definition
} // end of class definition

352 CHAPTER 13 Computer Programming Languages

In this example, the class AverageProgram (which is the program)
contains only one method (function), main(). Notice that much of the syntax
is the same as C or C++, including conmient delimiters: you can use either
C (/* */) or C++ (//) style delimiters in Java. Even the while() statement works
as it would in C/C++. Output to the screen is accomplished using Sys-
tem.out.printlnO, where println() is an invoked method of the standard Java
System.out object. Java also has a System.in object, for reading from the
keyboard, but it must be processed to be useful. In this example, Consolein
is assumed to be a previously defined class (that uses System.in), which
contains the method Readlnt() for reading an integer value.

As with the other programming languages we have surveyed, this was
just a brief view of Java. For more details, refer to one of the Java texts in
the bibliography or visit Sun Microsystems' Java Web site (http://java.sun.com).
Next we will discuss writing programs that run under a Microsoft Windows
operating system.

13.2 Programming for Microsoft Windows

Programs that run under Microsoft Windows are inherently more complex
than DOS programs (or programs for other text-based operating systems).
Working within the graphical user interface (GUI) of Windows requires a
programmer to create and manipulate a variety of on-screen graphical objects,
such as windows, toolbars, icons, and pointers. Even a program with text-
only I/O requires the creation of a window of specified size and position on
the screen before any messages can be displayed. By contrast, a DOS C
program can start with a printf() statement to immediately display text.

Fortunately, the general-purpose software tools now available will take
care of the myriad details required for the creation of a Windows application.
In some cases, writing a Windows-based application is easier than writing
the equivalent program for DOS. In fact, many of these tools can be used by
people who have never had any programming experience. The most popular
software development tools for Windows are produced by Microsoft. These
include Visual Basic and Visual C++.

Other manufacturers produce equivalent software development prod-
ucts. For example, Borland has manufactured many popular DOS program-
ming packages in the past, such as Turbo C/C++ and Turbo Pascal. Borland
has migrated its products to the Windows environment. Their current offerings
include Borland C++ Builder, which is a full-featured C++ development
environment for Windows 95/98/NT. Borland C++ Builder features drag-and-
drop visual programming, numerous wizards, sample applications, and a
complete C++ tutorial.

13.2 Programming for Microsoft Windows 353

In this section, we will look at two commonly used Windows program-
ming environments from Microsoft: Visual Basic and Visual C++. These
languages support the event-based nature of Microsoft Windows: program
execution is determined by external events (keystrokes, mouse clicks) and
not by the structure of the program code.

Visual Basic is excellent at creating GUI screens and controls (buttons,
boxes, etc.) for Windows applications without requiring much user code and
is a good first language. Visual C++ is a more flexible language, often used
for more functional purposes than creating on-screen objects (such as inten-
sive data processing algorithms). Many large Windows applications are cre-
ated using both languages: Visual Basic for the GUI display elements and
Visual C++ for the processing functions. First we will look at Visual Basic.

13.2.1 Visual Basic

Microsoft Visual Basic is a programming language and development envi-
ronment for Windows applications based on a greatly enhanced version of
BASIC. Visual Basic contains an integrated development environment (IDE)
and a large variety of tools to develop general-purpose, graphics-based Win-
dows applications. The current version (at the time of this writing) is 6.0,
which only supports 32-bit Windows programs (for Windows 95/98/NT and
later). For 16-bit Windows applications (under Windows 3.1), Visual Basic
version 4.0 or earlier must be used. Visual Basic is available in three versions:
the Learning Edition (for starting with the language), the Professional Edition
(which adds additional tools such as ActiveX controls, database tools, and
Internet tools), and the Enterprise Edition (for use on company-wide networks
with distributed application development tools and network server tools).

Visual Basic is quite different from DOS-based BASIC, even though it
still uses many of the same commands. Visual Basic is an interpreted lan-
guage, but current versions allow you to create compiled programs (.EXE
files) to run stand-alone. Line numbers are not used. Much of the software
development process involves drawing objects within forms and using mouse-
based drag-and-drop techniques to choose predefined graphical elements. You
create the user interface by selecting control elements such as text boxes and
command buttons. You typically write a modest amount of text-based code
that is associated with each screen object.

The most significant difference between Visual Basic and earlier ver-
sions of BASIC is that Visual Basic uses an event-driven model. Traditional
progranmiing languages followed a procedural model, where the code deter-
mines which statements are executed and in what order. Program execution
starts with the first line of code and follows a predetermined path. In an event-
driven program, code is executed in response to events and does not follow

354 CHAPTER 13 Computer Programming Languages

a predefined path. These events can be generated by the PC operator (via the
keyboard or mouse) or by the operating system or other appHcations. In
essence, these events act as interrupts and they determine the sequence of
code execution.

Another important aspect of Visual Basic is that it is a hierarchical,
object-oriented language (akin to C++). It uses class modules to define objects
containing both data and code, both for objects that appear on the screen (in
the user interface) and for those that remain hidden. Data and code can be
declared public or private.

Other features of Visual Basic are its ability to work with standard
databases and its Internet access features. Also, Visual Basic supports
Microsoft's ActiveX standard. ActiveX components are language-independent
objects that interact with other Windows applications. For example, an
ActiveX component can be used to read data from an Excel spreadsheet into
a custom program. In Visual Basic, one use of ActiveX is to create custom
controls. A control in Visual Basic is simply a graphic window that has
program code associated with it.

Since ActiveX is an open standard, many manufactures create their own
ActiveX custom controls. This can be very useful for data acquisition, since
these ActiveX components can include objects for processing or displaying
data. For example, Keithley's DriverLINX software, available for many of its
data acquisition cards, includes ActiveX controls for data acquisition func-
tions. This allows you to easily write a Visual Basic (or Visual C++) program
to access their data acquisition cards, without needing to know any details
about the hardware's low-level behavior.

Most Visual Basic programs are based on forms and consist of a mix
of code and graphic elements. However, you can also write code-only Visual
Basic programs, via code modules. Here is the averaging program we wrote
in Java, ported to Visual Basic:

Sub MainO
Dim npoints, counter, ace, average As Integer
npoints = Val(InputBox("Enter number of points to average"))
counter = 0
ace = 0
Do

ace = ace + Val (InputBox (" Enter value: "))
counter = counter + 1

Loop While counter <> npoints
average = ace / npoints
MsgBox "Average = " + Str$(average)

End Sub

As in C/C++, a routine named main() will begin program execution.
The Dim (dimension) statement declares the integer variables. The InputBox()

13.2 Programming for Microsoft Windows 355

function is used for simple user input (initially, to get the value of npoints).
It creates a small window with a text prompt and a text-input area. Visual
Basic is very rich in string manipulation functions. Since InputBox() returns
a string, we have to convert it to an integer, via the Val() function. The
program's Do Loop reads in values to average and adds them to the accumu-
lator variable (ace). The calculated average is displayed using the MsgBox
function. Note that we have to convert the integer value of average to a string,
via the Str$() function.

Of course, typical programs create a more complex GUI environment
using Visual Basic's extensive graphics features, sometimes with very little
user code added. This concludes our brief introduction to Visual Basic. Please
refer to the bibliography for further information. Next, we will look at
Microsoft Visual C4-+.

13.2.2 Visual C++

Microsoft Visual C++ is another programming language and development
environment for Microsoft Windows applications. It is a full implementation
of C++ but designed to simplify the details of producing a Windows appli-
cation, much like Visual Basic. Besides all the standard features of the C++
language (which we discussed in Section 13.1.4), Visual C++ contains a
plethora of tools for developing Microsoft Windows applications, many in
the form of wizards. Visual C++ also uses the Microsoft Foundation Class
(MFC) library of C++ classes and member functions, used for Windows
development. As with Visual Basic, Visual C++ supports the event-driven
model of Microsoft Windows programs. The current version of Visual C++
supports only 32-bit applications, for Windows 95/98/NT and later.

The easiest way to create a program under Visual C++ is to use an App
Wizard that builds a bare-bones application framework. Most of your work
is simply adding code to this framework to achieve the desired result. If you
use the MFC App Wizard, you can choose various options for the framework
(such as single versus multiple document windows or whether to include a
status bar) and create a standard Windows application screen, complete with
toolbars and menus. Compared to Visual Basic, Visual C++ is not a drag-
and-drop, graphics-oriented environment. Visual C++ is more of a code-
oriented environment, but one highly tuned to the requirements of Windows.

If you want to create a simple text-based C++ program that does not
require any graphics features (such as simple data processing applications),
you can start a new Visual C++ project as a Win32 Console Application. You
can select a simple application or an application that supports MFC (to use
Windows MFC classes and functions). A simple application creates the

356 CHAPTER 13 Computer Programming Languages

necessary header files and gives you a single C++ text file with a bare-bones
main() to add your code to.

Here is a Visual C++ version of the averaging program we previously
wrote for Java, written as a simple Win32 console application:

/ / average.cpp : Defines the entry point for the console
/ / appl icat ion.
//

#include "stdafx.h"
#include <iostreain.h>

int main(int argc, char* argv[])
{

int npoints, counter, ace, in, average;

cout « "Enter number of points to average: \n" ;
cin » npoints;

counter = 0 ;
ace = 0 ;
while(counter < npoints)
{

cout « "Enter value: \n" ;
cin » in;
ace += in;
++eounter;

}
average = ace / npoints;
cout « "Average = " « average « '\n';

return 0;
}

Visual C++ created the comment line (note that in Visual C++ source
code files have a CPP suffix) and the ^include '"stdafx.h" statement (for the
header file it created). It also created a minimal main() program, with simply
a return 0 statement. All the other code was added to the file, along with
the ^include <iostream.h> (to use the cout and cin streams). The program
can be run within the Visual C++ environment or outside of it, once it is
correctly compiled and linked. When the program is run, it creates a text
window for keyboard input and display output. When the program is com-
plete, "Press any key to continue" is displayed. After a key is struck, the
window disappears.

One advantage of working in this simple console application environ-
ment is that if you do not want to learn Windows MFC functions, you can
use generic C++ commands (as in DOS or UNIX). You still have the advantages
of working in a 32-bit environment, including the ability to easily work with

13.3 Considerations for Writing Computer Programs 357

large amounts of data: for example, an array containing 1 million long integers
(32 bits), which is 4 Mbytes of memory. Of course, if you want to take full
advantage of the features in Visual C++, you should use the MFC AppWizard
to create a graphics-based application.

One of the key features of Visual C++ is the MFC library. The MFC
library calls functions in the Windows application programming interface
(API), to create standard Windows screen objects, such as dialog boxes,
controls, and windows. The MFC library is platform independent (it can even
be used with an Apple Macintosh computer) and consists of more than 100
classes. The Windows API is not object-oriented and does not readily support
code reuse or a hierarchical program structure. The MFC library is well
organized and is usually easier to use. However, you can always make direct
calls to Windows API functions from Visual C++.

This concludes our brief look at Visual C++. For more information,
there are many excellent reference and tutorial books available on Microsoft
Visual C++, along with a large amount of material on the Internet. We will
finish this chapter by reviewing a few key points to keep in mind when writing
your own software.

13.3 Considerations for Writing
Computer Programs

There are many possible approaches to writing a computer program to solve
a particular data acquisition or analysis problem. Regardless of the language
used, the same steps are followed in developing a usable program. A PC is
a wonderful platform to use for software development, because of the abun-
dance of commercially available support tools.

A necessary starting point is stating the problem and your proposed
solution in general terms, written in plain English. This may be as simple as,
"Acquire 1024 data points, run an FFT, and report the average signal ampli-
tude in the frequency band of 100 to 300 Hz." Next, draw a flowchart,
including more of the required details (such as initializing hardware for data
sampling rate and analog input range). The flowchart gives you an overview
of what your program will do. It also helps you locate potential errors in
logic, before they get lost in the details of the chosen progranmiing language.
Figure 13-1 contains the flowchart for a simple program acquiring 1024 data
points. It flows continuously from the Start point to the End point, except for
the data acquisition loop. Here, the decision box checks whether the counter
has exceeded 1024. If so, it ends the program. If not, it loops back and acquires
another sample.

358 CHAPTER 13 Computer Programming Languages

START

Initialize Data Acq Card:

Rate = 1000 sannples/sec
Range = +/-10V

Initialize Counter to Zero

Acquire One Data Value
and Store It

Increment Counter

Stop Data Acquisition

END

Figure 13-1 Data acquisition program flowchart.

13.3 Considerations for Writing Computer Programs 359

Based on the kind of problem you are facing, you need to choose the type
of programming language to use: text-based or graphics-based. In the pre-
ceding example, if we only need a table of numbers as an output from the FFT,
then a text-based program is adequate and we can use any of the languages
discussed in this chapter. On the other hand, if we needed a plot of the output
data, a graphics-based language (such as Microsoft Visual Basic, Visual C++,
or MATLAB) would be preferable. Once you know the type of language needed,
you can choose the specific one based on your own experience and preferences.

The next step is to write the actual program and debug the source code
until you can compile and link it without errors. When most compilers find
a compilation error, they will point out where it is in the program (or where
the compiler thinks it is), along with a clue as to the type of error. Some
compilers will even highlight the error line in the source code. An error from
a linker usually means a function or a global variable was not defined or a
library file cannot be located. This can result from forgetting to include a
particular name in the list of object modules to link, or even from a spelling
error, causing a call to a nonexistent function.

Once you have an executable program, you can test it functionally with
a debugging program. A source-level debugger or an integrated development
environment (such as Visual C++) is preferable when the program is written
in a high-level language. This allows you to check variable values, follow the
route of statement execution, and even change values to see what will happen.
Most major compiler manufacturers provide a debugging environment for
their languages. In addition, there are third-party debugging products that
support compilers from several major manufacturers. As an additional aid,
you can always add debugging statements to your program while writing it.
These would typically display various intermediate variables or parameters
returned to calling functions. You can even have these statements condition-
ally execute, depending on the value of a global debug variable. These are
especially useful when working in an embedded PC environment without
many software resources. Here is a simple example in C:

i n t debug = 1 ; /* Debug Statements enabled */

junkO /* I l l u s t r a t i v e function */
{
i n t i , j ;

if(debug)
printf("\nDebug values: i=%d, j =%d\n",i,j);

}

360 CHAPTER 13 Computer Programming Languages

If the variable debug is set to 0, the printf () statement in the subroutine junk()
will not be executed.

A critical aspect of writing software, which is commonly overlooked,
is documentation. This involves adding comments to your program as you
initially write it, debug it, and update it. Putting a conmient on nearly every
line of source code is very useful (except for extremely obvious statements,
such as display outputs). It is also important to put a detailed explanation of
a program at the beginning of the file. Each subroutine should be documented
at its beginning, including what it does, what its input and output parameters
are, and what routines call it. Always document your programs well enough
that if you have to look at them again, several years later, you can quickly
figure out exactly what you did. In the case of documentation, too much is
never enough (the same point also holds true for hardware designs).

This concludes our quick survey of computer programming languages.
This discussion touched on many of the major languages used with PCs. In
the next (and final) chapter we will look at some real-world examples of data
acquisition applications.

C H A P T E R

PC-Based
Data Acquisition
Applications

In this final chapter, we will look at a few examples of how PC-based data acq-
uisition systems are used in "real world" situations. These applications fall into
three major categories, which tend to overlap: laboratory/industrial data collec-
tion, laboratory/industrial control, and embedded data acquisition and control.

In this book, we have focused primarily on data acquisition and control
equipment for use in a laboratory or industrial setting. These are stand-alone
systems using a PC, typically containing appropriate data acquisition cards
and running software for data collection, analysis, and control. Such a system
may be used for performing a laboratory experiment, obtaining automated
measurements in an industrial setting, or controlling an industrial process.

Embedded applications are another way of utilizing data acquisition
and control systems based on PCs. In this case, an original equipment man-
ufacturer (OEM) uses a PC-based data acquisition system as part of a larger
piece of equipment it produces. The PC and its related hardware and software
are embedded in that equipment. Usually, the software running on the PC is
dedicated to the task the equipment was designed for. When this software is
designed to ensure that the PC always starts up in this dedicated application,
it is considered a turnkey system. An example of this would be an automated
test equipment (ATE) system, dedicated to testing particular devices (such as
printed circuit boards). It is no longer usable as a general-purpose PC, unless
the system software allows it.

We will now examine a few examples of data acquisition applications,
starting with laboratory and industrial measurement systems.

361

362 CHAPTER 14 PC-Based Data Acquisition Applications

14.1 Ultrasonic Measurement System

Ultrasonic waves are employed for many different types of measurements,
including displacement, determination of material properties, and Doppler
shift velocity. Many of these ultrasonic applications are based on time-delay
measurements. Since the speed of sound is five to six orders of magnitude
slower than the speed of light (depending on the medium) the time measure-
ments required to determine typical distances are more easily attained using
ultrasonics. In air, at room temperature, ultrasonic waves travel at approxi-
mately 340 meters/sec. The measured time delay, /, is

t = dlv

where d is the distance traveled and v is the wave velocity. For a distance of
1 meter, the time delay using an ultrasonic beam would be 2.9 msec. Using
a light beam, the corresponding time delay would be 3.3 nsec, which is much
more difficult to measure.

Ultrasonic ranging systems are commonly used to measure macroscopic
distances, on the order of inches to hundreds of feet. This technique is often
implemented using a single ultrasonic transducer as both a transmitter and
receiver. An ultrasonic pulse is transmitted by the transducer, reflected off a
target at the distance to be measured, and then detected by the same trans-
ducer. The measured time delay between the transmitted and received pulses
is equal to twice the transducer-target distance divided by the ultrasonic
velocity. Many low-cost ultrasonic transducers for wave propagation in air
are available. One variety, an electrostatic transducer, available from Polaroid
Corp. (Cambridge, MA), is a popular choice for this type of application.
Figure 14-1 shows a simplified implementation of this ranging system.

PC <—•

Data Acquisition
Board

Timer Out

Analog In 1

Analog In 2

JUUL

4

AM 1 ^

<RCV
Signal Mux

L.__ Transducer |] ^ X I |

Tranj

Target i

smiti i Ref

^ 1 Tennp
Isensor

ecti
d

i

Figure 14-1 Ultrasonic ranging system.

14.1 Ultrasonic Measurement System 363

The sequence of events for a single measurement cycle is as follows: We
start with a trigger pulse from a timing reference, which initiates a high-voltage
transmit pulse that is sent to the transducer. The reflected (delayed) ultrasonic
pulse is received by the transducer and goes to a receiving circuit, containing
an amplifier and filter. An analog multiplexer is used to isolate the high-voltage
transmit pulse from the low-voltage receive pulse (usually employing diodes).
An ADC (as in a data acquisition card) starts sampling data, once the trigger
pulse occurs. The sample number containing the start of the reflection pulse
multiplied by the time between samples is the time delay corresponding to the
round-trip distance traveled by the ultrasonic waves.

The wavelength, A, of any wave is:

where v is the wave's velocity a n d / i s its frequency. If the ultrasonic trans-
ducer's resonant frequency is 50 kHz (as with the Polaroid transducers) the
wavelength is 6.8 mm (approximately 1/4 inch). A good estimate of the
displacement resolution using this technique is one-half wavelength or 3.4
mm (approximately 1/8 inch). If we needed finer resolution, we would need
a higher frequency transducer (such as 170 kHz for 1 mm resolution).

If we want to implement this experiment using a PC-based data acqui-
sition system, we must first determine our measurement requirements. We
will assume that a distance resolution of 1/8 inch is adequate and the maxi-
mum distance measured will be 100 feet. If we use a 50-kHz transducer, our
ADC sampling rate must be at least 100,000 samples/sec. To ensure reason-
able data fidelity, a higher rate is preferable, such as 250,000 samples/sec.
The maximum distance of 100 feet corresponds to 30.48 meters. The maxi-
mum round-trip time delay is

30.48 m X 2
340 m/sec

= 179 msec

This corresponds to approximately 45,000 samples (at 250,000 samples/sec).
The 179-msec period also limits the maximum transmit pulse repetition rate
to the inverse of that period, or 5.6 Hz in this case. This is the maximum
number of transmit/receive cycles we can measure each second, without
having the reflection from cycle n- I appear after the start of cycle n.

Since the data rate required for this experiment is very fast, a reasonably
high-speed data acquisition card is called for. If a 12-bit ADC is used, 250,000
samples/sec corresponds to a sustained data transfer rate of 500,000 bytes/sec,
which is faster than many ISA PCs with DMA capabilities. If an ISA card
is used, this data should be stored in a data acquisition board with local
memory. For our purposes, this memory must have a capacity of at least
90,000 bytes (assuming 2 bytes/sample). If a PCI-based PC is used, the

364 CHAPTER 14 PC-Based Data Acquisition Applications

required data rate is well below a PC's typical bus transfer rate and no on-
board memory is required for the data acquisition card. The data acquisition
card selected must have a digital output to act as the trigger line for the
external transmitter as well as a data acquisition start signal. We also want
this board to have a counter/timer that can initiate an ADC conversion every
4 fisec (for 250,000 samples/sec), as well as control multiple cycle timing.
We need at least a second analog input channel to periodically measure the
air temperature for velocity calibration.

There is another approach to the ADC speed problem, using a slower
and less expensive data acquisition board (especially with an older ISA PC).
Since the event we wish to measure can be repetitive, instead of measuring
the entire waveform in one cycle, we can acquire data over several cycles.
All we need is a data acquisition board with a sample-and-hold amplifier in
front of the ADC. If the amplifier has a sample window less than or equal to
our sample period of 4 |Lisec, the conversion rate of the ADC can be much
slower. In the worst case, we acquire one sample for each waveform cycle.
The overall data acquisition time will depend on the repetition rate of the
transmit pulse (the overall cycle time).

To implement this, for every transmit pulse cycle, we delay the sample
time of the data acquisition board by another 4 jiisec. Our transmit pulse
repetition rate is limited by the maximum delay time between the transmit
and receive pulses of 179 msec, in this example. That means we can only
generate five cycles/sec. Since we need to acquire about 45,000 samples, this
will take 9000 sec, or 2.5 hours! A better way is to acquire multiple samples
from each pulse cycle. Even if the ADC can acquire only 10,000 samples/sec,
each transmit/receive cycle will produce 1790 samples now. This way, only
about 5 sec (25 cycles) is needed to acquire 45,000 samples of data.

This scheme (a version of equivalent time sampling) is shown with the
waveform in Figure 14-2. It acquires samples spaced 100 jisec apart, from

X = Sample Cycle n
O = Sample Cycle n+1

Figure 14-2 Using multiple cycles to acquire a repetitive waveform.

14.1 Ultrasonic Measurement System 365

a single transmit/receive cycle, as represented by the "X" symbols. During
the next cycle, the acquisition starts 4 jisec later, as shown by the "O"
symbols. This process continues until the entire waveform is filled in. Since
the window of the sample and hold amplifier is no more than 4 jiisec, it is
equivalent to acquiring data at 250,000 samples/sec, except it takes more
time to acquire all the data, and it is done over several transmit/receive
cycles. The separate data acquisition cycles must be interleaved by the
computer to produce the completed waveform. As long as the timing jitter
(inaccuracy) of the system clocks is well under 4 jiisec, this approach will
work well.

If the final desired data will reside in an array D[45,000], using the
multiple cycle scheme, we will assume the first transmit/receive cycle (cycle
0) has no offset time, the next cycle (cycle 1) starts 4 jiisec after the trigger
pulse, and so on, until cycle 24 starts 96 |Lisec after the trigger pulse. Note
that the data at time =100 jiisec is the second point from cycle 1, since this
data is all 100 |isec apart. If each of these cycles produces a data array
Cn[1790], the reconstructed waveform data D[m] (where m = 0 to 44999),
will be

D[0] = C0[0], D[l] = C1[0] , . . . , D[24] = C24[0]

D[25] = C0[1], D[26] = Cl [l] , . . . , D[49] = C24[l]

D[44975] = C0[1789], D[44976] = Cl[1789] , . . . , D[44999] = C24[1789]

Once the waveform data array is acquired and reconstructed, it can be
analyzed. Figure 14-3 shows a typical waveform from an ultrasonic ranging
system. Since the transducer is multiplexed for transmit and receive signals,
ringing from the transmit pulse appears in the acquired waveform. Since this
transmit signal is fairly constant, we can ignore the data for the first milli-
second or so. This lockout window, corresponding to about 1/2 foot, limits
the minimum distance that can be measured. Any reflected pulse arriving
within this window will be obscured by the transmit signal. If we used a
separate transmit and receive transducer, this would not be a problem.

The lockout window can be implemented either in the analysis soft-
ware, or by initially starting data acquisition after the nominal 1-msec
window period (and adding that time offset to the collected data). Because
only about 250 data samples would be saved this way, the software approach
is better: it allows for adjustment of this window after data has been
acquired.

366 CHAPTER 14 PC-Based Data Acquisition Applications

Lockout Window

Reflected Pulse

Trigger First Reflection

Figure 14-3 Typical ultrasonic ranging system waveforms.

One important point to keep in mind when attempting accurate ultra-
sonic measurements is that the velocity of ultrasonic waves is a function of
temperature. That is why the ranging system in Figure 14-1 uses an additional
analog input channel to measure the air temperature. This temperature mea-
surement does not have to be done very often—once per acquired waveform
is more than enough. The relationship between the speed of sound in air v
(in m/sec) and the temperature of the air T (in degrees Kelvin) is

V = 331.4 X J(T/273) m/sec

Other environmental factors, such as relative humidity and barometric
pressure, have a much smaller effect on ultrasonic velocity and can usually
be ignored. Relative humidity does have a large influence on the attenuation
of ultrasonic waves.

Depending upon how the acquired data looks, analysis can be fairly
simple or very involved. If the reflected pulse's signal-to-noise ratio is high
and its first peak is readily observable, the analysis simply consists of finding
the location of that peak (minus 1/4 of the wave period), which corresponds
to the round-trip time delay of the ultrasonic pulse. This could be a peak
detector algorithm, checking data values with an amplitude greater than a
specified noise threshold.

14.1 Ultrasonic Measurement System 367

Of course, in the real world, things are rarely this easy. One complication
is the attenuation of the ultrasonic waves. As the target distance increases,
the amplitude of the reflected pulse decreases (as does its signal-to-noise
ratio). It becomes more difficult to discern the first peak of the reflected pulse.
An added complication would be an imperfect, rough target surface, causing
scattering of the ultrasonic pulse resulting in a "fuzzy" echo. This is because
different (spatial) portions of the reflected ultrasonic pulse arrive back at the
transducer at slightly different times, causing the resulting echo to be spread
out in the acquired waveform.

Various DSP techniques can be used to solve these problems. Imple-
menting digital filtering in software can help eliminate noise and enhance the
reflected pulse. Another approach is to calculate the FFT of the waveform
and measure the slope of the resulting phase curve, in the frequency domain.
This phase slope is proportional to the absolute delay of the reflected pulse,
with a time offset of half its width. This offset can be determined by shifting
the original waveform so that the reflected pulse starts at time = 0, and then
calculating its FFT. Subtract this phase slope from the phase slope of the
unshifted waveform's FFT, producing the corrected time-delay phase slope.
This analysis can be done with many different commercial software packages,
requiring little or no programming. Another approach is to use cross-corre-
lation between the received waveform and an ideal waveform at time = 0. As
the ideal waveform is delayed by increments of the acquisition time step, the
cross-correlation value increases until it reaches a peak at the time step
corresponding to the delay of the received signal.

This same experimental setup can also be used to directly measure the
thickness of a material sample, with a resolution determined by the frequency
of the ultrasonic transducer, as long as the speed of sound through that
material is known. Whenever an ultrasonic beam passes through an interface
between different media, such as air and a solid, there is a change in acoustic
impedance and some of the beam is reflected at the interface.

As shown in Figure 14-4a, if a transmitted ultrasonic pulse hits a
material of thickness d, some energy is reflected from its front surface (if its
acoustic impedance differs from the surrounding medium), resulting in the
first echo. The rest of the beam passes into the material. Some of that beam
is reflected from the back surface (the rest continues out the back). Part of
the beam reflected from the back surface now passes through the front surface,
back to the transducer, resulting in the second echo. The remainder of the
beam reflects back into the material again, eventually resulting in the third
echo. This process continues with multiple reflections.

Each successive echo is lower in amplitude, since energy is lost at each
reflection (even if the material has negligible attenuation). The time delay

368 CHAPTER 14 PC-Based Data Acquisition Applications

1
Transmit Pulse
1st Echo

2ncl Echo_______——-—'

3rdEcho______——•

d

Transducer Sample Under Test

(a) Beam Paths

(b) Resulting Waveform

Figure 14-4 Using multiple ultrasonic reflections for thickness measurements.

between successive echoes, as shown in Figure 14-4b, is

V

since each echo is separated in time by a round trip through the material
thickness. The measurement of dt can be done fairly accurately using auto-
correlation. Since each echo pulse is basically an attenuated version of the
previous pulse, calculating the autocorrelation of this waveform (the cross
correlation with itself) will produce peaks at

/ = 0, dt, 2dt,..., ndt

depending on how many echoes appear in the waveform. Each successive
autocorrelation peak will be lower in amplitude than the previous one; how-
ever, the peak located at time dt is a good measure of 2dlv.

If the correlation peaks are too broad to get an accurate measurement of
dt, that curve can be differentiated. The zero crossing point of the first derivative
of the autocorrelation curve is an accurate location for the peak of dt.

We should note that if the sample thickness is known, the velocity of
sound through the material can be calculated from this same multiple reflection

14.2 Electrocardiogram Measurement System 369

measurement. In addition, various material parameters (such as elastic mod-
ulus) can be determined from this data.

This concludes our example of an ultrasonic ranging system. Next, we
will turn our attention to another example, implementing an electrocardio-
gram (ECG) measurement system using PC-based data acquisition products.

14.2 Electrocardiogram Measurement System

The acquisition and analysis of human electrocardiograms (ECGs) is of great
interest to many medical researchers. The ECG is a graph of voltage variations
produced by the heart muscle and plotted against time. Automated analysis
of ECG data is an active area of ongoing research, as a means of improving
diagnosis and prediction of heart disease. The requirements for implementing
an ECG data acquisition system using a PC platform are very different from
the previous example of an ultrasonic ranging system.

ECG data consists of very low frequency components. Most of the
spectral content of an ECG fits within a bandwidth of around 10 Hz, with
very little energy present above 100 Hz. A typical diagnostic ECG recorder
has a bandwidth of 0.05-100 Hz. Hence, very low data acquisition rates are
used, typically 250 samples/sec, to ensure good fidelity. The amplitudes of
ECG voltages are very low, in the range of tens of microvolts up to several
millivolts. The transducers used to detect these voltages are electrodes placed
on the surface of a person's arms, legs, and chest. They connect to isolation
circuitry, to protect the patient from any current that may be produced by the
ECG recording equipment. Then the ECG signals must pass through differ-
ential amplifiers, required to provide high gain and good conmion-mode noise
rejection. If ECG data will be digitized, it is commonly connected to an
antialiasing filter with a 100-Hz bandwidth.

Even though the acquisition rates for ECG data are relatively low, the
volume of data recorded for research purposes tends to be extremely large.
It is common for medical research projects to acquire several hours of ECG
data from each subject, sometimes for as long as 24 hours. This data usually
consists of two channels of 12-bit or 16-bit readings at a conversion rate of
250 samples/sec. If we assume that no data compression is applied, we require
4 bytes of storage for each sample interval (for two channels) for a data
storage rate of 1000 bytes/sec. If we record 1 hour of data from a patient, it
will occupy 3,600,000 bytes. Acquiring data from many subjects or recording
several hours from each one will obviously use up a large amount of memory
storage very quickly. It is no wonder that data compression techniques are
routinely applied to ECG storage problems.

370 CHAPTER 14 PC-Based Data Acquisition Applications

S

QRS complex

Figure 14-5 An Idealized normal EGG beat cycle.

Figure 14-5 shows one beat of an idealized, normal ECG waveform.
Various components of an ECG cycle (one beat) have specific names. A beat
starts with the P wave, which represents the original electrical impulse in the
heart, beginning the cycle. It usually has a small ampUtude. The QRS com-
plex, consisting of the Q, R, and S waves, is usually the largest amplitude
component in an ECG. The Q wave, itself, may have a very small amplitude
(sometimes it is unmeasurable), while the R and S waves can be quite large.
The cycle ends with the T wave, representing the electrical recovery phase
of the heart, preparing it for the next beat.

Clinically significant information is obtained from an ECG by measur-
ing several parameters, such as the relative amplitude, width, and time dura-
tion of these component waves, as well as the time between the components.
In addition, the time between beats is important as a measure of instantaneous
heart rate. Occasional, abnormal beats are also sought out as indicators of
potential problems. This requires a means of categorizing the data on a beat-
by-beat basis, as either normal or abnormal.

Figure 14-6 shows a simple block diagram of a PC-based ECG recording
system. The data acquisition board only needs to provide a throughput of 500
samples/sec, assuming two channels of data digitized at a rate of 250 samples/sec.
A 12-bit ADC will provide adequate resolution. If much higher resolution is
required, a sigma-delta ADC may be used. For this application, the analog
front end is very critical. Electrical isolation must be provided between the
patient electrodes and the data acquisition system. Any ground current flow-
ing from the measurement system to the patient could be a serious health
hazard, causing fibrillation (from a shock directly to the heart). Therefore,
isolation amplifiers are used. These amplifiers need differential inputs.

The amount of gain provided by the isolation amplifiers will determine
the analog input range required for the data acquisition card. If the isolation

14.2 Electrocardiogram Measurement System 371

Data Acquisition
Board ±3

\l\

Patient Leads

Isolation
Amplifiers

Figure 14-6 PC-based ECG recording system.

amps serve strictly as buffers, then a high-gain, differential analog input would
be needed. These isolation amps should also have differential outputs, so any
common-mode noise on the wires connecting them to the data acquisition
board's analog inputs will be rejected. Of course, the data acquisition board's
analog inputs must be differential. In this case, a 12-bit ADC board with a
nominal input range of ±5 V and variable gain, up to 500x, would be a good
choice. At the maximum gain (500x), the analog input range is ±10 mV, with
a resolution of approximately 5 |LiV. Most ECG waveforms will fit within this
range.

A better arrangement would be to provide most of the analog gain using
the isolation amplifier, in a separate electronic module. This would minimize
the effects of noise pickup in the cable connected to the data acquisition
board, as well as noise within the PC itself. In general, it is always a good
idea to implement high analog gain outside of a PC, whenever possible. This
would allow the use of a simpler, low-gain analog input board. Differential
inputs would still be preferable, but are no longer mandatory. Another
approach would be to use a USB data acquisition module located close to
the patient. As long as the USB module has adequate gain, the data can be
digitized outside of a PC.

In any case, a relatively slow ADC is adequate, at moderate (12-bit)
resolution. DMA capabilities are not required, since the maximum data trans-
fer rate would be only 1000 bytes/sec (since the overall acquisition rate is
500 samples/sec). The data acquisition card or module should have a
counter/timer to produce the data conversion clock. An analog output (DAC)
would only be necessary if stored and analyzed data will have to be produced
in analog form, at some later time. An example would be to simulate a real-
time ECG signal for testing another piece of diagnostic equipment.

372 CHAPTER 14 PC-Based Data Acquisition Applications

Almost any commercial data acquisition software could be used to store
acquired data at these low rates. Even though an older PC could be used to
acquire this slow data, it must have a large hard disk drive to accommodate
the massive data files produced by the relatively long experimental runs. As
we saw previously, 1 hour of data requires approximately 3.6 Mbytes of
storage and 24 hours of data needs about 86 Mbytes. Even a 1 Gbyte drive
can only store about 11 of these 24-hour tests.

One possible choice is to use a tape drive, either to back up data from
a large hard drive, or to directly store data as it is acquired. Special software
is required to deal with a tape drive, and most data analysis packages will
only work with data on disk files. Therefore, using a tape drive to back up
conventional disk data files is a simpler approach. Otherwise, you may have
to write a lot of your own software for storing and retrieving data on tape. A
better alternative to tape drives is to store acquired data on a CD-R or CD-
RW disk, which can hold up to 700 Mbytes. The advantages of CD over tape
storage are lower cost media, random-access read-back capability, and the
data portability (if CD-R is used, you can read the data files on nearly any
PC containing a CD-ROM drive).

Another way of dealing with this problem of how to store large amounts
of information is to use data compression. Much research has been done on
using different data compression techniques on ECG data. Unprocessed ECGs
contain a large amount of redundant information. A large fraction of the data
is simply the constant baseline, between consecutive beats. Linear predictors
can provide reasonably large compression ratios, without excessive distortion,
if data acceptance windows are carefully selected.

Another aspect of the redundant nature of ECG data is that most beats
from the same patient look very similar, often nearly identical. Only the
occasional, abnormal beat appears significantly different. One way of exploit-
ing this characteristic is to apply statistical methods to the data compression
problem. Since most ECG data tends to have a lot of straight lines and smooth
amplitude variations, it is well suited to delta encoding. Only the amplitude
difference between adjacent points is stored, as a small number. If these delta
values are calculated from a representative data sample, for a particular
subject, they can be statistically analyzed. Then Huffman codes, only a few
bits long, could be applied to the most probable delta values.

If most of the original 12-bit data can be represented as 4-bit Huffman
codes for delta values, the overall compression ratio would be about 3:1. Most
data from one patient is likely to follow the same distribution of delta values and
have a similar compression ratio. As we saw previously, this is delta Huffman
encoding. Even though it does not produce very high compression ratios, the
restored data is completely identical to the original waveform, with zero distortion.

14.2 Electrocardiogram Measurement System 373

An enhancement to delta Huffman encoding is to identify all baseline
data points that fall within a window of constant amplitude (such as noise
variations). These points can be replaced by their average amplitude and the
length of this line, using a special escape code in the delta Huffman data
stream. This addition could increase the compression ratio by another factor
of 2 (to around 6:1) while resulting in a small loss of fidelity. Depending on
the window size used, an RMS distortion of less than 1% is easily attainable
at these compression levels.

This enhancement is effectively implementing a zero-order predictor
(ZOP), along with delta Huffman encoding. The algorithm used should care-
fully decide when to use the ZOP instead of delta Huffman codes, for
maximum bit savings. Since the delta values we would replace in this case
would be zero, or close to it, they probably require only 2 or 3 bits in their
Huffman code. For now, we will assume they use 3 bits per point. If the
escape code is 8 bits, the average amplitude is 12 bits and the line length is
8 bits (allowing for a line representation over 1 sec long, at 250 samples/sec),
it will take 28 bits to represent this straight line. Therefore, this approach
saves storage space if the line is more than 9 points (36 msec) long, corre-
sponding to 9 X 3 = 27 bits.

One of these data compression methods could be applied to previously
acquired data already stored in disk files. Several commercial software pack-
ages are available that provide data compression for all types of files found
on a PC (such as PKZIP and WINZIP). Since these products are designed to
work with any file type, they produce no data distortion (since most files
cannot tolerate any change in their contents, such as programs or documents).
As a result, they may produce fairly low compression ratios, typically 2:1.
However, with high-redundancy files, such as bit-mapped graphics images,
the lossless compression ratio can be 10:1 or higher.

A better approach is to use software specifically designed to compress
ECG files or to implement data compression in real time, as the data is being
acquired. Since the data transfer rate for this example is relatively low, it is
possible to retrieve readings from the data acquisition card as a background
task, using hardware interrupts. This would allow the PC to use its spare
processing time on the foreground task of data compression. Raw (unproc-
essed) data would be stored temporarily in RAM, until it is compressed and
written to a disk file.

Besides data compression, other analysis techniques are applied to
digitized ECG data, usually for diagnostic purposes. This analysis typically
involves measuring amplitude, time, and shape parameters of various portions
of each beat, to place it in a diagnostic category. For example, a beat that
occurred much earlier than expected, based on several previous beats, would

374 CHAPTER 14 PC-Based Data Acquisition Applications

be classified as premature and might have medical significance. Other anal-
yses may employ FFTs or other transforms, as well as correlation techniques.

Since this analysis is very specific to ECG data, some custom program-
ming would probably be required. An entire program could be written in a
general-purpose language, such as Pascal, C, or Visual C++ (especially if
graphics displays are required). Alternatively, a commercial data analysis
package could be employed to test out various algorithms. Even here, some
programming may be required to implement the desired algorithm, such as
with MATLAB, or a similar product.

This concludes our look at using a PC for implementing a system for
acquiring and analyzing ECG data. Next, we will look at examples of employ-
ing embedded PCs in commercial products using data acquisition and control
functions.

14.3 Commercial Equipment Using
Embedded PCs

So far, we have mostly considered stand-alone PC systems, configured for
data acquisition tasks. Many equipment manufacturers require data acquisi-
tion and analysis functions in their end product. One approach, becoming
increasingly popular, is to use an embedded PC as a major component of
the product. Depending on the manufacturer's requirements, the PC may
still function as a general-purpose computer and run most commercial soft-
ware packages. On the other hand, it can be completely dedicated to the
tasks required by the overall product it is part of, and be unable to run any
general-purpose software. In this case, the embedded PC may not even have
a floppy disk drive or any standard peripherals. It could run programs from
ROM or Flash memory, configured to look like a disk drive to DOS or
Windows. For a look at embedded PC standards (such as PC-104), please
refer to Chapter 12.

There are many advantages to using an embedded PC in a commercial
product, especially for data acquisition, analysis, and storage functions. A
huge number of commercial hardware and software products are available,
minimizing in-house development costs as well as a new product's time-to-
market. Compared to other industrial computer architectures (such as VME
and STD BUS products), PCs and their support products are less expensive,
are more readily available, and offer more "user friendly" development tools.
This also applies to industrial and embedded PCs.

This trend toward using embedded PCs is reflected by the increase in
the number of products for this market. Many manufacturers now produce

14.3 Commercial Equipment Using Embedded PCs 375

miniaturized PCs, based on a single board, designed to fit within a product
using a minimum volume, such as the Compact PCI standard. These products
can support standard PC peripherals, such as disk drives and displays, yet
will work without them for a scaled-down version in the final product. Soft-
ware development for products using these embedded PCs can be carried out
on a standard desktop PC or the target system itself.

If an embedded PC is technically adequate for performing the required
task and its cost can be justified, it is often a good choice, especially compared
to other dedicated computer systems. If a PC would be grossly underutilized
in an application or the product is very cost sensitive, a dedicated CPU or a
microcontroller board is a better alternative. One compromise is designing a
board using a microcontroller that emulates a PC (sometimes referred to as
a "PC-on-a-chip"), such as the products from ZF Micro Devices (URL:
www.zfmicro.com). This approach keeps hardware costs down while allowing
you to use PC software products.

One application where embedded PCs are very popular is in network-
based products. As more conrmiercial instruments and even appliances use
networking features (for using both LANs and the Internet), small embedded
PCs become an important part of these products. Many single-board comput-
ers (in ISA, PCI, or PC-104 form-factors) contain an Ethernet interface
(usually lOBASE-T or 100BASE-T) and have enough memory (DRAM) to
run a standard operating system (such as MS-DOS, Microsoft Windows, or
Linux). Network software can be added to the embedded PC as a separate
package (as when running DOS), or it may already be part of the operating
system (as in Windows 95 and above). The embedded PC can then connect
to other PCs on the same network (via a LAN) or even to Internet sites.

When selecting network software to use, look carefully at the applica-
tion. If the embedded PC must connect to a large, server-based LAN or to
the Internet, it should use the TCP/IP protocol. However, if it will only connect
to one or a just a few other PCs through a simple Ethernet hub, you should
consider Microsoft's NETBEUI protocol, which was part of Microsoft Win-
dows for Workgroups (Windows 3.11) and is still supported in Windows
95/98. NETBEUI is a simple peer-to-peer network protocol, useful for small
networks that do not have a server computer.

Networked data acquisition equipment is particularly useful in an indus-
trial environment. You can employ many small PCs (with data acquisition
interfaces) to monitor and control various manufacturing processes. These
PCs (or PC-based instruments) would be connected to a central computer,
running appropriate software (such as LABTECH CONTROL) that oversees
the entire process. You can even use embedded data acquisition PCs at remote
sites and use the Internet for communications.

376 CHAPTER 14 PC-Based Data Acquisition Applications

14.3.1 THE CYBEX 340 Extremity Testing System

As an early example of a typical use of an embedded desktop PC in a piece
of commercial equipment, we will look at the CYBEX 340 Extremity Testing
System. CYBEX, a division of Lumex Inc., manufactured testing and reha-
bilitation equipment for the fields of sports medicine, physical therapy, and
fitness. These machines were used for evaluating and improving human ath-
letic performance and fitness as well as aiding injury recovery. The 340
System was used for the testing, exercise, and rehabilitation of the extremities
(arms and legs).

The CYBEX 340 System is a large machine, which incorporates a full-
sized desktop PC chassis in its electronics cabinet, as shown in Figure 14.7.
The PC used is a Wyse 286 PC, which is an AT (ISA) system, based on an
80286 CPU with a 10-MHz clock and containing 640 Kbytes of RAM. The
keyboard, monitor (EGA), floppy drive, and streaming tape drive are mounted

Figure 14-7 CYBEX 340 Extremity Testing System. (Courtesy of CYBEX, a division
of Lumex, Inc.)

14.3 Commercial Equipment Using Embedded PCs 377

externally, for normal user access. The PC also contains a 32-Mbyte hard
disk drive and runs MS-DOS. Other standard PC peripherals used in this
system are a parallel port, connected to an external printer, and a serial port,
connected to an internal modem. It contains a 60-Mbyte tape drive unit, for
backing up the data collected and stored in its database system. In addition,
an optional network interface card may be present, to connect the system to
a local area network (LAN) of other CYBEX systems and PCs, including a
PC set up as a file server, controlling the network.

By using standard peripherals, retaining a floppy drive, and running
software under MS-DOS, the PC embedded in the CYBEX 340 System can
function as a stand-alone PC and run most commercial software packages.
In addition, it runs custom CYBEX software, used for motion control of the
extremity testing equipment, acquiring and storing patient data, producing
reports, and other functions aiding the medical practitioner.

Figure 14-8 shows a simplified block diagram of the CYBEX 340
System. It is clear from this that, at least electronically, the embedded PC is
the heart of the system. The mechanical heart of this CYBEX system is its
dynamometer. This unit contains a motor, controlled by a switching servo
amplifier, which drives a series of clutches coupled to an output shaft, con-
nected to the patient's limb.

The speed of the motor limits the maximum speed at which the patient
can move his or her limb. A patient trying to move faster than the set speed
would produce more torque but maintain that fixed speed. The measured
torque, at this constant speed, produces clinically significant information
about the health and strength of that limb. For example, if someone had a
knee injury that was manifested at a particular point in that joint's range of
motion (the maximum range that joint can rotate, measured in degrees), there
would probably be a drop in torque output at that location. The data collected
by this system is torque versus angular position. The torque is a measure of
the force produced by the muscles of the tested limb. The angular position
covers that limb or joint's range of motion. A typical example of data produced
by a CYBEX 340 System (measurements of the author's knee) is shown in
Figure 14-9.

For technical and economic reasons, CYBEX chose to produce its own
data acquisition boards for the 340 System, instead of adapting general-
purpose commercial cards. These boards plug into the standard ISA bus of
the Wyse PC, as any commercial card does. As shown in Figure 14-8, these
custom boards connect to specialized system hardware, such as the dyna-
mometer, servo amplifier, and power-sequencing unit.

The functions available on these custom boards include analog input,
analog output, digital I/O, and counter/timers. The analog input is the torque

1; EE5 C
I

e

c
-
1

r

f-

u

Y

N

m

OISK CONTROLLER BOARO I 1

NETWORK INTERFACE BOARO I
TAPE CONTROLLER BOARO

CYBEX ATIB 11
1

CYBEX ATIB 12
I

CYBEX ATIB fl

I

E

378

14.3 Commercial Equipment Using Embedded PCs 379

Howard P. Austerlitz NEU TEST MODE
KNEE EXTENSION/FLEXION
TORQUE vs. POSITION - DATA REDISPLAY
test speed - 60 deg/sec
Legend: Individual Repetition Display
space - all reps 3 - third rep
1 - first rep
2 - second rep right side - uninvolved

PTC 81 SPD 038 POS 181 TQ 000 FT-LBS
Tue Nov 13 12:02:01 1990

HIT ^-1 RETURN TO CONTINUE

300

250

T
0
R
Q

U 200
E

150

50 î n

EXTENSION

-15*0*

300

250

200

150

188

50

0
60*

A N G L E

i

FLEXION

K

135* - 1 5 * 0*

(degrees)

- I '

60*

A N G L E

î i
135*

Figure 14-9 Typical data display from a CYBEX 340 System. (Courtesy of CYBEX,
a division of Lumex, Inc.)

signal from the dynamometer. The torque signal is derived from a capacitive
load cell (a pressure transducer) hydraulically coupled to the dynamometer
shaft. This signal, having a 10-V dynamic range, is digitized by a 10-bit ADC.
The overall torque range is 360 foot-pounds, so the system can resolve torque
as low as 0.35 foot-pounds (or approximately 4 inch-pounds).

The ADC used in the CYBEX 340 System has several modes of opera-
tion. Conversions can be triggered asynchronously or at a fixed rate, under
software control (up to 25,000 samples/sec), as in a conventional, time-based
data acquisition system. However, the data of interest to this system is torque
versus angular position. To directly measure this, the ADC conversions are
normally triggered by an optical encoder, coupled to the dynamometer shaft.
This encoder acts as an angular position transducer, producing a pulse for every
1/2 degree of dynamometer shaft rotation. This produces torque versus position
data, independent of rotational velocity, eliminating unnecessary data conver-
sions at slow speeds. This feature could be implemented with a general-
purpose, commercial data acquisition card if it accepted external trigger signals.

An analog output of the CYBEX board is used to control the motor
speed. This speed control voltage (SCV) is a 0- to 10-V signal, sent to the
servo amplifier, which drives the motor. The motor contains a tachometer that

380 CHAPTER 14 PC-Based Data Acquisition Applications

produces an analog voltage, proportional to its speed. This tachometer signal
is sent back to the servo amp, to complete the feedback loop required for
precise speed control. The motor speed set by the servo amp is proportional
to the controUing SCV.

The counter/timers available on the CYBEX boards are based on an
Intel 8254IC. They are used for various system timing and counting functions,
such as measuring motor speed during calibration. Many different functions
are implemented using digital I/O lines. One example is using software-
controlled gating of several possible sources into one hardware interrupt line.
Another is the remote power-on capability of the system.

The advantages and features of an embedded PC, illustrated by the
CYBEX 340 System, apply to a wide variety of computer-controlled equip-
ment: even if a product must be fairly small, the size of PCs designed for
embedded applications is continuously shrinking. We will continue to see
increasing growth in conmiercial equipment utilizing embedded PCs. An
additional advantage of using an embedded PC is that the final system can
be functionally prototyped using commercially available data acquisition
hardware and software products, even if it will eventually use custom boards
and programs. This can certainly help shorten the development cycle of a
new product. At the very least, it provides a software development group with
hardware to work with while the final data acquisition boards are still in the
design process.

14.3.2 The Tektronix TDS7000 Series Osciiioscope

One interesting example of a recent embedded PC product is the Tektronix
TDS7000 series of digital phosphor oscilloscopes (DPOs). These instruments
are high-performance, stand-alone digital oscilloscopes with analog band-
widths up to 4 GHz and single-shot sampling rates up to 20 Gsamples/sec.
They also use equivalent time sampling (ETS) to achieve much higher sam-
pling rates with repetitive signals. Because of their embedded processors, the
TDS7000 oscilloscopes have many features of a standard, Windows-based
PC. For example, these instruments all contain a floppy disk drive, a CD-
ROM drive, and a hard disk drive (of over 4 Gbytes). They also use a mouse
and keyboard and contain a variety of standard I/O ports such as USB, parallel
(IEEE 1284), serial (RS-232), Ethernet (lOBASE-T/lOOBASE-T), and GPIB.

Figure 14-10 shows a simplified block diagram of a TDS7000 DPO.
The high-speed acquisition system (with multiple analog inputs) uses an
embedded Power PC. This processor communicates with the embedded Win-
dows PC (based on an Intel Celeron processor) via an internal PCI bus. The
Intel processor, running Microsoft Windows 98, is used for user-interface

14.3 Commercial Equipment Using Embedded PCs 381

Real-Time Scope Processor

Acquisition
System

DPx Digital
Phosphor

PowerPC

PCI Bus

Windows Processor

Celeron

Scope
Display

Video
Merge

2nd
Video

Optional
Monitor

Figure 14-10 Simplified block diagram of a Tektronix TDS7000 series Digital
Phosphor Oscilloscope. (Courtesy of Tektronix, Inc.)

functions and enables the instrument to run standard Windows 95/98 software.
Figure 14-11 shows a photograph of a TDS7404 oscilloscope displaying
typical waveforms.

The embedded Windows PC in the TDS7000 is analogous to a notebook
computer. It does not have the expandability of a desktop PC that can accept
plug-in cards, but all TDS7000 DPOs have parallel, serial, USB, and GPIB
interfaces. Some even have Cardbus (PCMCIA) slots, making them as
expandable as any conventional notebook PC. This combination of a high-
performance digital oscilloscope with a notebook-like PC is extremely pow-
erful. When used as a general-purpose lab instrument, a TDS7000 can acquire
waveforms (just as a standard oscilloscope does) and then save this data to
the local hard drive or to another location on a network, using the Ethernet
(LAN) port. If the unit is connected to a network, you can easily print captured
waveform images on a remote, shared printer.

An example of a fairly complex oscilloscope/PC application in the lab
(based on the author's experience) is using.a TDS7000 DPO to develop and
debug a microcontroller-based circuit boaifl. The DPO was loaded with stan-
dard PC-based development software (including a compiler/linker and debug-
ger). A PC-based hardware emulator was run from the DPO's parallel port

382 CHAPTER 14 PC-Based Data Acquisition Applications

Figure 14-11 A Tektronix TDS7404 Digital Phosphor Oscilloscope. (Courtesy of
Tektronix, Inc.)

and connected to the target board (an emulator is an instrument used to control
a target microprocessor or microcontroller for the purposes of software and
hardware development). Using the PC-based software, the target microcon-
troller board was loaded with test software under development. This code
was run (and evaluated) on the target, under control of the emulator (hard-
ware) and debugger (software) hosted on the TDS7000. At the same time,
the DPO's oscilloscope probes were connected to test points on the target
board. As the test software executed, the DPO was used to display critical
waveforms, aiding in the evaluation of the board design.

Since a TDS7000 DPO is portable (albeit much heavier than a notebook
PC) it is also suitable for field test work. In this case, having an oscilloscope
and a PC in one package can be quite advantageous.

Of course, many embedded PC applications are much simpler than the
TDS7000. Still, since PCs have become so ubiquitous, a growing range of
products will likely include PC faatures if not a fully functioning embedded
PC. Often, just the ability to connect a device to an existing network is a
primary reason for embedding a PC in a product.

14.4 Future Trends in PC-Based Data Acquisition 383

14.4 Future Trends in PC-Based
Data Acquisition

This concludes our examination of a few "real-world" examples of data
acquisition systems based on PC platforms of various form factors. This field
is constantly changing, with new products, standards, and approaches appear-
ing continuously.

Without any doubt, the field of PCs will continue to evolve at its
typically frenetic pace. In the "Wintel" world, faster Pentium CPUs (and their
successors) will continue to appear, along with newer and more sophisticated
versions of Windows. Eventually, the PCI bus may become obsolete (as the
ISA bus nearly has) and probably become relegated only to embedded and
industrial applications. However, it should still be around for many years to
come. Desktop PCs are likely to become black boxes without any internal
expansion slots and rely solely on standard ports, such as USB and Fire Wire.
Industrial and embedded PCs may become the platforms of choice for data
acquisition systems because of their flexible hardware expansion capabilities.
CompactPCI will probably become the leading embedded PC architecture.

In the field of sensors, integrating more functions and "intelligence" in
sensor units should continue. Growing acceptance of the IEEE 1451 standards
will also help accelerate this trend. The increased use of electronic sensors
in major consumer products, such as automobiles, will continue to drive the
sensor field.

It is impossible to accurately predict future trends in the PC and data
acquisition industry (as the predictions in the first edition of this book, 10
years ago, demonstrated). If you are putting together a PC-based data acqui-
sition system, stick to your current requirements, with an eye on future needs.
You should be aware of trends in the industry, but relying on new, untested
technologies (or companies, for that matter) can be a big gamble. As a gross
generalization, data acquisition hardware products and companies tend to
have a much longer life than their software counterparts. Always try to first
use current, established products to solve a problem. It will usually cost you
less time, money, and frustration.

This Page Intentionally Left Blank

A P P E N D I X

Data Acquisition
and Related PC
Product IVIanufacturers

This appendix contains listings of manufacturers of PC-based hardware and
software products for data acquisition as well as frame grabbers (image
capture) and embedded or industrial PCs. These include many hardware
manufacturers who also produce or resell software products. Most software
products will run under a 32-bit version of Microsoft Windows (Win
95/98/NT). Most hardware products will work in an ISA or a PCI bus. All
URLs are current as of this writing and usually point to a vendor or product's
home page. Products or vendors that support non-PC hardware (i.e., Apple
Macintosh) are explicitly noted.

Each listing contains the vendor's name, contact information, and prod-
uct information. The product listings are grouped as either HfW (hardware)
or 5/W (software). Unless otherwise noted, data acq in a HAV listing denotes
both analog and digital I/O. The HAV listing is followed by the Supported
I/F (interfaces) Hsting (i.e., ISA, PCI, RS-232, USB). The SAV listing is
followed by the Supported OS (operating system) listing (i.e., Windows
95/98/NT, Linux, Mac OS). All addresses are in the United States unless
otherwise noted. All 800 phone numbers are only valid in North America
(United States and Canada). All phone numbers outside of North America
begin with the international calling code.

AAEON Electronics Inc.
3 Crown Plaza
Hazlet, NJ 07730
(732) 203-9300
www.aaeon.com

ACCES I/O Products, Inc.
10623 Roselle Street
San Diego, CA 92121
(858) 550-9559
www.acces-usa.com

HAV PRODUCTS:

SUPPORTED I/F:

HAV PRODUCTS:

SUPPORTED I/F:

Embedded/industrial
PC, data acq
ISA, PCI, PC/104

Data acq, communica-
tions, bus expansion
ISA, PCI, PC/104

385

386 Appendix

Acqiris USA HAV PRODUCTS:

P.O. Box 2203 SUPPORTED I/F:
234 Cromwell Hill Rd.
Monroe, NY 10950-1430
(845) 782 6544
www.acqiris.com

Acqutek Corp., Inc. HAV PRODUCTS:

1549 S. 1100 East
Salt Lake City, UT 84105
(801) 485-4594 SUPPORTED I/F:

www.acqu.com

Acrosser USA HAV PRODUCTS:

10564 Progress Way, Unit D
Cypress, CA 90630 SUPPORTED I/F:

(714) 827-9938
www.acrosser.com

AD AC Corporation HAV PRODUCTS:

24 River Street
Winchester, Massachusetts 01890 SUPPORTED I/F:

(781) 721-9800
www.adac.com

Adlink Technology Inc. HAV PRODUCTS:

15279 Alton Pkwy., Suite 400
Irvine, CA 92618
(949) 727-2077
www.adlinktechnology.com SUPPORTED I/F:

Advantech Automation Corp. HAV PRODUCTS:

1320 Kemper Meadow Dr., Suite 500
Cincinnati, OH 45240 SUPPORTED I/F:

(877) 294-8989
www.advantech.com

Agilent Technologies (formerly HP) SAV PRODUCTS:

RO. Box 10395
Palo Alto, CA 94303
(650) 752-5000 SUPPORTED OS:

www.tm.agilent.com

High-speed data acq
PCI, CompactPCI

Data acq, embedded/
industrial PC,
communications
ISA, PCI

Embedded/industrial
PC, data acq
ISA, PCI, PC/104

Data acq, bus expan-
sion, industrial PC
ISA, PCI, PCMCIA,
VME

Data acq, embedded/
industrial PC, image
capture, motion
control
ISA, PCI, Compact-
PCI, USB

Embedded/industrial
PC, data acq
ISA, PCI, PC/104

Agilent VEE
(general-purpose
data acq)
Win 95/98/NT 2000

Data Acquisition and Related PC Product Manufacturers 387

Amplicon Liveline Ltd.
Centenary Industrial Estate
Hollingdean Road
Brighton East
Sussex BN2 4AW
United Kingdom
+44 1273-608-331
www.amplicon.co.uk

Ampro Computers, Inc.
5215 Hellyer Avenue #110
San Jose, California 95138-1007
(408) 360-0200
www.ampro.com

Amtec Engineering, Inc.
13920 SE Eastgate Way, Suite 220
Bellevue, WA 98005
(425) 653-1200
www.amtec.com

Analog and Digital Peripherals, Inc.
P.O. Box 499
Troy, OH 45373
(800) 758-1041
www.adpi.com

Analogic Corp.
8 Centennial Drive
Peabody, MA 01960
(978) 977-3000
www.analogic.com

Aptech Systems, Inc.
23804 SE Kent-Kangley Road
Maple Valley, WA 98038
(425) 432-7855
www.Aptech.com

HAV PRODUCTS:

SUPPORTED I/F:

Data acq, signal
conditioning
ISA, PCI, PCMCIA,
USB, parallel port,
serial port

HAV PRODUCTS: Embedded PC

SUPPORTED I/F: PC/104, PC/104-

Plus, EBX

SAV PRODUCTS:

SUPPORTED OS:

HAV PRODUCTS;

SUPPORTED I/F;

S/W PRODUCTS;

SUPPORTED OS:

H/W PRODUCTS:

SUPPORTED I/F:

S/W PRODUCTS:

SUPPORTED OS:

Tecplot (data display)
Win 95/98/Me/NT/
2000/XP, Linux,
Solaris, HP-UX,
UNIX

Embedded PC
PCMCIA, USB
Easi Daq (data acq
via PCMCIA cards)
Win 95/98/NT/CE,
Linux

Data acq, image
capture
CompactPCI, VME,
VXI

GAUSS (data analysis
and display)
Win 95/98/NT/2000,
Linux, Solaris

388 Appendix

Arbor Technology Corporation
5F, No 738 Zhong Zheng Road
Zhong He, 235 Taipei
Taiwan
886-2-8226-9396
www.arbor.com.tw

Arcom Control Systems, Inc.
7500 West 161st Street
Stilwell, KS 66085
(888) 941-2224
www.arcomcontrols.com

Biodata Ltd.
(Microlink Measurement and
Control)
10 Stocks Street
Manchester, M8 8QG
United Kingdom
+44 161-834-6688
www.microlink.co.uk

BitFlow
21-G Olympia Avenue
Wobum, MA 01801
(781) 932-2900
www.bitflow.com

Capital Equipment Corp.
900 Middlesex Turnpike, Bldg 2
Billerica, MA 01821-3929
(800) 234-4232
www.cec488.com

Chase Scientific Company
7960-B Soquel Drive, Suite 191
Aptos, CA 95003
(831)464-2584
www.chase2000.com

urn PRODUCTS: Data acq, embedded/
industrial PC, image
capture

SUPPORTED I/F: ISA, PCI, PC/104,
PC/104-Plus

HAv PRODUCTS: Data acq, embedded
PC, motion control

SUPPORTED I/F: ISA, PCI, PC/104

HAV PRODUCTS: Data acq
SUPPORTED I/F: ISA, USB

H/W PRODUCTS:

SUPPORTED I/F:

H/W PRODUCTS:

SUPPORTED I/F:

S/W PRODUCTS:

SUPPORTED OS:

H/W PRODUCTS:

SUPPORTED I/F:

Image capture
PCI

Data acq, GPIB,
Web/DAQ (Internet
data acq server)
ISA, PCI
TestPoint (general-
purpose data acq)
Win 95/98/Me/
NT/2000

High-speed data acq
ISA, PCI, Compact-
PCI, VME, VXI,
PC/104, PC/104-Plus

Data Acquisition and Related PC Product Manufacturers 389

Comark Corp.
93 West Street
Medfield, Massachusetts 02052
(800) 280-8522
www.comarkcorp.com

Coreco, Inc.
6969 Trans-Canada Highway, Suite
#142
St. Laurent, Quebec H4T IVB
Canada
(514) 333-1301
www.coreco.com

CyberResearch, Inc.
25 Business Park Dr.
Branford, CT 06405
(800) 341-2525
www.cyberresearch.com

urn PRODUCTS: Embedded/industrial
PC, data acq

SUPPORTED I/F: ISA, PCI, PC/104

HAv PRODUCTS: Image capture
SUPPORTED I/F: ISA, PCI

HAV PRODUCTS:

Dasytec USA
(a National Instruments Company)
11 Eaton Road
PO Box 748
Amherst, NH 03031-0748
(800) 731-5015
www.dasylab.net or
www.dasytec.com

SUPPORTED I/F:

SAV PRODUCTS:

SUPPORTED OS:

SAV PRODUCTS:

SUPPORTED OS:

Data acq, signal
conditioning, motion
control, GPIB,
embedded/industrial
PC
ISA, PCI, PC/104,
serial port
Distributes major
data acq software
packages
Depends on product
(most are Win95/98/
NT/2000)

Dasy Lab (general
purpose data acq)
Win 98/NT/2000

390 Appendix

Data Translation, Inc.
100 Locke Drive
Marlboro, MA 01752-1192
(800) 525-8528
www.datatranslation.com

HAV PRODUCTS:

SUPPORTED I/F:

SAV PRODUCTS:

SUPPORTED OS:

Data acq, signal con-
ditioning, image cap-
ture
ISA, PCI, PCMCIA,
USB
Data Acq Omni CD
(drivers & utilities),
Quick Data Acq
(Mac only)
Win 95/98/NT/2000,
Mac OS

Dataq Instruments, Inc.
150 Springside Drive, Suite B220
Akron, OH 44333
(800) 553-9006
www.dataq.com

HAV PRODUCTS:

SUPPORTED I/F:

SAV PRODUCTS:

SUPPORTED OS:

Data acq, signal
conditioning
ISA, Ethernet, USB,
parallel port, serial
port
WinDaq (data acq)
Win3.1,Win95/NT

Datastick Systems, Inc.
275 Saratoga Ave., Ste. 160
Santa Clara, CA 95050
(408) 615 5774
www.datastick.com

HAV PRODUCTS: Data acq
SUPPORTED I/F: Pa lm P D A

Diamond Systems Corp.
8430-D Central Avenue
Newark, CA 94560
(800) 367-2104
www.diamondsys.com

H/w PRODUCTS: Data acq, embedded
PC

SUPPORTED I/F: P C / 1 0 4

DSP Development Corporation
3 Bridge Street
Newton, MA 02458
(800)424-3131
www.dadisp.com

S/W PRODUCTS:

SUPPORTED OS:

DADiSP (data analy-
sis and display)
Win 95/98/NT/2000,
UNIX

Data Acquisition and Related PC Product IVIanufacturers 391

Electronic Energy Control, Inc. HAVPRODUCTS:

380 South Fifth Street, Suite 604 SUPPORTED I/F:

Columbus, Ohio 43215-5491
(800) 842-7714
www.eeci.com

Gage Applied, Inc. HAV PRODUCTS:

(a Tektronix Company)
2000 32nd Ave. SUPPORTED IAF:

Lachine, QC Canada H8T3H7 SAV PRODUCTS:

(800) 567-GAGE
www.gage-applied.com SUPPORTED OS:

General Standards Corp. HAV PRODUCTS:

8302A Whitesburg Drive
Huntsville, AL 35802 SUPPORTED I/F:

(800) 653-9970
www.generalstandards.com

GW Instruments Inc HAV PRODUCTS:

35 Medford Street SUPPORTED I/F;

Somerville, MA 02143-4237 SAV PRODUCTS:

(617) 625-4096
www.gwinst.com

SUPPORTED OS:

HEM Data Corp. SAV PRODUCTS:

17336 Twelve Mile Road
Southfield, MI 48076-2123 SUPPORTED OS:

(248) 559-5607
www.hemdata.com

ICS Electronics HAV PRODUCTS:

7034 Commerce Circle
Pleasanton, CA 94588 SUPPORTED I/F:

(925) 416-1000
www.icselect.com

Data acq
Serial port, USB

Very high-speed data
acq
ISA, PCI
Gage Scope (virtual
oscilloscope)
MS-DOS, Win
95/98/NT/2000

Data acq, communi-
cations (serial)
PCI, CompactPCI,
PC/104-Plus, VME

Data acq
PCI, NuBus (Mac)
InstruNet (data acq),
SuperScope (Mac
only)
Win 95/NT, Mac OS

SnapMaster (general-
purpose data acq)
Win 3.1, Win 95/98

GPIB, communica-
tions
ISA, PCI, Compact-
PCI, PCMCIA, VXI,
parallel port, serial
port

392 Appendix

Ines GmbH
Goettinger Chaussee 115
D 30459 Hannover
Germany
+49 511 943 810
www.inesinc.com

Integ Process Group, Inc.
11279 Perry Highway, Suite 502
Wexford, PA 15090
(724) 933-9350
www.integpg.com

Intelligent Instrumentation, Inc.
3000 E. Valencia, Suite 100
Tucson, AZ 85706
(800)685-9911
www.instrument.com

lOtech, Inc.
25971 Cannon Road
Cleveland, Ohio 44146
(440) 439-4091
www.iotech.com

JK Microsystems, Inc.
1403 Fifth Street, Suite D
Davis, California, 95616
(530) 297-6073
www.jkmicro.com

JUMPtecAdastra
3988 Trust Way
Hayward, CA 94545
(510)732-6900
www.adastra.com

HAV PRODUCTS;

SUPPORTED I/F:

SrW PRODUCTS;

SUPPORTED OS:

Data acq, GPIB
ISA, PCI, PCMCIA
Free VIEW (data acq
via PC sound card-
free)
Win 95/98/NT/2000

HAV PRODUCTS: Network-bascd data
acq

SUPPORTED I/F: Serial port, Ethernet

HAV PRODUCTS: Data acq
SUPPORTED I/F: ISA, Ethernet, USB

H/w PRODUCTS: Data acq, signal
conditioning, GPIB

SUPPORTED I/F: ISA, PCI,
CompactPCI, USB

HAV PRODUCTS: Embedded PC, data
acq

SUPPORTED I/F: Proprietary

H/w PRODUCTS: Embedded PC
SUPPORTED I/F: PC/104, proprietary

(DIMM-PC)

Data Acquisition and Related PC Product Manufacturers 393

Keithley Instruments, Inc.
28775 Aurora Road
Cleveland, OH 44139
(440) 248-0400
www.keithley.com

Kontron (formerly ICS Advent)
6260 Sequence Drive
San Diego, CA 92121-4371
(858) 677-0877
www.icsadvent.com

LabJack Corporation
3112 S. Independence Court
Lakewood, CO 80227-4445
(303) 942-0228
www.labjack.com

Laboratory Technologies Corp.
Two Dundee Park, Suite B09
Andover, MA, 01810
(978) 470-0099
www.labtech.com

Lawson Labs, Inc.
3217 Phoenixville Pike
Malvern, PA 19355
(800) 321-5355
www.lawsonlabs.com

Lisberger Technologies
848 Clayton St.
San Francisco, CA 94117
(415) 476-1062
www.listech.com

HAV PRODUCTS:

SUPPORTED I/F:

SAV PRODUCTS:

SUPPORTED OS:

HAV PRODUCTS:

SUPPORTED I/F:

HAV PRODUCTS:

SUPPORTED I/F:

Data acq, GPIB,
signal conditioning.
serial cards, PC
instruments
ISA, PCI, PCMCIA
DriverLinx (drivers).
Visual Scope (virtual
oscilloscope)
Win 95/98/NT/2000

Data acq, embedded/
industrial PC,
communications
(serial)
ISA, PCI,
CompactPCI

Data acq
USB

S/W PRODUCTS:

SUPPORTED OS:

H/W PRODUCTS:

SUPPORTED I/F:

H/W PRODUCTS:

SUPPORTED I/F:

SUPPORTED OS:

LABTECH
NOTEBOOK,
LABTECH
CONTROL (general-
purpose data acq)
Win 95/98/NT/2000

Data acq
ISA, parallel port,
serial port, USB,
Apple II

Data acq w/time
stamping
ISA
MS-DOS, Win 95/NT

394 Appendix

LPTek Corp.
1100 Shames Drive
Westbury, NY 11590-1746
(516) 333-8820
www.lptek.com

The Math Works, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
(508) 647-7000
www.mathworks.com

Measurement Computing, Corp.
(formerly ComputerBoards, Inc.)
16 Commerce Boulevard
Middleboro, MA 02346
(508)946-5100
www.measurementcomputing.com

Measurement Systems Ltd.
16 Kingfisher Court
Newbury, Berkshire
RG14 5SJ
United Kingdom
+44 (0)1635 576800
www.measurementsystems.co.uk

Megatel Computer Corp.
125 Wendell Avenue
Weston, Ontario M9N 3K9
Canada
(416) 245-2953
www.pcl04sbc.com

Mesa Electronics
4175 Lakeside Drive, Suite 100
Richmond, CA 94806-1950
(510) 223-9272
www.mesanet.com

HAv PRODUCTS: Data acq
SUPPORTED i/F: Parallel port

SAV PRODUCTS:

SUPPORTED OS:

HAV PRODUCTS:

SUPPORTED I/F:

HAV PRODUCTS:

SUPPORTED I/F:

H/W PRODUCTS:

SUPPORTED I/F:

H/W PRODUCTS:

SUPPORTED I/F:

MATLAB (general-
purpose data analysis
and display with data
acq features)
Win 95/98/Me/NT/
2000, Mac OS,
Linux, UNIX

Data acq, signal
conditioning
ISA, PCI,
CompactPCI,
PCMCIA, PC/104,
USB

Data acq, industrial
PCs
PCI, CompactPCI

Embedded PC
PC/104

Embedded PC, data
acq, motion control
PC/104, PC/104-Plus

Data Acquisition and Related PC Product IVIanufacturers 395

Microsoft Corp.
One Microsoft Way
Redmond, WA 98052-6399
(425) 882-8080
www.microsoft.com/office/excel

Microstar Laboratories, Inc.
2265 116th Ave. NE
Bellevue, WA 98004
(425) 453-2345
www.mstarlabs.com

Micro/Sys, Inc.
3730 Park PI.
Montrose, CA 91020
(818) 244-4600
www.embeddedsys.com

Micro Technic
Svenstrupvej 90
5260 Odense S
Denmark
+45 66 15 30 00
www.micro-technic.com

National Instruments Corp.
11500 N. Mopac Expressway
Austin, TX 78759-3504
(512) 794-0100
www.ni.com

SAV PRODUCTS:

SUPPORTED OS:

HAV PRODUCTS:

SUPPORTED I/F:

SAV PRODUCTS:

SUPPORTED OS:

HAV PRODUCTS:

SUPPORTED I/F:

Excel (spreadsheet
for general-purpose
data analysis and
display)
MS Windows
(version depends on
Excel version)

Data acq, signal
conditioning
ISA, PCI
DAPview, Windows
Toolkit (development
tools)
Win 95/98

Embedded PC, data
acq, communications
PC/104, PC/104-
Plus, STD Bus

HAV PRODUCTS: Data acq,
communications

SUPPORTED I/F: P C / 1 0 4

H/W PRODUCTS:

SUPPORTED I/F:

S/W PRODUCTS:

SUPPORTED OS:

Data acq, signal con-
ditioning, GPIB,
image capture,
motion control, PC
instruments
ISA, PCI,
PXI/CompactPCI,
PCMCIA, IEEE
1394, USB, VMEAOa
LabVIEW (general
purpose data acq)
Win 95/98/Me/NT/
2000, Mac OS, Linux,
Sun Solaris, HP-UX

396 Appendix

Octagon Systems
6510 W. 91st Avenue
Westminster, CO 80031
(303) 430-1500
www.octagonsystems.com

Omega Engineering, Inc.
One Omega Drive
P.O. Box 4047
Stamford, CT 06907-0047
www.omega.com

Ontrak Control Systems Inc.
764 Notre Dame Ave., Unit #1
Sudbury, Ontario P3A 2T2
Canada
(705) 671-2652
www.ontrak.net

Pico Technology Ltd.
The Mill House
Cambridge Street
St. Neots
Cambridgeshire PE19 IQB
United Kingdom
+44 1480-396-395
www.picotech.co.uk

PixelSmart
PO. Box 76
Lewiston, NY 14092
(800) 884-1734
www.pixelsmart.com

HAV PRODUCTS:

SUPPORTED I/F:

HAV PRODUCTS:

SUPPORTED I/F:

SAV PRODUCTS:

SUPPORTED OS:

HAV PRODUCTS:

SUPPORTED I/F:

H/W PRODUCTS:

SUPPORTED I/F:

S/W PRODUCTS:

SUPPORTED OS:

H/W PRODUCTS:

SUPPORTED I/F:

Embedded/industrial
PC, data acq, com-
munications, motion
control
ISA, PCI, PC/104

Data acq, GPIB,
sensors
ISA, PCI, Ethernet,
USB
Distributes data acq
software from
multiple vendors
Win 3.1, Win
95/98/NT

Data acq
Serial port

Data acq
Parallel port, serial
port
PicoLog (data acq)
MS-DOS, Win 3.1,
Win
95/98/Me/NT/2000

Image capture
ISA, PCI, PC/104

Data Acquisition and Related PC Product Manufacturers 397

Quatech HAV PRODUCTS:

662 Wolf Ledges Parkway
Akron, Ohio 44311 SUPPORTED I/F:

(800)553-1170
www.quatech.com SAV PRODUCTS:

SUPPORTED OS:

Real Time Devices USA, Inc. HAV PRODUCTS:

103 Innovation Blvd.
P.O. Box 906
State College, PA 16804 SUPPORTED I/F:

(814) 234-8087
www.rtdusa.com

Scientific Solutions, Inc. HAV PRODUCTS

9323 Hamilton Drive SUPPORTED VF.

Mentor, OH 44060 SAV PRODUCTS

(440) 357-1400 SUPPORTED OS

www.labmaster.com

Sensoray Company Inc. HAV PRODUCTS:

7337 S.W. Tech Center Drive
Tigard, Oregon 97223
(503) 684-8005
www.sensoray.com SUPPORTED I/F:

Signatec HAV PRODUCTS:

1138 East Sixth Street
Corona, CA 92879
(909) 734-3001
www.signatec.com SUPPORTED I/F:

SiliconSoft Inc. HAV PRODUCTS:

4760 Castlewood Dr. SUPPORTED VF:

San Jose, CA
(408) 446-4521
www.siliconsoft.com

Data acq, communi-
cations
ISA, PCI, Compact-
PCI, PCMCIA, USB
DAQDRIVE (drivers)
MS-DOS, Win 3.1,
Win 95/98/NT

Data acq, embedded
PC, image capture,
motion control
PC/104, PC/104P1US

Data acq, GPIB
ISA, PCI
LabPac (drivers)
MS-DOS, Win
95/98/NT/2000

Data acq, image
capture, sensor
conditioning,
embedded PC
ISA, PCI,
CompactPCI,
PC/104, PC/104-
Plus, Ethernet

High-speed data acq,
industrial PC, signal
processing (DSP-
based)
ISA, PCI

Data acq
ISA, parallel port,
serial port

398 Appendix

Soltec Corp. HAV PRODUCTS:

12977 Arroyo Street
San Fernando, CA 91340 SUPPORTED VF:

(800) 423-2344
www.solteccorp.com

Spiral Software SAV PRODUCTS:

57 Baker Hill Road
Lyme, NH 03768 SUPPORTED OS:

(603) 795-4004
www.spiralsoftware.com

SuperLogics HAV PRODUCTS:

94 Falmouth Road
Newton, MA 02465
(617) 332-3627 SUPPORTED I/F:

www.superlogics.com

Symmetric Research HAV PRODUCTS:

9805 NE 116th Street, #7407
Kirkland, WA 98034 SUPPORTED I/F:

(702) 341-9325
www.symres.com

TAL Technologies SAV PRODUCTS:

2027 Wallace Street
Philadelphia PA 19130
(800) 722-6004 SUPPORTED OS:

www.taltech.com

Theorist Interactive, LLC SAV PRODUCTS:

26 Church Street
Harvard Square
Cambridge, MA 02138 SUPPORTED OS:

(617) 868-1774
www.livemath.com

Traquair Data Systems, Inc. HAV PRODUCTS:

114 Sheldon Road SUPPORTED I/F:

Ithaca, NY 14850
(607) 266-6000
www.traquair.com

Data acq, embedded/
industrial PC
ISA, PCI, Compact-
PCI

EasyPlot (data analy-
sis and display)
Win 3.1, Win
95/98/NT

Data acq, signal con-
ditioning, communi-
cations, industrial PC
ISA, PCI, PCMCIA,
RS-232, USB

Data acq, DSP co-
processors
ISA, parallel port

WinWedge, TCP-
Wedge (data acq via
RS-232 or Internet)
MS-DOS, Win 3.1,
Win 95/98/NT/2000

LiveMath (mathe-
matical analysis and
display)
Win 95/98/Me/NT/
2000, Mac OS,
Linux, Solaris

DSP-based data acq
PCI, CompactPCI

Data Acquisition and Related PC Product Manufacturers 399

Ultraview Corp.
34 Canyon View
Orinda, CA 94563
(925) 253-2960
www.ultraviewcorp.com

United Electronic Industries, Inc.
611 Neponset Street
Canton, MA 02021
(800) 829-4632
www.ueidaq.com

Universal Technical Systems, Inc.
202 West State Street, Suite 700
Rockford,IL 61101
(815) 963-2220
www.uts.com

Validyne Engineering
8626 Wilbur Avenue
Northridge, CA 91324
(818) 886-2057
www.validyne.com

VersaLogic Corp.
3888 Stewart Road
Eugene, OR 97402
(541) 485-8575
www.versalogic.com

VMIC
12090 S. Memorial Parkway
Huntsville, AL 35803
(800) 322-3616
www.vmic.com

WaveEdge Technologies
9705 Glenway Ct.
Burke, VA 22015
(703) 455-0750
www.waveedge.com

HAv PRODUCTS: High-speed data acq,
bus extenders

SUPPORTED I/F: I S A , PCI

HAV PRODUCTS: Data acq, signal
conditioning

SUPPORTED I/F: ISA, PCI,
CompactPCI

SAv PRODUCTS: TK Solvcr
(mathematical
analysis)

SUPPORTED OS: Win 95/98/NT/2000

HAV PRODUCTS: Data acq, signal
conditioning, sensors

SUPPORTED I/F: ISA, PCMCIA

H/w PRODUCTS: Embedded PC,
data acq

SUPPORTED I/F: PC/104, PC/104-
Plus, STD Bus

HAV PRODUCTS: Embeddcd/Industrial
PC, data acq,
communications

SUPPORTED I/F: PCI, CompactPCI,
VME, PC/104,
PC/104-Plus

H/w PRODUCTS: High-Speed data acq
SUPPORTED I/F: ISA, PCI

400 Appendix

WaveMetrics, Inc.
P.O. Box 2088
Lake Oswego, OR 97035
(503) 620-3001
www.wavemetrics.com

Windmill Software Ltd.
P.O. Box 58
North District Office
Manchester, M8 8QR
United Kingdom
+44 161-833-2782
www.windmill.co.uk

WinSystems, Inc.
715 Stadium Drive
Arlington, Texas 76011
(817) 274-7553
www.winsystems.com

Wolfram Research, Inc.
1(X) Trade Center Drive
Champaign, IL 61820-7237
(217) 398-0700
www.wolfram.com

Ziatech (an Intel Company)
1050 Southwood Drive
San Luis Obispo, CA 93401
(805) 541-0488
www.ziatech.com

SrW PRODUCTS:

SUPPORTED OS:

HAVPRODUCTS

SUPPORTED I/F:

SAV PRODUCTS

SUPPORTED OS:

IGOR Pro (data anal-
ysis and display)
Win 95/98/Me/NT/
2000, Mac OS

Data acq
USB
Windmill (data acq)
Win 95/98/NT/2000

HAV PRODUCTS: Embedded PC

SUPPORTED I/F: PC/104, PC/104-

Plus, STD Bus

SAV PRODUCTS:

SUPPORTED OS:

HAV PRODUCTS:

SUPPORTED I/F:

Mathematica (mathe-
matical analysis and
display)
Win 95/98/NT/2000,
Mac OS, UNIX,
Linux

Industrial PC
CompactPCI

Bibliography

Advanced Micro Devices. "Personal Computer Products Data Book," Advanced Micro
Devices, Sunnyvale, CA, 1989.

Analog Devices, Inc. "Analog-Digital Conversion Handbook," Prentice-Hall, Engle-
wood Cliffs, NJ, 1986.

Andrews, M. "Learn Visual C++ Now," Microsoft Press, Redmond, WA, 1996.
Apple Computer, Inc. "Designing Cards and Drivers for the Macintosh Family,"

Addison-Wesley, Reading, MA, 1990.
Aptech Systems, Inc. "GAUSS User Guide," Aptech Systems, Inc., 2001.
Biber, C, Ellin, S., Shenk, E., and Stempeck, J. The Polaroid Ultrasonic Ranging

System, 67th Audio Engineering Society Proceedings, New York, 1980.
Burr-Brown Research Corp. "Operational Amplifiers Design and Applications,"

McGraw-Hill, New York, 1971.
Cappellini, V. (ed.). "Data Compression and Error Control Techniques with Applica-

tions," Academic Press, Orlando, FL, 1985.
Cooper, D., and Clancy, M. "Oh! Pascal!," W. W. Norton and Co., New York, 1982.
Comejo, C, and Lee, R. Comparing IBM's Micro Channel and Apple's NuBus. Byte,

Extra Edition—Inside the IBM PCs, 1987.
Cress, R, Dirksen, R, and Graham, J. "FORTRAN IV with WATFOR and WATFIV,"

Prentice-Hall, Englewood CHffs, NJ, 1970.
DeMarre, D., and Michaels, D. "Bioelectronic Measurements," Prentice-Hall, Engle-

wood Cliffs, NJ, 1983.
Dettmann, T. "DOS Programmer's Reference," Que Corp., Carmel, IN, 1988.
Eggebrecht, L. "Interfacing to the IBM Personal Computer," Howard W. Sams and

Co., IndianapoHs, IN, 1986.
Franklin, M. "Using the IBM PC: Organization and Assembly Language Program-

ming," CBS College Publishing, New York, 1984.
Friedman-Hill, E. J. "Java: Your Visual Blueprint for Building Portable Java Pro-

grams," Hungry Minds, Inc., New York, 2001.
Herbert, T. Introduction to TCP/IP, Part 1. Embedded Systems Programming, December

1999.
Higgins, R. "Digital Signal Processing in VLSI," Prentice-Hall, Englewood Cliffs,

NJ, 1990.
Hordeski, M. "The Design of Microprocessor, Sensor and Control Systems," Reston

Pubhshing Co., Reston, VA, 1985.

401

402 Bibliography

IBM Corp. "IBM Personal System/2 Hardware Interface Technical Reference," IBM,
1988.

IBM Corp. "IBM Technical Reference, Disk Operating System," IBM, 1986.
IBM Corp. "IBM Technical Reference, Personal Computer AT," IBM, Boca Raton,

FL, 1985.
IBM Corp. "IBM Technical Reference, Options and Adapters," IBM, Boca Raton,

FL, 1984.
IBM Corp. "IBM Technical Reference, Personal Computer," IBM, Boca Raton, FL, 1984.
Intel Corp. "Microsystem Components Handbook," Intel Corp., Santa Clara, CA, 1985.
Intel Corp. and Microsoft Corp. "Plug and Play ISA Specification, Version 1 .Oa," Intel

Corp. and Microsoft Corp., May 5, 1994.
Johnson, T. A Comparison of MC68000 Family Processors. Byte, September 1986.
Jordan, L., and Churchill, B. "Communications and Networking for the IBM PC and

Compatibles," Prentice-Hall Press, New York, 1987.
Kemighan, B., and Ritchie, D. "The C Programming Language," Prentice-Hall, Engle-

wood Cliffs, NJ, 1978.
King, A. "Inside Windows 95," Microsoft Press, Redmond, WA, 1994.
Laboratory Technologies Corp. "LABTECH User's Guide," Laboratory Technologies

Corp., Andover, MA, 1999.
Marshall, T., and Potter, J. How the Macintosh II NuBus Works. Byte, December 1988.
Mason, W. (ed.). "Physical Acoustics," Academic Press, New York, 1968.
The MathWorks, Inc. "Data Acquisition Toolbox User's Guide, Version 2," The

MathWorks, Inc., Natick, MA, 2000.
The MathWorks, Inc. "Getting Started with MATLAB, Version 6," The MathWorks,

Inc., Natick, MA, 2001.
Microsoft Corp. "Macro Assembler for the MS-DOS Operating System— Program-

mer's Guide," Microsoft Corp., Redmond, WA, 1987.
Microsoft Corp. "Microsoft C for the MS-DOS Operating System—Language Ref-

erence," Microsoft Corp., Redmond, WA, 1987.
Microsoft Corp. "Plug and Play Parallel Port Devices, Version 1.0b," Microsoft Corp.,

March 15, 1996.
Microsoft Corp. "Microsoft Windows 95 Resource Kit," Microsoft Press, Redmond,

WA, 1995.
Motorola, Inc. "M68000 Family Reference," Motorola, Inc., Phoenix, AZ, 1988.
Muratore, J., Carleton, H., and Austerlitz, H. Ultrasonic Spectra of Porous Compos-

ites. IEEE Ultrasonics Symposium Proceedings, San Diego, CA, 1982.
National Instruments. "Getting Started with Lab VIEW," National Instruments, Austin,

TX, 2000.
National Semiconductor Corp. "Linear Databook," National Semiconductor Corp.,

Santa Clara, CA, 1982.
Niemeyer, P., and Peck, J. "Exploring Java," O'Reilly & Associates, Inc., Sebastopol,

CA, 1996.
Norton, H. "Handbook of Transducers," Prentice-Hall, Englewood Cliffs, NJ, 1989.
O'Mara, B. Designing an IEEE 1451.2-Compliant Transducer. Sensors, August 2000.

Bibliography 403

Oppenheim, A., and Schafer, R. "Digital Signal Processing," Prentice-Hall, Engle-
wood Cliffs, NJ, 1975.

PC/104 Consortium. "PC/104-Plus Specification, Version 1.0," PC/104 Consortium,
February 1997.

PC/104 Consortium. "PC/104 Specification, Version 2.3," PC/104 Consortium, June
1996.

PCI Industrial Computers Manufacturers Group. "CompactPCI Short Form Specifi-
cation," PCI Industrial Computers Manufacturers Group, November 1, 1995.

PCI Special Interest Group. "PCI Local Bus Specification, Revision 2.2," PCI Special
Interest Group, Portland, OR, December 18, 1998.

PCMCIA. "PC Card Standard," PCMCIA, March 1997.
Polikar, R. The Wavelet Tutorial. http://www.public.iastate.edu/~rpolikar/WAVELETS,

Iowa State University, Ames, lA, 1998.
Rosch, W. L. "Hardware Bible, Fifth Edition," Que Corp., IndianapoHs, IN, 1999.
Sams Publishing. "Sams Teach Yourself C++ in 21 Days, Fourth Edition," Sams

Publishing, 2001.
Savitch, W. "Java: An Introduction to Computer Science and Programming," Prentice-

Hall, Upper Saddle River, NJ, 1999.
Scalzo, F, and Hughes, R. "Elementary Computer-Assisted Statistics," Van Nostrand

Reinhold Co., 1978.
Schildt, H. "Turbo C/C++: The Complete Reference, Second Edition," Osborne

McGraw-Hill, 1992.
Selvarajan, A. Fiber Optic Sensors and their Applications, http://www.ntu.

edu.sg/mpe/research/programmes/sensors/sensors/fos/fosselva.html, Indian Insti-
tute of Science, Bangalore, India.

Sobell, M. G. "A Practical Guide to Linux," Addison-Wesley, Reading, MA, 1997.
Solari, E. "AT Bus Design," Annabooks, San Diego, CA, 1990.
Solari, E., and Willse, G. "PCI Hardware and Software Architecture and Design, Third

Edition," Annabooks, San Diego, CA, 1996.
Spurgeon, C. E. "Ethernet: The Definitive Guide," O'Reilly & Associates, Inc., Sebas-

topol, CA, 2000.
Summer, S. "Electronic Sensing Controls," Chilton Book Co., Philadelphia, 1969.
Thomas, H. "Handbook of Biomedical Instrumentation and Measurement," Reston

Publishing Co., Reston, VA, 1974.
Travis, B. Sensors Smarten Up. EDN Access, March 4, 1999.
Valens, C. A Really Friendly Guide to Wavelets, http://perso.wanadoo.fr/plyvalens/

clemens/wavelets/wavelets.html.
WaveMetrics, Inc. "IGOR Pro, Version 4.0: Getting Started," WaveMetrics, Inc., Lake

Oswego, OR, 2000.
Weber Systems, Inc. "C Language Users Handbook," Ballantine Books, New York,

1984.
Wells, P. Intel's 80386 Architecture. Byte, Extra Edition—Inside the IBM PCs, 1986.
Wright, P. "Beginning Visual Basic 6," Wrox Press Ltd., Birmingham, U.K., 1998.

This Page Intentionally Left Blank

Index

8-bit I/O port design, simple, 111-114
schematic. 111
serial, 71
servo, 64
software considerations for hardware

interrupts, 114
special-purpose approaches, 77
using hardware interrupts, 112-114

16-bit data transfers on ISA computers,
118-119

ADCs, 62-77
accuracy, 75-77
accuracy determination of, 48
analog I/O cards with, 255
characteristics, 73-77
definition, 2
dual-slope, 65-67
flash, 67-68, 71-72
high speed, 71-73
at higher speeds, 49
multifunction board with, 258
multiplexer and, 3, 48
pipelined, 72-73
ramp, 62-64
range, 29
resolution, 73
sample-and-hold amplifiers and, 45
sampling rate, 73-74
sigma-delta converter, 68-70
successive-approximation, 64-65
variants, 70-71
voltage-to-frequency converter, 67

Agilent VEE, 289
Aliasing, 74-75

definition, 74
examples, 75
problems, 30

American Standard Code for Information
Interchange. See ASCII

Analog input card design, 117-118
Analog signal conditioning, 29-50

circuit components, 30-37. See also Circuit
components, analog circuits, 37-50.
See also Circuits, analog conditioning

techniques, 29-30
Analog signal definition, 2
Analog signal transducers, 2, 6-28

definition, 6
fiber optic sensors, 24—26
fluid flow sensors, 23-24
force and pressure transducers, 13-16
humidity sensors, 22-23
ionizing radiation sensors, 18-19
magnetic field sensors, 16-18
new sensor technologies, 26-28
operation of, expressing, 6
optical sensors, 8-13
position (displacement) sensors, 19-22
properties of, 6
temperature sensors, 7-8

Analog switches and multiplexers, 48, 49
Analog-to-digital converters. See ADCs
Analog versus digitized waveform, 2
Analog/digital conversions, 51-77

ADCs, 62-77
data conversion and DACs, 55, 56-62
digital quantities, 51-55

Apple Macintosh, 1, 4, 308
Apple Macintosh II computers with NuBus,

308-311
Applet definition, 350
Applications. See PC-based data acquisition

applications
Architecture and processors, 304-312

Apple Macintosh II computers with NuBus,
308-311

405

406 Index

Architecture and processors (continued)
DSP chips and cards, 311
EISA (extended industry standard

architecture) bus, 308
IBM PS/2 computers with micro channel

architecture (MCA), 305-308
ASCII, 169

.BAS files, 197-198

.BAT files, 195-197
to binary conversion, 203
codes standard, 170
comma-separated variables (CSV), 281
.DOC files, 197
files, 197-198
Huffman coding, 208
software products and, 280
.TXT files, 197

Assembly language, 327, 328, 330-332
directives, 331, 332
memory model, 331
Microsoft Macro Assembler (MASM),

330-332
.MODEL, 331

AUTOEXEC.BAT, 197
Avalanche photodiode (APD), 12

BASIC (beginner's all-purpose symbolic
instruction code), 328, 333-336, 338

aspect of, important, 335-336
commands, 334, 335
development of, 333, 336
drawbacks of, 333
direct and indirect mode, 333-334
environment, 335
popularity of, 333

.BAT files, 195-197
Batch files. See .BAT files
Binary codes, 52-55, 56

fractional, 55
natural, 52-55
positive integer bit weights for, 53

Binary synchronous communication
(BSC^isync), 176-177

BIOS, 93, 94-95
as DOS-based PC software layer, 123,124, 125
interrupts, 126-127
parallel printer ports and, 147, 148
plug-and-play and, 120

software interrupts and, 125, 126
video cards and, 103

Bit resolution and sampling reduction, 204-206
Bolometer, 13
Bonded strain gage, 13-14
Borland, 352

C programming language, 327,328,329,336-341
aspects, 337-338
confusion with, 339-340
development of, 337
facets, 338
features, 337
function privacy, 338
loop control statements, 340-341
operators, 337
pointers usage, 338-339
power and popularity of, 337

C++ programming language, 328, 341-346
C versus, 342-343, 344, 345
development of, 341
dot operator, 345
encapsulation, 341
function prototype, 344
inheritance, 342
instantiate an object in, 345
manipulator, 343
as object-oriented program (OOP), 341, 342,

344
polymorphism, 342, 343
scope resolution operator, 345
unique features, 345

Capacitive and inductive sensors, 20
CD-R, 106
CD-ROM, 106
CD-RW, 106
Celeron, 80
Centronics (standard) printer interface, 144-148
Charge-coupled device (CCD), 12
Circuit components, analog, 30-37

function generator, 37
operational amplifier, 30, 31-35
phase-locked loop, 36
tone decoder, 36, 37
voltage comparator, 35-36

Circuits, analog conditioning, 37-50
analog switches and multiplexers, 48, 49
filters, 37-43

Index 407

high-frequency, 49-50
instrumentation amplifier, 46-47
isolation amplifiers, 48
log and antilog amplifiers, 4 5 ^ 6
modulation, 49
peak detector, 45
programmable-gain amplifiers, 47
sample-and-hold amplifier, 44, 45
voltage references, 48
Wheatstone bridge, 4 3 ^ 4

.COM files, 198
Commercial data acquisition products, 251-303

Agilent VEE, 289
choosing, 302-303
DADiSP, 298-299
Dasy Lab, 290, 303
Data Translation Inc., 266-270
Gage Applied, Inc., 274-275
GAUSS, 299-300
hardware, 251, 252-277
IGOR Pro, 300
Intelligent Instrumentation, 273-274
Keithley Instruments, Inc., 258-266
LABTECH NOTEBOOK, 279,282-286,288,

303
LabVIEW, 270, 286-288, 303
Mathematica, 301
MATLAB, 291-298
Microsoft Excel, 281, 282, 284, 300-301
Microstar Laboratories, 275-276
National Instruments, 270-272
Omega, 276
Scientific Solutions, Inc., 272-273
selection steps, 302-303
Snap-Master, 291
software, 277-301
Test Point, 289-290, 303

Commercial data compression software, 221
Conmiercial equipment using embedded PCs,

374-382
advantages, 374
board compromise, 375
connecting to other PCs, 375
CYBEX 340 extremity testing system,

376-380
network software, 375
Tektronix TDS7000 series oscilloscope,

380-382
trend of, 374-375

Common-mode rejection ratio (CMMR), 31,
46,47

Convolution and deconvolution, 242-244
Counter/timer, 256-258
Cross-correlation, 250
Curve fitting, 230-232
CYBEX 340 extremity testing system, 376-380

DACs
analog I/O cards with, 255
analog output cards with, 255
applications, 3
binary resistor quad and, 59
characteristics, 60
data conversion and, 55, 56-62
definition, 2, 3
fully decoded, 55, 57
high-speed, 62
monolithic, 60, 62
multiplying, 60-61
parameters, 60-61
R-2R resistance ladder and, 59, 60
weight resistor, 57-59

DADiSP, 298-299
Dasy Lab, 290
Data collection

definition, 1
introduction, 1-5

Data compression techniques, 202-221
ASCII to binary conversion, 203
bit resolution and sampling reduction,

204-206
delta encoding, 206-208
Huffman encoding, 208-212
lossless technique, 203, 208, 213, 221
predictive and interpolative techniques,

216-220
run length encoding, 212-213
significant point extraction, 213-216
software, 221

Data conversion and DACs, 55, 56-62
characteristics of DAC, 60-61
fully coded DACs, 55, 57
high-speed DACs, 62
multiplying DAC, 60
R-2R ladder, 59, 60
resistor quad, 59
weighted resistor DAC, 57-59

408 Index

Data processing and analysis, 222-250
convolution and deconvolution, 242-244
cross-correlation, 250
curve fitting, 230-232
digital filters, 249
Fourier transforms, 234-242, 247, 248
Hilbert transforms, 247
integer formats, 222-226
noninteger formats, 226-229
numerical representation, 222-229
statistical analysis techniques, 229-230
techniques, 229-250
waveform processing, 232-234
wavelet analysis, 247-249
window functions, 244-247

Data storage, 191-202
DOS file types, common, 195-199
DOS disk structure and files, 191-195
Windows file systems, 199-202

Data streaming, 256, 281, 285
Data Translation Inc., 266-270
Debugger program, 328
Delta encoding, 206-208, 372, 373
Device drivers, 132, 136
Digital filters, 249
Digital quantities, 51-55
Digital signal processor (DSP) chips and cards,

311
Digital-to-analog converter. See DAC
Digital voltmeters (DVMs), 66
Direct memory access. See DMA
Disk operation system. See DOS
Displacement sensors. See Position sensors
DMA, 85, 115,256
DOS, 87, 133-135

access file via, 194-195
advantages of, 134
.BAT files, 195-197
boot sector, 192
.COM files, 198
directory structure example, 194
disk structure and files, 191-195
.EXE files, 199
expanded memory, 136-137
file allocation table (FAT), 192-193
file types, common, 195-199
history, brief, 133-134
interrupts, 127-128
limitations, 134-135
memory limitations, overcoming, 135-137

partition table, 192
program overlays, 135-136
programs, special, 132-133
root directory, 193, 194, 197
software drivers, 278
.TXT and other ASCII files, 197-198

DOS-based PC software layers, 123-125
application program, 125
BIOS, 123, 124, 125
diagram of, 124
hardware level, 123

Drivers, 277-278
DriveSpace, 221
Dual-slope converter, 65-67
DVD (digital video/versatile disc) storage, 106
Dynamic range definition, 52
Dynodes, 9, 10

Economics, 3-4
EIA. See Electronic Industries Association
EISA (extended industry standard architecture)

bus, 308
Electrocardiogram (ECG) measurement system,

369-374
acquisition rates, 369
analysis, 373-374
cycle components, 370
data compression, 372, 373
definition, 369
delta Huffman data stream, 373
frequency components, 369
normal beat diagram, 370
parameters measured, 370
PC-based system, 370-371
storage capabilities, 372
zero-order predictor, 373

Electronic Industries Association, 163
asynchronous communications link, setting

up, 171-172
asynchronous communications protocol, 170
comparison of selected standards, 173
connecting two PCs via cable for, 169
connections between DTE and DCE, 165
connections between terminal and modem, 167
EIA RS-232C interfaces, 164-172, 177, 252
EIA RS422A interfaces, 172-175, 252
EIA RS-423C interfaces, 172
EIA RS 485 interfaces, 175-176, 252
handshaking lines, 165, 167-168

Index 409

pin designations, 166
signal levels, 167

Embedded PCs, 4, 314, 318-322, 323
advantage, 319, 374
board compromise, 375
commercial equipment using, 374-382
connecting to other PCs, 375
disadvantage, 319
EBX, 322
industrial versus, 318-319
network software, 375
PC/104, 319-322
PC/104-Plus, 322, 323
as single-board computer (SBC), 319
size, 319
standard for, 319-322

Ethernet, 144, 185-188
elements of, 185
embedded PCs and, 375
frame, 186-188
media access control (MAC), 185, 186
physical medium, 185
signaling components, 185

.EXE files, 199, 329
Expanded memory, 136-137
Expanded memory, 136

Fabry-Perot interferometer, 25-26
Fiber optic sensors, 24-26

Fabry-Perot interferometric, 25-26
microbend, 24-25

Filters, 3 7 ^ 3
active, 38, 41-43
Bessel, 43
Butterworth, 43
Cauer, 43
Chebyshev, 43
classes of, 38
elliptic, 43
equal-ripple, 43
functions, standard, 43
maximally flat, 43
passive, 38, 3 9 ^ 1
RC, 30, 39, 40
responses, 37, 38
RLC, 40-41
switched capacitor, 41, 42
Thompson, 43

FireWire, 144, 178, 180-184
cable, 181

connector pin assignments, 181
data strobe encoding, 182
data transfer, 182-183
evolution of, 184
National Instruments, 270
protocol layers, 183-184

Firmware, 86
First-order predictor, 218
Flash converter, 67-68
Floating aperture, 217-218
Floppy disk storage, 106
Flowmeters

rotational, 23
ultrasonic, 23-24

Fluid flow sensors, 23-24
Force and pressure transducers, 13-16

gage factor (GF), 14
piezoelectric, 14-16
strain gages, 13-14

FORTRAN, 328, 329, 346-347
Fourier transfers, 234-242, 247-248
Frame grabber board, 324-325
Function generator, 37
Future trends, 383

Gage Applied, Inc., 274-275
GAUSS, 299-300
Geiger counters, 18-19
General-purpose interface bus (GPIB). See IEEE

488 interface

Hard drives, 104-105
Hardware interfaces, standard, 142-190

parallel, 144-163
parallel versus serial digital, 142-144
PC networks, 184-190
serial, 163-184

Hardware interfacing to PC bus, 108-122
8-bit I/O port design, simple, 111-114
16-bit data transfers on ISA computers,

118-119
analog input card design, 117-118
DMA, 115
interfacing to PCI bus, 121
I/O data transfers, 108-110
memory data transfers, 110
plug and play, 120-121
wait state generation, 115-116

410 index

Hardware interrupts
software considerations for, 114
using, 112-114

Hardware products, 251, 252-277
add-on devices, 252
analog input cards, 256
analog I/O cards, 255, 256
analog output cards, 255
boards, 252, 253, 255
carrier, 252
counter/timer, 256-258
data acquisition cards, 253, 256
Data Translation Inc., 266-270
digital VO cards, 253, 254, 258
Gage Applied, Inc., 274-275
industry standard architecture (ISA), typical,

253
Intel 8255A programmable peripheral

interface (PPI) block diagram, 254
Intelligent Instrumentation, 273-274
interface cards, 252
Keithley Instruments, Inc., 258-266
Microstar Laboratories, 275-276
multifunction board, 258, 259
National Instruments, 270-272
Omega, 276-277
PCMCIA cards, 258, 260-261, 268, 270, 271
plug-and-play devices, 252
plug-in cards, 252
Scientific Solutions, Inc., 272-273
timer/counters, 256-258
virtual instrument, 253

Head meters, 23
High-level data link control (HDLC), 176, 177
High-speed PC serial interfaces, 177-184

IEEE 1394 (FireWire), 180-184
universal serial port (USB), 178-180

Hilbert transform, 247
HPIB. See IEEE 488 interface
Huffman encoding, 208-212, 372-373
Humidity sensors, 22-23
Hygrometer sensors

capactive, 23
resistive, 22-23

IBM PC/AT, 89-93, 94
expansion bus, 91-93
memory map, 94
motherboard block diagram, 90

IBM PC/XT, 81-89
expansion bus, 87-89
interrupt usage, 126
I/O address map, 84
I/O addressing, interrupts, direct memory

access, and timers, 83-85, 108-110
I/O card slot connector, 88
memory (RAM and ROM), 85-87
memory map, 83
motherboard block diagram, 82

IBM PC/XT/AT and compatible computers,
80-81, 102

memory segmentation, 80-81
motherboards, 81

IBM PS/2 computers with micro channel
architecture (MCA), 305-308

IEEE 488 interface, 152-162, 252
cable, 153, 154
data transfer handshaking, 156
HS 488, 162
IEEE 488.2, 158
instrumentation example, 161
linear configuration, 154
management lines, 155, 157
master-slave protocol, 153
National Instruments and, 270
pin designations, 154-155
polling techniques, 157
standard commands for programmable

instruments (SCPI), 158-162
standards structure diagram, 160
uses, 153

IEEE 1284 standard, 151, 152
IEEE 1394. 5^^ FireWire
IGOR Pro, 300
Image capture products, 322, 324—325
Inductive and capacitive sensors, 20
Industrial PCs, 314-318

CompactPCI, 316, 317-318
desktop versus, 314-315
diskless, 315
embedded versus, 319-319
form factors, 315
passive backplane, 315
PCI and ISA buses, 315
problem with, 315-316
PXI, 316, 318

Industry standard architecture (ISA), 79
Inheritance, 342
Instrumentation amplifiers (lAs), 46-47

Index 411

Intel 80x86 CPU, 4, 79
Intel 8255A PPI, 254-255
Intelligent Instrumentation, 273-274
Interfaces, standard hardware. See Hardware

interfaces, standard
Interfacing hardware to PC bus, 108-122

8-bit I/O port design, simple, 111-114
16-bit data transfers on ISA computers,

118-119
analog input card design, 117-118
DMA, 115
interfacing to PCI bus, 121
I/O data transfers, 108-110
memory data transfers, 110
plug and play, 120-121
wait state generation, 115-116

Interfacing software to PC, 123-141
DOS, 133-135
DOS-based layers, 123-125
DOS programs, special, 132-133
interrupts, 125-128
overcoming DOS memory limitations,

135-137
polled versus interrupt-driven software,

128-131
protected-mode operating systems,

137-141
Internet access, 5
Interrupts

hardware, 112-114
polled versus interrupt-driven software,

128-131
software, 125-128
software program example, 129-130

Introduction, 1-5
block diagram, 3
economics, 3-^
software, 5

I/O data transfers, 108-110
Ionizing radiation sensors, 18-19
Isolation amplifiers, 48

Java, 350-352
advantages, 350
applet, 350
C++versus, 350, 351
development of, 350
as dynamic language, 351
features, 351

352

portability of, 350
sample program, 351
structure, 351
syntax, 351

Java Virtual Machine (JVM), 350
Josephson junction, 17, 18
JPEG files, 221

Keithley Instruments, Inc., 258-266
Keyboard, 103

LabVIEW, 270, 279, 286-288
LABTECH NOTEBOOK, 279, 282-286, 288

boards supported, 283
data streaming, 285
display features, 284
features, 283
interfaces, 285
Internet and, 286
output data file formats, 284
processing operations, 283
provided by, 282
running, 284, 285
sample display, 284
setting up, 283

Laptop computers. See Notebook PCs and
PCMCIA cards

Linear interpolator, 219-220
Linear predictor, 218-219, 220
Linear voltage differential transformer. See

LVDTs
Linux, 78, 140-141
Local area network (LAN), 133, 185-188
Local curvature, 214—216
Lockout window, 365
Log and antilog amplifiers, 45-46
LVDTs, 20, 21

Machine vision. See Image capture products
Macro definition, 332
Magnetic disk, 191, 192
Magnetic field sensors, 16-18

fixed, 16-18
half effect, 16-17
SQUIDS, 17-18
varying, 16

Mathematica, 301

412 index

MATLAB, 279, 291-298, 329, 338
arrays, 291-292, 295
diagram of, desktop, 293
essence of, 292
features, 292
functions, 291
graphics, 292, 295-296
mathematical functions, 295
matrix manipulation, 292, 293-294
plotting, 295-296
saving in, 295
starting, 292
toolboxes, 296-297, 298

Memory data transfers, 110
Memory segmentation, 80-81
MEMS. See Microelectromechanical systems
Microelectromechanical systems, 26-27, 91
Microprocessors, 79-80
Microsoft Windows

95, 139
95 file system, 200-201
Borland programs and, 352
dynamic hnk library (DLL) files and, 278
Excel, 281, 282, 284, 300-301
file allocation table (FAT), 199-200
files systems, 199-202
installable file systems (IPS), 200-201
Macro Assembler (MASM), 330
NETBEUI, 375
NT, 78, 80, 139, 140
NT file system, 202
programming for, 352-357
as protected-mode operating system,

138-140
Visual Basic, 353-355
Visual C++, 353, 355-357

Microstar Laboratories, 275-276
Modulation, 49
Monolithic temperature transducers, 8
Motherboards, 81, 82, 90
MPEG algorithms, 221

National Instruments, 270-272, 286
Networking PCs, 184-190

Ethernet, 185-188
TCP/IP, 188-190

New sensor technologies, 26-28
Nonmaskable interrupt (NMI), 112

Notebook PCs and PCMCIA cards, 252, 12-314
16-bit PC pin assignments, 313
advantages and disadvantages, 312
expandability, 312
linking to desktop PC, 314
sizes for cards, 312

NuBus, Apple Macintosh II computers with,
308-311

Numerical representation, 222-229
floating-point formats, 227-228
four-bit signed integers, 224
integer formats, 222-226
multibyte integer storage, 223
noninteger formats, 226-229
range and precision of various formats, 228

Nyquist theorem, 74, 206, 238

Object-oriented program (OOP), 341, 342, 344,
354

Omega, 276-277
Operating systems, protected-mode, 137-141

Linux, 140-141
Microsoft Windows, 138-140
OS/2, 137-138
UNIX, 140

Operational amplifier (op amp), 30, 31-35
choosing, 34
common-mode rejection ratio (CMRR), 31,

46,47
diagram of, 31
difference amplifier, 33, 34
differentiator, 33, 34
gain versus frequency curve diagram, 32
integrator, 34
inverting amplifier, 33
noinverting amplifier, 33
powering of, 31
voltage follower, 32, 33

Optical drives, 106
Optical encoders, 20, 21-22

absolute, 22
incremental, 21

Optical sensors, 8-13
photoconductive cells, 11
photovoltaic (solar) cells, 11
semiconductor light, 11-12
thermoelectric, 12-13
vacuum tube photosensors, 8-11

Index 413

OS/2, 137-138
Overlays, 135-136

Parallel interfaces, 144-163
advanced printer ports, 148-152
Centronics (standard) printer, 144-148
IEEE 488 (GPIB), 152-162
serial digital versus, 142-144
small computer system (SCSI), 162-163

Parallel printer ports
advanced, 148-152
enhanced (EPP), 148-151
extended capabilities (ECP), 151, 152
IEEE 1284 standard, 151, 152
interface timing, 146
pin assignments, 145
PS/2 bidirectional, 148

Parity checking, 86
Pascal, 328, 347-350

assignment operator, 349
C versus, 347, 349
development of, 347
example program, 348
loops, 349-350
mathematical operators, 347
structure, 348
syntax rules, 348

Passive backplane systems, 315, 318
PC. See Personal computers
PC-based data acquisition applications, 361-383

categories, 361
conmiercial equipment using embedded PCs,

374-382
electrocardiogram measurement system,

369-374
embedded, 361
future trends, 383
turnkey system, 336
ultrasonic measurement system, 362-369

PCI (peripheral component interconnect)
64-bit bus, 98, 101
analog I/O cards, 256
bus, interfacing to, 121
eliminating, 178
expansion card pinout, 99-100
extension pinout, 101
Macintosh computers and, 4
operations, 96-98, 99-100

other local buses and, 95
overview, 95-96
PCI-X, 98

PCMCIA cards and notebook PCs, 252, 312-314
Peak detector, 45
Pentium microprocessor families, 79-80
Peripherals, PC, 102-107
Personal Computer Memory Card Industry

Association (PCMCIA). See Notebook PCs
and PCMCIA cards

Personal computers, 78-107
architectures and processors, 304-312
BIOS, 86, 93, 94-95
components, 78
embedded, 314, 318-322
IBM PC/AT, 89-93, 94
IBM PC/XT, 81-89
IBM PC/XT/AT and compatible computers,

80-81
industrial, 314-318
networks, 184-190. See also Networking PCs
notebook and PCMCIA cards, 312-314
PCI and other local buses, 95-101
peripherals, 102-107
as workstation, 78

Phase-locked loop, 36
Photoconductive cells, 11
Photodarlington, 12
Photodiode, 11-12
Photovoltaic (solar) cells, 11
Piezoelectric transducers, 14-16, 23
Pipeline converter, 72-73
PKZIP, 221, 280, 373
PLL. See Phase-locked loop
Plug and play, 120-121, 252
Polled versus interrupt-driven software, 128-131
Polymorphism, 342, 343
Position sensors, 19-22

capactive and inductive, 20
LVDTs, 20, 21
optical encoders, 20, 21-22
potentiometers, 20
ultrasonic range finder, 22

Potentiometers, 20
Predictive and interpolative techniques,

216-220
Pressure and force transducers. See Force and

pressure transducers
Printers and plotters, 106-107

414 Index

Processors and architectures. See Architecture
and processors

Product manufacturers, 385-400
Program definition, 327
Programmable-gain ampHfiers (PGAs), 47
Programmable peripheral interface (PPI), Intel

8225A, 254-255
Progranmiing languages, 326-360

Assembly, 327, 328, 330-332
BASIC, 328, 333-336
C, 327, 328, 329, 336-341
C++, 328, 341-346
compiled versus interpreted, 328-329
considerations for writing computer programs,

357-360
debugger program, 328
FORTH, 329
FORTRAN, 328, 329, 346-347
high-level and low-level, 327-328
Java, 350-352
Unking, 329
machine language, 327
MATLAB, 329
for Microsoft Windows, 352-357
Pascal, 347-350
popular, 330-352
program, 327
Visual Basic, 353-355
Visual C++, 355-357

Protected-mode operating systems, 137-141
PS/2 bidirectional parallel port, 148

RAM, 85-86
Ramp converter, 62-64
Resistance temperature detectors (RTDs), 8
Resistor quad, 59
ROM, 86-87
Rotational flowmeters, 23
Run length encoding (RLE), 212-213

Sample-and-hold (S&H) amplifier, 44, 45
Scientific Solutions, Inc., 272-273
Scintillation counters, 19
Semiconductor light sensors, 11-12
Semiconductor radiation detectors, 19
Semiconductor strain gages, 14
Sensors. See also various categories of sensors

fiber optic, 24-26
fluid flow, 23-24
humidity, 22-23

IEEE 1451 standards and smart sensors, 27-28
ionizing radiation, 18-19
magnetic field, 16-18
new technologies, 26-28
optical, 8-13
position, 19-22
temperature, 7-8

Serial interfaces, 163-184
EIA RS-232C and RS-423A, 164-172
EIA RS-422A and RS-485, 172-176
factors to differentiate, 163
high-speed, 177-184
parallel digital versus, 142-144
protocols used, 163-164
reasons for using, 163
synchronous communications protocols,

176-177
Sigma-delta converter, 68-70, 370
Significant point extraction, 213-216
Single-board computers (SBCs), 319
Single instruction multiple data (SIMD), 80
Small computer system interface (SCSI), 105,

162-163, 281
Smart Transducer Interface Module, 27-28
Snap-Master, 291
Software considerations for hardware interrupts,

114
Software interfacing to PC, 123-141

DOS, 133-135
DOS-based layers, 123-125
DOS programs, special, 132-133
interrupts, 125-128
overcoming DOS memory limitations,

135-137
polled versus interrupt-driven software,

128-131
protected-mode operating systems, 137-141

Software products, 277-301
Agilent VEE, 289
ASCII and, 280
command-driven, 278-279
DADiSP, 298-299
Dasy Lab, 290
data analysis, 281-282
data compression format, 280-281
data display, 282
data streamer, 281
driver, 277-278
factors to consider, 280
GAUSS, 299-300
IGOR Pro, 300

Index 415

LABTECH NOTEBOOK, 279, 282-286, 288
Lab VIEW, 279, 286-288
Mathematica, 301
MATLAB, 279, 291-298
menu-based versus command-driver user

interfaces, 279-280
Microsoft Excel, 281, 282, 284, 300-301
selecting, 282
Snap-Master, 290
spreadsheet programs, 281
Test Point, 289-290
trade-off in, 278-279

Software selection importance, 5
Spreadsheet programs, 281
SQUIDS, 17-18
Standard commands for progranamable

instruments (SCPI), 158-162
Statistical analysis techniques, 229-230
STIM. See Smart Transducer Interface Module
Storage, 105-106
Strain gages, 13-14
Successive-approximation converter, 64-65
Superconducting quantum interference device.

See SQUIDS
Synchronous communications protocols,

176-177

Tape drives, 105-106
Tektronix TDS7000 series oscilloscope, 380-382
Temperature sensors, 7
Terminate-and-stay-resident (TSR) programs,

130, 132-133
Test Point, 289-290
Thermistors, 7-8
Thermocouples, 7
Thermoelectric optical sensors, 12-13
Thermopile, 13
Timer/counters, 256-258
Tone decoder, 36, 37
Transducers. See Analog signal transducers
.TXT and other ASCII files, 197-198
Transmission control protocol and Internet

protocol (TCP/IP), 188-190

Ultrasonic flowmeters, 23-24
Ultrasonic measurement system, 362-369

analog-to-digital converters (ADCs), 363, 364
analysis, 366-367
basis of, 362

DSP techniques, 367
lockout window, 365-366
ranging system, 362
sample-and-hold amplifier, 364
sequence of events, 363
temperature measurement, 366
thickness measurements, 368
using multiple cycles to acquire repetitive

waveform, 364-365
waveforms, typical, 366

Ultrasonic range finder, 22
Unbonded strain gage, 13
Universal asynchronous receiver/transmitter

(UART), 171
Universal serial bus (USB), 178-180

cable, 178
connection to PC, typical, 179
connector pin assignments, 179
evolution of, 180

UNIX, 78, 140, 330
USB. see Universal serial bus

Vacuum tube photosensors, 8-11
gas photodiode, 9
photodiode, vacuum, 9
photomultiplier tube (PMT), 9-11, 19

Video Electronics Standards Association
(VESA), 95

Visual Basic, 353-355
ActiveX, 354
aspects of, 353-354
BASIC versus, 353
basis of, 353
control in, 354
event-driven model, 353-354
example, 354
features, 354
as hierarchical object-oriented language, 354
versions of, 353
Visual C+-I- versus, 355

Visual C-F+, 353, 355-357
advantage, 356-357
App Wizard, 355
creating program, 355
Microsoft foundation class (MFC) library,

355, 357
sample program, 356
Visual Basic versus, 355
windows application programming interface

(API), 357

416 Index

Voltage comparator, 35-36
Voltage references, 48
Voltage-to-frequency converter (VFC),

Wait states, 88
AT systems and, 119
generation, 115-116
schematic, 116

Waveform processing, 232-234
Wavelet analysis, 247-249
Wheatstone bridge, 43-44

67

Windows. See Microsoft Windows
WINZIP, 221, 280, 373
Writing computer programs, considerations for,

357-360
choosing programming language, 359
debugging program, 359
documentation, 360
flowchart, 357-358
starting point, 357

Zero-order predictor (ZOP), 216-218, 373

	Front Cover
	Data Acquisition Techniques Using PCs
	Copyright Page
	Contents
	Preface to the Second Edition
	Chapter 1. Introduction to Data Acquisition
	Chapter 2. Analog Signal Transducers
	2.1 Temperature Sensors
	2.2 Optical Sensors
	2.3 Force and Pressure Transducers
	2.4 Magnetic Field Sensors
	2.5 Ionizing Radiation Sensors
	2.6 Position (Displacement) Sensors
	2.7 Humidity Sensors
	2.8 Fluid Flow Sensors
	2.9 Fiber Optic Sensors
	2.10 Other New Sensor Technologies

	Chapter 3. Analog Signal Conditioning
	3.1 Signal Conditioning Techniques
	3.2 Analog Circuit Components
	3.3 Analog Conditioning Circuits

	Chapter 4. Analog/Digital Conversions
	4.1 Digital Quantities
	4.2 Data Conversion and DACs
	4.3 ADCs

	Chapter 5. The PC
	5.1 IBM PC/XT/AT and Compatible Computers
	5.2 The IBM PC/XT
	5.3 The IBM PC/AT
	5.4 BIOS
	5.5 PCI and Other Local Buses
	5.6 PC Peripherals

	Chapter 6. Interfacing Hardware to a PC Bus
	6.1 I/O Data Transfers
	6.2 Memory Data Transfers
	6.3 A Simple, 8-Bit I/O Port Design
	6.4 DMA
	6.5 Wait State Generation
	6.6 Analog Input Card Design
	6.7 16-Bit Data Transfers on ISA Computers
	6.8 Plug and Play
	6.9 Interfacing to the PCI Bus

	Chapter 7. Interfacing Software to the PC
	7.1 DOS-Based PC Software Layers
	7.2 Software Interrupts
	7.3 Polled versus Interrupt-Driven Software
	7.4 Special DOS Programs
	7.5 DOS
	7.6 Overcoming DOS Memory Limitations
	7.7 Protected-Mode Operating Systems

	Chapter 8. Standard Hardware Interfaces
	8.1 Parallel versus Serial Digital Interfaces
	8.2 Parallel Interfaces
	8.3 Standard Serial Interfaces
	8.4 PC Networks

	Chapter 9. Data Storage and Compression Techniques
	9.1 DOS Disk Structure and Files
	9.2 Common DOS File Types
	9.3 Windows File Systems
	9.4 Data Compression Techniques
	9.5 Commercial Data Compression Software

	Chapter 10. Data Processing and Analysis
	10.1 Numerical Representation
	10.2 Data Analysis Techniques

	Chapter 11. Commercial Data Acquisition Products
	11.1 Commercial Data Acquisition Hardware Products
	11.2 Commercial Data Acquisition Software Products
	11.3 How to Choose Commercial Data Acquisition Products

	Chapter 12. Other PC Configurations and Hardware for Data Acquisition
	12.1 Alternative PC Architectures and Processors
	12.2 Notebook PCs and PCMCIA Cards
	12.3 Industrial and Embedded PCs
	12.4 Image Capture Products

	Chapter 13. Computer Programming Languages
	13.1 Popular Programming Languages
	13.2 Programming for Microsoft Windows
	13.3 Considerations for Writing Computer Programs

	Chapter 14. PC-Based Data Acquisition Applications
	14.1 Ultrasonic Measurement System
	14.2 Electrocardiogram Measurement System
	14.3 Commercial Equipment Using Embedded PCs
	14.4 Future Trends in PC-Based Data Acquisition

	Appendix: Data Acquisition and Related PC Product Manufacturers
	Bibliography
	Index

