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Preface to the _ 
Second Edition 

Many things have changed in the decade since the first edition of Data 
Acquisition Techniques Using PCs was pubUshed. PCs based on Intel micro-
processors and Microsoft Windows (the ubiquitous "Wintel" platform) have 
become the dominant standard in small computers. They have also become 
the most common computers in labs, offices, and industrial settings for data 
acquisition and general-purpose applications. The world of PCs has continued 
to evolve at a frenetic pace and the data acquisition market has changed along 
with it, albeit more gradually (for example, ISA data acquisition cards are 
still readily available). 

Some of the changes in this edition include minimizing the amount of 
material covering now-obsolete PCs (such as IBM's Micro Channel PS/2 line 
and Apple's NuBus-based Macintosh line) while adding information about 
more current standards (such as the PCI bus, the USB interface, and the Java 
programming language). Most importantly, I have completely updated infor-
mation about commercially available data acquisition products (both hard-
ware and software) in Chapter 11. The listing of hardware and software data 
acquisition product manufacturers in the Appendix is now twice the size it 
was in the original edition. 

This book is intended as a tutorial and reference for engineers, scientists, 
students, and technicians interested in using a PC for data acquisition, anal-
ysis, and control applications. It is assumed that the reader knows the basic 
workings of PCs and electronic hardware, although these aspects will be 
briefly reviewed here. Several sources listed in the bibliography are good 
introductions to many of these topics (both hardware and software). 

This book stresses "real" applications and includes specific examples. 
It is intended to provide all the information you need to use a PC as a data 
acquisition system. In addition, it serves as a useful reference on PC technol-
ogy. Since the area of software is at least as important as hardware, if not 
more so, software topics (such as programming languages, interfacing to a 
PC's software environment, and data analysis techniques) are covered in detail. 
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C H A P T E R 

Introduction t o -
Data Acquisition 

Data acquisition, in the general sense, is the process of collecting information 
from the real world. For most engineers and scientists these data are mostly 
numerical and are usually collected, stored, and analyzed with a computer. 
The use of a computer automates the data acquisition process, enabling the 
collection of more data in less time with fewer errors. This book deals solely 
with automated data acquisition and control using personal computers (PCs). 
We will primarily concern ourselves with IBM-style PCs based on Intel 
microprocessors (80x86 and Pentium families) running Microsoft operating 
systems (MS-DOS and Windows). In general, the information in this book 
is applicable to desktop, laptop, and embedded PCs. However, many plug-in 
PCI data acquisition cards will also work in newer Apple Macintosh comput-
ers, with appropriate software drivers. In addition, USB, IEEE-1394 (FireWire) 
and PCMCIA-based data acquisition hardware will work with any style of 
computer which supports that interface, as long as software drivers are avail-
able for that platform. 

An illustrative example of the utiUty of automated data acquisition is 
measuring the temperature of a heated object versus time. Human observers are 
limited in how fast they can record readings (say, every second, at best) and 
how much data can be recorded before errors due to fatigue occur (perhaps after 
5 minutes or 300 readings). An automated data acquisition system can easily 
record readings for very small time intervals (i.e., much less than a millisecond), 
continuing for arbitrarily long time periods (hmited mainly by the amount of 
storage media available). In fact, it is easy to acquire too much data, which can 
complicate the subsequent analysis. Once the data are stored in a computer, 
they can be displayed graphically, analyzed, or otherwise manipulated. 
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Most real-world data are not in a form that can be directly recorded by 
a computer. These quantities typically include temperature, pressure, distance, 
velocity, mass, and energy output (such as optical, acoustic, and electrical 
energy). Very often these quantities are measured versus time or position. A 
physical quantity must first be converted to an electrical quantity (voltage, 
current, or resistance) using a sensor or transducer. This enables it to be 
conditioned by electronic instrumentation, which operates on analog signals 
or waveforms (a signal or waveform is an electrical parameter, most often a 
voltage, which varies with time). This analog signal is continuous and mono-
tonic, that is, its values can vary over a specified range (for example, some-
where between -5.0 volts and +3.2 volts) and they can change an arbitrarily 
small amount within an arbitrarily small time interval. 

To be recorded (and understood) by a computer, data must be in a digital 
form. Digital waveforms have discrete values (only certain values are allowed) 
and have a specified (usually constant) time interval between values. This 
gives them a "stepped" (noncontinuous) appearance, as shown by the digitized 
sawtooth in Figure 1-1. When this time interval becomes small enough, the 
digital waveform becomes a good approximation to the analog waveform (for 
example, music recorded digitally on a CD). If the transfer function of the 
transducer and the analog instrumentation is known, the digital waveform can 
be an accurate representation of the time-varying-quantity to be measured. 

The process of converting an analog signal to a digital one is called 
analog-to-digital conversion, and the device that does this is an analog-to-
digital converter (ADC). The resulting digital signal is usually an array of 
digital values of known range (scale factor) separated by a fixed time interval 
(or sampling interval). If the values are sampled at irregular time intervals, 
the acquired data will contain both value and time information. 

The reverse process of converting digital data to an analog signal is 
called digital-to-analog conversion, and the device that does this is called a 

(a) Analog Waveform (b) Digitized Waveform 

Figure 1-1 Comparison of analog and digitized wavefornfis: (a) sawtooth analog 
wavefornfi with (b) a coarse digitized representation. 
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Storage 

Analog Inputs Analog Outputs 

TTTTTITT 
Inputs from Sensors Outputs to Controls 

Figure 1-2 Simplified block diagram of a data acquisition system. 

digital-to-analog converter (DAC). Some common applications for DACs 
include control systems, waveform generation, and speech synthesis. 

A general-purpose laboratory data acquisition system typically consists 
of ADCs, DACs, and digital inputs and outputs. Figure 1-2 is a simplified 
block diagram of such a system. Note that additional channels are often added 
to an ADC via a multiplexer (or mux), used to select which one of the several 
analog input signals to convert at any given time. This is an economical 
approach when all the analog signals do not need to be simultaneously 
monitored. 

Economics is a major rationale behind using PCs for data acquisition 
systems. The typical data acquisition system of 20-25 years ago, based on a 
minicomputer, cost about 20 times as much as today's systems, based on PCs, 
and ran at lower performance levels. This is largely due to the continuing 
decrease in electronic component costs along with increased functionality 
(more logic elements in the same package) and more sophisticated software. 
The PC has become ubiquitous throughout our society, both in and out of 
laboratories. Continuous improvements in hardware and software technologies 
drive PCs and their peripheral devices to lower costs and higher performance. 
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Since PCs are commonplace in most labs and offices, the cost of imple-
menting a data acquisition system is often just the price of an add-in board 
(or module) and support software, which is usually just a moderate expense. 
For very simple applications, standard PC hardware (such as a sound card) 
may be all you need for data acquisition. 

There may be applications where a data acquisition system based on a 
PC is not appropriate and a more expensive, dedicated system should be used. 
The important system parameters for making such a decision include sam-
pling speed, accuracy, resolution, amount of data, multitasking capabilities, 
and the required data processing and display. Of course, dedicated data 
acquisition systems may be PC-based themselves, with an embedded PC (see 
Chapter 12 for information on embedded PCs). 

PC-based systems have fewer limitations in these areas than ever before, 
even regarding sampling speed and handling large amounts of data. Newer, 
high-performance PCs can even outperform some dedicated data acquisition 
systems. The evolution of PCs based on the Intel 80x86 microprocessor (or 
CPU), which includes the original IBM PC/XT/AT/PS2 computers, is dem-
onstrated in Table 1-1, showing processor speed, bus width, and the amount 
of available memory space. 

Apple's Macintosh computer line has also been used as a platform for 
data acquisition. These machines, originally based on the Motorola 68000 
family of microprocessors, had certain advantages over the older Intel-based 
PCs, including a graphical, consistent operating environment and a linear 
memory addressing space (the segmented addressing space of the Intel 80x86 
family will be discussed in Chapter 5). Newer Macintosh computers use the 
same PCI interface for add-in cards as contemporary Intel-based PCs (see 
Chapter 5 for a discussion of the PCI bus). 

TABLE 1-1 
Intel 80x86 CPU Family Bus Size Characteristics 

CPU 

jsose 
8088 

i80286 

180386 

180486 

1 Pentium 

DATA BUS 
WIDTH (bits) 

16 

8 

16 

32 

32 

32̂ ^ 

ADDRESS BUS 
WIDTH (bits) 

20 

20 

24 

32 

32 

32 

MEMORY SPACE 1 
(Mbytes) 

1 1 
1 1 

16 1 
4096 1 
4096 1 
4096 1 

* Internal Bus = 64 bits wide. 
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Software is as important to data acquisition systems as hardware capa-
bilities. Inefficient software can waste the usefulness of the most able data 
acquisition hardware system. Conversely, well-written software can squeeze 
the maximum performance out of mediocre hardware. Software selection is 
at least as important as hardware selection and often more complex. 

Data acquisition software controls not only the collection of data, but 
also its analysis and eventual display. Ease of data analysis and presentation 
are the major reasons behind using computers for data acquisition in the first 
place. With the appropriate software, computers can process the acquired data 
and produce outputs in the form of tables or plots. Without these capabilities, 
you are not doing much more than using a sophisticated (and expensive) data 
recorder. 

An additional area of software use is that of control. Computer outputs 
may control some aspects of the system that is being measured, as in auto-
mated industrial process controls. The software must be able to measure 
system parameters, make decisions based on those measurements, and vary 
the computer outputs accordingly. For example, in a temperature regulation 
system, the input would be a temperature sensor and the output would control 
a heater. In control applications, software reliability and response time are 
paramount. Slow or erroneous software responses could cause physical dam-
age. Control applications are especially important for embedded PCs, which 
package full PC functionality into a small form factor, such as PC-104 (see 
Chapter 12). 

A recent, important software capability is Internet access. Many new 
products allow you to perform remote data acquisition using the Internet (and 
its TCP/IP protocol). It is now fairly simple to monitor and control a data 
acquisition system located nearly anywhere in the world as well as share the 
data with a large group of colleagues. 

There is a plethora of PC-based software packages commercially avail-
able, which can collect, analyze, and display data graphically, using little or 
no programming (see Chapter 11). They allow users to concentrate on their 
applications, instead of worrying about the mechanics of getting data from 
point A to point B, or how to plot a set of Cartesian coordinates. Many 
commercial software packages contain all three capabilities of data acquisi-
tion, analysis, and display (the so-called "integrated" packages), whereas 
others are optimized for only one or two of these areas. 

The important point is that you do not have to be a computer expert or 
even a programmer to implement an entire PC-based data acquisition system. 
Best of all, you do not have to be rich, either. 

The next chapter examines the world of analog signals and their trans-
ducers, the "front end" of any data acquisition system. 



C H A P T E R 

Analog Signal 
Transducers 

Most real-world events and their measurements are analog. That is, the mea-
surements can take on a wide, nearly continuous range of values. The physical 
quantities of interest can be as diverse as heat, pressure, light, force, velocity, 
or position. To be measured using an electronic data acquisition system, these 
quantities must first be converted to electrical quantities such as voltage, 
current, or impedance. 

A transducer converts one physical quantity into another. For the pur-
poses of this book, all the transducers mentioned convert physical quantities 
into electrical ones, for use with electronic instrumentation. The mathematical 
description of what a transducer does is its transfer function, often designated 
H. So the operation of a transducer can be described as 

Output Quantity = Hx Input Quantity 

Since the transducer is the "front end" of the data acquisition system, 
its properties are critical to the overall system performance. Some of these 
properties are sensitivity (the efficiency of the energy conversion), stability 
(output drift with a constant input), noise, dynamic range, and linearity. Very 
often the transfer function is dependent on the input quantity. It may be a 
linear function for one range of input values and then become nonlinear for 
another range (such as a square-law curve). Looking at sensitivity and noise, 
if the transducer's sensitivity is too low, or its noise level too high, signal 
conditioning may not produce an adequate signal-to-noise ratio. 

Often the transducer is the last consideration in a data acquisition 
system, since it is seen as mundane. Yet, it should be the primary consideration. 
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The characteristics of the transducer, in large part, determine the Umits of a 
system's performance. 

Now we will look at some common transducers in detail. 

2.1 Temperature Sensors. 

Temperature sensors have electrical parameters that vary with temperature, 
following well-characterized transfer functions. In fact, nearly all electronic 
components have properties which vary with temperature. Many of them 
could potentially be temperature transducers if their transfer functions were 
well behaved and insensitive to other variables. 

2.1.1 Thermocouples 

The thermocouple converts temperature to a small DC voltage or current. It 
consists of two dissimilar metal wires in intimate contact in two or more 
junctions. The output voltage varies linearly with the temperature difference 
between the junctions—the higher the temperature difference, the higher the 
voltage output. This linearity is a chief advantage of using a thermocouple, as 
well as its ruggedness as a sensor. In addition, thermocouples operate over very 
large temperature ranges and at very high temperatures (some, over 1000°C). 

Disadvantages include low output voltage (especially at lower tempera-
tures), low sensitivity (typical output voltages vary only about 5 mV for a 100°C 
temperature change), susceptibility to noise (both externally induced and inter-
nally caused by wire imperfections and impurities), and the need for a reference 
junction (at a known temperature) for calibration. Most data acquisition hard-
ware designed for temperature measurements contain an electronic reference 
junction. You must enter the thermocouple material type you are using, so it is 
properly calibrated. Common thermocouple materials include copper/constan-
tan (Type T), iron/constantan (Type J), and chromel/alumel (Type K). 

When several thermocouples, made of the same materials are combined 
in series, they are called a thermopile. The output voltage of a thermopile consists 
of the sum of all the individual thermocouple outputs, resulting in increased 
sensitivity. All the reference junctions are kept at the same temperature. 

2.1.2 Thermistors 

A thermistor is a temperature-sensitive resistor with a large, nonlinear, negative 
temperature coefficient. That is, its resistance decreases nonlinearly as temper-
ature increases. It is usually composed of a mixture of semiconductor materials. 
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It is a very sensitive device, but has to be properly calibrated for the desired 
temperature ranges, since it is a nonlinear detector. Repeatability from device 
to device is not very good. Over relatively small temperature ranges it can 
approximate a linear response. It is prone to self-heating errors due to the 
power dissipated in it (P = IR), This effect is minimized by keeping the 
current passing through the thermistor to a minimum. 

2.1.3 Resistance Temperature Detectors 

Resistance temperature detectors (RTDs) rely on the temperature dependence 
of a material's electrical resistance. They are usually made of a pure metal 
having a small but accurate positive temperature coefficient. The most accu-
rate RTDs are made of platinum wire and are well characterized and linear 
from 14°K to higher than 600°C. 

2.1.4 Monolithic Temperature Transducers 

The monolithic temperature transducer is a semiconductor temperature sensor 
combined with all the required signal conditioning circuitry and located in 
one integrated circuit. This device typically produces an output voltage pro-
portional to the absolute temperature, with very good accuracy and sensitivity 
(a typical device produces an output of 10 mV per degree Kelvin over a 
temperature range of 0-100 degrees Celsius). The output of this device can 
usually go directly into an ADC with very little signal conditioning. 

2.2 Optical Sensors 

Optical sensors are used for detecting light intensity. Typically, they respond 
only to particular wavelengths or spectral bands. One sensor may respond 
only to visible light in the blue-green region, while another sensor may have 
a peak sensitivity to near-infrared radiation. 

2.2.1 Vacuum Tube Photosensors 

This class of transducers consists of special-purpose vacuum tubes used as 
optical detectors. They are all relatively large, require a high-voltage power 
supply to operate, and are used only in very specialized applications (as is 
true with vacuum tubes in general). These sensors exploit the photoelectric 
effect, when photons of light striking a suitable surface produce free electrons. 
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Incident 
Photons 

Figure 2-1 Vacuum photodiode. 

The vacuum photodiode consists of a photocathode and anode in a 
glass or quartz tube. The photocathode emits electrons when struck by 
photons of light. These electrons are accelerated to the anode by the high (+) 
voltage and produce a current pulse in the external load resistor /?L (see Figure 
2-1). These tubes have relatively low sensitivity, but they can detect high-
frequency light variations or modulation (as high as 100 MHz to 1 GHz), for 
an extremely fast response. 

The gas photodiode is similar to a vacuum photodiode, except the tube 
contains a neutral gas. A single photoelectron (emitted by the photocathode) 
can collide with several gas atoms, ionizing them and producing several extra 
electrons. So, more than one electron reaches the anode for every photon. 
This gas amplification factor is usually 3-5 (larger values cause instabilities). 
These tubes have a limited frequency response of less than 10 kHz, resulting 
in a much slower response time. 

The photomultiplier tube (PMT) is the most popular vacuum tube device 
in this category. It is similar to a vacuum photodiode with several extra 
electrodes between the photocathode and anode, called dynodes. Each dynode 
is held at a more positive voltage than the previous dynode (and the cathode) 
via a resistor voltage-divider network (see Figure 2-2). Photoelectrons emitted 
by the photocathode strike the first dynode, which emits several secondary 
electrons for each photoelectron, amplifying the photoelectric effect. These 
secondary electrons strike the next dynode and release more electrons. This 
process continues until the electrons reach the end of the dynode amplifier 
chain. There, the anode collects all the electrons produced by a single photon, 
resulting in a relatively large current pulse in the external circuit. 
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Dynode 

Dynode 
Dynode 

Incident 
Anode Cathode Photon 

(a) Cross section of typical PMT 

Anode 

^Dynode 

* Dynode 

* Dynode 

* Dynode 

»Dynode 

»Dynode I 

^Cathode! 

(b) Wiring diagrann for typical PMT 

Figure 2-2 Photomultiplier tube (PMT). 

The PMT exhibits very high gain, in the range of 10-10 electrons 
emitted per incident photon. This is determined by the number of dynodes, 
the photocathode sensitivity, power supply voltage, and tube design factors. 
Some PMTs can detect individual photons! 

A PMT's output pulses can be measured as a time-averaged current 
(good for detecting relatively high light levels) or in an individual pulse-
counting mode (good for very low light levels) measuring the number of 
pulses per second. Then, a threshold level is used to filter out unwanted pulses 
(noise) below a selected amplitude. 

Some of the noise produced in a PMT is spontaneous emission from 
the electrodes, which occurs even in the absence of light. This is called the 
dark count, which determines the PMT's sensitivity threshold. So, the number 
of photons striking the PMT per unit time must be greater than the dark count 
for the photons to be detected. In addition, most PMTs have a fairly low 
quantum efficiency, a measure of how many photons are required to produce 
a measurable output (expressed as a percentage, where 100% means that 
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every photon striking the sensor will produce an output). Also, PMTs have 
a limited usable life, as the photocathode wears out with time. 

2.2.2 Photoconductive Cells 

A photoconductive cell consists of a thin layer of material, such as cadmium 
sulfide (CdS) or cadmium selenide (CdSe) sandwiched between two elec-
trodes, with a transparent window. The resistance of a cell decreases as the 
incident light intensity increases. These cells can be used with any resistance-
measuring apparatus, such as a bridge. They are commonly used in photo-
graphic light meters. A photoconductive cell is usually classified by maximum 
(dark) resistance, minimum (light) resistance, spectral response, maximum 
power dissipation, and response time (or frequency). 

These devices are usually nonlinear and have aging and repeatability 
problems. They exhibit hysteresis in their response to light. For example, the 
same cell exposed to the same light source may have a different resistance, 
depending on the light levels it was previously exposed to. 

2.2.3 Photovoltaic (Solar) Cells 

These sensors are similar in construction to photoconductive cells. They are 
made of a semiconductor material, usually silicon (Si) or gallium arsenide 
(GaAs), that produces a voltage when exposed to light (of suitable wavelength). 
They require no external power supply and very large cells can be used as DC 
power sources. They have a relatively slow response time to light variations 
but are fairly sensitive. Since the material used must be grown as a single 
crystal, large photovoltaic cells are very expensive. 

A large amount of research has been conducted in recent years in an 
attempt to produce less expensive photovoltaic cells made from either amor-
phous, polycrystalline, or thin-film semiconductors. If these low-cost devices 
can attain light conversion efficiency similar to that of monocrystalline cells 
(in the range of 15-20%), they can become a practical source of electric energy. 

2.2.4 Semiconductor Light Sensors 

The members of this class of transducers are all based on a semiconductor 
device, such as a diode or transistor, whose output current is a function of 
the light (of suitable wavelength) incident upon it. 

The photodiode is a PN junction diode with a transparent window that 
produces charge carriers (holes and electrons) at a rate proportional to the 
incident light intensity. So the photodiode acts as a photoconductive device, 
varying the current in its external circuit (but, being a semiconductor, it does 
not obey Ohm's law). A photodiode is a versatile device with a high frequency 
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response and a linear output, but low sensitivity, and it usually requires large 
amounts of amplification. It typically uses a transconductance amplifier, 
which converts the photodiode output current to a voltage. A common pho-
todiode sensor is the PIN diode, which has an insulating region between the 
p and n materials. This device usually requires a reverse DC bias voltage for 
optimum performance (speed and sensitivity). Conventional silicon photo-
diodes have usable sensitivity to light wavelengths in the range of 450-1050 
nanometers (from the visible spectrum into the near infrared). For longer 
wavelengths, other semiconductors, such as indium gallium arsenide 
(InGaAs) are used. 

The phototransistor is similar to a photodiode, except that the transistor 
can provide amplification of the PN junction's light-dependent current. The 
transistor's emitter-base junction is the light-sensitive element. A photodar-
lington is a special phototransistor, composed of two transistors in a high-gain 
circuit. The phototransistor offers much higher sensitivity than the photodiode 
at the expense of a much lower bandwidth (response time) and poorer linearity. 

The avalanche photodiode (APD) is a special photodiode which has 
internal gain and is a semiconductor analog to the PMT. This gain is normally 
in the range of 10 to a few hundred (typically around 100 for a silicon device). 
The APD employs a high reverse bias (from several hundred volts up to a 
few thousand volts) to produce a strong internal electrical field that accelerates 
the electrons generated by the incident photons and results in secondary 
electrons from impact ionization. This is the electron avalanche, resulting in 
gain. Advantages of the APD are small size, solid-state reliability (as long as 
the breakdown voltage is not exceeded), high quantum efficiency, and a large 
dynamic range. Compared to PMTs, APDs have much lower gain, smaller 
light-collecting areas, and a high temperature sensitivity. APD bias must be 
temperature compensated to keep gain constant. 

The charge-coupled device (CCD) is a special optical sensor consisting 
of an array (one- or two-dimensional) of light-sensitive elements. When photons 
strike a photosensitive area, electron/hole pairs are created in the semiconductor 
crystal. The holes move into the substrate and the electrons remain in the 
elements, producing a net electrical charge. The amount of charge is propor-
tional to the amplitude of incident light and the exposure time. The charge at 
each photosensitive element is then read out serially, via support electronics. 
CCDs are conmionly used in many imaging systems, including video cameras. 

2.2.5 Thermoelectric Optical Sensors 

This class of transducers convert incident light to heat and produce a tem-
perature output dependent on light intensity, by absorbing all the incident 
radiation in a "black box." They generally respond to a very broad light 
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spectrum and are relatively insensitive to wavelength, unlike vacuum tube 
and solid-state sensors. However, they have very slow response times and 
low sensitivities and are best suited for measuring static or slowly changing 
light levels, such as calibrating the output of a light source. 

The bolometer varies its resistance with thermal energy produced by 
incident radiation. The most common detector element used in a bolometer 
is a thermistor. They are also commonly used for measuring microwave power 
levels. 

The thermopile, as discussed under temperature sensors, is more com-
monly used than individual thermocouples in light-detecting applications 
because of its higher sensitivity. It is often used in infrared detectors. 

2.3 Force and Pressure Transducers 

A wide range of sensors are used for measuring force and pressure. Most 
pressure transducers rely on the movement of a diaphragm mounted across 
a pressure differential. The transducer measures this minute movement. 
Capacitive and inductive pressure sensors operate the same way as capacitive 
and inductive displacement sensors, which are described later on. 

2.3.1 strain Gages 

Strain gages are transducers used for directly measuring forces and their 
resulting strain on an object. Stress on an object produces a mechanical 
deformation—strain—defined as 

Strain = length change/length 

Strain gages are conductors (often metallic) whose resistance varies with strain. 
For example, as a wire is stretched, its resistance increases. Strain gages are 
bonded to the object under stress and are subject to the same forces. They are 
very sensitive to strain in one direction only (the axis of the conductor). 

A simple unbonded strain gage consists of free wires on supports 
bonded to the stressed surface. These are not usually used (outside of labo-
ratory demonstrations) because of their large size and mechanical clumsiness. 

The bonded strain gage overcomes these problems by putting a zigzag 
pattern of the conductor on an insulating surface, as shown in Figure 2-3. 
These are relatively small, have good sensitivity, and are easily bonded to the 
surface under test. The conductor in a bonded strain gage is a metallic wire, 
foil, or thin film. 
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SENSITIVE AXIS 

Figure 2-3 Sinfipie, one-dimensional strain gage. 

Strain gage materials must have certain, well-controlled properties. The 
most important is sensitivity or gage factor (GF), which is the change in 
resistance per change in length. Most metallic strain gages have a GF in the 
range of 2 to 6. The material must also have a low temperature coefficient of 
resistance as well as stable elastic properties and high tensile strength. Often, 
strain gages are subject to very large stresses as well as wide temperature swings. 

Semiconductor strain gages, usually made of silicon, have a much 
higher GF than metals (typically in the range of 50 to 200). However, they 
also have much higher temperature coefficients, which have to be compen-
sated for. They are conmionly used in monolithic pressure sensors. 

Because of their relatively low sensitivities (resistance changes nomi-
nally 0.1 to 1.0%), strain gages require bridge circuits to produce useful 
outputs. (We will discuss bridge circuits in Chapter 3.) If a second, identical 
strain gage, not under stress, is put into the bridge circuit, it acts as a 
temperature compensator. 

2.3.2 Piezoelectric Transducers 

Piezoelectric transducers are used for, among other things, measuring time-
varying forces and pressures. They do not work for static measurement, since 
they produce no output from a constant force or pressure. 

Certain crystalline materials (including quartz, barium titanate, and 
lithium niobate) generate an electromotive force (emf) when mechanically 
stressed. Conversely, when a voltage is applied to the crystal, it will become 
mechanically distorted. This is the piezoelectric effect. 

If electrodes are placed on suitable (usually opposite) faces of the crystal, 
the direction of the deforming force can be controlled. If an AC voltage is 
applied to the electrodes, the crystal can produce periodic motion, resulting 



2.3 Force and Pressure Transducers 15 

Electrodes 

Ultrasonic ^ 
Waves N 

Crystal 
/ 

/ 

^ ^ 

- < ^ 

Electrodes 

K Ultrasonic 
y^ Waves 

Ultrasonic 
Waves i 

Sr Ultrasonic 
Waves 

^ 

Crystal 

^ — • ^ ^ — ^ 

(a) Longitudinal Mode (b) Transverse Mode 

Figure 2-4 Oscillation modes of piezoelectric crystals. 

in an acoustic wave, which can be transmitted through other material. When 
an acoustic wave strikes a piezoelectric crystal, it produces an AC voltage. 

When a piezoelectric crystal oscillates in the thickness or longitudinal 
mode, an acoustic wave is produced, where the direction of displacement is 
the direction of wave propagation, as shown in Figure 2-4a. When the crystal's 
thickness equals a half-wavelength of the longitudinal wave's frequency (or 
an odd multiple half-wavelength) it is resonant at that frequency. At resonance 
its mechanical motion is maximum along with the acoustic wave output. And 
when it is detecting acoustic energy, the output voltage is maximum for the 
resonant frequency. 

This characteristic is applied to quartz crystal oscillators, used as highly 
accurate electronic frequency references in a broad range of equipment, from 
computers to digital watches. 

Typically, piezoelectric crystals are used as ultrasonic transducers for 
frequencies above 20 kHz, up to about 100 MHz. The limitation on frequency 
range is due to the impracticalities of producing crystals thin enough for very 
high frequencies, or the unnecessary expense of producing very thick crystals 
for low frequencies (where electromagnetic transducers work better). 
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Other crystal deformation modes are transverse, where the direction of 
motion is at right angles to the direction of wave propagation (as shown in 
Figure 2-4b), and shear, which is a mix of longitudinal and transverse modes. 
These modes all have different resonant frequencies. 

Piezoelectric transducers have a wide range of applications, besides 
dynamic pressure and force sensing, including the following: 

1. Acoustic microscopy for medical and industrial applications, such 
as "seeing" through materials that are optically opaque. An example 
is the sonogram. 

2. Distance measurements including sonar and range finders. 
3. Sound and noise detection such as microphones and loudspeakers 

for audio and ultrasonic acoustic frequencies. 

2.4 Magnetic Field Sensors 

This group of transducers is used to measure either varying or fixed magnetic 
fields. 

2.4.1 Varying Magnetic Field Sensors 

These transducers are simple inductors (coils) that can measure time-varying 
magnetic fields such as those produced from an AC current source. The 
magnetic flux through the coil changes with time, so an AC voltage is induced 
that is proportional to the magnetic field strength. 

These devices are often used to measure an alternating current (which 
is proportional to the AC magnetic field). For standard 60-Hz loads, trans-
formers are used that clamp around a conductor (no direct electrical contact). 
These are usually low-sensitivity devices, good for 60 Hz currents greater 
than 0.1 ampere. 

2.4.2 Fixed Magnetic Field Sensors 

Several types of transducers are commonly used to measure static and slowly 
varying magnetic fields, such as those produced by a permanent magnet or 
a DC electromagnet. 

Hall Effect Sensors When a current-carrying conductor strip is placed with 
its plane perpendicular to an applied magnetic field (B) and a control current 
(IQ) is passing through it, a voltage (VH) is developed across the strip at right 
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Figure 2-5 Hall effect nfiagnetic field sensor. 

angles to 1Q and B, as shown in Figure 2-5. VH is known as the Hall voltage 
and this is the Hall effect: 

VH = Kl^BId 

where: 

B = magnetic field (in gauss), 
d = thickness of strip, 
K = Hall coefficient. 

The value of K is very small for most metals, but relatively large for certain 
n-type semiconductors, including germanium, silicon, and indium arsenide. 
Typical outputs are still just a few millivolts/kilogauss at rated /c- Although 
a larger IQ or a smaller d should increase V, these would cause excessive self-
heating of the device (by increasing its resistance) and would change its 
characteristics as well as lower its sensitivity. The resistance of typical Hall 
devices varies from a few ohms to hundreds of ohms. 

SQUIDs SQUID stands for superconducting quantum interference device, a 
superconducting transducer based on the Josephson junction. A SQUID is a 
thin-film device operating at liquid helium temperature (~4°K), usually made 
from lead or niobium. The advent of higher temperature superconductors that 
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can operate in the liquid nitrogen region (~78°K) may produce more practical 
and inexpensive SQUIDs. 

A SQUID element is a Josephson junction that is based on quantum 
mechanical tunneling between two superconductors. Normally, the device is 
superconducting, with zero resistance, until an applied magnetic field switches 
it into a normal conducting state, with some resistance. If an external current 
is applied to the device (and it must be low enough to prevent the current 
from switching it to a normal conductive state—another Josephson junction 
property), the voltage across the SQUID element switches between zero and 
a small value. The resistance and measured voltage go up by steps (or quanta) 
as the applied magnetic field increases. It measures very small, discrete 
(quantum) changes in magnetic field strength. 

Practical SQUIDs are composed of arrays of these individual junctions 
and are extremely sensitive magnetometers. For example, they are used to 
measure small variations in the earth's magnetic field, or even magnetic fields 
generated inside a living brain. 

2.5 Ionizing Radiation Sensors. 

Ionizing radiation can be particles produced by radioactive decay, such as 
alpha or beta radiation, or high-energy electromagnetic radiation, including 
gamma and X-rays. In many of these detectors, a radiation particle (a photon) 
collides with an active surface material and produces charged particles, ions, 
and electrons, which are then collected and counted as pulses (or events) per 
second or measured as an average current. 

2.5.1 Geiger Counters 

When the electric field strength (or voltage) is high enough in a gas-filled 
tube, electrons produced by primary ionization gain enough energy between 
coUisions to produce secondary ionization and act as charge multipUers. In 
a Geiger-Muller tube the probability of this secondary ionization approaches 
unity, producing an avalanche effect. So, a very large current pulse is caused 
by one or very few ionizing particles. The Geiger-Muller tube is made of 
metal and filled with low-pressure gas (at about 0.1 atm) with a fine, electri-
cally isolated wire running through its center, as shown in Figure 2-6. 

A Geiger counter requires a recovery time (dead time) of -200 micro-
seconds before it can produce another discharge (to allow the ionized particles 
to neutralize). This limits its counting rate to less than a few kilohertz. 
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Figure 2-6 Typical Geiger-Muller tube. 

2.5.2 Semiconductor Radiation Detectors 

Some/7-n junction devices (typically diodes), when properly biased, can act 
as solid-state analogs of an ion chamber, where a high DC voltage across a 
gas-filled chamber produces a current proportional to the number of ionizing 
particles striking it per unit time, due to primary ionization. When struck by 
radiation the devices produce charge carriers (electrons and holes) as opposed 
to ionized particles. The more sensitive (and useful) devices must be cooled 
to low temperatures (usually 78°K, by liquid nitrogen). 

2.5.3 Scintillation Counters 

This device consists of a fluorescent material that emits Ught when struck by a 
charged particle or radiation, similar to the action of a photocathode in a pho-
todiode. The emitted hght is then detected by an optical sensor, such as a PMT. 

2.6 Position (Displacement) Sensors 

A wide variety of transducers are used to measure mechanical displacement 
or the position of an object. Some require actual contact with the measured 
object; others do not. 
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2.6.1 Potentiometers 

The potentiometer (variable resistor) is often mechanically coupled for dis-
placement measurements. It can be driven by either AC or DC signals and 
does not usually require an amplifier. It is inexpensive but cannot usually be 
used in high-speed applications. It has limited accuracy, repeatability, and 
lifetime, due to mechanical wear of the active resistive material. These devices 
can either be conventional rotary potentiometers or have a linear configuration 
with a slide mechanism. Often, the resistive element is polymer-based to 
increase its usable life. 

2.6.2 Capacitive and Inductive Sensors 

Simple capacitive and inductive sensors produce a change in reactance 
(capacitance or inductance) with varying distance between the sensor and the 
measured object. They require AC signals and conditioning circuitry and have 
limited dynamic range and linearity. They are typically used over short dis-
tances as a proximity sensor, to determine if an object is present or not. They 
do not require contact with the measured object. 

2.6.3 LVDTs 

The LVDT {linear voltage differential transformer) is a versatile device used 
to measure displacement. It is an inductor consisting of three coils wound 
around a movable core, connected to a shaft, as shown in Figure 2-7. The 
center coil is the transformer's primary winding. The two outer coils are 
connected in series to produce the secondary winding. The primary is driven 
by an AC voltage, typically between 60 Hz and several kilohertz. At the null 
point (zero displacement), the core is exactly centered under the coils and 
the secondary output voltage is zero. If the shaft moves, and the core along 
with it, the output voltage increases linearly with displacement, as the induc-
tive coupling to the secondary coils becomes unbalanced. A movement to 
one side of the null produces a 0° phase shift between output and input signal. 
A movement to the other side of null produces a 180° phase shift. 

If the displacement is kept within a specified range, the output voltage 
varies linearly with displacement. The main disadvantages to using an LVDT 
are its size, its complex control circuitry, and its relatively high cost. 

2.6.4 Optical Encoders 

The optical encoder is a transducer commonly used for measuring rotational 
motion. It consists of a shaft connected to a circular disc, containing one or 
more tracks of alternating transparent and opaque areas. A light source and 
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Figure 2-7 Linear variable differential transfornfier (LVDT). 

an optical sensor are mounted on opposite sides of each track. As the shaft 
rotates, the Ught sensor emits a series of pulses as the light source is inter-
rupted by the pattern on the disc. This output signal can be directly compatible 
with digital circuitry. The number of output pulses per rotation of the disc is 
a known quantity, so the number of output pulses per second can be directly 
converted to the rotational speed (or rotations per second) of the shaft. Encod-
ers are commonly used in motor speed control applications. Figure 2-8 shows 
a simple, one-track encoder wheel. 

An incremental optical encoder has two tracks, 90° out of phase with 
each other, producing two outputs. The relative phase between the two chan-
nels indicates whether the encoder is rotating clockwise or counterclockwise. 
Often there is a third track that produces a single index pulse, to indicate an 
absolute position reference. Otherwise, an incremental encoder produces only 
relative position information. The interface circuitry or computer must keep 
track of the absolute position. 
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Figure 2-8 Simple one-track optical encoder wheel (24 lines = 15° resolution). 

An absolute optical encoder has several tracks, with different patterns on 
each, to produce a binary code output that is unique for each encoded position. 
There is a track for each output bit, so an 8-bit absolute encoder has 8 tracks, 
8 outputs and 256 output combinations, for a resolution of 360/256 = 1.4°. The 
encoding is not always a simple binary counting pattern, since this would 
result in adjacent counts where many bits change at once, increasing the 
likelihood of noise and reading errors. A Gray code is often used, because 
it produces a pattern where each adjacent count results in only one bit 
change. An absolute encoder is usually much more expensive than a compa-
rable incremental encoder. Its main advantage is the ability to retain absolute 
position information, even when system power is removed. 

2.6.5 Ultrasonic Range Finder 

In Chapter 14, an ultrasonic range finder is discussed, as a noncontact dis-
placement measurement technique. The time it takes an ultrasonic pulse to 
reflect from an object is measured and the distance to the object calculated 
from that time delay, using a known ultrasonic velocity. 

2.7 Humidity Sensors. 

Relative humidity is the moisture content of the air compared to air completely 
saturated with moisture and is expressed as a percentage. 

2.7.1 Resistive Hygrometer Sensors 

There are resistive hygrometer elements whose resistance varies with the 
vapor pressure of water in the surrounding atmosphere. They usually contain 
a hygroscopic (water-absorbing) salt film, such as lithium chloride, which 
ionizes in water and is conductive with a measurable resistance. These devices 
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are usable over a limited humidity range and have to be periodically cali-
brated, as their resistance may vary with time, because of temperature and 
humidity cycling, as well as exposure to contaminating agents. 

2.7.2 Capacitive Hygrometer Sensors 

There are also capacitive hygrometer elements that contain a hygroscopic 
film whose dielectric constant varies with humidity, producing a change 
in the device's capacitance. Some of these can be more stable than the 
resistive elements. The capacitance is usually measured using an AC bridge 
circuit. 

2.8 Fluid Flow Sensors 

Many industrial processes use fluids and need to measure and control their flow 
in a system. A wide range of transducers and techniques are commonly used 
to measure fluid flow rates (expressed as volume per unit time passing a point). 

2.8.1 Head Meters 

A head meter is a common device, where a restriction is placed in the flow 
tube producing a pressure differential across it. This differential is measured 
by a pair of pressure sensors and converted to a flow measurement. The 
pressure transducers can be any type, such as those previously discussed. The 
restriction devices include the orifice plate, the venturi tube, and the flow nozzle. 

2.8.2 Rotational Flowmeters 

Rotational flowmeters use a rotating element (such as a turbine) which is 
turned by the fluid flow. Its rotational rate varies with fluid flow rate. The 
turbine blades are usually made of a magnetized material so that an external 
magnetic pickup coil can produce an output voltage pulse each time a blade 
passes under it. 

2.8.3 Ultrasonic Flowmeters 

Ultrasonic flowmeters commonly use a pair of piezoelectric transducers 
mounted diagonally across the fluid flow path. The transducers act as a 
transmitter and a receiver (a multiplexed arrangement), measuring the velocity 
of ultrasonic pulses traveling through the moving fluid. The difference in the 
ultrasonic frequency between the "upstream" and "downstream" measure-
ments is a function of the flow rate, due to the Doppler effect. Alternately, 
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small time delay differences between the "upstream" and "downstream" mea-
surements can be used to determine flow rate. 

2.9 Fiber Optic Sensors 

A new class of sensors, based on optical fibers, is emerging from laboratories 
throughout the world. These fiber optic sensors are used to measure a wide 
range of quantities, including temperature, pressure, strain, displacement, 
vibration, and magnetic field, as well as sensing chemical and biomedical 
materials. They are immune from electromagnetic interference (EMI), can 
operate in extremely harsh environments, can be very small, and are fairly 
sensitive. They are even embedded into large structures (such as bridges and 
buildings) to monitor mechanical integrity. 

Inherently, fiber optic sensors measure optical amplitude, phase, or 
polarization properties. In a practical sensor, one or more of these parameters 
varies with the physical quantity of interest (pressure, temperature, etc.). The 
simplest fiber optic sensors are based on optical amplitude variations. These 
sensors require a reference channel to minimize errors due to long-term drift 
and light source variations. Sensors that measure optical phase or frequency 
employ an interferometer. These interferometric sensors offer much better 
sensitivity, resolution, and stability than simpler amplitude-based sensors. In 
addition, they are insensitive to fiber length. That is why they are the most 
commonly used type of fiber optic sensor. 

2.9.1 Fiber Optic IVIicrobend Sensor 

This type of fiber optic sensor is commonly used to measure pressure, dis-
placement, and vibration. An optical fiber is sandwiched between two rigid 
plates with a wavy profile, as shown in Figure 2-9. This produces microbends 
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Figure 2-9 Fiber optic microbend sensor. 
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in the fiber, which cause light loss and decreased amplitude. A change in 
distance between the plates varies the magnitude of these bends and thus 
modulates the light intensity. 

2.9.2 Fiber Optic Fabry-Perot Interferometric Sensor 

The Fabry-Perot etalon is the most common interferometer structure used as 
a fiber optic sensor, since only one fiber is required to connect the sensor to 
the detector section. A classic Fabry-Perot interferometer is formed by two 
closely spaced, partially reflecting mirrors which form a resonant optical 
cavity with maximum optical transmission at wavelengths that are multiples 
of the mirror spacing, at small incident light angles (see Figure 2-10). 

In a fiber sensor, a Fabry-Perot etalon can be formed using one end of 
the fiber itself (with a reflective coating deposited on it) and a separate, 
movable mirror. Alternatively, two mirrored surfaces can be used, and the 
fiber simply transmits the light. When the position of a moveable mirror in 
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Figure 2-10 Fabry-Perot interferometer. 
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Figure 2-11 Fabry-Perot fiber sensor and detector. 

the etalon changes, the intensity of Hght reflected back up the fiber changes, 
for a fixed wavelength, narrow-band Hght source. With a broad-band Hght 
source (i.e., white Hght), the peak wavelength shifts with mirror position and 
can be measured using a spectrometer detector. A simplified system diagram 
of a Fabry-Perot fiber sensor, commercially used for pressure and strain 
measurements, is shown in Figure 2-11. 

2.10 Other New Sensor Technologies 

Besides fiber optics, other new technologies are gaining importance in com-
mercial sensors. These include microelectromechanical systems (MEMS) and 
smart sensors. 

2.10.1 MEMS 

MEMS are small electromechanical devices fabricated using semiconductor 
integrated-circuit processing techniques. By building a "micromachine" on a 
silicon wafer, the device can connect to signal processing electronics on that 
same wafer. Many of the sensors we have previously discussed have MEMS-
based versions available. Sophisticated demonstrations of MEMS have 
included devices such as micromotors and gas chromatographs. Practical 
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MEMS pressure sensors and accelerometers have been commercially avail-
able for several years. 

For example, Analog Devices' ADXL series of MEMS accelerometers 
are based on a structure suspended on the surface of a silicon wafer via 
polysilicon springs, which provide resistance to acceleration. Under acceler-
ation, the structure deflects and this is measured via an arrangement of 
capacitors, fabricated using both fixed plates and plates attached to the moving 
structure. Signal generating and conditioning circuitry on the chip decodes 
this capacitance change to produce an output pulse with a duty cycle propor-
tional to the measured acceleration. 

2.10.2 Smart Sensors and the IEEE 1451 Standards 

The category of smart sensors is quite broad and not clearly defined. A smart 
sensor can range from a traditional transducer that simply contains its own 
signal conditioning circuitry to a device that can calibrate itself, acquire data, 
analyze it, and transmit the results over a network to a remote computer. 
There are many commercial devices that can be called smart sensors, such 
as temperature sensor ICs that incorporate high and low temperature set points 
(to control heating or cooling devices). Many sensors, including pressure 
sensors, are now available with an RS-232C interface (see Chapter 8) to 
receive configuration commands and transmit measurements back to a host 
computer. 

An emerging class of smart sensors is defined by the family of IEEE 
1451 standards, which are designed to simplify the task of establishing com-
munications between transducers and networks. 

IEEE 1451.2 is an adopted standard in this group that defines transducer-
to-microcontroller and microcontroller-to-network protocols. This standard 
defines a Smart Transducer Interface Module (STIM), which is a remote, 
networked, intelligent transducer node, supporting from 1 to 255 sensor and 
actuator channels. This STIM contains a Transducer Electronic Datasheet 
(TEDS), which is a section of memory that describes the STIM and its 
transducer channels. The STIM communicates with a microcontroller in a 
Network Capable Application Processor (NCAP) via the Transducer Inde-
pendent Interface (Til), which is a 10-wire serial bus. Figure 2-12 shows how 
these parts of the IEEE 1451.2 standard fit together in a typical application. 

The TEDS is a key element of the IEEE 1451.2 standard. It describes 
the transducer type for each channel, timing requirements, data format, 
measurement limits, and whether calibration information is present in the 
STIM. This information is read by the microcontroller in the NCAP, through 
the Til connection. Among other functions, the NCAP can write correction 
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Figure 2-12 IEEE 1451.2 smart transducer interface standard. 

coefficients into the TEDS and read sensor data from the STIM. The read 
data is then sent to a remote computer on the network, via the NCAP. The 
NCAP definition is network independent. There are already commercial 
NCAPs available that work with RS-485 and Ethernet networks. 

Some other early commercial IEEE 1451.2 products are STIMs and 
STIM-ready ICs. An example of the later is Analog Devices' ADuC812 
MicroConverter. It is a special-purpose microcontroller containing an ADC, 
two DACS, both program and data flash EEPROM, and data RAM. It contains 
the logic to implement a Til, memory for TEDS storage, a multiplexer for 
up to eight transducer channels, and the circuitry to convert data from those 
analog channels. 

This survey of common transducers and sensors suitable for a data 
acquisition system is hardly exhaustive. It should give you a feel for the types 
of devices and techniques applied to various applications and help you deter-
mine the proper transducer to use for your own system. 
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Analog Signal 
Conditioning 

Nearly all transducer signals must be conditioned by analog circuitry before 
they can be digitized and used by a computer. This conditioning often includes 
amplification and filtering, although more complex operations can also be 
performed on the waveforms. 

3.1 Signal Conditioning Techniques 

Amplification (or occasionally attenuation) is necessary for the signal's ampli-
tude to fit within a reasonable portion of the ADC's dynamic range. For 
example, let us assume an ADC has an input range of 0-5 V and an 8-bit 
output of 2 = 256 steps. Each output step represents 5/256 = 19.5 mV. If a 
sensor produces a waveform of 60 mV peak-to-peak (p-p), when directly 
digitized (by this ADC) it will use only 3 of the 256 available output steps 
and be severely distorted. If the sensor signal is first amplified by a factor of 
83 (producing a 5 V p-p waveform), it will use the ADC's full dynamic range 
and a minimum of information is lost. Of course, if it is amplified too much, 
some of the signal will be cUpped and severely distorted, now in a different way. 

Filtering must usually be performed on analog signals for several rea-
sons. Sometimes noise or unwanted signal artifacts can be eliminated by 
filtering out certain portions of the signal's spectra. For example, a system 
with high gain levels may need a 60 Hz notch filter to remove noise produced 
by AC power lines. A low-frequency drift on a signal without useful DC 
information can be removed using a high-pass filter. Most often, low-pass 
filters are employed to limit the high end of a waveform's frequency response 
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just prior to digitization, to prevent aliasing problems (which will be discussed 
in Chapter 4). 

Additional analog signal processing functions include modulation, 
demodulation, and other nonlinear operations. 

3.2 Analog Circuit Components 

The simplest analog circuit elements are passive components: resistors, capac-
itors, and inductors. They can be used as attenuators and filters. For example, 
a simple RC circuit can be used as a high-pass or low-pass filter, as shown 
in Figure 3-1. 

Discrete semiconductor devices, such as diodes and transistors, are 
commonly used in analog signal-conditioning circuits. Diodes are useful, 
among other things, as rectifiers/detectors, switches, clamps, and mixers. 
Transistors are often used as amplifiers, switches, oscillators, phase shifters, 
filters, and many other applications. 

3.2.1 The Operational Amplifier 

The most common analog circuit semiconductor component is the operational 
amplifier, called the op amp. This circuit element is usually a monolithic device 
(an integrated circuit), although hybrid modules, based on discrete transistors, 
are still used in special applications. The op amp is used in both linear and 
nonlinear applications involving amplification and signal conditioning. 

The "classic" op amp, which we will discuss in detail here, is based on 
a voltage-feedback architecture. There is a newer class of amplifiers, based 

input Output Input Output 

(a) Low-Pass Filter (b) High-Pass Filter 

Figure 3-1 Simple RC filters. 
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Figure 3-2 The operational amplifier (op amp). 

on a current-feedback architecture, which we will cover later in this chapter 
while discussing high-frequency circuits. 

An op amp, shown in Figure 3-2, consists of a differential voltage 
amplifier that can operate at frequencies from zero up to several megahertz. 
However, there are special high-frequency amplifiers, usable up to several 
hundred megahertz. The op amp has two inputs, called noninverting (+) and 
inverting (-), and responds to the voltage difference between them. The part 
of the output derived from the (-h) source is in phase with the input, while 
the part from the (-) source is 180° out of phase. If a signal is equally applied 
to both inputs, the output will be zero. 

This property is called common-mode rejection. Since an op amp can 
have very high gain at low frequencies (100,000 is typical), a high common-
mode rejection ratio (CMRR) prevents amplification of unwanted noise, such 
as the ubiquitous 60-Hz power-line frequency. Typical op amps have a CMRR 
in the range of 80-100 decibels (dB). 

Most op amps are powered by dual, symmetrical supply voltages, +V and 
-Vrelative to ground, where Vis typically in the range of 3 to 15 volts. Some 
units are designed to work from single-ended suppUes (+y only). There are low-
voltage, very low power op amps designed for use in battery-operated equipment. 
Op amps have very high input impedance at the + input (typically 1 milUon 
ohms or more) and low output impedance (in the range of 1 to 100 ohms). 
A voltage-feedback op amp's gain decreases with signal frequency, as shown 
in Figure 3-3. The point on the gain-versus-frequency curve where its gain 
reaches 1 is called its unity-gain frequency, which is equal to its gain-bandwidth 
product, a constant above low frequencies. 

The op amp is more than a differential amplifier, however. Its real beauty 
lies in how readily its functionality can be changed by modifying the com-
ponents in its external circuit. By changing the elements in the feedback loop 
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Figure 3-3 Typical op amp galn-versus-frequency curve. 

(connected between the output and one or both inputs), the entire character-
istics of the circuit are changed both quantitatively and quaHtatively. The op 
amp acts Hke a servo loop, always trying to adjust its output so that the 
difference between its two inputs is zero. 

We will examine some common op amp applications here. The reader 
should refer to the bibliography for other books that treat op amp theory and 
practice in greater depth. 

The simplest op amp circuit is the voltage follower shown in Figure 3-4. 
It is characterized by full feedback from the output to the inverting (-) input, 
where the output is in phase with the noninverting (+) input. It is a buffer 
with very high input impedance and low output impedance. If the op amp 

Vout 

Figure 3-4 Op amp voltage follower. 
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Vout 

Figure 3-5 Op amp inverting amplifier. 

has JFET (junction field effect transistor) inputs, its input impedance is 
extremely high (up to 10 ohms). 

The inverting amplifier shown in Figure 3-5 uses feedback resistor R2 
with input resistor Ri to produce a voltage gain ofR2/Ri with the output signal 
being the inverse of the input. Resistor R^, used for DC balance, should be 
approximately equal to the parallel resistance combination ofRi and R2. Here, 
the input impedance is primarily determined by the value of Ri, since the op 
amp's (-) input acts as a virtual ground. 

The noninverting amplifier shown in Figure 3-6 uses feedback resistor 
R2 with grounded resistor R^ to produce a voltage gain of {Ri + R2)IR\ with 
the output following the shape of the input (hence, noninverting). Unlike the 
inverting amplifier, which can have an arbitrarily small gain well below 1, 
the noninverting amplifier has a minimum gain of 1 (when 7̂2 = 0). In this 
case, the input impedance is very high (typically from 10 to 10 ohms), as 
determined by the op amp's specification. 

The difference amplifier shown in Figure 3-7 produces an output pro-
portional to the difference between the two input signals. If R^ = R2 and 7̂3 = 
/?4, then the output voltage is {V^^2 - îni) x (^3/^1)-

Figure 3-6 Op amp noninverting amplifier. 
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Figure 3-7 Op anfip difference amplifier. 

In the simple integrator shown in Figure 3-8, the feedback element is 
a capacitor (C), producing a nonlinear response. Resistor Ri and capacitor C 
have a time constant RiC, The change in output voltage with time {dV^Jcit) = 
-ViJiRiQ. Put another way, the output voltage is the integral of-VJ(RiC)dt. 
So, this circuit integrates the input waveform. For example, a square-wave 
input will produce a triangle-wave output, as long as the integrator's time 
constant is close to the period of the input waveform. 

Similarly, Figure 3-9 shows a simple differentiator, where the positions 
of the resistor and capacitor are reversed from those in the integrator circuit. 
Here, the output voltage is RxC{dVJdt). 

More complex op amp circuits include oscillators (both fixed-frequency 
and voltage-controlled oscillators or VCOs), analog multipliers and dividers 
(used in analog computers and modulation circuits), active filters, precision 
diodes, peak detectors, and log generators. 

When choosing an op amp for a particular application, there are many 
factors to consider, such as frequency response, required gain, power supply 
voltage, and output current. Some other important specifications include input 
offset voltage and input bias current. 

Figure 3-8 Op anfip Integrator. 
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Figure 3-9 Op amp differentiator. 

An amplifier's input offset voltage is the apparent voltage at an input 
even if zero volts is applied. This DC error voltage gets multiplied by the op 
amp circuit's gain to produce an output error voltage. For example, consider 
a typical op amp with an input offset voltage of 5 mV, used in a circuit with 
a gain of 20. This would produce an output offset error of 100 mV. Depending 
upon the application, this error may not be acceptable (especially if you are 
amplifying a sensor signal whose output is comparable to the input offset 
voltage). In that case, a precision op amp, with a very low input offset voltage 
(«1 mV) should be used, or the offset voltage must be zeroed out using 
additional components connected to the IC's null adjust pin. 

Input bias current is a DC current that flows from an op amp's input 
into the components connected to that input. If the device at the op amp's 
input has a very high impedance (or is a current-output device with a very 
small output), this error can be significant. Consider a resistive sensor with 
an impedance of 100,000 ohms connected to an op amp voltage follower 
(Figure 3-4). If the op amp has an input bias current of 1 jiA, it produces a 
DC error voltage of Verr = 4 xR^^= 1 iiAx 100,000 ohm = 0.1 V. In a case 
like this, a high input impedance op amp with a low input bias current (1 nA 
or less) would be more appropriate. 

Many other analog integrated circuits besides op amps are used as 
common building blocks in signal-conditioning systems. These ICs include 
voltage comparators, phase-locked loops, and function generators. 

3.2.2 The Voltage Comparator 

A voltage comparator, as shown in Figure 3-10, is very similar to an op amp 
used in its highest gain, open-loop configuration (no feedback). Here, if the -
input (Vin) is greater than the + input (Vref) by at least a few millivolts, the 
output voltage swings to one extreme (-V); if the + input is greater than the 
- input, the output swings to the other extreme (+V). By setting the + or -
input to a known reference voltage, an unknown voltage (at the other input) 
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Figure 3-10 Voltage confiparator. 

can be evaluated. The comparator can be used to determine if analog voltages 
are within a certain range. It can also be used as a 1-bit ADC. There are even 
comparators available with response times as fast as a few nanoseconds. 

3.2.3 The Phase-Locked Loop 

The phase-locked loop (PLL) is an interesting device. As shown in Figure 3-11, 
it consists of a phase detector, VCO, and low-pass filter. This comprises a 
servo loop, where the VCO is phase-locked to the input signal and oscillates 
at the same frequency. If there is a phase or frequency difference between 
the two sources, the phase detector produces an output that is used to correct 
the VCO. The low-pass filter is used to remove unwanted high-frequency 
components from the phase detector's output. One application for this device 
is to demodulate an FM (frequency modulated) signal. 

3.2.4 The Tone Decoder 

The tone decoder is similar to the phase-locked loop (see Figure 3-12) except 
that the filtered phase-detector output goes to a comparator instead of feeding 
back to the VCO. The VCO frequency is constant, so the comparator is 
activated only when the input signal is within the pass band centered on the 
VCO frequency. This device is commonly used for frequency detection, as 
in telephone touch-tone equipment. 
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Figure 3-11 Phase-locked loop. 
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Figure 3-12 Tone decoder. 

3.2.5 The Function Generator 

Function generator ICs are special-purpose oscillators used to produce sine, 
square, and triangle waveforms. The signal frequencies are varied either by 
external resistors and capacitors or by a control voltage, as with a VCO. The 
output can be frequency modulated by a signal on the VCO input. Some 
devices also provide for amplitude modulation. These devices can typically 
produce outputs within the range of 0.01 Hz to 1 MHz. They are often used 
in test equipment. 

Other common analog ICs include a wide range of amplifiers, signal 
generators, timers, and filters, some of which we will cover later in this 
chapter. 

3.3 Analog Conditioning Circuits 

Analog signal-conditioning circuitry can range from a simple RC filter, using 
two passive components, to a complex system using hundreds of ICs and 
discrete devices. 

3.3.1 Filters 

Filtering is undoubtedly the most commonly used analog signal-conditioning 
function. Usually only a portion of a signal's frequency spectrum contains 
valid data and the rest is noise. A common example is 60-Hz AC power-line 
noise, present in most lab and industrial environments. A high-gain amplifier 
will easily amplify this low-frequency noise, unless it is rejected using a band-
reject filter or high-pass filter. The standard types of filter responses are low-
pass, high-pass, band-pass, and band-reject (or notch filter). The low-pass 
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Figure 3-13 Ideal filter responses. 

filter attenuates signals above its cutoff frequency, whereas the high-pass filter 
attenuates signals below its cutoff frequency. The band-pass filter attenuates 
frequencies outside of its pass-band range (both above and below), and the 
band-reject filter attenuates those frequencies within its pass-band range. See 
Figure 3-13 for amplitude-versus-frequency curves of ideal filters. 

The study of filters is an entire discipline unto itself. We will only touch 
on some simple examples here. The reader is referred to the bibliography for 
more details on the design and use of filters. Two general classes of filters 
are active and passive, depending on the components used. A passive filter, 
using only resistors, capacitors, and inductors, has a maximum gain (or 
transfer function value) of 1; an active filter, which uses passive components 
along with active components (often op amps), can have a much higher gain, 
as well as a sharper frequency response curve. 



3.3 Analog Conditioning Circuits 39 

Passive Filters The simplest filters use a single resistor and capacitor, so they 
are called RC filters. They rely on the frequency-dependent reactance of 
capacitors for filtering effects. RC circuits are usually used as simple low-
pass and high-pass filters. The reactance of an ideal capacitor is -jlcoC (where 
(O = Inf, C is capacitance, and 7 = 7~1)-

The RC low-pass filter is shown in Figure 3-la. V^^ is the input AC 
voltage and V^^^ is the output AC voltage. The transfer function that describes 
the response of the circuit is H{f) = Ku/̂ in- Since the two components are 
in series, the current through them is the same: /R = IQ. Z is the AC impedance. 
Since V = IxZ, 

if(/) = (/xZc)/(/x(ZR + Zc)) 

= ZC/(ZR + Zc) 

Since Z^= R and ZQ = -j/o)C, 

H(f)= 1/(1+j(0RQ 

Note that as frequency (or co = Inf) approaches zero, the magnitude of 
the transfer function \H{f)\ approaches 1, or no attenuation. Also, the phase 
angle of / /(/) (the phase shift between output and input) approaches 0°. As 
/increases, \H{f)\ decreases and the phase angle becomes more negative. The 
cutoff frequency fc is where the magnitude of the real and imaginary imped-
ance components are equal (when coRC = 1), and \H(f)\ = lljl - Q.lOl. This 
is the -3 dB point [20 x log(0.707) = -3 dB]. The phase angle a t / is -45°. 
Well above / (i.e., / > 10 x / ) \H{f)\ falls off at -20 dB per decade of 
frequency (for every frequency increase of lOx the voltage output drops lOx). 
This is the same as dropping 6 dB per octave (whenever the frequency 
doubles). At these higher frequencies, the phase shift approaches -90°. Now 
the low-pass filter acts as an integrator. It is important to remember that this 
integration is only accurate at high frequencies (well above cutoff). 

The RC high-pass filter, shown in Figure 3-lb, is similar to the low-
pass filter just discussed. Here, the output voltage is across the resistor, instead 
of the capacitor. The transfer function for this circuit is H{f) = 1/[1 -j/(coRC)]. 
Now, as the frequency gets higher, \H(f)\ approaches 1. As the frequency 
approaches zero, \H(f)\ becomes very small. 

Again, the 3-dB cutoff frequency,/, is where coRC= 1. The phase angle 
a t / is now -1-45°. At higher frequencies, the phase angle decreases toward 0. 
At lower frequencies ( /</ /10) , the phase angle approaches -1-90° and \H{f)\ 
increases at the rate of 20 dB per decade. In this low-frequency, high-
attenuation region, the RC high-pass filter performs as a differentiator. Similar 
to the RC integrator, this differentiation is only accurate at relatively low 
frequencies. 
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Figure 3-14 Series RLC filter. 

Another important point about passive RC integrators and differentiators 
is that their operational frequency range is in a high-attenuation region. So, 
their output signals will be very low amplitude, possibly limiting their use-
fulness because of excessive noise. 

RL circuits can also be used as low-pass and high-pass filters, yet they 
are much less common. A series RLC circuit, as shown in Figure 3-14, is 
used as a band-reject or notch filter. Here, the minimum value of \H(f)\ occurs 
at/o = \I{2TI4TC), where the phase angle is ±90°. This is the filter's resonant 
frequency. Below/Q, \H{f)\ increases while the phase angle increases toward 
0° (as / approaches zero). Above/o, \H{f)\ again increases, while the phase 
angle decreases to 0°. Well above or below/o, \H{f)\ approaches 1. 

A parallel RLC circuit, as shown in Figure 3-15, acts as a band-pass 
filter, with a maximum \H{f)\ = 1 at resonance (/o). At/o, the phase angle is 
0°. This arrangement is sometimes referred to as a tank circuit because, at 
the resonant frequency, it effectively stores most of the electrical energy 
available (except for losses through the resistor). Below/o, \H{f)\ decreases 
while the phase angle increases toward +90°. Above/o, \H{f)\ again decreases, 
while the phase angle approaches -90°. Well above or below/o, \H{f)\ falls 
off at -20 dB per decade. However, close to /Q, this fall off may be much 
steeper, depending on the value of Q, a measure of the filter's resistive losses: 

INPUT OUTPUT 

Figure 3-15 Parallel RLC filter. 
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Q = 27c/o X L/R. The smaller the value of R is, the larger Q becomes and the 
steeper the \H(f)\ curve becomes, around/Q. 

Using passive components, if a broader pass-band response or a 
steeper attenuation curve for out-of-band frequencies is desired, usually 
several simple filter stages are concatenated. This can produce the desired 
frequency response, at the expense of higher attenuation within the pass-
band, referred to as the insertion loss. One way around this problem is to 
use an active filter. 

Active Filters Active filters are typically op amp circuits using resistors and 
capacitors to produce the required frequency response, usually with a gain 
equal to or greater than 1 (no inductors are needed). They have been limited 
to relatively low frequencies (i.e., <1 MHz) because of the limited frequency 
response of standard op amps. In the audio and ultrasonic regions these filters 
are indispensable. The availability of high-frequency amplifier ICs (with 
usable gains well above 100 MHz) has greatly extended the usefulness of 
active filters. Figure 3-16 shows simple active low-pass and high-pass filters, 
using a 2-pole Salen-Key topology. 

A newer type of active filter is the switched capacitor filter. This device 
is very attractive because external components are not needed (as they are 
with op amp active filters, where value selection is critical). In addition, this 
filter can be tuned by varying the frequency of the applied clock signal 
(usually a digital waveform). This is a good choice when a computer-controlled 
filter is required. There are a wide range of switched capacitor filter devices 
available from analog IC manufacturers. 

A switched capacitor filter is a sampled-data device, where an internal 
capacitor is switched between the input signal and an integrating amplifier 
(where the integrator simulates a resistor), as shown in Figure 3-17. Initially, 
capacitor Cj charges to the input voltage at that moment, when switch Si 
is at position (a). Then Si switches to position (b) and Ci dumps its charge 
into C2, the integrating capacitor, via the op amp. This process repeats over 
many switching cycles, where C2 averages the input signal voltage. The 
filter's time constant depends upon the switching frequency, which essen-
tially determines the cutoff frequency. Since this is a sampled device, it 
will have aliasing problems (see Chapter 4 for a discussion of aliasing) as 
the signal frequency approaches the switch rate. Typically, the switching 
(clock) frequency is 50 to 100 times the cutoff frequency. To prevent 
problems with high-frequency signals or switching clock feed-through, a 
simple passive low-pass filter is often used in conjunction with a switched 
capacitor filter. 
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Figure 3-16 Active filters based on op anfips. 

Input Output 

Figure 3-17 Switched capacitor filter. 
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Standard Filter Functions There are several commonly used filter functions, 
each with its own special properties. These functions are often used as low-
pass, high-pass, or band-pass filters. The Butterworth or maximally flat filter 
is characterized by a nearly flat pass-band with no ripples. The roll-off is 
smooth and monotonic (again without ripples) with a roll-off rate for high-
pass or low-pass filters of 20 dB/decade, for each pole. Multiple poles can 
be concatenated for steeper roll-off. This filter is often used as a good com-
promise between attenuation and phase response. 

The Chebyshev or equal-ripple filter does have pass-band ripple, 
although the amount of ripple is specified by the design. It has a faster roll-
off near the cutoff frequency than a Butterworth filter but it has a poorer 
transient response (in the time domain). 

A Bessel or Thompson filter has a linear phase response in the pass-
band, which does not distort a nonsinusoidal waveform (such as a square 
wave) the way a Butterworth or Chebyshev filter would. However, this filter 
has a much slower roll-off and often requires using higher-order designs (with 
multiple stages). 

The elliptic or Cauer filter has a much steeper roll-off than the other 
filter types, at the expense of both ripple in the pass-band and stop-band along 
with a very nonlinear phase response. 

3.3.2 Wheatstone Bridge 

Many other types of analog circuits are used for conditioning transducer signals. 
For resistive sensors, such as strain gages and thermistors, the classic Wheat-
stone bridge is still used. A DC Wheatstone bridge is shown in Figure 3-18. If 
the resistance values are set so that there is no voltage across the meter (and 
no current through it) the bridge is said to be balanced. At balance, it can be 
shown that /?i//?3 = î 2/R4- Typically a resistive sensor is placed in a bridge 
circuit to produce a voltage signal output. Usually, one of the resistors in the 
bridge is the variable sensor element, and initially the bridge is not balanced. 
Let us assume for the moment that Ri is the variable resistive transducer and 
that for simplicity R^, = R^. When Ri = R2 the bridge is balanced and the 
output is zero. As Ri increases or decreases slightly, the output voltage will 
swing positive or negative. A calibrated variable resistor in the bridge circuit 
(for example, R2) is adjusted until the bridge is again balanced. Then we 
know that Ri equals the new value of R2. 

Bridges are also used with AC excitation and reactive elements. This is 
how a capacitive sensor can produce an accurate voltage signal. In the case 
of an AC bridge, usually one leg is left as purely resistive, making it easier 
to balance the unknown reactive element in the other leg. 
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Figure 3-18 Wheatstone bridge. 

3.3.3 The Sample-and-Hold Amplifier 

Another special analog circuit, extremely useful in data acquisition applica-
tions, is the sample-and-hold amplifier as shown in Figure 3-19. This is used 
to get a stable sample of a changing analog signal, prior to using an ADC. 
The field-effect transistor (FET) acts as a switch, charging the capacitor to 
the analog signal's present voltage level when the sample line is asserted. 
When the transistor is switched off, the capacitor "remembers" the voltage, 
which is buffered by the op amp. The very high input impedance of the op 
amp, along with a low-leakage capacitor, prevents the voltage from dropping 
off too quickly. 

A sample-and-hold amplifier is used as the front end of an ADC because 
if the analog waveform is rapidly changing during the ADC cycle, the value 

FET 

Vi. 

Sample 

Figure 3-19 Sanfiple-and-hold anfiplifier. 
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Figure 3-20 Peak detector. 

produced can have a large error. This way, there is an accurate "snapshot" of 
the waveform during the brief sample interval. The sample interval is typically 
much shorter than the time between successive analog conversions. Sample-
and-hold amplifiers are available as monolithic devices, some with sampling 
intervals as short as a few nanoseconds. In addition, many high-speed ADCs 
incorporate a sample-and-hold amplifier in the IC. 

3.3.4 Peak Detector 

Another useful circuit is the peak detector, as shown in Figure 3-20, which 
again is op amp based. It is similar to the sample-and-hold circuit, with a 
diode used as a switch, for charging the capacitor, Ci. The second (output) 
op amp is simply a buffer, allowing the circuit to drive a low-impedance load 
without draining the capacitor. Whenever the input voltage is greater than the 
output voltage, the diode is forward biased and the capacitor is charged up 
to that voltage. Usually a switch (such as a FET) may be placed across the 
capacitor to implement a discharge or reset function. Also, a second diode 
may be used to compensate for the switching diode's voltage drop (-0.6 V 
for a silicon signal diode). 

3.3.5 Log and Antilog Amplifiers 

There are many important nonlinear amplifier circuits, including the log 
amplifier and the antilog amplifier. A log amplifier is commonly used to 
compress a signal's large-amplitude dynamic range into something more 
manageable by other circuits (such as ADCs). The simple logarithmic ampli-
fier uses a junction diode as a nonlinear element. In a forward-biased diode. 
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Figure 3-21 Simple logarithmic amplifier. 

the voltage drop across the diode varies proportionally to the log of the current 
through it. When a diode is connected in the feedback loop of an inverting 
amplifier, the output voltage is a logarithmic function of the input voltage. If 
a diode is used in a noninverting amplifier, the result is an antilog amplifier. 

There are some problems using diodes in log amplifiers. They are very 
temperature sensitive, since the forward voltage drop across a diode is a 
function of temperature. In fact, this property is often exploited in diode 
temperature sensors. Also, the signal range over which the diode has a log-
arithmic response is somewhat limited. Often a bipolar transistor is used in 
place of a diode, since its emitter-base voltage varies with the log of its 
collector current over a very wide range. A log amp using a transistor is 
shown in Figure 3-21. There are monolithic log amplifier ICs available, which 
have good temperature compensation and fairly wide operating ranges, often 
usable over 60 dB or more of input voltage variation. 

3.3.6 Other Common Amplifiers 

There are several other types of analog amplifier circuits besides the op amp, 
commonly used for data acquisition purposes. Theses include instrumentation 
amplifiers, programmable gain amplifiers, and isolation amplifiers. 

Instrumentation Amplifiers An instrumentation amplifier (lA) is used to pro-
vide a large amount of gain for very low-level signals, often in the presence 
of high noise levels. The major properties of lAs are high gain, large common-
mode rejection ratio (CMRR), and very high input impedance. They are often 
used to directly amplify signals from passive sensors, such as strain gages 
(see Chapter 2). An IA is a device which only amplifies the difference between 
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Figure 3-22 Instrumentation amplifier. 

the two input lines while ignoring any common-mode noise they both carry. 
It is usually used for low-frequency signals ( «1 MHz). 

A typical instrumentation amplifier configuration consists of three op 
amps, as shown in Figure 3-22. The resistors used should be high-precision 
(0.1% tolerance or better) to achieve the highest CMRR possible. The overall 
gain of this lA circuit is R4/R2[l + {2RJR^)\. 

Monolithic lA ICs are readily available and are often preferable to 
building one out of individual op amps, since the internal components will 
be well matched. These I As can have a CMRR over 100 dB and a voltage 
gain up to 10,000x. 

Progranfimable-Gain Anfiplifiers Programmable-gain ampUfiers (PGAs) are a 
special class of instrumentation amplifiers that have selectable gain, either 
through external component selection or, more commonly, through digital 
control lines. They are used in data acquisition systems to enable software 
control of analog gain, tailoring the amount of amplification to the current 
task. Typical PGAs have either decade (Ix, lOx, lOOx, lOOOx) or binary (Ix, 
2x, 4x, 8x) gain settings, using just a few digital control lines. 

These control signals are usually used to select different, internal feed-
back resistor values, to change the gain. Some PGAs have multiple amplifiers 
configured for different gain values and the digital controls select which 
amplifier output is used. 
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Isolation Amplifiers Isolation amplifiers are used to boost low-level analog 
signals when electrical isolation between input and output is needed. This 
may be when there are high common-mode voltages present, such as a sensor 
biased by a high DC voltage. Another use is when medical monitoring equipment 
is connected to a patient and current flowing from the instrumentation to the 
patient connections (such as ECG electrodes) can be dangerous. 

Most conamercial isolation amplifiers use transformers, capacitors, or 
optical couplers to separate input from output. The important characteristics 
are isolation voltage (commonly up to 5000 V), leakage current (typically 
less than 1 |iA), gain error, and bandwidth. 

3.3.7 Other Common Analog ICs 

There are many other analog ICs commonly used in data acquisition equip-
ment, besides those we have previously covered in this chapter. Some of these 
are analog switches, multiplexers, and voltage references. 

Analog Switches and Multiplexers An analog switch is a digitally controlled 
device that is used to pass or interrupt an analog signal, analogous to a 
mechanical switch or relay. These devices usually use FETs as the main 
switching elements. Unhke mechanical switches, analog switches have an 
extremely limited signal voltage range (usually less than the switch's power 
supply voltage) and a relatively high "on" resistance (typically ranging from 
a few tenths of an ohm to over 100 ohms). However, these devices are much 
smaller and faster than mechanical relays, many exhibiting switching speeds 
under 1 |Lisec. 

Multiple analog switches can be arranged in a single IC to produce a 
multiplexer (mux) with multiple inputs and a single output. The device's 
digital control lines determine which input is steered to the output. A data 
acquisition card containing a single ADC may have an eight-channel multi-
plexer at its input, allowing eight analog signals to be simultaneously con-
nected to it. However, only one channel at a time can be digitized by the ADC. 

Voltage References The absolute accuracy of an ADC is determined, among 
other factors, by its analog reference. A voltage reference is an IC that either 
contains or behaves as if it is a precision Zener diode, with a well-characterized 
breakdown voltage. This voltage is also fairly insensitive to temperature 
changes and aging. Some voltage references contain internal buffer amplifiers 
that allow them to drive low-impedance loads. A high-quality voltage refer-
ence also allows a data acquisition board to perform an accuracy self-test and 
even autocalibration on its analog input channels. 
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INPUT 1 —\ 

INPUT 2—^ 

OUTPUT= 
INPUT 1 X INPUT 2 

Figure 3-23 Analog multiplier. 

3.3.8 Modulation 

An important nonlinear function is modulation. Frequency modulation was 
discussed with the VCO. Amplitude modulation is easily achieved using an 
analog multiplier. A simple means of producing an analog multiplier is shown 
in Figure 3-23. The two inputs each pass through a log amplifier and then 
are added together; finally they pass through an antilog amplifier. The output 
voltage is equal to the product of the input voltages times a scaling factor. 
Analog multipliers are also commonly available as single-chip devices. Many 
of these monolithic multipliers can perform division and square functions. 

3.3.9 High-Frequenoy Analog Circuits 

As ADCs operate at higher speeds (up to 1 gigasample/second), analog 
circuitry bandwidth must also increase or these fast sampling speeds are 
wasted. To maintain high bandwidths, special attention must be paid to factors 
such as transmission line impedance, stray capacitance, shielding, and con-
nector quality. 

When working with analog signal frequencies well above 1 MHz, coax-
ial cables and connectors should be used. This will help minimize signal 
attenuation and distortion due to impedance mismatches, as well as reduce 
external noise pickup. The most common coaxial connectors used are BNC 
and SMA types. 

When designing a high-frequency amplifier circuit, component place-
ment on the board is critical. A high-speed op amp with a bandwidth of 
several hundred MHz, up to 1 GHz, can easily become an oscillator because 
of circuit instabilities caused by stray capacitance of the board itself. RF 
design techniques must be used. 

Conventional, voltage-feedback op amps operate at high frequencies in 
much the same way as their low-frequency counterparts. Their bandwidth 
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varies inversely with circuit gain, since gain-bandwidth product is constant. 
Newer, current-feedback amplifiers are commonly used at high frequencies 
(usually 100 MHz or above). Their gain-bandwidth product is not constant. 
The circuit's bandwidth is mostly determined by the value of the feedback 
resistor used, not simply the gain settings. When a current-feedback amplifier 
is used as a voltage follower (gain of Ix), a resistor should be connected from 
the output to the - input, as per the manufacturer's recommendation. 

When working with high-speed and high-frequency circuits, grounding 
and shielding also become critical. Analog and digital devices should have 
appropriate (often separate) ground paths on the circuit board, usually with 
a single conmion connection point. This helps to minimize digital noise 
appearing in analog circuits. Shielding of circuit cards may be necessary, both 
to minimize susceptibility to received high-frequency noise and to limit the 
amount of RF noise the card itself generates. If external power supplies are 
used, the cables should be properly filtered, using ferrite beads and bypass 
capacitors. 

These are just some basic guidelines for working with high-speed 
devices. In general, high-frequency analog circuits are much less forgiving 
than their low-frequency equivalents. 

There are other standard analog signal conditioning devices and circuits 
besides the ones shown in this chapter. The information here should give you 
a feel for what is commonly available and help you locate more detailed 
information, as you require it. 



C H A P T E R 

Analog/Digital 
Conversions 

As previously noted, we live in an analog world. Nearly all "real-world" 
measured quantities are analog, at least at the macroscopic level we typically 
deal with. Analog waveforms are usually defined as smooth, continuous func-
tions that have derivatives existing nearly everywhere. Most transducers have 
analog outputs, usually voltage or current, which represent the physical quan-
tities being measured, such as temperature or pressure (notable exceptions 
include optical encoders and smart sensors with digital outputs). Whenever 
an analog quantity is discussed here, it refers to a voltage or current suitable 
for use with common electronic equipment. This is typically in the frequency 
range of 0 to 1 MHz, with a voltage range of around 1 microvolt (|LIV) to 100 V 
or a current range of about 1 microampere (|LiA) to 10 amps. 

4.1 Digital Quantities 

Digital quantities have discrete levels that vary by steps instead of continu-
ously (as shown in Figure 1-1 of Chapter 1). Most digital electronic equipment 
uses binary values, which have two possible states, called true (on or 1) and 
false (off or 0). Most often the 0/1 notation is used to describe the binary 
level of a single line or wire, represented as a binary digit or bit. For the 
standard family of TTL (transistor transistor logic) digital ICs, which operate 
from a +5 V power supply, a high level (>2.4 V) is a logical 1 and a low 
level (<0.8 V) is a logical 0. These logic levels also apply to new low-voltage 
logic families (such as LVTTL) that operate from +3.3 V power supplies. 

51 
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Logic families that operate from even lower supply voltages (+2.5 V or +1.8 V) 
use different threshold values for 1 and 0. 

Binary values are a base-2 numbering system, as opposed to our every-
day base-10 decimal system. It takes many bits grouped together to represent 
a useful quantity. In general, a collection of n bits can represent 2" discrete 
levels. For example, a group of 8 bits is referred to as a byte, where 2 = 
256 levels, for a representation of values in the range of 0 to 255 (or -128 
to +127). A group of 16 bits is referred to as a short word, having 2 = 65,536 
steps. A long word of 32 bits has 2 = 4,294,967,296 steps. In digital electronic 
equipment, these groups of bits are usually parallel lines or wires, where each 
bit is present at the same time. One wire typically carries the value for one bit. 
This means that increasing the number of levels a digital circuit can represent 
increases the number of wires (or interconnections) in that circuit. This increase 
also allows the digital representation to more closely approximate the analog 
signal, within a given dynamic range. 

The concept of dynamic range is very important for data acquisition 
systems; it will be addressed at greater length in Chapter 10. By definition, 
the dynamic range of a data acquisition system is the ratio of the maximum 
value that can be measured to the smallest value that can be resolved. This 
number is often represented in decibels (dB) as 

Dynamic range (dB) = 20 x logio (max/min) 

If both positive and negative values are measured. 

Maximum value = maximum positive value - minimum negative value 

For example, a data acquisition system with a 1-mV resolution and a 
value range of 0 to +10 V (or -5 to +5 V) has a dynamic range of 10,000:1, 
or 80 dB. This dynamic range requires a minimum of 14 bits to represent it, 
since 2̂ ^ = 16,384, which is greater than 10,000, whereas 2̂ ^ (8192) is less 
than 10,000. 

4.1.1 Binary Codes 

For n binary lines to represent 2" levels, each line must have a different value 
or weight. For a natural binary code, having any value from 0 to 2" - 1, integers 
are represented by a series of weighting bits having the value 2^ (where m 
varies from 0 to n - 1). The bit number m is zero for the least significant bit 
(LSB) on the far right and increases ton-I for the most significant bit (MSB) 
on the far left. The values of integer bit weights for the first 16 bits are given 
in Table 4-1. The value of a collection of parallel bits is the sum of the weighted 
values of all nonzero bits (or the value of a bit, either 0 or 1, times its weight). 
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TABLE 4-1 
Positive Integer Bit Weights for 
Natural Binary Code 

|BIT#(m) 

1 ^ 
1 1 
1 ^ 

3 

1 ^ 
5 

1 ^ 
1 ^ 
1 ^ 

9 

1 ^^ 
1 ^^ 
\ ^^ 

1 ""̂ 
1 ^̂  
1 15 

BIT WEIGHT (2'") | 

1 1 
2 1 
4 1 
8 1 
16 

32 1 
64 1 
128 1 

256 

512 1 

1024 1 

2048 1 

4096 1 

8192 1 

16384 1 

32768 1 

For example, we will evaluate the 8-bit binary integer 01011101. Starting 
with the LSB, working from right to left: 

Sum = 1 X 2V 0 X 2̂  + 1 X 2 ^ 1 X 2^+ 1 X 2 V 0 X 2^+ 1 X 2 S 0 X 2̂  

= 1 + 0 + 4 + 8 + 16 + 0 + 64 + 0 

= 93 

Sometimes it is necessary to represent both positive and negative integer 
values, as when dealing with a bipolar voltage. The most conmion binary 
code for this is called twos complement, which can represent values from 
-2"~ to +2"~ - 1. In this notation, positive values are encoded the same way 
as the positive-only, natural binary code above (this includes zero). To encode 
a negative value, write down the code for the corresponding positive value 
(including all leading zeros), invert the number by changing all ones to zeros 
and all zeros to ones (which is called the ones complement), and then add 1 
to the result. Table 4-2 contains twos complement codes for 5-bit numbers 
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TABLE 4-2 
Twos-Complement Coding for Five-Bit Bipolar Values 

1VALUE 

1 "̂""̂  
1 '^^^ 
1 +13 

1 +^2 

1 '^^^ 
\ +10 

1 +^ 
1 +^ 
1 +^ 

+6 

1 +^ 
1 ^ 
1 +^ 
1 ^2 
1 +̂  
1 ^ 
1 "̂  
1 "̂  
1 "̂  
1 "̂  

-5 

1 "̂  
1 "̂  
1 "̂  

-9 

1 -10 

1 "̂^ 
1 ~^^ 

-13 

1 ~^4 
-15 

1 -16 

TWOS COMPLEMENT CODE | 

01111 1 
01110 

01101 1 
01100 1 
01011 1 
01010 1 
01001 1 
01000 1 
00111 1 
00110 

00101 1 
00100 1 
00011 1 

1 00010 1 
1 00001 1 
1 00000 1 

1 "'''''"'"' 1 
1 11110 1 

11101 1 
11100 1 
11011 1 
11010 1 
11001 1 
11000 1 
10111 1 
10110 1 
10101 1 
10100 1 
10011 1 
10010 1 
10001 1 
10000 1 
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representing values +15 to -16. For example, to get the twos complement 
representation of the value -12 using 5 bits: 

1. +12 = 01100 
2. Ones complement = 10011 
3. Twos complement =10011 + 1 
4. -12 = 10100 

One additional coding system we will mention here is fractional binary. 
This is useful when digital readings must be normalized to an arbitrary full-
scale value, as when a converter's reference voltage is variable. The n bits of 
the code represent values between 0 and 1 - 2~". The weight of each bit is a 
fractional value, equal to its natural binary integer value (of 2^) divided by 2". 
This means the MSB has a weight of 1/2 (since 2"~ /2" = 2~ ), the next bit to 
the right has a weight of 1/4, and so on, down to the LSB with a weight of 
1/2̂ " (or 2~"). When all bit values are 1, the total value = 1 - 2~". Again, 2" 
levels are represented by this code. Table 4-3 lists fractional binary codes for 
5-bit values. Note that sometimes fractional binary values are written with a 
binary point and sometimes not. So, the fractional binary for 1/32 can be 
written as either 0.00001 or 00001, even though they both mean the same thing. 

4.2 Data Conversion and DACs 

Data conversion is at the heart of data acquisition systems. Real-world analog 
signals must be converted to binary representations via an analog-to-digital 
converter (or ADC). Similarly, if output to the analog world is required, as 
in control systems, digital values are transformed using a digital-to-analog 
converter (or DAC). We will look at DACs first, because they are usually 
simpler devices than ADCs. In addition, many ADCs contain DACs as part 
of their circuitry. 

DACs use either current or voltage switching techniques to produce an 
output analog value equal to the sum of several discrete analog values. Because 
it is easier to sum currents (rather than voltages) using analog circuitry, most 
commonly available DACs are current-mode devices. They produce the sum 
of internal current sources and use either an internal or external op amp as 
an output current-to-voltage converter. 

4.2.1 Fully Decoded DAC 

One type of DAC is shown in Figure 4-1. This is a fully decoded current-
mode 3-bit DAC. A fully decoded DAC, for n input bits, contains 2" - 1 
switches and identical current sources. Basically, the input bits are decoded 
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TABLE 4-3 
Five-Bit Fractional Binary Codes 

1 CODE 

1 0.00000 

1 0.00001 

0.00010 

1 0.00011 

1 0.00100 

0.00101 

1 0.00110 

1 0.00111 

1 0.01000 

1 0.01001 

1 0.01010 

1 0.01011 

1 0.01100 

1 0.01101 

1 0.01110 

1 0.01111 

1 0.10000 

1 0.10001 

1 0.10010 

1 0.10011 

1 0.10100 

1 0.10101 

1 0.10110 

1 0.10111 

1 0.11000 

0.11001 

1 0.11010 

1 0.11011 

1 0.11100 

1 0.11101 

1 0.11110 

1 0.11111 

FRACTION OF FULL SCALE 1 

0 1 
1/32 (LSB) 

2/32 = 1/16 1 

3/32 1 
4/32 = 1/8 1 

1 5/32 1 
1 6/32 = 3/16 1 

1 7/32 1 
8/32 = 1/4 

1 9/32 1 
1 10/32 = 5/16 1 

11/32 

1 12/32 = 1/8 1 
13/32 

1 14/32 = 7/16 1 

15/32 

1 16/32 = 1/2 (MSB) 1 

1 17/32 1 
1 18/32 = 9/16 1 

1 19/32 1 
20/32 = 5/8 

1 21/32 1 
1 22/32 = 11/16 1 

23/32 1 

24/32 = 3/4 

25/32 1 

26/32 = 13/16 1 

27/32 1 

28/32 = 7/8 1 

29/32 1 

30/32 = 15/16 1 

31/32 1 
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CURRENT SOURCES 

IQ I I I2 I3 I4 I5 l6 »7 

SWITCH MATRIX 

Figure 4-1 Fully decoded 3-bit current mode DAC. 

and control switches to the current sources of equal magnitude. A digital 
value of 001 connects one current source to the output, a value of 010 connects 
two sources to the output, Oil connects three sources to the output, and so 
on up to seven sources for 111. These current sources are summed at the 
output, producing a current proportional to the digital value. 

The main advantage to this type of fully decoded DAC is that with 
proper switching the output current is guaranteed to be monotonic. That is, 
as the digital code continues to increase the analog output will also increase, 
step by step. This is not always true of all DACs. The disadvantage of this 
type of DAC is that 2^ - \ current sources and switches are required. This 
becomes prohibitive for reasonably large numbers of bits, such as 4095 
current sources for a 12-bit DAC. 

4.2.2 Weighted Resistor DAC 

A simpler DAC can be produced using a voltage reference with a set of 
weighted precision resistors and switches, as shown in the 3-bit DAC example 
in Figure 4-2. The resistor values are in a binary bit-weight ratio (1:2:4:8:16 
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Bit 2 (MSB) Bit 1 Bit 0 (LSB) 

Figure 4-2 Weighted resistor, 3-bit current mode DAG. 

and so on). Again, this converter is a current-mode device, with the sum of 
all resistor currents resulting in an analog current. 

In this example, as in nearly all practical current-mode DACs, the output 
current is passed through an op amp. This acts as a current-to-voltage con-
verter as well as isolating the DAC from output circuit loading. Here, since 
the op amp is inverting (because the virtual ground of the inverting input is 
needed) the output is a negative voltage proportional to the input binary word 
and the voltage reference. 

When all input bits are zero, no current flows into the op amp, and the 
output voltage is zero. If the MSB (bit 2) is 1, the current flowing into the 
op amp is V^^^IIK, producing an output voltage of -V^^^ll, since the feedback 
resistor {R^ is IK ohm and the op amp's gain is -Rf/Rin- Similarly, if bit 1 is 
1, it generates a current of Vref/4K, producing an output voltage of -V^^f/A; 
and if the LSB (bit 0) is 1, it generates a current of Vref/8K, producing an 
output voltage of -Vref/8. If more than a single bit is 1, their currents sum at 
the op amp's input and produce the appropriate output voltage. If all bits are 
1, the output voltage is -7/8 Vref- This is the full-scale output. 

This DAC can produce eight discrete analog output levels, spaced 1/8 
Vj-ef apart. Note, that if we treat these values as normalized to Vref̂  we are 
dealing with fractional binary values. If we set V^^f = 10.00 V, the full-scale 
output is -8.75 V, with steps of 1.25 V. If we increased the number of bits 
in this DAC to n, the resistor values for the most significant bits would stay 
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the same and larger resistors would be added for the least significant bits. 
The LSB will have a value of 2" x IK ohm. 

The advantage of the DAC in Figure 4-2 is that only one switch and 
resistor are needed per bit. The main drawbacks are that as the number of 
converter bits increases, the number of different precision resistor values 
needed, as well as the overall range of resistor values, increases. If we 
increased the resolution of the DAC in Figure 4-2 from 3 bits to 8 bits, the 
resistance values would increase up to 256K ohms. This makes it very difficult 
to maintain monotonicity, linearity, and overall accuracy, because of the wide 
range of resistance values required. 

4.2.3 Resistor Quad 

Other techniques are used to overcome these drawbacks. One of these is the 
binary resistance quad, used in an 8-bit DAC in Figure 4-3. Here, the resistor 
network uses the same four values for more than 4 bits resolution. The resistors 
and switches constitute a voltage-divider network. The most significant 4 bits 
(bits 4-7) are in the usual scaled binary ratio of 2:4:8:16. The least significant 
4 bits (bits 0-3) are these same values, repeated. However, these values are 
attenuated 16:1, via the additional (16K ohm) resistor. Each section of four 
resistors is called a quad. 

4.2.4 /7-2/? Ladder 

A very common DAC uses the R-2R resistance ladder, where only two different 
resistor values are needed, as shown in Figure 4-4. When only the MSB 
(bit 7) is 1, the output voltage is -V^^f/l, since V̂ef is switched through 2R from 

(LSB) Bit 0 Bit 1 Bit 2 Bit 3 
0 9 0 P 

Bit 4 Bit 5 Bit 6 Bit 7 (MSB) 
0 O O 9 

Vout 

Figure 4-3 8-bit DAC using resistor quads. 
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''ref 

R R R R R R R 2 R 
-AAAr-f-AAAr^^VVWAAAr^^VW-f-^^ 

>2R >2R >2R >2R >2R >2R >2R >2R 

^^^~P^ 

(MSB) Bit 7 Bite Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 BitO(LSB) 

^ V , , 

Figure 4-4 8-bit DAG using FI-2R resistor ladder. 

bit 7 and the op amp's feedback resistor is R. When moving down the ladder 
(toward less significant bits), each 2R resistor sees one-half the voltage of the 
one above it (when it is the only 1 bit). This is due to the constant resistance 
of the attenuator network to ground. So, bit 6 contributes -V^^f/A to the output 
voltage, bit 5 contributes -Vref/8, and so on down to bit 0 contributing -Vref/256. 

4.2.5 Multiplying DAC 

When a DAC can operate with a variable analog reference voltage, instead 
of the usual fixed value, it is called a multiplying DAC. The output of this 
DAC is proportional to both the analog reference input and the digital input. 
If it can respond to bipolar inputs (both analog and digital) and produce a 
bipolar output, it is a four-quadrant multiplying DAC. This refers to a Car-
tesian plot of the transfer function. A multiplying DAC is commonly used as 
a digitally controlled attenuator or amplifier of an analog signal. 

4.2.6 DAC Characteristics 

Some important criteria must be considered when choosing a DAC. The first 
parameter to determine is the number of bits of resolution. This is selected 
by knowing the desired dynamic range of the output signal. Eight-, 12-, and 
14-bit DACs are commonly available as monolithic devices or integrated 
circuits (ICs). Even 16-bit DACs are produced commercially. 

Another major parameter is settling time, which determines the speed 
of conversion, as shown graphically in Figure 4-5a. This is the amount of time 
required for a DAC to move to and stay within its new output value (usually 
to ±1/2 LSB), when the digital input changes. For common, current output 
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Analog Output 

Digital Output 

Analog Output 

Digital Input 
(b) Linearity 

Figure 4-5 Important DAC parameters. 

DACs, settling time is reasonably fast, typically a few hundred nanoseconds. 
If a fast-settling op amp is used as an output current-to-voltage converter, 
output waveforms at frequencies well over 1 MHz can be produced. 

Linearity is another major DAC parameter. It is the maximum deviation 
of the DACs transfer curve from an ideal straight line, usually expressed as 
a fraction of the full-scale reading, as illustrated in Figure 4-5b. 

One final DAC parameter to note is monotonicity. If the output of a 
DAC always increases for increasing digital input, the DAC is considered 
monotonic. Monotonicity is specified over a certain number of input bits, 
typically the full number of bits of resolution. A nonmonotonic DAC would 
have a dip in its transfer curve. 
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4.2.7 High-Speed DACs 

There are monolithic DACs available with update rates in the range of 100-300 
million samples per second (MSPS). These DACs can go up to 16-bit resolu-
tion (although 12- and 14-bit devices are more common at these high speeds). 
High-speed DACs typically employ a mixed architecture to achieve good 
performance at these speeds. Most use a segmented current source along with 
an R-2R ladder. The important specifications for these high-speed converters 
are update rate (in MSPS), settling time (in nsec) and slew rate (in V/|Lisec). 

Some of these fast DACs require emitter-coupled logic (ECL) digital 
control signals. As opposed to TTL digital signal levels (see Section 4.1), 
ECL signals are negative (relative to ground) and have a smaller difference 
between logic 0 and 1 levels. ECL logic devices are one of the fastest families 
of digital ICs commonly available. Some high-speed DACs use external TTL 
controls and translate them internally into ECL signals. ECL devices are 
powered by a -5.2 V supply (compared to +5 V or lower for TTL ICs). There 
are several different ECL families, with typical logic levels of -1.75 V 
representing 0 and -0.9 V representing 1. 

4.3 ADCs 

Now we will turn our attention to ADCs. A multitude of techniques are used 
to produce an analog-to-digital converter. We will look at some of the more 
common ones here. 

4.3.1 Ramp ADC 

One of the simpler approaches in implementing an ADC is the ramp converter 
shown in Figure 4-6. It consists of a digital counter, a DAC, an analog 
comparator, and control logic with timing generation. Basically, when an 
analog conversion is requested, the digital counter starts counting up from 
zero. As it counts, the analog output of the DAC increases, or ramps up. When 
the DACs output is equal to or exceeds the analog input, the comparator's 
output switches and the control logic stops the counting. An end of conversion 
is indicated, with the digital counter output now containing the converted 
value. This conversion sequence is illustrated in Figure 4-7. 

The problem with this technique is its relatively long conversion time, 
or slow speed, which becomes worse with increasing number of output bits. 
Everything else being equal, the maximum conversion time for the ramp 
converter increases as 2", where n is the number of bits of resolution. The 
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ANALOG INPUT-

x^ 

DAC 

DIGITAL OUTPUT ^ 

END OF 
CONVERSION 

START OF 
CONVERSION 

CLOCK 

DIGITAL COUNTER 

CONTROL LOGIC 

Figure 4-6 Simple ramp analog-to-digital converter (ADC). 

DAC 
OUTPUT 

FS — 

3/4 FS -

1/2 FS -

1/4 FS — I 

Full Scale 

CONVERSION TIME (CLOCK CYCLES) 

Figure 4-7 Ramp ADC, typical conversion sequence. 

conversion time is inversely proportional to the frequency of the clock used 
in counting. 

For example, if the converter's DAC had a 200-nsec settling time and 
ŵ e used a 5-MHz clock for a 12-bit ADC, maximum conversion time would be 
^—,x 4096 = 819.2 |isec. This w ôuld allow a conversion rate of only 1220 
samples per second. Of course, this is a worst-case value. If the analog input 
is less than the maximum allowable value, conversion time will be shorter. 
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Even using a fast DAC with a 10-nsec settling time and a 100-MHz clock, 
the minimum conversion rate is just 24,400 samples per second. 

One minor variant on this technique is the servo ADC. Its digital counter 
can count both up and down. When the DAC output is below the analog input, 
it counts up. When the DAC output is above the analog input, it counts down. 
It tends to track the analog input continuously, analogous to a servo control 
loop. It will respond to small input changes rapidly, but it is as slow as the 
standard ramp converter when a large input change has occurred. 

4.3.2 Successive-Approximation ADC 

A major improvement on the ramp converter is the successive-approximation 
converter, probably the most popular class of general-purpose ADCs com-
mercially available at present. The overall block diagram of this system is 
very similar to that of the ramp converter, as shown in Figure 4-8, except that 
the digital counter is replaced by more sophisticated control logic that includes 
a shift register. Instead of simply counting up until the analog value is exceeded, 
the successive-approximation ADC tests one bit at a time (starting with the 
most significant) until the internal DAC value is as close as possible to the 
analog input without exceeding it. 

First, the most significant bit (MSB), equal to 1/2 full scale (FS) value, 
is turned on; if the DAC's output is less than the analog input, it is left on 
(otherwise it is turned off). Then the next bit down (1/4 FS) is turned on and 

ANALOG INPUT 

J^ 

+ 
Comparator;; 

DAC 

DIGITAL OUTPUT 

END OF 
CONVERSION 

START OF 
CONVERSION 

DIGITAL COUNTER CLOCK 

TIMING 
SHIFT REGISTER 
CONTROL LOGIC 

Figure 4-8 Simple successive approximation ADC. 
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DAC 
OUTPUT t 

FS 

3/4 FS 

1/2 FS 

1/4 FS 

Full Scale 

CONVERSION TIME (CLOCK CYCLES) 

Figure 4-9 Successive approximation ADC, typical conversion sequence. 

left on only if the DAC's output is still less than the analog input. This process 
continues until all n bits have been tested. Figure 4-9 shows a typical con-
version sequence. The entire conversion requires many fewer than 2^ clock cycles 
(usually between n and In cycles). Furthermore, the conversion time is relatively 
constant and insensitive to the input analog value, as opposed to ramp converters. 

It is not unusual to find successive approximation ADCs with conversion 
rates well over one million samples/second and resolution as high as 16 bits. 
Lower-speed and lower-resolution successive approximation ADCs are common 
commercial ICs, available at very low prices. For example, there are 8-bit 
devices with conversion times of 5 |xsec or under (i.e., 200 kHz sampling 
rates) available for only a few dollars. 

4.3.3 Dual-Slope ADC 

Another common ADC is the dual-slope converter, which relies on integra-
tion. As shown in Figures 4-lOa and 4-lOb, the voltage to be measured (VJ 
is input to an integrator, charging the capacitor for a fixed time interval ^i, 
which corresponds to a certain number of clock cycles. At the end of this 
interval, a known reference voltage (Vj.) of opposite polarity is applied to the 
integrator, discharging the capacitor. The time (and number of clock cycles) 
required to bring the integrator output back to zero, (̂ 2 ~ î)» is measured. 

The charge on the capacitor at time ti is proportional to the average 
value of Vx times ti. This is equal to the charge lost by the capacitor during 
time t2-h, while being discharged by the reference voltage, proportional to 
Vr times (̂ 2 - î)- Hence (̂ 2 - t^lti is proportional to VJV^ The output binary 
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Figure 4-10 Dual-slope ADC. 

count for the time interval (̂ 2 - 1̂) is thus proportional to V̂^ the input voltage. 
With appropriate circuitry, bipolar voltages can also be measured. 

The dual-slope ADC has many advantages. Noise present on the input 
voltage is reduced by averaging. The value of the capacitor and conversion 
clock do not affect conversion accuracy, since they act equivalently on the up-
slope and down-slope. Linearity is very good and extremely high-resolution 
measurements can be obtained. Its main disadvantage is a slow conversion 
rate, often in the range of 10 samples/second. In applications where this is 
not a problem, such as in measuring temperature transducers, a dual-slope 
ADC is a good choice. They are commonly used in digital voltmeters (DVMs) 
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where their resolution is measured in display digits (4-1/2 digits = ±19999 
counts or approximately 15 bits). 

4.3.4 Voltage-to-Frequency Converter 

Another slow ADC is the voltage-to-frequency converter, or VFC. It changes 
an analog signal into a digital pulse train with a frequency proportional to 
the signal voltage. This pulse train can be converted into a usable digital 
output of n parallel bits by clocking a counter for a fixed time interval. 

The VFC is an integrating device with good noise rejection and mono-
tonicity, similar to the dual-slope converter. It can also be used as an inexpen-
sive, high-resolution ADC, with slow conversion rates. Its drawbacks include 
nonlinearity, a limited input-voltage dynamic range, and output offset. As the 
input voltage approaches zero, the output frequency is still offset from zero. 

4.3.5 Flash ADC 

The fastest type of ADC is the flash converter. An n-bit flash ADC applies 
the input voltage to an array of 2" - 1 comparators, via a ladder of 2" resistors. 
The threshold for the comparators are spaced 1 LSB apart. 

Figure 4-11 shows a simple 3-bit flash ADC. When V^^ is zero, all 
comparators are off. As the input voltage increases to V^^f/S, the lowest 
comparator (a) goes on. As Vi^ keeps increasing by steps of Vref/S, each 
successive comparator (b, c, d,. . .) switches on. All comparators are on when 
the input voltage reaches or exceeds 7/8 x Vj-ef- The digital logic decodes the 
comparator outputs into a 3-bit word. The digital output can either be normal 
binary code (000 = minimum value, 111= maximum value) or a Gray code. 
In a Gray code, only one output bit changes for each one-step input change, 
to minimize noise and "glitches" when many digital switches change at once 
at high speed. 

The conversion speed of a flash ADC is limited only by the speed of 
its comparators and digital logic circuitry. It has a conversion rate measured 
in speeds ranging from millions of samples per second (MSPS) to over a 
billion samples per second (GSPS). A common application for this device is 
digitizing video signals at rates well above 10 MSPS. Flash ADCs are fairly 
expensive devices when high digital resolution is required, since their com-
plexity grows geometrically with the number of bits (2" - 1 comparators for 
n bits). So, even an 8-bit flash converter requires 255 comparators and a 
moderately complex digital decoder. See Section 4.3.8 for more information 
on high-speed flash ADCs. 
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Figure 4-11 3-bit flash ADC. 

4.3.6 Sigma-Delta Converter 

A fairly new commercial converter is the sigma-delta ADC (sometimes 
referred to as a delta-sigma converter). This device is a low-cost, high-
resolution ADC, suitable for low conversion rates. Sigma-delta ADCs typi-
cally have 16 to 24-bit resolution, with a usable input signal frequency range 
of a few Hz to a few kHz. There are some 16-bit sigma-delta ADCs with 
conversion rates up to 1 MSPS. 

A block diagram of a 16-bit sigma-delta converter appears in Figure 4-12. 
It consists of an analog modulator loop followed by a digital filter. The modulator 
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Figure 4-12 SIgma-delta ADC. 

operates at a very high clock frequency, effectively oversampling the input signal. 
It produces a serial data stream, which the digital filter averages to produce a 
16-bit output word. 

For example, assume the analog signal range (Vsig) is - 1 0 V to +1.0 V, 
as well as the DAC output, and the input signal voltage is constant at +0.4 V. 
The comparator's output will be high and the DAC's output will be +1.0 V if 
the output of the integrator (Vi^^) is positive. The comparator's output will be 
low and the DAC's output will be -1.0 V if Vjnt is negative. 

Let us follow the voltages at Vsum (where the DAC output is summed 
with the input signal), Vjnt (the integrator output, where Vsum is averaged), and 
the DAC output, as we step through the first few clock cycles, as shown in 
Table 4-4. Note that the DAC is a single-bit device, with an output of either 
+1.0 V or-1.0 V. 

Initially, at clock cycle 0, we assume that the DAC output is turned off, 
ŝig = Kum = înt (+0.4 V), and the comparator output is 1, producing a DAC 
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output of +1.0 V, to be subtracted from Vsum on the next clock cycle. At clock 
cycle 1, the first full clock cycle, Vsum = Kig - ^DAC = +0-4 V - 1.0 V = -0.6 V. 
Vint is simply the previous value of Vint plus the new value of Vsuni» or +0.4 V 
+ (-0.6 V) = -0.2 V. This process continues until the values at clock cycle 1 
occur again and the process is repeated. In this example, the conversion 
process starts repeating at clock cycle 11. Hence, 10 clock cycles are required 
to complete the conversion. If the analog voltage of the DAC output is averaged 
over those 10 cycles, we get a value of -1-4.0/10 = -1-0.4 V, the value of V̂ ig. 
Since the digital filter sees the same numbers as the DAC, its output will also 
be -1-0.4 V, but as a digital representation. 

Note that the number of clock cycles required for conversion varies 
with the value of V̂ ig. If we used a Vsig value of -1-0.2 V, only five clock cycles 
would be required. So, if high resolution at low sampling rates is adequate, 
the sigma-delta ADC is a good selection and a strong competitor to dual-
slope ADCs. 

4.3.7 Other ADC Variants 

Many current ADC ICs use variations on the techniques we have previously 
examined, along with additional features such as input multiplexers, sample-
and-hold amplifiers, and programmable gain amplifiers. Some sigma-delta 
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ADCs have programmable filters for signal conditioning. There are ADCs 
with multiple channels and programmable characteristics that are called data 
acquisition systems by their manufacturers. 

One important variant is the serial ADC. For the ADCs previously 
discussed, the output digital data was presented in a parallel format, with all 
bits available simultaneously. This parallel approach forces the number of 
pins on a monolithic ADC package to increase as the resolution (number of bits) 
increases, along with the overall package size. 

For medium-speed ADCs (up to about 1 MSPS) many IC manufacturers 
produce devices with serial outputs. For these converters, there is a single 
data line that is time-multiplexed: each bit of the output digital word is present 
in sequential order, for a fixed amount of time, usually one clock cycle (see 
Chapter 8 for a discussion of serial signals). These serial interfaces usually 
require only two or three wires: a data line, a clock line, and sometimes a 
control or synchronization line. This enables manufacturers to produce high-
resolution (12 to 16-bit) ADCs in 8-pin surface-mount IC packages as small 
as 3 mm x 5 mm. 

There are also ADCs designed for low-power applications, such as bat-
tery-powered accessories. These ICs can operate from low power supply volt-
ages. They usually have a "sleep" mode that drastically reduces power 
dissipation when not actively converting data. This low-power mode can be 
initiated via an external command or automatically after a predefined idle time. 

4.3.8 High-Speed ADCs 

In recent years, both the speed and resolution of ADCs have increased. 
Commercial ADC ICs are available up to 1000 MSPS (for eight-bit resolu-
tion)—this speed is one sample every nanosecond. Even at higher resolutions, 
ADC speeds have increased significantly. Currently, there are 10-bit ADC 
ICs as fast as 100 MSPS, 12-bit ADCs over 50 MSPS, 14-bit devices up to 
10 MSPS, and 16-bit converters up to 5 MSPS. 

Very High Speed Flash ADCs For resolution up to eight bits, flash ADCs are 
still the fastest converters available, currently with speeds up to 1000 MSPS or 
higher. As with high-speed analog circuits, these very high speed ADCs require 
great care in their implementation. At very high speeds (typically above 100 
MSPS) these ADCs no longer use standard TTL digital signal levels. Instead, 
ECL levels are used, as with high-speed DACs (see Section 4.2.7). 

Even with ECL signal levels, many of the fastest ADCs (at 500 MSPS 
or above) employ a 1:2 demultiplexer at their data output, producing two 
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digital output words. Each output changes at half of the sampling rate, giving 
the external circuit a chance to capture the ADC data. For example, the fastest 
ECL clock frequency is around 500 MHz, so a single ECL latch needs 2 nsec 
to store its data. 

Pipelined ADCs At high resolution, such as 12 and 14-bits, a technique called 
pipelining is used to enable high-speed conversions. A pipeline converter 
consists of multiple ADC stages of low resolution. The analog signal is 
captured by a sample-and-hold amplifier, to keep the input constant during 
the conversion process. Each ADC stage performs a conversion and passes 
its amplified quantization error (or residue) to the next stage for continued 
conversion. This residue is generated by passing the local stage's ADC output 
through a DAC and subtracting the result from the buffered input analog 
signal. After all stages have completed their conversions, logic circuitry com-
bines the result into an output word, usually employing digital error-correction 
techniques. 

The multiple ADC stages run in parallel, performing a local conversion 
for each clock cycle. This means that the output data conversion rate is equal 
to the clock rate, producing a high-speed ADC that is not slowed down by 
more bits of resolution. However, there is a delay between the time the analog 
signal is sampled and when the digital output word for that sample is available. 
This latency is the pipe delay, measured in clock cycles. It is determined by 
the number of internal stages the ADC employs. Pipe delays of 7-14 clock 
cycles are common. Figure 4-13 shows the timing for a pipelined ADC with 
a 7-clock latency. 

A pipelined ADC is useful for continuously sampling a signal (under 
normal circumstances the clock must be constantly running). The conversion 
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Figure 4-13 Pipelined ADC with 7-clock latency. 
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time required is much slower for the first sample, only. So, intermittently sam-
pling with a pipelined ADC is about as fast as using a successive-approximation 
ADC. 

Other High-Speed ADC Considerations Many high-resolution (12-bit and above), 
high-speed ADCs employ differential analog inputs. A differential input con-
sists of two signals, each 180° out of phase with the other. This greatly reduces 
the reception of common-mode noise. It does add the extra complexity of 
converting a single-ended (ground-referenced) analog signal to a differential 
one, but it is worth the improvement in data quality. There are now single 
ICs available that translate single-ended to differential signals. 

Many high-speed ADCs are available as multiple converters in a single 
IC package—some contain three converters and are used for digitizing high-
resolution analog video waveforms (R, G, and B signals). These devices may 
contain programmable gain amplifiers for input scaling and digital data stor-
age for output buffering, often in the form of a first-in-first-out (FIFO) memory. 
A FIFO buffer allows a relatively slow device to read the ADC output without 
losing data, even at high conversion rates. In a FIFO, data is independently 
stored and retrieved at different rates. 

4.3.9 ADC Characteristics 

After exploring some of the common ADC techniques, a discussion of their 
major characteristics is in order. The most important ADC parameters are 
resolution and sampling rate. 

ADC Resolution An ADC's resolution is the smallest change it can detect in 
a measurement. This value is actually a percentage of the full-scale reading, 
but it is commonly specified as the number of output bits. An n-bit ADC has 
2" possible output values and a resolution of one part in 2". For example, a 
10-bit ADC has a resolution of approximately 0.1% (1/1024). High resolution 
(more bits) is usually desirable in an ADC. Note that an ADC's accuracy can 
be no better than its resolution, for an individual reading. 

ADC Sampling Rate Sampling or conversion rate is the ADC specification 
most often examined. It is the number of readings completed every second. 
This parameter is extremely important when rapidly changing signals are 
measured. It is obvious that if a signal frequency is higher than the sampling 
rate, rapid signal variations can be missed when they occur between consec-
utive ADC samples. This is true whether the ADC takes an instantaneous 
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analog measurement, using a sample-and-hold amplifier to keep the value 
constant for the conversion cycle, or whether the signal value is averaged (with 
an integrator) during the conversion cycle. In fact, a successive-approximation 
ADC can produce highly erroneous results if the input signal varies signifi-
cantly during a conversion cycle. 

The Nyquist Theorem For an analog signal to be accurately digitized by an 
ADC, it must be sampled at a rate at least two times the highest frequency 
component in that signal. To put it another way, only signals whose highest 
frequency components are no more than one-half the sampling frequency can 
be accurately digitized. This maximum signal frequency is called the Nyquist 
frequency and this rule is called the Nyquist theorem. 

Aliasing When a signal is sampled too slowly (it contains frequency com-
ponents above the Nyquist frequency), the digitized waveform is distorted. 
This distortion is called aliasing. It is the result of mixing or beating between 
the signal frequencies and the sampling frequency. Low-frequency harmonics 
composed of the differences between the signal and sampling frequencies are 
recorded instead of the signal itself. 

Figure 4-14 shows a simplified example of aliasing, using a single-
frequency signal. Figure 4-14a shows a sine wave of fixed frequency,/Q. If 
that signal was digitized at a rate of 2/o, the samples taken would produce 
a waveform with a frequency of/o, as shown in Figure 4-14b. The only 
distortion here is that the digitized waveform appears to be a triangle wave 
instead of a sine wave. If a sampling rate much higher than 2/o was used, 
the digitized waveform would "fill in" more, and it would better approxi-
mate a sine wave. If the signal was digitized at a rate of only (4/3)/o, the 
samples would produce a waveform of frequency (l/3)/o, as shown in Figure 
4-14c. This result of aliasing is the difference frequency between the sam-
pling rate and signal frequency, which is (4/3 - 1) x /Q. If the sampling rate 
was equal to the signal frequency, the digitized waveform would be a constant 
value. 

In practice, an ADC's sampling rate should be much higher than twice 
the maximum signal frequency. A value of five times is a good choice. In 
most data acquisition systems, the analog input is filtered to eliminate any 
signal components above the Nyquist frequency. This is often referred to as 
an anti-aliasing filter. For such a low-pass filter to produce adequate attenu-
ation at the Nyquist frequency, it should have a cutoff frequency well below 
that point, requiring a sampling rate many times higher than the maximum 
frequency of interest. 
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Figure 4-14 Examples of aliasing. 

ADC Accuracy Another important ADC characteristic is its absolute accuracy, 
which is the measure of all error sources. This is sometime referred to as the 
total unadjusted error. It is the difference between the ideal input voltage and 
the actual input voltage (range) to produce a given output code, usually 
expressed as a percentage of full scale (i.e., ±1 LSB). It is possible for a 
converter's absolute accuracy to be better than its resolution, for multiple read-
ings. By definition, a converter's resolution is 1 LSB. It is not uncommon to 
find a commercial ADC with an ideal absolute accuracy of ±0.5 LSB. The 
sources contributing to the total unadjusted error include offset and Unearity 
errors. 

An error-free 3-bit ADC transfer curve is displayed in Figure 4-15a, 
showing digital output code versus analog input voltage, as a fraction of full-
scale input. As the resolution of the ADC increases, the "coarseness" of this 
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Figure 4-15 3-bit ADC transfer curves illustrating errors. 

curve decreases and it approaches a straight line, shown as the infinite reso-
lution line in the figure. 

An offset error would move the entire curve to the left or right, unchanged. 
This type of error can be corrected by adjusting the analog reference voltage. 
Figure 4-15b shows an offset error of 1 LSB. 

A linearity or gain error would be equivalent to having the slope of the 
infinite resolution line vary, producing a larger error for larger input values. 
This would be more difficult to correct for, especially if it was temperature 
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dependent. Figure 4-15c shows a linearity error of less than 1 (the gain drops 
at larger inputs). 

Special-Purpose ADC Approaches The ADC techniques discussed in this chap-
ter have been standard, general-purpose approaches, in common use. Some-
times, a data acquisition system can be tailored to a special application for 
increased performance (one hopes, without a significant cost penalty). One 
class of special applications particularly amenable to unique ADC systems 
is the realm of repetitive signals. These are identical waveforms that can be 
produced multiple times, without any significant change. Basically, these are 
static measurements under complete experimental control. 

This type of repetitive system allows us to use a high effective sampling 
rate based on a relatively slow ADC. Let us assume that the waveforms of 
interest have measurable energy up to 10 MHz. We need to sample at 20 MHz, 
which at high resolution (such as 16 bits) would require a very expensive 
ADC or multiple ADCs. We can get by with a high-resolution, slow (i.e., 
10 kHz sample rate) ADC by adding a sample-and-hold (S&H) amplifier and 
a timing controller (or use the S&H amplifier within an ADC). 

The idea here is to take one narrow sample of the waveform for each 
repetition of the waveform. The S&H amp must be able to capture an analog 
voltage with a 50-nsec window (equivalent to a 20-MHz sample rate). The 
timing circuit must be able to step through the waveform in 50-nsec incre-
ments. For each repetition of the waveform, the next 50-nsec aperture is 
captured and digitized. The ADC's maximum conversion rate of 10 kHz 
determines the maximum waveform repetition rate. If the width of the wave-
form is 100 |isec, it would take 2000 repetitions or 200 msec to sample it at 
effectively 20 MHz. See Chapter 14 for an example of this technique, some-
times called equivalent time sampling. 

This survey of DACs and ADCs should help you decide which com-
mercial hardware solutions are best suited to your own data acquisition 
problems, or whether to build your own special-purpose system, as well as 
what performance to expect from a commercial product. 
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The PC 

A computer is the heart of any contemporary data acquisition system. In the 
early 1980s minicomputers were the workhorses of most science and engi-
neering labs. Hardware was expensive, most software had to be written in-
house, and performance was barely adequate for all but the most expensive 
systems. Two decades later, PCs (personal computers) are commonplace 
throughout the scientific and engineering communities. The low cost and 
high performance of PCs made them the ideal platform for most data acqui-
sition tasks. In addition, a plethora of high-quality commercial software is 
available for all imaginable PC applications, including data acquisition and 
analysis. 

The typical high-end engineering desktop computer is the workstation. 
This is usually a system with several hundred megabytes (Mbytes) of volatile 
memory, a large-screen, high-resolution video display, and a large amount of 
fast on-line storage (typically a hard disk drive of well over 10 gigabytes). 
In addition, it would have a network connection and a fast microprocessor 
(possibly a RISC CPU, or reduced instruction set computer) or several micro-
processors in parallel. A workstation will often run the UNIX operating system 
or a version of Windows NT. This is usually the platform of choice for a very 
high performance data acquisition system, at a relatively high price. 

Even though workstations are more powerful than standard PCs, the 
distinction blurs when looking at high-end PCs. In fact, the major differences 
between a high-end PC and a low-end workstation are price, CPU, operating 
system, and software availability. Now that a variation of the UNIX operating 
system, called Linux, is running on many PCs, workstation-PC distinctions 
are reduced further. 

There are several popular classes of computers useful as platforms for 
data acquisition systems. The ones we will examine in this book are based 
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on the original IBM PC/XT/AT bus (now called the ISA bus) and the newer 
PCI bus. The IBM Micro Channel bus and the Apple NuBus (which were 
covered in the first edition of this book) are now obsolete. The IBM and 
compatible machines are based on Intel's 80x86 and Pentium microprocessor 
(or CPU, central processing unit) families. 

There are many members in Intel's 80x86 and Pentium families. The 
original device was the 8086, a "true" 16-bit CPU. It had a 16-bit wide data 
bus and a 20-bit address bus, producing a 1-Mbyte address range. The original 
IBM PC and PC/XT used Intel's 8088 CPU, which was effectively an 8086 
with only an 8-bit external data bus and a 20-bit address bus, for a 1-Mbyte 
address range, while keeping the same 16-bit registers internally for 8086 
software compatibility. When the IBM PC was released, in 1981, this hybrid 
approach of 16 bits internal and 8 bits external was common. 

The IBM PC/AT used Intel's 80286 CPU, which employed a true 16-bit 
architecture, a 16-bit external data bus, and a 24-bit address bus, for a 16-Mbyte 
address range. It was software-compatible with the 8088 while providing faster 
processing speed and additional features. The expansion bus of the IBM 
PC/AT computer, a superset of the PC/XT expansion bus, eventually became 
an explicit standard: ISA {industry standard architecture). 

The next Intel processor was the 80386, which used a 32-bit architecture 
both internally and externally. It had a 32-bit external data bus and a 32-bit 
address bus, for a 4-gigabyte (Gbyte) address range. IBM switched to its 
newer PS/2 line of PCs with the Micro Channel bus to use the 80386 and 
later CPUs. Many other manufacturers stayed with the original AT (ISA) bus, 
with modifications for 32-bit wide memory to accommodate 80386 machines. 
The ISA bus has been replaced in mainstream desktop PCs by the PCI bus. 
However, the ISA bus is still very popular in embedded PCs, including PC-
104 systems (see Chapter 12). 

The next Intel processor in this family was the 80486. It was another 
32-bit device with the same bus widths and features as the 80386 plus 
additional integrated functions, such as a floating-point processor. IBM used 
this processor in its higher end PS/2 systems while other manufacturers put 
it into ISA computers. 

After the 80486, Intel introduced the Pentium family of microproces-
sors (and abandoned the 80x86 naming convention, which could not be 
trademarked). Pentium processors had a 32-bit internal architecture (regis-
ters) with a 64-bit internal data bus. The external address and data buses 
were each 32 bits wide. Pentiums were based on superscalar architecture, 
which used two pipelines for parallel processing. They also had better cache 
memory than 80486 processors. Pentium processors had CPU speeds ranging 
from 60 MHz to 200 MHz, although their maximum external bus speed was 
about 60 MHz. 
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Intel kept the trademarked Pentium name for its later families of CPUs, 
even as their technology evolved. The next generation of Intel processors 
began with the Pentium Pro, which increased addressing to 36 bits (for a 64-
Gbyte range). More significantly, the Pentium Pro had a RISC-based core, 
more parallel processing hardware, and a secondary memory cache. However, 
its improved performance was significant only when running fully 32-bit 
software and operating systems, such as Microsoft Windows NT. 

The Pentium II followed, using essentially the same core logic as the 
Pentium Pro. It had some performance enhancements, including MMX 
instructions for improved multimedia support, and had speeds up to 400 MHz. 
The Celeron, was a lower-cost, lower-performance variant of the Pentium II. 

The Pentium III was Intel's next generation of microprocessors. It used 
the same core logic as the Pentium II series but had enhanced performance 
for certain types of data processing. This was done with single instruction 
multiple data (SIMD) instructions, which operated on entire blocks of data 
in parallel. The Pentium III had internal processor speeds over 1 GHz. 

As of this writing, the newest Intel processor is the Pentium 4, with 
speeds up to 2 GHz. It is optimized for digital video and Internet technologies, 
using Intel's NetBurst microarchitecture. This encompasses a 20-stage pipe-
line, a double-speed arithmetic logic unit (ALU), a 400 MHz memory bus, 
and additional SIMD and MMX instructions. 

Manufacturers other than Intel produce microprocessors for IBM-type 
PCs, most notably Advanced Micro Devices (AMD) and Cyrix Corporation. 
Their products are software compatible with Pentiums and are often of com-
parable performance. 

5.1 IBM PC/XT/AT and Compatible Computers 

We will now look in depth at the IBM PC/XT/AT class of PCs and their 
compatibles (sometimes called clones). First we will examine the IBM PC/XT 
computer, which is based on the Intel 8088 CPU. It has an external data bus 
8 bits wide and an address bus 20 bits wide, for an address range of 1 Mbyte. 
Even though 8088-based PCs have long been obsolete as desktop computers, 
they are still produced in small form factors (such as PC-104) for embedded 
PC applications (see Chapter 12). 

5.1.1 Memory Segmentation 

One idiosyncrasy of the 16-bit processors in this Intel CPU family is the 
way 20-bit physical addresses are generated from 16-bit registers. Intel uses 
an approach called segmentation. A special segment register specifies which 
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64-Kbyte section of the 1-Mbyte address space is being accessed by another 
16-bit register. A segment register changes the memory address accessed by 16 
bits at a time, because its value is shifted left by 4 bits (or multiplied by 16) 
to cover the entire 20-bit address space. The segment register value is added 
to the addressing register's 16-bit value to produce the actual 20-bit memory 
address. Four segment registers and five addressing registers are available in 
an 8088, all 16 bits wide. 

For example, when the stack is accessed, the 16-bit value in the Stack 
Segment (SS) register is shifted left by four bits (to produce a 20-bit value) 
and added to the 16-bit Stack Pointer (SP) register to get the full 20-bit physical 
address of the stack. The value added to the segment is referred to as the offset. 
The usual notation is segment:ojfset. So, if the code segment (CS) contained 
B021h and the instruction pointer (IP) contained 12C4h, the segmented nota-
tion is B021:12C4 and the physical location addressed would be B14D4h. 

Note that throughout this book, most addresses will be presented in 
hexadecimal (base 16) notation (with digits 0-9, A-F) using a trailing h. For 
example, lOOh = 256 (decimal). 

5.1.2 Motherboards 

The heart of any PC is a single printed circuit board (PCB) referred to as the 
system board or the motherboard. It contains the CPU and the system's 
memory, timing, and control functions, as well as external interface capabil-
ities {input/output or I/O). This external I/O is usually available through 
special connectors on the motherboard, often referred to as expansion slots. 
Various cards are plugged into these slots, including display adapters (video 
controllers), disk drive controllers, and parallel and serial interfaces, as well 
as boards for data acquisition. 

Newer PCs have many of these common functions (video control, disk 
drive control, etc.) integrated into the motherboard with appropriate connec-
tors. USB ports (see Chapter 8) are also built into new PC motherboards, 
simplifying connections to external peripherals such as scanners, printers, 
mice, and even data acquisition hardware. 

5.2 The IBM PC/XT 

A simplified block diagram of a PC/XT motherboard is shown in Figure 5-1. 
This motherboard contains: the CPU, an optional coprocessor (Intel 8087) 
for floating-point math, eight hardware interrupts, four direct memory access 
(DMA) channels, three timer/counter channels, read/write memory (usually 
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Figure 5-1 PC/XT motherboard block diagram. 

referred to as random access memory, or RAM), read-only memory (ROM) 
and all the required control logic and interfaces for the external I/O slots. The 
20-bit address bus, 8-bit data bus, and various control lines go to the I/O slots 
to support numerous peripherals. 

Even though the 8088 can address 1 Mbyte of memory, only 640 Kbytes 
of RAM is usable on the PC/XT, in the address range 0 to 9FFFFh. The upper 
360 Kbytes are reserved for system ROM and memory on expansion cards, 
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TABLE 5-1 

PC/XT Memory Map 

ADDRESS MEMORY AREA 

r r r r r h — — — 

Fonnnh 

p p o n o h 

C8000h 

COOOOh 

Annnoh 

00400n 

OOOOOh 

SYSTEM BIOS 

ROM EXPANSION 

HARD DRIVE BIOS 

ROM EXPANSION 

VIDEO ADAPTER AREA 
(DISPLAY BUFFERS) 

TRANSIENT 

PROGRAM 

AREA 

C0MMAND.COM 
RESIDENT PORTION 

BUFFERS, DRIVERS 

DOS KERNEL 

USED BY BIOS 

INTERRUPT VECTORS 

MEMORY TYPE 

> ROM 

•> ADAPTER RAM 

) SYSTEM RAM 

which plug into the I/O expansion slots on the motherboard. A simplified 
PC/XT memory map is shown in Table 5-1. 

5.2.1 I/O Addressing, interrupts, DIVIA, and Timers 

For communicating with peripheral, nonmemory (I/O) devices, the 8088 CPU 
supports both I/O mapped and memory mapped I/O. I/O mapping separates 
I/O addressing from memory addressing, so I/O ports can be directly and 
easily accessed, even if they have the same addresses as memory locations, 
by using separate control signals. In memory mapping, I/O ports look like 
memory addresses and use up part of the memory addressing space. In the 
PC/XT design, I/O mapping is used. Although the 8088 will support 16 bits 
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TABLE 5-2 
PC/XT I/O Address Map 

1 I/O ADDRESS 

000-OOFh 

020-021h 

1 040-043h 

060-063h 

080-083h 

1 OAOh 
1 200-20Fh 

1 210-217h 

2F8-2FFh 

300-31Fh 

320-32Fh 

1 378-37Fh 

1 380-38Ch 

390-393h 

1 3A0-3A9h 

1 3B0-3BFh 

1 3D0-3DFh 

1 3F0-3F7h 

1 3F8-3FFh 

usi 
DMA CONTROLLER 

INTERRUPT CONTROLLER 

TIMER 

PPI (8255) 

DMA PAGE REGISTERS 

NMI MASK REGISTER 

GAME ADAPTER 

EXPANSION UNIT 

ASYNC ADAPTER (COM2) 

PROTOTYPE CARD 

HARD DISK DRIVE ADAPTER 

PRINTER ADAPTER 

SDLC COMM ADAPTER 

1 CLUSTER ADAPTER 

BISYNC ADAPTER 

MONO DISPLAY/PRINTER 
ADAPTER 

CGA ADAPTER 

DISKETTE DRIVE ADAPTER 

ASYNC ADAPTER (C0M1) 

LOCATION 1 

ON 
MOTHERBOARD 

ON 
ADAPTER 

CARDS 

of I/O addressing, only 10 bits are used here (for a total of 1024 I/O addresses). 
This I/O space is divided into two regions of 512 locations each. The lower 
512 addresses (0 to IFFh) are used exclusively on the motherboard. The upper 
512 addresses (200h to 3FFh) are decoded by interface cards connected to 
the I/O slots. An I/O address map for the PC^T is shown in Table 5-2. 

The PC/XT has nine interrupt lines or levels, with unique priorities. 
The highest priority interrupt is the NMI (nonmaskable interrupt), used for 
trapping serious system problems, such as memory (RAM) parity errors. The 
next two interrupts, IRQO and IRQl, are also used only by the motherboard 
(IRQl interrupts the processor whenever the keyboard is hit). The other six 
interrupts, IRQ2-IRQ7, are available for use by cards in the extemal I/O 
slots. The lowest priority interrupt, IRQ7, is allocated to a parallel printer port. 
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Note that very often, peripheral board manufacturers use interrupts in 
nonstandard ways for functions not previously defined. The same problem 
holds true for the use of I/O addresses and even with memory addresses above 
640 Kbytes (the limit of MS-DOS). This is especially the case for some 
PC/XT data acquisition cards. If two cards in the same PC try to use the same 
interrupt or address, they will malfunction. This is an incompatibility or an 
address clash. The solution is to change the interrupt/address selection on 
one or the other card, or remove one card entirely. In newer PCs with plug-
and-play support, the system automatically assigns addresses and thus avoids 
this problem. 

Another important PC/XT feature is the use of direct-memory access 
(DMA). DMA hardware allows data to be transmitted very quickly between 
a peripheral device and system memory without the CPU's intervention. 
Programmed I/O transfers, under CPU control, are inherently slower than 
DMA I/O transfers. DMA is especially useful for accessing hard disk drives. 
The CPU initializes the DMA controller with the required information and 
the DMA controller takes over the system bus, managing the data transfer. 

There are four DMA channels in a PC/XT system. The highest-priority 
DMA channel (DMA channel 0) controls memory refresh, as discussed below. 
The other three DMA channels (1-3) are available for use by external I/O 
cards. Care must be taken in using DMA transfers, which can prevent normal 
CPU actions and result in a system crash. 

The PC/XT contains three programmable timer/counters. The first 
timer/counter (channel 0) is implemented as a general-purpose time-of-day 
clock, producing a level 0 interrupt (IRQO) approximately every 55 millisec-
onds. The second timer/counter (channel 1) times the DMA cycles for mem-
ory refresh, as described below. The third timer/counter (channel 2) controls 
the speaker's tone generation. If you need to use one of these timer/counters 
for other applications, try to use channel 2 only! This will not interfere with 
any critical system functions, whereas using other channels might. 

5.2.2 PC/XT Memory: RAM and ROM 

The PC/XT's main system memory consists of dynamic RAM. This read/write 
memory starts at address 0 and can extend up to 640K (9FFFFh). This is the 
memory used by the operating system, DOS, and is available for loading and 
running programs, along with any transient data storage required by those 
programs. 

Two types of RAM devices are static and dynamic. Both memories 
retain their contents only while power is applied to them. Dynamic RAM 
(DRAM), in addition, requires a periodic read access (on the order of every 
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few milliseconds) to retain its memory. This process is called a refresh cycle. 
It is required because each memory cell in a dynamic RAM acts like a 
capacitor whose charge slowly leaks off over time; it needs to be periodically 
recharged to the appropriate voltage (logic level). 

Even though DRAM refresh uses up a finite amount of CPU time, it is 
commonly used in PCs because of its lower price-per-bit than static RAM 
and its higher density (more bits per package). When the original IBM PC 
appeared in 1981, its motherboard supported only 64 Kbytes of DRAM, using 
16-Kbit ICs. A decade later, 4-Mbit DRAM ICs were common. Today (as of 
writing the second edition), 512-Mbit DRAMs are available. 

Early DRAMs were 1 bit wide, so a 1-Mbit DRAM was configured as 
1,048,576 (2̂ )̂ addresses by 1 bit. Most PC/XT machines used nine DRAMs 
to produce a memory block 1 byte (8 bits) wide, with the additional bit used 
for parity checking. This is a hardware scheme to detect if there was an error 
in reading memory. The DRAM refresh time on a PC/XT system used approx-
imately 7% of the available system time. This was accomplished using DMA 
channel 0 and timer channel 1. 

Newer DRAM ICs are organized as either 4, 8, or 16 bits wide, to 
minimize chip count when supporting a 32-bit or 64-bit wide memory bus. 
Memory ICs also use newer architectures to speed them up and keep pace 
with faster CPUs. These type of memories include extended data output 
(EDO) and synchronous DRAM (SDRAM). 

The PC/XT's ROM contains the nonvolatile memory required to start 
up the system. This includes hardware initialization, power-on diagnostics 
(including a memory test), and a bootstrap program. The bootstrap allows 
the PC to load the operating system and start running it, usually from a hard 
disk drive or diskette. This allows for the flexibility to upgrade or even change 
the operating system a PC uses, without any hardware changes. Other impor-
tant contents of the system ROMs include the programs needed for low-level 
control of various hardware I/O devices (such as disk drives, displays, and 
keyboard). This is referred to as the basic input/output system, or BIOS 
(sometimes denoted ROM BIOS). This firmware (software resident in a 
nonvolatile memory IC) is continuously used by the operating system for 
interfacing to all system I/O devices. If nonstandard system hardware is not 
supported by the BIOS, usually a special piece of software, called a driver, 
must be loaded into the operating system before the hardware can be used. 
An example of this would be support for a tape drive. 

Newer PCs store the BIOS in flash memory, which is a form of rewrit-
able ROM. This allows the BIOS to be upgraded via software without having 
to replace any internal ICs (ROMS). In addition, many PCs use a portion of 
the upper 360 Kbytes of basic PC memory (RAM) to temporarily store a 
copy of the BIOS program, often called shadow ROM. This is a useful feature 



5.2 The IBM PC/XT 87 

because system RAM has faster access time than most ROM chips and the 
repeated use of BIOS functions by most software gets sped up. 

The most common operating system originally used with PC/XT/AT 
computers was DOS (disk operating system), often specified as IBM-DOS 
or MS-DOS (for Microsoft, its developer). It is a single-user, single-task 
operating system with a hmited memory usage of 640 Kbytes (see Chapter 7 
for a more detailed discussion of DOS, Windows, and other PC operating 
systems). 

The system ROM is located in high memory addresses, above F4000h. 
Expansion cards plugged into the I/O sockets may also contain ROM, for 
integration into system code. This ROM may be present within the address 
range of COOOOh-DFFFFh. If it contains valid information, the system will 
be able to execute the code (instructions) it contains. This was a common 
approach for early hard disk drive controllers or special video display 
adapters. 

5.2.3 PC/XT Expansion Bus 

The key to the PC/XT's flexibility is its expansion bus, with connectors for 
external I/O cards. Figure 5-2 shows the bus connections to an expansion 
slot. This bus gives an add-in card access to all the system address, data, and 
control lines, except for those dedicated to the motherboard, such as IRQO, 
IRQl, and DRQO. 

Here is a brief description of the I/O bus signal lines, designated pins 
A1-A31 and B1-B31 (as shown in Figure 5-2): Lines A0-A19 (pins 
A31-A12) are the address bits used for memory and I/O addressing, where 
AO is the least significant bit (LSB) and A19 is the most significant bit (MSB). 
These are output lines, relative to the motherboard. Similarly, signal lines 
D0-D7 (pins A9-A2) are the data bits, used for all data transfers (including 
DMA cycles), where DO is the LSB and D7 is the MSB. These lines are 
bidirectional (both input and output). 

Signals DRQ1-DRQ3 (pins B18, B6, B16) are the DMA request lines 
for channels 1-3. They are input lines, used by external devices to initiate a 
DMA cycle. Signals DACK0-DACK3 (pins B19, B17, B26, B15) are DMA 
acknowledge lines. They are outputs used to indicate DMA activity, acting 
as handshake signals for their respective DRQ lines. 

Signals IRQ2-IRQ7 (pins B4, B25-B21) are interrupt request input 
lines, used by an external device to generate a CPU interrupt. IRQ2 is the 
highest priority and IRQ7 is the lowest. The system has to be initialized prior 
to an interrupt generation for it to be properly serviced. 

Signal lOR (pin B14) is an output line indicating an I/O read cycle. 
This tells the external I/O device being addressed to place its data on the bus. 
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Figure 5-2 PC/XT I/O card slot connector. 

Similarly, lOW (pin B13) is an output signal indicating an I/O write cycle. 
This instructs an external I/O device to read data from the system bus. MEMR 
and MEMW (pins B12, B11) are the equivalent read and write output lines 
for reading from and writing to memory addresses. 

Signal I/O CH RDY (pin A10) is an important input line. It is used by 
slow memory or I/O devices to lengthen a read or write cycle. This is known 
as inserting wait states. It allows slower (and less expensive) peripherals to 
interface to the PC/XT, with only the penalty of more time required for a 
data transfer. If this signal is not used properly, it can be asserted for too long 
(more than a few microseconds) and effectively monopolize the system bus. 
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preventing other activities. This could result in a system crash, where DRAM 
is not being properly refreshed or important interrupts are not being serviced. 
Figure 6-5, in Chapter 6, illustrates how to safely control I/O CH RDY. 

Signal AEN (pin All) is an output line which is used to prevent the 
CPU and other devices from accessing the system bus during DMA transfers. 
Signal ALE (pin B28) is an output line used to latch valid bus addresses by 
memory and peripheral devices. Signal I/O CH CK (pin Al) is an input line, 
used to indicate a memory or I/O device parity error. Signal RESET DRV 
(pin B2) is an output line used to initialize (reset) devices on the bus at system 
power-on. Signal T/C (pin B27) is an output line that indicates when the 
maximum DMA transfer count is reached. 

Signal OSC (pin B30) is an output line containing a 14.31818-MHz 
clock, with a 50% duty cycle. This clock may be divided down to provide 
other clock signals, such as dividing by 4 for the 3.58-MHz color video 
subcarrier frequency. On original PC and PC/XT systems, it was divided by 
3 to provide the main system clock frequency of 4.77 MHz. Signal CLK (pin 
B20) is an output line containing the main system clock, with a 33% duty 
cycle. It is often higher than 4.77 MHz in later PC/XT compatible systems. 
The most common clock frequencies used are 8 MHz and 10 MHz. Obviously, 
the higher the system clock, the faster the CPU will operate. Overall system 
performance is not necessarily proportional to this clock frequency. In fact, 
some slower peripheral cards may not work properly with faster clocks, unless 
enough wait states are inserted. 

The other lines on the I/O bus connector are power for the expansion 
cards. These lines are +5 V (pins B3, B29), -5 V (pin B5), +12 V (pin B9), 
-12 V (pin B7) and ground (pins Bl, BIO, B31). The positive voltage supplies 
typically have a higher current capability and are regulated to ±5%, as opposed 
to the negative supplies regulated to ±10% with lower current capacity. The 
original IBM PC's power supply could only produce approximately 65 watts 
of DC power, mostly for the +5 V (7 amps, maximum) and +12 V (2 amps, 
maximum) supplies. Most later PC/XT compatible systems used a power 
supply providing 120-150 watts of DC power. 

For examples of using some of these expansion bus signals, refer to 
Chapter 6. 

5.3 The IBM PC/AT 

Now we will examine IBM PC/AT computers and the ISA bus. The original 
IBM PC/AT and compatible systems were based on the Intel 80286 CPU. 
This was an expansion of the PC/XT architecture, including the external I/O 
bus. The PC/AT block diagram is shown in Figure 5-3. The 80286 processor 
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Figure 5-3 PC/AT motherboard block diagram. 

increased the number of address bits to 24, for a 16-Mbyte addressing space, 
and the number of data bits to 16. The motherboard had 16 interrupt levels 
and seven DMA channels. It still had three timer/counters. New features 
included a real-time clock with battery-backup CMOS RAM. This small 
amount of memory stored clock and system configuration data. In addition, 
the real-time clock included a 1024-Hz timer that could provide DOS programs 
with much finer timing resolution (approximately 1-msec counts) compared to 
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the XT 18-Hz RTC (approximately 55-msec counts). This new timer was 
accessed via INT 70h. 

The functioning of the IBM PC/AT (usually referred to as an AT or ISA 
system) was very similar to the PC/XT operation. Because of the higher speed 
and improved features of the 80286 CPU, overall system performance was 
enhanced. In addition, external data transfers could be 16 bits at a time, 
although 8-bit data transfers were still supported. The original IBM PC/AT 
had a 6-MHz system clock, which was later upgraded to 8 MHz. Most 80286-
based AT compatible systems used clocks ranging from 8 MHz up to 16 MHz. 
The faster systems required memory (RAM) with fast access time (or they 
had to add wait states to memory access cycles). The IEEE ISA bus standard 
(IEEE P996-1990) specified an 8-MHz bus frequency while allowing for 
higher, internal CPU clock frequencies (such as a 33-MHz 80486 PC). 

AT systems use two connectors for each external I/O card slot. One is 
a 62-pin connector, compatible with the single PC/XT I/O connector. The 
differences are that now pin B4 is IRQ9 instead of IRQ2, pin B19 is 
REFRESH instead of DACK 0, and previously unused pin B8 is now OWS. 
Also, CLK (at pin B20) is faster and has a 50% duty cycle. Most cards 
designed for the PC/XT bus will work in an AT, as long as they can deal 
with the higher clock frequency and do not do any special remapping of 
memory. 

5.3.1 PC/AT (ISA) Expansion Bus 

As shown in Figure 5-4, AT I/O slots have a new, second connector consisting 
of 36 additional pins. These lines carry the additional address and data bits, 
IRQ signals, DMA signals, and special control lines that allow for 16-bit data 
transfers, zero wait state memory accesses, and multiple CPU operations. 

Here is a brief description of these new I/O bus signals: Signal OWS, 
added to the original 62-pin connector at pin B8, is an input line used to tell 
the CPU not to add any wait states to the present bus cycle. This is useful 
for fast memory and I/O cards. The remaining new signal lines are on the 
new 36-pin connector, designated C1-C18 and D1-D18. The additional 
address lines are LA17-LA23 (pins C8-C2). The additional data lines are 
SD08-SD15 (pins C11-C18). The additional interrupt lines available on the 
I/O bus (besides IRQ9) are IRQ10-IRQ12, IRQ14, and IRQ15 (pins D3-D7). 
The additional DMA channel-control signals now available are DRQO and 
DACKO, DRQ5-DRQ7, and DACK5-DACK7 (pins D8-D15). 

Additional control lines also exist on the 36-pin connector. MEM CS16 
(pin Dl) is an input signal used to signify a 16-bit, one wait-state memory 
transfer. Similarly, pin I/O CS16 (pin D2) is an input signal indicating a 16-bit, 



92 CHAPTERS The PC 

B1 

B10 

B20 

831 

B 
GND 
RESET DRV 
+5V 
IRQ9 
-5VDC 
DRQ2 
-12VDC 
OWS 
+12VDC 
GND 
-SMEMW 
-SMEMR 
-low 
-lOR 
-DACK3 
-DRQ3 
-DACK1 
DRQ1 
-REFRESH 
CLK 
IRQ7 
IRQ6 
IRQ5 
IRQ4 
IRQ3 
-DACK2 
T/C 
BALE 
+5VDC 
OSC 
GND 

A 

-I/O CH CK 
SD7 
SD6 
SD5 
SD4 
SD3 
SD2 
SD1 
SDO 
l/OCH RDY 
AEN 
SA19 
SA18 
SA17 
SA16 
SA15 
SA14 
SA13 
SA12 
SA11 
SA10 
SA9 
SA8 
SA7 
SA6 
SA5 
SA4 
SA3 
SA2 
SA1 
SAO 1 

A1 

A10 

D1 

D10 

D18 

D 
-MEMCS16 
-I /0CS16 
IRQ10 
IRQ11 
IRQ12 
IRQ15 
IRQ14 
-DACKO 
DRQO 
-DACK5 
DRQ5 
-DACK6 
DRQ6 
-DACK7 
DRQ7 
+5VDC 
-MASTER 
GND 

C 
SBHE 1 
LA23 
LA22 
LA21 
LA20 
LA19 
LA18 
LA17 
-MEMR 
-MEMW 
SD08 
SD09 
SD10 
SD11 
SD12 
SD13 
SD14 
SD15 

C1 

A20 

C10 

C18 

A31 

Figure 5-4 PC/AT I/O card slot connector. 

one wait-state I/O data transfer. Signal SBHE (pin CI) is a bidirectional line 
used to indicate a data transfer on the upper 8 bits (D8-D15) of the data bus. 
This line is used by devices that support 16-bit data transfers. Signal MASTER 
(pin D17) is an input line used by additional processors or DMA controllers 
to take control of the system bus. This line must be used carefully. If an 
external device holds the bus too long, system memory may be lost because 
of lack of DRAM refresh cycles. 

Signal MEMR (pin C9) is similar to the original PC/XT bus signal 
MEMR (pin B12), now called SMEMR. The difference is, the original 
SMEMR is only active during a memory read cycle within the low 1 Mbyte 
of memory (original PC/XT address space). MEMR is active on all memory 
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read cycles. Furthermore, SMEMR is an output line while MEMR can be 
either an output or input. It can be driven by an external CPU. In a similar 
fashion, signal MEMW (pin CIO) is a superset of the original MEMW (pin 
Bll), now called SMEMW. The remaining lines on the 36-pin connector are 
extra power (+5 V) at pin D16 and ground at pin D18. 

The PC/AT power supply provides +5 V, -5 V, +12 V, and -12 V. The 
positive supplies have much higher current capabilities than the PC/XT power 
supply. The +5 V supply is rated at approximately 20 amps and the +12 V 
supply at approximately 7 amps. The overall AT power supply output power 
is approximately 200 watts, which is typical for most AT compatibles (although 
some industrial PCs can have power supplies as large as 600 watts). 

The memory map of the PC/AT is an expansion of the PC/XT's memory 
map, using a 16-Mbyte memory space, as shown in Table 5-3. Note that the 
AT motherboard supports 64 Kbytes of ROM, as opposed to 40 Kbytes on 
the PC/XT motherboard. The PC/XT supported an Intel 8087 math copro-
cessor IC, for accelerated calculations involving floating-point math. The AT 
supported an Intel 80287 math coprocessor, for an 80286 CPU. If a system 
used an 80386 CPU, it would support an 80387 coprocessor. Note that 
application software must explicitly utilize the math coprocessor for you to 
realize any benefit from it. 

PC manufacturers retained the basic PC/AT architecture as they moved 
to faster, more powerful CPUs, such as the 80386 and 80486 families. Nota-
bly, they increased addressable memory space (since the newer processors 
had 32-bit address buses for a 4-Gbyte address range) and implemented local 
buses (such as VESA and PCI) to take advantage of higher CPU speeds. The 
80386 processors had internal clock frequencies up to 33 MHz and the 80486 
CPUs went up to 100 MHz. 

5.4 BIOS 

As mentioned above, the BIOS code located in ROM on a PC/XT/AT system 
handles the low-level software interface to the hardware. For example, to 
display a character on the video screen you send an appropriate command, 
along with the character, to the proper BIOS routine. Without the BIOS, you 
would have to know the intimate details of the video hardware, such as where 
in physical video memory to write the character for display. If the video 
display hardware was changed, software that directly addresses the hardware 
will no longer work. This is known as "ill-behaved" software. On the other 
hand, if BIOS calls were used, the BIOS will take care of hardware changes 
and the software can remain the same. This is "well-behaved" software. 
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TABLE 5-3 

PC/AT Memory Map 

ADDRESS 

FDFFFFh 

lOOOOOh 

EOOOOh 

COOOOh 

AOOOOh 

00400h 

OOOOOh 

MEMORY AREA MEMORY TYPE 

EXTENDED MEMORY 
(15 Mbytes) 

SYSTEM BIOS 

ROM ON I/O ADAPTER 
CARDS (BIOS) 

VIDEO ADAPTER AREA 
(DISPLAY BUFFERS) 

TRANSIENT 

PROGRAM 

AREA 

C0MMAND.COM 
RESIDENT PORTION 

BUFFERS, DRIVERS 

DOS KERNEL 

USED BY BIOS 

INTERRUPT VECTORS 

) F 

V F 

RAM 

ROM 

ADAPTER RAM 

SYSTEM RAM 

The penalty for using BIOS calls is a slower response than directly 
addressing hardware. Also, if a needed function does not exist in the BIOS, 
the hardware may need to be directly addressed. However, it is desirable to 
use BIOS functions whenever possible, as they will work universally with 
nearly all PCs. In addition, modem 32-bit protected-mode operating systems 
(such as Windows NT and Windows 2000) only allow device driver software, 
not application software, to directly access hardware. 
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Some of the I/O facilities provided by BIOS routines support the key-
board, system clock/timer, communications ports, video display, floppy disk 
drive, hard disk drive, CD-ROM, printer, and system status. Original IBM 
PCs even had ROM BASIC built into the BIOS. 

5.5 PCI and Other Local Buses 

As microprocessor frequencies increased, the 8-MHz speed of the ISA bus 
became a limiting factor to PC performance. A processor could not commu-
nicate with external memory or I/O devices nearly as fast as it could process 
data internally. Several new buses appeared in the PC marketplace. Enhanced 
ISA (EISA) had a 32-bit data bus and address bus and was backward com-
patible with ISA cards. It also ran at just 8 MHz, but by doubling the data 
bus to 32 bits, it doubled I/O throughput. However, EISA never became very 
popular because of its relatively high cost. 

The Video Electronics Standards Association (VESA) developed the 
VESA Local Bus (VL Bus) primarily for improving video performance. But 
it also supported many other high-speed peripherals, such as network cards. 
VL Bus was originally 32 bits wide and had speeds up to 50 MHz. It was 
very common in PCs built in the early 1990s. However, VL Bus soon became 
displaced by the PCI local bus. 

5.5.1 PCI Overview 

Peripheral component interconnect (PCI) was developed by Intel as a processor-
independent, high-speed replacement for ISA. It was originally 32 bits wide 
(address and data) and ran at speeds up to 33 MHz. Later versions support 
64-bit data transfers and 66 MHz rates. It accesses up to 4 Gbytes in each of 
its 32-bit memory and I/O address spaces, using multiplexed address and data 
lines. 

PCI can coexist with other buses, such as ISA, on the same motherboard. 
Many PCs have both ISA and PCI slots. However, ISA slots are being phased 
out in most newer desktop PCs (but not necessarily in embedded and industrial 
PCs—see Chapter 12). In addition, PCI is now used in Apple Macintosh 
computers. The current revision of the PCI specification (as of this writing 
in 2001) is 2.2, released in December 1998. 

The PCI bus can operate in either a synchronous or asynchronous mode. 
In synchronous operation, the bus typically runs at the microprocessor's 
external clock frequency or a submultiple of it. So, a 66-MHz Pentium could 
synchronously connect to a PCI bus running at half of its clock frequency (33 
MHz). In this mode, the standard PCI clock can be between 20 and 33 MHz. 
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In asynchronous operation, the PCI bus speed is independent of the proces-
sor's clock. This mode is often better suited for operating at the maximum 
PCI bus frequency for the fastest possible performance. 

The PCI standard also supports cards that cannot operate at the full bus 
speed (33 or 66 MHz), using flow-control signals that indicate when a board 
is ready to send or receive data. This is akin to the wait state capabilities of 
the ISA bus. 

Because of its high-frequency operation, the PCI standard limits the 
number of add-in board connectors on a single bus to four. However, bridges 
can be used to implement multiple PCI buses on a single motherboard, 
allowing for larger numbers of expansion slots. This is commonly used in 
industrial PCs. 

The PCI standard supports both 5 V and 3.3 V logic levels. Three types 
of boards are defined: 3.3 V only, 5 V only, and universal. Expansion board 
connectors are keyed to prevent inserting a 3.3 V board into a 5 V socket or 
vice versa. 

PCI expansion boards are similar in size to their ISA counterparts, 
available as either full-length or short-length cards. They use the same style 
of connectors that IBM employed in its Micro Channel PCs. These connectors 
have twice the pin density of ISA connectors and accommodate their larger 
pin count (124 pins for 32-bit connectors) in a smaller space. 

5.5.2 PCI Operations 

The PCI bus multiplexes its address and data signals on the same pins 
(AD[00]-AD[31]). A control signal, FRAME# (cycle frame) indicates when 
a transfer cycle starts. It remains vaUd throughout most of the data cycle. During 
the first phase of a transfer cycle, the AD lines contain address information. 
For later phases, the AD lines contain data values. Figure 5-5 shows a basic 
PCI read operation. 

Control lines C/BE[0:3]# (command/byte enables) indicate which bytes 
are active during the data cycle, allowing 8- to 32-bit data transfers (for a 32-
bit PCI bus). The IRDY# (initiator ready) signal indicates that the bus master 
is ready to complete the transaction. During a read cycle this means that the 
master is ready to accept data and during a write cycle it indicates that valid 
data is present on the bus (AD[00:31]). The TRDY# (target ready) signal 
indicates that the selected (addressed) device is able to complete the transfer. 
A data phase is complete when both IRDY# and TRDY# are asserted. Wait 
states are inserted when IRDY# and TRDY# are not both active. The STOP# 
(stop) signal is used by the current target device to abort the current transfer. 
The DEVSEL# (device select) signal indicates that the device selected to 
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Figure 5-5 Basic PCI read operation. 

drive the bus (write data) has decoded its address and knows it has been 
selected. Since most of these control signals are bidirectional and tri-stated, 
a PCI bus data transfer uses a fairly complex protocol. 

One way the PCI bus improves data throughput is via a burst mode. 
Here, a single address cycle is followed by multiple data transfer cycles. This 
allows for an instantaneous speed of 132 Mbytes/sec for a 32-bit PCI bus 
running at 33 MHz. Of course, the maximum average or sustained data 
transfer rate will be slower than this (speeds up to 100 Mbytes/sec are 
commonly attained). If a large amount of data is transferred during a single 
burst, it ensures a high data rate, since the overhead of the address cycle 
becomes minimal. 

To ensure data integrity on the bus, PCI employs three signals: PAR 
(parity), PERR# (parity error), and SERR# (system error). PAR is the even parity 
bit, derived from the 32 AD lines and the four C/BE# lines. The sum of those 
bits and PAR should be an even number. If a parity error is detected during a 
standard cycle, PERR# is asserted. For a special cycle, SERR# is asserted. 
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A PCI add-in card can either be a slave or a bus master. The bus master 
capability is implemented via the REQ# (request) and GNT# (grant) signals. 
When a bus master board wants to take control of the bus, it asserts REQ#. 
The motherboard asserts GNT# when it is ready to relinquish bus control to 
the board. Each PCI slot has its own, independent REQ# and GNT# lines. 

The bus master feature is important for data acquisition boards, allowing 
them to take over the bus and quickly transfer large amounts of data into 
memory when they need to, instead of waiting for the CPU to a acknowledge 
a request via software. 

PCI also support four interrupt lines, INTA#, INTB#, INTC#, and 
INTD#, which are level-sensitive, active-low, using open-drain drivers which 
allows signal sharing among multiple boards. 

Table 5-4 shows the pinouts for 32-bit PCI expansion cards—both 5 V 
and 3.3 V boards. 

5.5.3 64-Bit PCI Bus 

PCI supports a 64-bit standard as an extension to the basic 32-bit bus. This 
is an additional 32-bit bus that uses 39 new signal pins: AD[32:64], 
C/BE[4:7]#, REQ64#, ACK64#, and PAR64. The new control lines are only 
valid for this additional bus. REQ64# (request 64-bit transfer) and ACK64# 
(acknowledge 64-bit transfer) are used to request and enable a 64-bit data 
transfer cycle. C/BE[4:7]# (control/byte enables) lines are used to control 
which bytes of AD[32:64] contain valid data. PAR64 (parity upper) is the 
parity bit for AD[32:64] and C/BE[4:7], behaving the same way as PAR does 
for the lower 32-bit bus. 

Table 5-5 show the pinouts for the 64-bit extension on 5 V and 3.3 V 
PCI boards. 

5.5.4 PCI-X 

As with the rest of the PC industry, the PCI standard continues to evolve into 
faster versions and special applications. PCI-X is a high-performance exten-
sion to the PCI bus that doubles the maximum clock frequency to 133 MHz 
while still allowing 64-bit transfers. This produces a maximum burst transfer 
rate of over 1 Gbyte/sec while preserving backward compatibility with stan-
dard PCI devices. PCI-X also includes protocol enhancements that make bus 
operations more efficient. PCI-X motherboards may only support keying for 
3.3 V cards, although the specification does describe universal (5 V or 3.3 V) 
cards. 



TABLE 5-4 
32-blt PCI Expansion Card PInout 
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PIN # 

1 1 
1 ̂  
1 ̂  
1 ̂  

5 

6 

1 ^ 1 
1 ̂  

9 

10 

1 ""̂  1 
12 

13 

14 

15 

16 

1 ""̂  1 
18 

19 

1 ^̂  
1 ^^ 

22 

23 

1 2^ 
25 

26 

1 ^̂  
28 

29 

1 30 
1 31 

5 V CARD 

SIDE B 

-12 V 

1 TCK 

Ground 

TDO 

H-5V 

+5V 

INTB# 

INTD# 

PRSNT1# 

Reserved 

PRSNT2# 

Ground 

Ground 

Reserved 

Ground 

CLK 

Ground 

REQ# 

+5V 

AD[31] 

AD[29] 

Ground 

AD[27] 

AD[25] 

+3.3 V 

C/BE[3]# 

AD[23] 

Ground 

AD[21] 

AD[19] 

+3.3 V 

SIDE A 

TRST# 

+12 V 

TMS 

TDI 

+5V 

INTA# 

INTC# 

+5V 

Reserved 

+5V 

Reserved 

Ground 

Ground 

3.3Vaux 

RST# 

+5V 

GNT# 

Ground 

PME# 

AD[30] 

+3.3 V 

AD[28] 

AD[26] 

Ground 

AD[24] 

IDSEL 

+3.3 V 

AD[22] 

AD[201 

Ground 

AD[18] 

3.3 V CARD 1 

SIDE B 

-12 V 

TCK 

Ground 

TDO 

+5V 

+5V 

INTB# 

INTD# 

PRSNT1# 

Reserved 

PRSNT2# 

SIDE A 

TRST# 1 

+12 V 1 

TMS 1 

TDI 

+5V 1 
INTA# 1 

INTC# 1 

+5V 1 
Reserved J 

+3.3 V 1 

Reserved 1 

KEYWAY 1 

Reserved 

Ground 

CLK 

Ground 

REQ# 

+3.3 V 

1 AD[31] 

AD[29] 

Ground 

AD[27] 

AD[25] 

+3.3 V 

C/BE[3]# 

AD[23] 

Ground 

AD[21] 

AD[19] 

+3.3 V 

3.3Vaux 1 

RST# 1 
+3.3 V 1 
GNT# 1 
Ground 1 

PME# 

AD[30] 

+3.3 V 1 

AD[28] 1 

AD[26] 1 

Ground 1 

AD[24] 1 

IDSEL 1 

+3.3 V 1 

AD[22] 

AD[20] 1 

Ground 

AD[18] 1 
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TABLE 5-4 
32-bit PCI Expansion Card PInout (Continued) 

1 PIN# 
1 32 
1 33 

1 ^^ 
1 35 
1 36 

1 ^̂  
1 38 
1 39 
1 40 

1 ^^ 
1 ^̂  
1 ^̂  
1 44 
1 45 
1 46 

1 ^^ 
1 48 
1 49 
1 50 

1 ^̂  1 ^̂  
1 53 
1 54 
1 55 

1 56 
57 

58 

59 

60 

61 

1 62 

5 V CARD 

SIDE B 

AD[17] 

C/BE[2]# 

Ground 

1 IRDY# 

+3.3 V 

1 DEVSEL# 

Ground 

1 LOCK# 

PERR# 

1 +3.3 V 

SERR# 

1 +3.3 V 

C/BE[1]# 

AD[14] 

Ground 

1 AD[12] 

AD[10] 

Ground 

SIDE A 

AD[16] 

+3.3 V 

FRAIVIE# 

Ground 

TRDY# 

Ground 

STOP# 

+3.3 V 

Reserved 

Reserved 

Ground 

PAR 

AD[15] 

+3.3 V 

AD[13] 

AD[11] 

Ground 

AD[09] 

KEYWAY 

AD[08] 

AD[07] 

+3.3 V 

AD[05] 

AD[03] 

Ground 

AD[01] 

+5V 

ACK64# 

+5V 

+5V 

C/BE[0]# 

+3.3 V 

AD[06] 

AD[04] 

Ground 

AD[02] 

AD[00] 

+5V 

REQ64# 

+5V 

+5V 

3.3 V CARD 1 

SIDE B 

AD[17] 

C/BE[2]# 

Ground 

IRDY# 

+3.3 V 

DEVSEL# 

Ground 

LOCK# 

PERR# 

1 +3.3 V 

SERR# 

1 +3.3 V 

C/BE[1]# 

AD[14] 

Ground 

1 AD[12] 

1 AD[10] 

1 M66EN 

Ground 

Ground 

AD[08] 

AD[07] 

+3.3 V 

AD[05] 

AD[03] 

Ground 

AD[01] 

+3.3 V 

ACK64# 

+5V 

+5V 

SIDE A 1 

AD[16] 

+3.3 V 1 

FRAME# 1 

Ground 1 

TRDY# 

Ground 1 

STOP# 

+3.3 V 

Reserved 

Reserved 

Ground 

PAR 

AD[15] 

+3.3 V 

AD[131 

AD[11] 1 

Ground 

AD[09] 1 

Ground 1 

Ground 1 

C/BE[0]# 

+3.3 V 1 

AD[06] 

AD[04] 1 

Ground 1 

AD[02] 1 

AD[00] 1 

+3.3 V 1 
REQ64# 1 

+5V 1 
+5V 1 
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TABLE 5-5 
PCI 64-Blt Extension PInout 

1 PIN# 

1 63 

1 ^^ 
1 ^̂  

66 

67 

1 ^̂  
1 ^̂  

70 

1 "̂̂  
1 ^̂  1 

73 

1 ^̂  1 
75 

1 '^^ 1 
1 ^̂  1 

78 

79 

80 

81 

82 

83 

84 

85 

86 

1 ^̂  
1 88 

1 89 
1 90 
1 91 

1 92 
1 93 
1 94 

5 V CARD 

SIDE B 

Reserved 

Ground 

C/BE[6]# 

C/BE[4]# 

Ground 

AD[63] 

AD[61] 

+5V 

AD[59] 

AD[57] 

AD[55] 

AD[53] 

Ground 

AD[51] 

AD[49] 

+5V 

AD[47] 

AD[45] 

Ground 

AD[43] 

AD[41] 

Ground 

AD[39] 

AD[37] 

+5V 

AD[35] 

AD[33] 

Ground 

Reserved 

Reserved 

Ground 

SIDE A 

Ground 

C/BE[7]# 

C/BE[5]# 

+5V 

PAR64 

AD[62] 

Ground 

AD[60] 

AD[58] 

Ground 

AD[56] 

AD[54] 

+5V 

AD[52] 

AD[50] 

Ground 

AD[48] 

AD[46] 

Ground 

AD[44] 

AD[42] 

+5V 

AD[40] 

AD[38] 

Ground 

AD[36] 

AD[34] 

Ground 

AD[32] 

Reserved 

Ground 

Reserved 

3.3 V CARD 1 

SIDE B 

Reserved 

Ground 

C/BE[6]# 

C/BE[4]# 

Ground 

AD[63] 

AD[61] 

+3.3 V 

AD[59] 

AD[57] 

Ground 

AD[55] 

AD[53] 

Ground 

AD[51] 

AD[49] 

+3.3 V 

AD[47] 

AD[45] 

Ground 

AD[43] 

AD[41] 

Ground 

AD[39] 

AD[37] 

+3.3 V 

AD[35] 

AD[33] 

Ground 

I Reserved 

Reserved 

1 Ground 

SIDE A 1 
Ground 1 

C/BE[7]# 

C/BE[5]# 

+3.3 V 1 

PAR64 1 

AD[62] 1 

Ground 1 

AD[601 

AD[58] 1 

Ground 1 

AD[56] 1 

AD[54] 1 

+3.3 V 1 

AD[52] 1 

AD[50] 1 

Ground 1 

AD[48] 1 

AD[46] 1 

Ground 1 

AD[44] 1 

AD[42] 1 

+3.3 V 

AD[40] 1 

AD[38] 

Ground 

AD[36] 

AD[34] 

Ground 

AD[32] 

Reserved 1 

Ground 

Reserved | 
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5.6 PC Peripherals 

Nearly all PC systems use at least one floppy drive (a notable exception being 
diskless LAN workstations) and a hard-disk drive. It is strongly recommended 
that a PC-based data acquisition platform have at least a 10-Gbyte or larger 
hard drive, for storage of raw and analyzed data as well as room for typically 
large application software. 

Older PCs usually had at least one parallel printer port and a serial port, 
for asynchronous communications. Newer PCs have one or more USB ports 
for external peripherals. See Chapter 8 for a discussion of parallel, serial, and 
USB interfaces. 

Several standard video displays have been available for PCs. The most 
basic was the text-only monochrome display, employing IBM's monochrome 
display adapter (MDA), used on older PC/XT/AT machines. It offered 1 
page of 25 lines of 80 characters with hardware support for high-intensity, 
underlining, and reverse video. It supported simple character-based graphics, 
where special characters are graphic symbols (such as lines) instead of alpha-
numerics. The MDA had a video buffer (memory) 4 Kbytes long. It produced 
sharp, easy-to-read text. 

True bit-mapped color graphics were supported by the color graphics 
adapter (CGA). It provided 4 pages of 80-character by 25-line text, as well 
as several graphics modes. Its highest graphics resolution was 640 points 
horizontally by 200 points vertically in 2 colors. It also supported 4 colors 
with a resolution of 320 points horizontally by 200 points vertically. The 
CGA had a 16-Kbyte video buffer. Text on a CGA monitor was much "fuzzier" 
than on an MDA monitor. The original IBM PC only offered MDA and CGA 
display options. These displays are obsolete now. 

The next available IBM video display was the enhanced graphics 
adapter (EGA). Its video buffer size varied from 64 to 256 Kbytes and it 
supported multiple pages of text. It displayed graphics with a resolution of 
640 points horizontally by 350 points vertically, with up to 16 colors (with 
maximum buffer memory). It also emulated a CGA or MDA display. 

Some of IBM's PS/2 series of computers supported multicolor graphics 
array (MCGA), which was an enhanced version of CGA. It used 64 Kbytes 
of video buffer memory and stored up to 8 pages of monochrome text. 
For graphics, it supported all the CGA modes as well as adding support for 
256 colors in a 320 points by 200 points mode. In addition, it had a high-
resolution 2-color graphics mode with 640 points horizontally by 480 points 
vertically. 

The newer IBM video display for PCs is the virtual graphics array 
(VGA) family. VGA started on many IBM PS/2 systems and older ISA 
systems. It has a 256-Kbyte video buffer. It emulates MDA, CGA, EGA, and 
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MCGA modes. It can support a 640-point by 480-point high-resolution graph-
ics display with 16 colors. VGA has become the most popular PC display 
standard, especially with higher resolution versions, collectively referred to 
as super VGA or SVGA. These displays are defined under VESA standards, 
having resolutions up to 1600 points by 1200 points using up to 16 million 
colors. Nearly all current PCs support VGA displays. 

There is also one early, non-IBM video display standard, the Hercules 
graphics adapter (HGA), sometimes referred to as monochrome graphics. It 
was developed to fill the void between the original text-only MDA and color 
graphics CGA, as a graphics display using a monochrome monitor. It emu-
lated MDA (and used the same monitor) in text mode, along with MDA 
graphics characters. It could switch into a monochrome (two-color), bit-
mapped graphics mode supporting a resolution of 720 points horizontally by 
348 points vertically. Its video buffer contained 64 Kbytes of memory. Being 
a non-IBM standard, it was not supported by BIOS or DOS video functions. 
A special software driver had to be installed to fully use it. However, many 
early commercial software products supported HGA and it was a low-cost 
alternative to high-resolution color displays (EGA and VGA) when multicolor 
video was not required. Today, the VESA standards have made HGA and 
most other nonstandard PC displays obsolete. There are even monochrome 
VGA monitors commercially available. 

Most video cards contain their own BIOS, which is loaded when the 
PC boots up. Currently, display adapter cards fall into three groups: SVGA, 
2-D graphics accelerators, and 3-D graphics accelerators. Some of these cards 
plug into an accelerated graphics port (AGP) slot on the PC's motherboard. 
This is a special local bus, just for connecting a video adapter to the CPU. 

The keyboard is the PC's standard user-input device, fully supported 
by BIOS, DOS, and Windows functions. There are many other user input and 
control devices for PCs, the most popular being the mouse. The mouse is a 
device that connects to the PC via a standard serial port, a special mouse 
connector (the IBM PS/2 mouse standard), or a USB port. It is moved by the 
user's hand in a two-dimensional plane on an ordinary tabletop or a special 
pad. It has two or more buttons the user can push (some also have a scroll 
wheel). In conjunction with supporting software, a mouse simplifies using 
graphics-based applications, such as CAD systems or operating systems such 
as Windows (see Chapter 7). For example, a painting program allows the user 
to create and edit graphics images. A mouse can be used, among other things, 
to draw lines, select functions, and select objects on the screen to manipulate. 
Other, less common peripherals for user input are digitizing pads and track-
balls (a stationary version of a mouse, either built into a keyboard or free-
standing). Many newer PCs use USB ports to connect a mouse and keyboard 
to a PC. 
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An important and sometimes overwhelming area of PC peripherals is 
that of mass storage. This includes floppy drives (diskettes), hard drives, 
optical drives, and other, more esoteric storage devices. For floppy drives, 
there were two common form-factors, 5-1/4 inch and 3-1/2 inch diskettes, each 
with two standard densities. The early 5-1/4 inch drive supported double-
sided double-density storage, which allowed 360 Kbytes of formatted capac-
ity. This was common on XT class machines. Most AT machines used a 
double-sided high-density drive that was capable of 1.2 Mbytes of formatted 
storage. Similarly, both 3-1/2 inch drive formats are double sided. The original 
double-density 3-1/2 inch drive had a formatted capacity of 720 Kbytes. The 
standard quad-density 3-1/2 inch drive has a 1.44 Mbyte capacity. Most newer 
PCs only have a 1.44-Mbyte drive, even though 2.88-Mbyte capacity 3-1/2 
inch drives are available. 

There are some wrinkles to note when using diskettes with different 
density drives. Most notably, if a diskette was formatted on a double-density 
5-1/4 inch drive, it can be read by a high-density drive, but a high-density 
diskette cannot be read by a double-density drive. If a double-density diskette 
was written on by a high-density drive, sometimes it may not be read reliably 
by a double-density drive. Also, for both 5-1/4 and 3-1/2 inch drives, the 
diskettes used must be the appropriate type for that drive. So, do not use low-
density diskettes in high-density drives or vice versa. In 3-1/2 inch drives, 
the hardware recognizes whether the diskette is low or high density via a 
permanent notch in the diskette. 

The hard drive arena can be even more confusing. Hard disk drives can 
vary in capacity from megabytes (Mbytes) to gigabytes (Gbytes). The com-
mon sizes keep increasing each year as storage technology improves. Early 
hard drives used MFM (modified frequency modulation) encoding. Some 
used RLL (run length limited) encoding to increase capacity and transfer 
speed by 50%, over MFM. Advanced RLL drives doubled the data density 
over MFM. An important measure of performance is a drive's average access 
time, ranging from around 60 msec with older drives to less than 10 msec 
on newer models. 

The type of drive-to-computer interface is another important hard disk 
parameter. Early PCs used the serial ST506/412 interface with its peak data 
transfer rate of only 625 Kbytes/sec (its serial data rate was 5 MHz). An 
improvement to this standard was the enhanced small device interface (ESDI), 
which also used a serial data stream but ran at 25 MHz, resulting in a peak 
data rate of 3.125 Mbytes/sec. 

These standards were made obsolete by the integrated drive electronics 
(IDE) interface (sometimes called the AT attachment) and its many variations. 
As the name implies, an IDE drive has control electronics built into it. So, a 
PC's motherboard requires a very simple interface to connect to an IDE drive, 
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and the need for a separate controller card (as with ST506/412 or ESDI) is 
eliminated. IDE drives were originally developed for AT computers. 

IDE is a parallel interface, 16 bits wide. Its original peak transfer rate 
was 4 Mbytes/sec. Later improvements, such as ATA-2 or enhanced IDE 
(EIDE), increased the peak data transfer speed to 16 Mbytes/sec. ATA-4 or 
Ultra DMA raised this rate to 33 Mbytes/sec. The newest IDE standard (as 
of this writing), ATA-5 or Ultra DMA/66, has a peak rate of 66 Mbytes/sec. 
The biggest advantage of ATA/IDE drives is their fairly low price at a good 
performance level. 

If you need a higher performance hard drive system (i.e., faster transfer 
rates than IDE drives) the best alternative is the small computer system 
interface (SCSI). SCSI is a self-contained bus that can connect up to 15 
devices to a PC, using an interface card (some PCs, mostly network servers, 
have SCSI controllers built into the motherboard). SCSI supports other 
devices besides hard drives, such as high-performance CD-ROM drives and 
scanners. SCSI was originally an 8-bit wide bus with a peak transfer rate of 
5 Mbytes/sec. Later versions increased bus width to 16 bits and raised the 
speed. Currently (as of this writing) the fastest SCSI standard is the Ultra 
160/m Wide SCSI with a 16-bit bus, 80-MHz speed, and a peak data rate of 
160 Mbytes/sec. 

The performance of SCSI hard drive systems depends on many factors, 
including the length of the signal cables and the properties of the controller 
card. When streaming large amounts of data to a hard drive at high rates, as 
is common in some data acquisition applications, a high-performance disk 
drive is necessary. Just bear in mind that peak data rates are only one indi-
cation of overall throughput. Appropriate software must be used to obtain the 
full benefits of fast hardware. 

Another important class of mass storage devices are tape drives, typi-
cally used to back up data from hard drives. As PCs progress to larger hard 
drives, backing up data onto diskettes becomes cumbersome and often 
impractical. For example, a PC with a small 100-Mbyte hard drive requires 
70 high-density 3-1/2 inch diskettes (1.44 Mbytes each) for a total backup. 
Even using data compression techniques, about 30 diskettes would be 
required. Instead, a tape drive using a single tape cartridge can easily store 
hundreds of megabytes or even several gigabytes. Tape drives have shown a 
trend toward standardization, making their use more attractive for backing 
up large hard drives. 

The quarter-inch cartridge (QIC) standard encompasses a range of tapes 
that can store as little as 60 Mbytes or as much as 25 Gbytes on a single 
tape cartridge. Drives that use QIC tapes are fairly common. A newer tape 
cartridge standard, the Travan, ranges from 400 Mbytes up to 4 Gbytes on 
a tape. There are digital audio tapes (DAT) used for data backups with 
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capacities up to 20 Gbytes. Another format, digital linear tape (DLT), can 
also store up to 20 Gbytes on a tape. Nearly all tape drive systems support 
data compression, which can sometimes double the capacity of a cartridge 
(although it may slow down the backup process). 

Optical drives are a fast-growing alternative to some magnetic media. 
The CD-ROM (compact disc-read only memory) drive has become ubiqui-
tous as a means of distributing programs and data for PCs. These compact 
discs are prerecorded digital media (as are audio CDs) containing up to 700 
Mbytes on a standard disc. A CD-ROM is, as the name implies, read-only. 

CD-R (compact disc-recordable) drives allow you to record data on a 
blank disc. Once the disc is full you cannot write any more data onto it. 
However, it is possible using appropriate software to write multiple data 
"sessions" onto a CD-R disc. CD-R is ideal as a backup medium since the 
data cannot be erased and the discs are readable on nearly any CD-ROM 
drive. It has similar capacities to CD-ROMs. 

CD-RW (CD-rewritable) drives allow you to erase data on an optical 
disc and record new data over it, just like conventional magnetic media (floppy 
and hard drives). CD-RW drives also function as CD-R drives, using the 
appropriate blank media. CD-RW drives have become very popular in recent 
years as their price has fallen. However, not all CD-RW discs can be read in 
CD-ROM or even CD-R drives. 

The newest optical storage technology is DVD (digital video disc or 
digital versatile disc), originally developed for storing video data. Currently, 
DVD media store about 4 Gbytes on a disc, although standards are defined 
for up to 16-Gbyte discs. The DVD-ROM drive is analogous to the CD-ROM. 
It is a read-only medium used in PCs for software and video distribution. 
There are also recordable DVD drive formats, DVD-R and DVD-RW, which 
are initially too expensive for widespread use (but should eventually become 
as common as CD-R and CD-RW). DVD drives can also read CDs but not 
all CD-R and CD-RW discs. Because of their much larger capacity, it is very 
likely that DVD drives will eventually supplant CD drives. 

Another popular realm of PC mass storage is the high-capacity floppy 
disk. Standard floppy drive capacities are now much too small for data and 
software requirements. One early attempt to significantly increase floppy disk 
capacity was the "Floptical" disk drive, which used an optical track servo 
system to provide 20 Mbytes of storage on a floppy-sized disk. This approach 
is used in the popular ZIP drive, which comes in 100-Mbyte and 250-Mbyte 
versions, using a special cartridge that is larger than a standard 3-1/2 inch 
diskette. Super Disk or LS-120 drives store 120 Mbytes and are backward 
compatible with 1.44 Mbyte floppy disks. 

One final class of PC peripherals we will touch on here is that of printers 
and plotters. Most PC printers use either a parallel (Centronics) port or a 
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USB port. Nearly all plotters use a serial port or a network connection (usually 
Ethernet). A printer is used to produce text and graphics output. The majority 
of printers used are ink-jet based, dot-matrix devices, forming characters and 
graphics images out of small, individual dots. Even laser printers use indi-
vidual dots, albeit at very high densities (300 to 600 dots per inch or more). 

Plotters are devices that produce drawings from a set of lines. They use 
one or more pens, whose position on the paper is accurately controlled. 
Plotters are commonly used by CAD and graphic art software. Newer plotter 
also use Inkjet technology, instead of pens, for increased speed. 

This completes our brief overview of standard PCs. In the next chapter 
we will look at the details of connecting external hardware to a PC's I/O 
expansion bus. 



C H A P T E R 

Interfacing Hardware 
to a PC Bus 

We will now look at the details of connecting external hardware to an XT, 
AT, or PCI bus. Initially we will examine 8-bit data transfers on a PC/XT 
bus. Later we will see the differences when connecting 16-bit devices to an 
AT (ISA) bus. We will also look at the issues involved with interfacing to the 
PCI bus. 

As we touched on in the previous chapter, three types of XT/AT bus 
cycles are used for data transfers: memory, I/O port, and direct memory access 
(DMA) cycles. On the PCI bus there are also burst transfers and special 
access cycles. For the XT/AT bus, these can be either a read cycle where data 
is transferred from an external device or memory into the CPU (or bus 
controller, when it is a DMA operation) or a write cycle where data is transferred 
from the CPU (or bus controller) to an external device or memory. Memory 
cycles are used to access system memory and memory on expansion cards 
(such as video buffers). Most data transfers to external devices use I/O port 
cycles or DMA cycles. 

6.1 I/O Data Transfers 

In XT systems, I/O port addresses in the range 200h-3FFh are available for 
use by I/O cards. Many of the I/O port addresses are reserved for particular 
functions. For example, the range 320h-32Fh is used by hard disk drive 
adapter cards (or the equivalent controller on a motherboard). One popular 
I/O address range for undefined functions is 300h-31Fh, assigned to IBM's 
prototype card. 

108 
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Figure 6-1 8088 CPU I/O port bus read cycle. 

Only a few control signals are needed, along with the address and data 
buses, to implement an I/O port read or write cycle on the XT bus. These are 
lOR (for a read cycle), lOW (for a write cycle), and AEN (to distinguish 
between an I/O port cycle and a DMA cycle). The timing for an I/O port read 
cycle is shown in Figure 6-1. 

A standard PC/XT I/O port bus cycle requires five clock cycles, includ-
ing one wait state injected by logic on the motherboard. Many systems with 
high clock frequencies inject additional wait states so that I/O cards designed 
for slower systems will still operate properly. The ALE signal occurs at the 
beginning of the I/O port cycle and indicates when the address bus contents 
are valid for the addressed port. lOR or lOW go active low to indicate an I/O 
port cycle. AEN stays inactive (low) to indicate this is not a DMA cycle. An 
active lOR signal tells the addressed I/O port to place its data (for the CPU 
to read) on the data bus (D0-D7). An active lOW signal tells the addressed 
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I/O port to read the contents of the data bus (from the CPU). The control Une 
I/O CH RDY is normally left active (high). If a slow I/O port needs additional 
wait states inserted into the cycle, it pulls this line low. 

6.2 Memory Data Transfers 

Memory bus cycles use timing very similar to I/O port bus cycles, as shown 
by the memory read cycle in Figure 6-2. The main control lines here are 
MEMR and MEMW. AEN is not needed for memory bus cycle decoding. One 
difference from I/O addressing is that for memory bus cycles, the motherboard 
does not inject an additional wait state (hence, only four clock cycles are 
needed instead of five). Another difference is that all 20 address lines (A0-A19) 
are valid for a memory bus cycle and should be used for decoding the memory 
address. Only the first 16 lines (A0-A15) are valid for an I/O bus cycle; in 
practice, just the first 10 address lines (A0-A9) are decoded on a PC/XT bus. 

CLOCK 

ALE 

AEN 

AO - A15~)( MEMORY ADDRESS VALID ) ( 

MEMR 

MEMW 

lO CH RDY 

DO - D7 iZJ-
DATA FROM MEMORY VALID 

Figure 6-2 8088 CPU memory bus read cycle. 
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6.3 A Simple, 8-Bit I/O Port Design 

A simple, fixed-address, 8-bit I/O port schematic is shown in Figure 6-3. The 
port I/O address is fixed at 300h by the decoding logic used on inputs A0-A9. 
lOW is used to write data to the output port latch (74LS373). lOR is used to 
read data at the input port buffer (74LS244). Note that the decode and control 
logic can be handled by a single PLD (progranmiable logic device) having 
at least 13 inputs and 2 outputs. A PLD is a logic device (such as a PAL 
or GAL) which contains an array of internal logic gates and flip-flops. The 
programming of the PLD determines the interconnection of its resources and 
the overall logic functions it performs (such as address decoding). A more 

PC BUS 

A0-A9 

D0-D7 

-^—• OUTPUT PORT 

Figure 6-3 Simple 8-blt PC/XT digital I/O port. 
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versatile I/O port circuit would have a selectable I/O port address, determined 
by jumper or switch settings. 

Whenever the CPU writes to I/O address 300h, a data byte appears at 
the output port. When the CPU reads from that address, it retrieves the byte 
currently present at the input port. This is simple, programmed I/O that must 
be completely handled by the CPU. The CPU's program must determine when 
it is time for an I/O data transfer and must control the I/O read or write cycle 
as well as store or retrieve the data from memory. This limits the maximum 
data transfer rate and prevents the CPU from doing other tasks while it is 
waiting for another I/O cycle. 

6.3.1 Using Hardware Interrupts 

Usually, a better alternative to the polled I/O technique just described is to 
use hardware interrupts. The occurrence of a hardware interrupt causes the 
CPU to stop its current program execution and go to a special interrupt 
service routine, previously installed. This is designed to handle asynchronous 
external events without tying up the CPU's time in polling for the event. 
Nine hardware interrupts are used in a PC/XT system. The highest priority 
is the NMI (nonmaskable interrupt), which cannot be internally masked by 
the CPU (but can be masked by hardware on the motherboard). This line is 
usually used to report memory errors and is not available to cards connected 
to the I/O expansion slots. The other eight hardware interrupt lines, 
IRQ0-IRQ7, are connected to an Intel 8259 Interrupt Controller (which 
connects to the 8088's maskable interrupt input line). The highest priority 
lines, IRQO and IRQl, are used on the motherboard only and are not con-
nected to the I/O slots. IRQO is used by channel 0 of the timer/counter, and 
IRQl is used by the keyboard adapter circuit. Interrupts IRQ2-IRQ7 are 
available to I/O cards. 

The 8088 CPU supports 256 unique interrupt types. These can be 
hardware or software interrupts. Each interrupt type has assigned to it a 
4-byte block in low memory (0-3FFh) containing the starting address of 
that interrupt's service routine. This interrupt vector consists of the 16-bit 
code segment (CS) and instruction pointer (IP) of the service routine. 
Interrupt types 0-4 are used by the 8088 CPU. For example, interrupt type 
0 is called by a divided-by-zero error. Interrupt types 5 and 6 are unused for 
8088-based PCs. Interrupt type 7 is used by the BIOS for the Print Screen 
function. 

Hardware interrupts IRQO-7 are mapped to types 8-15. So, the vector 
for IRQO is at addresses 20h-23h, IRQl is at 24h-27h, and so on. A hardware 
interrupt is asserted when the appropriate IRQ line goes high and stays high 
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Figure 6-4 Interrupt-driven 8-bit PC/XT digital input port. 

until the inteirupt is acknowledged. There is no direct interrupt acknowledge 
line from the I/O bus (it occurs between the CPU and the 8259 Interrupt 
Controller), so an I/O line under CPU control is used for this function and 
activated by the interrupt service routine. 

Figure 6-4 shows a simple 8-bit input port designed for interrupt-driven 
access, at I/O address 301h. As in Figure 6-3, the enable line of the input 
port buffer is decoded by a combination of address bits A0-A9, IOR, and 
AEN. In addition, the input port provides a Request for Interrupt line, used 
by the external hardware to signal when it is ready for the CPU to read data 
from it. A pulse or positive-going edge on this line sets the flip-flop, asserting 
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the IRQ7 line (lowest priority interrupt). When the interrupt service routine 
for interrupt type 15 is called, it performs a read from I/O address 301h to 
retrieve the data. This access will also reset the flip-flop, negating the IRQ7 
line and preventing an additional (and unwanted) interrupt service cycle after 
the current one is completed. 

Note that IRQ7 is typically used by a parallel printer port. To prevent 
unwanted hardware clashes, the flip-flop output in Figure 6-4 should be 
buffered by a tri-state driver, which can be disabled when the input port is 
not in use. A practical input port design would also have some selectability 
for the I/O port address and the IRQ line used. 

Any interrupt type can be accessed via software by simply using the 
INT instruction. This includes interrupt types used by IRQ lines. This is a 
good way of testing hardware interrupt service routines. 

6.3.2 Software Considerations for Hardware Interrupts 

Implementing hardware interrupt support in software requires many steps. 
The interrupt service routine must be written and placed at a known memory 
location. The address of this service routine must be placed in the 4 bytes of 
low memory corresponding to the appropriate interrupt type (for IRQ7 it 
would be addresses 3Ch-3Fh). The 8259 Interrupt Controller must be initial-
ized to enable the desired IRQ line. The 8088's maskable interrupt input must 
be unmasked (if it is not already). If you are using a standard peripheral 
device supported by BIOS functions, such as an asynchronous communica-
tions (serial) port, this initialization will be done for you by the BIOS. 
Similarly, commercial peripherals that come with their own software drivers 
should take care of these details for you. If you build your own data acquisition 
card with interrupt support, you will have to incorporate the initialization 
procedure into your custom software. 

There are conditions where polled I/O is preferable to interrupt-driven 
I/O. It takes the CPU 61 clock periods to respond to a hardware interrupt and 
begin executing the interrupt service routine. In addition, it requires 32 more 
clock cycles to return from an interrupt. For an older PC/XT system with a 
4.77-MHz clock, this corresponds to a processing overhead of 19.2 |Lisec 
added to the execution time of the interrupt service routine. If high-speed I/O 
transfers were required, such as every 20 |Lisec (for a 50,000 sample/sec rate), 
a tight polling loop would be preferable. There would not be much time left 
over from servicing the I/O transfer for the CPU to do much else. In general, 
when the time between consecutive hardware interrupts starts approaching 
the overhead required to process an interrupt, a polled approach to software 
is in order. 
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6.4 DMA 

When very high speed data transfers are required between a peripheral device 
and memory, direct memory access (DMA) hardware is often used. PC/XT 
systems support four DMA channels via an Intel 8237 DMA controller. The 
highest priority DMA is on channel 0, used only on the motherboard for 
DRAM refresh. The other three DMA channels are available for use by 
peripherals (channel 3 is the lowest priority). During a DMA cycle, the 8237 
takes over control of the bus from the 8088 and performs the data transfer 
between a peripheral and system memory. Even though the 8237 supports a 
burst mode, where many consecutive DMA cycles can occur, only a single-
byte DMA cycle is used on PC/XT systems. This ensures that CPU cycles 
can still occur while DMA transfers take place, preserving system integrity 
(including memory refresh operations). 

In PC/XT systems, DMA transfers require six clock periods. After each 
DMA cycle a CPU cycle of four clock periods occurs. So, the maximum 
DMA transfer rate is 1 byte every 10 clock periods. On original 4.77 MHz 
PC/XT systems, this is every 2.1 |Lisec for a maximum DMA data rate of 
476 Kbytes per second. This is still much faster than CPU-controlled data 
transfers. 

As with servicing interrupt requests, software must perform initializa-
tions before DMA transfers can occur. The 8237 DMA controller must be 
programmed for the type of DMA cycle, including read or write, number of 
bytes to transfer, and the starting address. Once it has been properly initial-
ized, the DMA cycle is started by a DMA request from the peripheral 
hardware. 

6.5 Wait State Generation 

As we previously discussed, sometimes a peripheral device is too slow for a 
normal PC/XT bus cycle. The length of a bus cycle can be extended by 
generating wait states. These are additional clock periods inserted into a 
memory or I/O bus cycle. Wait states are inserted by pulling line lO CH RDY 
low (negated) for two or more clock cycles after the data transfer cycle has 
started. 

Figure 6-5 shows a simple circuit for generating one additional wait 
state for an I/O cycle. When the I/O port is selected (for either a read or write) 
it sets a flip-flop that pulls lO CH RDY low. Note that the inverter driving 
the 10 CH RDY line is an open-collector device. This is because several 
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Figure 6-5 I/O wait state generation. 

peripherals on the PC/XT bus can drive this Hne simultaneously and will be 
OR-tied if they use open-collector outputs. This flip-flop output then goes to 
a two-stage shift register (using two additional flip-flops), which waits two 
clock cycles and then outputs a signal resetting the flip-flop and reasserting 
lO CH RDY, ensuring that no additional wait states are injected into the cycle. 
For each additional wait state desired, an additional shift register stage should 
be added, for more clock cycle delays. The timing is very similar for gener-
ating memory cycle wait states, except only one clock cycle delay is required 
to generate the first wait state. 
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6.6 Analog Input Card Design 

Building on what we have discussed in this chapter, Figure 6-6 shows an 8-
bit data acquisition circuit with eight analog inputs. It is based on a National 
Semiconductor ADC0808 successive-approximation ADC with a maximum 
conversion rate of approximately 10,000 samples per second (100-|Lisec aver-
age conversion time). This device has an eight-channel analog multiplexer. 
It accepts input signals in the range of 0 to +5 V. If a wider analog input 
range is required, op amps can be used. 
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Figure 6-6 8-bit, 8-channel analog input card. 
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This circuit occupies I/O addresses 300h-307h. Writing dummy data 
to address 300h starts a conversion for the signal on ADC channel 1. A write 
to 301h converts channel 2, and so on. When conversion is complete an IRQ 
is generated (the interrupt line used is jumper-selectable). The interrupt ser-
vice routine then reads the value from any I/O address in the 300h-307h 
range. The flip-flop that generates the IRQ is set by the ADC's end-of-
conversion (EOC) signal and cleared when the interrupt service routine reads 
the ADC value. 

6.7 16-Bit Data Transfers on ISA Computers. 

The PC/XT I/O circuits described above will also work in an AT (ISA) system. 
Most AT computers with high-frequency clocks (above 8 MHz) insert addi-
tional wait states for I/O port bus cycles so that cards designed for XT and 
slower AT systems will still work properly. Even 16-bit transfers to 8-bit 
peripherals are supported by hardware on the AT motherboard. However, to 
fully exploit the power of an AT system, an interface card should support 16-bit 
data transfers wherever possible. This utilizes the additional data, address, 
and control lines of the AT I/O bus. 

Basically, to perform 16-bit I/O port data transfers, we must decode the 
I/O port address, use lOR or lOW to determine the transfer direction, tell the 
system bus that we want a 16-bit transfer cycle, and input or output the 16-
bit data word. An AT has the same I/O address map for devices connected to 
the system bus as the PC/XT (in the range 100h-3FFh). This makes I/O 
address decoding the same. One new control line used on the ISA bus is I/O 
CS16 (pin D02), which indicates to the CPU (80286 or above) that a 16-bit 
data transfer is requested by the peripheral device. Another new control line 
is SBHE (pin CI), which is active when data on the upper byte of the data 
bus (D8-D15) is valid. 

Figure 6-7 shows a simple 16-bit ISA I/O interface, designed for 
address 300h. The main difference between this circuit and the PC/XT I/O 
circuits shown previously is the transfer of 16 instead of 8 bits at a time. 
Otherwise the I/O address decoding is the same, except for the LSB (AO). 
In addition, the bus signal I/O CS16 is asserted, active low (by an open-
collector driver), when the I/O port is accessed for a 16-bit I/O transfer 
cycle. If this line was not asserted, as with an 8-bit PC/XT card, only the 
lower 8 data bits (D0-D7) would be used for the I/O cycle. The signal SBHE 
is used when the upper 8 data bits (D8-D15) are ready for bus transfer, and 
it enables the buffer for that data. AO must be asserted to transfer the lower 
8 data bits. 
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Figure 6-7 Simple 16-blt ISA digital I/O port. 

It may be necessary, because of the higher clock frequency of most 
AT systems (especially 80386- and 80486-based computers), to add addi-
tional wait states to an I/O or memory bus cycle over and above the wait 
states automatically injected by logic on the motherboard. As with PC/XT 
systems, pulling the lO CH RDY line low can be used to add wait states to 
a bus cycle. 
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6.8 Plug and Play 

Configuring add-in cards on XT and older AT (ISA) computers was often a 
time-consuming chore. You had to set jumpers or switches on most boards 
to select appropriate I/O addresses, memory addresses, IRQ channels, and 
DMA channels. Aside from some peripherals whose settings were originally 
determined by IBM (such as some disk drive and video adapters), most boards 
had no standard settings. If more than one board in a PC tried to use the same 
resources (i.e., addresses or IRQ lines), they would produce a hardware 
conflict and not operate properly. This could even prevent the PC from booting 
up. So, add-in cards had to be manually configured. 

To automate the configuration process, Intel and Microsoft developed 
the Plug and Play specification for the ISA bus. This encompasses a mixture 
of BIOS software, operating system software, and expansion card hardware. 
If all these elements are in place, the PC configures the resources a Plug and 
Play add-in card requires and even loads the appropriate software drivers. 

Since the ISA bus was designed without any support for automatic card 
configuration, Plug and Play relies on a complex process. First it isolates the 
boards so they do not respond to standard ISA bus control signals. Then each 
board gets identified and initialized, allowing it to respond to bus signals. 
Next, each board individually goes into a mode where the PC reads the card's 
configuration information and programs its resource settings. After all boards 
have been configured, the operating system loads appropriate software drivers 
for them. 

Most older ISA PCs (pre-Pentium) do not have a Plug and Play 
compatible BIOS. But as long as the operating system supports it. Plug and 
Play boards can still be automatically configured. Microsoft operating sys-
tems starting with Windows 95 (see Chapter 7) fully support Plug and Play 
ISA. 

Note that with Plug and Play configuration, the resources selected by 
this process may not be the same as in an older ISA PC using standard 
settings. For example, plug and play may configure the first serial port 
(COMl:) to use IRQ7 instead of the older standard of IRQ4. 

In contrast to ISA, the PCI bus was designed with autoconfiguration in 
mind. Each PCI slot (up to four per bus) has a unique input line, IDSEL 
(initialization device select), which allows the system software to uniquely 
access the card's 256-byte configuration space. This is a special address space, 
separate from the conventional I/O and memory spaces on the PCI bus. The 
configuration space approach is much cleaner and does not require special 
procedures to isolate add-in cards from each other or the bus. In a PCI-only 
computer, all expansion boards can be automatically configured. 
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There is also a Plug and Play specification for parallel ports that are 
IEEE 1284 compliant (see Chapter 8). If a printer, or other device, supports 
Plug and Play, the PC can detect it and install the appropriate software driver, 
simplifying setup of the peripheral. 

6.9 Interfacing to the PCI Bus 

As we saw in Chapter 5, the PCI bus is several times faster and much more 
complex than the ISA bus. It would be very difficult to implement even the 
simplest subset of PCI bus controls using standard TTL-style logic ICs (such 
as the 7400 series). It would be better to use a large CPLD (complex pro-
grammable logic device) to incorporate PCI logic into a custom design. 

The simplest way to interface old or new hardware to the PCI bus is 
through a commercially available controller chip such as those available from 
AMCC or PLX Technology. ICs such as the PLX PCI9050 or the AMCC 
S5920 convert PCI signals with their complex protocol into a simple, local 
bus. This local bus can then interface directly to custom hardware with 8-, 
16-, or 32-bit data (for digital I/O ports, ADCs, DACs, etc.) or get converted 
to ISA bus signals with 8- or 16-bit data, using additional logic. 

To quickly convert a simple ISA board to the PCI bus, these chip 
families have development kits. The kits typically contain a board designed 
around the conversion chip that has a piggy-back connector for an ISA card. 
The development kit board plugs into the PCI bus and provides the bus 
conversion features needed by the ISA card. Since the development kit takes 
care of most of the hardware issues, the remaining design work is just software 
conversion, using the tools provided by the kit. 

Typically, these conversion chips act only as PCI slaves, without bus 
mastering capabilities. So they would not be suitable for converting an ISA 
card that uses DMA. However, more complex chips are available from these 
manufacturers that support full PCI bus master capabilities. 

Figure 6-8 shows a simplified block diagram of an ISA-to-PCI slave 
interface using the PLX PCI9052 chip. This IC has a built-in ISA interface, 
so additional logic is not needed. The PCI9052 can also interface non-ISA 
resources, such as memory and I/O devices, to the PCI bus using its local 
bus. A serial EEPROM (electrically erasable PROM) is used to store config-
uration information for the PCI9052. 

Many new PCI-based interface cards use CPLD and FPGA (field pro-
grammable gate array) logic devices for custom designs. CPLD and FPGA 
manufacturers, such as Altera, Cypress, Lucent, and Xilinx, offer PCI inter-
face designs that easily incorporate into their chips. The designer simply 
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Figure 6-8 Interfacing an ISA card to the PCI bus. 

connects the supplied PCI core to the chip's custom logic. This is usually 
accomplished using a high-level hardware design language, such as VHDL 
or Verilog. This approach frees the designer from reinventing PCI interface 
logic while providing greater flexibility than a fixed interface chip allows. It 
also lowers costs by placing both the PCI interface and board control logic 
in the same programmable chip. 

In the next chapter, we will examine software techniques for interfacing 
to PCs. The topics covered will include how the PC's software system works 
and how to produce software to support peripheral hardware, especially for 
data acquisition applications. 



C H A P T E R 

Interfacing Software 
to the PC 

Using the correct techniques for interfacing software to a PC is as important 
as implementing the proper hardware interface. In this chapter we will start 
with an overview of the PC/XT/AT DOS-based software structure and proceed 
to using this arrangement. Then we will explore the Windows environment 
as well as UNIX. 

7.1 DOS-Based PC Software Layers 

Four general layers of software are present on a DOS-based PC, as shown in 
Figure 7-1. The lowest is the hardware level, where the software directly 
accesses the hardware. For example, if the addressed hardware was a display 
adapter, writing to a specific address in its video buffer (to display a character) 
would be directly accessing the hardware. At this level, the actual computer 
circuitry (I/O and memory addresses) determines the software instructions 
needed. 

The next layer is the basic input-output system, or BIOS. This is 
software, often referred to as firmware, residing in read-only memory (ROM) 
on the motherboard. The system ROM includes code to test the computer 
system and bootstrap (or boot) it, to begin normal DOS or other operating 
system execution. The BIOS routines in ROM act as an interface between 
higher level software and the actual hardware. They implement the details 
needed to operate various standard hardware peripherals (such as video displays 
or disk drives) and begin to provide some hardware independence. When a 
program uses a BIOS function, it does not need to know hardware-level details. 

123 
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Figure 7-1 PC (MS-DOS) software layers. 

such as the address of the status register on a disk drive controller card. It 
only needs to request the BIOS function it wants completed, such as to read 
data from a particular sector on a specified disk. 

This hardware independence has important advantages. If different com-
puters use different hardware components to carry out the same functions, 
this approach eliminates the need to rewrite a program for each machine, as 
long as the BIOS commands are the same. A hardware change in the same 
machine does not require a software change, as long as the BIOS supports 
the new hardware or is upgraded with it. 

The only disadvantages with this approach are slower program execu-
tion and somewhat limited functionality. Since more instructions must be 
executed to produce a function from a BIOS call, compared to directly address-
ing hardware, a slower response is produced. Of course, the speed of newer 
PCs makes this less of an issue and for many functions a slower response 
is not important (such as the PC response when a user hits a key). When 
fast execution is required, such as in real-time control or data acquisition, 
direct hardware addressing may be necessary. If the BIOS functions do not 
support all the features of a particular hardware device, again direct hard-
ware access may be required. Often, system software is loaded to supple-
ment the BIOS and use the same software interface to call it, as described 
later. 

The next layer of system software is the disk operating system, or DOS. 
This software is loaded into the PC's memory from a disk drive, by a bootstrap 
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program in ROM. It operates at a higher level than the BIOS, even further 
removed from the hardware layer. Among other things, it implements the file 
and directory structure for disk drives. It advances the concept of hardware 
independence to device independence. For example, when a calling program 
requests data from a file, under DOS it does not need to know what type of 
physical drive contains the data. DOS keeps track of that information and 
retrieves the requested data by appropriate calls to BIOS functions. The 
program just uses a logical drive identification (such as A: or C:). 

This device independence extends to the type of device, using the DOS 
feature of redirection, when it redirects data from one device to another. For 
example, the DOS TYPE command usually displays the contents of a text 
file on a video display (for example: TYPE MYDATA.TXT). DOS can redi-
rect this data to a printer, with the command: TYPE MYDATA.TXT > PRN: 
(which sends this data to the system's default printer). A program calling 
DOS to perform these functions does not need to know about the differences 
between the two output devices (video display and printer) or even that very 
different BIOS calls are used to perform this function. DOS takes care of all 
these details. 

The final, highest layer of PC software is the application program. This 
is the software that performs the useful functions we need a computer for in 
the first place, such as mathematical calculations, word processing, data 
acquisition, and graphical display. To perform these high-level activities, the 
application program calls various functions at the DOS, BIOS, and hardware 
levels. As before, for the highest degree of portability, maintainability, and 
hardware support, software interfacing should be at the highest level possible, 
preferably DOS, or BIOS if necessary. However, calling system functions 
through DOS is also the slowest route. As with BIOS calls, trade-offs are 
sometimes necessary. When running DOS on a fast, relatively new PC (Pentium-
based) the slower speed of DOS function calls is minimal. 

7.2 Software Interrupts 

The mechanism for calling BIOS and DOS functions uses software interrupts. 
This provides a means of software independence for the called functions. A 
software interrupt works like a hardware-generated interrupt. It causes pro-
gram execution to jump to a new location, specified by the interrupt number 
or level. There are 256 possible interrupt levels in 80x86-based PCs. Some 
are used by hardware interrupts, some by BIOS, and some by DOS. Table 7-1 
lists the interrupt usage in a PC/XT system. To generate a software interrupt, 
the Assembler instruction INT, followed by the level (0-255), is executed. 
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TABLE 7-1 
Interrupt Usage in MS-DOS PCs 

1 INTERRUPT # 

0-7 

8-F 

10-1C 

1D-1F 

20-3F, 5C, 67 

1 80-FO 

CLASSIFICATION 

BIOS/DOS 

BIOS 

BIOS 

Data 

DOS 

BASIC 

FUNCTION 1 

CPU Interrupts | 

8259 H/W Interrupts | 

BIOS Function Calls | 

Video/Disk Table Pointers 

DOS Function Calls | 

BASIC Functions 

This specifies which interrupt vector to use. An interrupt vector is a 4-byte 
address in low memory, 0-3FFh, which contains the location of the interrupt 
service routine. This is the address the program jumps to when the interrupt 
is called, which contains the code to handle the interrupt request. 

The beauty of this system is that the software calling the interrupt routine, 
such as a BIOS function call, does not have to know exactly where in memory 
the interrupt service routine is located. This is the software independence 
alluded to above. If the BIOS code is upgraded at some future point, the 
absolute location of the interrupt service routine may change, but the soft-
ware calling it does not have to change, since the interrupt vectors will also 
be upgraded. 

7.2.1 BIOS Interrupts 

Using a previous example, the BIOS routine interfacing with the video display 
works through INT lOh. To display an alphanumeric character on the current 
video screen, the character byte is loaded into CPU register AL (the low byte 
of the accumulator) and 14h is loaded into AH (the accumulator's high byte), 
which specifies the video command (display a character). Then an INT lOh 
instruction is executed. Written in Assembler, the code to display the character 
"9" would be 

MOV AL,39H 
MOV AH,14H 
INT lOH 

Note that 39H is the ASCII code for the character "9." 
As shown in this example, BIOS functions use some of the CPU's reg-

isters for sending data to and receiving data from the function called. Some-
times, the carry flag is returned to specify a particular condition. When one 



7.2 Software Interrupts 127 

TABLE 7-2 
Standard MS-DOS PC BIOS Functions 

1 INTERRUPT # 

1 10h 
1 11h 
1 12h 

1 ^^^ 
14h 

1 ^^^ 
1 ""̂̂  
1 ""̂̂  

18h 

1 ^^^ 
1 ^^^ 
\ ^^^ 
1 1Ch 

PURPOSE 1 

Video Display Functions (0-13h) 1 

Equipment Check 1 

Memory Size Check 1 

Floppy Disk Functions (0-18h) 1 

Communications Functions (0-5h) 1 

Cassette and Misc System Functions (0-C4h) 1 

Keyboard Functions (0-12h) 1 

Printer Functions (0-2h) 1 

Execute IBM BASIC from ROM (IBM-PC. Only) | 

Re-Boot System 1 

System Timer/Clock Functions (0-7h) 1 

Keyboard CTRL-BREAK Interrupt Handler | 

System Timer Tick (18 Hz) Interrupt Handler | 

interrupt is used for several different functions (as Int lOh, 13h, 14h, 15h, 16h, 
17h, and lAh), register AH is loaded with the function number. Table 7-2 is a 
summary of most of the BIOS functions available on PC/XT/AT systems. 

7.2.2 DOS Interrupts 

DOS functions are called by software interrupts similar to BIOS functions. 
Most DOS functions are called via INT 21h. DOS reserves the use of INT 
20h-3Fh, although only INT 20h-27h are used for most common functions. 
Again, the function number is selected by the value placed in register AH. 
Some DOS INT 21h functions also have a subfunction, selected by the value 
in register AL. 

As an example of using a DOS function, we will once again write a 
character to the video display, using INT 21h, Function 2. Here, register AH 
contains the function number (2) and register DL contains the character to 
be displayed. If we use Microsoft C instead of Assembler in this case, we 
can write a general-purpose subroutine for video display called disp_ch(): 

#include <dos.h> 
# include < stdio.h> 
#define FUNCT 2 

/* standard definition files */ 

/* function number 2 */ 
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disp_ch(ch) /* subroutine name */ 

char ch; /* character argument */ 
{ /* start of subroutine */ 

union REGS regs; /* sets up register use */ 
regs.h.ah = FUNCT; /* AH = 2 */ 
regs .h .d l = ch; /* DL = character to display */ 
intdos(&regs,&regs) ; /* c a l l INT 21h */ 

} 

A calling program, to display the character "9" would be: 

main() 
{ /* start of program */ 

char c; 
c = 0x39; /* ASCII value for 9 */ 
disp_ch(c) ; /* call siibroutine */ 

} 

Even though more coding (along with more software overhead) is required 
to implement this DOS function in C, compared to Assembler, this approach 
is usually preferable. C is a high-level language with good functionality and 
ease-of-use. It is much easier to maintain a program in C than in Assembler 
and the penalty of larger, slower programs is not as severe as with some other 
high-level programming languages. We will discuss the various trade-offs 
between different programming languages later in Chapter 13. 

7.3 Polled versus Interrupt-Driven Software 

In Chapter 6 we looked at the trade-offs between accessing a peripheral device 
via polled software versus interrupt-driven software. If a peripheral device 
needs to be serviced relatively infrequently (for example, using only 10% of 
the available CPU time) and asynchronously (so the program cannot predict 
when the next service will be required), interrupt-driven software is in order. 
On the other hand, if interrupt servicing takes up too much CPU time (some-
times referred to as CPU bandwidth) for very frequent servicing, polled 
software would be preferable. In this case, there would be little CPU band-
width left over for other processing anyway. One other general case is when 
the peripheral servicing is synchronous, as when the value of an ADC is read 
at preset time intervals and requires a small amount of CPU bandwidth. Again, 
interrupt-driven software is the best solution. If the peripheral (ADC) does 
not provide a hardware interrupt, the PC's timer could. 

The following program listing, written in Microsoft Macro Assembler, 
shows the basic concepts for installing and using interrupt-driven software. 
It can be used with the data acquisition circuit from Chapter 6 (Figure 6-6), 
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set to generate an IRQ7 hardware interrupt whenever a new ADC reading is 
ready. It is assumed that the 8259 interrupt controller already enables IRQ7 
interrupts and that the system interrupt flag is set to enable the maskable 
interrupt input from the 8259. Otherwise, these functions must be taken care 
of in LOADVEC, the routine that prepares the system for the interrupt and 
loads the interrupt service routine INT7SVC, as 

MACRO ASSEMBLER PROGRAM TO READ ADC VALUE VIA IRQ7 

* DATA INITIALIZATION * 
DSEGl 

IRQ7 

DSEGl 

DSEG2 
PUBLIC 

DVALUES 

DINDEX 

DSEG2 

CSEG 

SEGMENT AT 0 

ORG 3CH 
LABEL WORD 

ENDS 

SEGMENT 
DVALUES, DINDEX 

DB 256 DUP (?) 

DW 0 

ENDS 

; interrupt vector table starts at 
;addr 0 
; start of vector for IRQ7 
;Now we can access the vector for 
; IRQ7 
;via the label IRQ7. 

;Data storage segment 
;Allows other programs access 
; to these variables. 
;ADC data storage table 
;(uninitialized) 
;Index into table (initialized to 
;zero) 

SEGMENT 
ASSUME 

;Code segment, for programs 
CSiCSEG, DS:DSEG2 

;* ROUTINE TO INITIALIZE IRQ 7 & LOAD SERVICE ROUTINE INTO MEMORY 
LOADVEC: MOV AX, 0 ; Point to memory segment 0 

;for interrupt 
MOV ES,AX ;vector table. 
MOV ES:IRQ7,OFFSET INT7SVC ; Set address of IRQ 7 
MOV ES:IRQ7+2,SEG INT7SVC /service routine. 
MOV DX,200 ;DX contains amount of memory 

; to save 
;for keeping service routine 
; INT7SVC 
; loaded in memory. 

MOV AL,0 
MOV AH,31H ;Get ready for DOS function 31h 
INT 21H ;Return to DOS, leaving 

;INT7SVC resident 
; in memory. 

;* INTERRUPT SERVICE ROUTINE 
ADC EQU 300H 

INT7SVC: PUSH AX 
PUSH DS 
PUSH BX 

/Address of ADC port (to read 
;data) 
;Save all working registers 
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PUSH CX 
PUSH SI 
MOV AX,DSEG2 ;Point to data storage segment 
MOV DS.AX 
IN AL,ADC ;Read data from ADC 
MOV SI,DVALUES 
MOV [SI+DINDEX] ,AL ; Store data in table 
INC DINDEX ; Point to next location in table 
CMP DINDEX, 257 ; Past end of table? 
JNZ CONTIN ;No 
DEC DINDEX ;Yes, Stay at end of data table 

CONTIN: MOV AL,20H ;Send EOI command to 8259 
OUT 20H,AL 
POP SI /Restore working registers before 
POP CX /returning. 
POP BX 
POP DS 
POP AX 
IRET /Return from interrupt 

CSEG ENDS 
END LOADVEC /Start execution at routine 

/LOADVEC 
END OF PROGRAM 

Since IRQ7 is interrupt type OFh, its vector is located at memory 
address OFh x 4 = 3Ch in segment zero (physical address 0000:003Ch). 
When the program is run by DOS, it starts execution at routine LOADVEC. 
This short program loads the address of the interrupt service routine, 
INT7SVC, into the vector location for IRQ7 (3Ch-3Fh). Then it allocates 
enough space for INT7SVC and its data and returns to DOS, leaving 
INT7SVC resident in memory. This type of software is called terminate-
and-stay-resident, or TSR. It is useful here, allowing the servicing of the 
IRQ7 interrupt independent of other software. The DOS call to INT 21h 
Function 31h is used to load TSR programs. The value in DX is the amount 
of memory to preserve for the resident program. AL contains the value 
returned by the function, which is useful for error codes. AH contains the 
function number. 

Once INT7SVC is loaded into memory, whenever it is called it reads 
the current value from the ADC and stores it in a data table, starting at location 
DVALUES and indexed by DINDEX. Both DVALUES and DINDEX are 
declared as public labels, so that other software can access them and retrieve 
the data. A typical program making use of INT7SVC would check the value 
in DINDEX, address the ADC, start a data conversion, and then go about 
other business. When it was ready to retrieve the data, it would check that 
DINDEX has incremented and then read the data out of the table, DVALUES. 
When it was done, it would decrement DINDEX. 
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Note that the above program is merely an illustrative example of the use 
of interrupt-driven software for data acquisition. It is still fairly rough and 
incomplete for practical use, lacking refinements. INT7SVC does show some 
important aspects of interrupt service routines. They should be as fast as 
possible, to avoid interfering with other system interrupts. That is why they 
are usually written in Assembler (although short C programs are sometimes 
used). The working system registers (AX, BX, CX, DS, SI) should be saved, 
by PUSHing onto the stack at the routine's start, and restored, by POPing, at 
its end. Otherwise, any use of these registers by the interrupt service routine 
will corrupt the interrupted program, on return. For hardware interrupt service, 
the routine must send an EOI command to the 8259 interrupt controller. 
Otherwise, new hardware interrupts will not be enabled. The service routine 
should end with an IRET statement for a proper return from the interrupt. 

An interrupt routine to service a software interrupt is somewhat simpler, 
since the 8259 does not have to be serviced and hardware interrupts do not 
need to be unmasked. In addition, there is little danger of monopolizing the 
CPU's bandwidth (unless hardware interrupts are masked off). Software inter-
rupts are a convenient way to install and call software functions in memory. 

To illustrate polled software used to retrieve an ADC value, the follow-
ing is a function written in Microsoft C: 

# inc lude <conio.h> /* needed for l i b r a r y func t ion 
inpO V 

#def ine ADC_STATUS 0x301 /* Address of ADC s t a t u s p o r t */ 
#def ine ADC_DATA 0x300 /* Address of ADC d a t a p o r t */ 

char read_adc() /* Name of f u n c t i o n i s 
adc_read * / 

{ 
whi l e (inp(ADC_STATUS) ! = 1) ; /* w a i t t i l l ADC i s done */ 
r e t u r n ( inp (ADC_DATA) ) ; / * send ADC v a l u e back t o 

c a l l i n g program */ 
} /* Done */ 

Note that this is a very short and simple subroutine. The main program 
calls it whenever it has started an ADC conversion and wants to retrieve the 
results. It assumes that I/O port 301h contains a value of 1 only when the 
conversion is complete. This is the status required by a polling routine such 
as read_adc(). 

In this simple example, there is no provision for the error condition when 
something goes wrong and the ADC status port never returns a 1, as when 
there is a hardware failure or a software bug calling read_adc() at the wrong 
time. A more practical program would have a time-out provision in the 
while(...) statement. Otherwise, the PC will remain stuck in that loop 
indefinitely. 
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7.4 Special DOS Programs 

There are several special-purpose programs used by DOS. These include 
device drivers and TSR programs. 

7.4.1 Device Drivers 

Previously, we have seen how useful interrupts are, both for calling existing 
DOS and BIOS functions and for interfacing to additional software functions, 
especially to support hardware such as data acquisition devices. Another special 
type of software is the device driver. A device driver is a distinctive program 
that is loaded into DOS (or any operating system) when the system boots up 
and then acts as if it is part of the operating system. As such, it must adhere to 
very strict guidelines. Device drivers are typically used to support special 
hardware functions. For example, a hardware mouse will usually have a device 
driver that allows it to work with conmion application software packages. Both 
16- and 32-bit versions of Microsoft Windows rely even more heavily on device 
drivers for interfacing to hardware, as we will see later in this chapter. 

In DOS, device drivers are loaded into the system by including com-
mands in a text file called CONFIG.SYS in the root directory of the boot 
disk. This file contains entries used to customize DOS, such as number of 
buffers and number of files that can be open simultaneously. It also contains 
entries in the form 

DEVICE = f i lename 

where filename is the name of a device driver, typically with a SYS extension. 
So, to load a mouse driver (file MOUSE.SYS), CONFIG.SYS should contain 
the line 

DEVICE = MOUSE.SYS 

When DOS boots up, it looks for CONFIG.SYS and, if it is found, it executes 
the commands it contains and loads the device drivers listed in the file. It 
should be noted that DOS device drivers must be written in Assembler for 
the proper control of program and data layout. They are normally only written 
by experienced DOS programmers. 

7.4.2 TSR Programs 

When DOS software support is required for special hardware, often writing a 
terminate-and-stay-resident (TSR) program is an appropriate choice, especially 
if it is not for conmiercial product support. It is much easier than producing a 
device driver and it can be written in a high-level language, such as C. 
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As we previously touched on, a TSR program is interrupt-driven soft-
ware. It is loaded into a PC's memory and can interface with other programs 
or with DOS itself. It continues to function until the system is turned off and 
RAM contents are lost (unless it is explicitly removed from memory). All 
TSR programs are activated by interrupts, either hardware or software. Some 
use software interrupt levels not reserved by DOS or BIOS, to allow an 
application program to access the TSR functions. 

It is common for TSR programs to attach themselves to interrupts 
already in use. For example, many utility TSR functions are activated when 
a special combination of keys is pressed (a hot key). To do this, the TSR 
program attaches itself to the keyboard interrupt 09h. This interrupt occurs 
whenever any key combination is pressed. If the TSR program's hot key is 
pressed, it can take over and perform its function. If not, it passes control on 
to the original interrupt service routine. This is also an example of how 
interrupt routines can be chained, with more than one service routine using 
the same interrupt level. In a similar fashion, some TSR programs that must 
perform a task periodically use the system timer interrupt. 

7.5 DOS 

As the primary hardware focus of this book has been on IBM PC/XT/AT 
systems and compatibles, the software focus has been on Microsoft/IBM DOS 
as the operating system for older PCs. DOS was by far the most popular 
software environment used by pre-80386-based PCs, but not the only one. It 
is still widely used in embedded PCs (see Chapter 12). DOS is a single-user, 
single-task operating system, meaning it can only do one thing (execute one 
program) at a time. For simple PC applications, including some data acqui-
sition and control, this is adequate. For cases where mainframe-style func-
tioning is needed (such as multiuser support) a more sophisticated operating 
system could be used. Similarly, special operating systems are used for 
operating a local area network (LAN) connecting multiple PCs together. 

DOS grew considerably after its initial release in 1981. Version 1.0, for 
the original IBM PC, only supported single-sided 5-1/4" floppy disks. 
Version 1.1 supported double-sided 5-1/4" floppy disks. Version 2.0 was 
released with the IBM PC/XT and added support for a hard disk drive. Version 
2.1 added support for IBM's Portable PC and its ill-fated PCjr. Version 3.0 
was released for the IBM PC/AT and supported high-density (1.2 Mbyte) 5-1/4" 
floppy disks. Version 3.1 added networking support. Version 3.2 added support 
for 3-1/2" floppy disks. Version 3.3 included support for the IBM PS/2 systems. 
Version 4.01 added expanded memory support and an optional, menu-based 
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interface shell, enhancing its standard command-line interface. In addition, 
it allowed larger disk drives (up to 512 Mbytes) to be used as a single logical 
device. DOS versions below 4.0 required a hard disk greater than 32 Mbytes 
to be partitioned into multiple logical drives. Version 5.0 increased the max-
imum hard disk partition to over 2 Gbytes, added the ability to load DOS 
into high memory (between 640K and IM) and included new utilities such 
as DOSKEY (to recall previous commands) and UNDELETE (to recover an 
accidentally erased file). 

The last version of MS-DOS was 6.22. It contained additional utilities 
such as MEMMAKER (a memory-optimization program) and SCANDISK 
(a disk drive maintenance program). It even had integrated disk compression 
support (via DriveSpace), which was useful for older, smaller hard drives. 

The primary advantage for using DOS was that it was supported by a 
vast array of commercial software products. Plus, it was a simple, real-time 
operating system that allowed you to directly control hardware. In addition, 
it was relatively inexpensive. Its primary disadvantage, besides being a single-
task environment, was its memory limitation. A DOS application could only 
directly access up to 640 Kbytes of system RAM, regardless of the hardware 
capabilities of the PC. This stenmied from the original PC's 8088 CPU with 
1 Mbyte of available physical addressing space and 384 Kbytes reserved for 
memory on peripheral devices (such as video display and disk controller 
cards). As an additional limitation, DOS allocated some memory for its own 
uses, typically leaving well under 600 Kbytes available for use by an appli-
cation program. If a PC had drivers loaded for network support, there may 
have been less than 500 Kbytes available for applications. In general, each 
successive version of DOS monopolized more memory for itself. 

When an 80286 or higher CPU (80386, 80486, Pentium) runs DOS, 
with its 1 Mbyte addressing limit, it is working in the processor's real mode, 
which is fully compatible with the old 8088. To access physical memory 
above 1 Mbyte, the CPU must use its protected mode, which is not supported 
by DOS. Windows running on an 80386 or above PC does fully support 
protected mode and an extremely large address space, as we will see later. 

For many applications, the 640-Kbyte limit of DOS is not a problem. 
For data acquisition applications, however, this can be a severe limitation, 
especially when a huge amount of data is being acquired and analyzed. For 
example, let us assume a system was acquiring 16-bit data at a rate of 50,000 
samples/second, running a program under DOS. Also assume it had 512 
Kbytes of memory available as data storage (the rest of the DOS range was 
needed for the program code). It would take just 5.12 seconds of data to fill 
up this memory buffer. Obviously, if more data acquisition was required for 
each test, the data would have to be stored in a disk file as quickly as possible, 
before the memory buffer filled completely. If this data was being analyzed. 
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the application program would have to keep reading in new data from the 
disk file if more than 5.12 seconds was stored. There are several ways to get 
around the memory limitations of DOS. The best option is to use a protected-
mode operating system such as Microsoft Windows or Linux. 

7.6 Overcoming DOS Memory Limitations 

There are several techniques available to extend the memory limitations of 
DOS. These approaches are useful when working with older or embedded 
PCs that would not be suitable for running a protected-mode operating system 
such as Linux or Windows. 

7.6.1 Overlays 

When writing your own program, a simple technique to reduce the amount 
of memory required for execution is to use overlays. An overlay is a section 
of program code that is loaded into memory only when needed, and other-
wise resides in a disk file. As illustrated graphically in Figure 7-2, an 
executable program residing in memory can consist of several code sections. 
These code sections, containing the program's instructions, can be subdi-
vided into a program core, which is always resident, and one or more overlay 
sections. An overlay section contains code that can be swapped out and 
replaced by other code as the program executes. This swapping is controlled 
by the program core, which would contain all the functions and variables 
required by the various overlay. It is important for the individual overlay code 
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Figure 7-2 Example of program overlays. 
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sections to operate independently of each other, though not of the program 
core. 

In the example of Figure 7-2, one overlay swap area is shared by three 
overlay sections. The overlay swap area must be as large as the biggest overlay 
that uses it. In this case, if the largest overlay is number 3, the memory saved 
by this technique (presumably for data storage) is the sum of the memory 
required for overlays 1 and 2. Of course, there are limitations on the amount 
of memory savings produced by using overlays and a program's structure 
must be very carefully worked out to use them. One major drawback to using 
overlays is slow program execution. Every time an overlay is swapped into 
memory (from a disk drive) the program must wait. The more overlays a 
program uses, the more swapping will occur during execution and the slower 
the overall program will run. 

7.6.2 Expanded Memory 

One popular and well-supported technique for stretching the 640-Kbyte mem-
ory limit of DOS was called expanded memory, which should not be confused 
with an AT's extended memory (beginning at an address of 1 Mbyte). Expanded 
memory was a standard developed by Lotus, Intel, and Microsoft, referred to 
as the LIM standard, which provided access to up to 8 Mbytes of extra memory, 
even on a PC/XT system. Expanded memory worked within the 1-Mbyte DOS 
addressing range. It was a memory page swapping technique. As shown in 
Figure 7-3, an unused block of memory up to 64 Kbytes long, between 640K 
and IM, was set aside as a page frame. This area could contain up to four 
pages of memory, each 16 Kbytes long. Special hardware (either a separate 
peripheral card or part of the system's motherboard) contained the physical 
memory storage: up to 8 Mbytes of pages, 16 Kbytes long. At any time, up 
to four pages of physical memory could be mapped into the 64-Kbyte page 
frame, where they were addressable by DOS and the rest of the system. 

To make use of expanded memory hardware, a device driver had to be 
installed into the system's CONFIG.SYS file. This DOS driver was usually 
called EMM.SYS (for expanded memory manager) and it operated through 
INT 67h. This driver controlled the memory page mapping and allocation 
functions. Many DOS applications supported expanded memory when it was 
present in a system. 

It should be noted that expanded memory was normally used just for 
data storage since you could not execute code from it or even from the page 
frame space (above 640 Kbytes). LIM version 4.0 did add support for 
enhanced expanded memory which could swap an entire program into and 
out of expanded memory, and it supported a multitasking environment. 
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Physical Expanded Memory 

DOS l\/lemory Address Range 

Figure 7-3 Mapping of expanded memory page frames. 

Since the memory page mapping of expanded memory was controlled 
by dedicated hardware it was relatively fast, though not as fast as directly 
addressing memory in an AT system's protected mode (as long as there is no 
context switching between protected mode and real mode, which is fairly 
slow). Expanded memory was extremely useful for DOS data acquisition 
applications that required large amounts (megabytes) of data storage in RAM, 
at data transfer rates that could outrun disk drive speeds. 

7.7 Protected-Mode Operating Systems 

To make full use of AT systems which can physically address more than 640 
Kbytes of system memory (using 80286, 80386, 80486, or Pentium CPUs), 
special software or another operating system is needed to operate in the 
processor's protected mode. One such early operating system from IBM and 
Microsoft was OS/2. It allowed a system to run large application programs 
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using more than 640 Kbytes of RAM for code and data. It enabled the use of 
an AT system's extended memory, which starts at address lOOOOOh or 
10000:0000h (which is 1 Mbyte). Of course, an appUcation had to be compatible 
with OS/2 to make use of all tihe available extended memory. OS/2 never became 
very popular, in part because it did not support DOS programs well. 

7.7.1 Microsoft Windows 

Microsoft's Windows, in its many variants, is now the most popular operating 
system for newer PCs (running 80386 or above CPUs). It is an operating 
system that supports large applications and makes full use of a system's 
physical memory. As a multitasking system, MS Windows allows more than 
one program to reside in memory and operate at any given time. Each program 
has its own window on the display screen. In addition, data can be easily 
transferred from one program or window to another, facilitating complex 
tasks using multiple applications (such as incorporating the results of a spread-
sheet calculation into a word processing document). Windows is built around 
a graphics-based user interface, analogous to Apple's Macintosh operating 
system. To take advantage of all these features, an application must be spe-
cifically written to be compatible with Windows (although DOS applications 
will run under most versions of Windows). 

Microsoft Windows actually encompasses several different operating 
systems. The original MS Windows, which eventually evolved into the pop-
ular Windows 3.1, was a 16-bit operating system that ran on top of DOS (you 
booted the PC into DOS and then started running Windows). It used real 
mode (16-bit) DOS for file services while running Windows applications in 
protected mode (32-bit). Software in protected mode had access to all the 
extended memory installed in the PC. Windows acted as a memory manager, 
allocating memory to multiple applications while keeping them isolated from 
each other (in their separate screen windows). This allowed multitasking and 
simplified data sharing. 

Windows 3.1 could also run multiple DOS applications in separate 
windows. Each DOS program appeared to have a virtual PC at its disposal 
with 1 Mbyte of memory available. The hybrid real mode-protected mode 
environment of Windows 3.1 was somewhat clumsy and not always reliable. 
Still, a plethora of application software was written for Windows 3.1. This is 
sometimes referred to as 16-bit Windows software. 

Windows 3.1 used text files with an INI suffix, including SYSTEM.INI 
and WIN.INI, as a means of controlling the system's configuration. These 
configuration files were akin to CONFIG.SYS and AUTOEXEC.BAT used by 
DOS. Newer versions of Windows (such as Windows 95 and later) continue to 
support these INI files but rely on a registry for most configuration information. 
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Windows NT was Microsoft's first full 32-bit operating system. It was 
aimed primarily at high-end systems and network servers running only 32-bit 
software and did not run DOS or 16-bit Windows software very efficiently. 
NT did become popular among commercial users who liked its extended 
network support, multiuser capabilities, and mainframe-style security features. 
Newer versions of Windows NT (including Windows 2000) have become quite 
suitable for stand-alone PCs and are extremely robust operating systems. 

Windows 95 became Microsoft's successor to Windows 3.1. It is a full 
32-bit operating system that allows applications to access up to 2 Gbytes of 
memory using a protected-mode 32-bit linear address space (as opposed to 
the real-mode 16-bit memory model of segment:offset). This operating system 
totally replaces DOS, offering new features such as long file names. Yet, it 
can still run multiple DOS applications with better control and reliability than 
under Windows 3.1. Windows 95 can also run 16-bit Windows programs. 
Still, it always stays in protected mode even when running 16-bit, real-mode 
software (including processing the INT 21h instruction for DOS function calls). 

An application "talks" to Windows 95 by calling an application program 
interface (API) function. The program requests system services using a named 
function call instead of a numbered software interrupt, as used in MS-DOS. 
A connection is made between a Windows application and the function it 
calls at program load time by a process called dynamic linking. By contrast, 
MS-DOS would simply load an application into real-mode memory and give 
it full control of the PC, because it was single-tasking. 

Another improvement in Windows 95 over Windows 3.1 is how it 
handles multitasking. Windows 3.1 was a cooperative multitasking system 
that relied on the application program to surrender the CPU periodically. If 
software was poorly written or just "hung," Windows could not do anything 
about it and the system would easily crash, forcing a reboot. 

Windows 95 is a preemptive system that alone decides when to switch 
tasks, preventing a single application from monopolizing all the CPU time. 
Not only does this make the operating system more robust, it provides a faster 
response to high-priority, real-time events. This is especially important for 
data acquisition and control applications. Windows 95 also uses a registry, a 
special database, to keep track of system information, especially regarding 
application software. The registry is updated whenever new software is 
installed or removed. 

Windows 95 is already considered obsolete. Its successors are Windows 
98, Windows Me, and Windows XP. However, these newer operating systems 
still use the same basic 32-bit core of Windows 95. They primarily include 
more features such as improved Internet functionality, USB support, and a 
32-bit file allocation table (see Chapter 9) which increases the maximum hard 
drive size from 2 Gbytes to over 2000 Gbytes. 
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Microsoft Windows NT has also continued to evolve. Windows NT 4.0 
was succeeded by Windows 2000 (not to be confused with Windows Me). 
Again, the newer versions of NT have additional features and improvements 
such as support for multiple processors in a single PC. In general, the Win-
dows NT family is still a bit more robust than the Windows 95 family. 

Nearly all software written for Windows 95/98/Me will run under Win-
dows NT/2000. Because of security features under Windows NT, you may 
need administrator privileges to load some application software or to install 
new hardware and device drivers. 

7.7.2 UNIX and Linux 

One other operating system we should note here is UNIX. This is a multitask-
ing, multiuser operating system developed for minicomputers by AT&T Bell 
Laboratories. It has been ported to (adapted for use on) many different 
computing platforms. It has been especially popular on workstations and high-
end PCs. Standard UNIX has a command-driven user interface, as DOS does. 
In fact, UNIX inspired many of the redirection and piping features of DOS. 
UNIX provides a large amount of power and flexibility, although some versions 
are not very user-friendly, owing to its often terse and cryptic commands. 
Microsoft even sold a 16-bit PC version of UNIX called Xenix. 

A recently popularized UNIX-like operating system which runs on PCs 
(and other platforms) is Linux. Linux is a free UNIX work-alike, independently 
developed by a Finnish student, Linus Torvalds. Using the Internet he freely 
distributed his code and collaborated with many other programmers to 
develop the Linux kernel and its many add-on utilities. The kernel is the heart 
of the operating system that interfaces to peripherals and schedules and runs 
tasks, along with controlling the file system. The addition of several hundred 
utility programs makes a full distribution of Linux equal or superior to 
commercial PC operating systems. In addition, versions of Linux exist for 
many different types of computers, not just Intel-based PCs. 

Linux, like UNIX, is a multitasking, multiuser operating system with full 
security features (as in Microsoft Windows NT). Later versions even support 
multiple processors in a single PC. It has extensive networking support and 
a growing list of free and commercial application software. Linux can even 
run software written for other operating systems and CPUs through emulation 
programs such as emu for MS-DOS, wine for MS Windows, and executor for 
the Macintosh operating system. 

Linux is an extremely robust multitasking system that does a good job 
of isolating tasks from each other. An application program sends requests to 
the kernel using system calls. These calls are very general-purpose and not 
device-specific, which provides a great deal of flexibility. 
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An important part of Linux is the shell, which is a flexible command 
interpreter that also acts as a powerful, high-level command language. 
Complex tasks can be automated using simple shell programs or scripts. Linux 
also supports graphical user interfaces (GUIs) such as the X Window System, 
developed by MIT. This allows Linux users to work in an environment similar 
to MS Windows. 

You can download a version or distribution of Linux for free via the 
Internet. A distribution contains code for the kernel, utilities, shells, GUIs, 
and installation programs. Alternatively, you can buy, at a nominal price, a 
prepackaged Linux distribution which includes manuals, technical support, 
and often some commercial applications. Two popular commercial Linux 
distributors are Red Hat and Caldera. 

Linux is especially attractive if you want to do extensive software 
development because it is usually distributed with compilers and other soft-
ware tools. Since the source code is also distributed with it, you can even 
customize the operating system. 

This completes our survey of PC software interfacing. In the next 
chapter, we will explore common PC hardware interface standards including 
GPIB, RS-232C, and USB. 



C H A P T E R 

Standard Hardware 
Interfaces 

Previously we saw how a PC's I/O operates from its expansion bus. However, 
not all external I/O goes directly through the expansion bus. Often a standard 
hardware interface is used either by another computer or by an external 
peripheral device. This is increasingly the case with newer PCs that contain 
very few motherboard expansion slots and rely more on standard interface 
ports. We will explore several of these parallel and serial computer interfaces. 

8.1 Parallel versus Serial Digital Interfaces 

In general, digital computer interfaces to the outside world fall into two 
categories: parallel and serial. The differentiation between the two is impor-
tant. For a digital interface n bits wide a parallel device uses n wires to 
simultaneously transfer the data in one cycle, whereas a serial device uses 
one wire to transfer the same data in n cycles. All things being equal (which 
they rarely are), the parallel interface transfers data n times faster than the 
serial interface. 

Figure 8-1 shows an 8-bit wide interface between a PC and an external 
device. For simplicity, let us assume the data is unidirectional. The parallel 
interface in Figure 8-la consists of eight data lines and one or more control 
lines. Control lines are needed to tell the receiving side when data is available 
(when the data lines are valid) and sometimes to acknowledge to the trans-
mitting side that the data was received (a handshake). If this was a bidirec-
tional interface, another control line indicating data direction would be 
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PC 

DO ^ 
D1 ^ 
D2 ^ 

D3 ^ 
D4 ^ 

D5 ^ 

D6 ^ 

D7 ^ 
^ CONTROL ^ 

Peripheral 

(a) 8-bit, Unidirectional Parallel Interface 

PC 

DATA ^ 

^ CONTROL ^ 

Peripheral 

(b) Unidirectional Serial Interface 

Figure 8-1 Simple unidirectional digital interfaces: (a) parallel and (b) serial. 

needed, along with a mechanism to prevent both sides from transmitting at 
the same time. 

The serial interface in Figure 8-lb consists of only one data line (if it 
were bidirectional it probably would have two) and one or more control lines. 
In this scheme the data is time multiplexed. Control lines are used to indicate 
when the receiving end is ready to get the data along with other functions. 
The digital value of the data line represents a different bit at a different time. 
This requires a timing reference for the receiving end to decode the data 
accurately. When an external timing reference is used, this becomes a syn-
chronous serial interface, with a control line carrying the required clock 
signal. When a receiver's internal timing reference is used, this becomes an 
asynchronous serial interface. To synchronize the incoming data stream with 
the internal clock, either a separate control line is used or, more commonly, 
a special start bit with a predetermined value is transmitted first. Then the 
data is sent, one bit per clock cycle, as shown in Figure 8-2. 

Even though a parallel interface is inherently faster than an equivalent 
serial interface, it has its own drawbacks. Many parallel interfaces uses 
standard digital logic voltage levels, usually TTL compatible. This limits their 
noise immunity, where a long length of cable acts as an antenna, producing 
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Figure 8-2 Sample 8 bits of serial data. 

errors in the received data. In noisy environments, shielded cables are often 
required. In addition, long cables increase the capacitive coupling between 
adjacent signal lines, producing cross-talk errors (a signal transition on one 
signal line induces a voltage spike in another signal line). Dispersion further 
distorts the signals as cable length increases. All in all, parallel interfaces 
have severe cable length limitations, often on the order of just a few meters. 
High-speed interfaces, both serial and parallel, tend to use differential signal 
lines (where a pair of wires carry a single signal) to lower noise immunity. 

In contrast, some serial interfaces use much wider voltage swings to 
increase noise immunity (±12 V is not unusual for RS-232C) and with few 
active signal wires, cross-talk noise is minimized. This enables serial inter-
faces to connect equipment hundreds of meters apart. Additionally, because 
fewer wires are required (and often shielding is not needed), serial interface 
cables are substantially less expensive (per foot) than parallel interface cables. 

We will now explore some of these standard digital interfaces. First we 
will look at common parallel interfaces. Then, we will examine several serial 
interfaces supported on PCs. Later, we will look at some high-speed serial 
interfaces developed for PCs, including FireWire (IEEE 1394) and USB, as 
well as network interfaces such as Ethernet. 

8.2 Parallel Interfaces 

8.2.1 Centronics (Standard) Printer Interface 

The standard parallel printer interface, sometimes called the Centronics inter-
face, is available on most PCs (except for some of the newest models) and 
is supported by most printers. It is an 8-bit, unidirectional interface designed 
to transmit data from a computer to a printer, using TTL signal levels. The 
data usually sent is either ASCII codes, where each byte representing a 
printable character or a command (such as a line feed), or graphics data, 
consisting of command codes or data values (see Section 8.3.1 for a discussion 
of ASCII codes). 
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TABLE 8-1 
Standard Parallel Printer Port Pin Assignments 

1 PIN# 

1 1 
1 ^ 

3 

1 ^ 
5 

1 ^ 
1 ^ 

8 

9 

1 ^^ 
\ ^^ 

12 

13 

1 ^̂  
15 

1 ^̂  1 
1 '•̂  
1 18-25 1 

SIGNAL NAME 

-STROBE 

DATAO 

DATA1 

DATA2 

DATA3 

DATA4 

DATA5 

DATA6 

DATA7 

-ACK 

BUSY 

PE 

SELECT 

-AUTO FD XT 1 

-ERROR 

-INIT 

-SELECT IN 

GROUND 

DIRECTION 1 

OUT 

OUT 

OUT 

OUT 

OUT 

OUT 1 
OUT 1 
OUT 1 
OUT 1 
IN 1 
IN 1 
IN 1 
IN 1 
OUT 1 
IN 1 
OUT 1 
OUT 1 

N/A 1 

The standard IBM-style PC parallel printer port uses a 25-pin connector 
(DB-25) with the pin designations shown in Table 8-1. A special cable is used 
to connect this port to the 36-pin Centronics connector on most printers. The 
signal directions shown in Table 8-1 are relative to the PC. Signals with names 
starting with a "-" (such as -ACK) are active low. The eight data lines, 
DATA0-DATA7, are unidirectional, sending data to the printer. The primary 
control and handshake lines in this interface are BUSY, -ACK, and 
-STROBE. BUSY goes low when the printer is ready to receive a new data 
byte. When the PC detects the printer is ready, it puts out data on the lines 
DATA0-DATA7 for a minimum of 500 nsec. Then it asserts the -STROBE 
signal for a minimum of 500 nsec, which tells the printer to read the data. 
The PC keeps the data lines valid for at least another 500 nsec. 

In the meantime, the printer asserts BUSY and does its internal pro-
cessing. When ready, it simultaneously negates BUSY and asserts -ACK. -ACK 
is typically asserted for 5 to 10 |LLsec. The -ACK line is virtually a redundant 
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Figure 8-3 Parallel printer port interface timing. 

signal and usually the BUSY line alone is an adequate handshake for the PC, 
signaling data was received by the printer. The timing of this interface is 
shown in Figure 8-3. 

The other parallel port control lines are used for various status and 
control functions. When -AUTO FEED XT is asserted by the PC, the printer 
automatically performs a line feed after it receives a carriage return. When 
the PC asserts -INIT for a minimum of 50 |Lisec, the printer is reset to a 
known state (usually equivalent to its initial power-on conditions). When the 
PC asserts -SELECT IN, it enables the printer to receive data. 

When the printer asserts PE it indicates it is out of paper. When the 
printer asserts SELECT it indicates it is enabled to receive data from the PC. 
When the printer asserts -ERROR it indicates that it is in an error state and 
cannot receive data. 

A DOS-based PC can support up to three standard parallel printer ports 
(depending on its BIOS) designated LPTl, LPT2, and LPT3. Each port uses 
three consecutive I/O addresses. When a system boots up, DOS assigns the 
physical printer ports present to the logical LPT designations. LPTl is 
assigned first, followed by LPT2, then LPT3. The starting addresses of parallel 
printer ports, in the order assigned to LPT designations are 3BCh, 378h, and 
278h. So, if all three ports are present in one system, port 3BCh becomes 
LPTl, port 378h becomes LPT2, and port 278h becomes LPT3. If port 3BCh 
is not present, port 378h becomes LPTl and port 278h becomes LPT2. If 
only one parallel printer port is present it is designated LPTl. In newer PCs 
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running Windows 95 or later, the operating system determines the parallel 
port settings as well as the parallel port type (see Section 8.2.2). 

The printer port's starting address (3BCh, 378h, or 278h) is the data port, 
which can be an input or output. Writing to this port address latches 8 bits of 
data on the DATA0-DATA7 lines sent to the printer. Reading from this port 
address returns the last byte latched (the real-time status of the output). 

The printer port's next address (3BDh, 379h, or 279h) is the status port, 
which is read-only. It returns to the PC the value of the five status lines coming 
from the printer on the upper five bits of the port, as follows: 

Bits 0-2 = unused 
Bit 3 = -ERROR 
Bit 4 = SELECT 
Bit 5 = PE 
Bit 6 = -ACK 
Bit 7 = -BUSY 

These lines can be polled for proper handshaking during a data output 
sequence. In addition, when -ACK is asserted (active low) it can generate 
IRQ7 (if enabled). This allows interrupt-driven software to handle printer 
output as a background task, for printer spooling. The printer would interrupt 
the PC, via its -ACK line, whenever it is ready to receive new data. 

The printer port's next address (3BEh, 37Ah, or 27Ah) is the control 
port that can be an input or output. As an output, the PC latches the values 
of its control lines on the lower five bits of the port, as follows: 

Bit 0 = -STROBE (1 = asserted) 
Bit 1 = -AUTO FEED XT (1 = asserted) 
Bit 2 = -INIT (0 = asserted) 
Bit 3 = -SELECT IN (1 = asserted) 
Bit 4 = IRQ EN (1 = asserted) 
Bit 5-7 = unused 

Note that most of the lines are inverted and asserted by a high bit except 
for -INIT, whose output follows the control port bit. The signal IRQ EN 
enables the port's IRQ7 output when bit 4 is latched high. As with the data 
port, a read from the control port will return the last value written to it. 

The easiest way to use this parallel port to send data to a printer is with 
existing BIOS, DOS, or Windows functions. Using the BIOS, INT 17h ser-
vices the printer ports. It can print a character (Function 0), initialize the 
printer (Function 1), or read the printer status (Function 2). On printing a 
character, the proper handshaking protocol is used, with a time out if there 
is no response (if BUSY stays asserted indefinitely). The logical printer port 
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(LPT) designation is used to select the desired printer. The BIOS does not 
support printer spooling, and special software must be used to support IRQ7 
for printer output control. 

A PC's parallel printer port can be used for other purposes besides 
printing, with certain limitations. It is ideal as a general-purpose output port 
with its eight unidirectional data lines, four output control lines and five input 
control lines. There was originally no standard software support for using it 
this way, unless the standard printer interface handshake protocol (as in Figure 
8-3) was adhered to. This required special software to directly address the 
I/O ports used, supporting a custom protocol. 

The parallel printer port can also be used as a general-purpose 5-bit 
input port, using the five status lines (-ACK, BUSY, PE, SELECT, and 
-ERROR). The real-time state of these lines can be read from the printer 
port's status register. In addition, the -ACK line can be used to generate 
IRQ7. The disadvantage here is having only 5 bits available for input and not 
being able to latch the data. Some commercial software has used this 
approach, called a nibble mode, to transfer 4 bits of data at a time. A common 
application is connecting a laptop computer to a PC via a special cable. 

8.2.2 Advanced Parallel Printer Ports 

The original printer port's limitations, of relatively low speed (only about 
100 Kbytes/sec) and being primarily unidirectional, led to several improved 
standards. 

The PS/2 Bidirectional Parallel Port IBM originally addressed the standard 
parallel port limitations in its PS/2 line of PCs. The parallel port on a PS/2 
system has a fully bidirectional 8-bit data port, while keeping compatibility 
with the earlier implementation, as previously described. On this bidirectional 
parallel port (sometimes called a PS/2 parallel port), there is an extended 
mode that enables controlling the direction of the data port. Control port bit 
5 (previously unused) now determines whether the data port is an output (bit 
5 = 0) or an input (bit 5 = 1) port. The other control lines can now be used 
for different handshaking operations. 

The PS/2 parallel port could also operate at speeds up to about 250 
Kbytes/sec. It was better suited for transferring data between two computers 
than the standard (Centronics) parallel port was. 

The Enhanced Parallel Port The Enhanced Parallel Port (EPP) was origi-
nally developed by Xircom Inc., Zenith Data Systems, and Intel Corp. as a 
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next-generation parallel port. It is a fully bidirectional port with a typical data 
rate of about 800 Kbytes/sec and a peak rate of 2 Mbytes/sec. 

The EPP uses a data register up to 32 bits wide (if it is running on a 
32-bit processor) to speed up data transfers to the PC bus. The EPP uses 
hardware to handle all the details of partitioning 32-bit data into 8-bit transfers 
and controlling handshaking with the peripheral device (printer). Only one 
I/O port operation is required to write (or read) parallel port data. These 
features, along with stringent timing control, allow EPP to operate as fast as 
2 Mbytes/sec (500 nsec for a single transfer cycle). 

The EPP's pin assignments are shown in Table 8-2. EPP is backward 
compatible with a standard parallel port (often designated SPP). There are 
only six control lines used by EPP's hardware handshaking protocol. A signal 
name beginning with "n" indicates that it is active low. The nWRITE signal 

TABLE 8-2 
Enhanced Parallel Port (EPP) Pin Assignments 

1 PIN # 

1 ^ 
2 

3 

1 ̂  
5 

6 

[ 7 
8 

9 

10 

11 

1 ^̂  
13 

1 ^^ 
15 

16 

17 

1 18-25 

SIGNAL NAME 

nWRITE 

ADO 

AD1 

AD2 

AD3 

AD4 

AD5 

AD6 

AD7 

INTR 

nWAIT 

Spare (unused) 

Spare (unused) 

nDSTRB 

Spare (unused) 

nINIT 

nASTRB 

I GROUND 

DIRECTION 1 

OUT 1 

IN/OUT 1 

IN/OUT 1 

IN/OUT 

IN/OUT 1 

IN/OUT 

IN/OUT 1 

IN/OUT 1 

IN/OUT 1 

IN 1 
IN 1 
IN 1 
IN 1 
OUT 

IN 1 
OUT 

OUT 

I N/A 1 
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indicates whether the current cycle is a write or read operation. The INTR 
line is used by a peripheral to signal the PC that it needs service. The nWAIT 
signal is part of the hardware handshake and is used by the peripheral to 
signal that it has finished the transfer. The nDSTRB line indicates that there 
is valid data on the AD0-AD7 lines. The nINIT signal, when asserted, forces 
the interface out of EPP mode and into SPP mode. The nASTRB line indicates 
that there is a valid address on the AD0-AD7 lines. 

EPP support four types of cycles: data write, data read, address write, 
and address read. An address refers to a register on the peripheral (printer or 
other device). Once an address is specified, data transfers, including bursts 
or multiple bytes, can occur between the PC and the register. 

Figure 8-4 shows a simple EPP data write cycle. The nWRITE line first 
goes low to indicate a write cycle. Data is placed on the ADO-7 lines and 
nDSTRB is asserted (as long as nWAIT is low). The EPP waits for the 
handshake from the peripheral when nWAIT goes high. Then, nDSTRB is 
negated (high). When the peripheral is ready for another transfer, it sets 
nWAIT low again. If nWAIT never goes high (because of a hardware failure) 
the EPP times out after about 10 |Lisec. 

The EPP uses the original three SPP registers at the I/O address base 
(3BEh, 37Ah, or 27Ah), base+1 and base+2. It additionally uses an EPP 

nWRITE 

nDSTRB 

nWAIT 

ADO-7 I DATA VALID 

Figure 8-4 EPP Data Write cycle. 
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address register at location base+3 (for address write/read cycles) and an EPP 
data register starting at location base+4. This data register can be up to 32 
bits long (four I/O addresses) on PCs that support 32-bit I/O transfers. This 
way, a single I/O write to the data register under software control can result 
in four EPP byte writes to a peripheral, under hardware control. This mini-
mizes CPU overhead in servicing the parallel port. 

The Extended Capabilities Port The extended capabilities port (ECP) was orig-
inally developed by Hewlett Packard and Microsoft as a means of extending 
EPP functionality into a universal expansion bus. As such, ECP is backward 
compatible with both SPP and EPP standards and has transfer rates compa-
rable to EPP. The ECP protocol allows a PC to negotiate with a peripheral 
to determine which transfer mode and speed to use. A PC can query the 
peripheral to check its capabilities. 

ECP uses seven signals to control data transfers, with hardware hand-
shaking similar to EPP. It also uses separate data and command transfer cycles, 
where one of the control lines acts as a data/command flag. 

ECP has several hardware features to improve its performance. It 
employs FIFO (first in, first out) memories to buffer data and reduce CPU 
overhead. ECP supports both hardware interrupts (IRQs) and DMA transfers 
to further minimize CPU involvement. Most notably, ECP supports data 
compression using run length encoding (RLE) for compression ratios up to 
64:1. RLE works well with data that has high bit redundancy, such as printer 
and scanner data (see Chapter 9 for more information on data compression). 

As with EPP, ECP support the three original SPP I/O registers at the 
base address (3BEh, 37Ah, or 27Ah), base+1, and base+2. Unlike EPP, ECP 
adds its new registers at address base+400h (data FIFO), base+401h (config-
uration register), and base+402h (extended control register). The pin assign-
ments for an ECP connector are shown in Table 8-3. 

Tiie IEEE 1284 Standard In 1994 the IEEE approved a parallel port standard: 
IEEE 1284. This standard encompasses all the parallel ports we have previ-
ously discussed and classifies them by the transfer mode used. IEEE 1284 
covers connectors (several different types) and their pin assignments, cables 
and electrical operation of each interface. 

Under IEEE 1284, the SPP used unidirectionally is operating in com-
patibility mode. When an unmodified SPP is used for limited bidirectional data 
transfers it operates in nibble mode. A PS/2 bidirectional port uses byte mode 
while an EPP operates in EPP mode and an ECP in ECP mode. When a parallel 
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TABLE 8-3 
Extended Capabilities Port (ECP) Pin Assignments 

1 PINT^ 
1 ̂  
1 ̂  

3 

1 ̂  
1 ̂  

^ 
1 7 

8 

9 

1 ^̂  1 ^̂  
1 ^̂  
1 ^̂  
1 ^̂  
1 15 

1 16 

1 ^̂  
1 18-25 

SIGNAL NAME 

HostCLK 

DATAO 

DATA1 

DATA2 

DATA3 

j DATA4 

DATA5 

DATA6 

DATA7 

PerlphCLK 

PeriphAck 

nAckReverse 

XFlag 

HostAck 

nPerlphReq 

nReverseReq 

1 1284Actlve 

GROUND 

DIRECTION 1 

OUT 

IN/OUT 1 

IN/OUT 1 

IN/OUT 

IN/OUT 

IN/OUT 1 

IN/OUT 

IN/OUT 1 

IN/OUT 

IN 1 
IN 1 
IN 

IN 1 
OUT 

IN 1 
OUT 

OUT 

N/A 1 

port is IEEE 1284 compliant, it supports EPP and ECP modes at data rates 
up to 2 Mbytes/sec over cables as long as 10 meters. 

The EPP and ECP are electrically defined by IEEE 1284 but their 
operating protocols are determined by their independent standards. Still, IEEE 
1284 has been an important means of standardizing the use of PC parallel 
ports, especially for advanced data transfer applications with intelligent 
peripherals. 

8.2.3 The IEEE 488 (GPIB) Interface 

Another common parallel interface, primarily used for data acquisition, is 
IEEE 488 or GPIB (general-purpose interface bus). This interface is some-
times called the HPIB, as it was originally developed by Hewlett Packard to 
connect computers to their programmable instruments. GPIB was designed 
to connect multiple peripherals to a computer or other controlling device. 
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Even though it was intended for automated instrumentation apphcations, it 
has been used to drive standard PC peripherals such as printers, plotters, and 
disk drives. It transfers data asynchronously via eight parallel data lines and 
several control and handshaking lines. All signals are at TTL voltage levels. 

Instead of connecting one computer to one peripheral device, GPIB 
allows one computer to control up to 15 separate devices. In many ways, GPIB 
acts like a conventional computer bus or network. Each GPIB device has its 
own bus address, so it can be uniquely accessed. It uses a hardware handshak-
ing protocol for communications, which supports slow devices. When com-
municating between fast devices, data rates up to 1 Mbyte/sec can be obtained. 

The GPIB uses a master-slave protocol for data transfer. There can only 
be one bus master, or controller, at any given time. Typically, the master 
device is the controlling computer. A device on the bus has one of three 
possible attributes: controller, talker, or listener. The controller manages the 
bus, sending out commands that enable or disable the talkers and listeners 
(usually, slave devices). Talkers place data on the bus, when commanded to. 
Listeners accept data from the bus. A device can have multiple attributes, but 
only one at any given time. The computer can be a controller, talker, and 
listener; a read-only device, such as a plotter, will just be a listener; and a 
write-only device, such as a digital voltmeter, can be both a talker (when it 
reports a data reading) and a listener (when it is sent setup information, such 
as a scale change). 

The GPIB cable consists of 16 signal lines divided into three groups. 
The first group of signals consists of the eight bidirectional data lines, 
DI01-DI08. The second signal group consists of the three handshaking lines 
used to control data transfer: DAV, NRFD, and NDAC. The third signal group 
consists of five interface management lines that handle bus control and status 
information: ATN, IPC, REN, SRQ, and EOI. 

The GPIB cable itself consists of 24 conductors, shielded, with the extra 
eight lines grounded. The cable is terminated with a special connector having 
both a plug and a receptacle, so that all the devices on the bus can be daisy-
chained together in either a linear or star configuration. Typically, the cable 
length between any two devices on the bus must be no more than 2 meters, 
while the total cable length of the entire bus must be no more than 20 meters. 
To exceed these limits, special bus extenders are needed. An additional lim-
itation is that at least two-thirds of the devices on the bus must be powered on. 

The GPIB uses standard TTL logic levels with negative logic, so a 
control line is asserted at logic 0. This is because open-collector (or open-
drain) drivers are normally used on the bus interfaces. Therefore, a signal is 
pulled to a logic 1 level until a device asserts it and pulls it down to a logic 
0 level (this is a standard OR-tied technique). Figure 8-5a shows a simple 
GPIB linear configuration with four devices on the bus: a PC (controller). 
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Figure 8-5 General-purpose interface bus (GPIB): (a) Typical GPIB linear config-
uration; (b) Open collector logic of a GPIB signal line (DAV). 

plotter (listener), meter (talker), and disk drive (listener and talker). Note that 
there is a separate cable connecting each pair of devices in the daisy chain. 
No special termination is needed for the last device. 

Figure 8-5b shows schematically the electrical connection of a signal 
line (DAV in this example), with open-collector drivers drawn as a switch to 
ground. Special line drivers specified for the GPIB are used on these interfaces 
to ensure that when a device is not powered on it does not load down the 
signal line (the switch to ground is open). Even with special drivers, there is 
some leakage current to ground when a device is not powered on. That is 
why a maximum number of devices are allowed to be powered off when the 
GPIB is operational. 

The pin designations for the standard GPIB connector is shown in Figure 
8-6. As previously mentioned, the bidirectional data lines are signals 
DI01-DI08. The descriptions of the three handshake lines are as follows: 

1. DAV (data valid) indicates when the data line values are valid and 
can be read. 

2. NRFD (not ready for data) indicates whether or not a device is ready 
to accept a byte of data. 

3. NDAC (not data accepted) indicates whether or not a device has 
accepted a byte of data. 
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Figure 8-6 GPIB connector and pin designations. 

The descriptions of the five interface management lines are as follows: 

1. ATN (attention) is asserted by the controller when it is sending a 
command over the data lines. When a talker sends data over the data 
lines, ATN is negated. 

2. IFC (interface clear) is asserted by the controller to initialize the bus 
when it wants to take control of it or recover from an error condition. 
This is especially useful when there are multiple controllers on a bus. 

3. REN (remote enable) is used by the controller to place a device in 
the local or remote mode, which determines whether or not it will 
respond to data sent to it. 

4. SRQ (service request) is used by any device on the bus to get the 
controller's attention, requesting some action. 

5. EOI (end or identify) is a dual-purpose line. It is used by a talker to 
indicate the end of the data message it is sending. It is also used by 
the controller requesting devices to respond to a parallel poll. 

The sequence used to transfer data asynchronously on the bus, using 
the handshaking signals, is shown in Figure 8-7. This sequence is between 
an active talker (or the controller) and one or more active listeners. The speed 
of the transfer is determined by the slowest device on the bus. Initially, all the 
Usteners indicate their readiness to accept data via the NRFD line. When a 
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Figure 8-7 GPIB data transfer handshaking. 

device is not ready, it pulls the NRFD line to a logic level 0, via its open 
collector output. As long as one active listener is not ready, NRPD is held 
low. Only when all active listeners are ready to receive data can NRFD go 
high (to logic level 1). 

When the active talker (or controller) sees NRFD is high, it places its 
data byte on the bus (lines DIOl-8) and waits 2 |isec for the data bus to 
settle. Then it asserts DAV (to logic level 0), telling the active listeners to 
read the data. The listeners then pull NRFD low again, in response to the DAV. 

The active listeners have all been holding NDAC active low. After DAV 
is asserted, as each active listener accepts the data on the bus it releases 
NDAC. When the last (slowest) listener releases NDAC, the signal goes high. 
The active talker (or controller) sees NDAC go high, negates DAV (goes 
high), and no longer drives the DIO lines. 

Finally, the listeners recognize the negating of DAV and pull NDAC 
back low again, completing the transfer cycle. Now the handshake signals 
are ready for another data transfer to begin. 

An important point is that this data transfer cycle is occurring between 
an active talker and one or more active listeners. Once the bus has been 
configured with talkers and listeners activated, the controller does not have 
to be involved in the transfer (unless it is operating as a talker or listener). 
For example, a disk drive on the GPIB could send data to a printer on the 
bus without a computer's involvement, once the process was set up. 

Two types of data are sent over the DIO lines: control data and message 
data. When the data flows from a talker to selected listeners, it is a message, 
which is machine-dependent data. This message data can either be an instruc-
tion for a device (e.g., change the output voltage on an programmable power 
supply) or data to/from a device (e.g., a voltage reading from a DMM). When 
a controller uses the data lines, it is sending control data (a command) to all 
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the devices (both talkers and hsteners) on the bus. The controller asserts the 
interface management line ATN to signal that this is a control data transfer 
(normally, it is negated for message data transfers). When ATN is asserted, 
any active talker releases the DAV line. The control data is sent by the 
controller using the same handshaking protocol described above. The major 
difference is that all devices on the bus receive this data, whether listener or 
talker and regardless of their active/inactive status. 

The control data handles many aspects of the bus operation. It can 
configure devices as active listeners or talkers or it can trigger a device to 
perform its specific function. Each device on the bus has a unique 5-bit address 
(0-30). The controller can specify a device's address, enabling it as an active 
listener, for example, during a control data transfer cycle. Since control data 
commands are used for configuring the active talker and listeners, it must be 
able to address all devices on the bus. 

Device address 31 has unique meaning for setting up listeners and 
talkers. If a control data command is sent to activate a listener at address 31, 
it actually deactivates all listeners. This is effectively the "unlisten" command. 
Similarly, when a control data command is sent to activate a talker at address 
31, it deactivates the current talker. This is the "untalk" command. In addition, 
if a device is selected as the active talker, any talker that is currently active 
deactivates itself. This ensures there is only one active talker at a time without 
requiring the bus overhead to explicitly deactivate the previous talker. 

Another important GPIB management line is SRQ (service request), 
which is asserted by a device when it requires service from the controller. This 
may be an error condition in the device or an external event sensed by the 
device. Using SRQ is analogous to a processor interrupt, except that in this 
case the controller can ignore the SRQ or respond whenever it wants to. When 
the controller attempts to service the SRQ, it must first determine which device 
(or devices) is asserting the line. To do this it must poll all the devices on the bus. 

There are two types of GPIB polling techniques: serial and parallel. In 
a serial poll, the controller issues a serial poll command, asserting ATN, to 
each device on the bus, getting back 8 bits of status information. One of these 
status bits indicates whether the device issued the service request. The other 
bits convey device-dependent information. The main disadvantage with using 
a serial poll is that it is slow, requiring the controller to poll all the devices 
one at a time. Using a parallel poll is faster. In this case, the controller issues 
the appropriate parallel poll bus command, along with asserting the ATN and 
EOI lines. Up to eight devices on the GPIB can respond at once, setting or 
clearing the appropriate bit. In a parallel poll the only information obtained 
is which devices requested service. 

So far, software aspects of the GPIB have not been mentioned, 
because they were not part of the original IEEE 488.1 specification and 



158 CHAPTER 8 Standard Hardware Interfaces 

were device-dependent. Every GPIB compatible device had its own unique 
set of commands. For example, a function generator would have a command 
telling it what type of waveform to output, and a programmable power supply 
would have a command for setting its current limit. These commands, and 
any appropriate responses such as the readings from a digital voltmeter, were 
all message data. Usually, message data on the GPIB consisted of ASCII 
characters. The use of ASCII data for the GPIB is supported by HP and the 
vast majority of GPIB equipment manufacturers. 

IEEE 488.2 Tektronix attempted to standardize instrument message formats 
with a set of common commands and controller protocols. This grew into a new 
GPIB standard: IEEE 488.2-1987. The original GPIB standard was renamed as 
IEEE 488.1. The newer 488.2 standard is a superset of 488.1 (it is backward 
compatible). 

The standard defines 10 commands that IEEE 488.2 compatible instru-
ments must respond to. A good example of this is IDN?, which is the iden-
tification query conmiand. An instrument should respond to this command 
with its manufacturer, model number, serial number, and revision. 

IEEE 488.2 added a new status reporting structure to the original 488.1 
status byte. This consists of a standard event status register (ESR) and an 
output queue. The ESR reports device status and command errors. An event 
status enable register determines which ESR bits become logically OR'd into 
the ESB bit of the status byte register. 

IEEE 488.2 also supports instruments that can save and recall config-
uration information in nonvolatile memory (such as EEPROMs). This is done 
with the SAV and RCL commands. 

One difference between the older and newer standard is the downgraded 
use of the device clear (DCL) command in IEEE 488.2. DCL no longer resets 
an instrument to its power-up state, as it did under IEEE 488.1. The RST or 
RCLO command should be used for this purpose under 488.2. 

The eight protocols defined under IEEE 488.2 are high-level routines 
that combine multiple control sequences into standard system operations. 
They include the ALLSPOOL (serial poll) and RESET protocols, supported 
by controllers. The FINDLSTN protocol finds and lists all the devices con-
nected to the bus. The TESTSYS protocol runs a self-test of the system. 

SCPI While IEEE 488.2 standardized communications with GPIB devices 
it still did not resolve the problem of each instrument having a unique set of 
commands. Hewlett Packard addressed this problem by developing its test 
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measurement language (TML) which evolved into the industry-wide standard 
commands for programmable instruments (SCPI). 

SCPI defines a comprehensive command set suitable for all GPIB instru-
ments using common keywords and progranmiing syntax. All SCPI-compatible 
voltmeters, for example, respond to the same command for reading DC 
voltage, independent of the manufacturer or model. Even different types of 
instruments use similar SCPI conmiands. 

SCPI commands are usually a series of keywords and parameters. For 
example, the command to set the serial port bit rate on an instrument to 1200 
bps would be 

SYST:COMM:SER:BAUD 1200<CR> 

The command to read back the bit rate would be 

SYST:COMM:SER:BAUD?<CR> 

The structure of the GPIB standards and how they interact is illustrated 
graphically in Figure 8-8. 

Using a GPIB system can be very advantageous for complex data 
acquisition and control systems that require the high-level functionality of 
commercial test instruments. For example, consider a system required to 
characterize the frequency response of an electronic block box. Figure 8-9 
shows a simple implementation using GPIB-compatible instruments: a func-
tion generator (to produce the variable excitation signal) and an AC voltmeter 
(to read the results). 

A PC acts as the bus controller, using a commercially available GPIB 
interface card (see Chapter 11 for a sample of commercial sources). It controls 
the frequency and amplitude of the function generator's output (in this case 
a sine wave) and reads the AC voltmeter's input. Initially, the function gen-
erator should be directly connected to the AC voltmeter, to calibrate the system 
at its test frequencies. Then the device under test (DUT) is inserted between 
the generator and meter, and a new set of amplitude measurements is taken 
at the same set of frequencies. From this set of data, the transfer function or 
frequency response of the device under test (DUT) can be calculated. 

There is a large amount of software support for PC-based GPIB inter-
faces. Most GPIB interface cards for PCs come with software drivers for use 
with popular progranmiing languages, including versions of C, C-H-, and 
BASIC. Most high-end data acquisition software packages, such as MATLAB 
or LABTECH NOTEBOOK (see Chapter 11), support common GPIB cards, 
making the details of the GPIB operations invisible to the user. There are 
many other software packages with special features, making the process of 
implementing a GPIB system relatively painless. This is extremely useful 
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Figure 8-8 Structure of the GPIB standards. 

because of the ever-growing number of instruments using the GPIB interface. 
GPIB equipment runs the gamut from power suppUes and waveform synthe-
sizers to digital storage oscilloscopes and network analyzers, to name just a few. 

For example, National Instruments, a leading manufacturer of GPIB 
interfaces for a wide range of computers, provides the NI-488.2 software 
package for its PC-based products. NI-488.2 includes drivers for calling 
industry-standard NI-488 functions or newer NI-488.2 functions that cover 
all the IEEE 488.2 protocols. They offer software packages for most popular 
operating systems, such as Windows, Mac OS, and versions of UNIX (includ-
ing Linux). 
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Figure 8-9 GPIB Instrumentation example. 

In an MS-DOS PC, the driver package would be loaded using standard 
procedures. Then the special GPIB functions are called from the user's pro-
gram. One of the languages supported by the DOS version of NI-488.2 is 
QuickBASIC, a compiled version of BASIC (see Chapter 13 for a discussion 
of programming languages). A simple program in QuickBASIC to take a 
reading from a digital multimeter is as follows: 

CALL IBFIND("D]y[M",D]y[M%) 
CALL IBWRT(DM!y[%, "F0R0S2") 
CALL IBRSP(DMM%,SPR%) 
CALL IBRD(DMM%,DATA$) 
PRINT DATA$ 
END 

The first line in this program, calling IBFIND, retrieves initialization 
information on the specified device ("DMM") and returns the identifier code 
needed for the other functions. The second line, calling IBWRT, sends a 
device-specific message string to the DMM ("F0R0S2"), configuring it for 
voltage type, range, and speed (this is not a SCPI-compatible instrument). 
Next, the IBRSP call performs a serial poll on the DMM, checking its status. 
Finally, the IBRD call takes a voltage reading on the DMM and returns it in 
the string DATA$, which is then displayed by the print statement. In all of 
this, the user does not have to care about the details of the GPIB data transfers. 

Newer versions of NI-488.2 software for MS Windows 95/98/NT sup-
port Microsoft Visual C/C++, Borland C/C++, and Microsoft Visual Basic 
32-bit compilers. These drivers take full advantage of 32-bit multitasking 
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operating systems. They also allow you to control several different GPIB 
interface types (such as PCI and PCMCIA cards) from the same PC using a 
single driver. 

HS 488 By today's standards, the IEEE 488 maximum data rate of 1 
Mbyte/sec is not very fast. One approach to improving this, developed by 
National Instruments, is HS 488, a high-speed GPIB handshake protocol that 
uses the same three control lines as IEEE 488 (DAV, NRFD, and NDAC). 

HS 488 is backward compatible with standard GPIB instruments. How-
ever, if all devices on a bus support HS 488, the high-speed handshake is 
used and overall data rates can run as high as 8 Mbytes/sec (for two devices 
connected by no more than 2 meters of cable). A fully loaded bus with 15 
devices connected by 15 meters of cable has a maximum HS 488 data rate 
of 1.5 Mbytes/sec (still a 50% speed improvement). 

HS 488 accomplishes this speedup by removing excessive propagation 
delays and settling times associated with the standard IEEE 488 handshake 
(designed for maximum cable length and bus loading). Since the actual delays 
increase with longer bus cable lengths, the greatest speed improvement is 
seen with short cables. 

There are already many instruments that support this new protocol. HS 
488 has been proposed as an addition to the IEEE 488.1 standard. Currently 
(as of this writing) it is still a proprietary but well accepted standard. 

8.2.4 Other Parallel Interfaces 

Before leaving the topic of parallel digital interfaces, it should be noted that 
there are many other standards besides the parallel printer interface (IEEE 
1284) and the GPIB. Most of these, such as BCD instrumentation interfaces 
or proprietary interfaces have little or no support in the world of PC-based 
data acquisition equipment. 

One significant parallel standard is the Small Computer System Inter-
face, or SCSI, which is usually used to connect high-speed disk drives to 
PCs. It is a general-purpose, asynchronous parallel interface, originally 8 bits 
wide, with later implementations 16 bits wide. SCSI can be used to connect 
virtually any piece of equipment to a PC, including data acquisition devices. 
In practice, this is rarely done, except for older Macintosh computers that 
used a SCSI interface as an external expansion port. 

Over the years, SCSI technology has continued to improve. Currently 
(as of this writing), its fastest data transfer rate is 160 Mbytes/sec using Ultra 
160/m Wide SCSI. The older SCSI interfaces used single-ended (SE) signal 
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TABLE 8-4 
SCSI standards 

1 SCSI STANDARD 

SCSI-1 

1 Fast SCSI 

Fast Wide SCSI 

1 Ultra SCSI 

Ultra Wide SCSI 

1 Ultra2 SCSI 

Ultra2 Wide SCSI 

[ultra 160/m SCSI 

[ultra 160/m Wide SCSI] 

BUS WIDTH 
(bits) 

8 

8 

16 

8 

16 

8 

16 

8 

16 

SIGNAL TYPE 
(SE or LVD) 

SE 

SE 

SE 

SE 

SE 

LVD 

LVD 

LVD 

LVD 

MAX DATA RATE 1 
(Mbytes/sec) | 

5 1 
10 

20 1 
20 

40 1 
40 1 
80 1 
80 1 

160 1 

transmission (TTL or similar). Newer SCSI standards, such as Ultra2 SCSI 
and Ultra 160/m SCSI, use low-voltage differential (LVD) signals to improve 
data speed and integrity. SCSI interfaces are still only 8 or 16 bits wide, but 
newer standards run at faster speeds. Table 8-4 shows some of the common 
SCSI standards and their maximum data transfer rates. 

8.3 Standard Serial Interfaces 

Many standard digital serial interfaces are in use. They are differentiated by 
several factors, including voltage levels, current drive capability, differential 
versus single-ended lines, single receiver and transmitter versus multidrop 
capability, half- versus full-duplex, synchronous versus asynchronous, type 
of cable required, and communications protocols. These factors, in turn, 
determine important system specifications such as maximum data rate and 
maximum cable length. As we noted previously, the major reasons for using 
serial interfaces are low cable cost and potentially long cable lengths. The 
serial interfaces we will discuss in this section are all standards developed 
by the Electronic Industries Association (EIA) and are identified by their EIA 
standard number. The next section will cover high-speed serial interfaces 
developed primarily for PCs: USB and IEEE 1394 (FireWire). 

The EIA standards define electrical characteristics and definitions of 
signal lines used in the interfaces. They do not define how the data will be 
sent or what each bit means. The two types of protocols used are asynchronous 
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and synchronous. In an asynchronous protocol, the timing hardware at the 
transmitter and that at the receiver are independent of each other (they are 
not synchronized). Synchronization is provided by the data stream itself, 
usually a particular level transition to indicate the start of data. 

In a synchronous protocol, timing information is exchanged along with 
data, providing a single clock signal used by both ends of the interface. This 
allows serial transmissions at higher data rates than asynchronous protocols, 
since extra control bits indicating the beginning and end of a data byte are 
not needed, along with the extra time for an asynchronous receiver to syn-
chronize itself to an incoming data stream. It is, however, a more complicated 
and expensive approach. Most standard PC-based serial data interfaces use 
an asynchronous protocol. We will discuss the conmionly used asynchronous 
protocols in the following sections, followed by a brief description of some 
common synchronous protocols. 

8.3.1 The EIA RS-232C and RS-423A Interfaces 

Without any question, the EIA RS-232C interface is the oldest and most 
common serial interface used by computer equipment. In fact, a PC's serial 
port is almost always RS-232C compatible. Because of its widespread use, 
RS-232C has paradoxically become one of the most nonstandard standards 
available. This is because it is used for much more than originally intended. 
RS-232C was developed in the 1960s as a standard for connecting data 
terminal equipment (DTE), such as the "dumb" terminals used with main-
frame computers, to data communications equipment (DCE), such as 
modems, over moderately short distances at modest data rates. Over the years, 
RS-232C evolved as a general-purpose interface between many varieties of 
equipment. One common example is connecting a PC to a printer or plotter. 
You can even use a special interface box to control a GPIB system via a 
computer's RS-232C port. 

The RS-232C standard uses a 25-pin D-shell connector, with line des-
ignations as shown in Figure 8-10. Note that transmit and receive data direc-
tions are relative to the DTE end. RS-232C is a serial interface having two 
data lines to support full-duplex operation. That is, the connected devices can 
simultaneously transmit and receive data, if they are capable. The maximum 
data rate on an original RS-232C interface is 20,000 bits per second (bps) 
and the maximum cable length is 50 feet (although this can be increased at 
lower data rates or in low-noise environments). In most PCs, the serial port 
can operate as fast as 115,200 bps. Note that EIA RS-232C can support either 
synchronous or asynchronous serial communications. In the vast majority of 
applications, asynchronous communications is used. However, the inclusion 
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Figure 8-10 Standard RS-232C connections between data terminal equipment 
(DTE) and data communications equipment (DCE). 

of two lines, Transmit Signal Element Timing and Receive Signal Element 
Timing, can provide the external clocking required by synchronous interfaces. 

The RS-232C interface supports several handshaking lines, indicating 
each device's readiness to send or receive data. This is not an interlocking 
handshake, as used in GPIB for control of data flow. It simply enables or 
disables data transmission. These lines include Request to Send (RTS), Clear 
to Send (CTS), Data Set Ready (DSR), and Data Terminal Ready (DTR). 
The control lines. Ring Indicator (RI), and Received Line Signal Detector (or 
Carrier Detect, CD) are specifically used by modems. 

On a PC, the usual RS-232C serial interface card or motherboard cir-
cuitry supports asynchronous communications only and uses either a DB-25 
or DB-9 connector. A PC/XT compatible system typically uses the 25-pin 
connector, with pin assignments shown in Figure 8-11. Note that some of the 
EIA RS-232C standard signal lines are not used, such as those needed for 
synchronous communications. In addition, four non-RS-232C signals are 
added: +Transmit Current Loop Data, -Transmit Current Loop Data, 
+Receive Current Loop Data, and -Receive Current Loop Data. These lines 
support the 20 mA current loop interface, used by older Teletype equipment 
and certain special devices such as industrial sensors. 
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Figure 8-11 Pin designations for 25-pin asynchronous adapter. 

Newer PC systems (PC/AT and above) usually have a 9-pin connector, 
with its pin assignments shown in Figure 8-12. This limits the signals available 
to Transmitted Data (TXD), Received Data (RXD), DTR, DSR, RTS, CTS, 
RI, and CD. Usually a cable adapter is required to connect this 9-pin port to 
external devices with a conventional 25-pin D-shell connector. 

Signals on RS-232C lines have well-defined electrical characteristics. 
Only one driver and one receiver are allowed on a line. The signals are all 
single-ended (unbalanced) and ground-referenced (the logic level on the line 
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Figure 8-12 Pin designations for 9-pin asynchronous adapter. 
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Figure 8-13 RS-232C signal levels. 

depends solely on that signal's voltage value relative to the signal ground 
line). The signals are bipolar with a minimum driver amplitude of ±5 V and 
a maximum of ±15 V (±12 V is the most common voltage used) into a receiver 
resistance of 3000 to 7000 ohms. Receiver sensitivity is ±3 V, so any signal 
amplitude less than 3 V (regardless of polarity) is undefined. Otherwise, a 
voltage level above +3 V is a logic 0 and below -3 V is a logic 1, as shown 
in Figure 8-13. Another important parameter is a maximum slew rate of 30 
volts per microsecond. This means that an RS-232C signal running at the 
maximum voltage range of ±15 V must take at least 1 |Lisec to switch states. 

If we look at the typical RS-232C application in Figure 8-14, where a 
terminal is connected to a modem, we see that most of the handshaking lines 
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Figure 8-14 RS-232C connections between a terminal and a modem. 
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act in pairs. When the terminal wants to estabUsh communications, it asserts 
DTR. As long as the modem is powered on and operational, it asserts DSR 
as the handshake. These signals stay asserted as long as the communications 
link exists. When the terminal is ready to send data it asserts RTS. The modem 
generates a carrier signal on its analog line (usually a telephone line connec-
tion) and after a delay (allowing time for the modem on the other end to 
detect the carrier) it asserts CTS. Then the terminal can transmit its data over 
TXD. 

When the terminal is finished transmitting, it negates RTS, causing the 
modem to turn off its carrier and negate CTS. If the modem now receives a 
carrier from a remote system over the analog line, it asserts CD. When it 
receives data from the remote system, it sends the data to the terminal over 
RXD. The cable used to connect the terminal to the modem is a straight-
through variety. That is, pin 2 on one end goes to pin 2 on the other end, pin 
3 on one end goes to pin 3 on the other end, and so on. 

In actual practice, RS-232C interfaces are used to connect many dif-
ferent types of equipment. The asynchronous communications port in a PC 
(the serial port) is nearly always set up as a DTE (TXD is an output line and 
RXD is an input line—the opposite is true for a DCE device). The meaning 
of the handshaking lines is software-dependent and they may not have to be 
used. If required, just three lines can be used to minimize cable costs: TXD, 
RXD, and signal ground. If the software requires it, CTS and DSR must be 
asserted at the PC end for it to communicate, as when BIOS INT 14h 
functions are used for sending and receiving data over the serial port (for 
DOS programs). 

For example, if we want to send data between two nearby PCs without 
using two modems, we need a special cable, as shown in Figure 8-15. There 
are two approaches we can use to satisfy the handshake lines. In Figure 8-15a 
we implement full handshaking support, using seven wires. The data lines 
are crossed over, so TXD on one side is connected to RXD on the other side. 
Similarly RTS and CTS are crossed over as well as DTR and DSR. In this 
way, if the receiving end wants the transmitting end to wait, it negates its 
RTS line, which the other side sees as a negated CTS and CD; it then stops 
transmitting. Similarly, if one end wants to suspend communications entirely, 
it negates its DTR line, which the other side sees as a negated DSR. Signal 
ground is directly connected between the two ends. This cable, with the data 
and control lines crossed, is often referred to as a null modem cable. It is 
needed to connect a DTE to a DTE (or a DCE to a DCE). 

A simpler connection using only three wires is shown in Figure 8-15b. 
In this case, the handshake lines are permanently enabled {self-satisfying) by 
connecting RTS to CTS and CD and connecting DTR to DSR at each PC. 
These lines cannot be used to control the data flow on the interface. The data 
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Figure 8-15 Connecting two PCs via an RS-232C cable. 

flow can still be controlled, using special data characters in a software hand-
shaking protocol. One software protocol widely supported is XON/XOFF. 
These are two ASCII control characters (XON is llh, XOFF is 13h). When 
the receiving end needs to temporarily halt data flow, it sends an XOFF 
character to the transmitting end. When it is ready for data flow to resume, it 
sends an XON character. In a similar fashion, the ASCII characters ACK (06h) 
and NAK (15h) are also used for controlling data transmission. Employing 
either of these software control protocols necessitates the use of ASCII data. 

ASCII stands for the American Standard Code for Information Inter-
change. It is the most widely used computer code for handling alphanumeric 
(text) data and is usually employed for data transfers between equipment over 
standard interfaces. It is a 7-bit code consisting of printable (alphanumeric) 
and control characters, such as XOFF and CR (carriage return). The standard 
ASCII code is shown in Table 8-5. On IBM-style PCs, an eighth bit is added 
to the code producing special ASCII extension characters. These are nonal-
phanumeric printable characters, such as lines for character-based graphics. 
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As previously mentioned, the RS-232C standard does not specify the 
protocol used for data transmission. The vast majority of RS-232C interfaces 
on PCs use an asynchronous protocol. The transmission of 1 data byte using 
this protocol is shown in Figure 8-16. When no data is being transmitted, the 
line is at the marking level, which represents a logic 1. At the beginning of 
transmission, a start bit is sent, causing a line transition to the spacing level, 
a logic 0. This transition tells the receiver that data is coming. Next, the data 

Marking 
Level 

Spacing 
Level 

Start 
Bit 

DO D1 D2 D3 D4 D5 D6 D7 Parity: Stop 
Bit i Bits 

Figure 8-16 Asynchronous communications protocol. 
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bits (usually 7 or 8) are sent, one at a time, where a bit value of 1 is at the 
marking level and a bit value of 0 is at the spacing level. The data is followed 
by an optional parity bit, for error detection. Finally, one or more stop bits 
at the marking level are sent to indicate the end of the data byte. Since RS-
232C line drivers and receivers are inverters, the marking level (logical 1) 
corresponds to a negative voltage (-3 V to -15 V) and the spacing level (logical 
0) corresponds to a positive voltage (+3 V to +15 V) on the interface line. 

The heart of a serial port's electronics is the IC that converts parallel 
data to a serial format and serial data back to a parallel byte. This device is 
a Universal Asynchronous Receiver/Transmitter (UART). IBM and compat-
ible computers originally used the National Semiconductor INS8250 UART 
IC in PC/XT machines and the INS 16450 UART (which is a superset of the 
INS8250) in AT and newer machines (later PCs had the UARTs built into the 
motherboard). These devices have separate transmit and receive channels and 
control logic for simultaneously sending and receiving data. They produce 
their own programmable timing signals, from on-board oscillators, for soft-
ware control of data rates. They can send or receive serial data in the range 
of 50 bits per second (bps) to 38,400 bps (up to 115,200 bps with the 
INS 16450). The width of each bit (in time) is the inverse of its data rate. So, 
at 9600 bps, each bit is 1/9600 = 0.104 msec long. If 7-bit data is sent at this 
rate using a parity bit and only 1 stop bit (for a total of 10 bits per character, 
including the start bit), it would take 1.04 msec (0.104 x 10) to transmit a 
character. This would produce a maximum overall data transmission rate of 
961 characters per second. This is not incredibly fast, but for small amounts 
of data it is acceptable. Bear in mind that many early serial terminals and 
modems ran at only 110 bps (which is nearly two orders of magnitude slower). 

To set up an asynchronous RS-232C communications link, both 
machines (at the two ends of the line) must be set to the same data rate 
(sometimes, incorrectly, called the baud rate). In addition, the number of data 
bits must be known. It can often vary from 5 to 8 bits, although 7 or 8 bits 
is the most common. The next parameter needed is the parity bit. This is used 
as a simple error-detection scheme, to determine if a character was incorrectly 
received. The number of logical I's in the transmitted character is totaled, 
including the parity bit. For even parity, the parity bit is chosen to make the 
number of I's an even number, and for odd parity it is chosen to make the 
number of 1 's odd. For example, the ASCII character "a" is 61h or 01100001 
binary. For even parity, the parity bit would be 1 (making four I's, an even 
number), whereas for odd parity, the parity bit would be 0 (leaving three I's, 
an odd number). 

When a parity bit is used (typically with 7-bit data characters), the 
transmitting end determines the correct parity bit value, as just described, and 
incorporates it in the character sent. The receiving end calculates the expected 
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value of the parity bit from the character's data and compares it to the parity 
bit actually received. If these values are not the same, an error is assumed. 

Of course, this scheme is not foolproof. It assumes that the most likely 
error will be a single wrong bit, which a parity check will always catch. If 
multiple bits are wrong in the same character, a parity error may not always 
be detected. Note that on IBM-style PCs, the parity bit is not used with 8-
bit data. 

One final asynchronous communications parameter is the number of 
stop bits. This can be set to 1, 1-1/2, or 2 stop bits, although 1 bit is most 
commonly used. Unless very slow data rates are used, such as 110 bps, only 
1 stop bit is adequate. 

Several other single-ended serial communications interfaces are com-
monly used, besides RS-232C. One of these is RS-423A. This standard is 
sometimes used as an enhanced version of RS-232C, with several notable 
differences. RS-423A has a driver voltage output range of ±3.6 V to ±6.0 V, 
which is lower than RS-232C. However, RS-423A has much higher allowable 
data rates, up to lOOK bps, and longer cable lengths (up to 4000 feet). One 
other important difference is that RS-423A can support multiple receivers on 
the same line, up to a maximum of 10. This is very useful for unidirectional 
data transfers in a broadcast mode, such as updating multiple CRT displays 
with the same information. Table 8-6 shows the differences between several 
of the EIA transmission line standards. 

8.3.2 The EIA RS-422A and RS-485 Interfaces 

Another popular EIA serial transmission standard is the RS-422A interface, 
which uses differential data transmission on a balanced line. A differential 
signal requires two wires, one for noninverted data and the other for inverted 
data. It is transmitted over a balanced line, usually twisted-pair wire with a 
termination resistor at one end (the receiver side). As shown in Figure 8-17a, 
a driver IC converts normal logic levels to a differential signal pair for 
transmission. A receiver converts the differential signals back to logic levels. 
The received data is the difference between the noninverted data (A) and the 
inverted data (A*), as shown in the waveforms of Figure 8-17b. Note that no 
ground wire is required between the receiver and transmitter, since the two 
signal lines are referenced to each other. However, there is a maximum 
common-mode voltage (referenced to ground) range on either line of -0.25 V 
to +6 V, as shown in Table 8-6. This is because most RS-422A driver and 
receiver ICs are powered by the same +5 V power supply as many other logic 
chips. Usually the signal ground is connected between the transmitter and 
receiver to keep the signals within this common-mode range. 
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TABLE 8-6 
Confiparlson of Selected EIA Interface Standards 

1 PARAMETER 
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MAXIMUM DRIVERS AND 
1 RECEIVERS 

1 MAXIMUM CABLE LENGTH | 
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DRIVER OUTPUT 

DRIVER OUTPUT 
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[RECEIVER SENSITIVITY 
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±3V 1 
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4K ohm 
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4K ohm 

±200 mV 1 

RS-485 1 
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32 Drivers 1 
32 Receivers 1 
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+12 V 
-7V 1 
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Figure 8-17 Differential data transmission signals. 
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Figure 8-18 Differential data lines with common-mode noise. 

This differential signal scheme enables the use of high data rates (up 
to 10 Mbps) over long cable lengths (up to 4000 feet) because of its high 
noise immunity. If external noise induces a signal on the transmission line, 
it will be the same on both conductors (A and A*). The receiver will cancel 
out this common-mode noise by taking the difference between the two lines, 
as shown in Figure 8-18. If a single-ended transmission line was used, the 
noise spikes could show up as false data at the receiver. The example in Figure 
8-18 shows both a positive- and a negative-going noise spike. 

As with RS-423A, RS-422A can have multiple receivers (10 maximum) 
on the same line with a single transmitter. Again, this is basically useful for 
applications that require broadcasting data from a single source to multiple 
remote locations. 

There are variations in the connectors and pin designations used for 
RS-422A interconnections. Most RS-422A interface cards for PCs use 9-pin 
D-shell connectors, but in lieu of an IBM standard, the pin designations 
employed vary from one manufacturer to another. An example of the pin 
designations on a typical RS-422A interface card for PCs (from Qua Tech 
Inc.) is shown in Figure 8-19. Note that all the signal lines are differential. 

The signal lines for AUXOUT are outputs and can be used to implement 
an RTS function. The signal lines for AUXIN are inputs and can be used to 
implement a CTS function. In this way, the RS-422A card can operate like 
a typical asynchronous RS-232C card in a PC (and use the same control 
software). Alternatively, the AUXOUT and AUXIN lines can be used to send 
transmit and receive clocks, for use with synchronous communications 
schemes. 
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Figure 8-19 Pin designations for a typical RS-422A PC interface card. 

The EIA RS-485 interface is basically a superset of the RS-422A stan-
dard. As shown in Table 8-6, its electrical specifications are similar to those 
of RS-422A. RS-485 is another differential transmission scheme, using bal-
anced lines that can operate at speeds up to 10 Mbps over cable lengths up 
to 4000 feet long. It has somewhat different output voltage ranges, including 
a much wider common mode range of -7 V to +12 V. The most important 
difference is that an RS-485 interface can support up to 32 drivers and 32 
receivers on the same line. This allows actual networking applications on a 
party line system (sometimes called multidrop) where all transmitters and 
receivers share the same wires. 

To allow for this multidrop capability, RS-485 drivers must be able to 
switch into a high-impedance (tri-state) mode, so that only one driver is trans-
mitting data at any given time. As with RS-422A, all receivers can be active at 
the same time. A typical RS-485 multidrop line is shown in Figure 8-20. Note 
that the termination resistor is typically placed at the last receiver on the line. 

IN1—H DRIVER RECEIVEFV:::̂ -̂  0UT1 

IN2 OUT2 IN3 0UT3 

Figure 8-20 RS-485 multidrop application. 
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RS-485 interface cards for PCs are readily available and typically use 
the same connector (DB-9) and pin designations as similar RS-422A interface 
cards. The RS-485 driver output can be tri-stated using a control signal on 
the card. Usually a standard control line such as DTR is used for this since 
it would not be used as an external line in a multidrop interface. It is up to 
the software protocol to ensure that only one driver is enabled at any given 
time. One common way to do this is to use a master-slave relationship on 
the line. Only one driver/receiver station would be the master (or a network 
controller)—the others would be slaves. The master can transmit data at any 
time. The slaves can only transmit data after receiving an appropriate com-
mand from the master. Each slave would have a unique ID or address on the 
line and would not be able to transmit unsolicited data. The high data rates 
available to an RS-485 network would compensate for the moderate amount 
of communications overhead required to implement a master-slave protocol 
and the constant polling performed by the master. For more information about 
networks, see Section 8.4. 

8.3.3 Synchronous Communications Protocols 

As previously mentioned, synchronous serial communications protocols are 
much less common than their asynchronous counterparts in the world of PCs, 
even though IBM did have synchronous communications adapters available 
for their older PCs. Synchronous communications has noticeable advantages 
over asynchronous methods. Synchronizing bits (start and stop bits) are not 
needed, increasing the overall data transmission rate. Data does not have to 
be byte oriented (i.e., character-based) to be sent. In addition, it allows a system 
to communicate with large mainframe computers (especially IBM systems) 
which often use synchronous protocols. The drawbacks to using synchronous 
communications with PCs are higher costs for hardware and software along 
with limited support. 

In synchronous transmissions, data is not always broken up into discrete 
characters, as with asynchronous methods. It tends to be block oriented, with 
a large amount of data (a block) transmitted at one time, with various control 
and error-checking information along with it. The data can be discrete char-
acters (as with asynchronous methods) or bit oriented (no explicit data length). 
There are three common synchronous communications protocols: Binary 
Synchronous Communication (BSC), Synchronous Data Link Control 
(SDLC), and High-Level Data Link Control (HDLC). 

BSC or bisync is a protocol developed by IBM. It is a character-oriented 
synchronous protocol where each character has a specific boundary. As with 
other synchronous protocols, there are no delays between adjacent characters 
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in a block. Each block transmission may start with two or more PAD char-
acters to ensure that the clock at the receiving end of the line becomes 
synchronized with the clock at the transmitting end, even if a clock signal is 
being transmitted along with the data. Then, the start of the data stream is 
signaled by sending one or more SYN (synchronous idle) characters, which 
alerts the receiver to incoming data. 

Next, one or more blocks of data are continuously sent. The data consists 
of characters 5 through 8 bits long with an optional parity bit, as with 
asynchronous methods. Often the data is encoded as ASCII characters, 
although it could also be EBCDIC (a code supported by IBM). Each block 
of data ends with an error-checking character which provides much better 
data integrity than each character's parity bit. A popular error-checking tech-
nique used here (and in many other applications) is the cyclic redundancy 
check (CRC). The CRC takes the binary value of all the bits in the block of 
data and divides it by a particular constant. The remainder of this division is 
the CRC character, which will reflect multibit as well as single-bit errors. 

IBM supported bisync on original PCs with its Binary Synchronous 
Communications adapter. This card used an RS-232C compatible interface 
with a 25-pin D-shell connector. It was based on an Intel 8251A US ART 
(Universal Synchronous/Asynchronous Receiver/Transmitter) IC. All the nec-
essary protocol parameters were programmable, including mode of operation, 
clock source, and time out after no activity. 

The other two popular synchronous protocols are SDLC and HDLC, 
which are both bit-oriented techniques, where there are no character bound-
aries. The data is just a continuous stream of binary numbers, sent as an 
information field. This information field can vary from zero bytes up to the 
maximum allowed by the particular protocol in force. Like bisync, SDLC 
and HDLC data fields are framed by control information at the beginning 
and end. They also contain additional addressing information that makes them 
suitable for use with communications networks. HDLC contains more control 
information than SDLC. Unlike bisync, if transmission stops within an SDLC 
or HDLC field, an error is always assumed. 

IBM supported SDLC for PCs with its Synchronous Data Link Control 
Communications Adapter. This card, as its BSC card, used RS-232C com-
patible signal levels and a 25-pin D-shell connector. It was based on the Intel 
8273 SDLC Protocol Controller IC. 

8.3.4 High-Speed PC Serial Interlaces 

Many of the standard EIA serial interfaces we have previously discussed are 
still in common use, especially RS-232C. However, they have not kept pace 
with advances in PC speed and performance. In addition, they were developed 
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for the world of mainframe computers and lacked the ease-of-use and stan-
dardization that PC users now expect. Newer serial standards have been 
developed in recent years, targeting PCs. 

Universal Serial Bus The PC industry leaders (including Compaq, IBM, Intel, 
and Microsoft) developed the Universal Serial Bus (USB) as a replacement 
for standard serial and parallel ports on a PC. USB is a high-speed, multidrop 
serial bus with data rates as high as 12 Mbits/sec (or as low as 1.5 Mbits/sec 
for slower devices). It is a true bus that can support as many as 127 devices, 
with one host controller (the PC). 

USB uses a strictly controlled wiring system that prevents erroneous 
connections. In addition, it can provide DC power to peripheral devices (5 V 
at up to 5 A) and is hot-swappable. That is, you can safely connect or 
disconnect USB devices from the bus without powering down or rebooting 
your PC. USB devices are also plug-and-play, so their driver software is self-
configuring on a PC running Windows 98 or Windows 2000 (or Windows 95 
if it is version 4.00950B or later). Windows NT does not support USB. 

USB was designed to connect standard, slow (mouse, keyboard), and 
medium speed (scanner, printer) peripherals to a PC with minimal user effort. 
To this end, most new PCs now contain USB ports and some have eliminated 
the older serial and parallel ports. Eventually, mainstream PC makers will 
eliminate most or all internal expansion slots (PCI) and rely on USB and 
Fire Wire (see the next section) for connecting all peripherals to a PC. This 
is called the "closed box" strategy for the future (users will never have to 
open their PC to connect a new device). Industrial PCs should still retain 
their expansion slots and "legacy" ports for many more years. 

With this trend in mind, many data acquisition manufacturers have 
products that connect to USB ports. Of course, because of USB's Hmited bus 
speed, most of these products work at low sampling rates, only up to about 
lOOK samples/sec (see Chapter 11 for more information on USB data acqui-
sition products). 

USB uses a special four-conductor cable, up to 5 meters long, with a 
connector pinout shown in Table 8-7. Two wires, +DATA and -DATA, 
comprise a twisted pair carrying a differential data signal. The other two 
wires, VCC and GND, provide optional -1-5 V power to the peripherals. USB 
is designed for a single host device, so you cannot normally use it to connect 
one PC to another (as opposed to an IEEE-1284 parallel port). However, 
some manufacturers produce special USB cables along with custom software 
for this purpose (for example, to transfer data between a PC and a laptop 
computer). 
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TABLE 8-7 
USB Connector Pin Assignments 

1 PIN #"" 

1 1 
1 ̂  

3 

1 4 

SIGNAL NAME | 

VCC 

-DATA 1 
+DATA 

GND 1 

A typical PC has two USB ports. If you want to connect more devices 
to the PC you need a hub, a special USB device that contains several additional 
USB ports. Figure 8-21 shows a typical USB connection scheme utilizing 
5-port hubs. 

Since USB uses just one differential data pair, it is asynchronous. Also, 
only one device can transmit at any given time (as on an RS-485 bus). Data is 
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Figure 8-21 Typical USB connections to a PC. 
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encoded using the NRZI (no return to zero, inverted) scheme. In NRZI, a bit 
value of 0 causes the line driver to switch states while a value of 1 causes it 
to stay the same. For example, a stream of 0 bits will generate a clock signal, 
since there will be a transition for every bit interval. USB adds bit stuffing 
to NRZI to ensure that the receiver does not get out of synchronization with 
the transmitter if too many 1 's are sent. Whenever there is a continuous stream 
of six 1-bits, the transmitter adds (or stuffs) a 0 bit to produce a new transition. 
The receiver uses the 0 bit transitions to synchronize its clock to the data 
stream. 

USB uses a sophisticated communications protocol based on three types 
of packets: token, data, and handshake. The host (PC) starts a transaction by 
sending out a token packet that addresses the desired device. Each device on 
the bus has a unique address. The address field in the token packet is 7 bits 
long, allowing for 128 unique addresses (and the 127-device limit on the bus). 
Next, data is exchanged via a data packet, containing up to 1023 bits of data 
along with a CRC for error checking. Finally, a handshake packet is trans-
mitted to end the transaction. 

As with most technologies connected to PCs, the USB standard con-
tinues to evolve. The first USB standard in common use was version 1.1. A 
few years later, USB 2.0 was developed, with a 40x speed improvement—up 
to 480 Mbits/sec. USB 2.0 is backward compatible with the original 12 
Mbits/sec USB devices and cables. USB devices will negotiate with the host 
to run at the highest speed allowed on that bus. USB 2.0 is directly supported 
by newer operating systems, such as Windows 2000 and Windows Me. 

This faster USB standard, even with the overhead of its transfer protocol, 
can support high-speed data acquisition. Still, it is slower than a PCI interface 
card that uses a DMA engine to capture data. However, for the majority of 
general-purpose applications, USB 2.0 will be fast enough. 

IEEE 1394 (FireWire) The IEEE 1394 standard defines a high-performance 
serial bus, originally developed by Apple Computer as FireWire. It is a peer-
to-peer system as opposed to USB's host-based protocol. Two IEEE 1394 
devices can communicate with each other without requiring a host computer 
to run the bus. 

IEEE 1394 is a very high speed bus, with the original standard defining 
data rates of 100 Mbits/sec, 200 Mbits/sec, and 400 Mbits/sec. It uses a simple 
6-pin connector with ease-of-use similar to USB. Up to 16 devices or 64 
nodes can connect to a single IEEE 1394 bus, with individual cable lengths 
up to 4.5 meters. As with USB, it is also hot-swappable. 

IEEE 1394 was designed with high-bandwidth applications in mind, 
such as digital video. In fact, digital video camcorders were some of the first 
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TABLE 8-8 
IEEE 1394 Connector Pin Assignments 

1 PIN# 

1 1 
1 ̂  
1 ̂  
1 ̂  
\ ^ 
\ 6 

SIGNAL NAME 

VP 

VG 

TPB* 

TPB 

TPA* 

TPA 

DESCRIPTION 1 

Cable Power 1 

Cable Ground 

Differential Signal Pair: 1 

Data on Xmt, Strobe on Rev 1 

Differential Signal Pair: 1 

Data on Rev, Strobe on Xmt 1 

commercial devices to use a 1394 (FireWire) interface. IEEE 1394 ports are 
not currently standard on most PCs, since they are more expensive than USB. 
However, IEEE 1394 interface cards are available for PCs from many man-
ufacturers. 

The IEEE 1394 cable consists of six conductors: two twisted pairs and 
two power wires. As with USB, 1394 provides power to devices on the bus. 
Since there is no default host node, any 1394 device can supply power. Cable 
power, VP, is between +8 V and +40 V relative to VG, cable ground. A device 
that provides power is limited to a maximum of 1.5 A. A device that uses this 
power initially cannot draw more than 1 W (i.e., 125 mA at +8 V). Table 8-8 
shows the pinout of an IEEE 1394 connector. 

As with USB, IEEE 1394 uses differential signals to transmit high-
speed data reliably. The 1394 bus uses two signals (compared to only one 
signal for USB): TPA and TPB. These are low-voltage differential signals 
(LVDS) with amplitudes of only about 200 mV, to improve high-speed per-
formance. The signals are bidirectional and tri-state capable. A device trans-
mits data on TPB and receives data on TPA. However, when transmitting 
data, a device uses TPA to transmit a special strobe signal. When receiving 
data, TPB contains the received strobe signal. 

This special signal is used to implement data strobe encoding. It is a 
technique that allows the receiving device to extract a stable clock with better 
jitter tolerance than a standard clock signal line would provide (as in typical 
synchronous communications protocols). As shown in Figure 8-22, for each 
bit interval, only one of the two signals. Data or Strobe, changes. That is, if 
Data changes. Strobe stays constant. When Data stays the same (because of 
two consecutive identical bits), Strobe will switch. The receiving device 
generates an exclusive-OR (XOR) of the Data and Strobe signals, producing 
a recreated clock. 
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Figure 8-22 IEEE 1394 data strobe encoding. 

IEEE 1394 is also a packet-based system but uses a more complex 
protocol than USB. When the system turns on, or whenever a new device is 
connected, the bus starts a configuration process. This proceeds from devices 
with only one connection, called leaf nodes, to those with multiple attach-
ments, called branch nodes. The bus appears as a large memory-mapped space 
in which each device or node takes up a unique address range. After config-
uration is complete, a bus topology with a simple root node (typically a PC, 
if present) is determined. Now that each node has its own address, data 
transfers can occur. 

IEEE 1394 supports two types of data transfers: isochronous and asyn-
chronous. The bus operates using approximately 125-|Lisec time slices or 
cycles. For each cycle, devices can arbitrate to transfer a data packet. A simple 
isochronous transfer, which has highest priority, can use up to 80% of the 
available bus bandwidth (or cycle time). This transfer could be as long as 
5000 bytes in one cycle if no other device is requesting an isochronous transfer 
for the same cycle. Isochronous transfers are suitable for time-critical, high-
bandwidth data, such as digital video. Isochronous transfers are fast and 
virtually real-time but they do not contain error correction data nor are 
retransmissions available. The isochronous philosophy is that it is better to 
drop a few pixels in a video frame than to corrupt the frame timing and get 
a distorted image. Here, speed is more important than data quality. This may 
not be suitable for many data acquisition applications where data integrity is 
important. 

Asynchronous transfers are not guaranteed a certain amount of bus 
bandwidth, but they are given a fair chance at bus access when they are 
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allowed, later in the cycle (after isochronous transfers). The maximum size 
for an asynchronous data block depends on the system's transfer rate with a 
maximum of 2048 bytes for a 400 Mbits/sec bus. Since an asynchronous 
block can get sent each cycle, which is every 125 |isec, this corresponds to 
a maximum asynchronous rate of about 16 Mbytes/sec. Asynchronous trans-
fers do use error checking and handshakes to allow for retransmissions, if 
necessary. They can be slower than isochronous transfers but are better suited 
for data acquisition applications where errors cannot be tolerated. Also, the 
IEEE 1394 uses an arbitration system that ensures all devices on the bus, 
regardless of transfer mode, have an opportunity to transfer data and are not 
locked out by high-priority devices. 

The IEEE 1394 standard defines four protocol layers, as shown in Figure 
8-23: the physical layer, the link layer, the transaction layer, and the serial 
bus management layer. The physical layer includes the connectors, cables, 
and electronic circuits that transmit the signals. It defines the data encoding 
and the arbitration mechanisms used. The physical layer is also responsible 
for bus initialization. 

SYSTEM CONTROLLER 

Bus Management Asynchronous Transfers Isochronous Transfers 

Serial Bus 
Management 
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jBus Manager!^ 

i Isochronous \ 
\ Resource \^ 

Manager \ 

Node 
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Figure 8-23 IEEE 1394 protocol layers. 
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The link layer sits between the physical and transaction layers. For 
asynchronous transfers, the link layer handles CRC checking and generation 
for the transaction layer. For isochronous transfers, the link layer has full 
responsibility for handling data transmission and reception. There are a min-
imum of 17 signals that make up the interface between the link and physical 
layers. Part of this interface, in the link layer, includes transmit/receive FIFOs, 
interrupt generation, and a DMA channel. 

The transaction layer is only used for asynchronous transfers. It deter-
mines the size and type of the next transaction, such as read, write, or lock 
(write followed by a read back). The serial bus management layer handles 
basic control functions. Some of the bus control responsibilities are assumed 
by different nodes, including cyclemaster (running the 125 |xsec bus cycle), 
isochronous resource manager (allocating isochronous transfer bandwidth), 
and bus manager (keeping track of bus topology, optimizing bus traffic, and 
managing DC power distribution). 

There are several available chipsets that implement the physical and 
link layers in hardware. Still, IEEE 1394 devices are fairly complex to design, 
and this accounts for part of their higher cost compared to USB. There is 
some operating system software support for IEEE 1394 in PCs. Currently it 
is supported to varying degrees in Windows 98 (second edition), Windows 
Me, and Windows 2000. Since IEEE 1394 is a peer-to-peer system, it can be 
used as-is to connect two PCs together for high-speed data transfers. 

As with USB, IEEE 1394 continues to evolve faster implementations. 
A newer standard, IEEE 1394b, is backward compatible with existing hard-
ware having data rates up to 400 Mbits/sec while adding new data rates of 
800, 1600, and 3200 Mbits/sec. This keeps it well ahead of USB 2.0, with a 
480 Mbits/sec maximum rate. IEEE 1394b also supports long transmission 
line lengths, up to 100 meters using twisted-pair cables at a data rate of 100 
Mbits/sec. This is still an order of magnitude faster than RS-422 or RS-485 
transmissions. Data rates up to 3200 Mbits/sec are supported on glass optical 
fiber cables up to 100 meters long. 

8.4 PC Networks 

Networking PCs has become more common than ever. The ability to share 
data and resources, such as laser printers and plotters, has made PC networks 
standard in most lab, office, and industrial environments. Sharing information 
on a global scale, using the Internet, has opened up new realms of possibilities. 
For example, you can acquire data from remote data acquisition equipment 
using standard commercial hardware and software. Microsoft Windows has 
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supported networking since version 3.11 (Windows for Workgroups). Starting 
with Windows 95, Microsoft has supported the popular TCP/IP protocol—the 
same software protocol used by the Internet. 

To discuss networks, we will first cover the basic signaling aspects: the 
electrical signal characteristics and the hardware protocols used to transmit 
and receive data. Then we will look at software protocols. The most popular 
hardware/software system used to implement a local area network is Ethernet 
and the most common networking protocol is TCP/IP. 

8.4.1 Ethernet 

The Ethernet local area network (LAN) was originally developed by Xerox 
in the 1970s and became a published specification in the 1980s. It is a 
combination of hardware and software that allows different computers run-
ning different operating systems to communicate and exchange data at rela-
tively high speeds. Ethernet is made up of four basic elements: the physical 
medium, the signaling components, the media access control protocol, and 
the frame. 

The physical medium encompasses the cables and other components 
used to carry the signals for the network. The most popular medium for PC-
based Ethernet systems is twisted-pair wiring terminated with 8-pin RJ-45 
(telephone style) connectors, although coaxial and fiber optic cables are also 
commonly used. There are cable length limitations based on signaling speed 
and media type to ensure that the maximum round-trip time is not exceeded. 
This is the time it takes a signal to go from one end of the system to the other 
and back again. This timing limitation can be overcome by dividing a large 
LAN into multiple, separate LANs using switching hubs. 

The signaling components are the electronic devices that transmit and 
receive data via the physical medium. These components include signal line 
transceivers and a computer's Ethernet interface, often residing on a PC's 
network interface card (NIC) or motherboard. Most PCs use a lOBASE-T or 
100BASE-T NIC with twisted-pair cables (rated as Category 5 cables for 100 
Mbits/sec service). Multiple PCs connect to the LAN in a star configuration 
through a multiport repeater hub, as shown in Figure 8-24. The repeater is 
used to retransmit the network signals to all its ports or network segments. 

Up till now, the elements we have discussed could apply to many 
communications protocols, such as RS-485. The next two elements are the 
key to Ethernet's usefulness and popularity. The media access control (MAC) 
protocol is a set of rules that allows multiple computers to fairly share a 
channel. For example, employing coaxial cable in a multidrop configuration, 
Ethernet uses a half-duplex operation mode. At any given time each computer 
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Figure 8-24 Sinfiple Ethernet LAN employing a repeater hub. 

interface can either receive or transmit data but not both simultaneously. In 
this case there can only be one transmitter at a time, as on a USB network. 
However, there is no designated host or root device in Ethernet (it is a peer-
to-peer network). To allow all computers on the network a fair chance to 
transmit data the CSMA/CD (carrier sense, multiple access/collision detection) 
protocol is used. Before transmitting, each Ethernet interface waits until there is 
no signal on the cable or channel (carrier sense). Then, all interfaces have 
equal priority attempting to transmit data (multiple access). If an interface 
detects that other transmissions are occurring (collision detection) it stops 
transmitting and chooses a random retransmission time to try again. This 
arbitration system give all Ethernet interfaces a good chance of accessing the 
network. On a 10 Mbits/sec system, collisions are typically resolved within 
a few microseconds. Multiple collisions are only likely on a heavily loaded 
network (many devices transmitting data very often). Even then, Ethernet can 
adapt by trying different retransmission times. 

The final element, the frame, is the standard packet used to carry data 
over an Ethernet system. Figure 8-25 shows the components of an Ethernet 
frame, which is the heart of the system. The frame is divided into fields, 
starting with a 64-bit preamble. On a 10 Mbits/sec network (such as lOBASE-
T) the preamble gives the hardware time to correctly receive the rest of the 
frame. At faster network speeds such as 100 Mbits/sec (100BASE-T) and 
1000 Mbits/sec, there is constant signaling and the preamble is not necessary. 

The next fields are the 48-bit destination and source addresses. The first 
24 bits of the address is an organization unique identification (OUI), assigned 
to individual manufacturers and organizations by the IEEE Standards Asso-
ciation. The remaining 24 address bits are unique for that organization (still 
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Figure 8-25 Composition of an Ethernet frame. 

allowing for more than 16 million devices from a single manufacturer). The 
resulting 48 bits form the physical address for that interface, which is fixed 
in the hardware. 

Next is the 16-bit type or length field. This is often used to describe the 
high-level protocol in use, such as TCP/IP. It is followed by the data field, 
ranging from 46 to 1500 bytes long. The final field is the frame check 
sequence, which is a 32-bit CRC. This provides the frame with data integrity, 
allowing receiver error detection. 

If only a minimum amount of data (46 bytes) is being transferred, the 
frame overhead is large (approximately 36% of the total frame). Using the 
maximum size data field (1500 bytes) the overhead now becomes fairly small 
(less than 2%). 

As previously mentioned, the most popular Ethernet implementations 
are lOBASE-T and 100BASE-T, using twisted-pair wiring. The lOBASE-T 
system was largely responsible for the growing acceptance of Ethernet for 
PCs in the 1990s. The signaling rate of lOBASE-T is 10 Mbits/sec. Of course, 
the actual delivered data rate depends on network loading and the amount of 
data contained in each frame, resulting in less than 10 Mbits/sec. lOBASE-T 
is a point-to-point system, as opposed to multidrop, so it needs repeater hubs 
to interconnect multiple computers (as previously shown in Figure 8-24). 
lOBASE-T uses an 8-pin RJ-45 modular connector, even though it needs only 
four conductors for its two differential data pairs. Table 8-9 shows the pinout 
for a lOBASE-T connector. The twisted-pair cable can be up to 100 meters 
long. 

lOBASE-T's differential signals are ±2.5 V and use Manchester encod-
ing. In this scheme each bit interval has a clock transition, as shown in 
Figure 8-26. At 10 Mbits/sec each bit is 100 nsec wide. When the clock in 
the middle of the interval goes from high to low it is a 0 bit. When it goes 
from low to high it is a 1 bit. This way a clock is transmitted along with the 
data. 
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TABLE 8-9 
10BASE-T Connector Pin Assignments 

+2.5 V-

1 PIN # 

1 ̂  
1 ̂  
1 ̂  

6 

1 4, 5, 7, 8 

SIGNAL NAME 

TD+ 

TD-

1 RD+ 

RD-

N/C 

DESCRIPTION 1 

Transmit Data 1 

Pair 1 

Receive Data 

Pair 

1 Unused 

-2.5 V-

Bit Value 

lOOnsec :̂ ̂ lOOnsec ^ ̂  1 DO nsec ^ 100 nsec. 

Figure 8-26 10BASE-T Manchester encoding. 

Ethernet is a means of delivering a data frame across a network. To be 
useful, the data in that frame should be part of a high-level network protocol. 
This protocol controls the actual communications between computers and 
their application software. Ethernet is simply a messenger, unaware of high-
level protocols. This allows computers running different protocols (such as 
NETBEUI and TCP/IP) to share the same Ethernet system. 

8.4.2 TCP/IP 

The most commonly used high-level network protocol is TCP/IP (transmis-
sion control protocol and Internet protocol). As with all network protocols, 
TCP/IP uses data packets conforming to its own standard to communicate 
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with applications on different computers. These packets are independent of 
the network hardware and topology used. For example, TCP/IP packets can 
be transmitted just as easily using Ethernet or Fire Wire. Using Ethernet as a 
common example, a TCP/IP packet is transmitted within the data field of an 
Ethernet frame. 

Since TCP/IP uses its own 32-bit addresses, when a computer wants to 
send a TCP/IP packet using Ethernet it knows the TCP/IP address of the 
destination computer but not necessarily its Ethernet address. Using TCP/IP's 
address resolution protocol (ARP), the source computer can broadcast a 
request over the Ethernet LAN for the computer with the desired TCP/IP 
address to respond with its Ethernet address. 

The basic TCP/IP architecture is a series of layers and components that 
make up these layers, collectively called the TCP/IP stack. Every layer in the 
stack receives frames of data from the layer below it and sends frames to the 
layer above. Figure 8-27 shows a simplified TCP/IP stack using Ethernet as 
the physical layer. 

The physical layer is the actual network hardware and control protocol, 
such as Ethernet, which has its own physical address. The data link layer 
isolates the software layers above it from the hardware. This layer handles 

To Application Software 

Transport Layer (TCP) 

Network Layer (IP) 

Data Link Layer 

Physical Layer (Ethernet) 

Figure 8-27 Basic TCP/IP stack. 
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the details of the TCP/IP frames. The network layer handles TCP/IP address-
ing and routing protocols. The transport layer controls the features required 
for reliable, sequenced packet delivery. This includes retrying and sequencing 
the packets to correct for any information lost at the lower layers. TCP/IP 
assumes that the data link layer and physical layers are not necessarily reliable 
and adds its own error recovery features. 

This section has been just a brief introduction to networking technolo-
gies commonly used with PCs. For greater details, the reader is encouraged 
to see the appropriate references listed in the bibliography. 

This concludes our survey of common computer interfaces and proto-
cols used by PCs. In the next chapter we will look at data storage on the PC 
as well as data compression techniques. 



C H A P T E R 

Data Storage 
and Compression 
Techniques 

Acquired data must be permanently stored by a PC to allow future retrieval 
for display and analysis. The conventional storage devices available for PCs 
use magnetic or optical media. Most of the general-purpose storage devices 
(magnetic disk drives) use a random access, file-based structure. Magnetic 
tapes, for archiving (backup) applications, use a sequential structure. 

Since most application software, including data acquisition programs, 
assumes data is stored on a magnetic disk (either a floppy diskette or a hard 
disk), these are the storage devices we will consider here. Furthermore, we 
will only consider MS-DOS and Windows files in this discussion, although 
many of the basic principles covered will apply to other operating systems 
and non-80x86 computers. 

9.1 DOS Disk Structure and Files 

A file is a logical grouping of data, physically located on a magnetic disk or 
other permanent storage medium, such as a CD-ROM. The physical structure 
of a magnetic disk consists of concentric rings, called cylinders, and angular 
segments, called sectors, as shown in Figure 9-1. In addition, hard drives may 
consist of multiple platters (more than one physical disk in the drive package). 
The cylinder on a single surface of a disk is referred to as a track. The 
read/write sensor used in a disk drive is the head. A double-sided floppy drive 
has two heads (one for each side of the diskette). A hard drive with four 
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Figure 9-1 Physical organization of a nfiagnetic disk surface. 

platters has eight heads. The read/write heads usually move together as one 
unit, so they are always on the same sector and cylinder (but not the same 
side of the platter or disk). Therefore, a physical location for data on a disk 
is specified by cylinder, sector, and head number. 

The physical structuring of a disk into cylinders and sectors is produced 
by the DOS FORMAT program (or the FORMAT command in Windows). In 
addition, FORMAT also initializes a disk's logical structure, which is unique 
to DOS or Windows. Each sector on every disk track (or cylinder) contains 
512 bytes of data, along with header and trailer information to identify and 
delineate the data. This is why a formatted disk has lower storage capacity 
than an unformatted disk. The first sector (on the first cylinder) of every 
formatted DOS disk is called the boot sector. It contains the boot program (for 
a bootable disk) along with a table containing the disk's characteristics. The 
boot program, which is small enough to fit within a 512-byte sector, is loaded 
into memory and executed to begin running the operating system (DOS). 

The boot sector is immediately followed by the file allocation table 
(FAT). The FAT contains a mapping of data clusters on the disk, where a 
cluster is composed of two to eight sectors (or more, depending on the 
operating system and hard drive). A cluster is the smallest logical storage 
area used by DOS or Windows. For floppy disks, a cluster is usually two 
sectors (1024 bytes); it is larger for hard drives. The FAT contains entries for 
all the logical clusters on a disk, indicating which are used by a file and which 
are unusable (because of errors discovered during formatting). Each FAT 
entry is a code, indicating the status of that cluster. If the cluster is allocated 
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to a file, its FAT entry points to the next cluster used by that file. The file is 
represented by a chain of clusters, each one's FAT entry pointing to the next 
cluster in the file. The last cluster in a file's chain is indicated by a special 
code in its FAT entry. This structure enables DOS (or Windows) to dynami-
cally allocate disk clusters to files. The clusters making up a particular file 
do not have to be contiguous. An existing file can be expanded using unal-
located clusters anywhere on the disk. 

Because of the way file clusters are chained, a corrupted FAT will 
prevent accessing data properly from a disk. That is why DOS usually main-
tains a second FAT on a disk, immediately following the first one. This second 
FAT is used by third-party data recovery programs (and in later versions of 
MS-DOS, by SCANDISK) to "fix" a disk with a damaged primary FAT. 
Another side effect of the dynamic cluster allocation ability of DOS (and 
Windows) is that heavily used disks tend to become fragmented, where 
clusters for most files are physically spread out over the disk. This slows 
down file access, since the read/write heads must continuously move from 
track to track to get data from a single file. Several conmiercial utility pro-
grams are available to correct this, by moving data clusters on a disk to make 
them contiguous for each file and thus decrease file access time. Later versions 
of DOS and Windows contain a DEFRAG program to do this. 

The FAT (and its copy) on a DOS disk is followed by the root directory, 
which contains all the information needed to access a file present on that drive. 
This information is the file name and extension, its size (number of bytes), a 
date and time stamp, its starting cluster number, and the file's attributes. The 
root directory is a fixed size (along with each file entry) so that DOS knows 
where the disk's data area, immediately following the root directory, begins. 
This limits the number of files that can be placed in the root directory. For 
example, an old 360-Kbyte, double-sided 5-1/4" floppy disk can only keep 
112 entries in its root directory (which consists of four clusters of two sectors 
each). If more files must be stored on this disk, subdirectories have to be used. 
A subdirectory is a special file that contains directory information. It is avail-
able starting with DOS 2.0 and is used to organize groups of files on a disk. 
It is especially useful with large storage devices, such as hard drives. 

Hard disks have one additional special area, besides the boot sector, the 
FAT, and the root directory. It is called the partition table. The information 
in the table describes how the hard disk is partitioned, from one to four logical 
drives. This information includes whether a partition is bootable, where it 
starts, its ID code (it can be a non-DOS partition for another operating system, 
such as UNIX), and where it ends. To get around the disk size limitation of 
32 Mbytes in versions of DOS prior to 4.0, it was necessary to partition large 
hard disks into smaller logical drives. This was usually done with a special 
utility software package, or via the DOS FDISK program. 
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Figure 9-2 Exanfiple of DOS directory structure. 

The directory structure of a DOS disk can be described as an inverted 
tree diagram, as illustrated in Figure 9-2. The root directory is symbolized 
by the backslash (\) character. The root has a limited number of possible entries 
that can be either standard files or subdirectories. A subdirectory is a variable-
size file (as are all DOS files), so its size and maximum number of entries is 
only limited by the free storage space available on the disk. Each subdirectory 
can contain conventional files along with other subdirectories. You can keep 
adding level after level of subdirectories. In Figure 9-2, the top level (Level 0) 
is the root directory, present on all DOS disks. Level 1 contains the first level 
of subdirectories (Subl, Sub2, Sub3, Sub4), along with their files. Level 2 
contains the subdirectories of Subl (Subsubl, Subsub2) and Sub3 (SubsubS, 
Subsub4). Level 3 contains the subdirectory of Subsub3 (SSS). Note that 
subdirectory names are limited to eight characters, as are all file names. 
However, subdirectory names do not use a three-character extension, as other 
files do. 

To access a file via DOS, the path to the directory containing that file 
must be specified, usually starting from the root (if the root is not explicitly 
shown, the current default directory is assumed). In that path, directory levels 
are separated using the backslash (\) character. For example, \SUB1\SUBSUB2 
would be the path to the SUBSUB2 directory. A \ character is also used to 
separate the directory path from the file name. For example, \SUB3\ 
SUBSUB3\SSS\DATA.001 would be the complete file specification allowing 
DOS to locate the file DATA.OOl in subdirectory SSS. 

It should be noted that each directory level used on a disk requires DOS 
to search an additional subdirectory file to locate and access the file requested. 



9.2 Common DOS File Types 195 

If many directory levels are used (such as greater than five) DOS file access 
will be considerably slowed. You should use directories to organize your file 
storage logically, especially with a hard drive. Just do not use more levels of 
subdirectories than you need. 

For instance, you might have a hard disk subdirectory containing your data 
acquisition programs, called XACQUISIT. You should keep your data files orga-
nized by projects or experiments, and separated into subdirectories, such as 
\ACQUISIT\PROJl, \ACQUISIT\PROJ2, etc. However, there is no need to put 
each data file from the same project into its own subdirectory (\ACQUISIT\ 
PROJRTESTl, ACQUISIT\PROJl\TEST2) unless they all have the same 
name. So, \ACQUISIT\PROJl may contain TEST1.DAT and TEST2.DAT. 

9.2 Common DOS File Types 

Standard DOS and Windows file types are denoted by a three-letter extension 
to the file name. We previously saw that .SYS files are loadable DOS drivers, 
for example. DOS and Windows files can be broken down into two broad 
categories: binary files and ASCII files. 

In a binary file, data is stored in an unencoded binary format, just as it 
would appear in system memory. The end of a binary file is determined strictly 
from the file length recorded in its directory listing. Executable programs and 
device drivers are example of the many types of standard binary files. Many 
data file formats are binary. 

In an ASCII or text file, the data is stored as printable ASCII characters 
(see Chapter 8 for a discussion of the ASCII code). Each byte represents one 
ASCII character that is either printable or a special control character. The 
ASCII data is usually terminated by a control character signifying the end of 
the file. The file's directory listing still contains its file length. Various appli-
cation programs, such as editors and word processors, typically operate on 
ASCII data files. We will now look at some of the standard DOS file types, 
some of which are also common Windows file types. 

9.2.1 .BAT Files 

Under DOS, file names ending with the .BAT extension are considered batch 
files. A batch file contains DOS commands that will automatically run, as if 
they were a program. Batch files have some rudimentary program capabilities, 
such as branching and conditional execution. For the most part, they are used 
to automate a group of conmionly executed DOS commands, including calling 
application programs. 
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.BAT files are always ASCII files. They are usually created with an 
editor program, such as EDIT (part of DOS) or NOTEPAD (part of Windows). 
As an example, let us assume we want to copy all the files with a .DAT extension 
from a hard disk (drive C:) directory \TEMP to a floppy disk (drive A:) and 
then delete the original files. We can create a file named TRANSFER.BAT, 
with the following lines: 

COPY C:\TEMP\*.DAT A: 
DEL C:\TEMP\*.DAT 

These instructions will be carried out by DOS when we give the TRANSFER 
command (which executes TRANSFER.BAT). Note that a batch file is an 
interpreted program. DOS reads each ASCII line and then executes it. There-
fore, it is relatively slow compared to performing the same function with a 
dedicated, compiled program. 

A useful feature of DOS batch programs is the ability to employ variable 
data, which are ASCII strings. The contents of the variables used are specified 
at run time, when the batch file is executed. When the batch program is 
written, a percent sign (%) followed by a digit is used to represent the 
appropriate parameter supplied with the conmiand to run the batch file (%1 
is the first parameter, %2 is the second, and so forth). Using this feature, we can 
make TRANSFER.BAT more generalized, with the data files name in \TEMP 
becoming a variable: 

COPY C:\TEMP\%1 A: 
DEL C:\TEMP\%1 

To use this batch program to transfer all the .DOC files from C:\TEMP to A, 
use the command 

TRANSFER *.DOC 

Batch files become more than just a list of commands when conditional 
statements are used. The following example is a file called HIDE.BAT, which 
changes a file's attribute to hidden, via the DOS ATTRIB command (with the 
H-H option). The variable parameter (%1) is the name of the file to hide: 

ECHO OFF 
IF EXIST %1 GOTO OK 
ECHO "SYNTAX: HIDE <file name>'' 
GOTO END 
:0K 
ATTRIB +H %1 
:END 
ECHO ON 
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The ECHO OFF command tells DOS not to display the batch program lines 
as it executes them (normally it would). At the end of the program, ECHO 
ON turns this feature back on. The second program line checks to see if there 
was a valid file name given with the batch file command, via IF EXIST. If 
there was, execution jumps to the label :OK to execute the ATTRIB +H 
command. Otherwise, it displays the quoted text in the ECHO command 
(showing the proper syntax for the batch program) and jumps to the label 
:END, skipping the ATTRIB +H command. 

One special batch file used by DOS is called AUTOEXEC.BAT. This 
file is executed by DOS after it boots up, if it exists in the root directory of 
the disk. It is used to perform many initialization functions such as custom-
izing system parameters (i.e., changing the DOS prompt), calling an appli-
cation program needed at system startup (such as starting a network driver), 
or changing the default directory. Windows will also run the AUTOEXEC.BAT 
file. 

Batch files can handle fairly complex tasks, but are best suited for 
simpler, commonly performed functions that do not warrant the time and 
trouble needed to develop a full-fledged program. The minimum functionality 
of the DOS batch facility also limits the tasks that can be performed by a 
batch file. In general, if you continuously repeat the same sequence of DOS 
commands, that sequence is a good candidate for a batch file. 

9.2.2 .TXT and Other ASCII Files 

Many file extensions are commonly associated with ASCII files, although 
they are specified by application programs rather than by DOS itself. For 
example, .TXT and .DOC are conamon ASCII file types in DOS. In Windows, 
files with specific extensions are explicitly associated with particular appli-
cations: for example, .TXT files are usually associated with the text editor 
NOTEPAD. Even when ASCII data is used by an application it is not always 
"plain vanilla" (exactly following the 7-bit ASCII code). Some word processing 
application programs mix ASCII with binary data in their files. Others use 
the eighth bit of each character for special text formatting commands (such 
as underlining), which ASCII does not directly support. 

The DOS TYPE command displays an ASCII file on the video display. 
If the displayed text appears garbled or has nonalphanumeric characters (such 
as smiling faces), the file is not composed of plain 7-bit ASCII characters. 

IBM BASIC and GW BASIC produced program files with the .BAS 
extension. These files were usually modified ASCII, using special characters, 
called tokens, to represent common BASIC commands. BASIC could save 
its program files in plain ASCII, if specifically instructed. BASIC also 
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produced ASCII data files that could be used by a variety of application 
programs. 

Many data acquisition and analysis programs will read or write ASCII 
data files. This is very useful, since the data can be directly printed and easily 
reviewed by different people or imported into another data processing appli-
cation, such as a spreadsheet. 

9.2.3 .COM Files 

DOS files with the .COM extension are executable programs in a binary 
format. A .COM file contains a short program that must fit within a single 
64-Kbyte memory segment, including all its data. The .COM file contains an 
absolute memory image of the program. The contents of the file are identical 
to the computer's memory contents when the program is loaded. 

When the command to run a program is issued, either by the user at 
the DOS prompt or from another program via the DOS EXEC function call, 
DOS determines whether enough free memory exists to load the program. If 
not, it returns an error message. If there is adequate space, DOS determines 
the lowest available memory address to use. This memory area is called the 
program segment. At the beginning of the program segment (offset 0) DOS 
creates the program segment prefix (PSP) control block. The program itself 
is then loaded into memory at offset lOOh of the program segment, since 
256 bytes are reserved for the PSP. The PSP contains information needed to 
execute the program and return to DOS properly. After the program is loaded 
into memory, it begins execution. 

A .COM program is automatically allocated all of the available system 
memory. If the .COM program wants to run another program without termi-
nating itself first, via the DOS EXEC function call, it must first deallocate 
enough memory for this secondary program. Even though a .COM program 
must fit within a single 64-Kbyte memory segment, it can access memory 
outside of its segment by changing its segment pointers (such as the data 
segment pointer, DS). 

Another idiosyncrasy of .COM programs is that they must begin exe-
cution at offset lOOh of their segment (immediately following the PSP). Since 
most .COM programs are written in Assembler, to minimize their size, they 
would have the following statement, just prior to the start of the program code: 

ORG 1 0 OH 

This requirement is not a severe limitation, since the first program 
statement can be a jump to some other section of code in the segment. 
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9.2.4 .EXE Files 

The second DOS format for executable programs is the .EXE file, which is 
another type of binary file. This format is also used under Windows. Programs 
in the .EXE format tend to be much larger and more complex than .COM 
programs. They can span multiple segments, both for code and data. In 
addition, they are relocatable and the exact locations of various parts of the 
program are determined at execution time by DOS. Furthermore, they are not 
automatically allocated all available memory, as .COM programs are. 

To accommodate this flexibility, DOS .EXE files begin with a special 
header area. The first two bytes of this header begin with 4Dh and 5Ah (in 
ASCII, "MZ") to indicate to DOS that this is an .EXE program. The rest of 
the header contains various information including the length of the program, 
the length of the file, its memory requirement, the relocation parameters, and 
where to begin program execution. Unlike .COM files, .EXE programs do 
not have a fixed starting point for program execution. In an .EXE file, the 
header is immediately followed by the program itself. 

When DOS attempts to run an .EXE program, it first reads the header, 
determines whether enough free memory is available, creates the PSP, loads 
the program, and starts its execution. Because of their larger size and the 
extra work DOS must do, .EXE programs tend to load more slowly than 
.COM programs. The vast majority of commercial DOS applications are .EXE 
programs. Some are so large that they need more than the maximum available 
DOS memory area of 640 Kbytes. They typically make use of overlays to 
accommodate large code areas and use expanded or extended memory (when 
available) to handle large data-area requirements. 

When a program is developed using a standard compiler (such as Macro 
Assembler, C, Pascal, or FORTRAN) under DOS, an .EXE file will be 
produced by the final linking process (see Chapter 13 for a discussion of 
programming languages and the various compiling processes). If the program 
was written to fit within a single 64-Kbyte segment, it can be successfully 
converted into a .COM file, using the DOS program EXE2BIN. If program 
file size or load time do not need to be minimized, it is not necessary to 
convert an .EXE program into a .COM program. When given the choice 
between the two executable program formats, it is usually advantageous to 
keep the flexibility of an .EXE program. 

9.3 Windows File Systems 

MS Windows, up to version 3.11 (Windows for Workgroups), used DOS for 
all file services. Files were accessed through the standard DOS FAT, in real 
mode (16-bit mode). 
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In MS-DOS, up to version 3.3, the FAT used 12-bit values for numbering 
clusters. This was referred to as a 12-bit FAT. This 12-bit value accounted 
for the 32-Mbyte limit DOS had as a maximum disk or partition size: the 
maximum number of clusters was 4096 (2*0, while the maximum cluster size 
was 8192 bytes (4096 x 8192 bytes = 32 Mbytes). Starting with DOS version 
4.0, the FAT used 16-bit cluster values (it was a 16-bit FAT). This allowed 
the cluster size to shrink to 2048 bytes while increasing the maximum disk 
size to 128 Mbytes. Smaller cluster sizes make more efficient use of disk 
space since a cluster is the minimum amount of disk storage used by a file 
(or the last piece of a file). 

As hard drive capacity grew, so did DOS and FAT cluster size, reaching 
a maximum of 32 Kbytes. This limits a hard disk (or partition) to 2 Gbytes 
capacity with a 16-bit FAT. 

9.3.1 Windows 95 File System 

Microsoft Windows 95 was the first version of Windows to abandon DOS. 
Windows 95 incorporated its own protected-mode (32-bit) file management 
system that originally used a 16-bit FAT. Using this protected-mode system, 
Windows no longer had to switch into real mode for file services (as in 
Windows 3.1 or earlier versions), which was slow and inefficient. 

In Windows 95 version 950b, Microsoft changed the FAT to a 32-bit 
version. This 32-bit FAT can address disks as large as 2048 Gbytes (with 32-
Kbyte clusters). Later versions of Windows, such as Windows 98 and Windows 
NT 4.0, use a 32-bit FAT. This 32-bit FAT structure is not compatible with 
the older 16-bit FAT. Installing it requires overwriting an entire hard disk 
drive and its operating system. 

Starting with Windows 95, Microsoft introduced a new, layered file 
system architecture, referred to as the installable file systems (IFS) architec-
ture. The IFS supports multiple file systems such as the VFAT file system 
and the CD-ROM file system (CDFS). The IFS allows additional file systems, 
such as network support components, to be added as needed. 

The VFAT file system is a 32-bit protected-mode FAT that fully supports 
multitasking. By providing 32-bit file access and 32-bit disk drive access, VFAT 
significantly improves file I/O performance over MS-DOS and Windows 3.1. 
The CDFS is a 32-bit protected-mode file system that provides improved 
CD-ROM performance (compared to DOS drivers) along with multitasking 
support. 

Figure 9-3 shows the Windows 95 IFS architecture. The IFS manager 
is the only interface to application software (as opposed to DOS, where a 
program could access disk sectors directly, via a BIOS call to INT 13h). 
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Figure 9-3 Windows 95 Installable file system (IFS) architecture. 

Under the IFS manager are the various file systems such as VFAT and CDFS. 
Below the file systems is the block I/O subsystem, consisting of a series of 
layers that interact with the disk hardware through low-level drivers. The 
input/output supervisor (lOS) acts as an interface between higher layers and 
the file system drivers. The lOS queues file service requests and routes them 
to the appropriate driver. 

Only 32-bit protected-mode drivers are used in the IFS. The additional 
layers in Figure 9-3 include the volume tracking driver (VTD), which 
manages removable devices (such as floppy disks), and the vendor supplied 
driver (VSD), which can intercept I/O requests for a particular device 
without having to deal with low-level (hardware) details. This is especially 
useful for adding special processing to disk files, such as data compression/ 
expansion. 
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9.3.2 Windows NT File System 

Windows NT and its successors (such as Windows 2000) can use the same 
VFAT file system as Windows 95, Windows 98, or later versions. However, 
these operating systems also support the NT file system (NTFS), which has 
a different structure along with more sophisticated security features. 

NTFS is based on a master file table (MFT) that stores all the informa-
tion describing each file and directory on a hard drive. Each MFT entry is a 
record up to eight sectors (4 Kbytes) long, containing data on its associated 
file or directory. This data is a set of attributes that include the file name, 
creation date, last modification date, the type of data in the file, and so on. 
Each file has a unique 48-bit identification number. 

NTFS uses sectors (512 bytes each) instead of clusters to allocate 
storage space, with 32-bit relative sector numbers to identify disk locations. 
This allows NTFS to access up to 2048 Gbytes (2^̂  x 512 bytes) of disk 
space (equivalent to a 32-bit FAT) while allowing greater efficiency when 
storing many small files. NTFS also allows file names to be as long as 254 
characters (as with Windows 95). 

NTFS is organized to access data faster than FAT-based file systems 
while minimizing disk fragmentation. For example, when a file is opened, 
NTFS preallocates sectors to it, reserving a block of contiguous disk storage 
space (all of which may or may not be used). NTFS also places directories 
near the center of a disk to speed up directory searches. 

Since Windows NT is designed for a multiuser, networked computing 
environment, NTFS supports all of NT's security features. These include 
controlling the rights to read, create, modify, or delete both files and directories 
on an individual user or group basis. 

9.4 Data Compression Techniques 

Data acquisition applications usually involve the creation and storage of large 
amounts of unprocessed data. If a particular test was acquiring 16-bit data at 
the modest rate of 10,000 samples/sec, 1 minute of data would require 1.2 
Mbytes of storage. Ten minutes of unprocessed data would require 12 Mbytes 
of storage. Data at this rate could fill a small hard drive after a relatively modest 
number of tests. That is why data compression techniques are so important. 

If large amounts of data need to be transferred between remote systems, 
data compression not only reduces the storage requirements for the data—it 
also reduces the transfer time needed (and its inherent cost). If data is being 
sent serially via modem, even at the relatively fast rate of 38,400 bps, it would 
take more than 4 minutes to transfer 1 Mbyte of data. 
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Many different techniques are employed to reduce the storage require-
ments of large amounts of data. The most important measurement of a par-
ticular technique is its compression ratio: the size of the original data divided 
by the size of the compressed data. Another important parameter of a data 
compression technique is its fidelity or distortion. This is a measure of the 
difference between the original data and the compressed/restored data. In 
many applications, no data distortion can be tolerated, such as when the data 
represents a program file or an ASCII document. This would call for a lossless 
compression technique. A relatively low compression ratio would be expected 
then. In other cases, a small but finite amount of distortion may be acceptable, 
accompanied by a higher compression ratio, using a lossy technique. For 
example, if the data in question represents a waveform acquired at a relatively 
high sampling rate, storing every other point is equivalent to filtering the 
waveform and producing a small amount of distortion, particularly for high-
frequency components in the data. 

Thus, the nature of the data dictates the parameters important to the 
data compression process and helps indicate which technique is best suited. 
The general trade-offs are between compression ratio and fidelity. An addi-
tional factor, usually less important, is the amount of time required to com-
press or restore the data using a particular technique. This can become an 
important factor if the data compression is done in real time, along with the 
data acquisition or transmission. 

We will now look at various data compression techniques and their 
appropriate applications. Most of the techniques, unless otherwise noted, are 
primarily useful for files containing numerical data. 

9.4.1 ASCII to Binary Conversion 

Sometimes there are very obvious ways to reduce the size of a data file. If a 
set of numerical data is stored in an ASCII format (as many conmiercial data 
acquisition application programs are), encoding it directly as binary numbers 
could produce large space savings. For example, if the data values are signed 
integers within the range of ±32,767, they can be represented by 2 bytes 
(16 bits) of binary data. These 2 bytes would replace up to seven ASCII 
characters, composed of up to five digits, one sign character, and at least one 
delimiter character, separating values. This ASCII-to-binary conversion would 
produce a maximum compression ratio of 3.5:1 with no distortion. Even if 
the average value used four ASCII digits (1000-9999) the compression ratio 
would still be 3:1. After this conversion, other techniques could also be 
applied to the data set, further increasing the data compression. 
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9.4.2 Bit Resolution and Sampling Reduction 

When a set of data represents numerical values, as in a waveform or data 
table, the number of bits used to represent these values determines the min-
imum resolution and the maximum dynamic range. As we saw previously, 
the minimum resolution is the smallest difference that can be detected 
between two values, which is one least significant bit (LSB) for digitized 
numbers. The ratio between the maximum and minimum measurable values 
determines the dynamic range: 

Dynamic range (in dB) = 20 x log(max/min) 

ff lowering the resolution can be tolerated, data compression can be easily 
and quickly implemented. The resulting compression ratio is simply the 
original number of bits of data resolution divided by the new (lower) number 
of bits. 

As an example, let us assume we have a set of data acquired by a 12-bit 
ADC system, with a dynamic range of 4096:1 or 72 dB. We first search the 
data set for the minimum and maximum values (we will assume the data is 
represented as unsigned integer values, for simplicity). In this example, the 
minimum value is 17 and the maximum is 483. A data range of 17-483 can 
be represented by 9 bits without any loss of resolution (or fidelity) for a 
compression ratio of 12/9 = 1.33:1. If the minimum value was larger, such 
as 250, the difference between maximum and minimum, now 233, can be 
represented as fewer bits (8, for a range of 0-255) than the full range of zero 
to the maximum value (483). In this case, we can get a compression ratio of 
nearly 12/8 = 1.5:1 by subtracting the minimum value from all the data points. 
The minimum value must then be included with the 8-bit data, so the correct 
values can be reconstructed. Adding a single 12-bit value to the compressed 
data is very little overhead when many points are contained in the waveform. 

The simple technique just described is useful when the acquired data 
does not fill the entire dynamic range of the data acquisition system. Then, 
the unused bits of resolution can be discarded without causing any data 
distortion. Most of the time, we do not have this luxury. To highly compress 
a set of data we usually have to sacrifice some resolution. 

Still using a 12-bit data acquisition system, let us assume a data set has 
a minimum value of 83 and a maximum value of 3548. Now, maximum -
minimum = 3465, which still requires 12 bits of resolution. If we have to 
compress this data, we will lose some resolution. Assuming we need a min-
imum compression ratio of 1.5:1, we can normalize the data to 8 bits. To do 
this, we multiply all the data values by the new maximum value (255, for 
8 bits) and divide them all by the original maximum value (3548). The number 
3548/255 = 13.9 is the scaling factor. Either this scaling factor or the original 
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maximum value is kept with the normaUzed data, to enable its restoration to 
the proper values and dynamic range. The data can be restored to its full 
dynamic range, but its resolution will be 14 times coarser, because of the 
rounding off that occurred when the data was normalized. Any two original 
data points that were separated by values of less than 14 will no longer be 
distinguishable. So, if two data points had original values of 126 and 131, 
after normalizing to 8 bits (dividing by 13.9), they will both be encoded as 
9 and restored as 125. 

Figure 9-4a shows a simplified flowchart for an algorithm that compresses 
a set of data by reducing the number of bits used to represent it. As we see, this 
approach can produce a loss of fine details, due to lower resolution. To exploit 
this form of compression, the data must be stored efficiently. Figure 9-4b shows 

Scan input data for 
maximum value 

New data value = 
Orig Val x 2"/max 

(a) Simplified flowchart for resolution reduction algorithm 
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Figure 9-4 Data compression via resolution reduction. 
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data compressed to 6 bits per value. Four point values are stored in three data 
bytes, where each byte contains the bits from two adjacent values. 

Another simple approach, often more acceptable than extreme resolu-
tion reduction, is sampling reduction. If the maximum frequency content of 
the digitized data is well below the Nyquist frequency, the effective sampling 
frequency can be reduced. For example, if an original set of data was filtered 
to limit its high end to 1 kHz, while being sampled at 10 kHz, the Nyquist 
frequency is 5 kHz. If every pair of adjacent values was averaged and stored, 
the effective sampling rate would be reduced to 5 kHz and a compression 
ratio of 2:1 would result. For this new set of data, the Nyquist frequency is 
also reduced by 2 to 2.5 kHz, still well above the maximum frequency content 
of the data. 

This sample compression technique still distorts the data, as does the 
bit compression previously described. Still, if the high-frequency data artifacts 
lost are mostly noise, there is little harm done. 

9.4.3 Delta Encoding 

Another popular technique for compressing strictly numerical data is delta 
encoding. This approach is especially useful when the data represents a 
continuous waveform with relatively low instantaneous slopes. In such a set 
of data, the difference between adjacent points is small and can be represented 
by far fewer bits than the data values themselves. Delta encoding consists of 
keeping the first value of the data set at its full bit resolution, as the starting 
point. All subsequent values are differences, or deltas, from the previous 
value, using fewer bits. This is a lossless technique. 

To illustrate this. Table 9-1 contains a data set of 11 original values, 
which require 12 bits each for full binary representation. The delta-encoded 
numbers start with the first, original 12-bit value. The next number is +20, 
the difference between the second and first values. The next delta-encoded 
number is +30, the difference between the third and second values. This 
continues until the delta between the last and next-to-last values is computed. 
Examining the delta-encoded numbers shows us that they all fit within the 
range of ±31 and can be represented by 6 bits (1 bit is for the sign). If we 
do use 6 bits for each delta value, the delta-encoded data set would require 
1 0 x 6 + 12 = 72 bits for storage (remember, the first value is at full 12-bit 
resolution), compared t o l l x l 2 = 1 3 2 bits for the original data set. The 
compression ratio here is 1.83:1. It will approach 2:1 as the size of the data 
set grows and the overhead of the first 12-bit value becomes negligible. 

The key to getting high compression ratios with delta encoding is to 
use as few bits as possible to represent the delta values. One common problem 
with most data sets is that a small number of bits can represent most of the 
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TABLE 9-1 
Example of Delta Encoding a Small Data Array 

1 ORIGINAL VALUES 

3125 

3145 

3175 

3185 

3193 

3201 

3192 

3183 

3170 

3152 

1 3130 

DELTA ENCODED VALUES 1 

3125 

+20 

+30 

+10 

+8 

+8 

-9 

-9 

-13 

-18 

-22 1 

delta values, while a few deltas require many more bits, because of occasion-
ally high local slopes or transient spikes. Instead of increasing the number 
of bits for delta representation to accommodate a very small number of 
anomalous values, an escape code can be used. Let us assume that our data 
set is still using a 6-bit delta representation (±31) and a delta value of +43 
comes along. We can designate one of the least-used delta values as the escape 
code; either +31 or -31 would be a good choice. This escape code would be 
followed by the full-resolution 12-bit value, which cannot be represented by 
a small delta value. After this number, delta values continue as before. So, if 
we had a data set with 128 12-bit numbers, using 6-bit delta encoding that 
handled all but three values, the total number of bits encoded would be: 

124 X 6 + 4 X 12 = 792 

for a compression ratio of 1.9:1. If the three anomalous values could be 
accommodated by 8-bit delta numbers and no escape codes were used, the 
total number of bits would be 

127 X 8 + 12 = 1028 

for a compression ratio of 1.5:1. Obviously, the judicious use of escape codes 
for infrequently large delta values will produce the best compression ratio. 
If the escape code is used too often, the compression ratio can decrease 
severely (it could even become less than 1:1 if a large fraction of values use 
the escape code). 
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With the appropriate data set, delta encoding can produce reasonable 
compression ratios with no data distortion. If it is combined with a statistical 
technique, such as Huffman encoding (described later), even higher compres-
sion ratios can be obtained, without any data distortion. One drawback to 
delta encoding, especially when used to transfer data via potentially error-
prone means (such as over a telephone line via modems), is that once an error 
occurs in the compressed data set, all values following it will be erroneous. 
As with any other set of compressed or encoded data, it is always a good 
idea to include error detection information with the data, such as a checksum 
or CRC. If the block of data is large enough (for example, several hundred 
bytes) the overhead from the few extra error detection bytes will have a 
negligible impact on the overall compression ratio, while increasing the 
integrity of the data tremendously. 

9.4.4 Huffman Encoding 

Many compression techniques are based on statistical relationships among 
items in a data set. One of the more popular statistical methods is Huffman 
encoding. This technique will only work well if a relatively small number of 
data set members (possible numerical values or characters) have a high 
probability of occurrence. If nearly all possible values (or characters) have 
equal probability of occurrence (a random distribution) this method will 
actually produce a compression ratio of less than 1:1. 

Basically, Huffman encoding employs a variable number of bits to 
represent all possible members of the data set. Data set members with a high 
probability of occurrence use the smallest number of bits (fewer than the 
unencoded number of bits) while those members with very low probabilities 
use larger number of bits (sometimes more than the unencoded number of 
bits). The bit values are chosen so that there is no confusion in decoding the 
encoded data. Huffman encoding produces no data distortion (it is a lossless 
technique). The restored data is identical to the original, uncompressed data. 
The amount of data compression produced by this technique varies with the 
statistical distribution of the data set used. 

ASCII data representing English text is commonly compressed using 
Huffman encoding, since the probability of occurrence of the various alpha-
numeric characters is well known. Certain vowels, such as e or a, or even the 
space character will occur very frequently while other characters, such as x 
or z, will occur very rarely. The common characters may need only 3 or 4 
bits to represent them in a Huffman code, while the uncommon ones may 
require more than 7 or 8 bits. A typical ASCII document may average around 
5 bits per character using Huffman encoding. If the original data was stored 
as 8-bit characters, this produces an average compression ratio of 1.6:1. 
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TABLE 9-2 
Data for Huffman Encoding Example 

DELTA VALUE 

+-
-1 

+2 
-2 

0 

+3 

-3 

-4 

-5 

+4 

+5 

+6 

+7 

-6 

1 -7 1 

PROBABILITY 

0.20 

0.20 

0.15 

0.15 

0.10 

0.05 

0.05 

0.02 

0.02 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

HUFFMAN CODE 

00 

01 

100 

110 

1010 

1110 

10110 

. 11110 

101110 

1011110 

1011111 

1111100 

1111101 

1111110 

1111111 

# OF BITS 1 
2 

2 

3 

3 

4 1 
4 - 1 
5 1 
5 1 

6 1 
7 1 
7 1 

7 1 
7 1 
7 1 

7 1 

Huffman encoding is often used with other techniques, such as delta 
encoding, to further increase a data set's compression ratio. To implement 
Huffman encoding, the statistical probability of occurrence of each possible 
data set member (numerical value or ASCII character, for example) must be 
known. Table 9-2 shows a simple example of a set of 4-bit delta encoded 
values, in the range ±7. Only a few delta values have very high probabilities. 
Just five of the possible 15 delta values account for 80% of the data set (±1 = 
20%, ±2 = 15%, 0 == 10%). In fact, a crude figure of merit can be calculated 
by taking this major subset of data values and dividing its total probability 
of occurrence (here, 80%) by the fraction of possible values it represents (in 
this case 5/15 = 0.33). For our example, this figure of merit is 0.80/0.33 = 
2.4, which is good enough to warrant using Huffman encoding. A figure of 
merit below 2.0 would not be very promising for Huffman encoding. 

Figure 9-5 shows a graphical method used to implement Huffman 
encoding. This approach is only manageable with small data sets, as in our 
example. The algorithm can readily be translated into a computer program 
for data sets with a large number of members (such as 7-bit ASCII characters). 

First, we start with the data set of 15 possible values, listed in order of 
probability of occurrence, from Table 9-2. The data values (deltas) are listed 
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Delta Value 
(Probability) 

-7 1 
(.01)1 

1 ~^ 1 
(01) 

1 "̂^ 1 
(01) 

1 '^^ 1 
(01) 

\/0 \ / ° 
1 (02) 1 1 (02) 1 

i \ y ^ 

[ T o ^ 

1 

1 "̂^ 1 
|(01)| 

1 '*'^ 1 
(01) 

i \ /o 

[ c ^ 

i \ / c 

1 "̂  1 
1 (02) 1 

/ 

l \ 

1 

1 "̂  1 
1 (02) 1 

1 ~̂  1 
(.05) 

/o / 

\ . /o 
JM^ 

1 +^ 1 
1 (05) 1 

1 ° 1 
(.10) 

\ ^ / o 
fciferj 1 

1 ~̂  1 
1 (-15) 1 

1 +^ 1 
(.15) 

1 "'' 1 
1 (.20) 1 

1 "̂ '' 
(.20) 

\/o 
1 (.40) 1 

1(100)1 

Figure 9-5 Exannple of graphical approach to determining Huffman codes. 

across the top of the figure along with their probabihties (in parentheses), 
which should all add up to 1.00. To start, we draw pairs of lines connecting 
the lowest probability values—in this case, the .01 values at the left side of 
the diagram. At the vertex of the two lines connecting these pairs, we write the 
sum of their probabilities (.02, in this case). We continue pairing off and 
summing probability values, until all the values are used and the overall sum 
at the bottom of the diagram is 1.00. 

Now, we arbitrarily assign a binary 1 to every line that points up to the 
left and a binary 0 to each line that points up to the right, differentiating the 
paths used to get from the 1.00 probability value up to the original delta 
value. Finally, each line connecting the 1.00 vertex to a delta value's starting 
point, at the top, represents a bit. We could have just as easily reversed the 
I's and O's. The code for each delta value is the concatenation of bit codes 
used to trace its path, starting at 1.00. 

So, the Huffman code for delta value +1 is 00, and the code for -1 is 
01, each only 2 bits long. The paths for delta values +2 and -2 use three lines 
(for 3 bits) and are, respectively, 100 and 110. All the other delta values are 
assigned their codes in the same way. Values 0 and +3 use 4 bits, -3 and -4 
use 5 bits, -5 uses 6 bits, and all the other values use 7 bits. As we see, the 
delta values with the highest probabilities use the smallest number of bits. 
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When the encoded data is restored, the codes with the smallest number 
of bits are tested first. If no match is found, the number of bits tested expands, 
until a valid code is located. If no valid code is determined after examining 
the maximum number of bits, an error is assumed. 

Using the Huffman codes in Table 9-2, let us see how the following 
encoded binary string would be decoded: 

111000101111001 

First, we look at the first 2 bits, 11, which are not a valid 2-bit code (only 
00 or 01 are valid). Looking next at the first 3 bits, 111, we do not see a valid 
3-bit code (only 100 and 110 are valid). When we check the first 4 bits, 1110, 
we find a valid code for -1-3. The remaining bits are now 

00101111001 

The first 2 bits here, 00, are a valid code for -hi. We are now left with 

101111001 

Here, there are no valid 2-, 3-, 4-, 5-, or 6-bit codes. The first code to match 
is the 7-bit code for -1-4, 1011110. The remaining 2 bits, 01, are the valid code 
for - 1 . So, the decoded delta values in this 15-bit binary string are -1-3, -i-1, 
-1-4, and - 1 . Of course, in a practical implementation, a program would use 
this search algorithm. 

We can calculate the average number of bits a delta entry fi-om Table 9-2 
would use when encoded this way, and hence, the compression ratio. We just 
sum the product of the probability times the number of bits in the Huffman 
code for each delta value: 

m= pQXnQ+ piX ni + '•' + PkX % 

where 

m = average number of encoded bits 
Pi = probability of occurrence for the ith data set value 
Hi = number of encoded bits for ith data set value 
k = number of values in the data set 

If n is the number of bits per value in the original data set, the com-
pression ratio is simply n/m. In our example, m = 3.19 bits and the compres-
sion ratio is 4/3.19 = 1.25:1, which is not very large. However, since the data 
was already delta encoded, the original compression ratio (say, 2:1) gets 
multiplied by the Huffman encoding compression ratio (1.25:1) to give a 
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larger overall compression ratio (2.5:1). Sometimes, this particular combina-
tion of compression techniques is referred to as delta Huffman encoding. 

If a data set contained many more members than this previous example 
while maintaining a large percentage of values represented by very few 
members (with a large figure of merit), the compression ratio provided by 
Huffman encoding would be much larger. As with delta encoding, it may be 
useful to implement an escape code for the rare value that will not fit within 
the set of encoded values. In our example, it would be a delta value greater 
than +7 or less than -7. By its very nature, the escape code would be a very 
low probability code, with a relatively large number of bits. 

9.4.5 Run Length Encoding 

One data compression technique that is extremely useful with data sets con-
taining large amounts of redundant information is run length encoding (RLE). 
This approach is commonly used on graphics and video data at fairly high 
compression ratios without producing any data loss or distortion. 

In essence, RLE replaces a contiguous set of identical data values with 
a single count value. In video or graphics data, an image may contain large 
monochrome areas (such as white space) that are pixels having the same color 
and intensity value. Replacing a string (or run) of these identical pixels with 
a count code significantly reduces the amount of data without losing any 
information. 

For example, a basic VGA display has an array of 640 x 480 pixels. 
Typically, 3 bytes (24 bits) are used to represent each pixel. So, the repre-
sentation of an entire screen requires 921,600 bytes of storage. 

Let us assume that in a typical VGA graphics image about 75% of the 
screen data are in monochrome sections (black, white, or a constant color). 
Also assume that on average, these monochrome areas occur as runs that are 
100 pixels long in each VGA line (remember, this is a bit-mapped display, 
arranged as a raster scan). 

We will use a unique 3-byte escape code to represent an RLE entry 
(instead of a pixel value), along with a 3-byte count value. To represent the 
encoded run, we need 9 bytes: 3-byte RLE code + 3-byte pixel value + 3-byte 
count value. So, our algorithm would only replace a constant-value pixel run 
with an RLE code if it is more than three pixels long. 

In our example, 75% of the original 921,600 bytes (or 307,300 pixels) 
are monochrome in runs that average 100 pixels. So, the total number of these 
runs would be 

0.75x307,200 pixels ^ 
100 pixels/run 
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Since each run needs only 9 bytes to represent it, 75% of the data is com-
pressed to 9 X 2304 = 20,736 bytes. The remaining 25% of the data (uncom-
pressed) is 0.25 X 921,600 = 203,400 bytes. So, the total compressed data 
size is 203,400 + 20,736 = 251,136 bytes. This gives us an overall compres-
sion ratio of 3.67:1. 

Of course, even in the nonmonochrome regions of a typical graphics 
display there will be some redundant information. In such a case, it is not 
unusual to achieve compression ratios of greater than 10:1 with RLE. 

Since RLE is a lossless compression method, it can also be applied to 
typical data acquisition data sets if they contain large amounts of redundant 
information. For example, if a data set has many idle values (such as 0) in 
between events, they can be represented by an RLE code. RLE is often used 
by many general-purpose data compression software products. 

9.4.6 Significant Point Extraction 

Some compression techniques are used exclusively on data points that con-
stitute a waveform. Significant point extraction is a generalized technique that 
reduces the number of points required to describe a waveform. This approach 
causes varying degrees of data distortion, but can provide large compression 
ratios (in the range of 5:1 to 10:1, for example). 

Significant point extraction operates on a digitized waveform, consisting 
of either a one-dimensional array of amplitude (y) values acquired at known, 
constant time intervals or a two-dimensional array of (x, y) coordinates. The 
one-dimensional array is the most common form of storage for values saved 
by a data acquisition system. The data is analyzed point-by-point to see where 
a group of adjacent points can be replaced by a straight line. The discarded 
point values can be estimated by interpolating from this line. Only the sig-
nificant points required to produce a close approximation of the original 
waveform are retained. 

Figure 9-6a illustrates a typical digitized waveform with significant 
points indicated by x characters. If the original waveform was composed of 
100 points, extracting only 10 significant points produces a 10:1 point com-
pression ratio (the actual byte compression ratio will be smaller). The signif-
icant points include the waveform boundary points (start and stop) as well 
as places where the slope and/or amplitude change dramatically. Figure 9-6b 
shows the waveform reconstructed from the significant points. Note that some 
of the finer details are lost, while the gross waveform structures remain. The 
acceptability of this distortion depends on the application of the waveform 
data. Often, the distortion is determined quantitatively, such as by the root 
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(a) Original waveform with significant points noted by x 

(b) Waveform reconstructed from 10 significant points 

Figure 9-6 Example of significant point extraction and reconstruction. 

mean square (RMS) deviation of the reconstructed data points from the 
original data points: 

2 2 2 1/2 

d = {[(«! - mi) + (̂ 2 - nil) + •" + {Uj - rrij) ]//} 
where 

d = RMS distortion 
Hi = value of ith original point 
rrii = value of ith restored point 
j = number of points in v^aveform 

One method of determining the significance of a point in a waveform 
is to calculate its local curvature. This is a measure of how much a waveform 
deviates from a straight line in the vicinity of a point. To illustrate, Figure 9-7a 
contains a simple waveform with one peak, composed of 23 points. To 
calculate local curvature, we pick a window size—in this case ±3 points— 
to consider the curvature around each point. If this window is too small, the 
calculation is not very significant. If the window is too large, local details 
tend to be averaged and lost ("washed out"). If the window is 2n points wide, 
we first start looking n points from the end of the waveform, in this case from 
the left side. 

Since this is a one-dimensional array, the x-direction increment is con-
stant for each point and we only need to look at data in the y direction 
(amplitude). For each point, number /, we do two scans from left to right. 
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X = significant point 

Point # 0 
(LC Value) 

1 2 3 4 5 6 7 8 9 10 1112 13 14 1516 17 18 19 20 2122 
0 1 2 3 2 1 2 4 6 4 2 1 2 3 2 1 0 

(a) Measuring local curvature (LC) with +/-3 point window 

(b) Reconstructed waveform from 5 significant points 

Figure 9-7 Using local curvature maxima to determine significant points. 

The first scan starts at point i - n and ends at point / and the second starts at 
point / and ends at point / + n. This means that we cannot scan the first or 
last n points in the waveform completely. For the first scan, we have two 
counters: dy-\- and dy-. Starting with the leftmost point in the scan window, 
if the next point is more positive than the previous point we increment dy+', 
if it is more negative, we increment dy- (if it is unchanged, we leave the 
counters alone). We continue with the next pair of points until we get to the 
end of our scan (point /). The second scan starting at point i is similar, except 
now if the new (rightmost) point is more positive than the previous point we 
decrement counter dy-\r and if it is more negative we decrement dy- (if it is 
unchanged we leave the counters alone). After completing the ±n points scan, 
the local curvature (Ic) is the sum of the absolute values of these two counters: 

Ic = \dy+\ + \dy-\ 

In Figure 9-7a, we cannot calculate the local curvature for points 0-2 
and 20-22. Starting at point 3, after the first scan (from point 0 to point 3), 
dy+ = 0 and dy- = 0. After the second scan (from point 3 to point 6), dy+ = 
0 and dy- = 0. So, for point 3, the local curvature is 0, or lc(3) = 0. For point 
4, from the first scan dy-h = dy- = 0, while from the second scan dy+ = 1 
(since point 7 is greater than point 6) and dy- = 0. So, lc(4) = 1. These 
calculations of Ic continue for the rest of the waveform, up to point 19. We 
notice at the peak, lc(ll) = 6. 
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Once the Ic values are calculated, we can pick the significant points as 
the locations of the local curvature maxima. In this example, these are points 
6 (Ic = 3), 11 (Ic = 6), and 16 (Ic = 3). We also keep the first and last points (0 
and 22) of the waveform as significant, since they are the boundaries. There-
fore, we have reduced a 23-point waveform to five points, for a point com-
pression ratio of 4.6:1. Figure 9-7b shows the waveform reconstructed from 
these five significant points. 

There are many variants on using this local curvature technique to 
extract significant points. A minimum threshold could be selected that max-
imum Ic values must reach before the corresponding point is considered 
significant. Another approach is to use amplitude weighting in the Ic calcu-
lations. The dy-\- and dy- counters, previously described, produce an unweighted 
measure of local curvature, where a large amplitude change counts as much as 
a small change in the same direction. They could be weighted by the relative 
amount of amplitude change, not just direction. When dy+ and dy- would 
ordinarily be incremented or decremented by 1, they now increase or decrease 
by the amount of amplitude change between two adjacent points. This would 
help distinguish meaningful signal peaks from noise. 

9.4.7 Predictive and Interpolative Techniques 

Significant point extraction is a particular data compression method, related 
to the generalized techniques based on predictors and interpolators. These 
are algorithms that operate on waveforms or other data streams and produce 
compression by reducing the amount of redundancy present in that data. As 
long as the data set is not random, there is some correlation between adjacent 
data values that can be exploited. Predictive encoding techniques use the 
information contained in previous data samples to extrapolate (or predict) the 
value of the next data sample. This approach is used extensively in data 
communications systems for compressing data streams "on the fly," just prior 
to transmission (often using dedicated hardware). This extrapolation is done 
by fitting a function (or polynomial) to the existing data. Usually, only a zero-
order (constant) or first-order (linear) function is used, since high-order func-
tions tend to be very sensitive to noise and can become unstable. 

The simplest extrapolation method is the zero-order predictor with a 
fixed aperture. In Figure 9-8a, a sample waveform is shown with its discrete 
points. Starting with the first data point, a vertical aperture (or window) of 
fixed amplitude, 2d, is drawn around the first point. Additional 2d windows 
are extended over the full amplitude of the waveform. The first point is always 
saved, and saved points are denoted by the x character. If the next point's 
amplitude fits within the same 2d window, it is discarded; otherwise it is saved. 
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window 

X = Saved Point 
o = Discarded Point 

window 16 

0 5 10 15 

Sampling Intervals 

(a) Original waveform with sampled points (o or x) and ZOP windows 

0 5 10 
Sampling Intervals 

(b) Reconstructed waveform from saved points 

15 

Figure 9-8 Zero-order predictor (ZOP) used for waveform data compression. 

After determining a new point to save, subsequent points that fit within the 
new 2d window are discarded. Of course, the x coordinate (usually time) of 
the saved points must also be kept. 

Figure 9-8b shows the reconstructed waveform, using only the saved 
points from Figure 9-8a. Notice how using a zero-order predictor tends to 
"flatten out" small amplitude changes. Obviously, there is a moderate amount 
of data distortion using this technique. However, it is useful for filtering out 
low-amplitude noise. 

Data compression can be improved using a zero-order predictor with a 
floating aperture. Instead of the window locations being fixed by the value 
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of the first data point, each new 2d aperture is centered on the last point saved. 
In this case, if a new point is close in amplitude to the last saved point it will 
always be discarded. With a fixed aperture, if this new point happened to be 
just over the next aperture boundary, it would be unnecessarily saved. 

An approach more flexible than the zero-order predictor is the first-
order predictor or the linear predictor. This is a very popular method used 
for many applications, such as compressing digitized human voice data. For 
this use, some data distortion is acceptable, since the final receiver (a human 
being) can still understand moderately garbled data. 

Using a linear predictor is very similar to implementing a zero-order 
predictor, except now new data points are predicted by extrapolation from a 
line connecting the previous two points. Figure 9-9a shows the same sample 
waveform as in Figure 9-8a. The points saved by the algorithm are again 
marked with the character x. The first two points are always saved, to generate 
the first line. The following two points fit on the line, within the error window 
of 2d. They can be discarded, since a reconstruction algorithm can extrapolate 

lineO 

X = Saved Point 
o = Discarded Point 

I I I I I I I I I I I I I I I I I I I I 
0 5 10 15 

Sampling Intervals 

(a) Original waveform with sampled points (o or x) using linear predictors 

I I I I I I I I I I I I I I I I I I I I 
0 5 10 15 

Sampling Intervals 

(b) Reconstructed waveform from saved points 

Figure 9-9 First-order (linear) predictors used for waveform data compression. 
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them from that Une. The next point does not fit within the fine and must be 
saved. A new Une is drawn between this newly saved point and the previous, 
extrapolated point. The next point does not fit on this line and is saved, 
generating another line the following point does fit. This process continues, 
discarding points that fit (within ±d) existing extrapolation lines and saving 
those that do not, while drawing new lines. 

When the resulting saved points reconstruct the waveform in Figure 9-9b, 
we see that more of the fine details and curvature of the original waveform 
are maintained by the linear predictor, compared to the zero-order predictor. 
The compression ratios from both techniques are also comparable. 

When data does not have to be compressed in real time, if it has been 
previously acquired and stored, interpolator techniques can be used. These 
are very similar to the predictor methods, except that now interpolation is 
used instead of extrapolation. 

For example, using a linear interpolator is very similar to using a linear 
predictor. Using the waveform in Figure 9-10 as an example, the first point 
is always saved. The second point is skipped, and an imaginary line is drawn 

Saved Point 
Discarded Point 

I I I I I I I I I I I I I I I I I I I I 
0 5 10 15 

Sannpling Intervals 

(a) Original waveform with sannpled points (o or x) using linear interpolators 

I I I I I I I I I I I I I I I I I I I I 
0 5 10 15 

Sampling Intervals 
(b) Reconstructed waveform from saved points 

Figure 9-10 First-order (linear) interpolators used for waveform data compression. 
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from the first to the third point. If the second point falls on this line within 
a 2d window, it is discarded. A new line is tested between the first and fourth 
points. If both the second and third points fall on this line (within the 
tolerance window of 2d), they are both discarded. This process continues 
until a line is drawn that does not fit all the intermediate points. The last 
point that ended an acceptable test line (the fourth point, ending the first 
line in this example) is saved. For data reconstruction, the intermediate, 
discarded points are interpolated between the two saved end points. Now, 
the process starts again with the end point of the last line serving as the start 
point for a new line. When this process is complete, at the last point in the 
waveform, the saved points represent the end points of interpolation lines 
used for reconstructing the data. 

Sometimes, no intermediate points can be discarded and adjacent points 
are saved, especially at the peak of a curve. Since this approach requires the 
entire waveform to be present before processing can occur, it is not suitable 
for real-time compression. It is very useful for postacquisition or postpro-
cessing applications. As with a linear predictor, a linear interpolator does 
produce data distortion. This can be balanced against the compression ratio 
by adjusting the window size. A larger window will produce higher distortion 
along with a higher compression ratio. Typically, an interpolator will produce 
a higher compression ratio than an equivalent predictor, with slightly less 
distortion. 

Since all predictors and interpolators produce an output array of (x, y) 
points, they are often combined with other techniques, such as delta modu-
lation and Huffman encoding, to reduce the total number of bits required to 
store the compressed waveform. The true measure of the compression ratio 
for the overall process is its bit compression ratio (as opposed to the point 
compression ratio, produced by the predictor or interpolator alone): 

Bit compression ratio = bjbc 

where 

bo = number of bits in original waveform 
be = number of bits in compressed data 

Quite often, the optimum compression technique for a particular class 
of data must be determined strictly by trial and error. The data compression 
information in this chapter is hardly exhaustive. Certain nonlinear curve fitting 
techniques, such as splines, are commonly used. Fields that use extremely 
large data sets, such as imaging, have numerous, dedicated compression 
techniques producing very large compression ratios. 
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9.5 Commercial Data Compression Software 

Many commercial data compression products are available for use on PCs. 
Some are hardware-based, for increasing hard disk storage without utilizing 
CPU overhead. Other products are strictly software-based, often used for 
producing hard disk file backups (as on tape systems). Since the nature of 
the data stored on a PC's files can vary tremendously, intelligent systems can 
determine the compression algorithm to use based on the data itself. 

Most commercial data compression programs use lossless techniques, 
especially when they operate on general-purpose PC files. Several third-party 
applications, such as Stacker, were used to compress MS-DOS files, saving 
disk space. Microsoft introduced its own disk compression product, DriveSpace, 
as part of MS-DOS 6.22. 

DriveSpace creates a virtual disk drive that contains compressed files. 
This virtual drive appears as a normal disk drive to the operating system. 
However, additional layers of software compress and restore file data during 
access (which does slow up I/O processes). Windows 95 uses DriveSpace 2 
as its standard disk compression software while Windows 98 contains 
DriveSpace 3. Each newer version of DriveSpace can create a larger virtual 
drive, along with other enhancements. 

Two popular programs that compress individual files or groups of files 
are PKZIP (for DOS or Windows) and WINZIP (for Windows only). They 
apply lossless compression algorithms to minimize file size for storage or 
transmission (such as via modem). 

Exceptions to lossless compression of PC files are techniques applied 
to multimedia files. There are several popular compression standards used on 
audio and video files. For example, digital photographs are often stored as 
JPEG files, which allow for high compression ratios at the expense of reduced 
picture resolution (the compression-distortion trade-off is selected when a 
file is stored as JPEG). Audio files can be compressed using MPEG algorithms 
that remove inaudible information to produce high compression ratios. 

This concludes our look at PC file storage and data compression. In the 
next chapter we will examine some common processing and analysis tech-
niques applied to acquired data, along with considerations of numerical rep-
resentation and precision. 



C H A P T E R 

Data Processing 
and Analysis 

The power and flexibility in using a PC as a data acquisition platform is 
shown most clearly by how data can be manipulated once it is acquired. In 
this chapter we will explore some of the data analysis and processing tech-
niques conmionly used with data acquisition systems. Since most data col-
lected by data acquisition systems is numeric, it is important to know how 
numbers are represented and manipulated on a computer. We will start by 
looking at numerical representation and storage in a PC. 

10.1 Numerical Representation 

As we previously touched on while discussing ADCs and DACs, there are 
many possible ways to represent conventional decimal numbers in a binary 
format. The simplest of these are integer representations. For nonintegral 
numbers, various fractional formats can be used, though for maximum flex-
ibility and dynamic range, floating-point representations are preferable. 

10.1.1 Integer Formats 

The fastest and most efficient way to manipulate data on a PC is to store it 
in an integer format. An integer can either be signed (representing both 
positive and negative numbers) or unsigned (positive numbers, only). The 
maximum dynamic range of the values that can be represented is determined 
by the number of bits used. Therefore, n bits can represent 2" numbers with 
a dynamic range (in dB) of 20 logio(2"). If n = 8, then 256 different integers 
can be represented: positive integers in the range 0 to 255, or signed integers 

222 
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TABLE 10-1 
Integer Formats 

1 INTEGER TYPE 

1 Byte 

1 Word 

Long Word 

1 Double Word 

# OF BITS 

8 

16 

32 

64 

SIGNED VALUES 

-128 to+127 

-32,768 to +32,767 

-2 .14x10^ to+2.14x10^ 

-9.22x10^^ to+9.22x10^^ 

UNSIGNED VALUES 1 

0 to 255 1 

0 to 65,535 1 

0 to 4.29x10^ 1 

0 to 1.84x10^^ 1 

in the range -128 to +127. This corresponds to a dynamic range of 48 dB. 
If n = 16 bits, 65,536 values can be represented, for a dynamic range of 96 dB. 

The standard integer formats commonly used on a PC are byte (8 bits), 
word (16 bits), long word (32 bits), and double word (64 bits), as shown in 
Table 10-1. On an Intel 80x86/Pentium family PC, data is addressed on a 
byte-by-byte basis. The starting memory address for a word (or long word) is 
the first of the 2 (or 4) bytes comprising that word. The first (addressed) 
memory location contains the least significant byte (LSB), while the last 
location contains the most significant byte (MSB), as illustrated in Figure 10-1. 

This byte ordering is processor-dependent. On a computer based on a 
Motorola 68000 series CPU, such as an older Apple Macintosh, a different 
storage arrangement is used. All words must start at an even address with the 
MSB at the starting (even) address and the LSB at the higher (odd) address. 
For a long word, the high-order 16 bits are stored at the starting (lower) 
address and the low-order 16-bits at the higher address (start +2). 

Long Word MSB (3) 

Long Word (2) 

Long Word (1) 

Long Word LSB (0) 

Word MSB (1) 

Word LSB (0) 

Byte 

Address + 6 

Address + 5 

Address + 4 

Address + 3 

Address + 2 

Address + 1 

Starting Address 

Figure 10-1 Multibyte integer storage in Intel-based PC memory. 
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Most of the time, the method used by a CPU to store and access data 
in memory is transparent to the user and even the programmer. It only 
becomes an issue when one data storage element, such as a word, is also 
accessed as a different element, such as a byte. Because of the strong likeh-
hood of error in doing this, it is not a recommended approach. For a program 
written in C (see Chapter 13), if you explicitly use a casting technique, you 
can safely convert one element size to another. 

The nature of data storage depends only on how many bytes are needed 
to represent a particular data storage element. An unsigned integer is usually 
represented as a natural binary number, such as 25 = 11001. If an element is a 
signed integer, there are several ways to encode or represent it. The most popular 
approach is to use twos-complement representation, as shown in Table 10-2. 
In twos-complement notation, the most significant bit is a sign bit. If it is 0, 
the number is a positive integer, with the same value as its unsigned binary 
counterpart. If the sign bit is 1, the number is negative. 

TABLE 10-2 
Four-Bit Signed Integers 

1 DECIMAL 
1 VALUE 

1 +^ 
1 +^ 
1 +^ 
1 '^^ 
1 +^ 
1 ^̂  
1 +̂  
1 ^ 1 ""• 
1 "2 
1 "̂  
1 "̂  

-5 

1 "̂  1 
1 ""̂  1 
1 -8 1 

TWOS-COMPLEMENT 1 
BINARY CODE 

0111 1 
0110 

0101 1 
0100 1 
0011 1 
0010 1 
0001 1 
0000 

1111 1 
1110 1 
1101 1 
1100 1 
1011 1 
1010 1 
1001 1 
1000 1 
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The twos-complement value is calculated by first writing the binary 
value of the corresponding positive number, then inverting all the bits, and 
finally adding 1 to the result. To get the 4-bit twos-complement representation 
of-4, we start with the unsigned binary value for +4 = 0100. When we invert 
all the bits, we get 1011. Adding 0001 to this number produces the final value 
of 1100 = -4 . Using twos-complement representation for negative integers 
is widely accepted because if you add corresponding positive and negative 
numbers together, using this system, you will get a result of zero when 
truncated to the original number of bits. So, adding - 4 to -1-4, we get 

1100 
+ 0100 

= 0000 

The use of twos-complement representation produces the n-hit signed integer 
range of -2 "̂"̂ ^ to +2̂ ""̂ ^ -1 (i.e., forn = 4 this range is -8 to +7). 

Other encoding techniques are used to represent decimal integers in a 
binary format, besides natural binary and twos-complement. One of the more 
common alternatives is binary coded decimal (BCD). This code uses 4 bits 
to represent a decimal digit, in the range 0 to 9. It uses natural unsigned 
binary representation (0000 to 1001). The six codes above 9 (1010 to 1111 
or Ah to Fh) are unused. To represent a decimal value, a separate BCD code 
is used for each decimal digit. For example, to represent the value 437: 

437 = 0100 0011 0111 

(4) (3) (7) 

If only one BCD digit is stored in a byte (upper 4 bits are set to 0), it is called 
unpacked BCD storage. If two BCD digits are stored in a byte it is called 
packed BCD storage. Even using packed storage, BCD numbers require more 
storage than natural binary or twos-complement values. As an illustration of 
unsigned integers, four BCD digits (16 bits) can represent the values 0 to 
9999 while a natural binary word (16 bits) can represent values 0 to 65,535. 
Alternatively, we only need 16 bits to represent 50,000 with an unsigned 
natural binary word, whereas we need 20 bits (five digits) to do the same 
with BCD. BCD is popular with systems processing large amounts of impor-
tant numerical data, such as those used by financial institutions. 

An even less efficient means of numerical representation is using an 
ASCII character to represent each decimal digit. In this case, 7 (or 8) bits are 
needed to represent 0 to 9 (as well as sign and decimal point, for nonintegers). 
This is about twice as inefficient as BCD representation. ASCII numerical 
representation is usually used strictly to store data in a format that is easy to 
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read, print, and export to other applications (such as spreadsheets). It is usually 
converted into a format more convenient to use before numerical processing 
proceeds. 

10.1.2 Noninteger Formats 

Quite often, when using a computer to process acquired data, integer precision 
is not adequate, because of round-off errors, dynamic range limitations, or 
poor modeling of the measured phenomena. Several numerical formats are 
used to overcome this problem. 

The simplest way to depict fractional values is with fixed-point repre-
sentation, which is basically an extension of binary integer representation. 
For integer representation, using n bits, the binary number fe„fe„_i...&ifoo is 
evaluated by adding the weighted value of each nonzero bit as follows: 

Z7„x2" + Z7„_iX2""^-H---+Z?iX2' + fcoX2^ 

where bj is the iih bit (0 or 1). For binary fixed-point representation, both 
positive and negative exponents are used and a binary point appears after the 
2 digit. For example, if we had an 8-bit number with a 3-bit fraction, it would 
be written as 

b4)2,b2bxbQ ' b_yb_2b-3 

The weights for the bits following b^, b_i, b_2, and fc_3 are 2~ , 2~ , and 2~ , 
respectively. The resolution of this representation is 0.125 (2~ ), while its 
range of values for unsigned numbers is 0 to 31.875, which is still the same 
number of values as an 8-bit unsigned integer (31.875/0.125 = 255). 

When more bits are added to unsigned integers, the resolution stays the 
same (1) while the range of values increases. When the number of bits after 
the binary point in a fixed point, fractional representation increases, the 
resolution increases, while the range of values stays the same. This trade-off 
between range of values and resolution is inherent in these representations. 

If we needed to increase both the dynamic range and resolution of our 
numerical representation, we could keep increasing the number of bits per 
number. The problem here is that most CPUs can perform math on only a 
fixed number of bits at a time. For 16-bit processors (as used in earlier PCs), 
if more than 2 bytes represent a number, additional instructions must be 
performed when executing a math function, splitting the function into multiple 
16-bit operations. If we are using 32-bit integers and need to add them, we 
have to first add the lower 16-bit words, then add the upper 16-bit words with 
any carry from the previous addition. The software overhead and processing 
time increase quickly as we increase the size of numerical elements. 
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1 bit 8 bits 23 bits 
I Sign I Exponent | Mantissa ~] 

(MSB)D31 D30 D23 D22 DO (LSB) 

(a) Single precision (32 bits) 

1 bit 11 bits 52 bits 
I Sign I Exponent | Mantissa | 

(MSB) D63 D62 D52 D51 DO (LSB) 

(b) Double precision (64 bits) 

Figure 10-2 IEEE floating-point formats. 

The standard solution to this dilemma is to use a floating-point format, 
consisting of a fractional part (the mantissa) and an exponent. The number 
of bits used to represent the exponent determines the floating-point number's 
range of values, and the number of bits used for the mantissa determines its 
resolution. The mantissa is a signed, binary fraction that is multiplied by 2̂ ^̂  
to produce the represented value. The exponent is a signed integer. 

Certain standard formats are used to represent floating-point numbers. 
Among the most popular, the IEEE 754 Floating-Point Standard is also 
commonly used with PCs. This standard defines two formats: single-
precision, using 32 bits, and double-precision, using 64 bits, as shown in 
Figure 10-2. 

In both formats the sign bit (most significant bit) is for the mantissa, 
which is in a normalized form (with a value between 1.0 and 2.0). In frac-
tional binary, this would be 1.000...0 through 1.111... 1 (using a fixed 
binary point). Since the most significant mantissa bit (before the binary 
point) is always 1, it is implied and not stored with the number. So, a single-
precision mantissa of 1.01101111000010101010011 would be stored as 
01101111000010101010011. 

The exponent is stored in a biased form, with a fixed value, or bias, 
added to it. For single-precision numbers, this bias is -1-127, and for double-
precision numbers it is -1-1023. This biased exponent is useful for determining 
which of two exponents is larger, by comparing them bit by bit, starting with 
the leftmost bit. For example, consider two single-precision numbers with 
exponents of -1-15 and -5 , represented as signed integers: 

-hl5 = 00001111 -5 = 11111011 

and represented as biased integers (-1-127): 

+15 -h 127 = 10001110 -5 -h 127 = 01111010 
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1 bit 
1 Sign 1 

(MSB) D79 D78 

15 bits 
Exponent | 

D64 D63 

64 bits 
Mantissa 1 

DO (LSB) 

Figure 10-3 Intel 8087 80-bit temporary floating-point format. 

So, just looking at the leftmost bit indicates that -1-15 is the larger exponent. 
The valid exponent range for single-precision is -126 to -1-127, and for 

double-precision it is -1022 to -1-1023. When represented as a biased exponent, 
a value consisting of either all O's or all I's indicates an invalid number. This 
way numerical overflow/underflow errors can be indicated. 

A special, non-IEEE format is used on Intel-family PCs with 80x87-
style math coprocessors, the temporary format, shown in Figure 10-3. This 
is an 80-bit format, incorporating a 64-bit mantissa with a 15-bit exponent. 
It is very useful for highly repetitive mathematical operations where round-
off errors can reduce precision, as well as calculations involving very large 
or very small numbers. 

The temporary format uses an exponent bias of -1-16,383. It differs in 
spirit from the single- and double-precision formats by explicitly keeping the 
leftmost 1 in the normalized mantissa value. Since the math operations using 
this 80-bit temporary format are performed in hardware, the large number 
size does not cause severe processing speed penalties. 

Table 10-3 lists decimal precision (number of significant digits) and 
range for some of the integer and floating-point numerical formats we have 

TABLE 10-3 
Range and Precision of Various Numerical Formats 

• N U M B E R 
1 TYPE 

1 Integer 

1 Floating 
Point 

FORMAT 

Byte 

Word 

Long Word 

Double Word 

Single Precision 

Double Precision 

Temporary 

TOTAL 
# 0 F 
BITS 

8 

16 

32 

64 

32 

64 

80 

EXPONENT/ 
MANTISSA 
# OF BITS 

— 

— 

— 

— 

8/23 

11/52 

15/64 

DECIMAL 
DIGITS OF 
PRECISION 

>2 

>4 

>9 

>18 

>7 

>15 

>19 

DECIMAL 
RANGE 

>±10^ 1 
>±10' 

>±10^ 1 
>±10^« 

>±io^^ 1 
>±10^°^ 

>±10"̂ ^̂  1 
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discussed here. Note that for an equivalent number of bits (such as 32 or 64), 
floating-point formats have slightly lower precision along with much higher 
dynamic range than the corresponding integer formats. This is simply due to 
diverting some of the bits used for precision in an integer to the exponent of 
a floating-point value, increasing its range. 

10.2 Data Analysis Techniques 

A wide variety of processing techniques are commonly applied to the data 
produced by data acquisition systems. These can range from simply plotting 
the data on a graph to applying sophisticated digital signal processing (DSP) 
algorithms. A large number of commercial software packages, such as those 
discussed in the next chapter, have many of these capabilities built in. This 
enables the user to concentrate on the data analysis without getting bogged 
down in the details of programming a PC. We will begin our survey of data 
processing by looking at statistical analyses. 

10.2.1 Statistical Analysis Techniques 

The most common analysis applied to acquired data is some statistical cal-
culation. Statistical parameters describe the distribution of values within a 
data set. They indicate where data values are most likely to be found as well 
as the probable variability between them. 

The most important statistical measurement for a data set is the mean, 
which is simply the average of a set of values. If we have a set Yofn values, 
yi^ J2. • • •. yn^ the mean of Y is just 

ym = (yi+y2+'" + yn)/n 

The values of the data set must have some relationship to each other for the 
mean to have significance. For example, the set may consist of n measure-
ments of the same quantity, repeated over time. 

The conventional mean is used to analyze an existing data set. A special 
variation on the mean is the running average, sometimes referred to as the 
circular average or sliding average. The running average is useful for real-
time control applications, when the current average value is needed. For 
instance, an intelligent heater controller needs to know the current temperature 
of a system to apply the appropriate amount of heater power. If the temper-
ature varies significantly from reading to reading, an average of the last n 
readings would be useful to smooth out this temperature noise. The running 
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average is just the mean of the last n values. If the current reading is 7̂  and 
the running average is n points wide, its value at point / is 

At the next point, / + 1, the running average is 

Tmi^i = (Ti^i + Ti + -" + Ti_^+2)ln 

The running average is updated with each new value acquired. It acts as a 
low-pass filter on the incoming data. Only relatively slow artifacts with large 
amplitude changes will be reflected in the running average. When this tech-
nique is applied to an existing, acquired waveform, the n-point averaging 
window is usually symmetric around the selected point. 

Another statistical measurement is the median. It is selected so that half 
of the data set values are higher than the median and the other half are lower. 
The median is often close in value to the mean, but it does not have to be. 

An important measure of variation within a set of data is the standard 
deviation. If we have a data set {y^, >'2,..., J„) of n values with a mean of j ^ , 
the standard deviation cris 

o = [[(yi - ymf + (j2 - ymf + ••• + (>'«- ymfyn]^'^ 
This is a measure of the differences between the data set values and the 
average value. The smaller the standard deviation, the "tighter" the distribution 
of data values is. In the case where all values in a data set are identical, the 
standard deviation would be zero. 

When a data set fits a normal Gaussian distribution (a "bell" curve), 
approximately 68% of the values will be found within one standard deviation 
of the mean value. As an illustration, assume a manufacturer is interested in 
analyzing the length of a production part. Length measurements are taken on a 
sample of parts that fit a Gaussian distribution, having as its peak the mean 
value. Here, the standard deviation is a measure of the length variations from 
part to part. From these measurements, the manufacturer can predict the 
percentage of a production run that will fall within an acceptable tolerance. 
If this percentage is too small, it indicates a need to control the production 
process better. 

10.2.2 Curve Fitting 

The mean and standard deviation are mostly used on sets of values that should 
be describing the same or similar measurements. When the acquired data is 
a waveform, described as two-dimensional (x, y) points, a common requirement 
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is comparing it to a theoretical model, or finding a model that fits the data. 
This data can be a one-dimensional array where time is the independent (x) 
variable. The theoretical model describes a waveform that should be similar 
to our acquired data. Finding a mathematical model that fits the measured 
data is referred to as curve fitting. 

Very often, a polynomial is used to describe a theoretical curve. The 
general form of a polynomial of order n is 

F(x) = 0̂ + aiX + a2X -\ \- a^x^ 

The coefficients are the constants a^ which are adjusted during the curve 
fitting process. To determine the coefficient values for the best curve fit, the 
sum of the error terms for each ofj data points in the curve is calculated as 

[F(x,) - y,f + [F(X2) - y2f + • • • + [F(xj) - yjf 

where ji , y2, -" , yj are the measured values. When this function is minimized, 
the coefficients for F(x) describe the best curve fit to the data set. This is 
referred to as the least squares fit. Using least squares to test how well a 
function fits a data set is not limited to polynomials. Exponential and trigo-
nometric functions are also commonly employed for curve fitting and still 
use a least squares fit measurement. The iterative type of calculations used 
to find the least squares fit is well suited to digital computer calculations. 

The simplest curve fitting is a first-order (n=l) or linear fit, sometimes 
referred to as a linear regression. Analytically, the coefficients UQ and «i are 
determined. Graphically, a straight line is drawn through the data points. The 
resulting line is described by the standard formula 

y == mx + b 

where m = the slope and b = the y-intercept. This means that the general 
coefficients ao = b and aj = m. 

Given a set of (jc, y) data points, the coefficients for a linear regression 
can be determined analytically. The coefficients a^ and ai are calculated from 
summations over all n points in the data set: 

[ay)xax^)-ax)xaxy)] 
[nxa/)-(ixf] 

[nx(lx};)-(lx)x(l};)] 

[nxax^)-axf] 
For higher-order polynomial fits, analytic approaches are impractical. An 
iterative process of successive approximations is typically used. 
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Y = 0.55X + 1.9. 

Figure 10-4 Example of linear curve fitting. 

Figure 10-4 is a simple example of a linear curve fit. There are four 
(jc, y) values: (1,2), (3,4), (5,5), and (8,6). Calculating the coefficients from 
the above equations, we find the least squares fit line to these points is y = 
0.55JC+ 1.9. 

Notice the similarity between linear curve fitting and linear predictors 
or interpolators, discussed in Chapter 9. In both cases, a straight fine is found 
that best fits the data. Furthermore, minimizing the distortion produced by 
data compression is often a least squares process. 

Curve fitting is a broad, complex field. This brief discussion should 
serve to give you a feel for implementing curve fitting on a PC-based data 
acquisition system. An advantage of using these systems (with appropriate 
software) is the ability to see the data graphically, along with getting the 
numerical processing power of a PC. When it comes to processing waveforms, 
seeing the data displayed as a graph is invaluable. 

10.2.3 Waveform Processing 

A large portion of the information gathered by data acquisition systems is in 
the form of waveforms (commonly, a function varying with time). These 
waveforms are easily displayed graphically, using many of the software pack-
ages described in Chapter 11. Very often, this acquired data is operated on as 
a single entity: a vector (one dimension) or an array (two or more dimensions). 
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Amplitude 

^ Tinne 

(a) Ultrasonic pulse with DC offset 

+ V - , 

Annplitude 

*- Time 

(b) Ultrasonic pulse with DC offset subtracted 

Figure 10-5 Example of subtracting a DC offset fronfi a waveform. 

Many of these operations are simple mathematical functions, such as sub-
traction or multiplication with a scalar or another array. 

Consider the example in Figure 10-5a, a waveform representing an 
ultrasonic pulse, which should have a net DC component of zero. Because 
of DC offsets in the analog receiver system, the acquired signal may not meet 
this criterion. To determine the net DC offset, we take the mean value of all 
the waveform points. If this mean is not zero, we subtract it (a scalar) from 
the waveform (a vector). The result, shown in Figure 10-5b, now has a zero 
DC offset. 

Waveforms can also be used to operate on each other. For example, 
special windowing functions are commonly used in DSP algorithms. Wave-
forms under analysis are multiplied by these windowing functions, which are 
also waveforms. In many cases a reference or baseline waveform is acquired. 
Subsequent data is then divided by this reference data, for normalization. 

Other common operations are integration and differentiation. If we 
wish to determine portions of a waveform with high slopes, we would 
differentiate it. The peaks of a differentiated function occur at slope maxima. 
When a particular function is difficult to differentiate or integrate analyti-
cally, this numerical approach is very useful. For numerical differentiation. 
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the slope, dyldx, is calculated for every pair of adjacent points. In a similar 
fashion, the area under the curve at each point is calculated for numerical 
integration. 

For example, suppose a waveform represented the measured displace-
ment of an object versus time. Differentiating this waveform would produce 
a new waveform representing the object's velocity versus time. Differentiating 
a second time would produce an acceleration-versus-time waveform. Con-
versely, if the acquired waveform represented acceleration data, as from an 
accelerometer, integrating it once would produce a velocity curve and inte-
grating it a second time would produce a displacement curve. The only 
problem here is that any fixed offsets in either displacement or velocity would 
not appear in the integrated data, as they were lost by the original acceleration 
measurements. 

Again, this brief discussion is only scratching the surface on the topic 
of waveform processing. Many mathematical operations are performed on 
data representing vectors and arrays, such as dot products and cross products. 
The huge variety of waveform processing techniques find an immense range 
of applications. We will look at a few specialized techniques now, starting 
with Fourier transforms. 

10.2.4 Fourier Transforms 

Undoubtedly, Fourier transforms are among the most popular signal process-
ing techniques in use today. Analytically, the Fourier series for a single-valued 
periodic function is a representation of that function using a series of sinu-
soidal waveforms of appropriate amplitude and phase. The sine waves used 
in the series are at multiple frequencies (harmonics) of the lowest frequency 
(the fundamental). The Fourier series for a periodic function, /(/), with a 
period T would be 

f{i) = aQ-\- ai^m{cot + 0i) + a2sm{2(Ot + 2̂) + ••• + anSm{ncot + 0„) 

where 

(O = ITIIT, the fundamental frequency 
^!,...,«„ are the amplitude values for each frequency component {UQ is 

the DC component) 
0i,...,0„ are the phase values for each frequency component 

To represent a single-frequency sinusoidal wave, only the DC and funda-
mental frequency terms are needed. Most functions require many terms to 
provide a good approximation of their real value. For example. Figure 10-6 
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Figure 10-6 Fourier series for a square wave. 

shows a square wave, which has a Fourier series consisting of decreasing odd 
harmonics: 

f(t) = Aa^ln [sin(coO + 1/3 x sin(3a)0 + ••• + 1/n x sin(ncoO] 

Using only the first term (fundamental frequency) we only get a crude 
approximation of the real waveform. After we use the first three terms (up to 
the fifth harmonic) we have a much closer approximation of the square wave. 

By fitting trigonometric functions to an arbitrary waveform, we can get 
the frequency content of that waveform. In essence, the Fourier transform is 
used to convert from a conventional data (time)-domain waveform to a spec-
tral (frequency)-domain waveform. Since this transformation is bilateral, an 
inverse Fourier transform converts data back from the frequency domain into 
the time domain. Data-domain waveforms include functions of time as well 
as of space. The Fourier transform of a distance-based waveform contains 
spatial frequency information. 

Analytically, the Fourier transform is defined for operation on contin-
uous, periodic functions. Given a function of a real variable (the function 
itself can be complex),/(x), its continuous Fourier transform (CFT), F(y), is 
defined as 

F{y) = f [fix) X e'^^^^'dx] 
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This integral must exist for every real value of x. The complex exponential used 
in the integral has an equivalent trigonometric form, using Euler's formula: 

e-'^ = cos(jc) + j sin(x) 

where j = 7 ^ , the imaginary number operator. 
An alternative form for the CFT would be 

F{y) = I f(x)[cos(27Cxy) - jsin(27rxy)]dx 

For data acquisition applications, a special Fourier transform is used to 
operate on discrete, finite functions. This is called the discrete Fourier trans-
form (DFT) and is used to operate on discrete (digitized) data. The DFT is 
the workhorse of DSP techniques. If we have a waveform,/(A:), consisting of 
n points, the DFT produces a complex waveform of n points, F(m). Both k 
and m vary from 0 to n - 1. The data points off(k) are evenly spaced in the 
time domain by dt and range from 0 to (n - l)dt. The transformed data points 
of F(m) are evenly spaced in the frequency domain by l/dt and range from 
0 to (n - l)/dt. The DFT is calculated from 

n - l 

F(m) = X[/Wx^^^"''"^"^"'̂ ] 
k=0 

The frequency-determining component is Inmln, which is a normalized value. 
The DFT assumes the time-domain waveform is a periodic function, with a 
period of n points. The normalized frequency at the first DFT point is 0 and 
at the last point is 2K (n - \)ln radians. This maximum frequency is {n - l)/dt, 
so the time-domain sampling is normalized to dt = n/2n. 

Note that the first term of the DFT, F(0) = X f(k), at zero frequency 
(m = 0). This is simply the area under the curve or the result of integrating 
f(k). Also note that for each term in F(m), n complex multiplications must be 
done as/(/:) times the complex exponential term [where/(A:) can be either real 
or complex]. It is a fair assumption that the amount of time required to 
calculate a DFT using a digital computer is proportional to the number of 
complex multiplications (each involving four separate real multiplications 
and additions). Since n complex multiplications are performed for each of n 
points, the number of complex multiplications required to perform a DFT is 
proportional to ̂  .As the number of input points n increases, the time required 
to calculate the transform goes up by the square. When real-time frequency 
analysis is required on a large amount of data, such as with spectrum analysis, 
the required computation time can be much too long. In this case, the output 
frequency data (DFT) falls behind the input time-domain data. 
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If we have frequency-domain data and want to convert it back to the 
time domain, we can use the inverse DFT: 

m=0 

For the inverse transform, the frequency data, F(m), is multipUed by a 
complex exponential and summed over all its points to calculate each f{k) 
point. Notice the scale factor of \ln here. As with the forward DFT, the time 
required to compute the inverse DFT is proportional to the square of the 
number of points. 

The answer to the problem of DFT computations taking too long to 
calculate is the fast Fourier transform (FFT), which is a special implementation 
of the DFT. By exploiting the symmetry inherent in the DFT and breaking 
up the calculations into several smaller transforms, computation time using 
the FFT can be greatly reduced. Most FFT algorithms only operate on a set 
of points that is an exact power of 2 (^ = 2 )̂. However, the number of complex 
multiplications required by an FFT is only n x log2(n). So an FFT is n/log2(n) 
faster than an equivalent DFT. For a waveform of 1024 points, this is a speed-
up by a factor of more than 100 (1024/10). 

For the rest of this discussion, we will assume that the Fourier trans-
forms used on a PC will always be FFTs. The commercial software packages 
listed in Chapter 11 (and the Appendix) that contain Fourier transform func-
tions all employ an FFT algorithm. 

Some of the symmetry inherent in the FFT of a waveform is shown by 
plotting it. All FFTs are complex waveforms with a real and imaginary 
component for each frequency value (point). If the original time-domain 
function is real, the real component of its FFT has even symmetry (symmet-
rical about point n/2) and the imaginary component has odd symmetry (anti-
symmetric about n/2). If the original function is imaginary, the real component 
of the FFT has odd symmetry and the imaginary component has even sym-
metry. If the original function is purely real or purely imaginary, the magni-
tude of its FFT will have even symmetry. 

Very often, when looking at the FFT of a waveform for frequency 
analysis, only the magnitude \F(m)\ is of interest. Since the FFT points are 
complex: 

|F(m)| = [(F(m),eai)'+ (F(m)imag)']''' 

If the signal of interest, in the time domain, is an ideal impulse, infinitely 
sharp (all but one point is zero amplitude), the magnitude of its FFT is a 
constant. That is, an impulse contains a spectrum of equal amplitude at all 
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Figure 10-7 Example of fast Fourier transform (FFT): 64-point F F of 8-point wide 
rectangular pulse. 

frequencies. This makes an impulse very useful as a broad-band excitation 
signal. 

As an example, Figure 10-7a shows a simple rectangular pulse of unit 
amplitude (1.0), eight points wide in a 64-point waveform. Figure 10-7b 
displays the magnitude of the FFT of this simple waveform. 

Notice the even symmetry of the FFT magnitude. This is because the 
original function was purely real. For an FFT of n points, the magnitude is 
symmetrical about point n/2. The actual frequency data is valid only up to 
point n/2, which is half the entire frequency range. Since the maximum 
frequency is equal to the original data acquisition sampling rate (/̂  = l/dt, 
where dt is the time between consecutive samples) the FFT data is valid only 
up to/s /2, the Nyquist frequency. Above that point it is just the mirror image. 

Another interesting feature is the periodicity in the magnitude of the 
FFT, displayed in Figure 10-7b. With a rectangular pulse y points wide in the 
time domain, the period in the frequency domain is n/y, which is every eight 
points in this case. If the rectangular pulse was wider, the number of peaks 
in the FFT magnitude would increase as the period decreased. Also, note that 
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Figure 10-8 Example of 64-point F F of exponential decay waveform. 

the value of the zero-frequency point |F(0)| = 8. This is equal to the value 
obtained by integrating the original pulse waveform (eight points wide with 
an amplitude of 1), which is its DC component. 

Figure 10-8a displays a 64-point exponential waveform decay, / , from 
e^ at point 0 to e^^^ ^^ at point 63. The magnitude of its FFT is shown in Figure 
10-8b. Again, the value we get for |F(0)| is equivalent to the result of integra-
ting under the waveform, which has a large DC offset (note that the expo-
nential waveform does not approach a zero value in the sampled time 
interval). 

The following is a simple FFT program written in BASIC. It will run 
under IBM BASIC, GW-BASIC, or QBASIC. Since BASIC is an interpreted 
language (see Chapter 13 for more details), it executes slowly. The actual 
FFT or (IFFT) computation is done by the subroutine starting at line 400. 
The test program, starting at line 10, allows the user to enter a 16-point data 
array as input to the FFT subroutine. This illustrative program is only useful 
for relatively small data arrays, such as 64 points or less. For larger arrays, 
the FFT computation time could take several minutes on older PCs. 
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10 REM - FFT PROGRAM, TESTS FFT SUBROUTINE WITH 
20 REM - ARRAY OF 16 POINTS, PROVIDED BY USER. 
25 CODE = 1 ^SET FOR FFT (-1 = IFFT) 
30 PI = 3.14159 
40 N = 16 'NUMBER OF POINTS IN WAVEFORM 
50 DIM R(N) 'REAL DATA ARRAY, INPUT & OUTPUT 
60 DIM I(N) 'IMAGINARY DATA ARRAY, INPUT & OUTPUT 
70 PRINT "FFT TEST PROGRAM": PRINT 
80 PRINT "NUMBER OF POINTS = "; N: PRINT 
90 INPUT "REAL DATA INPUT, ONLY - Y OR N?",A$ 
100 CLS 'CLEAR SCREEN 
110 INPUT "INPUT DELTA T (1): ",DELTA 
120 PRINT "INPUT SIGNAL DATA POINTS" : PRINT 
130 FOR J = 1 TO 16 
140 PRINT "POINT"; J; ": " ; 
150 INPUT "XR = ",R(J) 
160 IF A$ = "Y" THEN I (J) = 0 ! : GOTO 190 
170 PRINT " POINT"; J; " : " ; 
180 INPUT "XI = ",I(J) 
190 PRINT 
200 NEXT J 'END OF DATA INPUT LOOP 
210 PRINT 
220 CLS 'CLEAR SCREEN 
230 PRINT "CALCULATING FFT " 
240 GOSUB 400 'CALL FFT SUBROUTINE 
250 PRINT: PRINT "POINT", "FFT REAL", "FFT IMAG" 
260 FOR J = 1 TO N 
270 PRINT J,R(J) ,I(J) 
280 NEXT J 
290 PRINT 
300 INPUT "DISPLAY FFT MAGNITUDE & PHASE - Y OR N?",A$ 
310 IF A$ <> "Y" THEN STOP 
320 PRINT: PRINT "POINT", "FFT AMP", "FFT PHS" 
330 FOR J = 1 TO 16 
340 AMP = (R(J)^2 + I(J)"2)^.5 
350 PHS = PI/2 
360 IF R(J) <> 0 THEN PHS = ATN(I (J)/R(J) ) 
370 PRINT J, AMP, PHS 
380 NEXT J 
390 STOP 
400 REM - SUBROUTINE CALCULATES FFT OR INVERSE FFT 
410 REM - N = # OF POINTS IN WAVEFORM (POWER OF 2) 
420 REM - CODE = 1 FOR FFT, -1 FOR IFFT 
430 REM - DELTA = dT FOR FFT OR 1/dT FOR IFFT 
440 REM - R(N) = REAL DATA ARRAY FOR INPUT & OUTPUT 
450 REM - I(N) = IMAGINARY DATA ARRAY FOR INPUT & OUTPUT 
460 IR = 0 
470 Nl = N 
480 N2 = INT(Nl/2) 'CHECK IF N IS A POWER OF 2 
490 IF N2*2 <> Nl THEN PRINT "N IS NOT A POWER OF 2!": RETURN 
500 IR = IR + 1 
510 Nl = N2 
520 IF Nl > 1 THEN GOTO 480 
530 PN = 2! * PI/N 
540 L = INT (N/2) 
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IRl = IR - 1 
Kl = 0 
FOR Z = 1 TO IR 
FOR J = 1 TO L 
K = Kl + 1 
P = K + L 
KAY = INT(K1/(2'^IR1) ) 
GOSUB 1030 'BIT REVERSAL SUBROUTINE 
AM = KBITR 
IF AM <> 0 THEN GOTO 680 
XRl = R(P) 
XII = I(P) 
GOTO 730 
ARG = AM * PN 
C = COS(ARG) 
S = -1 * CODE * SIN (ARG) 
XRl = C * R(P) - S * I(P) 
XII = C * I(P) + S * R(P) 
R(P) = R(K) - XRl 
I(P) = I(K) - XII 
R(K) = R(K) + XRl 
I(K) = I(K) + XII 
Kl = Kl + 1 
NEXT J 
Kl = Kl + L 
IF Kl < N THEN GOTO 580 
Kl = 0 
IRl = IRl - 1 
L = INT(L/2) 
NEXT Z 
FOR K = 1 TO N 
KAY = K - 1 
GOSUB 1030 'BIT REVERSAL SUBROUTINE 
Kl = KBITR + 1 
IF Kl <= K THEN GOTO 960 
XRl = R(K) 
XII = I(K) 
R(K) = R(K1) 
I(K) = I(K1) 
R(K1) = XRl 
I(K1) = XII 
NEXT K 
IF DELTA = 1 THEN RETURN 
FOR K = 1 TO N 'SCALE OUTPUT DATA BY 
R(K) = DELTA * R(K) 
I(K) = DELTA * I(K) 
NEXT K 
RETURN 
REM -BIT REVERSAL SUBROUTINE 
REM - KAY = INPUT NUMBER 
REM - IR = NUMBER OF BITS TO REVERSE 
REM - KBITR = REVERSED NUMBER 
KBITR = 0 
KAYl = KAY 
FOR Y = 1 TO IR 

DELTA 
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1100 KAY2 = INT(KAYl/2) 
1110 KBITR = 2 * KBITR + KAYl - 2 * KAY2 
1120 KAYl = KAY2 
1130 NEXT Y 
1140 RETURN 

For most practical FFT applications you will undoubtedly use an FFT 
function built into a commercial software package (such as those described 
in Chapter 11 or the Appendix). However, if you need to incorporate FFTs 
into a custom program, there are many freeware and shareware sources for 
FFT routines (usually written in C or FORTRAN). One such free FFT library 
developed and maintained by MIT is FFTW, available via the Internet (at 
URL: http://www.fftw.org). 

10.2.5 Convolutions and Window Functions 

Convolution and Deconvolution The utiUty of FFTs extends far beyond simple 
frequency analysis of acquired signals, even though this is still an important 
application. In the real world it is often difficult to measure a quantity 
"cleanly," without distortion due to the measurement system itself. For time-
based or distance-based measurements, the overall system response is a func-
tion of the measured quantity along with a function of the system response. 
This system-response transfer function operates on the desired physical quan-
tity through a process called convolution, producing the measured response. 

The convolution h(x) of two time (or space)-domain functions/(x) and 
g(x) is defined as 

h(x) = f(x)^g(x) = rf(X)g(x-X)dX 
•'—oo 

We will use the symbol • here to denote convolution. Convolution literally 
means "folding back." The value of one function at a particular point (x value) 
affects the overall response at neighboring points, as shown by the g(x - X) 
function. Convolving two transfer functions produces the overall system-
response transfer function. 

The convolution integral can be difficult to calculate in the time (or 
space) domain for many functions. It becomes a simple problem in the fre-
quency domain. The convolution of two signals in the time (or space) domain 
is equivalent to multiplying their FFTs in the frequency domain. If the FFTs 
of functions/(jc), g(x), and h(x) are, respectively, F(y), G(y), and H(y): 

H(y) = F(y) x G(y) 

where h(x) is calculated from the inverse FFT of H(y). This is illustrated 
graphically in Figure 10-9. Notice that once the FFTs are multiplied (point 
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Figure 10-9 Convolution algorithm using FFs. 

by point), an inverse FFT (IFFT) is performed on the result to produce the 
output impulse response, which is the convolution of the two input responses. 

An important aspect of transforming convolutions into multiplications 
via FFTs is that we can reverse the process. If we have data acquired from 
a system with a known impulse response, we can correct for that response. 
We transform the measured data, along with the impulse response, to the 
frequency domain (via an FFT). By dividing the FFT of the measured data 
by the FFT of the impulse response, we deconvolve the data. Transforming 
the result via an IFFT results in data fully corrected for the system's impulse 
response. This process is shown graphically in Figure 10-10. 

Deconvolution is an extremely useful analysis technique. In the field of 
optics, for example, image enhancements can be implemented via deconvolution. 
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Figure 10-10 Deconvolution algorithm. 
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Figure 10-11 Optical pinhole. 

A simple example is a pinhole camera. An ideal pinhole, with a diameter 
much smaller than the wavelength of light used, acts like a lense, producing 
an inverted image of an object, as shown in Figure 10-1 la. Each point of the 
image corresponds to light from only a single point of the object. With a 
nonideal pinhole, each image point corresponds to several object points, as 
in Figure 10-1 lb. The image becomes blurred as light from neighboring points 
mixes together. This is the convolution of the real image with the light 
distribution function of the pinhole. Knowing that pinhole transfer function, 
we can deconvolve the data to get the undistorted image. 

There are many other examples of the utility of deconvolution, as in 
the field of ultrasonics. Figure 10-12 shows a simple experiment using a pair 
of ultrasonic transducers in a water bath. An ultrasonic pulse is transmitted 
by one transducer and received by another transducer for data acquisition. 
The ultrasonic properties of the test sample, between the two transducers, are 
of interest. By deconvolving the measurement taken when the test sample is 
present with a measurement taken without the test sample, the impulse (and 
frequency) response of the entire test system can be eliminated from the data. 
This leaves the true ultrasonic response of the test sample. The test sample 
frequency response provides information about its physical properties. 

Window Functions When analyzing real-world data, there are often artifacts 
we wish to ignore. With ultrasonic or optical measurements, for example, 
there are often pulse echoes. If we need to analyze the data of interest without 
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Figure 10-12 Simple ultrasonic test system. 

including the entire waveform, often a windowing function is used. The 
simplest time-domain window function is a rectangular pulse that is multi-
plied with the time-domain waveform of interest. The width and position of 
the pulse is selected so that it has a value of 1 over the region of interest in 
the waveform and a value of zero elsewhere, as illustrated in Figure 10-13. 

Multiplying two functions (signal and window) in the time domain is 
equivalent to convolving their FFTs in the frequency domain. As we previ-
ously saw in Figure 10-6, the FFT of a rectangular function produces multiple 
peaks following the first main peak at zero frequency. These secondary peaks 
are referred to as side lobes. The higher the amplitude of the side lobes, the 
more the windowing function distorts the signal when they are transformed. 
For a rectangular window, the first side lobe has a peak ampUtude of only -13 dB 
relative to the main (zero frequency) peak. 

Rectangular Window 

Amplitude 

Time 

Echoes to ignore 

Figure 10-13 Using a rectangular window on ultrasonic echo waveforms. 
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Because of the convolution distortion, time-domain window functions 
other than simple rectangles are used. Several are based on cosine functions 
that slowly taper to zero near the edges of the window region. Besides having 
lower side lobes, these windows also have wider main lobes than a rectangular 
function. This further helps to decrease any distortion they cause. 

Two commonly used window functions are the Manning and Hamming 
windows, shown in Figure 10-14. These window functions are defined for a 
width of N points as follows: 

w(x) = 0.5 X (1 - co^[2nxl{N - 1)]) Manning Window 

w(x) = 0.54 - 0.46 X cos[27rjc/(A^ - 1)] Hamming Window 

where x varies from point 0 to point N - I. 

w(x) 

(N-1) 
2 

(a) Manning window function 

(N-1) 
2 

(b) Hamming window function 

• • X 

Figure 10-14 Manning and Hamming window functions. 
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Notice that both window functions have their amplitude peak of 1.0 at 
the center of their range, (N - l)/2. The main difference between them is that 
the Manning window goes to zero amplitude at the edges of its range (x = 0 
and x = N - 1) while the Hamming window has a finite amplitude of 0.08 at 
these edges. Both of these windows have a main lobe twice as wide as an 
equivalent rectangular window, with the same value of N. The Manning 
window has a peak side lobe amplitude of -31 dB and the Mamming window 
has a peak side lobe amplitude of-41 dB. These indicate a large improvement 
(18 to 28 dB) over the rectangular window's peak side lobe amplitude of only 
-13 dB. 

10.2.6 Other Transforms 

There are many other transforms used for DSP analyses. We will briefly look 
at two of them here: the Milbert transform and wavelets. 

The Hilbert Transform The Milbert transform is a technique used to obtain 
the minimum-phase response from a spectral analysis. When performing a 
conventional FFT, any signal energy occurring after time ^ = 0 will produce 
a linear delay component in the phase of the FFT. Even if a pulse occurs at 
/ = 0, if it has finite width it will produce this linear slope in the resulting 
FFT phase. The slope of the FFT phase (versus frequency) is proportional 
to this time delay term. Significant delays can produce phase variations of 
greater than 2;r. If the FFT data contains phase nonlinearities of interest 
(such as a small bump), they can be hidden by this large linear phase 
component. 

The Milbert transform, based on special processing of an FFT, will 
produce a frequency response with this linear-phase component removed. 
This is the "minimum phase" data desired. The algorithm involves signal 
processing in both the time and frequency domains. 

Wavelet Analysis Fourier transforms (and FFTs) are ideally suited for ana-
lyzing continuous, periodic signals but do not work well when a signal has 
sharp discontinuities or spikes. The problem is, a Fourier series tells you what 
frequencies a signal is composed of but not their locations in time (it assumes 
that all the frequencies are always present, within the analysis window). If 
we increase time resolution by using a smaller sampling window in an FFT 
analysis, our frequency resolution becomes poorer since the frequency step 
df = 1/dt, the time step. This is the inherent FFT limitation for concurrent 
time-frequency analysis. 
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Wavelet analysis (or the wavelet transform) is a fairly new mathematical 
technique that addresses these shortcomings. Unlike FFTs, wavelets are well 
suited to representing discontinuous signals. Wavelet analysis uses a scalable 
window that is time-shifted across a signal. A spectrum is calculated at each 
new window position. The window size is slightly changed for each iteration. 
The final result is a group of time-frequency representations of the original 
signal, all having different resolutions. This wavelet analysis is called a 
multiresolution technique. Wavelets allow you to analyze a signal with both 
coarse (large scale) and fine (small scale) resolution. 

Wavelet analysis has many similarities to Fourier analysis. There is a 
continuous wavelet transform (CWT) analogous to the CFT and a discrete 
wavelet transform (DWT) analogous to the DFT, used for computer-based 
signal processing algorithms. Wavelet functions contain frequency informa-
tion as Fourier functions do. Unlike FFTs, wavelet functions are also localized 
in space (or time). In addition, a wavelet transform of a one-dimensional 
waveform produces a two-dimensional function. 

The CWT of a time-based function/(r) is 

H (̂T,5) = f(t)xi/Ut)dt 

where 

Now the transformed time signal is a function of two variables: r, the trans-
lation parameter (time-based) and s, the scale parameter (inverse frequency-
based), y/ (t), the transforming function, is the mother wavelet. All of the 
wavelets required by the analysis are generated from this mother wavelet by 
scaling and translation. 

A set of waveforms comprising a transform is called a basis function. 
Fourier transforms use only sine and cosine waves as its basis functions—a 
signal is decomposed into a series of sine and cosine functions by the FFT. 
The CWT and DWT have an infinite set of basis functions or wavelets. 
Usually, a specific wavelet family is selected for a particular application. 

By its nature, the CWT contains a large amount of redundant informa-
tion along with an infinite number of wavelets. The DWT, using discrete 
wavelets, overcomes these problems. With the redundancy removed, wavelet 
transforms become sparse—only a few wavelets are needed to describe or 
decompose a given signal. This makes DWTs well suited for data-compression. 
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image-analysis, and noise-reduction applications. Efficient software algo-
rithms implementing DWTs have led to their widespread use. 

It is likely that wavelet transforms will continue to increase in popularity 
and they may eventually replace the ubiquitous FFT as the technique of choice 
for signal analysis. 

10.2.7 Other DSP Techniques 

A host of DSP techniques besides the FFT are commonly used. An exhaustive 
survey of the DSP field is outside the scope of this book. We will just look 
at a few more techniques that you may likely need in a data acquisition 
system. Please refer to the bibliography for sources of more detailed infor-
mation on DSP. 

Digital Filters Digital filtering techniques are most often applied to time-
domain signals, as in real-time filtering applications. Depending on system 
parameters, a digital filter can operate more quickly than using an FFT 
algorithm where a forward FFT converts a time-domain signal to the fre-
quency domain. Then the frequency signal is multiplied by a filter function 
and finally the frequency signal is converted back to the time domain via an 
IFFT. 

The two common types of digital filter approaches are finite impulse 
response (FIR) and infinite impulse response (IIR). The filtering process is 
effectively a convolution of the time-domain signal with a filter function. 

FIR digital filters are considered nonrecursive. They mix delayed por-
tions of the input signal with feedforward of the undelayed signal. They 
operate only on a small time-domain window of signal data. The filter function 
describes the coefficients for each of the delayed and undelayed components. 
FIR filters usually have a linear phase response, are relatively easy to imple-
ment, and do not tend to accumulate errors, since they operate on a data 
window of finite width. Their main limitation is the need to use many coef-
ficients for good performance. This results in longer computation times and 
lower bandwidths. 

IIR digital filters are considered recursive. They mix the input signal 
with time-delayed feedback of the output signal. They operate on a wide 
time-domain window of signal data. Even though it may be more difficult to 
design an IIR filter than an FIR filter, the resulting IIR filter is simpler, with 
fewer coefficients. This results in shorter computation time and wider band-
widths. Their main drawbacks are their sensitivity to noise and error accu-
mulations, due to including effects of all past data. 
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Cross-Correlation The final DSP technique we will touch on here is cross-
correlation. This is used to see how similar two functions are. The cross 
correlation function of x(t) and y(t) is 

(a^ay)J-oo dt 

where a^ and ay are the RMS values of the two functions. This normalizes 
c(t) to a maximum value of 1 (if the two functions correlate). If the two 
signals are very similar, there will be a maximum in the cross-correlation 
function. Otherwise, there will not be any significant maximum. If one func-
tion represents a delayed version of the other function, c{t) will equal 1 (or 
its maximum) at a value of t equal to the time delay. 

This concludes our overview of data processing with PCs. The tech-
niques covered include some of the most common data analysis methods used 
with data acquisition systems. In the next chapter we will look at commercial 
hardware and software data acquisition products for PCs. 
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Commercial Data 
Acquisition Products 

There is a plethora of commercially available data acquisition products for 
PCs, with the number growing larger every day. The largest selection exists 
for Intel CPU-based, PCI-bus systems running MS Windows 95/98/NT/ 
2000 (so-called "Wintel" PCs). However, there are still products available 
for ISA and PC-104 buses as well as some software support for MS-DOS. 
There is also a growing number of products using the USB interface. In addi-
tion, some products support newer Apple Macintosh computers that use the 
PCI bus. 

These commercial products fall into two broad categories: hardware 
and software. Some software is included with most hardware products, to 
assist the user. Occasionally, hardware manufacturers just recommend com-
patible software products, along with programming guidelines. Some prod-
ucts are a complete hardware/software bundle, requiring both for proper 
operation. 

In this chapter we will survey the vast array of data acquisition hardware 
and software products. We will look at products from a few major manufac-
turers in detail, including both operational information and how to use the 
products. The Appendix contains lists of commercial data acquisition product 
manufacturers (hardware and software). Since most hardware products oper-
ate similarly, regardless of the computer platform used (PC, Macintosh, VME 
bus), an in-depth discussion will again center on "Wintel" products. First, we 
will examine hardware products. 

251 
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11.1 Commercial Data Acquisition 
Hardware Products 

A large number of manufacturers produce data acquisition hardware products 
for PCs. The largest market is for Microsoft Windows-based, PCI-bus and 
ISA-bus computers running Intel or compatible processors. For these 
machines, most data acquisition hardware products are cards that plug into 
a PC's expansion bus. Typically, the newest and fastest products are PCI-
based. Many ISA-bus products are still available, but they are not recom-
mended for new applications. ISA boards come in two major versions: 8-bit 
cards for PC/XT class computers and 16-bit cards for AT (ISA) machines. 
Many products have additional hardware, external to the PC, which connects 
to the main data acquisition card. These add-on devices include connection 
boxes, signal conditioning boards, and high-power I/O interfaces, including 
relay boards. Some PC-based data acquisition systems consist of an external 
box connected to the PC's bus for control, usually via a special interface card. 

Besides plug-in cards, there are now data acquisition hardware modules 
that connect to a PC via a USB port. These plug-and-play devices are very 
easy to install but are usually not high-performance products (having limited 
data transfer rates). Notebook PCs can also use data acquisition hardware via 
PCMCIA cards. In addition, some data acquisition products connect to a PC 
via a standard serial or parallel port. 

Many data acquisition boards for PCs have dedicated functionality, such 
as only analog inputs. Some may have expansion capability, such as an 
additional multiplexer for more analog inputs. Other PC-based data acquisi-
tion cards are designed to be modular. They consist of a basic plug-in card, 
the carrier, which accepts several modules riding "piggy-back" on it. These 
modules offer specific functions, allowing the user to tailor the hardware to 
his or her particular needs (such as the number of analog inputs and outputs 
required). The module functions include analog I/O, digital I/O, and signal 
conditioning. This modular approach offers greater flexibility, at a higher 
price. It is usually justified when a highly customized system is required or 
configuration changes will occur often. 

Data communications interface cards are also an important piece of data 
acquisition system hardware. In this case, the PC is used as an intelligent 
controller, running remote data acquisition equipment through the interface. 
These interfaces include GPIB, RS-232C, RS-422, and RS-485. Of course, 
these cards can also be used in PCs for communications purposes other than 
data acquisition. For example, even though a GPIB interface card is often 
used in a PC to control automated instruments, it could be used to simply 
drive a printer or plotter. 
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Figure 11-1 Typical ISA, single-function data acquisition cards for PCs. (Courtesy 
of Intelligent Instrumentation) 

Data acquisition cards for PCs fall into several major functional cate-
gories, including digital I/O, analog I/O, and counter/timer. Some boards have 
most or all of these features; others have only one or a few. A few typical 
ISA data acquisition cards are shown in Figure 11-1. There are also special-
ized data acquisition cards which have features geared to a particular appli-
cation, such as chromatography equipment used in analytical chemistry labs. 

Another variation on data acquisition cards is the virtual instrument. 
This type of device is a combination of hardware (a card) and software that 
emulates the functionality of a standard test instrument, such as an oscillo-
scope or function generator. The user interface is a graphics environment that 
looks like the front panel of the emulated instrument. By adjusting the virtual 
knobs or pressing virtual buttons, the user operates the virtual instrument. 
When the virtual instrument is an oscilloscope, the hardware consists of an 
analog input card. A virtual function generator would use an analog output 
card. 

Digital I/O cards have input and output lines typically operating at TTL 
logic levels (in the range of 0 to +5 V). Stand-alone digital I/O cards often 
contain some multiple of 8 I/O lines, with 16 or 24 being most common. 
These cards can be used as parallel, digital interfaces as well as dedicated 
controllers. Most digital I/O cards allow programming lines for input, output. 
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Figure 11-2 Intel 8255A programmable peripheral interface (PPI). 

or both. Usually they contain interrupt-generation hardware. Some digital I/O 
cards support DMA for maximum data transfer speeds. 

A popular IC used for digital I/O was the Intel 8255A Programmable 
Peripheral Interface (PPI), whose block diagram is shown in Figure 11-2. 
This device had three 8-bit ports that could be programmed for one of three 
modes: simple, unidirectional I/O without handshaking; strobed, unidirec-
tional I/O with handshaking; and strobed, bidirectional I/O on the same pins, 
with handshaking. The 8255A was controlled by addressing its control port 
and three data ports. It was so popular that the 8255 became an industry 
standard for digital I/O and it still remains a standard, long after Intel stopped 
manufacturing the chip. In current digital I/O cards (which do not use the 
8255A itself), the IC's functionality is usually part of a highly integrated 
programmable logic device (PLD). This logic emulates an 8255A and its 
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registers, providing full compatibility with software written for the original 
chip. 

Analog I/O cards are the most common form of data acquisition hard-
ware for PCs. They contain one or more ADCs for analog input and DACs 
for analog output. Usually, any card containing an ADC for analog input is 
considered a data acquisition card. Analog input cards typically contain one 
ADC IC or module along with one or more analog multiplexers. This enables 
several analog signal sources (such as conditioned sensors) to be connected 
to one board at the same time. For example, multiple temperature sensors 
may be used in monitoring different portions of a piece of equipment under 
test. The multiplexer allows one of several analog inputs to be connected to 
the ADC at any given time. Commonly, commercial ADC cards have 8-32 
analog input channels. These channels may be differential or single-ended. 

The resolution of the ADCs and DACs used on these cards range from 
8 bits to 24 bits. Analog I/O boards with 12-bit resolution are still the most 
common. Another important parameter is the maximum conversion rate for 
analog input cards. This can range from only tens of samples/sec, on high-
resolution and/or low-cost cards, to more than 2 million samples/sec at 16-bit 
resolution or 100 million samples/sec at 14-bit resolution on high-speed data 
acquisition cards with PCI interfaces. Cards with conversion rates up to 5 billion 
samples/sec (five gigasamples/sec) at 8-bit resolution are also available at this 
time. 

When looking at the maximum conversion rate for an ADC card, 
remember that it is usually specified for a single channel only. If you need 
to measure several inputs simultaneously, the maximum conversion rate at 
any channel is the ADC's maximum rate divided by the number of multiplexed 
channels used. If this overall rate is too slow, you will need multiple ADCs 
(one or more cards), a faster ADC, or a card with simultaneous sampling 
hardware. 

Analog output cards usually contain one DAC per output channel. 
Occasionally, a card may contain one DAC and several analog output chan-
nels, employing a sample-and-hold (S&H) amplifier for each channel. As we 
previously saw (in Chapter 3), S&H amplifiers "remember" a voltage level 
using a charged capacitor. Since the capacitor's charge slowly drops (because 
of its own leakage current and that of the surrounding circuitry), the S&H 
output "droops" with time. The S&H output must be continuously refreshed 
by recharging the capacitor (as with DRAMs), or the analog output will be 
valid only for a short period of time (usually on the order of milliseconds). 
Because of these drawbacks, this approach is not widely used. Most analog 
output boards have only a few channels, with an independent DAC for each. 

Most analog I/O cards contain a timer/counter with multiple channels. 
This enables the card to perform conversions at a fixed rate, without any PC 
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software overhead. It is a common option for data conversions to be controlled 
by an internal (on-board) clock, by an external clock, or by PC software 
commands. Most analog input cards have hardware interrupt capability. This 
is a programmable option, used to generate an interrupt when the ADC is 
ready to be read. It is especially important when the ADC conversion rate is 
controlled by an on-board clock and is essentially asynchronous to the control 
software running on the PC. 

Some ISA analog I/O cards have DMA capability. This allows data to 
be transferred between the data acquisition card and the PC at the fastest 
possible rate. It does require special software support, but this is usually 
commercially available. These software packages are used for data streaming 
(transferring data between the data acquisition card and a disk file at high 
speed) as well as simulating the functions of a high-speed strip-chart recorder. 
Only high-speed ISA analog I/O cards use DMA, since for slower cards the 
analog data conversion speed, not the data transfer rate, becomes the rate-
limiting factor. 

PCI analog I/O cards are potentially much faster than their ISA coun-
terparts, because of their faster bus speed. Most PCI data acquisition cards 
are PCI version 2.1 compliant, supporting a 32-bit data bus at speeds up to 
33 MHz, with a peak burst rate of 132 Mbytes/sec. This is well over an order 
of magnitude faster than ISA-bus DMA. Another important feature of many 
PCI data acquisition cards is bus-mastering capability. This allows the board 
to transfer data into memory as soon as it is available, without waiting for 
application software to respond to a poll or interrupt (in a manner analogous 
to an ISA DMA operation, but with better handshaking and more hardware 
"intelligence"). In addition, high PCI transfer rates minimize the amount of 
on-board memory required by the card to buffer acquired data, before it can 
be transferred to the PC's main memory. Usually, a FIFO that is only a few 
thousand samples deep is an adequate buffer (as opposed to the several 
megabytes of buffer memory that is required on a high-speed ISA card). 

Timer/counters are available on separate cards, typically in conjunction 
with digital I/O lines. Besides being used for controlling data conversion 
rates, they are also useful as general-purpose clocks, frequency counters, and 
event counters. They usually have TTL compatible inputs, but with proper 
signal conditioning, such as an amplifier (to boost the signal level) and a 
comparator with hysteresis (to square up slow rise/fall times of a signal and 
convert it to TTL levels), analog signals can also be measured. 

ICs commonly used for timer/counters were the Intel 8254 Program-
mable Interval Timer (PIT) (used in earlier PC motherboards) and the AMD 
AM9513A System Timing Controller (STC), shown in the block diagrams 
of Figure 11-3. The Intel 8254 PIT contained three independent 16-bit 
counters; the AMD AM9513A STC had five. 
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Figure 11-3 Commonly used counter/timer integrated circuits (ICs). 

These ICs are now obsolete. However, they were once such popular 
industry standards that their functionality has been emulated using program-
mable logic in many current products. As with the 8255A PPI, these emulated 
timer/counters appear the same as the original ICs to software. Of course, some 
new timer/counter cards dispense with this backward compatibility and imple-
ment counter logic with different (and usually more advanced) characteristics. 

As shown in Figure 11-3, each of the three 8254 counters has a clock 
input, a gate input, and an output line. They are synchronous down-counters 
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(binary or BCD) with a count register to load a counter value, an output 
register to read the counter value, and a status register. Six programmable 
counting modes are available, allowing the 8254 to be used as a clock, an 
event counter, a one-shot generator, a programmable square-wave generator, 
or a complex digital waveform generator. 

The AM9513A design is an extremely powerful counter/timer, with many 
operational modes and advanced features, making its functionality a popular 
choice for manufacturers of high-performance data acquisition cards. Each of 
the five AM9513A counters has a source input, a gate input, and an output line. 
It differs from the 8254 by having a common clock generator as part of the 
device. Each counter can choose its clock input from either this internal source 
(including a clock divided down from the internal one) or an external clock on 
its source line. This internal clock was originally 1 MHz, but later designs went 
as high as 7 MHz. The synchronous counters can count either up or down in 
binary or BCD. They can be concatenated for an effective counter length of 
80 bits. The device has a scaled frequency output. Each counter has a load 
register to initialize the counter, a hold register to read the instantaneous count 
value, and a mode register to program the counter's features (such as clock 
source, polarity of gating fine, or output conditions). The AM9513A can be 
used for extremely complex timing and waveform-generation applications. 

The most useful configuration for PC-based data acquisition hardware 
is the multifunction board. This card contains, at a minimum, an ADC and 
digital I/O lines. A typical multifunction data acquisition card contains several 
analog input channels, one or more analog output channels, several digital 
I/O lines, and several timer/counter channels. Some may even contain signal-
conditioning circuitry, such as filters. These boards can contain all the hard-
ware needed to convert a PC into a complete data acquisition system (along 
with the appropriate software), usually at a very attractive price. Just make 
sure that you need most of the functions on the card and that each individual 
function meets your requirements (such as an adequate number of I/O chan-
nels or an ADC conversion rate that is fast enough). Without a doubt, multi-
function boards are the most popular type of data acquisition card for a PC. 

Now that we have covered some of the general aspects of data acqui-
sition hardware, we will look at some commercially available products, cov-
ering a few of the more popular manufacturers. Complete addresses and other 
details are in the Appendix. 

11.1.1 Keithley Instruments, Inc. 

Keithley Instruments, Inc. (previously Keithley Metrabyte Corp.) manufac-
tures data acquisition cards and accessories for PCI and ISA-bus computers 
as well as PCMCIA cards for notebook PCs, communications interface cards 
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Figure 11-4 Keithley KPCI-3108 multifunction PCI data acquisition card. (Courtesy 
of Keithley Instruments, Inc.) 

(serial and IEEE-488), and virtual instruments. Their products for PC-based 
data acquisition range from low-cost ISA boards, such as the DAS-8, to high-
performance, multifunction PCI cards, such as the KPCI-3108. The DAS-8 
has eight single-ended analog input channels with 12-bit resolution, an input 
range of ±5 V and a maximum conversion rate of 4000 samples/sec. It also 
has seven digital I/O lines (four outputs and three inputs). 

The KPCI-3108 (shown in Figure 11-4) has 16 single-ended (or 8 
differential) analog input channels of 16-bit resolution with a maximum 
conversion rate of 100,000 samples/sec. The analog input range is software 
selectable, from ±0.0125 V to ±10 V, full-scale. It also contains two 16-bit 
analog output channels with a maximum conversion rate of 100,000 samples/ 
sec and an output range up to ±10 V. In addition, the KPCI-3108 has 32 
digital I/O lines, three 16-bit counter/timers, 12 auxiliary digital I/O lines for 
timer gating or clocking, and full PCI bus-mastering capability for high-speed 
data transfers. This board also contains a 256-location channel-gain queue 
that allows you to acquire data from nonsequential channels at different gain 
settings, using a preprogrammed sequence. 
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You can use the KPCI-3108 (and most newer Keithley cards) with a 
fully integrated data acquisition software package, such as LABTECH NOTE-
BOOK or TestPoint. Alternatively you can write your own custom program 
using a standard 32-bit programming language (running under Windows 
95/98/NT/2000), such as Microsoft Visual Basic or Visual C/C+ +. The board 
comes with drivers: Keithley's Driver Linx software. Unlike older ISA cards, 
the KPCI-3108 (and other newer cards) does not use register-level program-
ming. The Driver Linx software provides a higher-level interface to the 
board's analog and digital functions within the Windows environment. You 
simply make calls to driver functions. 

Keithley produces an ultrahigh-speed ISA ADC board, the DAS-4300, 
which has a maximum transient conversion rate of 1 gigasample (Gsample)/sec 
with 8-bit resolution. To support this data acquisition rate, which is much 
faster than PC DMA transfer rates, the DAS-4300 has on-board memory of 
8 Kbytes for data storage. It has two single-ended analog input channels (with 
50-ohm input impedance), but no digital I/O or analog output lines. ADC 
triggering can come from a software command, an external logic level, or an 
analog signal. The analog input range is software selectable from ±25 mV to 
± 1 V full-scale, with both coarse and fine steps. 

A special feature of the DAS-4300 is equivalent time sampling (ETS), 
used to increase the effective sampling rate when digitizing repetitive signals 
(see Chapter 4). Using ETS, the DAS-4300 can run as fast as 20 Gsamples/sec. 

The DAS-4100 is another 8-bit, high-speed analog input board in the 
same family as the DAS-4300. The DAS-41(K) has a maximum transient con-
version rate of 64 million samples/sec and an ETS rate up to 2 Gsamples/sec. 
This card can have as much as 1 Mbyte of on-board memory, allowing full-
speed capture of relatively long waveforms. 

An example of a high-resolution PCI card is Keithley's KPCI-3116, 
which has an ADC with 16-bit resolution and a maximum conversion rate of 
250,000 samples/sec with 32 single-ended or 16 differential analog input 
channels. It also includes two 16-bit analog outputs, 16 digital I/O lines, and 
four counter/timers. As with the KPCI-3108, the KPCI-3116 has full PCI 
bus-mastering capabilities. 

Keithley also produces a line of PCMCIA (see Chapter 12) data acqui-
sition cards for use with laptop or notebook computers. This class of products 
is ideal for portable data acquisition systems. Figure 11-5 shows a collection 
of some PCMCIA cards. A typical example is the KPCMCIA-12AIA0, which 
has a 12-bit ADC with conversion rates up to 100,000 samples/sec, a pro-
grammable input range of ± 1.25 V to ± 10 V full-scale and eight single-ended 
(or four differential) inputs. The KPCMCIA-12AIAO also has two DAC 
outputs with a maximum update rate of 100,000 samples/sec, a 16-bit 
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Figure 11-5 Collection of PCMCIA cards. (Courtesy of Keithley Instruments, Inc.) 

counter/timer, and eight digital I/O lines (four inputs, four outputs). The 
KPCMCIA-16AIAO is a 16-bit data acquisition card with the same specifi-
cations as the KPCMCIA-12AIAO (i.e., 100,000 samples/sec conversion rate) 
except for higher resolution. As with standard PCMCIA devices, these cards 
are hot-swappable (they can be plugged or unplugged when the PC is on). 

As an illustration of a typical data acquisition card for ISA PCs, we 
will examine another Keithley board in greater detail, the DAS-16, shown in 
Figure 11-6. Even though this is an old product (originally designed for the 
8-bit PC-XT bus) it has been so popular that not only does Keithley still build 
it but many other manufacturers also produce functionally equivalent versions 
of the board (so-called "clones"). Versions of the DAS-16 are even available 
as PC-104 cards (see Chapter 12). 

The DAS-16 is a multifunction card, with 16 single-ended (or eight 
differential) analog input channels of 12-bit resolution, with a maximum 
conversion rate of 50,000 samples/sec (the DAS-16F, with DMA support, has 
a maximum rate of 100,000 samples/sec). It has two 12-bit analog output 
channels, eight digital I/O lines, three timer/counter channels, and interrupt 
support. 

The DAS-16 card will work in virtually all PC/XT and ISA PCs, as it 
requires only a PC/XT bus (62-pin) expansion slot. This makes it useful for 
older PCs in nondemanding applications, such as temperature logging. A 
block diagram of the DAS-16 is shown in Figure 11-7. Like most older ISA 
data acquisition cards, the I/O addresses used by the card are switch selectable 



262 CHAPTER 11 Commercial Data Acquisition Products 

Figure 11-6 Keithley DAS-16 multifunction ISA data acquisition card. (Courtesy 
of Keithley Instruments, Inc.) 
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(it is not plug-and-play). Since the DAS-16 uses 16 consecutive addresses, 
only the base or starting address is expHcitly selected. By default, this address 
is 300h, which is commonly used for ISA data acquisition cards, being part 
of the I/O map (300h-31Fh) reserved by IBM for prototype cards. In this 
case, the DAS-16 would occupy 300h-30Fh. If this space was already in use, 
another base address would be selected, such as 31 Oh. The base address has 
to fall on a 16-bit boundary, as the address select switches are for bits A4 
through A9. Newer ISA and all PCI data acquisition cards are plug-and-play, 
so I/O addresses are automatically selected. 

Other switches on the DAS-16 select differential or single-ended lines 
for the analog input channels, ADC gain level, and unipolar-versus-bipolar 
ADC input range. The DAS-16 has five preset gain levels for the ADC, 
determining full-scale range. In bipolar mode these are ±10 V, ±5 V, ±2.5 V, 
±1 V, and ±0.5 V. For many newer data acquisition cards, the gain levels are 
set by software commands. 

All external connections to the DAS-16 (other than the ISA expansion 
bus connector) are made via a 37-pin D-shell connector, at the back of the 
card. Most data acquisition cards use this type of arrangement if the number 
of connector lines is not excessive (usually 50 or less). The most common 
connectors used are D-shell and ribbon-cable varieties. If many external 
connections are needed, as with a multifunction card having a large number 
of analog and digital I/O lines, usually several ribbon cable connectors on 
the board itself are used. These cables then have to be routed through an 
opening in card's mounting bracket. On the DAS-16, the 37-pin D-shell 
connector contains all the analog and digital I/O lines. In addition, it contains 
control lines for the accessible timer/counters, power supply (+5 V) and 
reference voltage (-5 V) outputs, along with an input for an external DAC 
reference voltage (if a range other than 0 to +5 ^ is desired). 

All software access to the DAS-16 is done by reading from and writing 
to the 16 I/O ports located in the ISA I/O space between the base address 
and base +15. These I/O ports are listed in Table 11-1. Note that some of 
these ports are either read-only or write-only, while some are both read and 
write. In addition, the same port address can have a different function, depend-
ing on whether you read from it or write to it. For example, the base address, 
as a read port, returns the low byte of the last ADC conversion. As a write 
port it initiates an ADC conversion. 

The mux scan port (at base +2) allows multiple ADC channel conver-
sions to be performed without explicitly stating the desired analog input 
channel prior to each conversion. The first and last channel numbers are 
written to this port. Each successive ADC trigger operates on the next analog 
input channel, within the range of first-to-last. After the last channel, the 



264 CHAPTER 11 Commercial Data Acquisition Products 

TABLE 11-1 
DAS-16 I/O Ports 

1 PORT LOCATION | 

Base A( dress + 0 

Base Address + 1 

1 Base Address + 2 

Base Address + 3 

1 Base Address + 4 

1 Base Address + 5 

1 Base Address + 6 

1 Base Address + 7 

1 Base Address + 8 

1 Base Address + 9 

1 Base Address + 10 

1 Base Address + 11 

1 Base Address + 12 

1 Base Address + 13 

1 Base Address + 14 

1 Base Address + 15 

FUNCTION 

ADC Low Byte 
Start ADC 

ADC High Byte 

MUX Scan Control 

Digital I/O Out (4 bits) 
Digital I/O In (4 bits) 

DAC 0 Low Byte 

DAC 0 High Byte 

DAC 1 Low Byte 

DAC 1 High Byte 

pAS-16 Status 

DAS-16 Control 

Counter Enable (2 bits) 

Not Used 

Counter 0 

Counter 1 

Counter 2 

Counter Control 

READ/WRITE 1 

R 

w 1 
R 1 
R / W 

W 
R 1 
W 

w 1 
w 1 
w 1 
R 

R / W 1 

w 1 
N / A 1 
R / W 

R / W 1 
R / W 1 

w 1 

selection rolls around to the first one again. This feature is extremely handy 
if you use multiple analog inputs with a hardware clock trigger. Once the 
software sets up the card to convert the desired ADC channels, all it has to 
do is keep reading the data until the required number of readings have been 
accumulated. Of course, the analog input channels used must be consecutive 
numbers. By contrast, a board such as the KPCI-3108, with a channel-gain 
queue, does not have the limitation of consecutive channel numbers. 

The analog output ports (at base +4 through base +7) are write-only, 
requiring two 8-bit ports to access the complete 12-bit DAC word. The DAC 
output is not changed until both bytes have been written, preventing a glitch 
in the DAC output when one byte is an old value and the other is a new value. 

The eight digital I/O lines of the DAS-16 are configured as a 4-bit input 
port and a 4-bit output port. By writing to the digital I/O port (at base +3), 
the four output lines are latched. Reading from the digital I/O port reflects 
the state of the four input lines. Two of the input lines are also used for special 
ADC trigger and counter gate functions. 
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The status port (at base + 8) is read-only. It contains information about 
the ADC and interrupt status. This information includes whether the ADC is 
busy or has valid data and if the analog inputs are single-ended or differential 
as well as unipolar or bipolar. This allows software to check the state of the 
hardware switches. In addition, the mux channel for the next conversion is 
read here, along with the status of the board's interrupt generator. 

The control port (at base +9) is both a read and write address and 
determines the operating modes of the DAS-16. It is used to enable or disable 
interrupt generation and select the hardware interrupt level to use (ISA IRQ 
2-IRQ 7). The control port can also enable DMA transfers (if enabled, the 
PC's DMA controller must be properly initialized). In addition, this port 
determines the source of the ADC conversion trigger: software only, internal 
timer control, or external trigger control. 

The counter-enable port (at base +10), along with the four 8254 ports 
(at base +12 through base +15), controls operation of the three counter/timer 
channels. Counters 1 and 2 are cascaded, so that counting periods ranging 
from microseconds to hours can be used to periodically trigger the ADC. 

As an example of software for the DAS-16, here is a small segment of an 
MS-DOS BASIC program. This code triggers an ADC conversion (via software) 
for a board at base address B AS ADR, returns the 12-bit result in DAT and the 
analog input channel number in CHANL, and then displays the result: 

10 BASADR = &H300 'Default Base Address 
20 OUT BASADR%,0 'Start ADC conversion 
30 IF INP(BASADR%+8)>=&H80 THEN GOTO 30 'Conversion Done? 
40 LOW% = INP(BASADR%) 'Read low byte 
50 HI% = INP(BASADR%+1) 'Read high byte 
60 DAT% = 16 * HI% + INT (L0W%/16) '12-bit data read 
70 CHANL% = LOW% AND &HOF 'Analog channel nuinber 
80 PRINT "For Channel #";CHANL%;", ADC Value = ";DAT% 

Note that the variable names end in % to signify they are integers (as opposed 
to floating-point numbers). 

In Microsoft C for MS-DOS, a similar program would look like 

# inc lude <conio> /* for inp( ) & ou tpO func t ions */ 
# inc lude <s td io> /* fo r p r i n t f O */ 
#def ine BASADR 0x300 /* d e f a u l t b a s e a d d r e s s = 30Oh */ 
#def ine ADCLOW BASADR /* a d d r e s s of ADC low b y t e */ 
#def ine ADCHI BASADR+1 /* a d d r e s s o r ADC h i g h b y t e */ 
#def ine ADCSTAT BASADR+8 /* a d d r e s s of s t a t u s p o r t */ 
mainO 

{ /* start of program */ 
int dat, low, high, chanl; /* declare integers */ 
outp(BASADR,0); /* start conversion */ 
while(inp(ADCSTAT)>=0x80) ; /* wait for end of conversion */ 
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low = inp(ADCLOW); /* r ead low b y t e */ 
h i g h = inp(ADCHI); /* r ead h igh b y t e */ 
d a t = 16 * h i g h + low / 16; /* f u l l 1 2 - b i t r e ad ing */ 
chanl = low & OxOf; /* mask b i t s t o g e t channel number */ 
p r i n t f ( " \ n F o r Channel #%d, ADC Value = % d \ n ' \ c h a n l , d a t ) ; 
} /* end of program */ 

This program may look more verbose than the BASIC version, but as 
the size and complexity of a program increase, the extra overhead of C is 
minimal compared to its flexibility, speed, and power. 

This examination of the Keithley DAS-16 board has shown us how a 
typical, older ISA data acquisition card operates. Besides conventional plug-
in cards, Keithley manufactures many stand-alone instruments and special-
ized data acquisition products, such as their ADWIN series for real-time 
response (under 500 nsec). The devices in this series range from plug-in 
PC cards to expandable instrument racks. They contain their own micro-
processors so these devices can operate independently of the controlling 
PC's operating system. Their networking capabilities (including Ethernet 
support) make them a good choice for remote data acquisition and control 
applications. 

One other interesting Keithley product line is their PC Instrument Prod-
ucts (PCIP): PC plug-in boards that emulate conventional test instruments. 
They are ISA cards that include a digital storage oscilloscope (PCIP-SCOPE), 
a digital multimeter (PCIP-DMMA), an arbitrary waveform generator (PCIP-
AWFG), and a frequency counter (PCIP-CNTR). These virtual instruments 
can operate in either a manual mode (via virtual control panels, on the PC 
monitor) or in an automated mode via a DOS or Windows program. 

This concludes our look at some of Keithley Instrument's PC-based 
data acquisition products. For up-to-date information, visit their Web site 
(www.keithley.com). 

11.1.2 Data Translation Inc. 

Data Translation Inc. is another leading producer of data acquisition boards 
for PCs. Their product line supports both ISA and PCI platforms as well as 
USB and PCMCIA interfaces. They also provide some software for use with 
their data acquisition products. In addition, Data Translation produces image-
capture boards (frame grabbers and video processors) for ISA and PCI PCs. 

Data Translation's data acquisition card product line ranges from low-
cost, low-speed, multifunction cards, such as the DTOl-EZ ISA board, to 
high-performance PCI cards, such as the DT3010 series. The DTOl-EZ is a 
good general-purpose ISA data acquisition card, with 12-bit resolution and 
16 single-ended or eight differential input lines. It has a maximum conversion 
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rate of 27,500 samples/sec and analog input ranges of 1.25 V through 10 V, 
full-scale (both unipolar and bipolar ranges). It has two 12-bit analog output 
channels with a max conversion rate of 29,500 samples/sec and 16 digital 
I/O lines. The DTOl-EZ has a programmable pacer clock to initiate repeated 
conversions but no general-purpose, user-accessible counter/timers. 

The PCI data acquisition cards in the DT3010 series contain either a 
12-bit or a 16-bit ADC with up to 16 differential or 32 single-ended analog 
input channels. The maximum ADC conversion rate for the 12-bit boards is 
1.25 million samples/sec. For the 16-bit model (DT3016) this maximum rate 
is 250,000 samples/sec. The cards in this series have two analog output 
channels (DACs) with the same resolution as their ADC (12-bit or 16-bit). 
These analog outputs have maximum conversion rates of either 500,000 
samples/sec for the 12-bit boards or 200,000 samples/sec for the 16-bit board. 
In this series, the analog input amplitude ranges vary from 1.25 V through 
10 V, full-scale (both unipolar and bipolar). Analog outputs have a bipolar 
range of ± 10 V. The analog outputs also have a FIFO, for outputting repetitive 
waveforms, up to 32,768 samples long. 

The DT3010 series boards all have 16 digital I/O lines, configured as 
two programmable 8-bit ports. Digital inputs can be read as part of the analog 
channel list, providing an accurate time stamp relative to the analog readings. 
There are also two dedicated programmable digital outputs that can indicate 
when a particular analog channel is read, providing synchronization to exter-
nal equipment. These boards have a programmable pacer clock to initiate 
repeated data conversions as well as four 16-bit counter/timers. 

Data Translation has another interesting ISA data acquisition product 
line, their DT2831 series. The boards in this series are very similar to other 
Data Translation ISA boards with one important exception. Once the base 
address of a DT2831 card has been selected, all its data acquisition parameters 
are set by software only. There is no need to change switch or jumper settings 
to modify parameters such as analog input gain, single-ended versus differ-
ential analog inputs, analog voltage ranges, DMA channel, interrupt channel, 
or even ADC and DAC caUbration. These boards support either 12-bit or 16-bit 
analog I/O. The maximum analog input conversion rate is 250,000 samples/sec 
for 12-bit boards and 160,000 samples/sec for 16-bit boards. The analog 
output conversion rates are 130,000 samples/sec for 12-bit DACs and 
100,000 samples/sec for 16-bit DACs, with either a unipolar (0-10 V) or 
bipolar (± 10 V) output range. The DT2831 boards have eight digital I/O lines, 
configured as a single 8-bit port. They also have two counter/timer channels. 
These boards support hardware interrupts and two DMA channels. They also 
have available simultaneous sample-and-hold inputs for sampling all analog 
inputs at the same time. 
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Another unique Data Translation product line is their Fulcrum 
(DT3800) series of inteUigent data acquisition boards. These ISA cards are 
controlled by an on-board Texas Instruments TMS320C40 DSP (digital sig-
nal processor), which is a 32-bit floating-point CPU. A DT3800-series board 
can operate independently of its host PC, since the TMS320C40 controls all 
of its operations. All configuration and calibration is done via software 
controls from the host PC. Cards in this series have 12-bit ADC inputs with 
conversion rates up to 1 million samples/sec and 16-bit ADCs as fast as 
160,000 samples/sec. 

The Fulcrum series boards have two high-speed, 16-bit analog output 
channels with data rates up to 200,000 samples/sec and software-selectable 
settings. They also have 16 digital I/O lines with speeds up to 3.3 MHz. These 
digital lines are partitioned into two 8-bit ports. The two 16-bit on-board 
counter/timers are 8254-based, running from an internal 10-MHz clock. These 
cards run SPOX, a DSP real-time, multitasking operating system. Application 
software is developed using the DSPLAB developer's kit, which runs on the 
host PC. 

Data Translation, along with most other major manufacturers, produces 
screw-terminal and signal-conditioning panels for their data acquisition cards. 
These panels simplify connecting external devices to the data acquisition 
cards. Some common signal-conditioning functions are available, such as 
antialiasing filters and cold-junction compensation for thermocouples. If a 
thermocouple is directly connected to the appropriate panel, the analog signal 
sent to the data acquisition card can be directly read as degrees (temperature) 
without additional circuitry or complex software. 

Data Translation also manufactures data acquisition products for PCM-
CIA and USB interfaces. Their PCMCIA products include the DT7100 series. 
The DT7101 PCMCIA card has a 12-bit ADC with eight single-ended (or 
four differential) inputs and a maximum conversion rate of 1(X),000 samples/sec. 
It also has four digital I/O lines (two inputs and two outputs). The DT7102 
card has a 12-bit ADC with 16 single-ended (or eight differential) inputs and 
a maximum conversion rate of 200,000 samples/sec. The DT7102 also has 
two 12-bit analog outputs with maximum rates of 50,000 samples/sec, as well 
as six digital I/O lines (two inputs and four outputs). 

Data Translation's USB data acquisition products include their DT9800 
series. These modules are fully USB 1.1 compliant, with hot-swap and plug-
and-play capabilities. One of the major advantages of using external USB 
data acquisition devices, such as these, is that they can provide a much lower 
noise level than PCI or ISA cards that reside inside a PC (where the electronic 
noise from the power supply and motherboard is fairly high). The current 
disadvantage with USB 1.1 devices is their limited top speed of 12 Mbits/sec 
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Figure 11-8 Data Translation DT9800 series USB data acquisition module. (Courtesy 
of Data Translation, Inc.) 

(or 1.5 Mbytes/sec), with typical sustained transfer rates closer to 100 
Kbytes/sec. USB 2.0, with its 40x speed increase, should eliminate this 
limitation. Figure 11-8 shows a typical Data Translation USB Module. 

An example of a multifunction USB device is the DT9802. This module 
has a 12-bit ADC with 16 single-ended (or eight differential) inputs that range 
from 1.25 V to 10 V full-scale and a maximum conversion rate of 100,000 
samples/sec. It has two 12-bit analog outputs, 16 digital I/O lines (eight inputs 
and eight outputs), and two 16-bit counter/timers. 

Another Data Translation USB device is the DT9821, which has four 
independent ADCs with a maximum resolution of 24 bits at conversion rates of 
7.5 samples/sec or slower. At the maximum conversion rate of 960 samples/sec, 
the ADC resolution is reduced to 16 bits. With an input range varying from 
approximately 40 mV to 2.5 V full-scale, even at 16-bits the ADC can resolve 
inputs less than l-|xV (for 1 LSB). 

As with most major data acquisition vendors. Data Translation bundles 
software with its hardware products. With PCI cards or USB modules, this 
manufacturer includes its Omni CD: a collection of drivers, development 
tools, and basic applications for its data acquisition boards that runs under 
MS Windows 98/Me/2000. For example, the Scope application requires no 
programming and allows you to acquire data in either a high-speed oscillo-
scope mode or a strip-chart mode. Quick Data Acq is a menu-driven appli-
cation that provides verification of board operations and allows you to collect, 
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display, and save acquired data. Source code for Quick Data Acq (written in 
Microsoft Visual Basic) is also included, allowing you to customize the 
application. 

Data Translation has other hardware products, such as the DATAX 
modular data acquisition system that connects to a host PC via USB. This 
system is optimized for expandability and signal conditioning via its stand-
alone, 16-slot chassis. Data Translation also produces some virtual instru-
ments, such as their DT2040 series of PCI-based digital multimeter cards. 

This concludes our discussion of Data Translation's PC-based data 
acquisition products. For current information, you can view their Web site 
(www.datatranslation.com). 

11.1.3 National Instruments 

National Instruments had primarily been a leading manufacturer of GPIB 
controller hardware and software products for PCs and other computer plat-
forms. In the decade following the first edition of this book. National Instru-
ments has also become a major manufacturer of data acquisition products for 
PCs and industrial computer platforms, such as VME and Compact PCI. They 
also produce data acquisition hardware for PCMCIA, USB, and IEEE-1394 
interfaces. Additional product lines include motion control and image capture 
products. 

Besides hardware. National Instruments produces software products, 
most notably. Lab VIEW. Lab VIEW, a data acquisition programming lan-
guage, is so popular that it can be used with other manufacturers' hardware 
products. For example, Data Translation and Keithley Instruments provide 
software (in the form of virtual instruments) that allow their boards to work 
under Lab VIEW. We will discuss Lab VIEW in greater detail later in this 
chapter (see Section 11.2.2). 

National Instruments produces a wide range of PCI and ISA data 
acquisition cards for PCs. The low-cost, multifunction PCI-6023E is a PCI 
card with 16 single-ended (or eight differential) inputs to a 12-bit ADC, 
having a maximum conversion rate of 200,000 samples/sec. It also has eight 
digital I/O lines and two 24-bit counter/timers, but no analog outputs. The 
AT-MI0-16E-1 is an ISA card with 16 single-ended (or 8 differential) 
inputs to a 12-bit ADC with a maximum conversion rate of 1.25 million 
samples/sec (Msamples/sec). This board has eight digital I/O lines, two 
24-bit counter/timers, and two 12-bit analog outputs with an update rate of 
1 Msample/sec. It is also fully plug-and-play compatible for simple instal-
lation and configuration. 



11.1 Commercial Data Acquisition Hardware Products 271 

National Instruments has a family of high-speed digitizers, with analog 
inputs only. The NI-5911 is a PCI card having a single analog input channel 
and an 8-bit ADC with a maximum conversion rate of 100 Msamples/sec in 
real-time mode. For repetitive signals, using its random interleaved sampling 
mode, it has a conversion rate up to 1 gigasample/sec (Gsample/sec). This 
card has either 4 or 16 Mbytes of on-board memory for temporary data 
storage. A special feature of the NI-5911 is the flexible resolution mode that 
uses a DSP technique similar to delta-sigma conversion to increase the effec-
tive ADC resolution at lower sampling rates (and lower bandwidth). For 
example, at 5 Msamples/sec the card has 14 bits of effective resolution. This 
increases to 21 bits at a conversion rate of 10,000 samples/sec. 

Another high-performance National Instruments product line is the NI-
61IX family of simultaneous-sampling, multifunction data acquisition 
boards. The NI-6110 is a PCI card with four 12-bit analog inputs and a 
maximum conversion rate of 5 Msamples/sec. It has two 16-bit analog output 
channels with a 4-Msamples/sec maximum rate, eight digital I/O lines, and 
two 24-bit counter/timers. Unlike conventional multifunction cards that use 
one ADC and an input multiplexer, the NI-6110 (and other family members) 
has an ADC for each input channel, allowing simultaneous sampling on all 
inputs. This is essential when an accurate relative phase or time measurement 
needs to be made. 

National Instruments also has PCMCIA and USB versions of some of 
its data acquisition products. For example, the NI-6020E, a 12-bit, 100,000 
samples/sec multifunction data acquisition device, is available as either an 
ISA board or a USB module (the DAQPad-6020E). Another example, the 
6024E is similar to the NI-6023E (12-bit ADC, 200,000 samples/sec) except 
it also includes two 12-bit analog outputs. The 6024E is available as either 
a PCI board (the PCI-6024E) or a PCMCIA card (the DAQCard-6024E). 

A National Instruments product even uses the IEEE-1394 bus: the NI-
6070E family (which includes the AT-MIO-16E-1). This is a 12-bit ADC with 
16 single-ended (or 8 differential) inputs and a maximum conversion rate 
of 1.25 Msamples/sec. It has two 12-bit analog outputs with a maximum 
rate of 1 Msamples/sec, eight digital I/O lines, and two 24-bit counter/timers. 
The IEEE-1394 version is the DAQPad-6070E, which is a stand-alone mod-
ule, similar to USB data acquisition devices. Of course, to use this device, a 
PC must have an IEEE-1394 interface (usually as an add-in card) and appro-
priate software support. Note that some older versions of 32-bit MS Windows 
(such as Windows 95 and Windows NT) are not suitable for IEEE-1394. 

Other National Instrument product lines include stand-alone instrumen-
tation chassis, based on Compact PCI cards. Many of their data acquisition 
PCI cards are also available in Compact PCI versions. 
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As with other major hardware vendors, National Instruments bundles 
basic software with their data acquisition products. For example, their E series 
of multifunction devices (such as the PCI-6023E card) come with NI-DAQ 
driver software to simplify writing your own application program. They also 
include Measurement and Automation Explorer software to configure and test 
the hardware. 

This concludes our brief survey of National Instruments' data acquisi-
tion products. As with other manufacturers, their Web site (www.ni.com) is 
a good source for current product information. 

11.1.4 Other Hardware Manufacturers 

A large number of other PC-based data acquisition hardware manufacturers 
are listed in the Appendix. Without going into much detail, we will look at 
a few more of them. 

Scientific Solutions, Inc. The first manufacturer of data acquisition boards for 
IBM PCs was Scientific Solutions, Inc. Their current product line supports 
both ISA and PCI buses and includes multifunction data acquisition boards, 
digital I/O boards, and GPIB interface cards. 

Scientific Solutions' Lab Tender ISA board is a new, software-com-
patible version of the original 8-bit Lab Tender, introduced in 1981. It contains 
a 16-bit ADC with 32 single-ended (or 16 differential) inputs, having a range 
of ±5 V and a maximum conversion rate of 50,000 samples/sec. The Lab 
Tender has a 16-bit DAC, multiplexed with 16 sample-and-hold outputs. If 
more than one output at a time is in use, they must be periodically refreshed 
(their LabPac 32 driver software takes care of this automatically). This board 
has 24 digital I/O lines, configured as two 8-bit and two 4-bit ports, con-
trolled by 8255A-compatible hardware. It also has five counter/timer chan-
nels, with AM9513A-compatible hardware. The Lab Tender supports 
hardware interrupts. 

Scientific Solutions also produces the multifunction Lab Master DMA 
that consists of an ISA board and an external analog box (containing the ADC 
and analog input circuitry). This produces very low-noise measurements. The 
Lab Master DMA contains a 12-bit or 16-bit ADC with a maximum conver-
sion rate of either 50,000 or 160,000 samples/sec and 16 single-ended (or 
8 differential) analog inputs. The analog input range can either be unipolar 
or bipolar, and the gain can be adjusted via hardware (through jumpers) or 
software. The Lab Master DMA has two independent 12-bit DACs with five 
selectable output ranges and a maximum conversion rate of 200,000 samples/sec. 
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In addition it contains 24 digital I/O lines and five counter/timers, as the Lab 
Tender does. The Lab Master DMA supports hardware interrupts as well as 
DMA data transfers. 

Scientific Solutions PCI product is the Lab Master Pro PCI. This mul-
tifunction board has a 16-bit ADC with 16 analog inputs, expandable to 256, 
and a maximum conversion rate of 333,000 samples/sec. It has two 16-bit 
analog outputs with rates up to 500,000 samples/sec. The Lab Master Pro 
PCI also has five 16-bit counter/timers and 16 digital I/O lines. It supports 
PCI bus mastering for high-speed data transfers. The card also has an on-
board FIFO to buffer ADC or DAC data. 

Scientific Solutions also provides software support for its boards. Lab-
Pac is a memory-resident driver that runs under MS-DOS. Any standard DOS 
progranmiing language can access its functions, such as analog input, analog 
output, and digital I/O. 

LabPac 32 is a 32-bit application programming interface (API) for 
Windows 95/98/NT/2000. Working in conjunction with a board-specific 
device driver, LabPac 32 functions access the target device's features. It 
supports most standard 32-bit MS Windows programming languages, includ-
ing Java, Visual C/C+ + , Visual Basic, and Borland C/C+ + . 

As with other vendors we have surveyed, up-to-date product information 
is available at Scientific Solutions' Web site (www.labmaster.com). 

Intelligent Instrumentation Intelligent Instrumentation (formerly Burr-Brown/ 
Intelligent Instrumentation) produces a variety of data acquisition products 
for PCs. These include both plug-in cards and remote data acquisition prod-
ucts (with a strong emphasis on Ethernet). Intelligent Instrumentation man-
ufactures a series of plug-in ISA boards with dedicated functions as well as 
those with modular features, all part of their PCI-20000 system {please note 
that boards in this series^ despite its name, are only for the ISA bus and not 
the PCI bus). This product line stresses the use of modular boards, based on 
the PCI-20098C and PCI-20047C series. Multifunction dedicated boards are 
available as well as digital I/O, analog input, and analog output (as shown in 
Figure 11-1). Termination panels are also available. 

The carrier boards used with expansion modules act as multifunction 
cards, plugging into a PC's ISA slot. Some carrier boards require modules for 
analog I/O, such as the PCI-20041C series that contains only digital I/O. The 
PCI-20098C is considered a multifunction carrier board, containing analog 
I/O, digital I/O, and counter/timers as well as supporting additional modules. 

The add-in modules for these carrier boards include various analog-input 
options, such as high gain (up to 25 mV, full-scale), high resolution (16 bits at 



274 CHAPTER 11 Commercial Data Acquisition Products 

85,000 samples/sec), and analog input expansion (32 additional single-ended 
or 16 additional differential inputs). The analog output modules offer 12-bit 
or 16-bit resolution, with maximum conversion rates of 80,000 samples/sec. 
A digital I/O module offers 32 lines, accessible as four 8-bit ports. Other 
modules with special functions include a counter/timer board, a sample-and-
hold board, and a trigger/alarm board. 

Intelligent Instrumentation's dedicated multifunction ISA boards include 
the PCI-2048W series, with a 12-bit ADC and 16 single-ended (or 8 differ-
ential) inputs and two 12-bit analog outputs, running as fast as 100,000 samples/ 
sec. These cards have 16 digital I/O lines (eight inputs and eight outputs) and 
a 16-bit counter. They also support DMA transfers. The PCI-470W series 
contains high-speed transient capture ISA boards with an 8-bit or 12-bit ADC 
and acquisition rates up to 60 Msamples/sec. These cards contain on-board 
memory for data storage (up to 512 Kbytes), since their analog input data 
rate is much faster than ISA bus speeds. 

Intelligent Instrumentation has a USB data acquisition system (UDAS) 
which supports 100,000 samples/sec analog I/O at 12-bit resolution. It also 
has a parallel port data acquisition system, the DAASport series. This is 
especially useful for laptop PCs. It supports both standard and enhanced (EPP) 
parallel ports with analog rates up to 100,000 samples/sec at 12-bit resolution. 

Another interesting Intelligent Instrumentation product line is their 
Ethernet data acquisition system (EDAS). This family consists of stand-alone 
boxes that interface analog, digital, and serial communications I/O to lOBASE-T 
Ethernet. For example, the EDAS-1002E is a multifunction unit that has a 
12-bit ADC and 16 single-ended (or 8 differential) inputs, with a maximum 
conversion rate of 100,000 samples/sec. It also has two 12-bit analog outputs 
and 16 digital I/O lines along with a 16-bit counter. Additionally, the EDAS-
1002E has an RS-232 port and an optional RS-485 port. The EDAS system 
is especially well suited for automated industrial applications where most 
sensors and controllers use a standard serial interface. 

More information about Intelligent Instrumentation's products is avail-
able on their Web site (www.instrument.com). 

Gage Applied, Inc. Gage Applied Inc. (now a subsidiary of Tektronix) spe-
cializes in high-speed, high-performance data acquisition products for PCI 
and ISA bus PCs. Their CompuScope line of analog input cards includes 
some of the fastest digitizers currently available. 

For example, the CS85G is a PCI analog digitizer with a maximum 
conversion rate of 5 Gsamples/sec on two simultaneous input channels, at 8-bit 
resolution. The input channels have 500 MHz analog bandwidth. Input gain 
is software selectable with an input range of ±20 mV to ±20 V, full-scale. 
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The card has an on-board storage memory up to 10,000 samples per channel. 
This means that at 5 Gsamples/sec, the maximum acquisition window is 
2 |isec long. 

The CS14100 is another analog input PCI card with 14-bit resolution 
and a maximum conversion rate of 100 Msamples/sec, in single-channel 
mode. This card contains two 50-Msamples/sec ADCs that can provide simul-
taneous sampling for two input channels. In the single-channel mode, the two 
ADCs use a "ping-pong" scheme to produce a doubled conversion rate of 
100 Msamples/sec. 

Gage also produces high-speed ISA analog input cards, but these are 
not nearly as fast as Gage's PCI products. For example, the CS2125 has an 
8-bit ADC with a maximum conversion rate of 250 Msamples/sec for one of 
its two input channels. It has on-board memory up to 8 Mbytes and a data 
transfer rate as high as 2 Mbytes/sec into PC memory (via the ISA bus). 

Gage's product lines include analog output, digital input, and digital 
output boards. The CompuGen 1100 is a 12-bit PCI analog output card with 
a maximum rate of 80 Msamples/sec and on-board memory up to 16 million 
samples. It is used primarily as an arbitrary waveform generator (a virtual 
instrument). The CS3200 is a 32-bit PCI digital input card that can run at 
rates up to 100 MHz, with on-board memory as large as 2 Gbytes. The 
CompuGen 3250 is a 32-bit PCI digital output card with data rates as fast as 
50 MHz. It has up to 8 million samples of on-board memory. The 3250 is 
especially useful as a high-speed pattern generator to test digital systems. 

Gage also produces software to support their products. GageScope 
software operates as a virtual oscilloscope with CompuScope cards. It is an 
interactive, graphics environment that requires no programming. GageScope 
acquires, saves, and displays digitized data. It also has analysis features, such 
as signal averaging, correlations, and FFTs. GageScope is available for both 
MS-DOS and MS Windows 95/98/NT/2000. 

In addition. Gage has a software development kit (SDK) supporting its 
CompuScope and CompuGen cards, for users who want to write their own 
software. These SDKs support not only C/C++ programs under DOS and 
Windows 95/98/NT/2000, but also programs written for MATLAB and Lab-
VIEW (see Section 11.2, later in this chapter, for more information on MAT-
LAB and Lab VIEW). 

More information about Gage's products is available at their Web site 
(www.gage-applied.com). 

Microstar Laboratories Microstar Laboratories specializes in intelligent data 
acquisition boards. Their data acquisition processor (DAP) product line consists 
of PCI and ISA cards that contain an on-board microprocessor. This local 
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processor runs its own operating system (DAPL) and gives the board the 
capabiUties it needs for real-time processing and control applications as well 
as handling large numbers of analog I/O channels. 

An example of an ISA card in this series is the DAP 32009/415 running 
an Intel 80486DX4 processor at 96 MHz. This card has 16 analog input 
channels (expandable to 512) and a maximum conversion rate of 769,000 
samples/sec at 12-bit resolution. It has 2 analog outputs (expandable to 66) 
with a top data rate of 833,000 samples/sec. The board also has 16 digital 
inputs (expandable to 128) and 16 digital outputs (expandable to 1024), which 
have an update rate of 1.66 MHz. The board can transfer data to PC memory 
through the ISA bus as fast as 909,000 samples/sec. 

Microstar Laboratories' PCI products include the DAP 52009/626, run-
ning an AMD K6 III+ processor at 400 MHz. This card has 16 analog inputs 
(expandable to 512) with a 14-bit ADC converting up to 800,000 samples/sec. 
It also has 2 analog outputs, with an update rate of 833,000 samples/sec. 
The board contains 16 digital inputs (expandable to 128) and 16 digital 
outputs (expandable to 1024) with update rates of 1.66 MHz. It can transfer 
data to PC memory through the PCI bus as fast as 1.66 Msamples/sec. 

Microstar Laboratories provides software support for its hardware prod-
ucts. DAPview for Windows runs on a PC and implements data acquisition 
and control functions without requiring any programming. Microstar Win-
dows Toolkit (MSWTK) allows you to write your own programs to run a 
DAP board, using most common Windows programming languages, such as 
Microsoft Visual C/CH--I-, Borland C+ + , and Microsoft Visual Basic. 
Microstar Laboratories also has a developers' toolkit for DAPL (MSDTD), 
to generate custom commands for the on-board processor. 

Other Microstar Laboratories products include signal processing equip-
ment, such as antialiasing filter boards or chassis for special-function modules 
(such as analog isolation units). More information is available at their Web 
site (www.mstarlabs.com). 

Omega Omega is a major manufacturer and distributor of industrial mea-
surement and control equipment, including sensors and data acquisition prod-
ucts (both hardware and software). Their data acquisition lines include ISA 
and PCI plug-in cards, signal conditioning systems, and stand-alone data 
acquisition systems based on serial, GPIB, and Ethernet interfaces. They also 
supply software to support their hardware products. 

Omega is a good one-stop source for data acquisition products, includ-
ing a very broad range of sensors. They publish a large set of catalogs. 
Additional information is available at their Web site (www.omega.com). 
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This concludes our overview of commercial data acquisition hardware 
for PCs. Please refer to the Appendix for a more comprehensive listing of 
manufacturers. Next we will look at commercial software products. 

11.2 Commercial Data Acquisition Software 
Products 

The availability of abundant, powerful, easy-to-use software is probably the 
strongest incentive to employ a PC as the platform for a data acquisition 
system. In many ways, the variations in data acquisition software products 
mirror those in hardware products. These software products vary from simple 
drivers, tied to a particular manufacturer's boards and dedicated to basic data 
collection tasks (analogous to single-function hardware), to complete data 
acquisition/analysis/display software packages, supporting a broad range of 
hardware products (analogous to multifunction cards). 

As we discussed previously, a software driver is a special program that 
acts as an interface to a particular hardware device. It is used in conjunction 
with other software: the controlling program. The driver handles all the low-
level interfacing, such as reading from and writing to a data acquisition 
board's I/O ports and memory locations. It presents higher-level commands 
to the controlling program, such as to initiate an ADC conversion on the 
selected channel and return the result. The driver takes care of all the I/O 
port conamands, simplifying the controlling program. In addition, when run-
ning a secure 32-bit operating system, such as MS Windows NT/2000, the 
only way to access a board (or any hardware device) is through a software 
driver, since direct hardware access is not allowed. 

In nonsecure operating systems (such as DOS) a driver for a data 
acquisition card is an aid to writing a program that uses the card. It is specific 
not only to the board it supports, but also to the operating system and 
sometimes the programming language it is used with. By itself, a driver is 
not a full-blown software package; it is only a tool used to create the complete 
program. That is why manufacturers offer different drivers for different oper-
ating systems (DOS, Windows 95/98/NT) and programming languages 
(BASIC, C, Pascal under DOS or MS Visual C/C-H-h, MS Visual Basic under 
Windows). Commonly, a manufacturer supplies a driver that allows Windows 
95/98 applications to work with the data acquisition board. Other drivers, 
including those for DOS systems (for older, ISA hardware), are usually 
available at modest cost. Sometimes different drivers are needed for different 
compiler manufacturers supporting the same language, such as Microsoft C 
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and Borland's Turbo C under DOS. See Chapter 13 for a discussion of 
programming languages. 

DOS software drivers are usually supplied in one of two forms when 
supporting a compiled language: a memory-resident module or a Hnkable 
module. A memory-resident module is supplied as a small program (typically 
with a .COM file name extension). The program is run, making the driver 
memory-resident. Occasionally, the memory-resident driver is provided as a 
.SYS file and installed as a DOS device driver, via the CONFIG.SYS file. 
Once this driver is loaded into memory, another program can call its functions, 
using a software interrupt. A Windows driver must be loaded using its install 
program, in the same manner as any Windows application software. 

A DOS driver in the form of a linkable module is usually supplied as 
a .OBJ file. The user-written control program makes calls to functions in this 
module. After this control program is compiled, it is linked with the driver 
file, producing the complete executable program as an .EXE file. 

In Microsoft Windows, executable files also have an EXE extension. 
Often, collections of callable Windows functions are distributed as dynamic-
link library (DLL) files. These can be accessed by most Windows program-
ming languages. 

Most hardware vendors bundle a variety of software with their prod-
ucts, including drivers for the appropriate operating system (usually MS 
Windows 95/98/NT/2000) and a software development kit (to write your 
own programs using common programming languages). In addition, many 
include diagnostics and some simple applications to verify board operations 
and perform basic data acquisition tasks (such as a virtual oscilloscope or 
chart recorder). 

Fortunately, you do not have to be a programmer to use most PC-based 
data acquisition systems. Many software manufacturers (and more and more 
hardware manufacturers) produce easy to use, menu-driven, and graphics-
based data acquisition and support programs. These software products may 
have one or more general functions: data acquisition, data analysis, and data 
display. Several high-end, integrated software packages provide all three 
functions, in varying degrees. 

An important trade-off in all types of software packages is whether the 
user interface is graphics or icon-based versus command-driven. In simple, 
icon-based (graphics display) software, the user chooses among many options 
presented by the program. These types of programs are the easiest to learn 
and use. Their drawback can be low flexibility. The only functions (or com-
bination of functions) available are those built into the selection system or 
enhanced by add-ins. If you need to do something different, you may be out 
of luck, unless it is added as a new feature in a product upgrade. An example 
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of this type of program is a virtual oscilloscope application, bundled with a 
data acquisition card. 

In contrast, command-driven software (usually text-based) is harder to 
use and not as intuitive to learn. It does, however, offer the maximum flexi-
bility. All available conmiands can be used with any possible combination of 
parameters. In addition, most command-driven software packages allow for 
some level of programming. This can be as simple as stringing a series of 
commands together, as with a macro, or as complex as a true program with 
looping, conditional execution, and a wide range of data types. Some software 
products, such as MATLAB, are essentially high-level programming lan-
guages, optimized for analysis or data acquisition applications. 

There are also software products that act as graphics-based data acqui-
sition languages, such as LABTECH NOTEBOOK and Lab VIEW. These 
types of software packages offer the best of both worlds: ease of use combined 
with flexibility and extendibility. You program by connecting icons instead 
of writing lines of code. 

For older DOS software products, manufacturers of command-driven 
software often included a menu-based shell with their packages. This shell acted 
as an easily learned command interface, buffering the user from the command-
driven language itself. Once someone became familiar with the system and 
"outgrew" the menu shell, they could directly use the conmiand-driven inter-
face. This was usually a flexible approach. The main drawbacks were slower 
performance and a larger program, due to the extra shell layer in the software. 

Figure 11-9 shows a simple comparison of DOS-based, menu-driven 
versus command-based interfaces. To save a data array as a plot file, using 

OUTPUT MENU 
(1) Display Data 
(2) Plot Data^^— 
(3) Save Data 
(4)1 
(5) 
(6) 

PLOT MENU 
(1) To Printer 
(2) To Plotter 
(3) To Disk F i i e ^ 
(4) 
(5) PLOT TO DISK 

Enter File Name: 

JUNK.DAT $ PLOT > FILE JUNK.DAT 

(a) Menu-Based (b) Command-Driven 

Figure 11-9 Comparison of menu-based and command-driven user Interfaces. 
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the menu system (Figure 11-9a) you would choose selections from several 
overlapping windows, and finally specify the output file name. In the command-
driven interface (Figure 1 l-9b), a single one-line command performs the same 
operation. 

Software with data acquisition functions is absolutely necessary for all 
data acquisition systems. This type of software enables the user to set up the 
data acquisition board's parameters, record the desired amount of data at a 
specified rate for a specified time, and store the resulting data in a file for 
future analysis and display. In addition, real-time graphics display of data as 
it is acquired is extremely useful. This software package must support the 
particular data acquisition board used as well as optional hardware accessories 
(such as multiplexers and signal conditioners) and must be appropriate for 
your PC's operating system and resources. 

This support takes many forms. There are important factors to consider 
when comparing data acquisition software packages, especially which fea-
tures are present and how they are implemented. Full support of all hardware 
features is mandatory, especially maximum ADC conversion rate, interrupt 
support, and DMA support for ISA or bus-mastering for PCI. Support of 
multiple boards is certainly desirable. Most software packages include a real-
time graphical display of the acquired data, in either an x-y graph or a strip-
chart format. It is common for data acquisition software to scale the raw input 
values (usually signed integer format) from an analog input voltage to the 
physical units being measured by the sensors. For example, the millivolt 
readings from a thermocouple would be stored as degrees Celsius values, or 
the voltage output of a LVDT displacement sensor would be stored as milli-
meter values. 

The format of the stored data (from an ADC) as well as how it gets 
stored are other important factors. Some software products will store data in 
an ASCII format, which is easy to print out and read. ASCII data is readily 
transferred to other software packages, such as spreadsheets, for analysis and 
display. The drawback is that ASCII data takes up more disk space than 
equivalent binary data and requires more time to be stored and transferred. 
For relatively slow data rates or small amounts of data, this is not a significant 
problem. If the data rates get very high (at or above approximately 1 Mbytes/ 
sec, for example) or the produced data gets very large, a binary storage 
format is indicated. Of course, the large hard drives in current PCs may 
make saving disk space appear unnecessary. However, if you want to back 
up or archive your data, large files still result in longer processing times and 
higher costs. 

In some cases, a data compression format may be needed, although this 
is not often done in real time (PKZIP or WINZIP are often used to compress 
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stored data files). A binary format may be the same as the signed integer data 
produced by the data acquisition board, or it may be a more sophisticated 
data structure, including scaling and coordinate information, as when it rep-
resents a data array. Some software products may use a proprietary format. 
Usually, the data format is specified in the user's manual. This allows you to 
transfer the data into another commercial or custom program. 

Many standard data formats are supported by conmiercial data acquisi-
tion programs, besides just ASCII. One of these is the Microsoft Excel work-
sheet format. Spreadsheet programs, such as Excel and Lotus, are very popular 
for numerical analysis and display in business environments. Some data acqui-
sition-only software packages produce data outputs in this worksheet format, 
allowing the user to do analysis and output using Excel or a compatible 
spreadsheet program. Other data acquisition software packages that provide 
analysis functions can both read and write data in this worksheet format—^usu-
ally as a special ASCII file called comma-separated variables (CSV). In 
addition, some products directly link to Excel or are Excel add-ins that provide 
data acquisition functions within the spreadsheet environment. 

One very specialized type of data acquisition software package used 
under DOS with ISA cards was the data streamer. This was used to acquire 
data and store it in a hard disk file at the maximum rate allowed by the 
hardware. This maximum rate, sometimes referred to as throughput, was 
determined by the speed of the data acquisition board's ADC and the PC's 
maximum disk data-transfer rate. If the data acquisition card had on-board 
memory, the PC's speed was not a factor, up to the board's storage capacity. 
A data streamer supported "no-frills," high-speed data acquisition. It was 
most useful with DMA hardware and provided little or no data processing. 

Even with today's PCI-based PCs and fast IDE hard drives, high-speed 
transfer of large amounts of real-time data to a disk drive may not keep up 
with a data acquisition card's conversion rate. For these type of high-perfor-
mance streaming applications (typically well above 1 Mbytes/sec), special 
SCSI hard drives are often used. 

Commercially available data analysis software is another important part 
of a PC-based data acquisition system. These analysis packages can be used 
by themselves, with data internally generated or imported from other pro-
grams (data acquisition software, among others). Some of them also include 
data acquisition functions. Nearly all Windows-based data analysis software 
packages include output functions for video display as well as printer and 
plotter support. The capabilities of these packages vary from general mathe-
matical operations to DSP functions (such as FFTs). Some of these data 
analysis products are not specifically aimed at data acquisition, scientific, or 
engineering applications. General-purpose business programs, such as Lotus 
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and Excel spreadsheets, are examples of this. However, they are still very 
useful analysis tools for acquired data. And Excel even has add-in features 
that include some engineering functions, such as FFTs. 

Some data-analysis software packages consist of function libraries for 
a particular programming language. They are analogous to hardware drivers, 
as they are only useful to someone creating a custom program. Of course, 
these libraries are not tied to any particular data acquisition hardware. They 
may require a specific data format and interface only to particular language 
compilers. We will not dwell on these libraries here, as they are mostly of 
interest to software developers. 

Software only for data display also exists, although most data analysis 
programs include extensive display capabilities. Data display usually consists 
of producing a graph or chart on a video screen, a printer, or a plotter. Useful 
data display features include ease of plotting data, changing scales, labeling 
plots, variety of plot formats (JC, y fine plots, bar charts, pie charts, 3-D plots), 
using nonlinear axes (such as logarithmic), ability to output to a file, and 
support of a wide range of output device types (printers and plotters) and 
data formats. 

The line between data acquisition and analysis software continues to 
blur. Many data acquisition software products continue to add sophisticated 
data analysis features. At the same time, many data analysis software packages 
add support for both generic and specific data acquisition (plug-in cards) and 
instrumentation (RS-232, GPIB) hardware. 

One final note on selecting suitable software products: always check 
the PC resource requirements of a package before purchasing it. This includes 
both a PC's hardware (processor type, speed, amount of RAM, hard drive 
space) and software (operating system) environment. If a particular product 
would require you to upgrade or replace a PC to meet its requirements, 
perhaps you can use a different (usually older) software package in its place. 

Now, we will examine a few data acquisition software packages in 
greater depth. 

11.2.1 LABTECH NOTEBOOK 

Laboratory Technologies Corp. produces the LABTECH family of data acqui-
sition software products. These applications evolved from DOS versions into 
the current MS Windows 95/98/NT/2000 graphical programs that use icons 
and menu selections for setup and control of data acquisition systems. They 
require no programming and are very easy to use. LABTECH NOTEBOOK 
provides real-time data acquisition, display, control, and data logging for 
scientific and engineering applications. LABTECH NOTEBOOKpro is 
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intended for larger data acquisition systems (requiring more system elements/ 
icons and interconnects) and includes support for high-speed DMA transfers 
as well as RS-232 and GPIB instruments. 

LABTECH CONTROL is a superset of NOTEBOOKpro, intended for 
industrial applications. Besides supporting even larger systems, CONTROL'S 
additional features include alarms, PID control loops, and remote-control 
capabilities. LABTECH CONTROLpro is a larger version of CONTROL (for 
very complex systems). 

To simplify this discussion, we will refer to all of the LABTECH 
NOTEBOOK and CONTROL products generically as NOTEBOOK, although 
some advanced features may only be available in NOTEBOOKpro or CON-
TROL/CONTROLpro. 

LABTECH NOTEBOOK supports more than 1000 different data acqui-
sition boards from at least 50 hardware manufacturers, including Data Trans-
lation, Intelligent Instrumentation, Keithley, and National Instruments. Its 
advanced features include real-time data display, remote data monitoring via 
the Internet, and even high-speed data streaming (up to 1 Msample/sec). 

To set up NOTEBOOK for a particular data acquisition task you run Build-
Time, a graphical user interface (GUI). This consists of standard Windows-
style pull-down menus, some specialized control buttons, and a selection of 
icons. The icons represent function blocks, such as analog inputs, digital 
outputs, logs, and displays. You set up your data acquisition system by placing 
the appropriate icons or blocks on the drawing board area of the Build-Time 
screen, and then you connect them together. This becomes a graphic repre-
sentation of your data acquisition task. A simple example would be connect-
ing an analog input block to a log block (for saving data in a file) or to a 
display block (for graphing the data on the screen). Figure 11-10 shows a 
typical NOTEBOOK Build-Time display for a temperature measurement 
application. 

Each icon or block has a dialog box that lets you set up its features. 
For example, an analog input block would have settings for sample rate and 
input voltage range. A thermocouple block would have settings for thermo-
couple material type and temperature range. 

Besides data input and output icons (both analog and digital), NOTE-
BOOK also uses calculated blocks to process data. These are connected 
between a data source and destination. More than 50 processing operations 
are available, including basic mathematical, trigonometric, statistical, and 
Boolean functions. In addition, NOTEBOOK has several special functions 
available, such as FFTs and FIR filters. You can even produce customized 
blocks, based on a C program, with C-Icon blocks (using additional 
LABTECH software). 



284 CHAPTER 11 Commercial Data Acquisition Products 

Figure 11-10 A sample LABTECH NOTEBOOK Build-Time display. (Courtesy of 
Laboratory Technologies Corp.) 

The display features in NOTEBOOK are available through a software 
module called Realtime VISION, available as a Build-Time icon. VISION 
contains its own array of icons for display, control, drawing, and even ani-
mation. The display choices include digital meters, analog meters, bar graphs, 
trend graphs (y versus t), and x, y plots. VISION'S control icons include knobs, 
slides, and buttons for controlling outputs. 

Once your Build-Time setup is complete, you can run the system by 
starting Run-Time. This is the data acquisition process in operation, using 
the VISION displays set up in Build-Time. Figure 11-11 shows a typical Run-
Time VISION display. 

Several of the selectable output data file formats of NOTEBOOK are 
suitable for exporting data to other applications, such as spreadsheets. In 
addition, LABTECH provides an Excel macro that allows you to import data 
into a Microsoft Excel spreadsheet from NOTEBOOK, in real time. In addi-
tion, it can export data from Excel back to NOTEBOOK. You can set up your 
acquisition (with some limitations) and run it while staying entirely within 
Excel. 
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Figure 11-11 A sample LABTECH NOTEBOOK Run-Time VISION display. (Courtesy 
of Laboratory Technologies Corp.) 

NOTEBOOK also supports interfaces to other Windows applications 
via Microsoft's dynamic data exchange (DDE) protocol. Under DDE, one 
program is designated the server (usually the data source) and the other 
program is the client (which request and receives the data). The transfer of 
data is usually accomplished using standard Windows Copy and Paste com-
mands. This sets up the DDE link. Subsequently, whenever the source data 
changes (at the server) the client sees those changes. This is a good way to 
export LABTECH data to another application for further analysis. 

Among NOTEBOOK'S advanced features are data streaming and 
remote data acquisition. When using a high-speed data acquisition board, you 
may need to transfer data to your PC's memory at or close to the board's 
maximum conversion rate. NOTEBOOK allows you to set up an analog input 
block for high-speed streaming. You can select the sampling rate, size of the 
memory buffer (in the PC's RAM) for data storage, and whether to stream 
this data in real time to a disk file (or just leave it in memory). Furthermore, 
you can collect the data at high speeds, such as 200,000 samples/sec, while 
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displaying it at much lower rates, such as 30 Hz. This way the display 
hardware and software do not slow up the acquisition process. 

You can use NOTEBOOKpro or CONTROL/CONTROLpro to enable 
the remote display of data via the Internet. A PC running NOTEBOOKpro 
becomes a server, using LABTECHnet software. This system runs the desired 
data acquisition task. Remote PCs connected to the Internet (or even a local 
TCP/IP network, connected to the server PC) are clients also running 
LABTECHnet as a background task. The data can then be viewed using a 
standard Web browser (such as Netscape Navigator or Microsoft Internet 
Explorer), Realtime VISION, or an application that supports the Active-X 
protocol (such as Microsoft Word and Excel). This capability allows data 
acquisition processes to be monitored anywhere in the world. 

More information about LABTECH'S products is available at their Web 
site (www.labtech.com). 

11.2.2 LabVIEW 

Lab VIEW, a software product developed by National Instruments, is used for 
data acquisition, analysis, and control. It supports not only National Instru-
ments' hardware products but also those of most major manufacturers. It has 
an open architecture and has become an industry standard. 

LabVIEW (which is an acronym for laboratory virtual instrument engi-
neering workbench) is a graphical programming language that runs on PCs 
under MS Windows 95/98/lSnr/2000, Linux, and UNIX. There are versions that 
run on Power Macs and on Sun and HP workstations. As with LABTECH 
NOTEBOOK, you graphically connect icons or functional blocks instead of 
writing lines of programming text to define a system's operations. LabVIEW, 
being a true programming language, produces 32-bit, compiled applications 
as well as stand-alone executables and dynamic-link libraries (DLLs). It uses 
a data-flow programming model: the execution order is determined by the 
data values moving between functional nodes. 

All LabVIEW programs are composed of one or more virtual instru-
ments (Vis) that emulate a physical instrument (such as an oscilloscope or a 
signal generator). Each VI contains three components: the front panel, the 
block diagram, and the icon/connector. The front panel is the user interface 
for the VI, containing controls (inputs) such as knobs, buttons, and data 
acquisition card signals as well as indicators (outputs) such as graphs and 
numeric displays. This is the high-level I/O for the VI. 

Once the front panel I/O functions have been determined, you build a 
graphical program using the block diagram. Here, you define the operations 
to be performed on data coming from the controls and going to the instruments 
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(which all have connection terminals). This is done by first placing the desired 
function icons in the block diagram window and then connecting them 
together. 

For example, a simple VI front panel may consist of a data acquisition 
card input channel (the input) and a waveform graph (the output). If no data 
processing is required, the block diagram consists of wiring the terminal of 
the data acquisition channel to the terminal of the waveform graph. If the 
data requires some processing, such as employing an FIR filter to reduce 
noise, you can add that function between the input and output. You can also 
add data acquisition functions (analog and digital I/O), instrument I/O func-
tions (such as IEEE-488 and RS-232 commands), and even file I/O functions 
(reading and writing data files) to the block diagram. Available functions 
include basic mathematical and trigonometric operations as well as sophisti-
cated signal processing algorithms, such as FFTs and digital filters. 

The third component of a VI, the icon/connector, is the key to Lab-
VIEW's modular design. The icon represents the VI and lets you use it as a 
sub-VI within another VI. This is analogous to using a subroutine in a 
conventional, text-based progranmiing language. The use of sub-Vis makes 
Lab VIEW hierarchical and easily extendible, which is central to its power 
and popularity. Many data acquisition hardware manufacturers provide Vis 
for their products. Users then build their own Lab VIEW application around 
these predefined Vis. 

Lab VIEW works equally well with stand-alone instruments connected 
to a PC via a standard interface (such as IEEE-488 or RS-232) or with data 
acquisition cards installed inside a PC. Lab VIEW uses drivers, which are 
specialized Vis, to simplify interfacing to the hardware. For stand-alone 
instruments, Lab VIEW uses its virtual instrument software architecture 
(VISA) library of Vis that provides a common software interface for different 
communications standards. 

For using data acquisition hardware. Lab VIEW has a DAQ Solution 
Wizard. This simplifies the process of configuring the hardware and setting 
up the data acquisition application. To employ the wizard, you first select the 
hardware to use and assign functions to analog and digital I/O channels via 
a separate DAQ Channel Wizard (which can be called from the DAQ Solution 
Wizard). For example, if you are using a National Instruments PCIO-MIO-
16E-1 card, you may define analog input channels 0 and 1 as temperature 
inputs, analog input channel 2 as a pressure input, analog output channel 0 
as a heater control, and digital output channel 0 as an alarm relay control. 

Once the data acquisition I/O channels are configured, you can go to 
the Solutions Gallery and choose predefined Vis for common applications 
(such as temperature measurement, data logging, and PID control). If the 
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Solutions Gallery does not contain a VI similar to your application, the 
Solution Wizard guides you through the process of building a custom data 
acquisition application using analog I/O, digital I/O, counters and signal 
generators. Once the process is completed, you have a new VI that represents 
your application. As with any VI, this application can be modified. For example, 
you may need to add filtering or other signal processing between the analog 
input and the display or data logging output. However, you may first need to 
collect some raw data before you can evaluate the filtering requirements. 

Because of LabVIEW's flexibility, you can easily import data from or 
export data to other applications, using files. For example, the file I/O func-
tions include Vis to write to or read from a spreadsheet file. Being a complete 
programming language and development environment. Lab VIEW also con-
tains debugging features. You can step through a program in slow motion or 
single-step to check for data flow problems. You can even set breakpoints in 
a VI and add probes to examine intermediate data values. 

Additional Lab VIEW features include remote data acquisition via 
TCP/IP and the Internet and actively sharing data with other Windows appli-
cations via DDE. Specialized measurement and control applications are sup-
ported with a wide range of add-on tools, such as a PID control tool set and 
a signal processing tool set that includes wavelet analysis. 

There are several versions of Lab VIEW available from National Instru-
ments. The Lab VIEW Base Package contains all of the features needed to 
create data acquisition applications and perform basic analysis and signal 
processing operations. The Lab VIEW Full Development System adds addi-
tional mathematical and signal processing capabilities, such as array opera-
tions, integration, differentiation, statistical functions, digital filters, and 3-D 
plotting. The Lab VIEW Professional Development System adds the capa-
bility of stand-alone executables, shared DLLs, and tools to support large 
project development. The majority of data acquisition applications would 
only need the Base Package as long as sophisticated signal processing and 
analysis is not required (or data will undergo postprocessing analysis in 
another program). 

More information about Lab VIEW is available at National Instruments' 
Web site (www.ni.com). 

11.2.3 Other Data Acquisition Software Products 

LABTECH NOTEBOOK and Lab VIEW are probably the most popular soft-
ware products used primarily for PC-based data acquisition. However, there 
are several other widely used software packages, including Agilent VEE, Test 
Point, Dasy Lab, and Snap-Master. Some data acquisition software packages 
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are produced by a hardware manufacturer only for support of their boards. 
Others are produced by independent manufacturers and support a wide range 
of hardware sources. The following are a sample of software products that 
support multiple hardware vendors. 

Agilent VEE Agilent VEE (originally HP VEE) is a Windows graphical pro-
gramming language, similar to Lab VIEW, designed for controlling electronic 
instruments. Originally developed by Hewlett Packard, VEE is strongly 
geared toward stand-alone instruments connected to a PC via external buses 
(especially IEEE-488), but it does support some data acquisition cards. 

As with Lab VIEW, in VEE you place graphical objects in a work area 
and connect them to form a program. There are no separate front panel and 
block diagram windows in VEE: all objects, interconnects, and displays are 
in a single window. Many of these available objects are math and signal 
processing functions, allowing you to build complex data acquisition systems. 

Configuring instruments is done via the Instrument Manager. This has 
a very useful feature. Auto Discovery, which allows VEE to find instruments 
connected to the PC's interfaces. It works well for IEEE-488.2 devices, where 
you do not need to know the instrument's GPIB bus address to access it. 

VEE is available in two versions: OneLab or Pro. VEE OneLab is designed 
for individual workstations running small-to-medium instrumentation systems. 
VEE Pro supports more instruments, larger programs, and multiple users. 

You can find more information about VEE at Agilent's Web site 
(www.tm.agilent.com). 

Test Point Test Point, from Capital Equipment Corp., is a software package 
that quickly generates compiled data acquisition, test-measurement, and anal-
ysis applications without writing any code. It runs under Windows 95/98/Me/ 
NT/2000 and uses an object-oriented approach that is somewhat different 
from that of LABTECH NOTEBOOK or Lab VIEW. Instead of connecting 
symbols, you simply describe your desired application and Test Point gener-
ates the code for it. 

You start by selecting objects you need for your new application: input 
devices (such as switches, ADC channels, or GPIB instruments) and output 
devices (such as graphs, files, and meters). Next you build an action list from 
the selected objects, choosing the desired operation for each one and filling 
in any application-specific information (such as acquisition rate for an ADC 
object). Then Test Point generates a compiled program from the description. 

Besides its ease of use, one of Test Point's advantages is that the 
applications it produces can be stand-alone and run on any current PC without 
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requiring an additional software license. Another Test Point feature is auto-
search that automatically finds data acquisition boards installed in a PC. 

Test Point supports a wide range of data acquisition boards from major 
manufacturers. Its data acquisition objects are high-level and vendor indepen-
dent. You can swap supported boards with similar functionality or move to a 
different PC and still run the same Test Point application, without any modifi-
cations: at run time, auto-search handles the low-level hardware configuration. 

Test Point works equally well with automated instruments that use 
standard interfaces, such as IEEE-488, RS-232, and RS-485. It has a good 
selection of math objects, including FFT functions, digital filters, statistical 
functions, and curve-fitting functions. It supports data links to other Windows 
applications through standard software protocols, such as OLE2 and DDE. 
Test Point is also extendible, supporting user-defined objects. 

There are several optional toolkits available for Test Point, including 
the Internet Toolkit for remote data acquisition and control. Capital Equip-
ment Corp. also produces a stand-alone. Web-based data acquisition product 
called Web DAQ/100. For additional information, visit their Web site 
(www.cec488.com). 

Dasy Lab Dasy Lab, from Dasytec USA (a subsidiary of National Instru-
ments), is a graphics-based, easy-to-use data acquisition software product 
for Windows. It supports data acquisition hardware from more than 40 
manufacturers. It also supports IEEE-488 and RS-232 instruments connected 
to a PC. 

Dasy Lab uses function modules as graphic representations of I/O 
devices, signal processing/control functions, and display devices. You select 
the desired function modules and place them on the worksheet. You connect 
the modules with wires to represent data flow (as with LABTECH NOTE-
BOOK and Lab VIEW). Each module's parameters can be configured via a 
dialog box. For example, an Analog-Input Module would have settings for 
the number of channels and their sampling rate. 

Dasy Lab contains math and signal processing function modules, includ-
ing differentiation, integration, curve fitting, and statistical functions. Optional 
add-on modules include FFTs and digital filters. Other options include a driver 
toolkit to develop software support for custom hardware and an extension 
toolkit that allows you to develop your own custom function modules. 

Dasy Lab has DDE input and output modules, for easy interfacing to 
other Windows applications. An additional product, Dasy Lab Net, provides 
remote data acquisition capabilities via any TCP/IP network, including the 
Internet. More information about Dasy Lab and related products is available 
at their Web site (www.dasylab.net or www.dasytec.com). 
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Snap-Master Snap-Master for Windows, from HEM Data Corp., is another 
graphical data acquisition and analysis software package. This product can 
run on older PCs under Windows 3.1 or on newer models using Windows 95 
or above. Snap-Master supports data acquisition hardware from more than 
15 manufacturers, including PCMCIA cards as well as plug-in boards. One 
unique feature of Snap-Master is its sensor database that automatically con-
verts acquired data values to appropriate engineering units (degrees, psi, etc.). 

As with several other graphics-based data acquisition software pack-
ages, Snap-Master is configured by selecting icons for the desired functions 
and connecting them together. It also supports DDE for sharing data with 
other Windows applications. In addition, Snap-Master can import or export 
data in the popular CSV spreadsheet format. 

Snap-Master's Waveform Analyzer module provides signal-processing 
capabilities, including mathematical functions, statistical functions, and digital 
filters. The Frequency Analyzer module includes FFTs, correlation functions, 
and processing functions specific to electrical, mechanical, and hydraulic tests. 
New functions can be added using the Programmer's Toolkit and drivers for 
custom hardware can be written using the Hardware Driver Interface. 

For more information on Snap-Master products you can visit HEM's 
Web site (www.hemdata.com). 

This survey of data acquisition software is hardly exhaustive. However, it 
should give you a broad view of some major products that are commercially 
available. For additional hstings, refer to the Appendix. Please bear in mind that 
software products change much more rapidly than hardware products and you 
should always obtain current information before making a purchasing decision. 

Next, we will turn to data analysis software, both for data acquisition 
and general-purpose applications. We will start by looking at MATLAB. 

11.2.4 MATLAB 

MATLAB, a product of The Math Works, is a popular technical programming 
language and computing environment which runs under Windows 95/98/ 
Me/NT/2000 as well as other operating systems (Macintosh OS, Linux, and 
other UNIX systems). MATLAB is a powerful tool for data analysis and 
display, containing more than 600 mathematical, statistical, and engineering 
functions. In addition, it supports data acquisition through external IEEE-488 
and serial (RS-232, RS-485) instruments as well as data acquisition boards 
from some major manufacturers (including National Instruments and Keithley). 
Several independent data acquisition software products support MATLAB 
and some even contain a subset of its features. 

MATLAB, which stands for matrix laboratory, is an interactive system 
using arrays as its basic data elements. These arrays do not require dimensioning. 
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as in conventional programming languages such as BASIC or C. The base 
MATLAB system contains standard mathematical, trigonometric, and matrix 
manipulation functions along with 2-D and 3-D graphics capabilities. Addi-
tional features are available by adding toolboxes, which are collections of 
specialized MATLAB functions. Some of these toolboxes include data acquisi-
tion, filter design, image processing, instrument control, signal processing, 
statistics, and wavelet analysis. MATLAB also has application development 
tools that allow you to create stand-alone MATLAB programs. In addition, 
you can call MATLAB routines from standard C and FORTRAN programs 
using MATLAB's application program interface (API). 

When the program is started, the MATLAB desktop (consisting of 
several windows) appears. These partitions include the command window, 
the command history window, and the launch pad. The command window is 
where you enter variables, commands, and M-files (text files containing 
MATLAB commands and programs). The command window is an interactive 
environment, where you spend most of your time in MATLAB. The command 
history window lists all the previously entered command lines and the func-
tions used. You can execute selected lines in the command history or even 
save them as an M-file (to execute at other times, as a script). The launch 
pad provides access to tools, demos, toolboxes, and documentation files. A 
typical MATLAB desktop is shown in Figure 11-12. 

The essence of MATLAB is matrix manipulation. This allows you to 
operate on multiple numbers at one time. You can enter a matrix into MATLAB 
manually, from an external data file, from a built-in matrix-generating func-
tion, or using functions in M-files. To enter data manually, you give the new 
matrix a name, separate elements of a row with spaces or commas, separate 
rows with semicolons, and enclose the numbers with square brackets. For 
example, to manually generate a 4 x 4 matrix called Test, with incrementing 
values, you would type in the command window: 

Tes t = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16] 

Then, MATLAB would display this data as a matrix: 

Tes t = 
1 
5 
9 

13 

2 
6 

10 
14 

3 
7 

11 
15 

4 
8 

12 
16 

Simple math operations in MATLAB default to processing data col-
umns. For example, the sum function calculates the sum of each column in 
a matrix. If we typed 

sum (Test) 
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Figure 11-12 The MATLAB desktop. (Courtesy of The Math Works) 

MATLAB would display 

28 32 36 40 

If we wanted to sum the rows of our matrix. Test, we first have to 
transpose the matrix so that rows become columns. The transpose command 
is denoted by the single quote (') character. So, typing 

results in 

Test ' 

1 
2 
3 
4 

5 
6 
7 
8 

9 
10 
11 
12 

13 
14 
15 
16 



294 CHAPTER 11 Commercial Data Acquisition Products 

Now we can get the sum of the rows in Test by entering 

sum ( T e s t ' ) 

This produces 

ans = 
10 26 42 58 

If we wanted the sum of all the array elements, we would enter 

sum (sum (Test) ' ) 

giving the result 

ans = 
136 

You can easily access and operate on individual elements of an array 
using subscript notation. The element at row x and column y in array A is 
denoted A(jc, y). Looking at our sample matrix, Test, element Test (2, 3) is 7. 

Another important part of MATLAB is the colon (:) operator. It is used 
to denote a range of values or elements. For example, entering 

1:5 

produces a 5-element row vector: 

ans = 
1 2 3 4 5 

Using : in subscript notation produces references to portions of a matrix. 
If we wanted to sum only the elements in the second column of our Test 
matrix, we would enter 

s u m ( T e s t ( l : 4 , 2 ) ) 

and get the result 

32 

When used by itself, the colon operator refers to all elements in a row 
or column. So, a less verbose way to get the sum of Test column 2 would be 

sum (Test (: ,2) ) 
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MATLAB is a complete programming language as well as a computa-
tional environment. You do not need explicit type declarations or dimension 
statements, which simplifies "quick-and-dirty" programming. This is ideal 
for algorithm evaluations. 

MATLAB contains a full set of elementary and advanced mathematical 
functions that include trigonometric, logarithmic, complex, matrix manipu-
lation, Bessel, and coordinate transform functions. There are MATLAB func-
tions that generate matrices with all zeros, all ones, or random numbers. You 
can also enter data from an external text file using the load command. MATLAB 
has an Import Wizard that reads in data files from many standard text and 
binary formats. 

Most user-created MATLAB programs and functions are saved in M-files. 
These text-based files contain MATLAB code that could be entered at the 
Command Window. To illustrate, assume we created a data file called sam-
ple.m that contained the Test matrix declaration we used earlier: 

Test = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16] 

Then we could simply enter in the command window 

sample 

Now, MATLAB has created the array Test, with its associated data. An M-file 
can just as easily contain commands that operate on data. 

MATLAB contains several programming flow-control statements, sim-
ilar to those used in C and other standard languages. These include if, switch, 
continue, and break statements as well as for and while loops. Some aspects 
of the MATLAB implementation of these control statements do differ from 
their C language equivalents. 

MATLAB's graphic facilities are at least as extensive and powerful as 
its mathematical manipulation capabilities. You can easily create x, y graphs 
with the plot function. For example, then following commands will generate 
and plot a cosine function from 0 to In, using a 100-point vector: 

X = 0 : p i / 5 0 : 2 * p i ; 
y = c o s ( x ) ; 
p l o t ( x , Y ) 

Note that ending an assignment line with a semicolon (;) supresses output. 
The basic plot can be enhanced by adding labels and titles as well as 

specifiying fonts and colors. You can use the plot command to display multiple 
curves in a single figure via the subplot command. MATLAB also supports 



296 CHAPTER 11 Commercial Data Acquisition Products 

Figyre No. 1 
:-Bil#'-Eait 5£iaw Insert"/Ioo!s-<;-S^ftddw M^fp 

^ ^ ^ 1 ^ 1 ^s^^ I 

lomMml k MJ^^^'\^^M^:::^: : 

0 0 0 0 

1 '1 
0.5 

48̂  

,...-•••*'': 

.. • •* '^ 

^ ' "* 

0 0 ~5 ~5 

Figure 11-13 Typical MATLAB plots. (Courtesy of The Math Works) 

more sophisticated plotting, such as contour and 3-D surface plots. Plus, you 
can save plots as standard graphics files using common formats, including 
TIFF, JPEG, and PostScript. Figure 11-13 shows some sample 3-D MATLAB 
plots. 

An additional reason for MATLAB's popularity is its wide selection of 
toolboxes. These are collections of functions targeted at specific appUcations. 
For example, the Signal Processing Toolbox includes functions for digital 
filtering, spectral analysis (FFTs), convolution, and signal generation. This 
toolbox contains two interactive tools that act as special programs: the filter 
design and analysis (FDA) tool allows easy, interactive digital filter design and 
testing; the SP tool is a graphical user interface (GUI) that simplifies the display, 
analysis, and manipulation of processed signals, including filters and FFTs. 

The Instrument Control Toolbox and the Data Acquisition Toolbox are 
of special interest to us. The Instrument Control Toolbox contains functions 
for controlling external instruments via a standard interface, such as GPIB 
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or RS-232. Here is a simple MATLAB script that uses a National Instruments 
PCI-GPIB+ board to set the output amplitude of a Hewlett Packard 33120A 
function generator and then read back the new setting: 

fg = g p i b ( ' n i ' , 0 , 1 ) %create a GPIB object (board index=0, 
%primary address=l) . 
%connect object to instrument 
%write ASCII data (set amplitude command) 
%write ASCII data (read amplitude command) 
%read ASCII data (amplitude value readback) 
%disconnect object from instrument 
% remove object from memory 
%remove object from work space 

fopen(fg) 
fpr in t f ( fg , 'Vol t 2' 
fp r in t f ( fg , 'Vol t 1' 
data = fscanf(fg) 
fclose(fg) 
delete(fg) 
c lear fg 

Note that comments in MATLAB programs begin with the percent (%) 
character. 

The Data Acquisition Toolbox provides functions for accessing plug-in 
data acquisition cards. There are functions to create analog input, analog 
output, and digital I/O objects (similar to the GPIB object we created earlier). 
For example, the following MATLAB script acquires 2 seconds of data from 
a standard PC sound card at the maximum sampling rate of 44.1 kHz: 

scard = analoginput ('winsound') 

addchannel(scard,1:2) 
set(scard, 'Sample Rate',44100) 
set(scard, 'Samples Per 

Trigger',88200) 
s ta r t ( scard) 
sdata = getdata(scard) ; 

delete(scard) 

clear scard 

%create an analog input 
%object for a 
%standard Windows 
% sound card. 
%define two input channels 
%set sampling rate to 44.1kHz 
%set # of samples 
%(for 2 sec) 
%acquire the data 
%store the data in variable 
%sdata for processing and 
%di splay. 
%remove analog input object 
%from memory. 
%remove object from work 
%space 

In a similar fashion, you can output analog data using the analogoutput 
function. To control a card with digital I/O lines you would use the digitalio 
function. 

MATLAB is primarily a general-purpose data analysis and display 
software product, but its growing support of data acquisition functions makes 
it a good choice for many laboratory and industrial applications requiring 
extensive and flexible data processing. The number of data acquisition hard-
ware vendors directly supported by MATLAB is still somewhat limited. 
However, if you do use a card MATLAB supports, you can easily integrate 
data acquisition with the program's powerful analysis and display capabilities. 
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eliminating the need to port the acquired data from another software product. 
In addition, MATLAB has a Data Acquisition Toolbox Adapter Kit that helps 
you use currently unsupported hardware with its Data Acquisition Toolbox. 

More information about MATLAB can be obtained at The Math Works' 
Web site (www.mathworks.com). 

11.2.5 DADiSP 

DADiSP is a data analysis and display software package for MS Windows-
based PCs and UNIX workstations, produced by DSP Development Corp. It 
is a menu-driven program that operates as an interactive graphics worksheet. 
DADiSP requires no progranmiing but you can still create your own functions, 
macros, and command files. It can display, process, and output data plots, 
both 2-D and 3-D. Each worksheet can contain up to 100 independent graphics 
windows simultaneously. Each window contains its own plot or data. Data 
in one window can be a function of data in other windows. As the independent 
data windows get changed, the dependent window is automatically updated. 
Suppose an independent window contains a waveform (perhaps acquired via 
another program). If a dependent window contains the power spectrum (via 
EFT) of that waveform, it will be updated if new data is read into the original 
waveform window. This is a very powerful feature for doing complex analyses 
and is analogous to using a conventional spreadsheet, such as Microsoft Excel, 
where the value in one cell can change if data in other cells are modified. In 
addition, windows can contain formulas without data and act as templates, 
ready to process any data set. 

DADiSP contains more than 1000 analysis functions (as of the 
DADiSP/2000 version). These functions include basic mathematical and trig-
onometric operations, statistical functions, EFT and related operations (such 
as autocorrelation), function generation, digital filtering functions, graphics 
operations, image processing functions, matrix manipulation functions, data 
file I/O, and hardcopy (plot or print) operations. DADiSP also has many 
optional add-on modules for additional functionality. Typically, DADiSP's 
data input and output operate on files, using either ASCII or binary formats. 
Data set size is limited only by disk storage space, not by available RAM. 
This enables very large waveforms to be manipulated, intact. 

You can also use some of DADiSP's add-on modules to perform data 
acquisition and instrument control. The DADiSP/ACQ module supports data 
collection using data acquisition boards from several major hardware manufac-
turers, including Data Translation, National Instruments, and Scientific Solu-
tions. It is a menu-driven program that incorporates LABTECH's driver software 
to interface to the boards. As with other software modules, it is tightly integrated 
into the DADiSP environment, allowing immediate analysis of acquired data. 
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The GPIB Lab module is another menu-driven product that allows you 
to control and collect data from IEEE-488 instruments. It supports GPIB 
cards from lOtech and National Instruments. It also contains drivers for many 
popular GPIB instruments, eliminating the need to write your own program 
from scratch. 

DADiSP has many other add-on modules for specialized analysis oper-
ations. For example, DADiSP/AdvDSP contains advanced DSP algorithms 
such as the chirp-Z transform, zoom FFT, cepstrum analysis, and spline 
interpolation. The DADiSP/Filter module enables easy design and analysis 
of FIR and IIR digital filters. DADiSP/Stats contains statistical analysis func-
tions such as chi square tests, ANOVA, and polynomial regressions. 

DADiSP can directly call other programs, for uses such as data acqui-
sition or specialized analysis. It can capture data from nearly any available 
source. It has advanced graphics features such as zooming and scrolling 
through a waveform. Many different plot formats are supported, including 
line graphs, histograms, bar charts, and scatter plots. You can annotate data 
windows with text or graphics, for labels and comments. It even supports 
data transfer between other MS Windows applications via DDE links. 

You can define custom menus and macros in DADiSP to help automate 
the analysis process and allow less skilled workers to perform it. The program 
also offers programmability using its C-like series programming language (SPL). 

DADiSP is supported on many different PC and workstation platforms 
running 32-bit Windows or a version of UNIX. Earlier versions of DADiSP 
ran under MS-DOS and MS Windows 3.1. The current version, DADiSP/ 
2000, requires a Pentium PC running MS Windows 95/98/NT/2000. You can 
obtain additional information about DADiSP at DSP Development's Web site 
(www.dadisp.com). 

11.2.6 Other Analysis Software Products 

There are many other software products used for data analysis and display, 
besides MATLAB and DADiSP. Several are listed in the Appendix. Some 
analysis and display software packages are general purpose and not specifi-
cally for data acquisition. Here is a brief overview of a few representative 
products. 

GAUSS GAUSS, from Aptech Systems, is a data analysis environment and 
programming language. It is especially useful for complex processing of large 
amounts of data. GAUSS is a general-purpose analysis package with support 
for engineering applications. It runs under Windows 95/98/NT/2000 as well 
as UNIX/Linux. 
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Similar to MATLAB, GAUSS is a matrix programming language. Its 
capabilities are enhanced by add-on packages from Aptech and third parties. 
GAUSS is a full-featured progranmiing language that can execute commands 
interactively (one at a time) or as a complete, compiled program. It even 
contains its own debugger. 

Besides powerful data analysis features, GAUSS also contains publication-
quality graphics capabilities. This is a set of routines for generating 2-D and 
3-D plots, such as contours, bar graphs, and 3-D surfaces. In addition, the 
optional GAUSS Engine is a tool that generates stand-alone GAUSS programs 
for royalty-free distribution. 

For more information on GAUSS, visit Aptech's Web site (www.Aptech. 
com). 

IGOR Pro IGOR Pro, from WaveMetrics, Inc., is another data analysis and 
display application that can handle large data sets and produce publication-
quality graphics. Some of its features include curve fitting, FFTs, and filtering. 

A feature of IGOR making it especially useful for data acquisition 
applications is its use of waveforms (or waves) as basic objects to be manip-
ulated. All wave objects are assumed to have uniform spacing along the 
independent axis, as most time-based digitized data does. Waves can have up 
to four dimensions and contain either numeric or text data. 

Data is loaded into waves manually or from a text file, or it can be 
generated by a mathematical expression. Manual data entry is via a table, 
which also allows editing of wave data. Wave data can be used to generate 
graphs, both 2-D and 3-D plots. 

You can control IGOR either through menus and dialogs, by entering 
commands at the command line, or by running procedures (scripts). IGOR 
Pro is available for both Windows 95/98/NT/2000/Me and the Macintosh OS. 
For more information about IGOR, you can visit WaveMetrics' Web site 
(www.wavemetrics.com). 

Microsoft Excel Microsoft Excel is Microsoft's general-purpose spreadsheet 
program for Windows, used for data analysis and display. It is commonly 
used in a business environment since it is part of the Microsoft Office package. 
Excel includes many features suitable for analysis and display of data acqui-
sition system data. In fact, some simple data acquisition software products 
link to Excel for analysis and display functions. 

Excel, like most spreadsheets, uses rows and columns of cells to store 
and manipulate data. As an example, to produce an jc, y plot you would select 
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two columns of data (representing the two graph axes) and choose the appro-
priate plot function or wizard. 

Excel contains basic math, trigonometric, and analysis capabilities, 
including statistical functions. It also has an Analysis Toolpack with additional 
features useful for analyzing acquired data, such as FFT, correlation, and 
regression (curve fitting) functions. These features may have more limitations 
than in a dedicated analysis or acquisition program (some versions of Excel, 
for example, limit FFTs to only 1024 points), but they will usually suffice 
for many basic applications. 

Current versions of Excel run under MS Windows 95/98/NT/2000 (ear-
lier versions ran under Windows 3.1). For current information about Excel, 
visit Microsoft's Web site for this product (www.microsoft.com/office/excel). 

Mathematica Mathematica, from Wolfram Research, is a mathematical anal-
ysis and display application for Windows 95/98/NT/2000, UNIX, Linux, and 
Macintosh OS that processes both numeric and algebraic expressions. It can 
be used as simply and interactively as a calculator (with its push-button 
interface) or you can use it to write an entire program or application. Math-
ematica allows you to state your problem at a high level of abstraction while 
it chooses the best way to perform the necessary calculations. 

Mathematica is especially useful at processing symbolic (algebraic) 
expressions. You can use it to easily solve partial differential equations or to 
evaluate complex integrals, all entered using standard mathematical notation. 

Mathematica also provides a wide range of data display and visual-
ization features, including 2-D plots, 3-D plots, and graphics (video) dis-
plays. It can produce publication-quality output, designed for technical 
documents. 

Mathematica is a fully customizable and extendible system. The Math-
ematica Applications Library contains additional software for specific appli-
cations, including Experimental Data Analyst (for curve fitting and error 
analysis). Signals and Systems (for signal processing and filter design), and 
Wavelet Explorer (for signal and image analysis using wavelets). There is 
even a product, Mathematica Link for Excel, that gives you access to Math-
ematica's features from within an Excel spreadsheet. 

For more information about Mathematica, visit Wolfram Research's 
Web site (www.wolfram.com). 

This completes our survey of some popular software products useful 
for data acquisition systems. We will end this chapter with a brief discussion 
of how to select the appropriate conmiercial hardware and software products 
for your data collection needs. 
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11.3 How to Choose Commercial Data 
Acquisition Products 

If you are putting together a PC-based data acquisition system, you will most 
likely try to do it with commercial products. This approach will save you not 
only a lot of development time, but probably some money, also. 

The first step in selecting your data acquisition system components is 
to define the physical measurements you need. For example, an environmental 
test chamber may require ten temperature transducers covering the range of 
0 to + 150°C, with an accuracy of ±1°C and a reading from each transducer 
every second. 

Next, determine the type of transducers to be used, the signal condi-
tioning needed and whether any output control signals are required. Continu-
ing with the environmental test chamber example, since high accuracy is not 
required, thermocouples are a reasonable transducer choice. This would entail 
using a cold-junction compensation board to condition the thermocouple 
signals. Additionally, the ADC used would need moderately high gain, to deal 
with the millivolt-level signals from the thermocouples. Let us also assume 
that one or more of the temperature sensors will control the temperature of 
the test chamber. This temperature control would be an analog signal, in the 
range of ±10 V, controlling the chamber's heating and cooling systems. So, 
we also need an analog output channel. 

The following step is to consider how much data will be collected, how 
much analysis will be performed on it, and how it will be displayed and 
stored. In our example, we will assume the maximum test run time will be 
1 hour. At a sampling rate of 1 sample/sec per channel for 10 channels, 1 
hour corresponds to 36,000 samples. For 8-bit data, this would produce a 
binary file of 36,000 bytes. For 12-bit data, a binary file would usually be 
72,000 bytes long, if the data is not compressed (assume 2 bytes/sample). 
The data display should be all 10 temperature channels (transducers) in real 
time with data saved to disk. The only analysis required would be the mini-
mum, maximum, and average temperature of each channel. 

The next step is to decide on the computer to use. Often, this is 
determined by the PCs and data acquisition products already on hand. If it 
is an open question, consider costs, which software packages you want to run 
on it, and whether this PC will be permanently dedicated to the data acqui-
sition task or freed up at a later date for other jobs. Usually, software com-
patibility and availability are much more important than the computer's raw 
processing power, except for very specific, high-performance applications. 

The final step is picking out the hardware and software products to use. 
The most important factor here is hardware/software compatibility. Be absolutely 



11.3 How to Choose Commercial Data Acquisition Products 303 

sure that the software package you want will work properly with the hardware 
selected, including any signal conditioning boards, multiplexers, and other 
expansion modules. 

For our test chamber example, high-performance is not required. The 
overall data rates are slow (10 samples/sec). The required resolution could 
fit an 8-bit ADC, with 1°C accuracy over a 150°C dynamic range, being 
within 1 part in 256 (8 bits). However, low-speed 12-bit ADCs are not very 
expensive and the extra resolution will produce better data. A 12-bit analog 
I/O board is a good choice, with at least 10 single-ended input channels and 
one output channel. At the low data acquisition speeds called for, the board 
does not need a timer/counter, since the PC's internal clock (as slow as 18 
ticks/sec) is adequate. A multifunction data acquisition card would be overkill, 
unless the system will be used for other purposes in the future. In addition, 
a signal-conditioning panel with cold-junction compensation, for thermocou-
ples, would be very useful. 

Now that we have all our hardware specifications, we should pick out 
the software. We will assume that we do not want to write any programs and 
we would like the system to be operable by virtually anyone, without exten-
sive training. This certainly points to a simple, graphics-based data acquisition 
software package. We do not need much analysis power and want a real-time 
display, with data storage and some means of producing a printed graph. In 
addition, automatic processing of thermocouple signals is required, to produce 
outputs directly in degrees Celsius. The software should also be capable of 
controlling the temperature of the test chamber. A good choice here would 
be a package similar to a basic version of LABTECH NOTEBOOK, Lab-
VIEW, Test Point, or Dasy Lab. 

This ends our overview of commercial data acquisition products for 
PCs. This is a very dynamic field, with new products and manufacturers 
appearing (and disappearing) all the time. This is particularly the case with 
software products, which tend to have very short life cycles. Please refer to 
the Appendix at the back of the book for more comprehensive listings of 
manufacturers and products. It is always a good idea to contact a manufacturer 
or visit its Web site to obtain up-to-date information. 

In the next chapter, we will look at some PC hardware and architectures 
we have previously just touched upon, including notebook PCs, the PCMCIA 
standard, and the PC-104 bus, as well as embedded and ruggedized PCs. 



C H A P T E R 

Other PC Configurations 
and Hardware for Data 
Acquisition 

Over the past decade, Microsoft Windows and Intel processor, PCI bus-based 
PCs have consoHdated their position as industry standards (so-called "Wintel" 
PCs). As a result, many other PC architectures and buses (some designed as 
potential successors to IBM's PC/XT/AT systems) have become obsolete or 
relegated to niche markets. We will briefly look at a few of these alternative 
PC architectures, since many of these computers still function in labs and 
factories. 

We will then examine the ubiquitous notebook PC and the PCMCIA 
PC Card interface standard, which is quite useful for portable data acqui-
sition and control applications. Next, we will look at industrial and embed-
ded PCs along with the PC/104 standard. We will also briefly look at image 
capture products, as a specialized data acquisition application of growing 
importance. 

12.1 Alternative PC Architectures and Processors 

Even though the computer systems covered in this section are no longer 
manufactured, many were previously produced and used for data acquisition 
applications. Hence, we will briefly look at them, since some of these PCs 
are still in use and can continue to operate for years to come. In addition, we 
will briefly examine DSP products. 

304 
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12.1.1 IBM PS/2 Computers with MCA 

In 1987 IBM introduced its successor to its popular PC/XT/AT computer line, 
the PS/2. Most (but not all) members of the PS/2 family were based on IBM's 
new Micro Channel Architecture (MCA), using Intel's 80286 and 80386 
CPUs. These MCA PCs were not hardware compatible with the PC/XT/AT 
systems, but were software compatible. They required very different expan-
sion cards, but ran MS-DOS, MS Windows (or OS/2), and nearly all PC 
application software. Data acquisition cards for these systems had to be built 
specifically for the MCA bus. 

The performance characteristics of MCA were a large improvement 
over the ISA bus. The data bus was either 16 or 32 bits wide (depending on 
the computer model). On a 16-bit system, the address bus was 24 bits wide, 
for a physical address space of 16 Mbytes. On a 32-bit system, the address 
bus was also 32 bits wide, for a physical address space of 4 Gbytes. There 
were 11 hardware interrupt lines that were level-sensitive and could be shared 
by multiple devices with open-collector drivers. DMA was supported with 
eight channels and a maximum transfer rate of 5 Mbytes/sec (for 16-bit 
transfers). The maximum system data transfer rate with MCA was 20 
Mbytes/sec, for either memory or I/O cycles (under special conditions). 

Figure 12-1 shows the 16-bit and 32-bit MCA connectors. Both were 
dual-row edge connectors with separate 8-bit and 16-bit signal sections. The 
16-bit connector had 58 pins (each side) with 10 optional pins for video signals. 
The 32-bit connector contained 89 pins (each side) and had four optional pins 
for special memory transfer support. The MCA connectors placed a ground 
pin between every four signal pins to minimize electromagnetic interference 
(EMI), which was a large improvement over the ISA connector layout. MCA 
also supported audio signals through a special pair of bus lines. 

The signal assignments for a 16-bit MCA connector are shown in Table 
12-1. Most of these signals were similar to their ISA bus counterparts, such as 
address (A0-A23), data (D00-D15), interrupt (-IRQ03, -IRQ04,..., -IRQ15), 
and control (-REFRESH, -TC, OSC) lines. Others were new to MCA, such 
as arbitration control lines (ARB/-GNT, ARB0-ARB3, -PREEMPT), 
connector-specific lines (-CD SFDBK, CD CHRDY, -CD SETUP), and other 
features (AUDIO). 

IBM's Micro Channel was primarily an asynchronous bus (as is PCI). 
Data transfers over the Micro Channel were controlled by handshaking sig-
nals, instead of relying on a synchronous clock for transfer timing. When a 
device on the bus (such as an adapter card) was commanded to send or receive 
data, it responded with an acknowledge when it was done. These control and 
handshake signals determined the MCA timing. In addition, MCA supported 
some synchronous data transfers. 
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(a) 16-bit Bus (b) 32-bit Bus 

Figure 12-1 IBM Micro Channel bus connectors. 

MCA supported up to 15 bus masters in a system (including the main 
CPU), allowing multiprocessing with several CPUs, as well as DMA. A hardware-
based arbitration scheme allowed multiple bus master boards relatively fair 
access to the system bus. In addition, MCA systems eliminated the need for 
setting switches or jumpers to configure a board (for addressing as well as 
interrupt and bus master arbitration levels) using its Programmable Option 
Select (POS) features. POS consisted of registers that allowed a board to be 
configured by software only. Each board manufactured for MCA received a 
unique identification code from IBM, distinguishing it from other boards. A 
utility program automatically configured one or more boards in the system, 
ensuring that addresses did not clash. This was an early plug-and-play archi-
tecture that relied on external software to configure boards. If you lost the 
special program you could not configure a card. Newer PCs have plug-and-
play software built into the operating system (MS Windows) and/or the BIOS. 

In spite of the major hardware differences between MCA-based PS/2 
PCs and PC/XT/AT systems, they were still software compatible. All PS/2 
computers ran MS-DOS, MS Windows, and most available appHcation software. 
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TABLE 12-1 
IBM Micro Channel 16-bit Connector Pin Assignnfients 

1 PIN 

01 

02 

03 

1 ^^ 
05 

1 ^̂  
07 

1 ^̂  
09 

10 

1 "•"" 
12 

13 

1 ""̂  
15 

16 

1 """̂  
18 

19 

20 

1 ^^ 
1 ^̂  

23 

1 ̂ ^ 1 
25 

26 

1 27 
1 28 
1 29 

ROWB 

AUDIO GND 

AUDIO 

GND 

14.3MHZOSC 

GND 

A23 

A22 

A21 

GND 1 

A20 

A19 

A18 

GND 

A17 1 

A16 

A15 

GND 

A14 

A13 

A12 

GND 

^ I R Q 0 9 

-IRQ03 

-IRQ04 

GND 

-IRQ05 

-IRQ06 

-IRQ07 

GND 

ROW A 

-CD SETUP 

MADE 24 

GND 

Al l 1 
A10 1 

A09 

+5VDC 

A08 

A07 

A06 

+5VDC 1 

A05 1 

A04 1 

A03 

+5VDC 1 

A02 1 

A01 1 

AOO 1 

+12VDC 

-ADL 1 

-PREEMPT 1 

-BURST 1 

-12VDC 

ARBOO 1 

ARB01 

ARB02 

-12VDC 

ARB03 

ARB/-GNT 

1 PIN 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 1 
43 

44 

45 

46 

1 "̂̂  
48 

49 

50 

1 ^̂  
52 

53 

54 

1 55 
56 

57 

1 58 

ROWB 

Reserved 

Reserved 

-CHCK 

GND 

-CMD 

CHRDYRTN 

-CD SFDBK 

GND 

D01 1 

D03 

D04 

GND 

CHRESET 

Reserved 

Reserved 

GND 

Key 

Key 

D08 

D09 

GND 

D12 

D14 

D15 

GND 

-IRQ10 

-IRQ11 

-1RQ12 

GND 

ROW A 1 

-TC 

+5VDC 1 

-SO 

-S I 

M/-IO 1 

+12VDC 1 

CD CHRDY 1 

DOO 1 

D02 1 

+5VDC 1 

D05 1 

D06 1 
D07 1 

GND 1 

-DS 16 RTN 1 

-REFRESH 1 

Key 1 
Key 1 
+5VDC 1 
D10 1 
D11 

D13 1 

+12VDC 1 

Reserved 1 

-SBHE 1 

-CDDS 16 1 

+5VDC 1 

-IRQ14 1 

-IRQ15 1 
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They also ran IBM's OS/2 operating system that was similar to MS Windows. 
Software that directly accessed hardware addresses (memory or I/O ports) 
was not necessarily PS/2-compatible. 

Many data acquisition hardware manufacturers who supported PC/XT/ 
AT systems also produced MCA products for PS/2 computers. This was true 
of most PC board manufacturers, in general. Since PS/2 PCs are now con-
sidered obsolete, manufacturers no longer produce MCA boards. Some of 
the leading data acquisition hardware manufacturers who previously produced 
MCA boards included Keithley, Data Translation and National Instruments. 

12.1.2 The EISA Bus 

The Extended ISA (EISA) bus was developed as a nonproprietary alternative 
to MCA that never gained very wide acceptance. It was an extension of the 
standard AT (ISA) bus from 16 to 32 data bits, along with 32 address bits. 
The EISA bus retained hardware compatibility with existing ISA boards. Of 
course, EISA cards had to be used in an EISA computer to obtain the potential 
performance improvements. These improvements were similar to MCA: high 
data transfer rates (up to 33 Mbytes/sec), multiple bus-master support, auto-
matic system configuration, and slot-specific addressing. 

Even fewer EISA boards were produced than MCA boards, along with a 
handful of EISA PCs. Its only advantage was being able to use standard ISA 
cards in an EISA PC, while having the potential for obtaining higher perfor-
mance (only when using EISA cards). The higher cost of an EISA PC coupled 
with its limited improvements minimized this standard's acceptance in the PC 
industry. In the realm of data acquisition. National Instruments and Scientific 
Solutions were among the handful of manufacturers who produced EISA boards. 

12.1.3 Apple Macintosh II Computers with NuBus 

Apple's Macintosh computer line has also been popular for scientific, engi-
neering, and industrial applications, in part because of the open expansion 
architecture adopted for the Macintosh II series, based on the NuBus. NuBus 
was a system bus developed by MIT and Texas Instruments for 32-bit com-
puters. It was independent of the computer's CPU, providing buffered, mul-
tiplexed signals to the expansion connectors (as does PCI). 

Apple has abandoned NuBus for a PCI architecture in its newer Mac-
intosh PCs. Still, many NuBus-based Macintosh II PCs are in use, some for 
data acquisition applications. The Macintosh series was originally based on 
Motorola's 68000 microprocessor family. The 68020 and 68030 CPUs used 
in the Macintosh II series had a 32-bit data and address bus, for a 4-Gbyte 
address range. 
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The initial attraction of using a Macintosh computer was its graphics-
based user interface, allowing for intuitive operation that sped up the learning 
process. The software burden rested on the program developers, not the users. 
The user interface was consistent across all Macintosh application software, 
minimizing the time needed to learn new programs. Now that Microsoft 
Windows has come of age, Intel-based PCs have these same advantages. 

Apple's NuBus was a synchronous, multiplexed bus, using a 96-pin Euro-
card DIN connector (popular in many industrial computer systems, such as 
those based on the VME bus). The form factor for NuBus cards (approximately 
4.0 inches by 12.7 inches) was similar in size to PC/XT cards. It was based on 
the 1986 IEEE specification, IEEE-1196 NuBus (which originally called for a 
triple-height Eurocard form factor of 11.0 inches by 14.5 inches). NuBus was 
a synchronous bus (in contrast to IBM's asynchronous MCA), where all trans-
actions were based on a fixed clock cycle. The edge of this clock determined 
the bus timing parameters, such as when data was valid or when it should be 
latched. Apple used a 10-MHz bus clock in its NuBus. The address and data 
signals were multiplexed onto 32 lines (/AD0-/AD31). Various control signals 
were used to interpret these multiplexed lines. For example, the /START signal 
was asserted (active low) when the address/data lines contained a valid address. 

The advantage of using synchronous bus transfers was simplicity of 
protocol and hardware to implement it. The advantage of using multiplexed 
address/data lines was the need for fewer bus wires (32 saved in this case) than 
in a nonmultiplexed arrangement. The disadvantage with this multiplexing was 
slower bus throughput, since multiple bus cycles were required for any data 
transfer (with separate bus cycles for sending address and data information). 

The 96-pin NuBus DIN connector was arranged as 3 rows (A, B, C) of 
32 pins, each. Because of address/data multiplexing, all the needed signals 
fit on 51 lines. The rest of the lines were used for power supply and ground, 
as shown in Table 12-2. 

Each NuBus slot had its own unique ID number, with a maximum of 
16 slots allowed by the specification, so each card knew the slot it was in. 
The 32-bit addressing space of the NuBus had a range of 4 Gbytes. The upper 
256 Mbytes of this space was divided among the 16 possible slots, to provide 
each one with its own dedicated slot space of 16 Mbytes. Apple only used 
up to 6 expansion slots in its Macintosh II systems, with slot IDs of 9 to Eh. 
Since each board knew the slot it occupied, it could automatically adjust its 
address mapping. This was another early plug-and-play system. Since the 
Macintosh (and all 68000-family computers) used memory mapping for I/O 
ports, this automatic configuration applied to both memory and I/O addresses. 

Several hardware manufacturers have produced NuBus data acquisition 
cards for Macintosh II personal computers. These included Data Translation, 
Keithley, National Instruments, and Intelligent Instrumentation. 
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TABLE 12-2 
NuBus Connector Pin Assignments 

1 PIN NUMBER 

01 

02 

1 03 

1 04 

1 05 

1 06 

1 ̂ ^ 
1 08 

1 09 

1 10 

1 ̂^ 
1 ̂ ^ 
1 ̂ ^ 1 ^^ 
1 15 

1 ̂ ^ 
1 ̂ ^ 
1 ̂ ^ 
1 ̂ ^ 
1 20 

1 ̂^ 
1 22 

1 23 

1 2^ 
25 

1 ̂^ 
1 2^ 

28 

29 

1 ̂^ 
31 

1 32 

ROW A 

12VDC 

Reserved 

/SPV 

/SP 

rrm 
/AD1 

/AD3 

/AD5 

/AD7 

/AD9 

1 /AD11 

/AD13 

1 /AD15 

/AD17 

1 /AD19 

/AD21 

/AD23 

/AD25 

1 /AD27 

1 /AD29 

/AD31 

GND 

GND 

/ARB1 

/ARB3 

/ID1 

/ID3 

/ACK 

+5VDC 

/RQST 

/NMRQ 

+12VDC 1 

ROWB 

-12VDC 

GND 

GND 

+5VDC 

+5VDC 

+5VDC 

+5VDC 

Reserved 

Reserved 

Reserved 

Reserved 

1 GND 

1 GND 

1 GND 

1 GND 

GND 

1 GND 

1 GND 

GND 

GND 

GND 

GND 

GND 

Reserved 

Reserved 

Reserved 

Reserved 

+5VDC 

+5VDC 

GND 

GND 

+12VDC 

ROW C 1 

/RESET 

Reserved 1 

1 +5VDC 1 

1 +5VDC 1 

yTMO 1 

/ADO 

1 /AD2 1 

1 /AD4 1 

/AD6 

/AD8 

1 /AD10 1 

/AD12 

1 /AD14 1 

/AD16 

1 /AD18 1 

1 /AD20 1 

1 /AD22 1 

/AD24 

1 /AD26 1 

1 /AD28 1 

/AD30 

GND 1 

/PFW 1 

/ARBO 1 

/ARB2 1 

/IDO 1 

/ID2 1 

/START 1 

+5VDC 1 

+5VDC 1 

GND 1 

/CLK \ 
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Since newer Macintosh PCs can accept PCI cards, they can use current 
data acquisition boards. Many hardware manufacturers provide software driv-
ers for Macintosh computers and many software manufacturers produce ver-
sions of their products for the Macintosh operating system (Mac OS). 

12.1.4 DSP Chips and Cards 

DSP (digital signal processor) chips are very popular processors used alone 
and with PCs in scientific and engineering environments. These devices are 
the heart of DSP boards, designed for PCs with an ISA or PCI bus. These 
DSP cards are special-purpose math accelerators, used to provide DSP func-
tions at very fast calculation rates, minimizing the system CPU's involvement. 
For example, a 1024-sample floating-point FFT calculation could be per-
formed in under 10 msec with such an ISA card. The DSP is a stand-alone 
CPU, with its own local memory and control hardware on the card. It is not 
directly tied to the system CPU, as an internal math coprocessor is. The 
system CPU sends the DSP commands and data via the bus. The DSP can 
then operate independently of the system CPU. 

Recent PCs, based on the PCI bus with an Intel Pentium processor 
running at clock speeds well over 1 GHz, can also perform math calculations 
at very high speeds. However, since the speed of DSP chips has kept pace 
with general-purpose PC microprocessors, DSP cards are still applicable in 
high-performance environments. 

The most popular DSP ICs used on these cards are the Texas Instruments 
TMS320 families of 16- and 32-bit processors. These chips are general-
purpose processors, optimized for the high-speed mathematical calculations 
required in DSP applications. They have a special architecture with separate 
buses for instructions and data (called the modified Harvard architecture). 
This allows calculations to be performed in parallel with instruction fetches. 
These devices also use pipelining in their computational sections, so that a 
current computation can progress simultaneously with a new one starting. 
When many consecutive calculations are done, the overall computation rate 
decreases dramatically. 

There are other popular DSP chips supported by hardware and software 
products for PCs, including Analog Devices' ADSP series. 

Most DSP hardware products come with software support, usually in 
the form of a library of DSP functions. A programmer can then call these 
functions from a conventional Windows program, without worrying about the 
fine details of the DSP board's internal operations. 

This concludes our look at alternative PC architectures and processors. 
Next, we will look at other PC form factors, starting with laptops. 
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12.2 Notebook PCs and PCMCIA Cards 

Notebook or laptop PCs have become ubiquitous as portable computers with 
the power of desktop PCs. In the realm of data acquisition, laptops are 
indispensable when performing fieldwork and collecting data at remote sites. 
The main advantages of notebooks are their small size, low weight, and ability 
to run for several hours without an external power source. Their main disad-
vantage is limited expandability. 

Notebook PCs are effectively closed boxes. You cannot add a conven-
tional ISA or PCI plug-in card to a laptop to expand its functionality for data 
acquisition or other purposes. Originally, the only way to use a laptop for 
data acquisition was through its standard parallel or serial (RS-232) port. 
Since some data acquisition hardware products do exist for these standard 
ports (especially RS-232 instruments) notebooks were adequate for some 
applications but not as versatile as a desktop PC. 

To facilitate expandability in portable PCs, the Personal Computer 
Memory Card Industry Association (PCMCIA) developed the PC Card stan-
dard in 1990. The first release (1.0) defined a credit card-size device that 
could expand the memory of any computer, regardless of bus type or operating 
system. Release 1.0 PC Cards supported either an 8- or 16-bit bus and were 
self-configuring and hot-swappable. They proved to be so popular that the 
standard was expanded, in release 2.0, to include general-purpose I/O devices 
and thicker cards. As the standard evolved, the PC Cards were developed to 
provide portable PCs with many of the peripheral functions that desktop PCs 
use add-in cards for, including modems, network interfaces (Ethernet), hard 
drives, and data acquisition. 

PC Cards come in three sizes. Type I, Type II, and Type III, respectively 
3.3 mm, 5.0 mm, and 10.5 mm thick, all using the same 68-pin connector. 
Type I cards are usually memory devices such as RAM or Flash. Type II 
cards tend to be I/O devices, including modems, network interfaces, and data 
acquisition cards. Type III cards are usually hard drives. Table 12-3 shows 
the pin assignments for a 16-bit PC Card connector that supports both memory 
and I/O devices. 

A later release of the PC Card standard in 1995 defined CardBus, a 
32-bit bus with speeds up to 33 MHz. CardBus is essentially a modified 
PCI bus, using the PCI protocol. For example, CardBus supports multiple 
bus masters and arbitration. It still uses the same 68-pin connector as older 
PC Cards and is backward compatible with one exception: all CardBus 
cards use a 3.3-V supply. Older PC cards that use a 5-V supply cannot plug 
into a CardBus slot (newer PC Cards that run at 3.3 V will work in a 
CardBus slot). 
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TABLE 12-3 
16-bit PC Card Pin Assignments 

1 PIN 

1 ^̂  
02 

1 ^̂  
1 ^̂  

05 

06 

1 ^'^ 
1 ^̂  

09 

10 

1 ^̂  1 
1 ^̂  1 

13 

1 ^^ \ 
15 

16 

1 ""̂  1 
18 

1 ^̂  
20 

1 "̂̂  
1 ^̂  
1 2^ 
1 "̂̂  
1 25 

26 

1 2^ 
28 

1 29 

1 30 

1 ^̂  
32 

1 33 

1 34 

MEMORY 

GND 

D3 

D4 

D5 

D6 

D7 

CE1# 

A10 

0E# 

A l l 

A9 

A8 

A13 

A14 

WE# 

READY 

Vcc 

Vppi 

A16 

A15 

A12 

A7 

A6 

A5 

A4 

A3 

A2 

A1 

AO 

DO 

D1 

D2 

WP 

GND 

I/O + MEM 

GND 

D3 

D4 

D5 

D6 

D7 1 

CE1# 1 

A10 1 

0E# 1 

A l l 1 
A9 1 

A8 1 

A13 1 

A14 1 

WE# 1 

IREQ# 1 

Vcc 1 
Vppi 

A16 1 

A15 1 

A12 1 

A7 1 

A6 

A5 

A4 1 

A3 

A2 

A1 1 

AO 

DO 

D1 

D2 

I0IS16# 

GND 

1 PIN 

35 

36 

1 ^̂  
38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

1 ^̂  
1 58 

59 

60 

61 

1 62 

1 63 

64 

65 

66 

67 

1 68 

MEMORY 

GND 

GD1# 

D11 

D12 

D13 

D14 

D15 

CE2# 

VS1# 

RSRVD 

RSRVD 

A17 

A18 

A19 

A20 

A21 

Vcc 

Vpp2 

A22 

A23 

A24 

A25 

VS2# 

RESET 

WAIT# 

RSRVD 

REQ# 

BVD2 

BVD1 

D8 

D9 

1 D10 

CD2# 

GND 

1 I/O + MEM 1 

GND 1 

CD1# 1 

D11 1 

D12 1 

D13 1 

D14 1 

D15 1 

CE2# 1 

vsi# 1 
IORD# 1 

IOWR# 1 

A17 1 

A18 1 

A19 1 

A20 1 

A21 1 

Vcc 1 

Vpp2 

A22 1 

A23 1 

A24 1 

A25 1 

VS2# 1 

RESET 1 

WAIT# 1 

INPACK# 1 

REQ# 

SPKR# 1 

STSCHG# 1 

D8 

D9 

1 ̂ ^^ \ 
1 CD2# 1 
GND 1 
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The PC Card standard uses software layers that provide compatibihty 
regardless of the computer system or architecture. On a "Wintel" computer, 
the primary layers are Card Services and Socket Services. Card Services, the 
higher layer, provides the application programming interface (API) that allows 
other software to access PC Cards. It is a client/server model where Card 
Services is the server and a program calling a card function is the client. The 
lowest software level is Socket Services, which interfaces to the PC Card 
hardware. It acts like a BIOS interrupt call in a PC, allowing higher software 
levels (Card Services) to be hardware-independent. Socket Services can actu-
ally be implemented in a computer's BIOS or it can simply be a device driver. 

You can also use PC Cards with a desktop PC by adding a PCMCIA 
interface. This is useful if you need a secure way to quickly move data 
between notebook and desktop computers without using a network. You can 
simply swap a PC Card memory or hard drive card between machines. 

Most notebook computers have two PC Card slots that will accommo-
date two Type I or Type II cards (or one Type III card). In addition, USB 
ports are now common on portable PCs. These are now the best ways to 
connect data acquisition hardware to a laptop computer. 

Many major data acquisition manufacturers produce PC Card products. 
As we saw in Chapter 11, these include Keithley, Data Translation, and 
National Instruments. The typical PCMCIA data acquisition card runs at 
speeds up to 100,000 samples/sec with 12- or 16-bit resolution. These are 
also the typical parameters of current USB data acquisition modules. 

12.3 Industrial and Embedded PCs 

There are now many different form factors for PCs other than desktops and 
notebooks. For example, the standard desktop PC is not always well suited for 
harsh lab or industrial environments, because of factors such as heat, shock, 
dust, electrical noise, and vibration. Since more and more PCs are finding their 
way onto factory floors and similar environments, many manufacturers produce 
industrial (sometimes called "ruggedized") PCs for this market. In addition, 
PCs in the form of single-board computers (SBCs) are now commonly embed-
ded within commercial equipment. These embedded PCs are usually a small 
card with all or most of the features of a standard desktop PC's system unit. 
PC/104 is the most common standard for small, embedded PCs. 

12.3.1 Industrial PCs 

Industrial PCs are very similar to their desktop counterparts. The main dif-
ferences are the components and enclosures used by the different PCs. Some 
industrial PCs use a standard motherboard with expansion slots in a heavy-duty 
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case while most others use a passive backplane. A passive backplane is the 
backbone of a number of computer bus systems (such as VME and STD 
BUS) as well as many mainframe computers and early microcomputers (such 
as the S-100 bus). It is simply an array of connectors, wired together to form 
a bus, without any active circuitry present. The CPU is on a card, plugged 
into the bus, just like any other expansion board (such as memory or I/O). 
This adds extreme flexibility to the system, because upgrading to another 
processor simply involves switching the CPU card. It also guarantees that all 
signals required by the CPU are present on the passive backplane, adding 
flexibility for multiprocessors. 

Most of these passive backplane systems (based on PCI, ISA, or both) 
have more expansion slots than standard desktop PCs. The major penalty for 
the passive backplane approach is added cost. These PCs are usually more 
expensive than standard desktop PCs because of their larger mechanical size, 
greater number of components, larger power supplies, and overall higher 
component costs. Their biggest advantage is much greater expandability than 
a standard PC. 

Industrial PCs tend to use different form factors. Some basic systems are 
packed into boxes smaller than a diskette drive while others use large card cages 
for 19-inch rack mounting. The basic systems all have several expansion slots, 
whether via a motherboard or a passive backplane. The larger systems have an 
oversized power supply, a cooling fan with a dust filter, superior electromagnetic 
shielding (which may be poor in some desktop PCs), and often shock-mounting 
for the hard disk drive (if one is present). The chassis itself may be sealed 
against dust and liquids (i.e., using a standard NEMA enclosure). 

Some industrial PCs are diskless. These systems, used only for dedi-
cated applications, have programs stored in ROM or Flash memory to emulate 
disk-based software. This is a viable approach when a PC is embedded into 
a larger piece of equipment and a disk drive is not needed or is too fragile 
for a harsh environment. Memory cards that emulate disk drives (usually 
Flash-based) are also available for conventional desktop PCs as add-in boards 
or PCMCIA modules. 

Most manufacturers of industrial PCs support both ISA and PCI buses. 
Most systems accept conventional plug-in cards. Some have slots for both 
PCI and ISA boards. Sometimes these mixed-configuration systems are 
referred to as PISA. 

A continuing problem in the area of industrial PC systems is how to 
enhance bus standards while maintaining compatibility with products from 
different manufacturers. One early attempt at an enhanced ISA bus was PCXI, 
intended as a multivendor standard for data acquisition and industrial instru-
mentation systems. It incorporated a standard ISA passive backplane and 
power supply into a modified PC chassis, which was flipped around so I/O 
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connectors faced the front of the unit. Spacing between cards was increased 
to 1.2 inches to accommodate metal shielding around each board. This 
reduced the effects of PC-generated electrical noise on data acquisition and 
instrumentation peripherals. The backplane connections followed the ISA 
standard with some enhancements for better power distribution and ground-
ing. PCXI was the ISA PC equivalent of VMXI, the VME bus instrumentation 
standard. Unfortunately, PCXI never became a popular standard (there were 
even some EISA PCXI systems, at one point). 

CompactPCI A popular standard for industrial PCI-based computers, intro-
duced in 1995, is CompactPCI. This is functionally the same as the conven-
tional PCI bus but uses a different Eurocard form factor for plug-in boards 
(as the VME bus does) along with a more reliable connector. CompactPCI 
cards are specified for both 3U (100 mm by 160 mm) and 6U (160 mm by 
233 mm) Eurocard sizes. The high-density, 2-mm-pitch connector is arranged 
as 47 rows of 5 pins and provides strong card retention capabilities along 
with resistance to shock and vibration. The metal front-panel of a Compact-
PCI computer provides good environmental and EMI shielding. 

CompactPCI supports both 32- and 64-bit PCI buses. The connector 
has 220 pins available (15 are lost to a keying area), with many pins connected 
to ground (for improved signal shielding) and also controlled signal imped-
ance. This allows Compact PCI computers to have eight slots (compared to 
four in a standard PCI system). With a PCI bridge IC, a CompactPCI system 
can easily have 16 slots. Table 12-4 shows the pin assignments for a Com-
pactPCI connector. 

Many manufacturers support the CompactPCI standard, producing both 
industrial computers and plug-in cards. Most of these systems use Intel 
processors and a version of Microsoft Windows or Linux. Some data acqui-
sition cards are even available as CompactPCI. 

PXI In 1997, National Instruments developed the PCI extensions for instru-
mentation (PXI) specification. This is now an open standard that expands 
CompactPCI for data acquisition and control systems. PXI defines mechanical, 
electrical, and software extensions to CompactPCI while allowing interopera-
bility with the older standard. The additional mechanical features are cooling 
and environmental requirements to allow operation in harsh industrial settings. 

PXI adds several electrical features to CompactPCI. First, it defines a 
10-MHz reference clock that is distributed to all system peripherals, allowing 
an easy way to synchronize multiple devices. PXI also adds two trigger buses 
to the system, to carefully control and synchronize the timing of multiple cards. 
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TABLE 12-4 
CompactPCI Pin Assignments 

1 PIN 

1 ^̂  
1 02 

03 

1 ^^ 
05 

1 ^̂  
1 ^̂  
1 ^̂  

09 

1 ""̂  
1 ^^ 
1 12-14 

15 

1 ̂ ^ 
\ "'̂  1 
1 ^̂  

19 

1 ^̂  
1 ^^ 
\ ^^ 
1 ^̂  
1 2"̂  

25 

1 26 

1 ^̂  
1 28 

29 

1 30 

1 ^̂  
1 32 

33 

1 34 

Z 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

1 ^ 
5V 

TCK 

INTA# 

BRSV 

BRSV 

REQ# 

AD(30) 

AD(26) 

C/BE(3)# 

AD(21) 

A(18) 

B 

12V 

5V 

INTB# 

GND 

BRSV 

GND 

AD(29) 

GND 

IDSEL 

GND 

A(17) 

C 

TRST# 

TMS 

INTC# 

V(l/0) 

RST# 

3.3V 

AD(28) 

V(l/0) 

AD(23) 

3.3V 

AD(16) 

D 

+12V 

TDO 

5V 

INTP 

GND 

CLK 

GND 

AD(25) 

GND 

AD(20) 

GND 

E 

5V 

TDI 

INTD# 

INTS 

GNT# 

AD(31) 

AD(27) 

AD(24) 

AD(22) 

AD(19) 

C/BE(2)# 

F 1 
GND 1 
GND 

GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 

KEY AREA | 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

3.3V 

DEVSEL# 

3.3V 

SERR# 

3.3V 

AD(12) 

3.3V 

AD(7) 

3.3V 

AD(1) 

5V 

GLK1 

CLK2 

CLK4 

V(l/0) 

C/BE(5)# 

AD(63) 

AD(59) 

AD(56) 

AD(52) 

FRAME# 

GND 

SDONE 

GND 

AD(15) 

GND 

AD(9) 

GND 

AD(4) 

5V 

REQ64# 

GND 

CLK3 

GND 

|BRSV 

GND 

AD(62) 

GND 

AD(55) 

GND 

IRDY# 

V(l/0) 

SBO# 

3.3V 

AD(14) 

V(l/0) 

AD(8) 

3.3V 

AD(3) 

V(l/0) 

BRSV 

REQ1# 

SYSEN# 

GNT3# 

C/BE(7)# 

V(l/0) 

AD(61) 

V(l/0) 

AD(54) 

V(l/0) 

GND 

STOP# 1 
GND 1 
PAR 

GND 

AD(11) 

M66EN 

AD(6) 

5V 

AD(0) 

3.3V 

GNT1# 

GNT2# 

1REQ4# 
GND 

C/BE(4)# 

GND 

AD(58) 

| G N D 

AD(51) 

TRDY# 

LOCK# 

PERR# 

C/BE(1)# 

AD(13) 

AD(10) 

C/BE(0)# 

AD{5) 

AD(2) 

ACK64# 

5V 

REQ2# 

REQ3# 

GNT4#s 

C/BE(6)# 

PAR64 

AD(60) 

AD(57) 

AD(53) 

AD(50) 

GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
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TABLE 12-4 
ConfipactPCI Pin Assignments (Continued) 

1 PIN 

1 ^̂  
36 

37 

38 

1 ^̂  
40 

41 

1 42 

1 ^^ 
\ 44 

45 

1 46 
1 47 

Z 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

GND 

A 

AD(49) 

AD(45) 

AD(42) 

AD(38) 

AD(35) 

BRSV 

BRSV 

BRSV 

USR 

USR 

USR 

USR 

USR 

B 

AD(48) 

GND 

AD(41) 

GND 

AD(34) 

GND 

BRSV 

GND 

USR 

USR 

USR 

USR 

USR 

c 
AD(47) 

V(l/0) 

AD(40) 

V(l/0) 

AD(33) 

FAL# 

DEG# 

PRST# 

USR 

USR 

USR 

USR 

USR 

D 

GND 

AD(44) 

GND 

AD(37) 

GND 

REQ5# 

GND 

REQ6# 

USR 

USR 

USR 

USR 

USR 

E 

AD(46) 

AD(43) 

AD(39) 

AD(36) 

AD(32) 

GNT5# 

BRSV 

GNT6# 

USR 

USR 

USR 

USR 

USR 

F 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 1 
GND 

GND 1 

In addition, PXI defines a 13-line, daisy-chained local bus that connects each 
card slot to its nearest neighbors. This provides a high-speed communications 
channel between cards that does not reduce PCI bandwidth. These local bus 
signals are both digital and analog. 

PXI defines common software requirements, based on Microsoft Win-
dows. This allows PXI application developers to use industry-standard pro-
gramming languages, such as Visual C/C-I-+, Visual Basic, and Lab VIEW. 
Further, all PXI cards must have device driver software available and also 
support the virtual instrument software architecture (VISA) standard. 

Several hardware manufacturers support PXI with both computers and 
cards. National Instruments produces PXI chassis and a wide range of data 
acquisition and instrument modules for PXI. For example, the PXI-6071 is 
a data acquisition card for PXI with 12-bit resolution and a conversion rate 
of 1.25 Msamples/sec. 

For more information, refer to the Appendix for listings of industrial 
PC manufacturers. 

12.3.2 Embedded PCs 

As a crude generalization, industrial PCs tend to be larger, stand-alone com-
puters housed in a heavy-duty enclosure and composed of several cards 
plugged into an expansion bus (such as a passive backplane). Embedded PCs 
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tend to be small, composed of only one or a few boards, and housed within 
another device: the embedded application. Embedded PCs are used within a 
wide range of dedicated applications, including medical instruments, test 
equipment, industrial controls, and communications systems. 

Often, embedded PCs are single-board computers (SBCs) that provide 
the functionality of a desktop PC's motherboard along with some add-in card 
features. These SBCs can be PCI-, CompactPCI-, or ISA-based and plug into 
a passive backplane. They can also be small, all-in-one cards that have little 
or no expandability. 

A typical SBC contains most standard PC components: CPU, RAM, 
BIOS ROM, keyboard interface, parallel and serial ports, floppy and hard 
disk interfaces, and video display interface. It may have additional features 
for embedded applications: watchdog timer, battery backup SRAM, Flash 
memory, digital I/O ports, Ethernet interface. If you connect a power supply, 
keyboard, disk drive, monitor, and mouse to a typical SBC you will have a 
fully operational PC. For a simple application, you may only need to run MS-
DOS (or a ROM-based DOS) on that PC. But you can also run a version of 
Microsoft Windows, including Windows CE (developed for embedded PCs). 

The advantage of embedding the functionality of a small PC within 
another piece of equipment is the ability to use the same low-cost hardware 
and software tools (especially operating systems and programming languages) 
you already use on a desktop PC. This speeds up a product or project 
development process tremendously. The disadvantage is that the hardware 
cost will likely be higher than designing in your own simple microprocessor 
system. 

The size of nonstandard, embedded PCs continues to shrink. For exam-
ple, the DIMM-PC from Jumptec consists of a 66 MHz AMD 486-SX CPU 
with 16 Mbytes of RAM and 16 Mbytes of Flash ROM, and it measures only 
2.7 inches by 1.7 inches by 0.25 inches (just over a cubic inch). Yet, it has 
enough capability to run a Linux-based Internet server. 

PC/104 The most common standard for embedded PCs has been the PC/104 
form factor, first published in 1992. PC/104 is electrically an ISA bus standard 
that defines cards measuring 3.6 x 3.8 inches and using a stack-through 
connector that is much more rugged and reliable than ISA edge connectors. 
PC/104 gets its name from the number of pins on the bus (104), which is just 
six more than a conventional ISA connector (the extra pins are used for 
grounds and keying). 

PC/104 cards do not use a motherboard or backplane. The cards in a 
PC/104 system (if more than one is used) simply stack together, since each 
card's stack-through connector is both a plug and a socket. The boards can 



320 CHAPTER 12 Other PC Configurations and Hardware for Data Acquisition 

0.6 

3.775 

o o 

1 32 
Blnooooooooooooooooooooooooooooi 
Alaooooooooooooooooooooooooooool 

O ^ lODOOOOOOOOOOOOOOOOOO lODOOOOOOOOOOOOOOOOOO o 19 

Top ^ ^ ^ ^ 
Components 

J1 

J2 

(a) Top View 
3.550 

J1 

J2 

Bottom 
W Components 

:PI 

: P 2 

(b) Side View 

Figure 12-2 PC/104 card—simplified mechanical drawing. 

also be mechanically mounted together to secure them against shock and 
vibration. The standard defines the mechanical specifications as well as the 
connector pin assignments for PC/104 cards. It also specifies power supply 
requirements, such as a maximum current of 2 amps at +5 V for a single 
PC/104 card. Figure 12-2 shows a simplified mechanical drawing of a PC/104 
card. 

PC/104 defines two connectors: Jl/Pl and J2/P2. For an 8-bit card, equiv-
alent to an XT board, only the 64-pin Jl/Pl is used. A 16-bit (AT) card has an 
additional 40-pin connector, J2/P2. All electrical design rules for ISA boards 
apply to PC/104 cards. The pin assignments for PC/104 cards, shown in Table 
12-5, are very similar to those for ISA cards but are not exactly the same. 

Many manufacturers produce PC/104 cards: single-board computers, 
video cards, network cards, memory expansion cards, PCMCIA interface 
cards, and also data acquisition cards. For example. Diamond Systems Corp., 
a leading PC/104 card manufacturer, produces several data acquisition boards, 
including the Diamond-MM-AT. This is a multifunction PC/104 data acqui-
sition card with 16 analog input channels and a 12-bit ADC running at 
conversion rates up to 100,000 samples/sec. It also has two 12-bit analog 
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1 ^^^ 
I NUMBER 

00 

01 

02 

1 ^̂  
04 

1 ^̂  
06 

07 

1 ^̂  
1 ^̂  1 
1 ^̂  1 
1 '*'' 1 
1 ^̂  1 

13 

1 ^^ 1 
15 

1 ^̂  1 
1 ""̂  
1 ^^ 

19 

20 

1 ^^ 
\ ^^ 

1 ^̂  
1 24 

1 ^̂  
1 26 

1 2^ 
1 28 
1 29 
1 30 

1 ^̂  
1 32 

8-BIT SIGNALS 

J1/P1 
ROW A 

J1/P1 
ROWB 

lOCHCHK* 

SD7 

SD6 

SD5 

SD4 

SD3 

SD2 

SD1 

SDO 

lOCHRDY 

AEN 

SA19 

SA18 

SA17 

SA16 

SA15 

SA14 

SA13 

SA12 

SA11 

SA10 

SA9 

SA8 

SA7 

SA6 

SA5 

SA4 

SA3 

SA2 

SA1 

SAO 

GND 

GND 

RESETDRV 

+5V 

IRQ9 

-5V 

DRQ2 

-12V 

ENDXFR* 

+12V 

Key 

SMEMW* 

SMEMR* 

low* 
lOR* 

DACK3* 

DRQ3 

DACK1* 

DRQ1 

REFRESH* 

SYSCLK 

IRQ7 

IRQ6 

IRQ5 

1RQ4 

IRQ3 

DACK2* 

TC 

BALE 

+5V 

OSC 

GND 

GND 

16-BIT EXTENSION 

J2/P2 
ROWC 

GND 

SBHE* 

LA23 

LA22 

LA21 

LA20 

LAI 9 

LAI 8 

LA17 

MEMR* 

MEMW* 

SD8 

SD9 

SD10 

SD11 

SD12 

SD13 

SD14 

SD15 

Key 

J2/P2 1 
ROW D 1 

GND 1 

MEMCS16*! 

I0CS16* 1 

IRQ10 1 

IRQ11 1 

IRQ12 1 

IRQ15 

IRQ14 1 

DACKO* 1 

DRQO 1 

DACK5* 1 

DRQ5 

DACK6* 1 

DRQ6 

DAGK7* 1 

DRQ7 

+5V 

MASTER* 1 

GND 1 

GND 1 
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outputs, 16 digital I/O lines, and a counter/timer. Diamond Systems also has 
the Prometheus PC/104 card, which is a 486-based SBC with an Ethernet 
interface and data acquisition hardware. 

PC/104-PLUS PC/104 cards are adequate for 8- or 16-bit applications that 
do not require high performance. They have the same performance limitations 
as ISA products. To address this, the PC/104 Consortium developed the 
PC/104-Plus standard in 1997. PC/104-Plus adds a PCI bus to PC/104 cards, 
via a third connector. This PCI connector (J3/P3) is a 120-pin, 2-mm-pitch 
stack-through, arranged in a 4 x 30 array and placed on the opposite end of 
the card from the original PC/104 connectors (Jl/Pl, J2/P2). 

PC/104-Plus only has a 32-bit PCI interface with a 33-MHz maximum 
clock speed and does not support 64-bit extensions. Still, it is a complete 
implementation of the 32-bit PCI bus with all the improvements over ISA. 
The cards still keep the same form factor of 3.6 x 3.8 inches. A PC/104-Plus 
card can have both ISA and PCI interfaces (using all three connectors) or 
only PCI. If a processor card supports both buses, you can mix ISA (PC/104) 
and PCI (PC/104-Plus) peripherals in the same system. Table 12-6 shows the 
pin assignments for the PCI connector on a PC/104-Plus card. 

One additional standard to note is the EBX (embedded board expand-
able) form factor, developed by Ampro and Motorola. EBX is electrically the 
same as PC/104 or PC/104-Plus but it uses a larger card size: 5.75 x 8 inches, 
allowing for higher levels of integration. As an example, Toronto MicroElec-
tonics, Inc., produces the model 5811 PC/104-Plus SBC using the EBX form 
factor. This SBC runs a 450 MHz AMD K6 CPU with as much as 512 Mbytes 
of SDRAM and a 144-Mbyte Flash Disk. It contains a dual IDE interface, a 
SCSI interface (Ultra Wide), a 10/lOOBase-T Ethernet interface, a video 
interface, four serial ports, a parallel port, two USB ports, and a touch-screen 
interface—all on a single EBX card. 

The 16-bit PC/104 standard is still quite popular and is the last remain-
ing stronghold of the ISA bus. As PC/104-Plus continues to grow in popularity 
it is likely to become the dominant standard for embedded PCs in the fore-
seeable future. 

12.4 Image Capture Products 

Image capture (or machine vision) is a growing area of specialized data 
acquisition for PCs, enabled by the speed and power of current PC hardware 
and operating systems. Machine vision is now commonly used for industrial 
automated inspection systems, with applications including reading bar codes 
on objects, verifying correct assembly of manufactured parts, and even checking 
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1 PIN 
NUMBER 

01 

1 02 
03 

1 ^̂  
05 

06 

1 ^̂  
1 ^̂  

09 

10 

1 ^̂  
1 ^̂  

13 

1 '•'* 
15 

1 ^̂  
1 ""̂  

18 

19 

1 20 

1 ^̂  
22 

23 

1 24 
25 

26 

1 2^ 
1 28 

29 

1 30 

J3/P3 
ROW A 

GND (5.0V Key) 

Vl/O 

AD05 

C/BEO* 

GND 

AD11 

AD14 

+3.3V 

SERR* 

GND 

STOP* 

+3.3V 

FRAME* 

GND 

AD18 

AD21 

+3.3V 

IDSELO 

AD24 

GND 

AD29 

+5V 

REQO* 

GND 

GNT1* 

+5V 

CLK2 

GND 

+12V 

-12V 

J3/P3 
ROWB 

Reserved 

AD02 

GND 

AD07 

AD09 

Vl/O 

AD13 

C/BE1* 

GND 

PERR* 

+3.3V 

TRDY* 

GND 

AD16 

+3.3V 

AD20 

AD23 

GND 

C/BE3* 

AD26 

+5V 

AD30 

GND 

REQ2* 

Vl/O 

CLKO 

+5V 

INTD* 

INTA* 

1 Reserved 

J3/P3 
ROWC 

+5V 

AD01 

AD04 

GND 

AD08 

AD10 

GND 

AD15 

SBO* 

+3.3V 

LOCK* 1 
GND 

IRDY* 

+3.3V 

AD17 

GND 

AD22 

IDSEL1 

Vl/O 

AD25 

AD28 

GND 

REQ1* 

+5V 

GNT2* 

GND 

CLK3 

+5V 

INTB* 

Reserved 

J3/P3 1 
ROW D 

ADOO 1 
+5V 1 
AD03 1 
AD06 1 
GND 1 
M66EN 

AD12 1 
+3.3V 1 
PAR 1 
SDONE 1 
GND 1 
DEVSEL* 

+3.3V 1 
C/BE2* 1 
GND 1 
AD19 1 
+3.3V 

IDSEL2 1 
IDSEL3 1 
GND 1 
AD27 1 
AD31 1 
Vl/O 

ONTO* 1 
GND 1 
GLK1 1 
GND 1 
RST* 

INTC* 1 
GND (3.3V Key) | 
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the color of pharmaceutical pills. Scientific and engineering applications 
include medical image processing and spectral analysis. The heart of PC-
based image capture applications is the/ram^ grabber board. This is a plug-
in card that converts the signal from an external analog or digital camera to 
a digital format that can be stored in PC memory. Once the image has been 
acquired, the PC can process the data to determine the required information 
(i.e., does the inspected part exceed dimensional tolerances?). 

Most current frame grabbers are PCI cards since ISA cards tend to be 
too slow for many applications. Consider a standard composite video camera 
with a frame rate of 30 frames/sec and a 640 x 480 pixel resolution. If 16 
bits (two bytes) were used to represent each pixel, the data rate produced by 
this camera would be over 18 Mbytes/sec. This is too fast for ISA's maximum 
transfer rate of approximately 2-5 Mbytes/sec, but well under the maximum 
32-bit PCI rate of 132 Mbytes/sec. 

An analog video frame grabber is basically a speciaUzed, high-speed 
ADC card with dedicated analog processing (such as a sync stripper) as well 
as digital image processing and storage (FIFO) capabilities. A digital video 
frame grabber is a specialized digital processor that converts the input data 
stream (usually RS-422 or LVDS signals) into a format usable by the PC and 
stores it at high speed into the PC's memory, via the PCI bus. 

One data acquisition manufacturer. Data Translation, is also a leader in 
machine vision products for PCs. Data Translation produces a wide range of 
analog and digital video frame grabbers as well as image processing software 
that runs under Microsoft Windows. For example. Data Translation's DT3120 
is a low-cost PCI frame grabber for monochrome and composite color (ana-
log) video signals. It uses two 8-bit, 40-Msamples/sec ADCs and outputs the 
data as 16-, 24-, or 32-bit pixels at a typical rate of 55 Mbytes/sec. 

An example of a digital camera frame grabber is Data Translation's 
DT3140. This PCI card accepts RS-422 and RS-644 (LVDS) inputs, from 8 
to 20 bits wide with clock speeds up to 60 MHz. Note that digital cameras 
use a synchronous, high-speed clock and output one pixel per clock cycle. 
The DT3140 has a typical data output rate (to the PCI bus) of 100 Mbytes/sec. 

One interesting aspect of digital camera frame grabbers is that they are 
really just high-speed PCI interfaces, suitable for transferring any digital data 
(in the correct format) into a PC's memory. For example, let us assume we 
have custom hardware that generates a large amount of 16-bit digital data at 
a rate of 20 MHz. It would be much easier to format our digital data to look 
like the output of a digital camera (simply add a 20 MHz pixel clock, line 
and frame trigger signals, and RS-422 or RS-644 drivers) than to develop our 
own high-speed PCI interface. Alternatively, we could try to transfer our data 
into a PC using an IEEE-1394 interface. However, this is still much more 
complex than the relatively simple digital camera interface. 
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Data Translation also produces software products for their frame grab-
bers as well as for machine vision applications in general. For example, DT 
Vision Foundry is software for image inspection applications that runs under 
MS Windows 98/NT/2000. Global Lab Image/2 is software for scientific and 
general-purpose image analysis applications that runs under MS Windows 
98/NT/2000/Me. 

Another data acquisition manufacturer with machine vision products is 
National Instruments. For example, the National Instruments PCI-1407 (also 
available as a PXI card) is an analog monochrome video frame grabber for 
the PCI bus with an 8-bit flash ADC. The PCI-1424 is a digital camera frame 
grabber for the PCI bus with a 32-bit input (RS-422, LVDS, or TTL signals) 
and a maximum pixel clock of 50 MHz. It has 16 to 80 Mbytes of on-board 
SDRAM to buffer high-speed data. National Instruments also produces 
machine vision software, such as IMAQ Vision Builder for Windows 
98/NT/2000, that is used to develop image-processing applications. 

There are many other image capture manufacturers who produce high-
performance products with specialized image processing features built into 
the hardware. A few of these manufacturers include BitFlow and Coreco. 
Refer to the Appendix for more vendor listings. 

This completes our overview of other PC configurations and hardware. 
In the next chapter, we will examine programming languages and the trade-
offs of writing your own software. 



C H A P T E R 

Computer Programming 
Languages 

There may be times when you need a PC to perform a task not supported by 
commercially available software, such as implementing a new signal-processing 
algorithm. This requires a custom program that you will have to write yourself 
or pay someone else to write. Unless you have very demanding requirements 
(very high-speed operation or extremely large amounts of data to manipulate), 
any computer language you are familiar with should enable you to do the 
job. If you are new to programming, selecting a computer language can be 
confusing. The best approach is to choose one of the more commonly used 
languages (such as BASIC, Visual Basic, C/C++, or Visual C++) which have 
a lot of support available for PC use. This support takes the form of a widely 
accepted PC version of the language, availability of many third-party software 
products (including libraries and debugging tools), and a good choice of 
introductory books for using that language on a PC running your chosen 
operating system. 

Under Microsoft Windows 3.1/95/NT and above, programming is much 
more complex than for MS-DOS. However, many popular Windows program-
ming languages (such as Microsoft Visual Basic and Visual C++) automate 
most of the required details and give you a basic program framework to fill 
in. The result is that Windows programming, using the appropriate software, 
can actually be easier than writing programs for DOS. 

In this chapter, we will first examine some of the important distinctions 
between different types of computer languages as well as their similarities 
(especially in MS-DOS and MS Windows PC environments). Then we will 
go on to look at a few popular languages in detail. 

326 
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The only language a computer understands is its machine language—the 
binary commands telling it exactly what to do. The standard programming 
languages in common use convert logical constructs and instructions that 
make sense to people into a series of commands a computer can understand 
and carry out. A set of commands used to perform some desired function is 
considered a program. 

The terms high-level and low-level are often associated with computer 
languages. A low-level language is very close to machine language. The most 
common instance of this is an assembly language, which performs a one-to-
one conversion of simple mnemonic commands into machine-language com-
mands, or object code. For example, in the Intel 80x86 family, there is a 
command to multiply two 8-bit numbers, MUL. A simple example using this 
conmiand to multiply 17 and 32 (decimal) is as follows: 

MOV AL,17 
MOV BL,32 
MUL BL 

load 17 into register AL 
load 32 into register BL 
multiply AL by BL 
16-bit product is in AX (AH, AL) 

Each line of assembler code (ignoring the comments after the semico-
lon) is translated into several bytes representing one computer command, or 
opcode. Assembly language is a simpler way for a person to represent the 
machine-language commands. The same commands in machine language 
(using hexadecimal notation) would be 

BO 11 
B3 20 
F6 E3 

Obviously, the assembler nmemonics make more sense than the machine-
language conamands. 

A high-level language is more abstract than a low-level language. Pro-
cessor details (such as which register contains which operand) are invisible 
to the programmer. In fact, under protected-mode operating systems (Win-
dows 95/NT and above) operating system details are also hidden from the 
programmer. Only the important operations and logic are visible. A high-
level language is processor-independent, making it portable. Reprogramming 
the previous example in C produces the following commands, which will 
work on a 68000 series CPU as well as an 80x86 processor: 

char a=17, b=32; 
in t c ; 
c = a * b; 

In this case, we do not need to know where the two operands are stored. We 
will let the compiler worry about those details. 
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Besides high-level versus low-level, there are two other distinctions 
between different types of computer languages: compiled versus interpreted. 
In a compiled language, the program under development (one or more ASCII 
files) is translated into machine language through a separate, independent 
series of steps. The result of the one-time compilation process is an executable 
binary file (.EXE in DOS or Windows) which can then be run by the appro-
priate operating system. In an interpreted language, the program is translated 
into machine language one line at a time, as the program is being run. Each 
time the program is run, it is translated into machine language again. The 
program has to be run from within the interpreter, which is itself a special 
program running under the operating system. An example of an interpreted 
language is GW-BASIC (for MS-DOS). Most other common computer lan-
guages, such as C/C++, FORTRAN, and Pascal, are compiled. 

A compiled program executes much faster than an interpreted program, 
since it has already been translated into machine language. It usually requires 
less free memory space, since a compiled program does not need the extra 
overhead of an interpreter. The main advantage of an interpreted program is 
the flexible user interactions available. With GW-BASIC, for example, you 
can control where to start, stop, and continue program execution and check 
variable values without modifying the program or leaving the BASIC envi-
ronment. In a compiled language, these features have to be written into the 
program and each modification requires a new compilation process. 

Of course, many debugging programs exist to assist in the development 
of compiled programs. A typical debugger provides an environment that 
allows the programmer to control execution, check variables, modify data, 
and perform many different tests on the program under development. An 
example of such a debugger, for MS-DOS systems, is Microsoft's CodeView, 
which supports both low-level (Assembler) and high-level (C, FORTRAN, 
Pascal) languages. Under Windows, Microsoft Visual Basic and Visual C++ 
provide a complete program development environment with built-in debug-
ging facilities. 

For compiled languages, the complete compilation process requires at 
least two discrete steps: compilation and linking. Under MS-DOS and Win-
dows, compilation consists of translating the original ASCII program file (the 
source code) into a machine-language .OBJ file (the object code or object 
module). The object code file is not executable. It lacks several important 
pieces. The linking process takes the object code and adds any library func-
tions it requires, as well as commands that are defined in other files (or object 
modules), and produces an executable file. 

For example, in C, the printf command displays a text string on the 
screen. It is a standard C library function. If an object module calls printf, 
this function must be extracted from the library. The linking process links 
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the new program's object code with other object modules, from standard 
Ubraries and user-developed sources. The linker makes sure all function and 
variable names are defined (and do not clash) and decides where the various 
code modules should be located in memory. Linking adds all the remaining 
information the operating system (i.e., DOS or Windows) needs to load the 
finished program into memory and run it. The output of the linking process 
is an executable (.EXE) file. 

The actual compilation and linking processes may each take several 
steps, though this is usually invisible to the program developer (such as 
processing the source file multiple times). Most PC linkers (including the 
LINK program provided with MS-DOS) support many different options, 
such as control over where to place the completed program in memory and 
how to include information for debuggers. An additional step, after linking, 
is required to convert a .EXE program into a .COM program for DOS. If 
the entire program was kept within a single 64-Kbyte memory segment, it 
can be processed by the DOS command EXE2BIN, which converts it to a 
.COM file. 

It should be noted here that not all computer languages neatly fit into 
the categories of compiled versus interpreted or high-level versus low-level. 
There is no doubt, for example, that C is a high-level programming language 
(and one of the most popular). Yet, it is a fairly "bare-bones" language having 
a moderately sparse set of commands, making it similar in some ways to low-
level programming languages. It is the additional libraries that are packaged 
with C compilers, along with the extreme flexibility of the language, that 
make it so popular. C is a very efficient language, producing relatively small 
programs (small executable files) compared to a less efficient high-level 
language such as FORTRAN. It executes commands quickly, since a com-
mand in C is translated into a relatively small number of machine-language 
conmiands, again making it appear similar to a low-level language. This is 
why C is often used to produce programs for embedded processors. 

An example of a progranmiing language with properties of both a 
compiler and interpreter is FORTH. Commands (or words, as they are called 
in FORTH) are executed in binary (machine language) form, as in a compiled 
language. However, each word is executed separately under control of the 
environment. In addition, new words can be defined as combinations of old 
words. These new words then get translated into machine language before 
they can be executed. This type of language, having some properties of both 
a compiler and an interpreter, is called an incremental compiler. The com-
mands (words) are compiled one at a time, with new ones built upon com-
binations of existing ones. Another example of a high-level language with 
both interpreter and compiler characteristics is MATLAB, which we looked 
at in Chapter IL 
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Now we will examine a few popular programming languages in greater 
detail. 

13.1 Popular Programming Languages 

Most text-based progranmiing languages (as opposed to some of the special-
purpose, graphics languages we examined in Chapter 11, such as Lab VIEW) 
can be used with any standard operating system on nearly any computer. For 
example, C was originally written for UNIX (running on mainframe comput-
ers) and it is now available for nearly all operating systems, including MS-
DOS and Windows. 

Microsoft Windows-based programming languages (such as Visual 
C++) are usually part of a sophisticated application development environment 
that simplifies the otherwise tedious task of writing a complete Windows 
program. Hence, we will treat programming for MS Windows as a separate 
topic, later in this chapter. 

In this section, we will discuss some major programming languages, 
both generically (independent of operating system) and when used in a text-
based environment, when running an MS-DOS compiler/linker on a PC. We 
will start with assembly language, the lowest level of programming languages 
commonly employed. 

13.1.1 Assembly Language 

Assembly language (or Assembler) is a compiled, low-level computer lan-
guage. It is processor-dependent, since it basically translates the Assembler's 
mnemonics direcdy into the commands a particular CPU understands, on a 
one-to-one basis. These Assembler mnemonics are the instruction set for that 
processor. In addition, an Assembler provides commands that control the 
assembly process, handle initializations, and allow the use of variables and 
labels as well as controlhng output. 

On PCs, Assembler is normally used only under MS-DOS. When run-
ning a 32-bit, protected-mode operating system (including Windows 95/NT 
and above), low-level programs which directly access registers or memory 
locations produce protection violations. All low-level access must be made 
through appropriate software drivers. 

For MS-DOS PCs, the most popular Assembly language was Microsoft 
Macro Assembler, or MASM. As with most popular compilers, MASM was 
upgraded on a regular basis. Most of this discussion refers to version 5.0 or 
later, which simplified the use of certain directives and included support for 
instructions available only on 80286 and 80386 CPUs. 
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A directive is an Assembler command that does not translate into an 
executable instruction, but directs MASM to perform a certain task facilitating 
the Assembly process. An executable instruction is sometimes referred to as 
an op code, while an Assembler directive may be referred to as a pseudo-op 
code. Directives can tell MASM many different things, including which 
memory segment is being referred to, what the value of a variable or memory 
location is, and where program execution begins. 

One important MASM directive is .MODEL, which determines the 
maximum size for a program. Remember that for an 80x86 family CPU, 
memory is addressed as segments, up to 64 Kbytes in length. If 16-bit 
addressing is used (for code or data) only a single 64K segment will be 
accessed. The memory model of a program defines how different parts of that 
program (code and data) access memory segments. Five memory models are 
supported by MASM for DOS programs: Small, Medium, Compact, Large, 
and Huge. In the Small model, all data fits within one 64K segment and all 
code (executable instructions) fits within another single 64K segment. In the 
Medium model, all data fits within one 64K segment but code can be larger 
than 64K (multisegment, requiring 32-bit addressing for segment:offset). In 
the Compact model, all code fits within one 64K segment but data may occupy 
more than 64K (but no single array can be larger than 64K). In the Large 
model, both code and data may be larger than 64K (still, no single data array 
can exceed 64K). Finally, in the Huge model, both code and data can be 
larger than 64K and data arrays can also exceed 64K. 

Since larger models require larger addresses, they produce bigger and 
slower programs than a smaller model will. In selecting a model for a pro-
gram, try to estimate the maximum amount of data storage you will need. 
Let us say you are writing an FFT program, using 16-bit integer math and a 
maximum sample size of 2048 points. Since each point requires two integers 
(real and imaginary) and each integer is 2 bytes long, you need 8096 bytes 
just to store the input (or output) data. Even if you had separate arrays for 
input and output data, that would still be only 16,192 bytes. As a safety 
margin, for temporary storage, we will double this number, to 32,384 bytes, 
which is only half of a 64K segment. It is more difficult to estimate the size 
of the code. In this example, we would start with the Small model. If the 
code turned out to be larger than 64K (which is not easy to do in assembly 
language), we would move to the Medium model. These same memory 
models also apply to Microsoft's high-level DOS language compilers. If you 
are writing a MASM program to work with another high-level language, you 
should use the same memory model for both. 

Here is an example of a simple MASM program that displays a text string 
("This is a simple MASM program") on the screen using DOS function 09h: 



DOSSEG 
.MODEL 
.STACK 
.DATA 

text DB 
DB 
.CODE 

go: mov 
mov 
mov 
mov 
int 
mov 
int 

SMALL 
400h 

"This is 
ODh, OAh, 

ax,@DATA 
ds,ax 
dx,OFFSET 
ah,09h 
21h 
ax,4C00h 
21h 
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;Let MASM handle t h e segment order 
; Small model i s adequate fo r t h i s 
;Se t a s i d e 1024 b y t e s for a s t a c k 
; S t a r t of t h e d a t a segment 

a s imple MASM program" 
24h ;End w i t h CR, LF and $ char 

; S t a r t of code segment 
;Load da ta segment loca t ion in to DS 

t e x t ;Now DS:DX p o i n t s t o t e x t 
;DOS s t r i n g d i sp lay function number 
; C a l l DOS func t ion 
;Load DOS e x i t func t ion number 
;Ca l l DOS func t ion ( e x i t ) 

END go ; S t a r t e x e c u t i o n a t l a b e l go 

Several directives are used here. DOSSEG tells MASM to take care of 
the order of the various segments (code, data, stack), a detail we would rather 
ignore. The directive .DATA indicates the start of the data segment while 
.CODE indicates the start of the code segment. The message is referred to 
by the label text, where the DB directive (Defines Bytes) indicates that this 
is byte data (the quotation marks indicate ASCII text). The string must be 
terminated by ASCII character 24h ("$") for DOS function 09h. The execut-
able instructions are placed in the code segment. The label, go, refers to the 
start of the program. The address of the text string is loaded into registers 
DS:DX. Then DOS function 09h is called, to display the string. Finally, DOS 
function 4Ch is called to exit the program and return to DOS. The final END 
directive tells MASM to begin program execution at the label (address) go. 

MASM is called a Macro Assembler, because it supports the use of 
macros. A macro is a block of program statements that is given a symbolic 
name that can then be used within the normal program code. A macro can 
also accept parameters when it is called within a program. When the source 
file is assembled by MASM, any macros are expanded (translated) to their 
original definition text. This is very handy if the same section of code, such 
as a programmer-defined function, is used repeatedly. Often, predefined mac-
ros may be kept in a separate file, along with other information, such as variable 
initializations. The INCLUDE directive can read this file in during assembly. 

This brief overview of MASM has barely scratched the surface of 
assembly language. Check the bibliography for other books on this subject. 
Again, you should write a program in assembly language only if you are 
working in DOS and a high-level language is inadequate for your task. Even 
then, you can usually get away with just writing the most critical sections in 
MASM and calling them from a high-level language. Next, we will look at 
a popular, high-level, interpreted language: BASIC. 
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13.1.2 BASIC 

BASIC was probably the most popular interpreted computer language used 
on early PCs. This was due, in large part, to it being included with IBM-DOS 
and MS-DOS packages. In fact, original IBM PC systems had BASIC in 
ROM, to save RAM space for programs. The first IBM PC had 64 Kbytes of 
RAM and a floppy disk drive was optional. If no disk drive was present, the 
system would start up in BASIC (since you needed a disk drive to boot up 
DOS). PC compatible manufacturers did not put BASIC in ROM, but ran 
Microsoft's GW-BASIC from RAM, like any other program. GW-BASIC was 
functionally equivalent to IBM's BASIC and BASICA. 

BASIC, which is an acronym for Beginner's All-purpose Symbolic 
Instruction Code, was originally developed at Dartmouth College as a tool 
for teaching fundamental programming concepts. It is one of the easiest 
progranmiing languages to learn and use. It does have serious drawbacks. 
Being interpreted, it executes slowly. This becomes especially obvious when 
performing a real-time task, such as controlling serial communications at high 
data rates on an older PC. Also, BASIC does not easily lend itself to devel-
oping neat, modular programs. It is a good tool for learning, experimenting, 
and quickly prototyping software algorithms. It is not well suited for devel-
oping high-performance or commercial-quality software for DOS applica-
tions. In addition, standard BASIC can only use 64 Kbytes of memory for 
data and stack storage. Under Windows, Visual Basic overcomes many of 
these limitations. 

Interpreted BASIC has two modes of operation: direct mode and indirect 
mode. In the direct mode, BASIC conmiands and statements are executed as 
soon as they are entered. Results of calculations can be displayed or saved 
in a variable for further use. The statement or command lines themselves are 
lost after execution. Direct mode is useful for quick calculations or debugging 
operations (such as displaying or loading variable values). BASIC can accept 
a direct command when it is at the conmiand level, displaying the OK prompt. 
An example of a direct-mode command to display the result of a calculation 
would be 

PRINT 23 * 17 + 2 

The PRINT command displays the result on the screen (LPRINT sends output 
to the printer). 

In the indirect mode, lines of program statements are stored in memory. 
A line number precedes each program line. If a line number is missing, that 
command line is treated as a direct-mode statement. After all program lines are 
entered, the program can be executed via the RUN command. The sequence 
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of program execution starts with the lowest Une number and continues through 
to the highest Une number, unless a special statement (such as GOTO) explic-
itly changes the order. For example, a simple BASIC program to perform the 
direct-mode calculation from the last example could be a single line: 

10 PRINT 23 * 17 + 2 

Or, it could be more generalized, with multiple lines: 

10 A = 23 

20 B = 17 
30 C = 2 
40 PRINT A * B + C 

Here, using the variables A, B, and C, the numbers fed into the calcu-
lation can be quickly changed. An even better way would be to enter the 
variable values when the program is run: 

10 INPUT "ENTER A 
20 INPUT "ENTER B 
30 INPUT "ENTER C 

A 
B 
C 

40 PRINT "A * B + C = "; A * B + C 

In this case, the simple program is now general-purpose. The user 
determines the variable values each time the program is run, using the INPUT 
statement, which prompts the user with the text enclosed within quotes. When 
the program is run, the screen would look as follows, with the operator's 
responses underlined: 

RUN 
ENTER 
ENTER 
ENTER 
A * B 
OK 

A: 
B: 
C: 
+ 

12 
7 
21 
C = 105 

It is important to note that not all BASIC statements can be used in the 
direct mode (the indirect mode uses all of them), including GOSUB and 
RETURN for executing subroutines. 

BASIC has a rich set of commands. It has a full range of mathematical 
and trigonometric functions, supporting both integer and floating-point cal-
culations. It has commands for manipulating text strings, handling data file 
operations (supporting both ASCII and binary formats), and operator inter-
facing. It has several statements for program control, such as IF, THEN and 
FOR, NEXT. BASIC directly supports many aspects of a PC's hardware and 
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software (DOS) environment. It can read the system clock (via TIME$), 
directly input from or output to an I/O port (via INP and OUT), or even read 
from and write to system memory locations (via PEEK and POKE). BASIC 
provides many functions for controlling screen display, with both text and 
graphics (if appropriate display hardware is present in older PCs). In addition, 
BASIC can call assembly-language routines for functions it cannot directly 
perform (or cannot perform quickly enough). The assembler code has to be 
properly written to allow interfacing to a BASIC program. 

BASIC provides an environment that simplifies the process of program 
development. Besides just entering program lines, BASIC has special com-
mands for modifying programs. EDIT allows you to modify the specified 
line. RENUM automatically renumbers the program lines, which is necessary 
if you need to add a new program line between two existing lines with 
consecutive numbers. You can save a program onto a disk file (SAVE) or 
retrieve a previously saved program (LOAD). You can display a program on 
the screen (LIST) or send it to a printer (LLIST). You can even use a special 
trace mode (via TRON, TROFF), which displays the program line numbers 
as they are executed. 

An important aspect of BASIC is that all the variables are global. Any 
part of a program can change the value of any variable. In some respects this 
can be handy. A subroutine does not explicitly return any value to the main 
program, it just writes to the appropriate variables. The flip side of this can 
be a problem, if you lose track of which variables are being used by which 
subroutines. Great care must be taken in keeping track of variables in BASIC. 

Consider the following program which averages 10 values in the array 
A(I): 

10 DIM A(10) 
20 FOR I = 1 TO 10 
30 READ A(I) 
40 NEXT I 
50 DATA 1.1, 2.3, 5.7, 6.4, 
60 DATA 3.0, 2.1, 4.0, 1.9, 
70 GOSUB 500 
80 PRINT "DATA AVERAGE = " ; 
90 STOP 
500 REM - SUBROUTINE AVERAGES 
510 AVG = 0 
520 FOR J = 1 TO I - 1 
530 AVG = AVG + A (J) 
540 NEXT J 
550 AVG = AVG/(I - 1) 
560 RETURN 

2.9 
8.4 

AVG 

I VALUES IN A(I 

There are several points to note in this illustrative program. Line 10 
defines the data array A(I). The FOR ... NEXT loop in lines 20-40 loads 10 
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values into the array, from the DATA statements in Unes 50 and 60. The mean 
value is calculated by the subroutine in lines 500-560. This subroutine is 
called via the GOSUB command and is terminated by the RETURN com-
mand. The values in A(I) are available to the subroutine, which first uses the 
variable AVG to accumulate all 10 values, with the FOR ... NEXT loop in 
lines 520-540. Then the average is calculated and stored in AVG, which is 
used by the main program in its PRINT statement (line 80). 

Note that the FOR ... NEXT loops use a variable to keep track of how 
many times that loop is executed. Even though the range of / in line 20 is 
specified as 1 to 10, since / gets incremented at the end of each loop (before 
its value is tested), the final value of / is 11 when the looping is terminated. 
That is why the subroutine FOR ... NEXT loop, starting at line 520, loops 
through / - 1 times. If both the main program's and the subroutine's FOR ... 
NEXT loops used the same index variable (/), the program could not run 
properly. 

BASIC was so popular for early PC use that many enhancements were 
provided, making it closer to a professional-quality language. Several com-
piled versions of BASIC were available for DOS. You could prototype and 
debug a program in interpreted BASIC and then compile it, with few modi-
fications, if any. 

Some manufacturers of data acquisition products provided extensive 
BASIC support for their hardware. This included assembly language driver 
functions that could be called from a BASIC program. Other manufacturers 
produced their own enhanced version of BASIC to support their hardware 
and extend the language's capabilities. 

There were several, general-purpose, compiled versions of BASIC avail-
able, such as Microsoft's QuickBasic for MS-DOS. As the new BASIC 
versions evolved, they became more like other conventional, structured, com-
piled programming languages. Visual Basic (for Windows) is a good example 
of this. 

Now, we will look at a few high-level compiled languages, starting 
with C. 

13.1.3 C Programming Language 

C is one of the most popular general-purpose computer languages used by 
professional programmers. As we discussed previously, C combines the best 
features of low-level languages (ability to directly access hardware and to 
produce fast, efficient code) with those of high-level languages (supports 
abstract data structures, handles complex mathematical calculations, is well 
structured and maintainable). 
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The power and popularity of C reside, paradoxically, in its inherent 
simplicity. In one sense, C is not very robust, because it lacks many functions 
present in other high-level languages, such an x command. However, it 
contains all the building blocks to create this function along with any other 
high-level language operation. Many of these features are present in standard 
libraries that are part of a commercial C compiler package. In addition, C 
contains many operators not found in most high-level languages, such a bit 
manipulation commands. Since C is modular, it is easy to add new functions, 
as needed, and use them as if they were an inherent part of the system. 

C is also a well-standardized language. It was developed at AT&T Bell 
Laboratories, during the early 1970s, by Dennis Ritchie, where it was well 
controlled. The language is defined by the standard text. The C Programming 
Language, by Kemighan and Ritchie. Virtually all commercial C compilers 
adhere to this or a later ANSI standard (although some may add enhance-
ments, along with additional function libraries). 

To illustrate some of the features of C, here is the program for calcu-
lating an average value, from the previous BASIC section, rewritten in C: 

f l o a t a [10]= { 1 . 1 , 2 . 3 , 5 . 7 , 6 . 4 , 2 . 9 , / * d e f i n e d a t a a r r a y */ 
3 . 0 , 2 . 1 , 4 . 0 , 1 . 9 , 8 . 4 } ; 

mainO /* Program e>«cuticn s ta r t s with itBin */ 
{ 
f l o a t avg; /* v a r i a b l e for ave rage v a l u e */ 
avg = ca l c_avg (a , 10) ; /* calculate average value of array */ 
printfC'DATA AVERAGE = %f \n" , avg ) ; /* d i s p l a y r e s u l t */ 
} /* End of main program */ 

f l o a t c a l c _ a v g ( d a t a , n v a l ) /* Siitaroutine calculates average value 
in a r ray da ta , nval po in t s long */ 

f l o a t *da ta ; /* data points to ir^xit data ar ray */ 
i n t n v a l ; /* nval contains # of values t o avg */ 
{ 
i n t i ; /* misc v a r i a b l e s */ 
f l o a t x ; 

f o r ( i = 0 , x=0 .0 ; i < n v a l ; ++i) / * main c a l c u l a t i o n loop */ 
{ 
X += * (da ta + i ) ; /* Add d a t a v a l u e s i n t o x */ 
} 

X /= n v a l ; /* c a l c u l a t e average (sum/nval) */ 
r e t u m ( x ) ; /* retiom r e s u l t t o main program */ 
} /* End of Subrou t ine */ 

Many aspects of C are shown in this example. Functions (including the 
main program and any subroutines) are specified by a name followed by 
parentheses, with or without arguments inside. The statements comprising 
the function are delimited by the braces, {}. These same braces also delimit 
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various loops within a function or even array initialization data (for a[]). 
Program execution starts with the function main(), the main program. When 
another function name appears, such as calc_avg(), that function starts exe-
cution. When it completes, control is returned to main(), along with a return 
value (if any). Statements in C are terminated by a semicolon (;) and pairs 
of special characters (/* */) delimit comments. Statements (and comments) 
can span multiple lines. C is not rigorous about text formatting in the source 
code. It allows programmers to format a file for easy readability. In this 
respect, C is a fairly free-form language. Also, it does not use line numbers, 
although you can give statements a label. 

There are many important facets of C. One of these is function privacy. 
Any variable defined and used within a function is private or local to that 
function. Another function cannot directly access that variable. This is in 
sharp contrast to BASIC, where all variables are global (none are private). 
When a function sends a variable value to another function, it sends a copy 
of that variable, so the original cannot be changed by the other function. For 
a variable to be global, it must be defined outside of a function. In the 
preceding example, a[] is a global array of floating-point numbers. The only 
reason a[] was made a global array, instead of a local array in main(), was 
to initialize its values more easily. Also note that all variables have to be 
explicitly declared before they can be used. As opposed to some other lan-
guages (MATLAB, for example), C must know expHcitly what all the variable 
types are (integer, floating-point) before it can use them. 

Another significant aspect of C is the use of pointers. In C, any variable 
(scalar or array) has two values associated with it: the lvalue and the rvalue. 
The lvalue is the address of a variable, while the rvalue is its actual numeric 
content. A pointer is used to address a variable (or a memory location). If we 
have a pointer, pntrl, containing the address of a variable, we can store the 
value of that variable in another variable, x, with the indirection operator, *, 
as follows: 

X = * p n t r l ; 

Similarly, if we want another pointer, pntr2, to contain the address of the 
variable x, we can use the address 6j/"operator, &, as follows: 

p n t r 2 = &x; 

The utility of this pointer scheme is shown in the program example just 
given. Function calc_avg() defines two dummy parameters, data and nval. The 
parameter data is defined as a pointer to an array of floating-point values via 

f l o a t * d a t a ; 
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If data was just a scalar variable, it would be defined without the indirection 
operator: 

f loat data; 

By specifying this parameter as a pointer, we do not have to pass 10 
variables to calc_avg(). In addition, the function can handle input data arrays 
of variable length—it just needs to know where the array starts (via data), 
how long it is (via nval), and how big each element is (via the float declaration 
for *data). 

Another aspect of pointers is that they are the means to circumvent 
variable privacy. The only way one function can modify the rvalue of another 
function's local variable is if that function sends it the lvalue (pointer) of that 
variable. This is necessary when a relatively large amount of data must be 
passed between functions. Still, this is done explicitly, and the indirection 
operator must be used to access the variable, from its pointer. 

Several aspects of the notations used in C can be bewildering at first. 
One source of confusion is = (the assignment operator) versus == (the equality 
operator). The assignment operator is used to assign the rvalue of a variable, 
as in most high-level languages: 

X = 1 0 ; 

The equality operator tests a statement to see if it is true or false (in C, false 
is considered 0 and true is considered nonzero). So, a conditional statement 
checking if x equals 10 would be 

i f ( x == 10) 
{ 
/* conditional statements here */ 
} 

If X does equal 10, any statements within the braces would be executed. 
Other notation in the sample program may seem odd. C allows for 

special assignment operators, such as += or /= (as used in the sample pro-
gram). The statement 

is equivalent to 

Similarly, 

X += 1 0 ; 

X = X + 1 0 ; 

X /= n v a l ; 
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is equivalent to 

X / n v a l ; 

These assignment statements are notational conveniences. Other impor-
tant operators are increment (++) and decrement (—). As used in the sample 
program, the increment operator statement 

is equivalent to 

i = 1 + 1; 

Similarly, 

~ j 

is equivalent to 

j = j - 1 (decrement) . 

Logical operators also can be confusing. The bitwise AND operator (&) 
is different from the logical AND operator (&&). For example, 

i = 0x13 & 0x27; 

evaluates i = 13h AND 27h as 03h (note the use of Ox for hexadecimal 
numbers). When used as a logical operator, 

i = a && b ; 

i is evaluated as TRUE only if both a AND b are true. The same distinctions 
hold true for the OR operators (| and ||). 

There are two important loop control statements in C, the for loop 
(shown in the example program) and the while loop. In the example, the for 
loop consists of a for() statement followed by one or more program state-
ments, enclosed in braces. The for() statement consists of three sets of expres-
sions, separated by semicolons: initializations (i = 0, x = 0.0), test condition 
(i < nval), and execute at end of loop (-h+i). The initializations set up a loop 
index variable (i) and any other variables used in the loop (x), where required. 
The test condition (i < nval) is evaluated at the start of each loop. This usually 
checks if the index is within bounds. If the test condition is true, the statements 
within the loop's braces are executed (x += *(data + i);). This is followed by 
the executable expression (++i), usually used to increment the loop index. 
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When the test condition is no longer true, as when the loop has been executed 
the requisite number of times, execution continues with the first statement 
following the for loop. 

The while loop is simpler. It consists of a while() statement, which 
contains only a test expression, followed by braces enclosing the loop state-
ments. If we rewrite the for loop from the example program as a while loop, 
we get 

i = 0; 
X = 0 . 0 ; 
wh i l e ( i < nva l ) 

{ 
X += * (da ta + i ) ; 
++i; 
} 

The whileO statement is a useful way to wait for an event to happen, 
regardless of how many times to try. If we are waiting for a device to produce 
data, via a function get_data(), which returns 0 if no data is present, the 
statement 

whi le (ge t_da t a () == 0) ; 

waits indefinitely until get_data() returns a nonzero value. Of course, in actual 
practice there should be a way of terminating this wait, in case of error (such 
as a time-out). 

This concludes our brief overview of the C programming language, 
which is one of the most important general-purpose languages for data acqui-
sition applications. Next, we will examine C++, an offshoot of C. 

13.1.4 C++ 

C++ was developed by Bjame Stroustrup as an extension of C that is in effect 
a superset of the original language. The most significant aspect of C++ is 
that it is an object-oriented pvograimning language. Object-oriented program-
ming (OOP) languages rely on three major concepts: encapsulation, inherit-
ance, and polymorphism. 

An object in an OOP language has the property of encapsulation 
because it is a self-contained, logical unit, containing both data and code. An 
object has the ability to hide its operations and data from other parts of the 
program. It can have both private code (member functions) and data (struc-
tures) that are not accessible outside of the object. C++ implements encap-
sulation through new user-defined variable types, called classes. 
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Inheritance is a process that allows one object or class to obtain the 
properties of another object, including data structures and member functions. 
In C++, a new type that is the extension of an existing type can be declared 
as a subclass, with its unique modifications. Using inheritance, you can create 
a well-organized hierarchy of classes. 

Polymorphism (literally, the ability to assume many forms) allows the 
same name of a function or class to be used for slightly different but related 
operations. That is, one name can determine a general course of action, while 
the actual type of data used selects the specific, detailed operations. In this 
way, related objects operate in similar ways, just as all automobiles speed up 
when you press the accelerator pedal. For example, in C++ assume we have 
averaging functions avg_int() which operates on integers and avg_float() 
which operates on floating-point numbers. Using polymorphism, we can 
define a function avg() which operates on either data type. At compile or run 
time, C++ will determine which function to use when avg() is called, depend-
ing on the input data type. Applying polymorphism to functions this way is 
sometimes called function overloading. 

The concept of object-oriented programming was developed to simplify 
the task of developing large, complex computer programs. It enables a pro-
grammer to break up a large problem into smaller, related sections. Then, 
each subsection of the problem can be translated into an object. An added 
benefit of object-oriented programming is that it encourages writing reusable 
code because of encapsulation and inheritance. 

You can use a C++ compiler with C code with few or no changes. Of 
course, the power of the new language is only apparent when you use the 
unique features of C++. If you are already familiar with C, you have to learn 
the new features and syntax of C++ along with its object-oriented philosophy. 
If we rewrote the main() section of our C averaging program in C++ we 
would see a new way of producing output: 

void mainO / / exp l i c i t l y show that main() returns no data 
{ 
float avg; // variable for average value 
avg = calc_avg(a,10); // calculate average value of array 
cout « "DATA AVERAGE = " « avg « endl; // display result 
} // End of program 

In this C++ example, cout is the standard output stream and « is the 
insertion operator. When you compare the cout statement here to the previous 
example using the printf statement, you will notice that there is no explicit 
formatting used to display the variable avg. Since the compiler knows that 
avg is a float, cout uses the correct format. This is an example of function 
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overloading, an aspect of polymorphism. Note that endl (end line) is the same 
as the '\n' character in C. Also note that in C++ conmients begin with // and 
continue to the end of the line (for multiline comments, you can still use the 
C style /* */ comment delimiters). 

If you wanted to explicitly format an output variable in C++ you can 
use a manipulator with cout. For example, if you want to display an integer 
as hexadecimal instead of decimal: 

i n t temp ; 
temp = 756; 
cout « hex « temp « e n d l ; 

Here, the manipulator hex forces the output integer value to be displayed as 
a hexadecimal number. 

In a similar fashion, C++ uses a standard input stream to read in values 
from the keyboard, via cin: 

int val ; 
cout « "Enter a value: \n" ; 
cin » val; 

In this simple example, the variable val is assigned a value entered when the 
program runs. Note that the direction of the insertion operator ( » ) indicates 
data flow—in this case from cin to val. 

The heart of C++ is defining classes and using them to create objects. 
Classes contain both private and public data (variables) and functions (sub-
routines). Keeping all data members (internal variables) private and only 
allowing member functions to be public (accessible by other parts of the 
program) is good practice for secure data encapsulation. Here is a simple 
C++ example of declaring a class and using an object: 

//Define the new c l a s s : 
c lass Sensor / / s t a r t of c lass def in i t ion for Sensor 
{ 
pr iva te : / / t h e following members are p r iva te 

char* s_location; 
i n t s_temp; 
int s„press; 

public: //the following members are public 
//declare function prototypes 

void SetLocation(char* location); 
void SetTemperature(int temp); 
void SetPressure(int press); 
void DisplayInfo(); 

}; //end of class definition 
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//Define the member fiinctions: 
void Sensor::SetLocation(char* location) 
{ //start of function definition 

s_location=location; //load private variable from passed param 
} //end of function definition 

void Sensor::SetTemperature(int temp) 
{ //start of function definition 

s_temp = temp; //load private variable from passed param 
} //end of function definition 

void Sensor::SetPressure(int press) 
{ //start of function definition 

s_press = press; //load private variable from passed param 
} //end of function definition 

void Sensor::DisplayInfo() 
{ //start of function definition 

//display values of private variables: 
cout « "Location = " « s_location « '\n'; 
cout « "Temperature = " « s_temperature « '\n'; 
cout « "Pressure = " « s_pressure « '\n'; 

} //end of function definition 

//Main program: 

void main() 
{ 

Sensor sensOl; / / i n s t a n t i a t e a Sensor object (sensOl) 
/ / Assign values to member var iables via member functions: 

sensOl.SetLocation("Environmental Chamber 001"); 
/ / i n i t s_location 

sensOl.SetTemperature(100); / / i n i t s_temp 
sensOl.SetPressure(800); / / i n i t s_press 

/ / Now display the p r iva te data: 
sensOl.DisplayInfo(); 

} / / end of mainO 

This program shows some of the basic object-oriented features of C++. 
First, we define a new class called Sensor. This class contains three private 
variables: sjocation (a string), s_temp (an integer), and s_press (an integer). 
The only way for another part of the program to access these variables is 
through the public functions SetLocation(), SetTemperature(), SetPressure(), 
and DisplayInfo(). The first three functions are used to load the private 
variables and the last one displays their values. The class definition in C++ 
is essentially an extension of the structure definition in C (which is only for 
data). Note that in C++, function prototypes must always be explicitly 
declared (in C it was not mandatory). A function prototype is simply a 
declaration of a new function that provides its name, input parameters (in 
parentheses), and type of return value (or void, if there is none). 
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Once the new class has been defined (along with its member variables) 
the new functions are defined. Since these are member functions of the class 
Sensor, the function names start with Sensor::, where :: is the scope resolution 
operator. The scope resolution operator simply shows that the specified func-
tion is a member of the specified class. 

The functions SetLocation(), SetTemperature(), and SetPressure() sim-
ply load the appropriate private variable (s_location, s_temp, s_press) with 
the value passed to the function (location, temp, press). The function Dis-
playlnfoO outputs the values of these private variables. 

The main program first creates an object, sensOl, of the class Sensor. 
Here, the new class (Sensor) is used as a type definition, just as int or float 
would be. You cannot use any members of a class until you create or instan-
tiate an object of that class. Once we have the object (sensOl) declared, we 
can initialize its private variables by calling our Set...() functions with the 
values we wish to load. Note the syntax used in main() to call our public 
functions: 

sens 01.SetTemperature(100); 

Here, we use the dot operator (.) to indicate that SetTemperature() is a member 
function of the object sensOl. This dot operator use in C+-i- is analogous to 
its use in C when accessing an element of a data structure. We cannot directly 
access the private variables in our object from main(), but if any were public 
we could use the same construct. For example, if an integer called s_length 
was defined as a public in the Sensor class, the following statement in main() 
would be legal: 

sens01.s_length = 25; / / d i rec t assignment of an objec t ' s member ciata 

The preceding discussion was just a brief introduction to C++, designed 
to give you the "flavor" of the language. There are many other aspects of 
C++ that we have not even touched upon. For example, C++ uses special 
functions called constructors and destructors that create objects (when instan-
tiated) and destroy them (when they are no longer needed). C++ also supports 
inline functions, which allow you to fully define a simple function when you 
normally declare just a function prototype, within a class definition. This is 
appropriate for functions with only a few lines of code, such as the ones in 
our C++ program example. Another unique feature of C++ is the reference 
data type, which provides an alias for an existing variable. 

Most importantly, C++ supports inheritance and class hierarchies. You 
can define a derived class from an existing base class. For example, if we 
wanted to define a class, based on our existing Sensor class, that added a new 
variable, s_time: 
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class Sens_Time : public Sensor 
{ // start of derived class definition 
private: 

long s_time; 
}; / / end of c lass def in i t ion 

Notice that we are defining the new class, Sens_Time, as derived from 
the base class Sensor. Sens_Time has all the original characteristics of class 
Sensor plus the addition of a new, private variable, s_time. We could also 
change the definition of any member variable or function in the class Sensor 
by redefining it for Sens_Time. 

C++ is quickly becoming the language of choice for many professional 
progranmiers. For more detailed information, the reader is urged to read a 
good introductory C++ text, such as those listed in the bibliography. Next, 
we will quickly look at a few older high-level progranmiing languages: 
FORTRAN and Pascal. 

13.1.5 FORTRAN 

There are many other high-level languages commonly used for program-
ming PCs. FORTRAN is one of the oldest, numerically oriented high-level 
languages, extensively used for scientific and engineering programming. 
FORTRAN is an acronym for FORmula TRANslator. It is not a highly 
structured language (akin to BASIC), where GO TO statements are exten-
sively used for flow control. Unlike BASIC, only lines used in branching 
statements get numbered. 

FORTRAN supports explicit declaration of variables, but also uses 
implicit variable types. It assumes that an undeclared variable is real (floating-
point) unless it begins with a letter between i and n (inclusive), which 
denotes an integer. For program control it uses an IF statement, a GO TO 
statement, and the DO loop (similar to the for loop, in C). To illustrate some 
points, here is our sample program, calculating an average value, written in 
FORTRAN: 

C CALCULATE AVERAGE VALUE 
DIMENSION D(10) 
DATA D/1.1,2.3,5.7,6.4,2.9,3.0,2.1,4.0,1.9,8.4/ 
SUM=0.0 
1=1 

20 SUM=SUM+D(I) 
1=1+1 
IF(I.LE.10)GO TO 20 
AVG=SUM/10.0 
PRINT, AVG 
STOP 
END 



13.1 Popular Programming Languages 347 

Note that only the Une addressed by the GO TO command is numbered: 
20 SUM=SUM+D(I). In the IF statement, .LE. is a logical operator (less than 
or equal). All the logical operators in FORTRAN begin and end with a period 
(.), such as .AND., .OR., .EQ.(equals), and .GT. (greater than). 

The program can be simplified by using a DO loop, instead of the IF() 
GO TO structure. A DO loop is similar to a for loop in C. The rewritten 
program is as follows: 

C CALCULATE AVERAGE VALUE 
DIMENSION D(10) 
DATA D/1.1,2.3,5.7,6.4,2.9,3.0,2.1,4.0,1.9,8.4/ 
SUM=0.0 
DO 20 1=1,10 

20 SUM=SUM+D(I) 
AVG=SUM/10.0 
PRINT,AVG 
STOP 
END 

Now, as long as / is less than or equal to 10, any statements between 
the DO 20 statement and line 20 (inclusive) are executed. When this condition 
is no longer true, execution passes to the statement following line 20. Also 
note that all the variables used in these FORTRAN examples are floating-
point, except for the integer /. 

FORTRAN is a well-established language with a large base of support. 
However, newer programming languages, such as Pascal, C, and C++, have 
superseded it in popularity, especially in the world of PCs. It is rarely the 
language of choice for data acquisition or data analysis applications on PCs, 
especially if low-level interfacing or graphics are involved. Also, only DOS-
based FORTRAN compilers are conmionly available for PCs. 

13.1.6 Pascal 

Pascal is a highly structured, general-purpose, high-level language. It is 
another example of a computer language designed by a single person, Niklaus 
Wirth. It was developed as a means of teaching good programming skills and 
providing clear, readable, unambiguous source code. Pascal succeeded in that 
goal, as it has often been taught as an introductory programming language 
to computer science as well as other engineering and science students. 

Pascal is a very robust language. It contains all the standard mathemat-
ical operators as well as a large number of mathematical functions, such as 
sqrt(:̂ ), ln(jc), sin(jc). In addition, it contains standard procedures for data I/O 
and file handling. In these respects, Pascal is a higher level language than C, 
which must rely on standard library functions for these capabilities. 
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The structure of Pascal programs is well defined. A Pascal program 
starts with a program declaration and is followed by declarations for constants 
and variables. As in C, a variable has to be declared before it can be used. If 
no subroutines or procedures are present, the body of the program, containing 
executable statements, follows. Finally, the end of the program is declared. 
If procedures are present, they precede the body of the main program. They 
are structured in a way similar to the main program. As with C, variables can 
be local or global. If a variable is declared in the main program, it is global 
and accessible to any procedures defined with that program. If a variable is 
first declared within a procedure, it is local to that procedure (and any pro-
cedures declared within it). 

Pascal has its own rules for syntax. As in C and C++, the semicolon (;) 
is used to terminate statements and program sections. Comments in Pascal 
are enclosed within braces ({ }) and can span more than one line. The last 
line in a program is the end statement, followed by a period (end.). The last 
line of a procedure is an end statement, followed by a semicolon (end;). 

To illustrate this language, we will look at our example of an averaging 
program, now written in Pascal. Note that in this version, input is expected 
from the user (via the read procedure): 

program Average(input,output); 
{Calculates Average of 10 
input values} 

{number of values to average} 
{variables} 

const 
var 

procedure 
var 
begin 

Nvals = 10; 
Sum, Avg: real; 
Counter: integer 

GetData; 
Value: real; 

read (Value) ; 
Sum := Sum + Val 

{Reads input value & accumulates} 
{local var iable , for input value} 
{body of subroutine} 
{get data value} 
{accumulate Sum} 

end; {end of procedure GetData} 

begin {Start of body of main program} 
Sum := 0; { i n i t i a l i z e accumulator} 
for Counter :=1 to Nvals {accumulation loop } 

do GetData; {call procedure} 
Avg := Sum / Nvals; {calculate average} 
wri te ln( 'The average value = ' ,Avg); 

{display resu l t} 
end. {end of program Average} 

We see that the main program (Average) declares it uses both input (via 
read) and output (via writeln) functions. The standard output procedure, 
writeln, is equivalent to printf in C. The main program calls a procedure, 
GetData, which reads and accumulates the input values into variable Sum, 
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one at a time. GetData has one local variable, Value, used to temporarily store 
the input from read(Value). GetData can access Sum, because it is a global 
variable (defined by the main program. Average). The main data accumulation 
is done by the for loop, which calls procedure GetData. Also note that := is 
the assignment operator in Pascal. It is used to assign a value to a variable. 
In the constant declaration for Nvals, an ordinary = is used, since this is just 
defining the symbol Nvals. 

Pascal is rich in control structures, such as the for loop. In the example 
just given, Counter is initialized to 1 and then incremented with each pass 
through the for loop, until it equals Nvals. For each pass through this loop, 
GetData is executed. If multiple statements are to be executed within a for 
loop (instead of a single procedure call), a more generalized form is 

for Counter := StartVal to EndVal 
do begin 

{place executable statements here} 
end; {last statement executed in for loop} 

This is very similar to the for loop in C, except here incrementing the index 
variable is implicit. 

Pascal has an if.. .then.. .else structure, very similar to C. The argument 
of the //"statement is a Boolean expression, evaluated as true or false. If it is 
true, the statements following then are executed. If not, the statements fol-
lowing else are executed, as in the following example: 

if Value = 0 
then begin 

wr i te ln( 'This i s a zero v a l u e ' ) ; 
{more then statements here} 

end {last then statement} 
e l se begin 

wr i te ln( 'This i s a nonzero v a l u e ' ) ; 
{more e l se statements here} 

end; {last e l se statement} 

Pascal also has a while loop, functioning the same as it does in C. A 
Boolean expression is evaluated by the while command. As long as it is true, 
the statement (or loop) following the do command is executed. For example: 

while Value >= 0 
do begin 

read (Value) ; 
writeln( 'The current value i s ' ,Value); 
{other loop statements here} 

end; {last statement in while loop} 

An additional control structure available in Pascal is the repeat loop. 
This can be considered the reverse of a while loop. The statement or loop 
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following the repeat command is continuously executed until its exit condi-
tion, in the until statement, is true. Rewriting the foregoing example with a 
repeat...until structure, we get 

repeat 
read (Value) ; 
writeln('The current value is ',Value); 
{other loop statements here} 
until Value < 0; 

Notice that unlike the while loop, the repeat loop is always executed at least once. 
This ends our brief overview of Pascal. It is a powerful language, well 

suited for most programming tasks. In addition, it is well supported by 
compilers, libraries, and debugging tools for PCs, especially under DOS. Next 
we will take a brief look at a fairly new programming language, Java. 

13.1.7 Java 

The Java programming language was developed by Sun Microsystems in the 
early 1990s. Although it is primarily used for Internet-based applications, 
Java is a simple, efficient, general-purpose language. Java was originally 
designed for embedded network applications running on multiple platforms. 
It is a portable, object-oriented, interpreted language. 

Java is extremely portable. The same Java application will run identi-
cally on any computer, regardless of hardware features or operating system, 
as long as it has a Java interpreter. Besides portability, another of Java's key 
advantages is its set of security features which protect a PC running a Java 
program not only from problems caused by erroneous code but also from 
malicious programs (such as viruses). You can safely run a Java applet down-
loaded from the Internet, because Java's security features prevent these types 
of applets from accessing a PC's hard drive or network connections. An applet 
is typically a small Java program that is embedded within an HTML page. 

Java can be considered both a compiled and an interpreted language 
because its source code is first compiled into a binary byte-code. This byte-code 
runs on the Java Virtual Machine (JVM), which is usually a software-based 
interpreter. The use of compiled byte-code allows the interpreter (the virtual 
machine) to be small and efficient (and nearly as fast as the CPU running native, 
compiled code). In addition, this byte-code gives Java its portability: it will run 
on any JVM that is correctly implemented, regardless of computer hardware or 
software configuration. Most Web browsers (such as Microsoft Internet Explorer 
or Netscape Communicator) contain a JVM to run Java applets. 

Compared to C-I-+ (another object-oriented language), Java code runs a 
little slower (because of the JVM) but it is more portable and has much better 
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security features. The virtual machine provides isolation between an untrusted 
Java program and the PC running the software. Java's syntax is similar to 
C++ but the languages are quite different. For example, Java does not permit 
programmers to implement operator overloading while C++ does. In addition, 
Java is a dynamic language where you can safely modify a program while it 
is running, whereas C++ does not allow it. This is especially important for 
network applications that cannot afford any downtime. Also, all basic Java 
data types are predefined and not platform-dependent, whereas some data 
types can change with the platform used in C or C++ (such as the int type). 

Java programs are more highly structured than C++ equivalents. All 
functions (or Java methods) and executable statements in Java must reside 
within a class while C++ allows function definitions and lines of code to exist 
outside of classes (as in C-style programs). Global data and methods cannot 
reside outside of a class in Java, whereas C++ allows this. These restrictions, 
though cumbersome at times, help maintain the integrity and security of Java 
programs and forces them to be totally object-oriented. 

Another key feature of Java is that it is an open standard with publicly 
available source code. Sun Microsystems controls the Java language and its 
related products but Sun's liberal license policy contributed to the Internet 
community embracing Java as a standard. You can freely download all the 
tools you need to develop and run Java applets and applications from Sun's 
Java Web site (http://java.sun.com). 

Here is a simple Java program that averages numbers entered from the 
keyboard: 

public class AverageProgram // start of class definition 
{ 
public static void main(String[] args) 

// start of method definition 
{ 

int npoints, counter, ace, average; // declare variables 

System, out. print In ("Enter the nLimber of points to average: " ) ; 
npoints = Consolein.readint(); // read npoints 
counter = 0 ; // initialize variables 
ace = 0 ; 
while (counter <npoints) 
{ // start of while loop 
System. out. print In (" Enter value: ") ; 
ace = ace + Consolein.readint() ; // add in current value 
counter = counter + 1 ; // increment counter 

} // end of while loop 
average = ace / npoints; // calculate average 
Sy St em. out. print In ("Average value = " + average); 

// display result 
} // end of method definition 
} // end of class definition 
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In this example, the class AverageProgram (which is the program) 
contains only one method (function), main(). Notice that much of the syntax 
is the same as C or C++, including conmient delimiters: you can use either 
C (/* */) or C++ (//) style delimiters in Java. Even the while() statement works 
as it would in C/C++. Output to the screen is accomplished using Sys-
tem.out.printlnO, where println() is an invoked method of the standard Java 
System.out object. Java also has a System.in object, for reading from the 
keyboard, but it must be processed to be useful. In this example, Consolein 
is assumed to be a previously defined class (that uses System.in), which 
contains the method Readlnt() for reading an integer value. 

As with the other programming languages we have surveyed, this was 
just a brief view of Java. For more details, refer to one of the Java texts in 
the bibliography or visit Sun Microsystems' Java Web site (http://java.sun.com). 
Next we will discuss writing programs that run under a Microsoft Windows 
operating system. 

13.2 Programming for Microsoft Windows 

Programs that run under Microsoft Windows are inherently more complex 
than DOS programs (or programs for other text-based operating systems). 
Working within the graphical user interface (GUI) of Windows requires a 
programmer to create and manipulate a variety of on-screen graphical objects, 
such as windows, toolbars, icons, and pointers. Even a program with text-
only I/O requires the creation of a window of specified size and position on 
the screen before any messages can be displayed. By contrast, a DOS C 
program can start with a printf() statement to immediately display text. 

Fortunately, the general-purpose software tools now available will take 
care of the myriad details required for the creation of a Windows application. 
In some cases, writing a Windows-based application is easier than writing 
the equivalent program for DOS. In fact, many of these tools can be used by 
people who have never had any programming experience. The most popular 
software development tools for Windows are produced by Microsoft. These 
include Visual Basic and Visual C++. 

Other manufacturers produce equivalent software development prod-
ucts. For example, Borland has manufactured many popular DOS program-
ming packages in the past, such as Turbo C/C++ and Turbo Pascal. Borland 
has migrated its products to the Windows environment. Their current offerings 
include Borland C++ Builder, which is a full-featured C++ development 
environment for Windows 95/98/NT. Borland C++ Builder features drag-and-
drop visual programming, numerous wizards, sample applications, and a 
complete C++ tutorial. 
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In this section, we will look at two commonly used Windows program-
ming environments from Microsoft: Visual Basic and Visual C++. These 
languages support the event-based nature of Microsoft Windows: program 
execution is determined by external events (keystrokes, mouse clicks) and 
not by the structure of the program code. 

Visual Basic is excellent at creating GUI screens and controls (buttons, 
boxes, etc.) for Windows applications without requiring much user code and 
is a good first language. Visual C++ is a more flexible language, often used 
for more functional purposes than creating on-screen objects (such as inten-
sive data processing algorithms). Many large Windows applications are cre-
ated using both languages: Visual Basic for the GUI display elements and 
Visual C++ for the processing functions. First we will look at Visual Basic. 

13.2.1 Visual Basic 

Microsoft Visual Basic is a programming language and development envi-
ronment for Windows applications based on a greatly enhanced version of 
BASIC. Visual Basic contains an integrated development environment (IDE) 
and a large variety of tools to develop general-purpose, graphics-based Win-
dows applications. The current version (at the time of this writing) is 6.0, 
which only supports 32-bit Windows programs (for Windows 95/98/NT and 
later). For 16-bit Windows applications (under Windows 3.1), Visual Basic 
version 4.0 or earlier must be used. Visual Basic is available in three versions: 
the Learning Edition (for starting with the language), the Professional Edition 
(which adds additional tools such as ActiveX controls, database tools, and 
Internet tools), and the Enterprise Edition (for use on company-wide networks 
with distributed application development tools and network server tools). 

Visual Basic is quite different from DOS-based BASIC, even though it 
still uses many of the same commands. Visual Basic is an interpreted lan-
guage, but current versions allow you to create compiled programs (.EXE 
files) to run stand-alone. Line numbers are not used. Much of the software 
development process involves drawing objects within forms and using mouse-
based drag-and-drop techniques to choose predefined graphical elements. You 
create the user interface by selecting control elements such as text boxes and 
command buttons. You typically write a modest amount of text-based code 
that is associated with each screen object. 

The most significant difference between Visual Basic and earlier ver-
sions of BASIC is that Visual Basic uses an event-driven model. Traditional 
progranmiing languages followed a procedural model, where the code deter-
mines which statements are executed and in what order. Program execution 
starts with the first line of code and follows a predetermined path. In an event-
driven program, code is executed in response to events and does not follow 
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a predefined path. These events can be generated by the PC operator (via the 
keyboard or mouse) or by the operating system or other appHcations. In 
essence, these events act as interrupts and they determine the sequence of 
code execution. 

Another important aspect of Visual Basic is that it is a hierarchical, 
object-oriented language (akin to C++). It uses class modules to define objects 
containing both data and code, both for objects that appear on the screen (in 
the user interface) and for those that remain hidden. Data and code can be 
declared public or private. 

Other features of Visual Basic are its ability to work with standard 
databases and its Internet access features. Also, Visual Basic supports 
Microsoft's ActiveX standard. ActiveX components are language-independent 
objects that interact with other Windows applications. For example, an 
ActiveX component can be used to read data from an Excel spreadsheet into 
a custom program. In Visual Basic, one use of ActiveX is to create custom 
controls. A control in Visual Basic is simply a graphic window that has 
program code associated with it. 

Since ActiveX is an open standard, many manufactures create their own 
ActiveX custom controls. This can be very useful for data acquisition, since 
these ActiveX components can include objects for processing or displaying 
data. For example, Keithley's DriverLINX software, available for many of its 
data acquisition cards, includes ActiveX controls for data acquisition func-
tions. This allows you to easily write a Visual Basic (or Visual C++) program 
to access their data acquisition cards, without needing to know any details 
about the hardware's low-level behavior. 

Most Visual Basic programs are based on forms and consist of a mix 
of code and graphic elements. However, you can also write code-only Visual 
Basic programs, via code modules. Here is the averaging program we wrote 
in Java, ported to Visual Basic: 

Sub MainO 
Dim npoints, counter, ace, average As Integer 
npoints = Val(InputBox("Enter number of points to average")) 
counter = 0 
ace = 0 
Do 

ace = ace + Val (InputBox (" Enter value: ") ) 
counter = counter + 1 

Loop While counter <> npoints 
average = ace / npoints 
MsgBox "Average = " + Str$(average) 

End Sub 

As in C/C++, a routine named main() will begin program execution. 
The Dim (dimension) statement declares the integer variables. The InputBox() 
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function is used for simple user input (initially, to get the value of npoints). 
It creates a small window with a text prompt and a text-input area. Visual 
Basic is very rich in string manipulation functions. Since InputBox() returns 
a string, we have to convert it to an integer, via the Val() function. The 
program's Do Loop reads in values to average and adds them to the accumu-
lator variable (ace). The calculated average is displayed using the MsgBox 
function. Note that we have to convert the integer value of average to a string, 
via the Str$() function. 

Of course, typical programs create a more complex GUI environment 
using Visual Basic's extensive graphics features, sometimes with very little 
user code added. This concludes our brief introduction to Visual Basic. Please 
refer to the bibliography for further information. Next, we will look at 
Microsoft Visual C4-+. 

13.2.2 Visual C++ 

Microsoft Visual C++ is another programming language and development 
environment for Microsoft Windows applications. It is a full implementation 
of C++ but designed to simplify the details of producing a Windows appli-
cation, much like Visual Basic. Besides all the standard features of the C++ 
language (which we discussed in Section 13.1.4), Visual C++ contains a 
plethora of tools for developing Microsoft Windows applications, many in 
the form of wizards. Visual C++ also uses the Microsoft Foundation Class 
(MFC) library of C++ classes and member functions, used for Windows 
development. As with Visual Basic, Visual C++ supports the event-driven 
model of Microsoft Windows programs. The current version of Visual C++ 
supports only 32-bit applications, for Windows 95/98/NT and later. 

The easiest way to create a program under Visual C++ is to use an App 
Wizard that builds a bare-bones application framework. Most of your work 
is simply adding code to this framework to achieve the desired result. If you 
use the MFC App Wizard, you can choose various options for the framework 
(such as single versus multiple document windows or whether to include a 
status bar) and create a standard Windows application screen, complete with 
toolbars and menus. Compared to Visual Basic, Visual C++ is not a drag-
and-drop, graphics-oriented environment. Visual C++ is more of a code-
oriented environment, but one highly tuned to the requirements of Windows. 

If you want to create a simple text-based C++ program that does not 
require any graphics features (such as simple data processing applications), 
you can start a new Visual C++ project as a Win32 Console Application. You 
can select a simple application or an application that supports MFC (to use 
Windows MFC classes and functions). A simple application creates the 
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necessary header files and gives you a single C++ text file with a bare-bones 
main() to add your code to. 

Here is a Visual C++ version of the averaging program we previously 
wrote for Java, written as a simple Win32 console application: 

/ / average.cpp : Defines the entry point for the console 
/ / appl icat ion. 
// 

#include "stdafx.h" 
#include <iostreain.h> 

int main(int argc, char* argv[]) 
{ 

int npoints, counter, ace, in, average; 

cout « "Enter number of points to average: \n" ; 
cin » npoints; 

counter = 0 ; 
ace = 0 ; 
while(counter < npoints) 
{ 

cout « "Enter value: \n" ; 
cin » in; 
ace += in; 
++eounter; 

} 
average = ace / npoints; 
cout « "Average = " « average « '\n'; 

return 0; 
} 

Visual C++ created the comment line (note that in Visual C++ source 
code files have a CPP suffix) and the ^include '"stdafx.h" statement (for the 
header file it created). It also created a minimal main() program, with simply 
a return 0 statement. All the other code was added to the file, along with 
the ^include <iostream.h> (to use the cout and cin streams). The program 
can be run within the Visual C++ environment or outside of it, once it is 
correctly compiled and linked. When the program is run, it creates a text 
window for keyboard input and display output. When the program is com-
plete, "Press any key to continue" is displayed. After a key is struck, the 
window disappears. 

One advantage of working in this simple console application environ-
ment is that if you do not want to learn Windows MFC functions, you can 
use generic C++ commands (as in DOS or UNIX). You still have the advantages 
of working in a 32-bit environment, including the ability to easily work with 
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large amounts of data: for example, an array containing 1 million long integers 
(32 bits), which is 4 Mbytes of memory. Of course, if you want to take full 
advantage of the features in Visual C++, you should use the MFC AppWizard 
to create a graphics-based application. 

One of the key features of Visual C++ is the MFC library. The MFC 
library calls functions in the Windows application programming interface 
(API), to create standard Windows screen objects, such as dialog boxes, 
controls, and windows. The MFC library is platform independent (it can even 
be used with an Apple Macintosh computer) and consists of more than 100 
classes. The Windows API is not object-oriented and does not readily support 
code reuse or a hierarchical program structure. The MFC library is well 
organized and is usually easier to use. However, you can always make direct 
calls to Windows API functions from Visual C++. 

This concludes our brief look at Visual C++. For more information, 
there are many excellent reference and tutorial books available on Microsoft 
Visual C++, along with a large amount of material on the Internet. We will 
finish this chapter by reviewing a few key points to keep in mind when writing 
your own software. 

13.3 Considerations for Writing 
Computer Programs 

There are many possible approaches to writing a computer program to solve 
a particular data acquisition or analysis problem. Regardless of the language 
used, the same steps are followed in developing a usable program. A PC is 
a wonderful platform to use for software development, because of the abun-
dance of commercially available support tools. 

A necessary starting point is stating the problem and your proposed 
solution in general terms, written in plain English. This may be as simple as, 
"Acquire 1024 data points, run an FFT, and report the average signal ampli-
tude in the frequency band of 100 to 300 Hz." Next, draw a flowchart, 
including more of the required details (such as initializing hardware for data 
sampling rate and analog input range). The flowchart gives you an overview 
of what your program will do. It also helps you locate potential errors in 
logic, before they get lost in the details of the chosen progranmiing language. 
Figure 13-1 contains the flowchart for a simple program acquiring 1024 data 
points. It flows continuously from the Start point to the End point, except for 
the data acquisition loop. Here, the decision box checks whether the counter 
has exceeded 1024. If so, it ends the program. If not, it loops back and acquires 
another sample. 
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START 

Initialize Data Acq Card: 

Rate = 1000 sannples/sec 
Range = +/-10V 

Initialize Counter to Zero 

Acquire One Data Value 
and Store It 

Increment Counter 

Stop Data Acquisition 

END 

Figure 13-1 Data acquisition program flowchart. 
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Based on the kind of problem you are facing, you need to choose the type 
of programming language to use: text-based or graphics-based. In the pre-
ceding example, if we only need a table of numbers as an output from the FFT, 
then a text-based program is adequate and we can use any of the languages 
discussed in this chapter. On the other hand, if we needed a plot of the output 
data, a graphics-based language (such as Microsoft Visual Basic, Visual C++, 
or MATLAB) would be preferable. Once you know the type of language needed, 
you can choose the specific one based on your own experience and preferences. 

The next step is to write the actual program and debug the source code 
until you can compile and link it without errors. When most compilers find 
a compilation error, they will point out where it is in the program (or where 
the compiler thinks it is), along with a clue as to the type of error. Some 
compilers will even highlight the error line in the source code. An error from 
a linker usually means a function or a global variable was not defined or a 
library file cannot be located. This can result from forgetting to include a 
particular name in the list of object modules to link, or even from a spelling 
error, causing a call to a nonexistent function. 

Once you have an executable program, you can test it functionally with 
a debugging program. A source-level debugger or an integrated development 
environment (such as Visual C++) is preferable when the program is written 
in a high-level language. This allows you to check variable values, follow the 
route of statement execution, and even change values to see what will happen. 
Most major compiler manufacturers provide a debugging environment for 
their languages. In addition, there are third-party debugging products that 
support compilers from several major manufacturers. As an additional aid, 
you can always add debugging statements to your program while writing it. 
These would typically display various intermediate variables or parameters 
returned to calling functions. You can even have these statements condition-
ally execute, depending on the value of a global debug variable. These are 
especially useful when working in an embedded PC environment without 
many software resources. Here is a simple example in C: 

i n t debug = 1 ; /* Debug Statements enabled */ 

junkO /* I l l u s t r a t i v e function */ 
{ 
i n t i , j ; 

if(debug) 
printf("\nDebug values: i=%d, j =%d\n",i,j); 

} 
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If the variable debug is set to 0, the printf () statement in the subroutine junk() 
will not be executed. 

A critical aspect of writing software, which is commonly overlooked, 
is documentation. This involves adding comments to your program as you 
initially write it, debug it, and update it. Putting a conmient on nearly every 
line of source code is very useful (except for extremely obvious statements, 
such as display outputs). It is also important to put a detailed explanation of 
a program at the beginning of the file. Each subroutine should be documented 
at its beginning, including what it does, what its input and output parameters 
are, and what routines call it. Always document your programs well enough 
that if you have to look at them again, several years later, you can quickly 
figure out exactly what you did. In the case of documentation, too much is 
never enough (the same point also holds true for hardware designs). 

This concludes our quick survey of computer programming languages. 
This discussion touched on many of the major languages used with PCs. In 
the next (and final) chapter we will look at some real-world examples of data 
acquisition applications. 



C H A P T E R 

PC-Based 
Data Acquisition 
Applications 

In this final chapter, we will look at a few examples of how PC-based data acq-
uisition systems are used in "real world" situations. These applications fall into 
three major categories, which tend to overlap: laboratory/industrial data collec-
tion, laboratory/industrial control, and embedded data acquisition and control. 

In this book, we have focused primarily on data acquisition and control 
equipment for use in a laboratory or industrial setting. These are stand-alone 
systems using a PC, typically containing appropriate data acquisition cards 
and running software for data collection, analysis, and control. Such a system 
may be used for performing a laboratory experiment, obtaining automated 
measurements in an industrial setting, or controlling an industrial process. 

Embedded applications are another way of utilizing data acquisition 
and control systems based on PCs. In this case, an original equipment man-
ufacturer (OEM) uses a PC-based data acquisition system as part of a larger 
piece of equipment it produces. The PC and its related hardware and software 
are embedded in that equipment. Usually, the software running on the PC is 
dedicated to the task the equipment was designed for. When this software is 
designed to ensure that the PC always starts up in this dedicated application, 
it is considered a turnkey system. An example of this would be an automated 
test equipment (ATE) system, dedicated to testing particular devices (such as 
printed circuit boards). It is no longer usable as a general-purpose PC, unless 
the system software allows it. 

We will now examine a few examples of data acquisition applications, 
starting with laboratory and industrial measurement systems. 

361 
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14.1 Ultrasonic Measurement System 

Ultrasonic waves are employed for many different types of measurements, 
including displacement, determination of material properties, and Doppler 
shift velocity. Many of these ultrasonic applications are based on time-delay 
measurements. Since the speed of sound is five to six orders of magnitude 
slower than the speed of light (depending on the medium) the time measure-
ments required to determine typical distances are more easily attained using 
ultrasonics. In air, at room temperature, ultrasonic waves travel at approxi-
mately 340 meters/sec. The measured time delay, /, is 

t = dlv 

where d is the distance traveled and v is the wave velocity. For a distance of 
1 meter, the time delay using an ultrasonic beam would be 2.9 msec. Using 
a light beam, the corresponding time delay would be 3.3 nsec, which is much 
more difficult to measure. 

Ultrasonic ranging systems are commonly used to measure macroscopic 
distances, on the order of inches to hundreds of feet. This technique is often 
implemented using a single ultrasonic transducer as both a transmitter and 
receiver. An ultrasonic pulse is transmitted by the transducer, reflected off a 
target at the distance to be measured, and then detected by the same trans-
ducer. The measured time delay between the transmitted and received pulses 
is equal to twice the transducer-target distance divided by the ultrasonic 
velocity. Many low-cost ultrasonic transducers for wave propagation in air 
are available. One variety, an electrostatic transducer, available from Polaroid 
Corp. (Cambridge, MA), is a popular choice for this type of application. 
Figure 14-1 shows a simplified implementation of this ranging system. 
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Figure 14-1 Ultrasonic ranging system. 
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The sequence of events for a single measurement cycle is as follows: We 
start with a trigger pulse from a timing reference, which initiates a high-voltage 
transmit pulse that is sent to the transducer. The reflected (delayed) ultrasonic 
pulse is received by the transducer and goes to a receiving circuit, containing 
an amplifier and filter. An analog multiplexer is used to isolate the high-voltage 
transmit pulse from the low-voltage receive pulse (usually employing diodes). 
An ADC (as in a data acquisition card) starts sampling data, once the trigger 
pulse occurs. The sample number containing the start of the reflection pulse 
multiplied by the time between samples is the time delay corresponding to the 
round-trip distance traveled by the ultrasonic waves. 

The wavelength, A, of any wave is: 

where v is the wave's velocity a n d / i s its frequency. If the ultrasonic trans-
ducer's resonant frequency is 50 kHz (as with the Polaroid transducers) the 
wavelength is 6.8 mm (approximately 1/4 inch). A good estimate of the 
displacement resolution using this technique is one-half wavelength or 3.4 
mm (approximately 1/8 inch). If we needed finer resolution, we would need 
a higher frequency transducer (such as 170 kHz for 1 mm resolution). 

If we want to implement this experiment using a PC-based data acqui-
sition system, we must first determine our measurement requirements. We 
will assume that a distance resolution of 1/8 inch is adequate and the maxi-
mum distance measured will be 100 feet. If we use a 50-kHz transducer, our 
ADC sampling rate must be at least 100,000 samples/sec. To ensure reason-
able data fidelity, a higher rate is preferable, such as 250,000 samples/sec. 
The maximum distance of 100 feet corresponds to 30.48 meters. The maxi-
mum round-trip time delay is 

30.48 m X 2 
340 m/sec 

= 179 msec 

This corresponds to approximately 45,000 samples (at 250,000 samples/sec). 
The 179-msec period also limits the maximum transmit pulse repetition rate 
to the inverse of that period, or 5.6 Hz in this case. This is the maximum 
number of transmit/receive cycles we can measure each second, without 
having the reflection from cycle n- I appear after the start of cycle n. 

Since the data rate required for this experiment is very fast, a reasonably 
high-speed data acquisition card is called for. If a 12-bit ADC is used, 250,000 
samples/sec corresponds to a sustained data transfer rate of 500,000 bytes/sec, 
which is faster than many ISA PCs with DMA capabilities. If an ISA card 
is used, this data should be stored in a data acquisition board with local 
memory. For our purposes, this memory must have a capacity of at least 
90,000 bytes (assuming 2 bytes/sample). If a PCI-based PC is used, the 
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required data rate is well below a PC's typical bus transfer rate and no on-
board memory is required for the data acquisition card. The data acquisition 
card selected must have a digital output to act as the trigger line for the 
external transmitter as well as a data acquisition start signal. We also want 
this board to have a counter/timer that can initiate an ADC conversion every 
4 fisec (for 250,000 samples/sec), as well as control multiple cycle timing. 
We need at least a second analog input channel to periodically measure the 
air temperature for velocity calibration. 

There is another approach to the ADC speed problem, using a slower 
and less expensive data acquisition board (especially with an older ISA PC). 
Since the event we wish to measure can be repetitive, instead of measuring 
the entire waveform in one cycle, we can acquire data over several cycles. 
All we need is a data acquisition board with a sample-and-hold amplifier in 
front of the ADC. If the amplifier has a sample window less than or equal to 
our sample period of 4 |Lisec, the conversion rate of the ADC can be much 
slower. In the worst case, we acquire one sample for each waveform cycle. 
The overall data acquisition time will depend on the repetition rate of the 
transmit pulse (the overall cycle time). 

To implement this, for every transmit pulse cycle, we delay the sample 
time of the data acquisition board by another 4 jiisec. Our transmit pulse 
repetition rate is limited by the maximum delay time between the transmit 
and receive pulses of 179 msec, in this example. That means we can only 
generate five cycles/sec. Since we need to acquire about 45,000 samples, this 
will take 9000 sec, or 2.5 hours! A better way is to acquire multiple samples 
from each pulse cycle. Even if the ADC can acquire only 10,000 samples/sec, 
each transmit/receive cycle will produce 1790 samples now. This way, only 
about 5 sec (25 cycles) is needed to acquire 45,000 samples of data. 

This scheme (a version of equivalent time sampling) is shown with the 
waveform in Figure 14-2. It acquires samples spaced 100 jisec apart, from 

X = Sample Cycle n 
O = Sample Cycle n+1 

Figure 14-2 Using multiple cycles to acquire a repetitive waveform. 
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a single transmit/receive cycle, as represented by the "X" symbols. During 
the next cycle, the acquisition starts 4 jisec later, as shown by the "O" 
symbols. This process continues until the entire waveform is filled in. Since 
the window of the sample and hold amplifier is no more than 4 jiisec, it is 
equivalent to acquiring data at 250,000 samples/sec, except it takes more 
time to acquire all the data, and it is done over several transmit/receive 
cycles. The separate data acquisition cycles must be interleaved by the 
computer to produce the completed waveform. As long as the timing jitter 
(inaccuracy) of the system clocks is well under 4 jiisec, this approach will 
work well. 

If the final desired data will reside in an array D[45,000], using the 
multiple cycle scheme, we will assume the first transmit/receive cycle (cycle 
0) has no offset time, the next cycle (cycle 1) starts 4 jiisec after the trigger 
pulse, and so on, until cycle 24 starts 96 |Lisec after the trigger pulse. Note 
that the data at time =100 jiisec is the second point from cycle 1, since this 
data is all 100 |isec apart. If each of these cycles produces a data array 
Cn[1790], the reconstructed waveform data D[m] (where m = 0 to 44999), 
will be 

D[0] = C0[0], D[l] = C1[0] , . . . , D[24] = C24[0] 

D[25] = C0[1], D[26] = Cl [ l ] , . . . , D[49] = C24[l] 

D[44975] = C0[1789], D[44976] = Cl[1789] , . . . , D[44999] = C24[1789] 

Once the waveform data array is acquired and reconstructed, it can be 
analyzed. Figure 14-3 shows a typical waveform from an ultrasonic ranging 
system. Since the transducer is multiplexed for transmit and receive signals, 
ringing from the transmit pulse appears in the acquired waveform. Since this 
transmit signal is fairly constant, we can ignore the data for the first milli-
second or so. This lockout window, corresponding to about 1/2 foot, limits 
the minimum distance that can be measured. Any reflected pulse arriving 
within this window will be obscured by the transmit signal. If we used a 
separate transmit and receive transducer, this would not be a problem. 

The lockout window can be implemented either in the analysis soft-
ware, or by initially starting data acquisition after the nominal 1-msec 
window period (and adding that time offset to the collected data). Because 
only about 250 data samples would be saved this way, the software approach 
is better: it allows for adjustment of this window after data has been 
acquired. 
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Figure 14-3 Typical ultrasonic ranging system waveforms. 

One important point to keep in mind when attempting accurate ultra-
sonic measurements is that the velocity of ultrasonic waves is a function of 
temperature. That is why the ranging system in Figure 14-1 uses an additional 
analog input channel to measure the air temperature. This temperature mea-
surement does not have to be done very often—once per acquired waveform 
is more than enough. The relationship between the speed of sound in air v 
(in m/sec) and the temperature of the air T (in degrees Kelvin) is 

V = 331.4 X J(T/273) m/sec 

Other environmental factors, such as relative humidity and barometric 
pressure, have a much smaller effect on ultrasonic velocity and can usually 
be ignored. Relative humidity does have a large influence on the attenuation 
of ultrasonic waves. 

Depending upon how the acquired data looks, analysis can be fairly 
simple or very involved. If the reflected pulse's signal-to-noise ratio is high 
and its first peak is readily observable, the analysis simply consists of finding 
the location of that peak (minus 1/4 of the wave period), which corresponds 
to the round-trip time delay of the ultrasonic pulse. This could be a peak 
detector algorithm, checking data values with an amplitude greater than a 
specified noise threshold. 
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Of course, in the real world, things are rarely this easy. One complication 
is the attenuation of the ultrasonic waves. As the target distance increases, 
the amplitude of the reflected pulse decreases (as does its signal-to-noise 
ratio). It becomes more difficult to discern the first peak of the reflected pulse. 
An added complication would be an imperfect, rough target surface, causing 
scattering of the ultrasonic pulse resulting in a "fuzzy" echo. This is because 
different (spatial) portions of the reflected ultrasonic pulse arrive back at the 
transducer at slightly different times, causing the resulting echo to be spread 
out in the acquired waveform. 

Various DSP techniques can be used to solve these problems. Imple-
menting digital filtering in software can help eliminate noise and enhance the 
reflected pulse. Another approach is to calculate the FFT of the waveform 
and measure the slope of the resulting phase curve, in the frequency domain. 
This phase slope is proportional to the absolute delay of the reflected pulse, 
with a time offset of half its width. This offset can be determined by shifting 
the original waveform so that the reflected pulse starts at time = 0, and then 
calculating its FFT. Subtract this phase slope from the phase slope of the 
unshifted waveform's FFT, producing the corrected time-delay phase slope. 
This analysis can be done with many different commercial software packages, 
requiring little or no programming. Another approach is to use cross-corre-
lation between the received waveform and an ideal waveform at time = 0. As 
the ideal waveform is delayed by increments of the acquisition time step, the 
cross-correlation value increases until it reaches a peak at the time step 
corresponding to the delay of the received signal. 

This same experimental setup can also be used to directly measure the 
thickness of a material sample, with a resolution determined by the frequency 
of the ultrasonic transducer, as long as the speed of sound through that 
material is known. Whenever an ultrasonic beam passes through an interface 
between different media, such as air and a solid, there is a change in acoustic 
impedance and some of the beam is reflected at the interface. 

As shown in Figure 14-4a, if a transmitted ultrasonic pulse hits a 
material of thickness d, some energy is reflected from its front surface (if its 
acoustic impedance differs from the surrounding medium), resulting in the 
first echo. The rest of the beam passes into the material. Some of that beam 
is reflected from the back surface (the rest continues out the back). Part of 
the beam reflected from the back surface now passes through the front surface, 
back to the transducer, resulting in the second echo. The remainder of the 
beam reflects back into the material again, eventually resulting in the third 
echo. This process continues with multiple reflections. 

Each successive echo is lower in amplitude, since energy is lost at each 
reflection (even if the material has negligible attenuation). The time delay 
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Figure 14-4 Using multiple ultrasonic reflections for thickness measurements. 

between successive echoes, as shown in Figure 14-4b, is 

V 

since each echo is separated in time by a round trip through the material 
thickness. The measurement of dt can be done fairly accurately using auto-
correlation. Since each echo pulse is basically an attenuated version of the 
previous pulse, calculating the autocorrelation of this waveform (the cross 
correlation with itself) will produce peaks at 

/ = 0, dt, 2dt,..., ndt 

depending on how many echoes appear in the waveform. Each successive 
autocorrelation peak will be lower in amplitude than the previous one; how-
ever, the peak located at time dt is a good measure of 2dlv. 

If the correlation peaks are too broad to get an accurate measurement of 
dt, that curve can be differentiated. The zero crossing point of the first derivative 
of the autocorrelation curve is an accurate location for the peak of dt. 

We should note that if the sample thickness is known, the velocity of 
sound through the material can be calculated from this same multiple reflection 
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measurement. In addition, various material parameters (such as elastic mod-
ulus) can be determined from this data. 

This concludes our example of an ultrasonic ranging system. Next, we 
will turn our attention to another example, implementing an electrocardio-
gram (ECG) measurement system using PC-based data acquisition products. 

14.2 Electrocardiogram Measurement System 

The acquisition and analysis of human electrocardiograms (ECGs) is of great 
interest to many medical researchers. The ECG is a graph of voltage variations 
produced by the heart muscle and plotted against time. Automated analysis 
of ECG data is an active area of ongoing research, as a means of improving 
diagnosis and prediction of heart disease. The requirements for implementing 
an ECG data acquisition system using a PC platform are very different from 
the previous example of an ultrasonic ranging system. 

ECG data consists of very low frequency components. Most of the 
spectral content of an ECG fits within a bandwidth of around 10 Hz, with 
very little energy present above 100 Hz. A typical diagnostic ECG recorder 
has a bandwidth of 0.05-100 Hz. Hence, very low data acquisition rates are 
used, typically 250 samples/sec, to ensure good fidelity. The amplitudes of 
ECG voltages are very low, in the range of tens of microvolts up to several 
millivolts. The transducers used to detect these voltages are electrodes placed 
on the surface of a person's arms, legs, and chest. They connect to isolation 
circuitry, to protect the patient from any current that may be produced by the 
ECG recording equipment. Then the ECG signals must pass through differ-
ential amplifiers, required to provide high gain and good conmion-mode noise 
rejection. If ECG data will be digitized, it is commonly connected to an 
antialiasing filter with a 100-Hz bandwidth. 

Even though the acquisition rates for ECG data are relatively low, the 
volume of data recorded for research purposes tends to be extremely large. 
It is common for medical research projects to acquire several hours of ECG 
data from each subject, sometimes for as long as 24 hours. This data usually 
consists of two channels of 12-bit or 16-bit readings at a conversion rate of 
250 samples/sec. If we assume that no data compression is applied, we require 
4 bytes of storage for each sample interval (for two channels) for a data 
storage rate of 1000 bytes/sec. If we record 1 hour of data from a patient, it 
will occupy 3,600,000 bytes. Acquiring data from many subjects or recording 
several hours from each one will obviously use up a large amount of memory 
storage very quickly. It is no wonder that data compression techniques are 
routinely applied to ECG storage problems. 
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S 

QRS complex 

Figure 14-5 An Idealized normal EGG beat cycle. 

Figure 14-5 shows one beat of an idealized, normal ECG waveform. 
Various components of an ECG cycle (one beat) have specific names. A beat 
starts with the P wave, which represents the original electrical impulse in the 
heart, beginning the cycle. It usually has a small ampUtude. The QRS com-
plex, consisting of the Q, R, and S waves, is usually the largest amplitude 
component in an ECG. The Q wave, itself, may have a very small amplitude 
(sometimes it is unmeasurable), while the R and S waves can be quite large. 
The cycle ends with the T wave, representing the electrical recovery phase 
of the heart, preparing it for the next beat. 

Clinically significant information is obtained from an ECG by measur-
ing several parameters, such as the relative amplitude, width, and time dura-
tion of these component waves, as well as the time between the components. 
In addition, the time between beats is important as a measure of instantaneous 
heart rate. Occasional, abnormal beats are also sought out as indicators of 
potential problems. This requires a means of categorizing the data on a beat-
by-beat basis, as either normal or abnormal. 

Figure 14-6 shows a simple block diagram of a PC-based ECG recording 
system. The data acquisition board only needs to provide a throughput of 500 
samples/sec, assuming two channels of data digitized at a rate of 250 samples/sec. 
A 12-bit ADC will provide adequate resolution. If much higher resolution is 
required, a sigma-delta ADC may be used. For this application, the analog 
front end is very critical. Electrical isolation must be provided between the 
patient electrodes and the data acquisition system. Any ground current flow-
ing from the measurement system to the patient could be a serious health 
hazard, causing fibrillation (from a shock directly to the heart). Therefore, 
isolation amplifiers are used. These amplifiers need differential inputs. 

The amount of gain provided by the isolation amplifiers will determine 
the analog input range required for the data acquisition card. If the isolation 
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Figure 14-6 PC-based ECG recording system. 

amps serve strictly as buffers, then a high-gain, differential analog input would 
be needed. These isolation amps should also have differential outputs, so any 
common-mode noise on the wires connecting them to the data acquisition 
board's analog inputs will be rejected. Of course, the data acquisition board's 
analog inputs must be differential. In this case, a 12-bit ADC board with a 
nominal input range of ±5 V and variable gain, up to 500x, would be a good 
choice. At the maximum gain (500x), the analog input range is ±10 mV, with 
a resolution of approximately 5 |LiV. Most ECG waveforms will fit within this 
range. 

A better arrangement would be to provide most of the analog gain using 
the isolation amplifier, in a separate electronic module. This would minimize 
the effects of noise pickup in the cable connected to the data acquisition 
board, as well as noise within the PC itself. In general, it is always a good 
idea to implement high analog gain outside of a PC, whenever possible. This 
would allow the use of a simpler, low-gain analog input board. Differential 
inputs would still be preferable, but are no longer mandatory. Another 
approach would be to use a USB data acquisition module located close to 
the patient. As long as the USB module has adequate gain, the data can be 
digitized outside of a PC. 

In any case, a relatively slow ADC is adequate, at moderate (12-bit) 
resolution. DMA capabilities are not required, since the maximum data trans-
fer rate would be only 1000 bytes/sec (since the overall acquisition rate is 
500 samples/sec). The data acquisition card or module should have a 
counter/timer to produce the data conversion clock. An analog output (DAC) 
would only be necessary if stored and analyzed data will have to be produced 
in analog form, at some later time. An example would be to simulate a real-
time ECG signal for testing another piece of diagnostic equipment. 
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Almost any commercial data acquisition software could be used to store 
acquired data at these low rates. Even though an older PC could be used to 
acquire this slow data, it must have a large hard disk drive to accommodate 
the massive data files produced by the relatively long experimental runs. As 
we saw previously, 1 hour of data requires approximately 3.6 Mbytes of 
storage and 24 hours of data needs about 86 Mbytes. Even a 1 Gbyte drive 
can only store about 11 of these 24-hour tests. 

One possible choice is to use a tape drive, either to back up data from 
a large hard drive, or to directly store data as it is acquired. Special software 
is required to deal with a tape drive, and most data analysis packages will 
only work with data on disk files. Therefore, using a tape drive to back up 
conventional disk data files is a simpler approach. Otherwise, you may have 
to write a lot of your own software for storing and retrieving data on tape. A 
better alternative to tape drives is to store acquired data on a CD-R or CD-
RW disk, which can hold up to 700 Mbytes. The advantages of CD over tape 
storage are lower cost media, random-access read-back capability, and the 
data portability (if CD-R is used, you can read the data files on nearly any 
PC containing a CD-ROM drive). 

Another way of dealing with this problem of how to store large amounts 
of information is to use data compression. Much research has been done on 
using different data compression techniques on ECG data. Unprocessed ECGs 
contain a large amount of redundant information. A large fraction of the data 
is simply the constant baseline, between consecutive beats. Linear predictors 
can provide reasonably large compression ratios, without excessive distortion, 
if data acceptance windows are carefully selected. 

Another aspect of the redundant nature of ECG data is that most beats 
from the same patient look very similar, often nearly identical. Only the 
occasional, abnormal beat appears significantly different. One way of exploit-
ing this characteristic is to apply statistical methods to the data compression 
problem. Since most ECG data tends to have a lot of straight lines and smooth 
amplitude variations, it is well suited to delta encoding. Only the amplitude 
difference between adjacent points is stored, as a small number. If these delta 
values are calculated from a representative data sample, for a particular 
subject, they can be statistically analyzed. Then Huffman codes, only a few 
bits long, could be applied to the most probable delta values. 

If most of the original 12-bit data can be represented as 4-bit Huffman 
codes for delta values, the overall compression ratio would be about 3:1. Most 
data from one patient is likely to follow the same distribution of delta values and 
have a similar compression ratio. As we saw previously, this is delta Huffman 
encoding. Even though it does not produce very high compression ratios, the 
restored data is completely identical to the original waveform, with zero distortion. 
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An enhancement to delta Huffman encoding is to identify all baseline 
data points that fall within a window of constant amplitude (such as noise 
variations). These points can be replaced by their average amplitude and the 
length of this line, using a special escape code in the delta Huffman data 
stream. This addition could increase the compression ratio by another factor 
of 2 (to around 6:1) while resulting in a small loss of fidelity. Depending on 
the window size used, an RMS distortion of less than 1% is easily attainable 
at these compression levels. 

This enhancement is effectively implementing a zero-order predictor 
(ZOP), along with delta Huffman encoding. The algorithm used should care-
fully decide when to use the ZOP instead of delta Huffman codes, for 
maximum bit savings. Since the delta values we would replace in this case 
would be zero, or close to it, they probably require only 2 or 3 bits in their 
Huffman code. For now, we will assume they use 3 bits per point. If the 
escape code is 8 bits, the average amplitude is 12 bits and the line length is 
8 bits (allowing for a line representation over 1 sec long, at 250 samples/sec), 
it will take 28 bits to represent this straight line. Therefore, this approach 
saves storage space if the line is more than 9 points (36 msec) long, corre-
sponding to 9 X 3 = 27 bits. 

One of these data compression methods could be applied to previously 
acquired data already stored in disk files. Several commercial software pack-
ages are available that provide data compression for all types of files found 
on a PC (such as PKZIP and WINZIP). Since these products are designed to 
work with any file type, they produce no data distortion (since most files 
cannot tolerate any change in their contents, such as programs or documents). 
As a result, they may produce fairly low compression ratios, typically 2:1. 
However, with high-redundancy files, such as bit-mapped graphics images, 
the lossless compression ratio can be 10:1 or higher. 

A better approach is to use software specifically designed to compress 
ECG files or to implement data compression in real time, as the data is being 
acquired. Since the data transfer rate for this example is relatively low, it is 
possible to retrieve readings from the data acquisition card as a background 
task, using hardware interrupts. This would allow the PC to use its spare 
processing time on the foreground task of data compression. Raw (unproc-
essed) data would be stored temporarily in RAM, until it is compressed and 
written to a disk file. 

Besides data compression, other analysis techniques are applied to 
digitized ECG data, usually for diagnostic purposes. This analysis typically 
involves measuring amplitude, time, and shape parameters of various portions 
of each beat, to place it in a diagnostic category. For example, a beat that 
occurred much earlier than expected, based on several previous beats, would 
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be classified as premature and might have medical significance. Other anal-
yses may employ FFTs or other transforms, as well as correlation techniques. 

Since this analysis is very specific to ECG data, some custom program-
ming would probably be required. An entire program could be written in a 
general-purpose language, such as Pascal, C, or Visual C++ (especially if 
graphics displays are required). Alternatively, a commercial data analysis 
package could be employed to test out various algorithms. Even here, some 
programming may be required to implement the desired algorithm, such as 
with MATLAB, or a similar product. 

This concludes our look at using a PC for implementing a system for 
acquiring and analyzing ECG data. Next, we will look at examples of employ-
ing embedded PCs in commercial products using data acquisition and control 
functions. 

14.3 Commercial Equipment Using 
Embedded PCs 

So far, we have mostly considered stand-alone PC systems, configured for 
data acquisition tasks. Many equipment manufacturers require data acquisi-
tion and analysis functions in their end product. One approach, becoming 
increasingly popular, is to use an embedded PC as a major component of 
the product. Depending on the manufacturer's requirements, the PC may 
still function as a general-purpose computer and run most commercial soft-
ware packages. On the other hand, it can be completely dedicated to the 
tasks required by the overall product it is part of, and be unable to run any 
general-purpose software. In this case, the embedded PC may not even have 
a floppy disk drive or any standard peripherals. It could run programs from 
ROM or Flash memory, configured to look like a disk drive to DOS or 
Windows. For a look at embedded PC standards (such as PC-104), please 
refer to Chapter 12. 

There are many advantages to using an embedded PC in a commercial 
product, especially for data acquisition, analysis, and storage functions. A 
huge number of commercial hardware and software products are available, 
minimizing in-house development costs as well as a new product's time-to-
market. Compared to other industrial computer architectures (such as VME 
and STD BUS products), PCs and their support products are less expensive, 
are more readily available, and offer more "user friendly" development tools. 
This also applies to industrial and embedded PCs. 

This trend toward using embedded PCs is reflected by the increase in 
the number of products for this market. Many manufacturers now produce 
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miniaturized PCs, based on a single board, designed to fit within a product 
using a minimum volume, such as the Compact PCI standard. These products 
can support standard PC peripherals, such as disk drives and displays, yet 
will work without them for a scaled-down version in the final product. Soft-
ware development for products using these embedded PCs can be carried out 
on a standard desktop PC or the target system itself. 

If an embedded PC is technically adequate for performing the required 
task and its cost can be justified, it is often a good choice, especially compared 
to other dedicated computer systems. If a PC would be grossly underutilized 
in an application or the product is very cost sensitive, a dedicated CPU or a 
microcontroller board is a better alternative. One compromise is designing a 
board using a microcontroller that emulates a PC (sometimes referred to as 
a "PC-on-a-chip"), such as the products from ZF Micro Devices (URL: 
www.zfmicro.com). This approach keeps hardware costs down while allowing 
you to use PC software products. 

One application where embedded PCs are very popular is in network-
based products. As more conrmiercial instruments and even appliances use 
networking features (for using both LANs and the Internet), small embedded 
PCs become an important part of these products. Many single-board comput-
ers (in ISA, PCI, or PC-104 form-factors) contain an Ethernet interface 
(usually lOBASE-T or 100BASE-T) and have enough memory (DRAM) to 
run a standard operating system (such as MS-DOS, Microsoft Windows, or 
Linux). Network software can be added to the embedded PC as a separate 
package (as when running DOS), or it may already be part of the operating 
system (as in Windows 95 and above). The embedded PC can then connect 
to other PCs on the same network (via a LAN) or even to Internet sites. 

When selecting network software to use, look carefully at the applica-
tion. If the embedded PC must connect to a large, server-based LAN or to 
the Internet, it should use the TCP/IP protocol. However, if it will only connect 
to one or a just a few other PCs through a simple Ethernet hub, you should 
consider Microsoft's NETBEUI protocol, which was part of Microsoft Win-
dows for Workgroups (Windows 3.11) and is still supported in Windows 
95/98. NETBEUI is a simple peer-to-peer network protocol, useful for small 
networks that do not have a server computer. 

Networked data acquisition equipment is particularly useful in an indus-
trial environment. You can employ many small PCs (with data acquisition 
interfaces) to monitor and control various manufacturing processes. These 
PCs (or PC-based instruments) would be connected to a central computer, 
running appropriate software (such as LABTECH CONTROL) that oversees 
the entire process. You can even use embedded data acquisition PCs at remote 
sites and use the Internet for communications. 
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14.3.1 THE CYBEX 340 Extremity Testing System 

As an early example of a typical use of an embedded desktop PC in a piece 
of commercial equipment, we will look at the CYBEX 340 Extremity Testing 
System. CYBEX, a division of Lumex Inc., manufactured testing and reha-
bilitation equipment for the fields of sports medicine, physical therapy, and 
fitness. These machines were used for evaluating and improving human ath-
letic performance and fitness as well as aiding injury recovery. The 340 
System was used for the testing, exercise, and rehabilitation of the extremities 
(arms and legs). 

The CYBEX 340 System is a large machine, which incorporates a full-
sized desktop PC chassis in its electronics cabinet, as shown in Figure 14.7. 
The PC used is a Wyse 286 PC, which is an AT (ISA) system, based on an 
80286 CPU with a 10-MHz clock and containing 640 Kbytes of RAM. The 
keyboard, monitor (EGA), floppy drive, and streaming tape drive are mounted 

Figure 14-7 CYBEX 340 Extremity Testing System. (Courtesy of CYBEX, a division 
of Lumex, Inc.) 
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externally, for normal user access. The PC also contains a 32-Mbyte hard 
disk drive and runs MS-DOS. Other standard PC peripherals used in this 
system are a parallel port, connected to an external printer, and a serial port, 
connected to an internal modem. It contains a 60-Mbyte tape drive unit, for 
backing up the data collected and stored in its database system. In addition, 
an optional network interface card may be present, to connect the system to 
a local area network (LAN) of other CYBEX systems and PCs, including a 
PC set up as a file server, controlling the network. 

By using standard peripherals, retaining a floppy drive, and running 
software under MS-DOS, the PC embedded in the CYBEX 340 System can 
function as a stand-alone PC and run most commercial software packages. 
In addition, it runs custom CYBEX software, used for motion control of the 
extremity testing equipment, acquiring and storing patient data, producing 
reports, and other functions aiding the medical practitioner. 

Figure 14-8 shows a simplified block diagram of the CYBEX 340 
System. It is clear from this that, at least electronically, the embedded PC is 
the heart of the system. The mechanical heart of this CYBEX system is its 
dynamometer. This unit contains a motor, controlled by a switching servo 
amplifier, which drives a series of clutches coupled to an output shaft, con-
nected to the patient's limb. 

The speed of the motor limits the maximum speed at which the patient 
can move his or her limb. A patient trying to move faster than the set speed 
would produce more torque but maintain that fixed speed. The measured 
torque, at this constant speed, produces clinically significant information 
about the health and strength of that limb. For example, if someone had a 
knee injury that was manifested at a particular point in that joint's range of 
motion (the maximum range that joint can rotate, measured in degrees), there 
would probably be a drop in torque output at that location. The data collected 
by this system is torque versus angular position. The torque is a measure of 
the force produced by the muscles of the tested limb. The angular position 
covers that limb or joint's range of motion. A typical example of data produced 
by a CYBEX 340 System (measurements of the author's knee) is shown in 
Figure 14-9. 

For technical and economic reasons, CYBEX chose to produce its own 
data acquisition boards for the 340 System, instead of adapting general-
purpose commercial cards. These boards plug into the standard ISA bus of 
the Wyse PC, as any commercial card does. As shown in Figure 14-8, these 
custom boards connect to specialized system hardware, such as the dyna-
mometer, servo amplifier, and power-sequencing unit. 

The functions available on these custom boards include analog input, 
analog output, digital I/O, and counter/timers. The analog input is the torque 
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Figure 14-9 Typical data display from a CYBEX 340 System. (Courtesy of CYBEX, 
a division of Lumex, Inc.) 

signal from the dynamometer. The torque signal is derived from a capacitive 
load cell (a pressure transducer) hydraulically coupled to the dynamometer 
shaft. This signal, having a 10-V dynamic range, is digitized by a 10-bit ADC. 
The overall torque range is 360 foot-pounds, so the system can resolve torque 
as low as 0.35 foot-pounds (or approximately 4 inch-pounds). 

The ADC used in the CYBEX 340 System has several modes of opera-
tion. Conversions can be triggered asynchronously or at a fixed rate, under 
software control (up to 25,000 samples/sec), as in a conventional, time-based 
data acquisition system. However, the data of interest to this system is torque 
versus angular position. To directly measure this, the ADC conversions are 
normally triggered by an optical encoder, coupled to the dynamometer shaft. 
This encoder acts as an angular position transducer, producing a pulse for every 
1/2 degree of dynamometer shaft rotation. This produces torque versus position 
data, independent of rotational velocity, eliminating unnecessary data conver-
sions at slow speeds. This feature could be implemented with a general-
purpose, commercial data acquisition card if it accepted external trigger signals. 

An analog output of the CYBEX board is used to control the motor 
speed. This speed control voltage (SCV) is a 0- to 10-V signal, sent to the 
servo amplifier, which drives the motor. The motor contains a tachometer that 



380 CHAPTER 14 PC-Based Data Acquisition Applications 

produces an analog voltage, proportional to its speed. This tachometer signal 
is sent back to the servo amp, to complete the feedback loop required for 
precise speed control. The motor speed set by the servo amp is proportional 
to the controUing SCV. 

The counter/timers available on the CYBEX boards are based on an 
Intel 8254IC. They are used for various system timing and counting functions, 
such as measuring motor speed during calibration. Many different functions 
are implemented using digital I/O lines. One example is using software-
controlled gating of several possible sources into one hardware interrupt line. 
Another is the remote power-on capability of the system. 

The advantages and features of an embedded PC, illustrated by the 
CYBEX 340 System, apply to a wide variety of computer-controlled equip-
ment: even if a product must be fairly small, the size of PCs designed for 
embedded applications is continuously shrinking. We will continue to see 
increasing growth in conmiercial equipment utilizing embedded PCs. An 
additional advantage of using an embedded PC is that the final system can 
be functionally prototyped using commercially available data acquisition 
hardware and software products, even if it will eventually use custom boards 
and programs. This can certainly help shorten the development cycle of a 
new product. At the very least, it provides a software development group with 
hardware to work with while the final data acquisition boards are still in the 
design process. 

14.3.2 The Tektronix TDS7000 Series Osciiioscope 

One interesting example of a recent embedded PC product is the Tektronix 
TDS7000 series of digital phosphor oscilloscopes (DPOs). These instruments 
are high-performance, stand-alone digital oscilloscopes with analog band-
widths up to 4 GHz and single-shot sampling rates up to 20 Gsamples/sec. 
They also use equivalent time sampling (ETS) to achieve much higher sam-
pling rates with repetitive signals. Because of their embedded processors, the 
TDS7000 oscilloscopes have many features of a standard, Windows-based 
PC. For example, these instruments all contain a floppy disk drive, a CD-
ROM drive, and a hard disk drive (of over 4 Gbytes). They also use a mouse 
and keyboard and contain a variety of standard I/O ports such as USB, parallel 
(IEEE 1284), serial (RS-232), Ethernet (lOBASE-T/lOOBASE-T), and GPIB. 

Figure 14-10 shows a simplified block diagram of a TDS7000 DPO. 
The high-speed acquisition system (with multiple analog inputs) uses an 
embedded Power PC. This processor communicates with the embedded Win-
dows PC (based on an Intel Celeron processor) via an internal PCI bus. The 
Intel processor, running Microsoft Windows 98, is used for user-interface 
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Figure 14-10 Simplified block diagram of a Tektronix TDS7000 series Digital 
Phosphor Oscilloscope. (Courtesy of Tektronix, Inc.) 

functions and enables the instrument to run standard Windows 95/98 software. 
Figure 14-11 shows a photograph of a TDS7404 oscilloscope displaying 
typical waveforms. 

The embedded Windows PC in the TDS7000 is analogous to a notebook 
computer. It does not have the expandability of a desktop PC that can accept 
plug-in cards, but all TDS7000 DPOs have parallel, serial, USB, and GPIB 
interfaces. Some even have Cardbus (PCMCIA) slots, making them as 
expandable as any conventional notebook PC. This combination of a high-
performance digital oscilloscope with a notebook-like PC is extremely pow-
erful. When used as a general-purpose lab instrument, a TDS7000 can acquire 
waveforms (just as a standard oscilloscope does) and then save this data to 
the local hard drive or to another location on a network, using the Ethernet 
(LAN) port. If the unit is connected to a network, you can easily print captured 
waveform images on a remote, shared printer. 

An example of a fairly complex oscilloscope/PC application in the lab 
(based on the author's experience) is using.a TDS7000 DPO to develop and 
debug a microcontroller-based circuit boaifl. The DPO was loaded with stan-
dard PC-based development software (including a compiler/linker and debug-
ger). A PC-based hardware emulator was run from the DPO's parallel port 
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Figure 14-11 A Tektronix TDS7404 Digital Phosphor Oscilloscope. (Courtesy of 
Tektronix, Inc.) 

and connected to the target board (an emulator is an instrument used to control 
a target microprocessor or microcontroller for the purposes of software and 
hardware development). Using the PC-based software, the target microcon-
troller board was loaded with test software under development. This code 
was run (and evaluated) on the target, under control of the emulator (hard-
ware) and debugger (software) hosted on the TDS7000. At the same time, 
the DPO's oscilloscope probes were connected to test points on the target 
board. As the test software executed, the DPO was used to display critical 
waveforms, aiding in the evaluation of the board design. 

Since a TDS7000 DPO is portable (albeit much heavier than a notebook 
PC) it is also suitable for field test work. In this case, having an oscilloscope 
and a PC in one package can be quite advantageous. 

Of course, many embedded PC applications are much simpler than the 
TDS7000. Still, since PCs have become so ubiquitous, a growing range of 
products will likely include PC faatures if not a fully functioning embedded 
PC. Often, just the ability to connect a device to an existing network is a 
primary reason for embedding a PC in a product. 
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14.4 Future Trends in PC-Based 
Data Acquisition 

This concludes our examination of a few "real-world" examples of data 
acquisition systems based on PC platforms of various form factors. This field 
is constantly changing, with new products, standards, and approaches appear-
ing continuously. 

Without any doubt, the field of PCs will continue to evolve at its 
typically frenetic pace. In the "Wintel" world, faster Pentium CPUs (and their 
successors) will continue to appear, along with newer and more sophisticated 
versions of Windows. Eventually, the PCI bus may become obsolete (as the 
ISA bus nearly has) and probably become relegated only to embedded and 
industrial applications. However, it should still be around for many years to 
come. Desktop PCs are likely to become black boxes without any internal 
expansion slots and rely solely on standard ports, such as USB and Fire Wire. 
Industrial and embedded PCs may become the platforms of choice for data 
acquisition systems because of their flexible hardware expansion capabilities. 
CompactPCI will probably become the leading embedded PC architecture. 

In the field of sensors, integrating more functions and "intelligence" in 
sensor units should continue. Growing acceptance of the IEEE 1451 standards 
will also help accelerate this trend. The increased use of electronic sensors 
in major consumer products, such as automobiles, will continue to drive the 
sensor field. 

It is impossible to accurately predict future trends in the PC and data 
acquisition industry (as the predictions in the first edition of this book, 10 
years ago, demonstrated). If you are putting together a PC-based data acqui-
sition system, stick to your current requirements, with an eye on future needs. 
You should be aware of trends in the industry, but relying on new, untested 
technologies (or companies, for that matter) can be a big gamble. As a gross 
generalization, data acquisition hardware products and companies tend to 
have a much longer life than their software counterparts. Always try to first 
use current, established products to solve a problem. It will usually cost you 
less time, money, and frustration. 
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A P P E N D I X 

Data Acquisition 
and Related PC 
Product IVIanufacturers 

This appendix contains listings of manufacturers of PC-based hardware and 
software products for data acquisition as well as frame grabbers (image 
capture) and embedded or industrial PCs. These include many hardware 
manufacturers who also produce or resell software products. Most software 
products will run under a 32-bit version of Microsoft Windows (Win 
95/98/NT). Most hardware products will work in an ISA or a PCI bus. All 
URLs are current as of this writing and usually point to a vendor or product's 
home page. Products or vendors that support non-PC hardware (i.e., Apple 
Macintosh) are explicitly noted. 

Each listing contains the vendor's name, contact information, and prod-
uct information. The product listings are grouped as either HfW (hardware) 
or 5/W (software). Unless otherwise noted, data acq in a HAV listing denotes 
both analog and digital I/O. The HAV listing is followed by the Supported 
I/F (interfaces) Hsting (i.e., ISA, PCI, RS-232, USB). The SAV listing is 
followed by the Supported OS (operating system) listing (i.e., Windows 
95/98/NT, Linux, Mac OS). All addresses are in the United States unless 
otherwise noted. All 800 phone numbers are only valid in North America 
(United States and Canada). All phone numbers outside of North America 
begin with the international calling code. 

AAEON Electronics Inc. 
3 Crown Plaza 
Hazlet, NJ 07730 
(732) 203-9300 
www.aaeon.com 

ACCES I/O Products, Inc. 
10623 Roselle Street 
San Diego, CA 92121 
(858) 550-9559 
www.acces-usa.com 

HAV PRODUCTS: 

SUPPORTED I/F: 

HAV PRODUCTS: 

SUPPORTED I/F: 

Embedded/industrial 
PC, data acq 
ISA, PCI, PC/104 

Data acq, communica-
tions, bus expansion 
ISA, PCI, PC/104 

385 
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Acqiris USA HAV PRODUCTS: 

P.O. Box 2203 SUPPORTED I/F: 
234 Cromwell Hill Rd. 
Monroe, NY 10950-1430 
(845) 782 6544 
www.acqiris.com 

Acqutek Corp., Inc. HAV PRODUCTS: 

1549 S. 1100 East 
Salt Lake City, UT 84105 
(801) 485-4594 SUPPORTED I/F: 

www.acqu.com 

Acrosser USA HAV PRODUCTS: 

10564 Progress Way, Unit D 
Cypress, CA 90630 SUPPORTED I/F: 

(714) 827-9938 
www.acrosser.com 

AD AC Corporation HAV PRODUCTS: 

24 River Street 
Winchester, Massachusetts 01890 SUPPORTED I/F: 

(781) 721-9800 
www.adac.com 

Adlink Technology Inc. HAV PRODUCTS: 

15279 Alton Pkwy., Suite 400 
Irvine, CA 92618 
(949) 727-2077 
www.adlinktechnology.com SUPPORTED I/F: 

Advantech Automation Corp. HAV PRODUCTS: 

1320 Kemper Meadow Dr., Suite 500 
Cincinnati, OH 45240 SUPPORTED I/F: 

(877) 294-8989 
www.advantech.com 

Agilent Technologies (formerly HP) SAV PRODUCTS: 

RO. Box 10395 
Palo Alto, CA 94303 
(650) 752-5000 SUPPORTED OS: 

www.tm.agilent.com 

High-speed data acq 
PCI, CompactPCI 

Data acq, embedded/ 
industrial PC, 
communications 
ISA, PCI 

Embedded/industrial 
PC, data acq 
ISA, PCI, PC/104 

Data acq, bus expan-
sion, industrial PC 
ISA, PCI, PCMCIA, 
VME 

Data acq, embedded/ 
industrial PC, image 
capture, motion 
control 
ISA, PCI, Compact-
PCI, USB 

Embedded/industrial 
PC, data acq 
ISA, PCI, PC/104 

Agilent VEE 
(general-purpose 
data acq) 
Win 95/98/NT 2000 
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Amplicon Liveline Ltd. 
Centenary Industrial Estate 
Hollingdean Road 
Brighton East 
Sussex BN2 4AW 
United Kingdom 
+44 1273-608-331 
www.amplicon.co.uk 

Ampro Computers, Inc. 
5215 Hellyer Avenue #110 
San Jose, California 95138-1007 
(408) 360-0200 
www.ampro.com 

Amtec Engineering, Inc. 
13920 SE Eastgate Way, Suite 220 
Bellevue, WA 98005 
(425) 653-1200 
www.amtec.com 

Analog and Digital Peripherals, Inc. 
P.O. Box 499 
Troy, OH 45373 
(800) 758-1041 
www.adpi.com 

Analogic Corp. 
8 Centennial Drive 
Peabody, MA 01960 
(978) 977-3000 
www.analogic.com 

Aptech Systems, Inc. 
23804 SE Kent-Kangley Road 
Maple Valley, WA 98038 
(425) 432-7855 
www.Aptech.com 

HAV PRODUCTS: 

SUPPORTED I/F: 

Data acq, signal 
conditioning 
ISA, PCI, PCMCIA, 
USB, parallel port, 
serial port 

HAV PRODUCTS: Embedded PC 

SUPPORTED I/F: PC/104, PC/104-

Plus, EBX 

SAV PRODUCTS: 

SUPPORTED OS: 

HAV PRODUCTS; 

SUPPORTED I/F; 

S/W PRODUCTS; 

SUPPORTED OS: 

H/W PRODUCTS: 

SUPPORTED I/F: 

S/W PRODUCTS: 

SUPPORTED OS: 

Tecplot (data display) 
Win 95/98/Me/NT/ 
2000/XP, Linux, 
Solaris, HP-UX, 
UNIX 

Embedded PC 
PCMCIA, USB 
Easi Daq (data acq 
via PCMCIA cards) 
Win 95/98/NT/CE, 
Linux 

Data acq, image 
capture 
CompactPCI, VME, 
VXI 

GAUSS (data analysis 
and display) 
Win 95/98/NT/2000, 
Linux, Solaris 
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Arbor Technology Corporation 
5F, No 738 Zhong Zheng Road 
Zhong He, 235 Taipei 
Taiwan 
886-2-8226-9396 
www.arbor.com.tw 

Arcom Control Systems, Inc. 
7500 West 161st Street 
Stilwell, KS 66085 
(888) 941-2224 
www.arcomcontrols.com 

Biodata Ltd. 
(Microlink Measurement and 
Control) 
10 Stocks Street 
Manchester, M8 8QG 
United Kingdom 
+44 161-834-6688 
www.microlink.co.uk 

BitFlow 
21-G Olympia Avenue 
Wobum, MA 01801 
(781) 932-2900 
www.bitflow.com 

Capital Equipment Corp. 
900 Middlesex Turnpike, Bldg 2 
Billerica, MA 01821-3929 
(800) 234-4232 
www.cec488.com 

Chase Scientific Company 
7960-B Soquel Drive, Suite 191 
Aptos, CA 95003 
(831)464-2584 
www.chase2000.com 

urn PRODUCTS: Data acq, embedded/ 
industrial PC, image 
capture 

SUPPORTED I/F: ISA, PCI, PC/104, 
PC/104-Plus 

HAv PRODUCTS: Data acq, embedded 
PC, motion control 

SUPPORTED I/F: ISA, PCI, PC/104 

HAV PRODUCTS: Data acq 
SUPPORTED I/F: ISA, USB 

H/W PRODUCTS: 

SUPPORTED I/F: 

H/W PRODUCTS: 

SUPPORTED I/F: 

S/W PRODUCTS: 

SUPPORTED OS: 

H/W PRODUCTS: 

SUPPORTED I/F: 

Image capture 
PCI 

Data acq, GPIB, 
Web/DAQ (Internet 
data acq server) 
ISA, PCI 
TestPoint (general-
purpose data acq) 
Win 95/98/Me/ 
NT/2000 

High-speed data acq 
ISA, PCI, Compact-
PCI, VME, VXI, 
PC/104, PC/104-Plus 
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Comark Corp. 
93 West Street 
Medfield, Massachusetts 02052 
(800) 280-8522 
www.comarkcorp.com 

Coreco, Inc. 
6969 Trans-Canada Highway, Suite 
#142 
St. Laurent, Quebec H4T IVB 
Canada 
(514) 333-1301 
www.coreco.com 

CyberResearch, Inc. 
25 Business Park Dr. 
Branford, CT 06405 
(800) 341-2525 
www.cyberresearch.com 

urn PRODUCTS: Embedded/industrial 
PC, data acq 

SUPPORTED I/F: ISA, PCI, PC/104 

HAv PRODUCTS: Image capture 
SUPPORTED I/F: ISA, PCI 

HAV PRODUCTS: 

Dasytec USA 
(a National Instruments Company) 
11 Eaton Road 
PO Box 748 
Amherst, NH 03031-0748 
(800) 731-5015 
www.dasylab.net or 
www.dasytec.com 

SUPPORTED I/F: 

SAV PRODUCTS: 

SUPPORTED OS: 

SAV PRODUCTS: 

SUPPORTED OS: 

Data acq, signal 
conditioning, motion 
control, GPIB, 
embedded/industrial 
PC 
ISA, PCI, PC/104, 
serial port 
Distributes major 
data acq software 
packages 
Depends on product 
(most are Win95/98/ 
NT/2000) 

Dasy Lab (general 
purpose data acq) 
Win 98/NT/2000 
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Data Translation, Inc. 
100 Locke Drive 
Marlboro, MA 01752-1192 
(800) 525-8528 
www.datatranslation.com 

HAV PRODUCTS: 

SUPPORTED I/F: 

SAV PRODUCTS: 

SUPPORTED OS: 

Data acq, signal con-
ditioning, image cap-
ture 
ISA, PCI, PCMCIA, 
USB 
Data Acq Omni CD 
(drivers & utilities), 
Quick Data Acq 
(Mac only) 
Win 95/98/NT/2000, 
Mac OS 

Dataq Instruments, Inc. 
150 Springside Drive, Suite B220 
Akron, OH 44333 
(800) 553-9006 
www.dataq.com 

HAV PRODUCTS: 

SUPPORTED I/F: 

SAV PRODUCTS: 

SUPPORTED OS: 

Data acq, signal 
conditioning 
ISA, Ethernet, USB, 
parallel port, serial 
port 
WinDaq (data acq) 
Win3.1,Win95/NT 

Datastick Systems, Inc. 
275 Saratoga Ave., Ste. 160 
Santa Clara, CA 95050 
(408) 615 5774 
www.datastick.com 

HAV PRODUCTS: Data acq 
SUPPORTED I/F: Pa lm P D A 

Diamond Systems Corp. 
8430-D Central Avenue 
Newark, CA 94560 
(800) 367-2104 
www.diamondsys.com 

H/w PRODUCTS: Data acq, embedded 
PC 

SUPPORTED I/F: P C / 1 0 4 

DSP Development Corporation 
3 Bridge Street 
Newton, MA 02458 
(800)424-3131 
www.dadisp.com 

S/W PRODUCTS: 

SUPPORTED OS: 

DADiSP (data analy-
sis and display) 
Win 95/98/NT/2000, 
UNIX 
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Electronic Energy Control, Inc. HAVPRODUCTS: 

380 South Fifth Street, Suite 604 SUPPORTED I/F: 

Columbus, Ohio 43215-5491 
(800) 842-7714 
www.eeci.com 

Gage Applied, Inc. HAV PRODUCTS: 

(a Tektronix Company) 
2000 32nd Ave. SUPPORTED IAF: 

Lachine, QC Canada H8T3H7 SAV PRODUCTS: 

(800) 567-GAGE 
www.gage-applied.com SUPPORTED OS: 

General Standards Corp. HAV PRODUCTS: 

8302A Whitesburg Drive 
Huntsville, AL 35802 SUPPORTED I/F: 

(800) 653-9970 
www.generalstandards.com 

GW Instruments Inc HAV PRODUCTS: 

35 Medford Street SUPPORTED I/F; 

Somerville, MA 02143-4237 SAV PRODUCTS: 

(617) 625-4096 
www.gwinst.com 

SUPPORTED OS: 

HEM Data Corp. SAV PRODUCTS: 

17336 Twelve Mile Road 
Southfield, MI 48076-2123 SUPPORTED OS: 

(248) 559-5607 
www.hemdata.com 

ICS Electronics HAV PRODUCTS: 

7034 Commerce Circle 
Pleasanton, CA 94588 SUPPORTED I/F: 

(925) 416-1000 
www.icselect.com 

Data acq 
Serial port, USB 

Very high-speed data 
acq 
ISA, PCI 
Gage Scope (virtual 
oscilloscope) 
MS-DOS, Win 
95/98/NT/2000 

Data acq, communi-
cations (serial) 
PCI, CompactPCI, 
PC/104-Plus, VME 

Data acq 
PCI, NuBus (Mac) 
InstruNet (data acq), 
SuperScope (Mac 
only) 
Win 95/NT, Mac OS 

SnapMaster (general-
purpose data acq) 
Win 3.1, Win 95/98 

GPIB, communica-
tions 
ISA, PCI, Compact-
PCI, PCMCIA, VXI, 
parallel port, serial 
port 
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Ines GmbH 
Goettinger Chaussee 115 
D 30459 Hannover 
Germany 
+49 511 943 810 
www.inesinc.com 

Integ Process Group, Inc. 
11279 Perry Highway, Suite 502 
Wexford, PA 15090 
(724) 933-9350 
www.integpg.com 

Intelligent Instrumentation, Inc. 
3000 E. Valencia, Suite 100 
Tucson, AZ 85706 
(800)685-9911 
www.instrument.com 

lOtech, Inc. 
25971 Cannon Road 
Cleveland, Ohio 44146 
(440) 439-4091 
www.iotech.com 

JK Microsystems, Inc. 
1403 Fifth Street, Suite D 
Davis, California, 95616 
(530) 297-6073 
www.jkmicro.com 

JUMPtecAdastra 
3988 Trust Way 
Hayward, CA 94545 
(510)732-6900 
www.adastra.com 

HAV PRODUCTS; 

SUPPORTED I/F: 

SrW PRODUCTS; 

SUPPORTED OS: 

Data acq, GPIB 
ISA, PCI, PCMCIA 
Free VIEW (data acq 
via PC sound card-
free) 
Win 95/98/NT/2000 

HAV PRODUCTS: Network-bascd data 
acq 

SUPPORTED I/F: Serial port, Ethernet 

HAV PRODUCTS: Data acq 
SUPPORTED I/F: ISA, Ethernet, USB 

H/w PRODUCTS: Data acq, signal 
conditioning, GPIB 

SUPPORTED I/F: ISA, PCI, 
CompactPCI, USB 

HAV PRODUCTS: Embedded PC, data 
acq 

SUPPORTED I/F: Proprietary 

H/w PRODUCTS: Embedded PC 
SUPPORTED I/F: PC/104, proprietary 

(DIMM-PC) 
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Keithley Instruments, Inc. 
28775 Aurora Road 
Cleveland, OH 44139 
(440) 248-0400 
www.keithley.com 

Kontron (formerly ICS Advent) 
6260 Sequence Drive 
San Diego, CA 92121-4371 
(858) 677-0877 
www.icsadvent.com 

LabJack Corporation 
3112 S. Independence Court 
Lakewood, CO 80227-4445 
(303) 942-0228 
www.labjack.com 

Laboratory Technologies Corp. 
Two Dundee Park, Suite B09 
Andover, MA, 01810 
(978) 470-0099 
www.labtech.com 

Lawson Labs, Inc. 
3217 Phoenixville Pike 
Malvern, PA 19355 
(800) 321-5355 
www.lawsonlabs.com 

Lisberger Technologies 
848 Clayton St. 
San Francisco, CA 94117 
(415) 476-1062 
www.listech.com 

HAV PRODUCTS: 

SUPPORTED I/F: 

SAV PRODUCTS: 

SUPPORTED OS: 

HAV PRODUCTS: 

SUPPORTED I/F: 

HAV PRODUCTS: 

SUPPORTED I/F: 

Data acq, GPIB, 
signal conditioning. 
serial cards, PC 
instruments 
ISA, PCI, PCMCIA 
DriverLinx (drivers). 
Visual Scope (virtual 
oscilloscope) 
Win 95/98/NT/2000 

Data acq, embedded/ 
industrial PC, 
communications 
(serial) 
ISA, PCI, 
CompactPCI 

Data acq 
USB 

S/W PRODUCTS: 

SUPPORTED OS: 

H/W PRODUCTS: 

SUPPORTED I/F: 

H/W PRODUCTS: 

SUPPORTED I/F: 

SUPPORTED OS: 

LABTECH 
NOTEBOOK, 
LABTECH 
CONTROL (general-
purpose data acq) 
Win 95/98/NT/2000 

Data acq 
ISA, parallel port, 
serial port, USB, 
Apple II 

Data acq w/time 
stamping 
ISA 
MS-DOS, Win 95/NT 
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LPTek Corp. 
1100 Shames Drive 
Westbury, NY 11590-1746 
(516) 333-8820 
www.lptek.com 

The Math Works, Inc. 
3 Apple Hill Drive 
Natick, MA 01760-2098 
(508) 647-7000 
www.mathworks.com 

Measurement Computing, Corp. 
(formerly ComputerBoards, Inc.) 
16 Commerce Boulevard 
Middleboro, MA 02346 
(508)946-5100 
www.measurementcomputing.com 

Measurement Systems Ltd. 
16 Kingfisher Court 
Newbury, Berkshire 
RG14 5SJ 
United Kingdom 
+44 (0)1635 576800 
www.measurementsystems.co.uk 

Megatel Computer Corp. 
125 Wendell Avenue 
Weston, Ontario M9N 3K9 
Canada 
(416) 245-2953 
www.pcl04sbc.com 

Mesa Electronics 
4175 Lakeside Drive, Suite 100 
Richmond, CA 94806-1950 
(510) 223-9272 
www.mesanet.com 

HAv PRODUCTS: Data acq 
SUPPORTED i/F: Parallel port 

SAV PRODUCTS: 

SUPPORTED OS: 

HAV PRODUCTS: 

SUPPORTED I/F: 

HAV PRODUCTS: 

SUPPORTED I/F: 

H/W PRODUCTS: 

SUPPORTED I/F: 

H/W PRODUCTS: 

SUPPORTED I/F: 

MATLAB (general-
purpose data analysis 
and display with data 
acq features) 
Win 95/98/Me/NT/ 
2000, Mac OS, 
Linux, UNIX 

Data acq, signal 
conditioning 
ISA, PCI, 
CompactPCI, 
PCMCIA, PC/104, 
USB 

Data acq, industrial 
PCs 
PCI, CompactPCI 

Embedded PC 
PC/104 

Embedded PC, data 
acq, motion control 
PC/104, PC/104-Plus 
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Microsoft Corp. 
One Microsoft Way 
Redmond, WA 98052-6399 
(425) 882-8080 
www.microsoft.com/office/excel 

Microstar Laboratories, Inc. 
2265 116th Ave. NE 
Bellevue, WA 98004 
(425) 453-2345 
www.mstarlabs.com 

Micro/Sys, Inc. 
3730 Park PI. 
Montrose, CA 91020 
(818) 244-4600 
www.embeddedsys.com 

Micro Technic 
Svenstrupvej 90 
5260 Odense S 
Denmark 
+45 66 15 30 00 
www.micro-technic.com 

National Instruments Corp. 
11500 N. Mopac Expressway 
Austin, TX 78759-3504 
(512) 794-0100 
www.ni.com 

SAV PRODUCTS: 

SUPPORTED OS: 

HAV PRODUCTS: 

SUPPORTED I/F: 

SAV PRODUCTS: 

SUPPORTED OS: 

HAV PRODUCTS: 

SUPPORTED I/F: 

Excel (spreadsheet 
for general-purpose 
data analysis and 
display) 
MS Windows 
(version depends on 
Excel version) 

Data acq, signal 
conditioning 
ISA, PCI 
DAPview, Windows 
Toolkit (development 
tools) 
Win 95/98 

Embedded PC, data 
acq, communications 
PC/104, PC/104-
Plus, STD Bus 

HAV PRODUCTS: Data acq, 
communications 

SUPPORTED I/F: P C / 1 0 4 

H/W PRODUCTS: 

SUPPORTED I/F: 

S/W PRODUCTS: 

SUPPORTED OS: 

Data acq, signal con-
ditioning, GPIB, 
image capture, 
motion control, PC 
instruments 
ISA, PCI, 
PXI/CompactPCI, 
PCMCIA, IEEE 
1394, USB, VMEAOa 
LabVIEW (general 
purpose data acq) 
Win 95/98/Me/NT/ 
2000, Mac OS, Linux, 
Sun Solaris, HP-UX 
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Octagon Systems 
6510 W. 91st Avenue 
Westminster, CO 80031 
(303) 430-1500 
www.octagonsystems.com 

Omega Engineering, Inc. 
One Omega Drive 
P.O. Box 4047 
Stamford, CT 06907-0047 
www.omega.com 

Ontrak Control Systems Inc. 
764 Notre Dame Ave., Unit #1 
Sudbury, Ontario P3A 2T2 
Canada 
(705) 671-2652 
www.ontrak.net 

Pico Technology Ltd. 
The Mill House 
Cambridge Street 
St. Neots 
Cambridgeshire PE19 IQB 
United Kingdom 
+44 1480-396-395 
www.picotech.co.uk 

PixelSmart 
PO. Box 76 
Lewiston, NY 14092 
(800) 884-1734 
www.pixelsmart.com 

HAV PRODUCTS: 

SUPPORTED I/F: 

HAV PRODUCTS: 

SUPPORTED I/F: 

SAV PRODUCTS: 

SUPPORTED OS: 

HAV PRODUCTS: 

SUPPORTED I/F: 

H/W PRODUCTS: 

SUPPORTED I/F: 

S/W PRODUCTS: 

SUPPORTED OS: 

H/W PRODUCTS: 

SUPPORTED I/F: 

Embedded/industrial 
PC, data acq, com-
munications, motion 
control 
ISA, PCI, PC/104 

Data acq, GPIB, 
sensors 
ISA, PCI, Ethernet, 
USB 
Distributes data acq 
software from 
multiple vendors 
Win 3.1, Win 
95/98/NT 

Data acq 
Serial port 

Data acq 
Parallel port, serial 
port 
PicoLog (data acq) 
MS-DOS, Win 3.1, 
Win 
95/98/Me/NT/2000 

Image capture 
ISA, PCI, PC/104 
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Quatech HAV PRODUCTS: 

662 Wolf Ledges Parkway 
Akron, Ohio 44311 SUPPORTED I/F: 

(800)553-1170 
www.quatech.com SAV PRODUCTS: 

SUPPORTED OS: 

Real Time Devices USA, Inc. HAV PRODUCTS: 

103 Innovation Blvd. 
P.O. Box 906 
State College, PA 16804 SUPPORTED I/F: 

(814) 234-8087 
www.rtdusa.com 

Scientific Solutions, Inc. HAV PRODUCTS 

9323 Hamilton Drive SUPPORTED VF. 

Mentor, OH 44060 SAV PRODUCTS 

(440) 357-1400 SUPPORTED OS 

www.labmaster.com 

Sensoray Company Inc. HAV PRODUCTS: 

7337 S.W. Tech Center Drive 
Tigard, Oregon 97223 
(503) 684-8005 
www.sensoray.com SUPPORTED I/F: 

Signatec HAV PRODUCTS: 

1138 East Sixth Street 
Corona, CA 92879 
(909) 734-3001 
www.signatec.com SUPPORTED I/F: 

SiliconSoft Inc. HAV PRODUCTS: 

4760 Castlewood Dr. SUPPORTED VF: 

San Jose, CA 
(408) 446-4521 
www.siliconsoft.com 

Data acq, communi-
cations 
ISA, PCI, Compact-
PCI, PCMCIA, USB 
DAQDRIVE (drivers) 
MS-DOS, Win 3.1, 
Win 95/98/NT 

Data acq, embedded 
PC, image capture, 
motion control 
PC/104, PC/104P1US 

Data acq, GPIB 
ISA, PCI 
LabPac (drivers) 
MS-DOS, Win 
95/98/NT/2000 

Data acq, image 
capture, sensor 
conditioning, 
embedded PC 
ISA, PCI, 
CompactPCI, 
PC/104, PC/104-
Plus, Ethernet 

High-speed data acq, 
industrial PC, signal 
processing (DSP-
based) 
ISA, PCI 

Data acq 
ISA, parallel port, 
serial port 
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Soltec Corp. HAV PRODUCTS: 

12977 Arroyo Street 
San Fernando, CA 91340 SUPPORTED VF: 

(800) 423-2344 
www.solteccorp.com 

Spiral Software SAV PRODUCTS: 

57 Baker Hill Road 
Lyme, NH 03768 SUPPORTED OS: 

(603) 795-4004 
www.spiralsoftware.com 

SuperLogics HAV PRODUCTS: 

94 Falmouth Road 
Newton, MA 02465 
(617) 332-3627 SUPPORTED I/F: 

www.superlogics.com 

Symmetric Research HAV PRODUCTS: 

9805 NE 116th Street, #7407 
Kirkland, WA 98034 SUPPORTED I/F: 

(702) 341-9325 
www.symres.com 

TAL Technologies SAV PRODUCTS: 

2027 Wallace Street 
Philadelphia PA 19130 
(800) 722-6004 SUPPORTED OS: 

www.taltech.com 

Theorist Interactive, LLC SAV PRODUCTS: 

26 Church Street 
Harvard Square 
Cambridge, MA 02138 SUPPORTED OS: 

(617) 868-1774 
www.livemath.com 

Traquair Data Systems, Inc. HAV PRODUCTS: 

114 Sheldon Road SUPPORTED I/F: 

Ithaca, NY 14850 
(607) 266-6000 
www.traquair.com 

Data acq, embedded/ 
industrial PC 
ISA, PCI, Compact-
PCI 

EasyPlot (data analy-
sis and display) 
Win 3.1, Win 
95/98/NT 

Data acq, signal con-
ditioning, communi-
cations, industrial PC 
ISA, PCI, PCMCIA, 
RS-232, USB 

Data acq, DSP co-
processors 
ISA, parallel port 

WinWedge, TCP-
Wedge (data acq via 
RS-232 or Internet) 
MS-DOS, Win 3.1, 
Win 95/98/NT/2000 

LiveMath (mathe-
matical analysis and 
display) 
Win 95/98/Me/NT/ 
2000, Mac OS, 
Linux, Solaris 

DSP-based data acq 
PCI, CompactPCI 
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Ultraview Corp. 
34 Canyon View 
Orinda, CA 94563 
(925) 253-2960 
www.ultraviewcorp.com 

United Electronic Industries, Inc. 
611 Neponset Street 
Canton, MA 02021 
(800) 829-4632 
www.ueidaq.com 

Universal Technical Systems, Inc. 
202 West State Street, Suite 700 
Rockford,IL 61101 
(815) 963-2220 
www.uts.com 

Validyne Engineering 
8626 Wilbur Avenue 
Northridge, CA 91324 
(818) 886-2057 
www.validyne.com 

VersaLogic Corp. 
3888 Stewart Road 
Eugene, OR 97402 
(541) 485-8575 
www.versalogic.com 

VMIC 
12090 S. Memorial Parkway 
Huntsville, AL 35803 
(800) 322-3616 
www.vmic.com 

WaveEdge Technologies 
9705 Glenway Ct. 
Burke, VA 22015 
(703) 455-0750 
www.waveedge.com 

HAv PRODUCTS: High-speed data acq, 
bus extenders 

SUPPORTED I/F: I S A , PCI 

HAV PRODUCTS: Data acq, signal 
conditioning 

SUPPORTED I/F: ISA, PCI, 
CompactPCI 

SAv PRODUCTS: TK Solvcr 
(mathematical 
analysis) 

SUPPORTED OS: Win 95/98/NT/2000 

HAV PRODUCTS: Data acq, signal 
conditioning, sensors 

SUPPORTED I/F: ISA, PCMCIA 

H/w PRODUCTS: Embedded PC, 
data acq 

SUPPORTED I/F: PC/104, PC/104-
Plus, STD Bus 

HAV PRODUCTS: Embeddcd/Industrial 
PC, data acq, 
communications 

SUPPORTED I/F: PCI, CompactPCI, 
VME, PC/104, 
PC/104-Plus 

H/w PRODUCTS: High-Speed data acq 
SUPPORTED I/F: ISA, PCI 
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WaveMetrics, Inc. 
P.O. Box 2088 
Lake Oswego, OR 97035 
(503) 620-3001 
www.wavemetrics.com 

Windmill Software Ltd. 
P.O. Box 58 
North District Office 
Manchester, M8 8QR 
United Kingdom 
+44 161-833-2782 
www.windmill.co.uk 

WinSystems, Inc. 
715 Stadium Drive 
Arlington, Texas 76011 
(817) 274-7553 
www.winsystems.com 

Wolfram Research, Inc. 
1(X) Trade Center Drive 
Champaign, IL 61820-7237 
(217) 398-0700 
www.wolfram.com 

Ziatech (an Intel Company) 
1050 Southwood Drive 
San Luis Obispo, CA 93401 
(805) 541-0488 
www.ziatech.com 

SrW PRODUCTS: 

SUPPORTED OS: 

HAVPRODUCTS 

SUPPORTED I/F: 

SAV PRODUCTS 

SUPPORTED OS: 

IGOR Pro (data anal-
ysis and display) 
Win 95/98/Me/NT/ 
2000, Mac OS 

Data acq 
USB 
Windmill (data acq) 
Win 95/98/NT/2000 

HAV PRODUCTS: Embedded PC 

SUPPORTED I/F: PC/104, PC/104-

Plus, STD Bus 

SAV PRODUCTS: 

SUPPORTED OS: 

HAV PRODUCTS: 

SUPPORTED I/F: 

Mathematica (mathe-
matical analysis and 
display) 
Win 95/98/NT/2000, 
Mac OS, UNIX, 
Linux 

Industrial PC 
CompactPCI 
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Index 

8-bit I/O port design, simple, 111-114 
schematic. 111 
serial, 71 
servo, 64 
software considerations for hardware 

interrupts, 114 
special-purpose approaches, 77 
using hardware interrupts, 112-114 

16-bit data transfers on ISA computers, 
118-119 

ADCs, 62-77 
accuracy, 75-77 
accuracy determination of, 48 
analog I/O cards with, 255 
characteristics, 73-77 
definition, 2 
dual-slope, 65-67 
flash, 67-68, 71-72 
high speed, 71-73 
at higher speeds, 49 
multifunction board with, 258 
multiplexer and, 3, 48 
pipelined, 72-73 
ramp, 62-64 
range, 29 
resolution, 73 
sample-and-hold amplifiers and, 45 
sampling rate, 73-74 
sigma-delta converter, 68-70 
successive-approximation, 64-65 
variants, 70-71 
voltage-to-frequency converter, 67 

Agilent VEE, 289 
Aliasing, 74-75 

definition, 74 
examples, 75 
problems, 30 

American Standard Code for Information 
Interchange. See ASCII 

Analog input card design, 117-118 
Analog signal conditioning, 29-50 

circuit components, 30-37. See also Circuit 
components, analog circuits, 37-50. 
See also Circuits, analog conditioning 

techniques, 29-30 
Analog signal definition, 2 
Analog signal transducers, 2, 6-28 

definition, 6 
fiber optic sensors, 24—26 
fluid flow sensors, 23-24 
force and pressure transducers, 13-16 
humidity sensors, 22-23 
ionizing radiation sensors, 18-19 
magnetic field sensors, 16-18 
new sensor technologies, 26-28 
operation of, expressing, 6 
optical sensors, 8-13 
position (displacement) sensors, 19-22 
properties of, 6 
temperature sensors, 7-8 

Analog switches and multiplexers, 48, 49 
Analog-to-digital converters. See ADCs 
Analog versus digitized waveform, 2 
Analog/digital conversions, 51-77 

ADCs, 62-77 
data conversion and DACs, 55, 56-62 
digital quantities, 51-55 

Apple Macintosh, 1, 4, 308 
Apple Macintosh II computers with NuBus, 

308-311 
Applet definition, 350 
Applications. See PC-based data acquisition 

applications 
Architecture and processors, 304-312 

Apple Macintosh II computers with NuBus, 
308-311 

405 



406 Index 

Architecture and processors (continued) 
DSP chips and cards, 311 
EISA (extended industry standard 

architecture) bus, 308 
IBM PS/2 computers with micro channel 

architecture (MCA), 305-308 
ASCII, 169 

.BAS files, 197-198 

.BAT files, 195-197 
to binary conversion, 203 
codes standard, 170 
comma-separated variables (CSV), 281 
.DOC files, 197 
files, 197-198 
Huffman coding, 208 
software products and, 280 
.TXT files, 197 

Assembly language, 327, 328, 330-332 
directives, 331, 332 
memory model, 331 
Microsoft Macro Assembler (MASM), 

330-332 
.MODEL, 331 

AUTOEXEC.BAT, 197 
Avalanche photodiode (APD), 12 

BASIC (beginner's all-purpose symbolic 
instruction code), 328, 333-336, 338 

aspect of, important, 335-336 
commands, 334, 335 
development of, 333, 336 
drawbacks of, 333 
direct and indirect mode, 333-334 
environment, 335 
popularity of, 333 

.BAT files, 195-197 
Batch files. See .BAT files 
Binary codes, 52-55, 56 

fractional, 55 
natural, 52-55 
positive integer bit weights for, 53 

Binary synchronous communication 
(BSC^isync), 176-177 

BIOS, 93, 94-95 
as DOS-based PC software layer, 123,124, 125 
interrupts, 126-127 
parallel printer ports and, 147, 148 
plug-and-play and, 120 

software interrupts and, 125, 126 
video cards and, 103 

Bit resolution and sampling reduction, 204-206 
Bolometer, 13 
Bonded strain gage, 13-14 
Borland, 352 

C programming language, 327,328,329,336-341 
aspects, 337-338 
confusion with, 339-340 
development of, 337 
facets, 338 
features, 337 
function privacy, 338 
loop control statements, 340-341 
operators, 337 
pointers usage, 338-339 
power and popularity of, 337 

C++ programming language, 328, 341-346 
C versus, 342-343, 344, 345 
development of, 341 
dot operator, 345 
encapsulation, 341 
function prototype, 344 
inheritance, 342 
instantiate an object in, 345 
manipulator, 343 
as object-oriented program (OOP), 341, 342, 

344 
polymorphism, 342, 343 
scope resolution operator, 345 
unique features, 345 

Capacitive and inductive sensors, 20 
CD-R, 106 
CD-ROM, 106 
CD-RW, 106 
Celeron, 80 
Centronics (standard) printer interface, 144-148 
Charge-coupled device (CCD), 12 
Circuit components, analog, 30-37 

function generator, 37 
operational amplifier, 30, 31-35 
phase-locked loop, 36 
tone decoder, 36, 37 
voltage comparator, 35-36 

Circuits, analog conditioning, 37-50 
analog switches and multiplexers, 48, 49 
filters, 37-43 
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high-frequency, 49-50 
instrumentation amplifier, 46-47 
isolation amplifiers, 48 
log and antilog amplifiers, 4 5 ^ 6 
modulation, 49 
peak detector, 45 
programmable-gain amplifiers, 47 
sample-and-hold amplifier, 44, 45 
voltage references, 48 
Wheatstone bridge, 4 3 ^ 4 

.COM files, 198 
Commercial data acquisition products, 251-303 

Agilent VEE, 289 
choosing, 302-303 
DADiSP, 298-299 
Dasy Lab, 290, 303 
Data Translation Inc., 266-270 
Gage Applied, Inc., 274-275 
GAUSS, 299-300 
hardware, 251, 252-277 
IGOR Pro, 300 
Intelligent Instrumentation, 273-274 
Keithley Instruments, Inc., 258-266 
LABTECH NOTEBOOK, 279,282-286,288, 

303 
LabVIEW, 270, 286-288, 303 
Mathematica, 301 
MATLAB, 291-298 
Microsoft Excel, 281, 282, 284, 300-301 
Microstar Laboratories, 275-276 
National Instruments, 270-272 
Omega, 276 
Scientific Solutions, Inc., 272-273 
selection steps, 302-303 
Snap-Master, 291 
software, 277-301 
Test Point, 289-290, 303 

Commercial data compression software, 221 
Conmiercial equipment using embedded PCs, 

374-382 
advantages, 374 
board compromise, 375 
connecting to other PCs, 375 
CYBEX 340 extremity testing system, 

376-380 
network software, 375 
Tektronix TDS7000 series oscilloscope, 

380-382 
trend of, 374-375 

Common-mode rejection ratio (CMMR), 31, 
46,47 

Convolution and deconvolution, 242-244 
Counter/timer, 256-258 
Cross-correlation, 250 
Curve fitting, 230-232 
CYBEX 340 extremity testing system, 376-380 

DACs 
analog I/O cards with, 255 
analog output cards with, 255 
applications, 3 
binary resistor quad and, 59 
characteristics, 60 
data conversion and, 55, 56-62 
definition, 2, 3 
fully decoded, 55, 57 
high-speed, 62 
monolithic, 60, 62 
multiplying, 60-61 
parameters, 60-61 
R-2R resistance ladder and, 59, 60 
weight resistor, 57-59 

DADiSP, 298-299 
Dasy Lab, 290 
Data collection 

definition, 1 
introduction, 1-5 

Data compression techniques, 202-221 
ASCII to binary conversion, 203 
bit resolution and sampling reduction, 

204-206 
delta encoding, 206-208 
Huffman encoding, 208-212 
lossless technique, 203, 208, 213, 221 
predictive and interpolative techniques, 

216-220 
run length encoding, 212-213 
significant point extraction, 213-216 
software, 221 

Data conversion and DACs, 55, 56-62 
characteristics of DAC, 60-61 
fully coded DACs, 55, 57 
high-speed DACs, 62 
multiplying DAC, 60 
R-2R ladder, 59, 60 
resistor quad, 59 
weighted resistor DAC, 57-59 
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Data processing and analysis, 222-250 
convolution and deconvolution, 242-244 
cross-correlation, 250 
curve fitting, 230-232 
digital filters, 249 
Fourier transforms, 234-242, 247, 248 
Hilbert transforms, 247 
integer formats, 222-226 
noninteger formats, 226-229 
numerical representation, 222-229 
statistical analysis techniques, 229-230 
techniques, 229-250 
waveform processing, 232-234 
wavelet analysis, 247-249 
window functions, 244-247 

Data storage, 191-202 
DOS file types, common, 195-199 
DOS disk structure and files, 191-195 
Windows file systems, 199-202 

Data streaming, 256, 281, 285 
Data Translation Inc., 266-270 
Debugger program, 328 
Delta encoding, 206-208, 372, 373 
Device drivers, 132, 136 
Digital filters, 249 
Digital quantities, 51-55 
Digital signal processor (DSP) chips and cards, 

311 
Digital-to-analog converter. See DAC 
Digital voltmeters (DVMs), 66 
Direct memory access. See DMA 
Disk operation system. See DOS 
Displacement sensors. See Position sensors 
DMA, 85, 115,256 
DOS, 87, 133-135 

access file via, 194-195 
advantages of, 134 
.BAT files, 195-197 
boot sector, 192 
.COM files, 198 
directory structure example, 194 
disk structure and files, 191-195 
.EXE files, 199 
expanded memory, 136-137 
file allocation table (FAT), 192-193 
file types, common, 195-199 
history, brief, 133-134 
interrupts, 127-128 
limitations, 134-135 
memory limitations, overcoming, 135-137 

partition table, 192 
program overlays, 135-136 
programs, special, 132-133 
root directory, 193, 194, 197 
software drivers, 278 
.TXT and other ASCII files, 197-198 

DOS-based PC software layers, 123-125 
application program, 125 
BIOS, 123, 124, 125 
diagram of, 124 
hardware level, 123 

Drivers, 277-278 
DriveSpace, 221 
Dual-slope converter, 65-67 
DVD (digital video/versatile disc) storage, 106 
Dynamic range definition, 52 
Dynodes, 9, 10 

Economics, 3-4 
EIA. See Electronic Industries Association 
EISA (extended industry standard architecture) 

bus, 308 
Electrocardiogram (ECG) measurement system, 

369-374 
acquisition rates, 369 
analysis, 373-374 
cycle components, 370 
data compression, 372, 373 
definition, 369 
delta Huffman data stream, 373 
frequency components, 369 
normal beat diagram, 370 
parameters measured, 370 
PC-based system, 370-371 
storage capabilities, 372 
zero-order predictor, 373 

Electronic Industries Association, 163 
asynchronous communications link, setting 

up, 171-172 
asynchronous communications protocol, 170 
comparison of selected standards, 173 
connecting two PCs via cable for, 169 
connections between DTE and DCE, 165 
connections between terminal and modem, 167 
EIA RS-232C interfaces, 164-172, 177, 252 
EIA RS422A interfaces, 172-175, 252 
EIA RS-423C interfaces, 172 
EIA RS 485 interfaces, 175-176, 252 
handshaking lines, 165, 167-168 
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pin designations, 166 
signal levels, 167 

Embedded PCs, 4, 314, 318-322, 323 
advantage, 319, 374 
board compromise, 375 
commercial equipment using, 374-382 
connecting to other PCs, 375 
disadvantage, 319 
EBX, 322 
industrial versus, 318-319 
network software, 375 
PC/104, 319-322 
PC/104-Plus, 322, 323 
as single-board computer (SBC), 319 
size, 319 
standard for, 319-322 

Ethernet, 144, 185-188 
elements of, 185 
embedded PCs and, 375 
frame, 186-188 
media access control (MAC), 185, 186 
physical medium, 185 
signaling components, 185 

.EXE files, 199, 329 
Expanded memory, 136-137 
Expanded memory, 136 

Fabry-Perot interferometer, 25-26 
Fiber optic sensors, 24-26 

Fabry-Perot interferometric, 25-26 
microbend, 24-25 

Filters, 3 7 ^ 3 
active, 38, 41-43 
Bessel, 43 
Butterworth, 43 
Cauer, 43 
Chebyshev, 43 
classes of, 38 
elliptic, 43 
equal-ripple, 43 
functions, standard, 43 
maximally flat, 43 
passive, 38, 3 9 ^ 1 
RC, 30, 39, 40 
responses, 37, 38 
RLC, 40-41 
switched capacitor, 41, 42 
Thompson, 43 

FireWire, 144, 178, 180-184 
cable, 181 

connector pin assignments, 181 
data strobe encoding, 182 
data transfer, 182-183 
evolution of, 184 
National Instruments, 270 
protocol layers, 183-184 

Firmware, 86 
First-order predictor, 218 
Flash converter, 67-68 
Floating aperture, 217-218 
Floppy disk storage, 106 
Flowmeters 

rotational, 23 
ultrasonic, 23-24 

Fluid flow sensors, 23-24 
Force and pressure transducers, 13-16 

gage factor (GF), 14 
piezoelectric, 14-16 
strain gages, 13-14 

FORTRAN, 328, 329, 346-347 
Fourier transfers, 234-242, 247-248 
Frame grabber board, 324-325 
Function generator, 37 
Future trends, 383 

Gage Applied, Inc., 274-275 
GAUSS, 299-300 
Geiger counters, 18-19 
General-purpose interface bus (GPIB). See IEEE 

488 interface 

Hard drives, 104-105 
Hardware interfaces, standard, 142-190 

parallel, 144-163 
parallel versus serial digital, 142-144 
PC networks, 184-190 
serial, 163-184 

Hardware interfacing to PC bus, 108-122 
8-bit I/O port design, simple, 111-114 
16-bit data transfers on ISA computers, 

118-119 
analog input card design, 117-118 
DMA, 115 
interfacing to PCI bus, 121 
I/O data transfers, 108-110 
memory data transfers, 110 
plug and play, 120-121 
wait state generation, 115-116 



410 index 

Hardware interrupts 
software considerations for, 114 
using, 112-114 

Hardware products, 251, 252-277 
add-on devices, 252 
analog input cards, 256 
analog I/O cards, 255, 256 
analog output cards, 255 
boards, 252, 253, 255 
carrier, 252 
counter/timer, 256-258 
data acquisition cards, 253, 256 
Data Translation Inc., 266-270 
digital VO cards, 253, 254, 258 
Gage Applied, Inc., 274-275 
industry standard architecture (ISA), typical, 

253 
Intel 8255A programmable peripheral 

interface (PPI) block diagram, 254 
Intelligent Instrumentation, 273-274 
interface cards, 252 
Keithley Instruments, Inc., 258-266 
Microstar Laboratories, 275-276 
multifunction board, 258, 259 
National Instruments, 270-272 
Omega, 276-277 
PCMCIA cards, 258, 260-261, 268, 270, 271 
plug-and-play devices, 252 
plug-in cards, 252 
Scientific Solutions, Inc., 272-273 
timer/counters, 256-258 
virtual instrument, 253 

Head meters, 23 
High-level data link control (HDLC), 176, 177 
High-speed PC serial interfaces, 177-184 

IEEE 1394 (FireWire), 180-184 
universal serial port (USB), 178-180 

Hilbert transform, 247 
HPIB. See IEEE 488 interface 
Huffman encoding, 208-212, 372-373 
Humidity sensors, 22-23 
Hygrometer sensors 

capactive, 23 
resistive, 22-23 

IBM PC/AT, 89-93, 94 
expansion bus, 91-93 
memory map, 94 
motherboard block diagram, 90 

IBM PC/XT, 81-89 
expansion bus, 87-89 
interrupt usage, 126 
I/O address map, 84 
I/O addressing, interrupts, direct memory 

access, and timers, 83-85, 108-110 
I/O card slot connector, 88 
memory (RAM and ROM), 85-87 
memory map, 83 
motherboard block diagram, 82 

IBM PC/XT/AT and compatible computers, 
80-81, 102 

memory segmentation, 80-81 
motherboards, 81 

IBM PS/2 computers with micro channel 
architecture (MCA), 305-308 

IEEE 488 interface, 152-162, 252 
cable, 153, 154 
data transfer handshaking, 156 
HS 488, 162 
IEEE 488.2, 158 
instrumentation example, 161 
linear configuration, 154 
management lines, 155, 157 
master-slave protocol, 153 
National Instruments and, 270 
pin designations, 154-155 
polling techniques, 157 
standard commands for programmable 

instruments (SCPI), 158-162 
standards structure diagram, 160 
uses, 153 

IEEE 1284 standard, 151, 152 
IEEE 1394. 5^^ FireWire 
IGOR Pro, 300 
Image capture products, 322, 324—325 
Inductive and capacitive sensors, 20 
Industrial PCs, 314-318 

CompactPCI, 316, 317-318 
desktop versus, 314-315 
diskless, 315 
embedded versus, 319-319 
form factors, 315 
passive backplane, 315 
PCI and ISA buses, 315 
problem with, 315-316 
PXI, 316, 318 

Industry standard architecture (ISA), 79 
Inheritance, 342 
Instrumentation amplifiers (lAs), 46-47 



Index 411 

Intel 80x86 CPU, 4, 79 
Intel 8255A PPI, 254-255 
Intelligent Instrumentation, 273-274 
Interfaces, standard hardware. See Hardware 

interfaces, standard 
Interfacing hardware to PC bus, 108-122 

8-bit I/O port design, simple, 111-114 
16-bit data transfers on ISA computers, 

118-119 
analog input card design, 117-118 
DMA, 115 
interfacing to PCI bus, 121 
I/O data transfers, 108-110 
memory data transfers, 110 
plug and play, 120-121 
wait state generation, 115-116 

Interfacing software to PC, 123-141 
DOS, 133-135 
DOS-based layers, 123-125 
DOS programs, special, 132-133 
interrupts, 125-128 
overcoming DOS memory limitations, 

135-137 
polled versus interrupt-driven software, 

128-131 
protected-mode operating systems, 

137-141 
Internet access, 5 
Interrupts 

hardware, 112-114 
polled versus interrupt-driven software, 

128-131 
software, 125-128 
software program example, 129-130 

Introduction, 1-5 
block diagram, 3 
economics, 3-^ 
software, 5 

I/O data transfers, 108-110 
Ionizing radiation sensors, 18-19 
Isolation amplifiers, 48 

Java, 350-352 
advantages, 350 
applet, 350 
C++versus, 350, 351 
development of, 350 
as dynamic language, 351 
features, 351 

352 

portability of, 350 
sample program, 351 
structure, 351 
syntax, 351 

Java Virtual Machine (JVM), 350 
Josephson junction, 17, 18 
JPEG files, 221 

Keithley Instruments, Inc., 258-266 
Keyboard, 103 

LabVIEW, 270, 279, 286-288 
LABTECH NOTEBOOK, 279, 282-286, 288 

boards supported, 283 
data streaming, 285 
display features, 284 
features, 283 
interfaces, 285 
Internet and, 286 
output data file formats, 284 
processing operations, 283 
provided by, 282 
running, 284, 285 
sample display, 284 
setting up, 283 

Laptop computers. See Notebook PCs and 
PCMCIA cards 

Linear interpolator, 219-220 
Linear predictor, 218-219, 220 
Linear voltage differential transformer. See 

LVDTs 
Linux, 78, 140-141 
Local area network (LAN), 133, 185-188 
Local curvature, 214—216 
Lockout window, 365 
Log and antilog amplifiers, 45-46 
LVDTs, 20, 21 

Machine vision. See Image capture products 
Macro definition, 332 
Magnetic disk, 191, 192 
Magnetic field sensors, 16-18 

fixed, 16-18 
half effect, 16-17 
SQUIDS, 17-18 
varying, 16 

Mathematica, 301 



412 index 

MATLAB, 279, 291-298, 329, 338 
arrays, 291-292, 295 
diagram of, desktop, 293 
essence of, 292 
features, 292 
functions, 291 
graphics, 292, 295-296 
mathematical functions, 295 
matrix manipulation, 292, 293-294 
plotting, 295-296 
saving in, 295 
starting, 292 
toolboxes, 296-297, 298 

Memory data transfers, 110 
Memory segmentation, 80-81 
MEMS. See Microelectromechanical systems 
Microelectromechanical systems, 26-27, 91 
Microprocessors, 79-80 
Microsoft Windows 

95, 139 
95 file system, 200-201 
Borland programs and, 352 
dynamic hnk library (DLL) files and, 278 
Excel, 281, 282, 284, 300-301 
file allocation table (FAT), 199-200 
files systems, 199-202 
installable file systems (IPS), 200-201 
Macro Assembler (MASM), 330 
NETBEUI, 375 
NT, 78, 80, 139, 140 
NT file system, 202 
programming for, 352-357 
as protected-mode operating system, 

138-140 
Visual Basic, 353-355 
Visual C++, 353, 355-357 

Microstar Laboratories, 275-276 
Modulation, 49 
Monolithic temperature transducers, 8 
Motherboards, 81, 82, 90 
MPEG algorithms, 221 

National Instruments, 270-272, 286 
Networking PCs, 184-190 

Ethernet, 185-188 
TCP/IP, 188-190 

New sensor technologies, 26-28 
Nonmaskable interrupt (NMI), 112 

Notebook PCs and PCMCIA cards, 252, 12-314 
16-bit PC pin assignments, 313 
advantages and disadvantages, 312 
expandability, 312 
linking to desktop PC, 314 
sizes for cards, 312 

NuBus, Apple Macintosh II computers with, 
308-311 

Numerical representation, 222-229 
floating-point formats, 227-228 
four-bit signed integers, 224 
integer formats, 222-226 
multibyte integer storage, 223 
noninteger formats, 226-229 
range and precision of various formats, 228 

Nyquist theorem, 74, 206, 238 

Object-oriented program (OOP), 341, 342, 344, 
354 

Omega, 276-277 
Operating systems, protected-mode, 137-141 

Linux, 140-141 
Microsoft Windows, 138-140 
OS/2, 137-138 
UNIX, 140 

Operational amplifier (op amp), 30, 31-35 
choosing, 34 
common-mode rejection ratio (CMRR), 31, 

46,47 
diagram of, 31 
difference amplifier, 33, 34 
differentiator, 33, 34 
gain versus frequency curve diagram, 32 
integrator, 34 
inverting amplifier, 33 
noinverting amplifier, 33 
powering of, 31 
voltage follower, 32, 33 

Optical drives, 106 
Optical encoders, 20, 21-22 

absolute, 22 
incremental, 21 

Optical sensors, 8-13 
photoconductive cells, 11 
photovoltaic (solar) cells, 11 
semiconductor light, 11-12 
thermoelectric, 12-13 
vacuum tube photosensors, 8-11 



Index 413 

OS/2, 137-138 
Overlays, 135-136 

Parallel interfaces, 144-163 
advanced printer ports, 148-152 
Centronics (standard) printer, 144-148 
IEEE 488 (GPIB), 152-162 
serial digital versus, 142-144 
small computer system (SCSI), 162-163 

Parallel printer ports 
advanced, 148-152 
enhanced (EPP), 148-151 
extended capabilities (ECP), 151, 152 
IEEE 1284 standard, 151, 152 
interface timing, 146 
pin assignments, 145 
PS/2 bidirectional, 148 

Parity checking, 86 
Pascal, 328, 347-350 

assignment operator, 349 
C versus, 347, 349 
development of, 347 
example program, 348 
loops, 349-350 
mathematical operators, 347 
structure, 348 
syntax rules, 348 

Passive backplane systems, 315, 318 
PC. See Personal computers 
PC-based data acquisition applications, 361-383 

categories, 361 
conmiercial equipment using embedded PCs, 

374-382 
electrocardiogram measurement system, 

369-374 
embedded, 361 
future trends, 383 
turnkey system, 336 
ultrasonic measurement system, 362-369 

PCI (peripheral component interconnect) 
64-bit bus, 98, 101 
analog I/O cards, 256 
bus, interfacing to, 121 
eliminating, 178 
expansion card pinout, 99-100 
extension pinout, 101 
Macintosh computers and, 4 
operations, 96-98, 99-100 

other local buses and, 95 
overview, 95-96 
PCI-X, 98 

PCMCIA cards and notebook PCs, 252, 312-314 
Peak detector, 45 
Pentium microprocessor families, 79-80 
Peripherals, PC, 102-107 
Personal Computer Memory Card Industry 

Association (PCMCIA). See Notebook PCs 
and PCMCIA cards 

Personal computers, 78-107 
architectures and processors, 304-312 
BIOS, 86, 93, 94-95 
components, 78 
embedded, 314, 318-322 
IBM PC/AT, 89-93, 94 
IBM PC/XT, 81-89 
IBM PC/XT/AT and compatible computers, 

80-81 
industrial, 314-318 
networks, 184-190. See also Networking PCs 
notebook and PCMCIA cards, 312-314 
PCI and other local buses, 95-101 
peripherals, 102-107 
as workstation, 78 

Phase-locked loop, 36 
Photoconductive cells, 11 
Photodarlington, 12 
Photodiode, 11-12 
Photovoltaic (solar) cells, 11 
Piezoelectric transducers, 14-16, 23 
Pipeline converter, 72-73 
PKZIP, 221, 280, 373 
PLL. See Phase-locked loop 
Plug and play, 120-121, 252 
Polled versus interrupt-driven software, 128-131 
Polymorphism, 342, 343 
Position sensors, 19-22 

capactive and inductive, 20 
LVDTs, 20, 21 
optical encoders, 20, 21-22 
potentiometers, 20 
ultrasonic range finder, 22 

Potentiometers, 20 
Predictive and interpolative techniques, 

216-220 
Pressure and force transducers. See Force and 

pressure transducers 
Printers and plotters, 106-107 



414 Index 

Processors and architectures. See Architecture 
and processors 

Product manufacturers, 385-400 
Program definition, 327 
Programmable-gain ampHfiers (PGAs), 47 
Programmable peripheral interface (PPI), Intel 

8225A, 254-255 
Progranmiing languages, 326-360 

Assembly, 327, 328, 330-332 
BASIC, 328, 333-336 
C, 327, 328, 329, 336-341 
C++, 328, 341-346 
compiled versus interpreted, 328-329 
considerations for writing computer programs, 

357-360 
debugger program, 328 
FORTH, 329 
FORTRAN, 328, 329, 346-347 
high-level and low-level, 327-328 
Java, 350-352 
Unking, 329 
machine language, 327 
MATLAB, 329 
for Microsoft Windows, 352-357 
Pascal, 347-350 
popular, 330-352 
program, 327 
Visual Basic, 353-355 
Visual C++, 355-357 

Protected-mode operating systems, 137-141 
PS/2 bidirectional parallel port, 148 

RAM, 85-86 
Ramp converter, 62-64 
Resistance temperature detectors (RTDs), 8 
Resistor quad, 59 
ROM, 86-87 
Rotational flowmeters, 23 
Run length encoding (RLE), 212-213 

Sample-and-hold (S&H) amplifier, 44, 45 
Scientific Solutions, Inc., 272-273 
Scintillation counters, 19 
Semiconductor light sensors, 11-12 
Semiconductor radiation detectors, 19 
Semiconductor strain gages, 14 
Sensors. See also various categories of sensors 

fiber optic, 24-26 
fluid flow, 23-24 
humidity, 22-23 

IEEE 1451 standards and smart sensors, 27-28 
ionizing radiation, 18-19 
magnetic field, 16-18 
new technologies, 26-28 
optical, 8-13 
position, 19-22 
temperature, 7-8 

Serial interfaces, 163-184 
EIA RS-232C and RS-423A, 164-172 
EIA RS-422A and RS-485, 172-176 
factors to differentiate, 163 
high-speed, 177-184 
parallel digital versus, 142-144 
protocols used, 163-164 
reasons for using, 163 
synchronous communications protocols, 

176-177 
Sigma-delta converter, 68-70, 370 
Significant point extraction, 213-216 
Single-board computers (SBCs), 319 
Single instruction multiple data (SIMD), 80 
Small computer system interface (SCSI), 105, 

162-163, 281 
Smart Transducer Interface Module, 27-28 
Snap-Master, 291 
Software considerations for hardware interrupts, 

114 
Software interfacing to PC, 123-141 

DOS, 133-135 
DOS-based layers, 123-125 
DOS programs, special, 132-133 
interrupts, 125-128 
overcoming DOS memory limitations, 

135-137 
polled versus interrupt-driven software, 

128-131 
protected-mode operating systems, 137-141 

Software products, 277-301 
Agilent VEE, 289 
ASCII and, 280 
command-driven, 278-279 
DADiSP, 298-299 
Dasy Lab, 290 
data analysis, 281-282 
data compression format, 280-281 
data display, 282 
data streamer, 281 
driver, 277-278 
factors to consider, 280 
GAUSS, 299-300 
IGOR Pro, 300 



Index 415 

LABTECH NOTEBOOK, 279, 282-286, 288 
Lab VIEW, 279, 286-288 
Mathematica, 301 
MATLAB, 279, 291-298 
menu-based versus command-driver user 

interfaces, 279-280 
Microsoft Excel, 281, 282, 284, 300-301 
selecting, 282 
Snap-Master, 290 
spreadsheet programs, 281 
Test Point, 289-290 
trade-off in, 278-279 

Software selection importance, 5 
Spreadsheet programs, 281 
SQUIDS, 17-18 
Standard commands for progranamable 

instruments (SCPI), 158-162 
Statistical analysis techniques, 229-230 
STIM. See Smart Transducer Interface Module 
Storage, 105-106 
Strain gages, 13-14 
Successive-approximation converter, 64-65 
Superconducting quantum interference device. 

See SQUIDS 
Synchronous communications protocols, 

176-177 

Tape drives, 105-106 
Tektronix TDS7000 series oscilloscope, 380-382 
Temperature sensors, 7 
Terminate-and-stay-resident (TSR) programs, 

130, 132-133 
Test Point, 289-290 
Thermistors, 7-8 
Thermocouples, 7 
Thermoelectric optical sensors, 12-13 
Thermopile, 13 
Timer/counters, 256-258 
Tone decoder, 36, 37 
Transducers. See Analog signal transducers 
.TXT and other ASCII files, 197-198 
Transmission control protocol and Internet 

protocol (TCP/IP), 188-190 

Ultrasonic flowmeters, 23-24 
Ultrasonic measurement system, 362-369 

analog-to-digital converters (ADCs), 363, 364 
analysis, 366-367 
basis of, 362 

DSP techniques, 367 
lockout window, 365-366 
ranging system, 362 
sample-and-hold amplifier, 364 
sequence of events, 363 
temperature measurement, 366 
thickness measurements, 368 
using multiple cycles to acquire repetitive 

waveform, 364-365 
waveforms, typical, 366 

Ultrasonic range finder, 22 
Unbonded strain gage, 13 
Universal asynchronous receiver/transmitter 

(UART), 171 
Universal serial bus (USB), 178-180 

cable, 178 
connection to PC, typical, 179 
connector pin assignments, 179 
evolution of, 180 

UNIX, 78, 140, 330 
USB. see Universal serial bus 

Vacuum tube photosensors, 8-11 
gas photodiode, 9 
photodiode, vacuum, 9 
photomultiplier tube (PMT), 9-11, 19 

Video Electronics Standards Association 
(VESA), 95 

Visual Basic, 353-355 
ActiveX, 354 
aspects of, 353-354 
BASIC versus, 353 
basis of, 353 
control in, 354 
event-driven model, 353-354 
example, 354 
features, 354 
as hierarchical object-oriented language, 354 
versions of, 353 
Visual C+-I- versus, 355 

Visual C-F+, 353, 355-357 
advantage, 356-357 
App Wizard, 355 
creating program, 355 
Microsoft foundation class (MFC) library, 

355, 357 
sample program, 356 
Visual Basic versus, 355 
windows application programming interface 

(API), 357 



416 Index 

Voltage comparator, 35-36 
Voltage references, 48 
Voltage-to-frequency converter (VFC), 

Wait states, 88 
AT systems and, 119 
generation, 115-116 
schematic, 116 

Waveform processing, 232-234 
Wavelet analysis, 247-249 
Wheatstone bridge, 43-44 

67 

Windows. See Microsoft Windows 
WINZIP, 221, 280, 373 
Writing computer programs, considerations for, 

357-360 
choosing programming language, 359 
debugging program, 359 
documentation, 360 
flowchart, 357-358 
starting point, 357 

Zero-order predictor (ZOP), 216-218, 373 


	Front Cover 
	Data Acquisition Techniques Using PCs
	Copyright Page 
	Contents 
	Preface to the Second Edition
	Chapter 1. Introduction to Data Acquisition
	Chapter 2. Analog Signal Transducers
	2.1 Temperature Sensors
	2.2 Optical Sensors
	2.3 Force and Pressure Transducers
	2.4 Magnetic Field Sensors
	2.5 Ionizing Radiation Sensors
	2.6 Position (Displacement) Sensors
	2.7 Humidity Sensors
	2.8 Fluid Flow Sensors
	2.9 Fiber Optic Sensors
	2.10 Other New Sensor Technologies

	Chapter 3. Analog Signal Conditioning 
	3.1 Signal Conditioning Techniques
	3.2 Analog Circuit Components
	3.3 Analog Conditioning Circuits

	Chapter 4. Analog/Digital Conversions
	4.1 Digital Quantities
	4.2 Data Conversion and DACs
	4.3 ADCs

	Chapter 5. The PC
	5.1 IBM PC/XT/AT and Compatible Computers
	5.2 The IBM PC/XT
	5.3 The IBM PC/AT
	5.4 BIOS
	5.5 PCI and Other Local Buses
	5.6 PC Peripherals

	Chapter 6. Interfacing Hardware to a PC Bus
	6.1 I/O Data Transfers
	6.2 Memory Data Transfers
	6.3 A Simple, 8-Bit I/O Port Design
	6.4 DMA
	6.5 Wait State Generation
	6.6 Analog Input Card Design
	6.7 16-Bit Data Transfers on ISA Computers
	6.8 Plug and Play
	6.9 Interfacing to the PCI Bus

	Chapter 7. Interfacing Software to the PC 
	7.1 DOS-Based PC Software Layers
	7.2 Software Interrupts
	7.3 Polled versus Interrupt-Driven Software
	7.4 Special DOS Programs
	7.5 DOS
	7.6 Overcoming DOS Memory Limitations
	7.7 Protected-Mode Operating Systems

	Chapter 8. Standard Hardware Interfaces
	8.1 Parallel versus Serial Digital Interfaces
	8.2 Parallel Interfaces
	8.3 Standard Serial Interfaces
	8.4 PC Networks

	Chapter 9. Data Storage and Compression Techniques
	9.1 DOS Disk Structure and Files
	9.2 Common DOS File Types
	9.3 Windows File Systems
	9.4 Data Compression Techniques
	9.5 Commercial Data Compression Software

	Chapter 10. Data Processing and Analysis
	10.1 Numerical Representation
	10.2 Data Analysis Techniques

	Chapter 11. Commercial Data Acquisition Products
	11.1 Commercial Data Acquisition Hardware Products
	11.2 Commercial Data Acquisition Software Products
	11.3 How to Choose Commercial Data Acquisition Products

	Chapter 12. Other PC Configurations and Hardware for Data Acquisition
	12.1 Alternative PC Architectures and Processors
	12.2 Notebook PCs and PCMCIA Cards
	12.3 Industrial and Embedded PCs
	12.4 Image Capture Products

	Chapter 13. Computer Programming Languages
	13.1 Popular Programming Languages
	13.2 Programming for Microsoft Windows
	13.3 Considerations for Writing Computer Programs

	Chapter 14. PC-Based Data Acquisition Applications
	14.1 Ultrasonic Measurement System
	14.2 Electrocardiogram Measurement System
	14.3 Commercial Equipment Using Embedded PCs
	14.4 Future Trends in PC-Based Data Acquisition

	Appendix: Data Acquisition and Related PC Product Manufacturers
	Bibliography
	Index

